Homogeneous Projective Varieties of Rank 2 Groups

Description
Title: Homogeneous Projective Varieties of Rank 2 Groups
Authors: Leclerc, Marc-Antoine
Date: 2012
Abstract: Root systems are a fundamental concept in the theory of Lie algebra. In this thesis, we will use two different kind of graphs to represent the group generated by reflections acting on the elements of the root system. The root systems we are interested in are those of type A2, B2 and G2. After drawing the graphs, we will study the algebraic groups corresponding to those root systems. We will use three different techniques to give a geometric description of the homogeneous spaces G/P where G is the algebraic group corresponding to the root system and P is one of its parabolic subgroup. Finally, we will make a link between the graphs and the multiplication of basis elements in the Chow group CH(G/P).
URL: http://hdl.handle.net/10393/23558
http://dx.doi.org/10.20381/ruor-6240
CollectionThèses, 2011 - // Theses, 2011 -
Files
Leclerc_Marc-Antoine_2012_thesis.pdfMaster's thesis492.61 kBAdobe PDFOpen