Interdependent Cyber Physical Systems: Robustness and Cascading Failures

Title: Interdependent Cyber Physical Systems: Robustness and Cascading Failures
Authors: Huang, Zhen
Date: 2014
Abstract: The cyber-physical systems (CPS), such as smart grid and intelligent transportation system, permeate into our modern societies recently. The infrastructures in such systems are closely interconnected and related, e.g., the intelligent transportation system is based on the reliable communication system, which requires the stable electricity provided by power grid for the proper function. We call such mutually related systems interdependent networks. This thesis addresses the cascading failure issue in interdependent cyber physical system. We consider CPS as a system that consists of physical-resource and computational-resource networks. The failure in physical-resource network might cause the failures in computational-resource network, and vice versa. This failure may recursively occur and cause a sequence of failures in both networks. In this thesis, we propose two novel interdependence models that better capture the interdependent networks. Then, we study the effect of cascading failures using percolation theory and present the detailed mathematical analysis on failure propagation in the system. By calculating the size of functioning parts in both networks, we analyze the robustness of our models against the random attacks and failures. The cascading failures in smart grid is also investigated, where two types of cascading failures are mixed. We estimate how the node tolerance parameter T (ratio of capacity to initial workload) affect the system performance. This thesis also explores the small clusters. We give insightful views on small cluster in interdependent networks, under different interdependence models and network topologies.
CollectionThèses, 2011 - // Theses, 2011 -