Cannabis Metabolomics: Comparison of Cannabis Products and Effect of Vaporization

Description
Title: Cannabis Metabolomics: Comparison of Cannabis Products and Effect of Vaporization
Authors: Lee, Tiah
Date: 2019-10-09
Abstract: Cannabis is widely consumed medically and recreationally due to the presence of cannabinoids, but the phytochemical complexity of different varieties and preparations is a major knowledge gap. This thesis investigated the phytochemicals present in thirteen different cannabis strains using untargeted and targeted phytochemical analysis to determine “strain” differences in cannabis tinctures and oils. In addition, the phytochemical differences between different oil products, namely oils extracted by ethanol and CO2 supercritical fluid, were also determined to evaluate different processing methods. It was found that inter-strain variability was more significant than the preparation methods due to the strain-specific presence of major cannabinoids, specifically THCA and CBDA. Furthermore, a processing step like drying removed phytochemicals contributing to strain differences, most notably terpenes. The results suggested that consumers can expect different strains and products to have different chemical profiles, as CO2 oils were found to be more chemically consistent across products than tinctures. Cannabis can be consumed in many different ways, and one popular mode of delivery is vaporization. Vaporization extracts active principles of cannabis with heated gas and could lead to a different phytochemical profile compared to the original flower counterpart. Consequently, the product label based on the raw material may not be representative of what is phytochemically available during consumption. The results of this study showed a reduction in available chemicals after vaporizing flower and oils, and little new chemical formation through this process. Decarboxylated cannabinoids were the most significant contributors to differences between pre and post-vaporized samples, and different phytochemistry composition was observed after vaporization. The results also demonstrated that vaporization reduces inter-strain and inter-product chemical diversity, but the content of the vapor can still be affected by the strain used. Furthermore, it showed that vaporization could extract phytochemicals differently from oils than flower material. This thesis provides a new understanding of phytochemical differences, extraction and vaporization processes of cannabis, and provides novel insights into cannabis for producers and consumers. Understanding the differences in chemical content of different types of concentrates can better inform producers and consumers about the products they make, sell and use. In addition, this thesis supports the use of vaporization as a harm reduction method for the consumption of cannabis, and increases understanding of cannabis vaporization. The information from this thesis contributes novel insights into cannabis research and provides a foundation for further studies.
URL: http://hdl.handle.net/10393/39706
http://dx.doi.org/10.20381/ruor-23949
CollectionThèses, 2011 - // Theses, 2011 -
Files