Predictive Control of Electric Motors Drives for Unmanned Off-road Wheeled Vehicles

Title: Predictive Control of Electric Motors Drives for Unmanned Off-road Wheeled Vehicles
Authors: Mohammed, Mostafa Ahmed Ismail
Date: 2013
Abstract: Starting a few decades ago, the unmanned wheeled vehicle research has drawn lately more attention, especially for off-road environment. As the demand to use electric vehicles increased, the need to conceptualize the use of electrically driven vehicles in autonomous operations became a target. That is because in addition to the fact that they are more environmentally friendly, they are also easier to control. This also gives another reason to enhance further the energy economy of those unmanned electric vehicles. Off-road vehicles research was always challenging, but in the present work the nature of the off-road land is utilized to benefit from in order to enhance the energy consumption of those vehicles. An algorithm for energy consumption optimization for electrically driven unmanned wheeled vehicles is presented. The algorithm idea is based on the fact that in off-road conditions, when the vehicle passes a ditch or a hole, the kinetic energy gained while moving downhill could be utilized to reduce the energy consumption for moving uphill if the dimensions of the ditch/hole were known a distance ahead. Two manipulated variables are evaluated: the wheels DC motors supply voltage and the DC armature current. The developed algorithm is analysed and compared to the PID speed iii controller and to the open-loop control of DC motors. The developed predictive controller achieved encouraging results compared to the PID speed control and also compared to the open-loop control. Also, the use of the DC armature current as a manipulated variable showed more noticeable improvement over using the DC input voltage. Experimental work was carried out to validate the predictive control algorithm. A mobile robot with two DC motor driven wheels was deployed to overcome a ditch-like hindrance. The experimental results verified the simulation results. A parametric study for the predictive control is conducted. The effect of changing the downhill angle and the uphill angle as well as the size of the prediction horizon on the consumed electric energy by the DC motors is addressed. The simulation results showed that, when using the proposed approach, the larger the prediction horizon, the lower the energy consumption is.
CollectionThèses, 2011 - // Theses, 2011 -
Mohammed_Mostafa_Ahmed_Ismail_2013_thesis.pdfPhD thesis in robotics by Mostafa Yacoub10.32 MBAdobe PDFOpen