Sedimentology, Stratigraphic Evolution and Provenance of the Cambrian – Lower Ordovician Potsdam Group in the Ottawa Embayment and Quebec Basin

Title: Sedimentology, Stratigraphic Evolution and Provenance of the Cambrian – Lower Ordovician Potsdam Group in the Ottawa Embayment and Quebec Basin
Authors: Lowe, David
Date: 2016
Abstract: The Cambrian – Lower Ordovician Potsdam Group is a mostly siliciclastic unit that provides important insight into the paleoenvironmental, geologic and tectonic history of Early Paleozoic Laurentia. Nevertheless, in spite of 178 years of study the Potsdam in the Ottawa Embayment and Quebec Basin remains poorly understood. Also poorly understood is how the Potsdam relates with coeval strata regionally. In this work six siliciclastic paleoenvironments are recognized: (a) braided fluvial, (b) ephemeral fluvial, (c) aeolian, (d) coastal sabkha, (e) tide-dominated marine and (f) open-coast tidal flat. Fluvial strata were examined in particular detail and interpreted to consist of two end-member kinds. Braided fluvial deposits are dominated by low-relief bars formed in wide, shallow channels; however where basement structures limited the lateral growth of channels, flows were deeper and bar deposits thicker and higher angle. In contrast, ephemeral fluvial strata are dominated by sheetflood splay sedimentation with rare preservation of scour-filling supercritical bedform strata – all later subjected to aeolian reworking. In the upper Potsdam, alternating ephemeral and braided fluvial strata provide a record of climate change, which, respectively, correlate with documented global cool (arid) and warm (humid) periods during the Late Cambrian and Early Ordovician. Three allounits are recognized in Potsdam strata, recording regional episodes of sedimentation and facilitating correlation with coeval strata throughout eastern North America. These correlations, aided with provenance data from detrital zircons, show that changes in the areal distribution of sediment supply, accommodation and deposition/erosion were principally controlled by episodic reactivation of the Neoproterozoic Ottawa graben, which then periodically modified the stratigraphic expression of the ongoing Sauk transgression. Specifically, episodes of tectonic reactivation occurred during late Early to Middle Cambrian (allounit 1), late Middle to early Late Cambrian (allounits 2 – 3 unconformity), and Earliest Ordovician (allounits 3 – 4 unconformity). The earliest episode is correlated to regional extension of southern Laurentia, whereas the latter two are linked to peri-Laurentian accretion events that triggered reactivation of the Ottawa graben via the Missisquoi oceanic fracture zone.
CollectionThèses, 2011 - // Theses, 2011 -