Hybrid Recommender System Towards User Satisfaction

Title: Hybrid Recommender System Towards User Satisfaction
Authors: Ul Haq, Raza
Date: 2013
Abstract: An individual’s ability to locate the information they desire grows more slowly than the rate at which new information becomes available. Customers are constantly confronted with situations in which they have many options to choose from and need assistance exploring or narrowing down the possibilities. Recommender systems are one tool to help bridge this gap. There are various mechanisms being employed to create recommender systems, but the most common systems fall into two main classes: content-based and collaborative filtering systems. Content-based recommender systems match the textual information of a particular product with the textual information representing the interests of a customer. Collaborative filtering systems use patterns in customer ratings to make recommendations. Both types of recommender systems require significant data resources in the form of a customer’s ratings and product features; hence they are not able to generate high quality recommendations. Hybrid mechanisms have been used by researchers to improve the performance of recommender systems where one can integrate more than one mechanism to overcome the drawbacks of an individual system. The hybrid approach proposed in this thesis is the integration of content and context-based with collaborative filtering, since these are the most successful and widely used mechanisms. This proposed approach will look into the integration of content and context data with rating data using a different mechanism that mainly focuses on boosting a customer’s trust in the recommender system. Researchers have been trying to improve system performance using hybrid approaches, but research is lacking on providing justifications for recommended products. Hence, the proposed approach will mainly focus on providing justifications for recommended products as this plays a crucial role in obtaining the satisfaction and trust of customers. A product’s features and a customer’s context attributes are used to provide justifications. In addition to this, the presentation mechanism needs to be very effective as it has been observed that customers trust more in a system when there are explanations on how the recommended products have been computed and presented. Finally, this proposed recommender system will allow the customer to interact with it in various ways to provide feedback on the recommendations and justifications. Overall, this integration will be very useful in achieving a stronger correlation between the customers and products. Experimental results clearly showed that the majority of the participants prefer to have recommendations with their justifications and they received valuable recommendations on which they could trust.
URL: http://hdl.handle.net/10393/24218
CollectionThèses, 2011 - // Theses, 2011 -