Exploring New Applications of Group 7 Complexes for Catalytic and CO2 Reduction Using Photons or Electrochemistry

Description
Title: Exploring New Applications of Group 7 Complexes for Catalytic and CO2 Reduction Using Photons or Electrochemistry
Authors: Alghamdi, Ahlam
Date: 2016
Abstract: This thesis focuses on the synthesis, characterization and reactivity of group VII transition metal complexes. It begins with exploring a new pincer geometry of Re(I) compounds and then examining both Re(I) and Mn(I) compound as homogenous catalysts for photocatalytic and electrocatalytic reduction of CO2. In the first chapter, I focus on some recently reported approaches to photocatalytic and electrocatalytic reduction of CO2 using homogenous catalysts of transition metal. The second chapter presents efforts to capture Re(I) in a neutral N,N,N pincer scaffold and the resulting enhanced absorption of visible light. Most of these results have appeared in a publication. In this thesis, I only present my work on rhenium compounds that are supported by the bis(imino)pyridine ligand and an examination of the differences in properties between the bidentate and tridentate ligand geometries. Later I examine both tridentate and bidentate complexes for the photocatalytic and electrocatalytic reduction of CO2 to CO. The failure of tridentate Re1 bis(imino)pyridine compounds to reduce CO2 to CO prompted a change in direction to rhenium compounds that are supported with diimine ligands. Thus, I choose 4,5-diazafluoren-9-one as supporting ligand for rhenium and manganese. This chapter explained the reasons behind choosing these particular ligand and metal combinations. ReI and Mn1 compounds of 4,5-diazafluoren-9-one have shown activity for the photocatalytic and electrocatalytic reduction of CO2 to CO. In the fourth chapter, as rhenium and manganese compounds of 4,5-diazafluoren-9-one have shown the great ability of CO2 reduction to CO, the focus here was to modify the ligand by attaching a photosensitizer to the ligand in order to prepare supramolecular complexes that may increase the efficiency and yield of reduction products. In this chapter, I examined two types of the photosensitizer; tris(bipyridine)ruthenium(II)chloride and osmium dichloro bis(4,​4'-​dimethyl-​2,​2'-​bipyridine).
URL: http://hdl.handle.net/10393/35234
http://dx.doi.org/10.20381/ruor-192
CollectionThèses, 2011 - // Theses, 2011 -
Files