Enhancing Cardiomyocyte Survival in Drug Induced Cardiac Injury

Title: Enhancing Cardiomyocyte Survival in Drug Induced Cardiac Injury
Authors: Maharsy, Wael
Date: 2012
Abstract: Cardiotoxicity associated with many cancer drugs is a critical issue facing physicians these days and a huge hurdle that must be overcome for a side effects-free cancer therapy. Survival of cardiac myocytes is compromised upon the exposure to certain chemotherapeutic drugs. Unfortunately, the mechanisms implicated in cardiac toxicity and the pathways governing myocyte survival are poorly understood. The following thesis addresses the mechanisms underlying the cardiotoxicity of two anticancer drugs, doxorubicin (DOX) and Imatinib mesylate (Gleevec). Transcription factor GATA-4, has recently emerged as an indispensable factor in the adult heart adaptive response and cardiomyocyte survival. Therefore, the specific aim of this project was to determine the role of GATA-4, its upstream regulators, as well as partners in survival. A combination of cell and molecular techniques done on in vivo, and ex vivo models were utilized to tackle these issues. In this study, we confirmed the cardiotoxicity of the anticancer drug, Imatinib mesylate and found to be age dependent. GATA-4, already known to be implicated in DOX-induced toxicity, was confirmed as an Imatinib target. At the molecular level, we identified IGF-1 and AKT as upstream regulators of GATA-4. Moreover, we confirmed ZFP260 (PEX-1), a key regulator of the cardiac hypertrophic response, as a GATA-4 collaborator in common prosurvival pathways. Collectively, these results provide new insights on the mechanisms underlying drug-induced cardiotoxicity and raise the exciting possibility that cancer drugs are negatively affecting the same prosurvival pathway(s), in which GATA-4 is a critical component. Therapeutic interventions aimed at enhancing GATA-4 activity may be interesting to consider in the context of treatments with anticancer drugs.
URL: http://hdl.handle.net/10393/23384
CollectionThèses, 2011 - // Theses, 2011 -