A SNP Associated With Autism Affects Dlx5/Dlx6 Regulation in the Forebrain

Description
Title: A SNP Associated With Autism Affects Dlx5/Dlx6 Regulation in the Forebrain
Authors: Lesage-Pelletier, Cindy
Date: 2011
Abstract: Autism is a severe childhood neuropsychiatric condition characterized by impairments in socialization and communication, and by restricted and repetitive behaviours. Autism spectrum disorder (ASD) is a complex and largely unknown disease with a strong genetic basis, multiple genes involved and environmental factors determining its phenotype. Interestingly, the DLX1/DLX2 and DLX5/DLX6 bigene clusters are located in autism susceptibility loci and Dlx genes are involved in GABAergic interneurons differentiation and migration to the cortex during forebrain development. Dlx gene expression is controlled by different cis-regulatory elements. Of these, 4 are active in the forebrain, URE2, I12b, I56ii and I56i. In order to determine the role of the DLX genes in ASD, variants were found in gene exons and in cis-regulatory elements in autistic individuals. A single nucleotide polymorphism (SNP), a change of an adenine for a guanine, was identified in I56i enhancer. Finding a SNP in I56i was very surprising considering that it is located in a Dlx binding motif highly conserved among >40 species. We showed, using in vitro approaches, that the presence of this SNP affects the affinity of Dlx for their binding site and reduces the transcriptional activation of the enhancer. The SNP also affects activity of the I56i enhancer in transgenic mice. In order to determine the real impact of the SNP in vivo, mutant mice harboring the SNP in their I56i enhancer were produced. That involved the insertion of the I56i enhancer with the SNP, using homologous recombination in mouse embryonic stem cells to replace the wild type version of the enhancer. With these mutant mice, we demonstrated that, in vivo, this SNP reduces Dlx5 and Dlx6 expression in the forebrain. Furthermore, this decrease in Dlx5/Dlx6 expression could affect the differentiation and/or migration of specific populations of inhibitory interneurons in the forebrain. No distinct iv behavioural phenotypes were observed between wild type mice and those carrying the SNP, during social interaction and anxiety tests. Therefore, these results suggest that even a subtle change in a regulatory element can have an impact in the development of the forebrain and may even contribute to disorders such as autism.
URL: http://hdl.handle.net/10393/20359
http://dx.doi.org/10.20381/ruor-5006
CollectionThèses, 2011 - // Theses, 2011 -
Files
Lesage-Pelletier_Cindy_2011_thesis.pdfMaster Thesis1.62 MBAdobe PDFOpen