Sediment Dynamics and Stratigraphic Architecture of a Lower Silurian Storm-dominated Carbonate Ramp, Anticosti Island, Québec, Canada

Description
Title: Sediment Dynamics and Stratigraphic Architecture of a Lower Silurian Storm-dominated Carbonate Ramp, Anticosti Island, Québec, Canada
Authors: Clayer, François
Date: 2012
Abstract: The upper Llandovery succession across the Jupiter-Chicotte formational contact on Anticosti Island, Québec, allows us to study the sediment dynamics and stratigraphic architecture of a storm-dominated, carbonate ramp. The Anticosti paleotropical ramp was slowly subsiding and recording significant changes in sea level in a far field glacial setting during the early Telychian. Three facies associations, grouping nine facies, are recognized along the E-W outcrop belt, and from top to bottom as the: (FA-1) encrinitic carbonate facies, (FA-2) mixed siliciclastic and carbonate facies, and (FA-3) non-encrinitic carbonate facies. These mid to outer ramp sediments represent deposition mostly from episodic, high-energy storm events as evidenced by hummocky cross-stratification, large wave ripples, gutter casts, and wave-enhanced sediment-gravity flow deposits. Spatial and temporal changes in siliciclastic content imply basin margin depositional environments in the eastern sections and change in climate regime from arid to humid conditions. The Chicotte deposition marks a major faunal change with the domination of crinoids triggered by increasing siliciclastic supply, rapid sea level fluctuations and change in substrates. The recognition of one major transgressive-regressive (TR) sequence subdivided in distinct meter-scale cycles allows a high resolution E-W correlation. The development of the TR sequence and meter-scale cycles is driven by glacio-eustacy where the main sequence is 4th order (~400 Ky) with superimposed meter-scale cycles that are 5th and/or 6th order (~100 Ky). Nevertheless, erosional capping surfaces within the more proximal tempestites represent ancient rocky shorelines that developed during forced sea level falls. In order to explain this stratigraphic architecture, a carbonate open-ramp model is proposed with a concave-up profile and a narrow and steep inner ramp in equilibrium with a high-energy coastline.
URL: http://hdl.handle.net/10393/23149
http://dx.doi.org/10.20381/ruor-5913
CollectionThèses, 2011 - // Theses, 2011 -
Files