Coherent Anti-Stokes Raman Scattering Miniaturized Microscope

Title: Coherent Anti-Stokes Raman Scattering Miniaturized Microscope
Authors: Smith, Brett
Date: 2013
Abstract: Microscopy techniques have been developed and refined over multiple decades, but innovation around single photon modalities has slowed. The advancement of the utility of information acquired, and minimum resolution available is seemingly reaching an asymptote. The fusion of light microscopy and well-studied nonlinear processes has broken through this barrier and enabled the collection of vast amounts of additional information beyond the topographical information relayed by traditional microscopes. Through nonlinear imaging modalities, chemical information can also be extracted from tissue. Nonlinear microscopy also can beat the resolution limit caused by diffraction, and offers up three-dimensional capabilities. The power of nonlinear imaging has been demonstrated by countless research groups, solidifying it as a major player in biomedical imaging. The value of a nonlinear imaging system could be enhanced if a reduction in size would permit the insertion into bodily cavities, as has been demonstrated by linear imaging endoscopes. The miniaturization of single photon imaging devices has led to significant advancements in diagnostics and treatment in the medical field. Much more information can be extracted from a patient if the tissue can be imaged in vivo, a capability that traditional, bulky, table top microscopes cannot offer. The development of new technologies in optics has enabled the miniaturization of many critical components of standard microscopes. It is possible to combine nonlinear techniques with these miniaturized elements into a portable, hand held microscope that can be applied to various facets of the biomedical field. The research demonstrated in this thesis is based on the selection, testing and assembly of several miniaturized optical components for use as a nonlinear imaging device. This thesis is the first demonstration of a fibre delivered, microelectromechanical systems mirror with miniaturized optics housed in a portable, hand held package. Specifically, it is designed for coherent anti-Stokes Raman scattering, second harmonic generation, and two-photon excitation fluorescence imaging. Depending on the modality being exploited, different chemical information can be extracted from the sample being imaged. This miniaturized microscope can be applied to diagnostics and treatments of spinal cord diseases and injuries, atherosclerosis research, cancer tumour identification and a plethora of other biomedical applications. The device that will be revealed in the upcoming text is validated by demonstrating all designed-for nonlinear modalities, and later will be used to perform serialized imaging of myelin of a single specimen over time.
CollectionThèses, 2011 - // Theses, 2011 -