Characteristics of Reinforced Concrete Bond at High Strain Rates

Title: Characteristics of Reinforced Concrete Bond at High Strain Rates
Authors: Jacques, Eric
Date: 2016
Abstract: Despite the on-going intensity of research in the field of protective structural design, one topic that has been largely ignored in the literature is the effect of high strain rates on the bond between reinforcing steel and the surrounding concrete. Therefore, a comprehensive research program was undertaken to establish the effect of high strain rates on reinforced concrete bond. The experimental research consisted of the construction and testing of fourteen flexural beam-end bond specimens and twenty-five lap-spliced reinforced concrete beams. The physical and material properties of the specimens were selected based on a range of design parameters known to significantly influence bond strength. In order to establish a baseline for comparison, approximately half of the total number of specimens were subjected to static testing, while the remainder were subjected to dynamic loading generated using a shock tube. The strain rates generated using the shock tube were consistent with those obtained for mid- and far-field explosive detonation. Results of the beam-end and lap splice beam tests showed that the flexural behaviour of reinforced concrete was significantly stronger and stiffer when subjected to dynamic loading. Furthermore, the high strain rate bond strength was always greater than the corresponding low strain rate values, yielding an average dynamic increase factor (DIF) applied to ultimate bond strength of 1.28. Analysis of the low and high strain rate test results led to the development of empirical expressions describing the observed strain rate sensitivity of reinforced concrete bond for spliced and developed bars with and without transverse reinforcement. The predictive accuracy of the proposed DIF expressions was assessed against the experimental results and data from the literature. It was found that the dynamic bond strength of reinforced concrete can be predicted with reasonably good accuracy and that the proposed DIF expressions can be used for analysis and design of protective structures. An analytical method was also developed to predict the flexural load-deformation behaviour of reinforced concrete members containing tension lap splices. The analysis incorporated the effect of reinforcement slip through the use of pseudo-material stress-strain relationships, in addition to giving consideration to the effect of high strain rates on bond-slip characteristics and on the material properties of concrete and steel. A comparison of the analytical predictions with experimental data demonstrated that the proposed analysis technique can reasonably predict the flexural response of beams with tension lap splices. The results also demonstrated that the model is equally applicable for use at low- and high-strain rates, such as those generated during blast and impact.
CollectionThèses, 2011 - // Theses, 2011 -