Study of Void Growth in Commercially Pure Titanium

Title: Study of Void Growth in Commercially Pure Titanium
Authors: Pushkareva, Marina
Date: 2017
Abstract: The ductile fracture process, which consists of the nucleation, growth and coalescence of microvoids, was extensively studied for materials deforming homogeneously. For materials with a non-homogeneous deformation behavior, such as those having hexagonal closed packed (HCP) crystal structure, experimental and numerical data is lacking. Therefore, the fracture properties of materials with such HCP structure, like titanium (used in aerospace and biomedical applications), zirconium (nuclear industry) and magnesium (manufacturing industry) are not well understood. The main research objective of this Ph.D. thesis is to better understand the mechanisms governing fracture in commercially pure (CP) titanium. In particular, the effect of grain orientation on void growth is investigated. The fracture process of CP titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Diffusion bonding was carried out either above or below the phase transformation temperature resulting in different microstructures. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. However, a large scatter in void growth was observed experimentally and was explained in terms of differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle. While this study showed a good agreement between experiments and simulations on average, there is no direct void growth comparison for particular grain orientations. In a follow-up study, an experimental approach was developed to directly relate the growth of a void to its underlying grain orientation. This is achieved by first annealing CP titanium samples below the α-β phase transformation temperature, then performing electron backscatter diffraction iii (EBSD) and finally diffusion bonding the samples together. Samples were then tested in x-ray tomography. This study showed the importance of the local state of strain on void growth. Crystal plasticity simulations that take into account the particular grain orientation and the local state of strain were found to predict well experimental void growth. Crystal plasticity simulations confirmed that the orientation of the voidcontaining grain is more important than the orientation of surrounding grains and more important than the volume fraction of voids, in order to determine void growth. This thesis on the growth and coalescence of voids is important to validate and improve the predictions of ductile fracture models and to design new materials with improved fracture properties.
CollectionThèses, 2011 - // Theses, 2011 -