Struvite Precipitation of Ammonia from Landfill Leachate

Description
Title: Struvite Precipitation of Ammonia from Landfill Leachate
Authors: Zhang, Chi
Date: 2016
Abstract: The application of struvite (magnesium ammonium phosphate,!MgNH&PO& ∙ 6H+O) precipitation and its recycling use for the purpose of ammonia removal from both synthetic solutions and landfill leachate were investigated in this study. The results demonstrated that chemical precipitation by struvite formation is efficient for ammonia removal from aqueous solutions. In addition, by recycling the thermal residue of struvite, continuously removing ammonia can technically be achieved. In the struvite precipitation, ammonia removal significantly depended on the pH and chemical molar ratios of NH& ,:!Mg+,:!PO& ./. For synthetic solution (TAN=1,000 mg/L), remarkable TAN removal efficiency of over 98% has been reported when the molar ratio of NH& ,:!Mg+,:!PO& ./ equals 1.0:1.2:1.2, 1.0:1.3:1.3, 1.0:1.3:1.4 and 1.0:1.5:1.5 at optimum pH 9. The optimum combinations of reagents applied in landfill leachate (TAN=1,878 mg/L) were!NH& ,:!Mg+,:!PO& ./ =1.0:1.3:1.3, 1.0:1.4:1.3, 1.0:1.5:1.4 and 1.0:1.5:1.5 at optimum pH 9.5, all of which displayed excellent TAN removal efficiencies of over 99%. Response surface method (RSM) helped to analyze the data and optimize the results. The struvite pyrolysate provided best performance of removing ammonia in both simulated wastewater and landfill leachate at a dosage of 60 g/L, when struvite was previously heated at 105 􀀁 by oven for 2.5 h. In the recycling phase, the struvite pyrolysate resulting from NaOH-mediated pyrolysis was more effective at continuously treating ammonia synthetic solution than was direct heating, with an initial mode of 87.4% at the beginning to 75.1% in the fifth round and direct heating of struvite from 80.9% in the first cycle and 60.6% in the final cycle. The struvite pyrolysate formed by NaOH-mediated pyrolysis performed with greater ability to continuously eliminate ammonia from landfill leachate (97.2% removal at the beginning and 72.3% in the fifth round), than did directly heated struvite (98.4% in the first cycle and 81.3% in the final cycle). Additionally, microwave irradiation could also dissociate struvite, which subsequently demonstrated moderate TAN removal in recycling phases.
URL: http://hdl.handle.net/10393/34492
http://dx.doi.org/10.20381/ruor-5617
CollectionThèses, 2011 - // Theses, 2011 -
Files