Palladium-Catalyzed C(sp2)-C(sp3) Bond Formation

Title: Palladium-Catalyzed C(sp2)-C(sp3) Bond Formation
Authors: Rousseaux, Sophie
Date: 2012
Abstract: Palladium-catalyzed reactions for carbon-carbon bond formation have had a significant impact on the field of organic chemistry in recent decades. Illustrative is the 2010 Nobel Prize, awarded for “palladium-catalyzed cross couplings in organic synthesis”, and the numerous applications of these transformations in industrial settings. This thesis describes recent developments in C(sp2)-C(sp3) bond formation, focusing on alkane arylation reactions and arylative dearomatization transformations. In the first part, our contributions to the development of intramolecular C(sp3)-H arylation reactions from aryl chlorides are described (Chapter 2). The use of catalytic quantities of pivalic acid was found to be crucial to observe the desired reactivity. The reactions are highly chemoselective for arylation at primary aliphatic C-H bonds. Theoretical calculations revealed that C-H bond cleavage is facilitated by the formation of an agostic interaction between the palladium centre and a geminal C-H bond. In the following section, the development of an alkane arylation reaction adjacent to amides and sulfonamides is presented (Chapter 3). The mechanism of C(sp3)-H bond cleavage in alkane arylation reactions is also addressed through an in-depth experimental and theoretical mechanistic study. The isolation and characterization of an intermediate in the catalytic cycle, the evaluation of the roles of both carbonate and pivalate bases in reaction mechanism as well as kinetic studies are reported. Our serendipitous discovery of an arylation reaction at cyclopropane methylene C-H bonds is discussed in Chapter 4. Reaction conditions for the conversion of cyclopropylanilines to quinolines/tetrahydroquinolines via one-pot palladium(0)-catalyzed C(sp3)-H arylation with subsequent oxidation/reduction are described. Initial studies are also presented, which suggest that this transformation is mechanistically unique from other Pd catalyzed cyclopropane ring-opening reactions. Preliminary investigations towards the development of an asymmetric alkane arylation reaction are highlighted in Chapter 5. Both chiral carboxylic acid additives and phosphine ligands have been examined in this context. While high yields and enantiomeric excesses were never observed, encouraging results have been obtained and are supported by recent reports from other research groups. Finally, in part two, the use of Pd(0)-catalysis for the intramolecular arylative dearomatization of phenols is presented (Chapter 7). These reactions generate spirocyclohexadienones bearing all-carbon quaternary centres in good to excellent yields. The nature of the base, although not well understood, appears to be crucial for this transformation. Preliminary results in the development of an enantioselective variant of this transformation demonstrate the influence of catalyst activation on levels of enantiomeric excess.
CollectionThèses, 2011 - // Theses, 2011 -