Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts

Title: Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts
Authors: Kuroda, Kazuki
Kuang, Shihuan
Taketo, Makoto M
Rudnicki, Michael A
Date: 2013-03-05
Abstract: Abstract Background The Wnts are secreted proteins that play important roles in skeletal myogenesis, muscle fiber type diversification, neuromuscular junction formation and muscle stem cell function. How Wnt proteins orchestrate such diverse activities remains poorly understood. Canonical Wnt signaling stabilizes β-catenin, which subsequently translocate to the nucleus to activate the transcription of TCF/LEF family genes. Methods We employed TCF-reporter mice and performed analysis of embryos and of muscle groups. We further isolated fetal myoblasts and performed cell and molecular analyses. Results We found that canonical Wnt signaling is strongly activated during fetal myogenesis and weakly activated in adult muscles limited to the slow myofibers. Muscle-specific transgenic expression of a stabilized β-catenin protein led to increased oxidative myofibers and reduced muscle mass, suggesting that canonical Wnt signaling promotes slow fiber types and inhibits myogenesis. By TCF-luciferase reporter assay, we identified Wnt-1 and Wnt-3a as potent activators of canonical Wnt signaling in myogenic progenitors. Consistent with in vivo data, constitutive overexpression of Wnt-1 or Wnt-3a inhibited the proliferation of both C2C12 and primary myoblasts. Surprisingly, Wnt-1 and Wnt-3a overexpression up-regulated BMP-4, and inhibition of BMP-4 by shRNA or recombinant Noggin protein rescued the myogenic inhibitory effect of Wnt-1 and Wnt-3a. Importantly, Wnt-3a or BMP-4 recombinant proteins promoted slow myosin heavy chain expression during myogenic differentiation of fetal myoblasts. Conclusions These results demonstrate a novel interaction between canonical Wnt and BMP signaling that induces myogenic differentiation towards slow muscle phenotype.
CollectionLibre accès - Publications // Open Access - Publications