Formation Mechanism and Computational Modelling of Isle of Rum Plagioclase Stellates

Description
Title: Formation Mechanism and Computational Modelling of Isle of Rum Plagioclase Stellates
Authors: Zhang, Steven
Date: 2013
Abstract: We propose a hypothesis and a numerical model for the formation of branching plagioclase textures visible at both macroscopic (∼cm to ∼m) and microscopic scale within melagabbro of the Isle of Rum, Scotland, based on macroscopic, microscopic observations and relevant geological history. The plagioclase crystals are typically linked as twins and form meshes of planar stellate structures (m-scale) with a large range in geometrical organization from patchy to radiating. Evidence of macroscopic crystal aggregation and alignment is attributed to interfacial free energy minimization at the microscopic scale during growth. Accordingly, a binary immiscible Lattice Boltzmann model was developed to simulate diffusion of simplified plagioclase in the melt phase. Isothermal phase transitions modelled via first order chemical reactions are subsequently coupled with stochastic dynamics at the crystal growth front to simulate energy minimization processes including twinning during crystallization in an igneous environment. The solid phase and the liquid phase are coupled with a temporal flexibility that sets the overall ratio between the rate of diffusion and chemical enrichment in the liquid state and the rate of crystallization. The parameter space of the model is explored extensively, followed by a reasonable transcription of physical parameters and an estimation of other parameters to construct realistic simulation scenarios yielding synthetic plagioclase stellates. The results are presented, analyzed and discussed. They appear to be in reasonable qualitative agreement with observations, and several aspects of the natural stellates such as the stellate spacing and long continuous stretches of plagioclase with epitaxial junctions seem to be in reasonable quantitative agreement with observations.
URL: http://hdl.handle.net/10393/24068
http://dx.doi.org/10.20381/ruor-2965
CollectionThèses, 2011 - // Theses, 2011 -
Files