Electrophysiological Indices in Major Depressive Disorder and their Utility in Predicting Response Outcome to Single and Dual Antidepressant Pharmacotherapies

Title: Electrophysiological Indices in Major Depressive Disorder and their Utility in Predicting Response Outcome to Single and Dual Antidepressant Pharmacotherapies
Authors: Jaworska, Natalia
Date: 2012
Abstract: Certain electrophysiological markers hold promise in distinguishing individuals with major depressive disorder (MDD) and in predicting antidepressant response, thereby assisting with assessment and optimizing treatment, respectively. This thesis examined resting brain activity via electroencephalographic (EEG) recordings, as well as EEG-derived event-related potentials (ERPs) to auditory stimuli and facial expression presentations in individuals with MDD and controls. Additionally, the utility of resting EEG as well as auditory ERPs (AEPs), and the associated loudness-dependence of AEPs (LDAEP) slope, were assessed in predicating outcome to chronic treatment with one of three antidepressant regimens [escitalopram (ESC); bupropion (BUP); ESC+BUP]. Relative to controls, depressed adults had lower pretreatment cortical activity in regions implicated in approach motives/positive processing. Increased anterior cingulate cortex (ACC)-localized theta was observed, possibly reflecting emotion/cognitive regulation disturbances in the disorder. AEPs and LDAEPs, putative indices of serotonin activity (implicated in MDD etiology), were largely unaltered in MDD. Assessment of ERPs to facial expression processing indicated slightly blunted late preconscious perceptual processing of expressions, and prolonged processing of intensely sad faces in MDD. Faces were rated as sadder overall in MDD, indicating a negative processing bias. Treatment responders (vs. non-responders) exhibited baseline cortical hypoactivity; after a week of treatment, cortical arousal emerged in responders. Increased baseline left fronto-cortical activity and early shifts towards this profile were noted in responders (vs. non-responders). Responders exhibited a steep, and non-responders shallow, baseline N1 LDAEP derived from primary auditory cortex activity. P2 LDAEP slopes (primary auditory cortex-derived) increased after a week of treatment in responders and decreased in non-responders. Consistent with overall findings, ESC responders displayed baseline cortical hypoactivity and steep LDAEP-sLORETA slopes (vs. non-responders). BUP responders also exhibited steep baseline slopes and high ACC theta. These results indicate that specific resting brain activity profiles appear to distinguish depressed from non-depressed individuals. Subtle ERP modulations to simple auditory and emotive processing also existed in MDD. Resting alpha power, ACC theta activity and LDAEP slopes predicted antidepressant response in general, but were limited in predicting outcome to a particular treatment, which may be associated with limited sample sizes.
URL: http://hdl.handle.net/10393/22873
CollectionThèses, 2011 - // Theses, 2011 -