Geometric Realizations of the Basic Representation of the Affine General Linear Lie Algebra

FieldValue
dc.contributor.authorLemay, Joel
dc.date.accessioned2015-09-18T18:56:07Z
dc.date.available2015-09-18T18:56:07Z
dc.date.created2015
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10393/32866
dc.identifier.urihttp://dx.doi.org/10.20381/ruor-4140
dc.description.abstractThe realizations of the basic representation of the affine general linear Lie algebra on (r x r) matrices are well-known to be parametrized by partitions of r and have an explicit description in terms of vertex operators on the bosonic/fermionic Fock space. In this thesis, we give a geometric interpretation of these realizations in terms of geometric operators acting on the equivariant cohomology of certain Nakajima quiver varieties.
dc.language.isoen
dc.publisherUniversité d'Ottawa / University of Ottawa
dc.subjectLie Algebra
dc.subjectQuiver Variety
dc.subjectAlgebraic Geometry
dc.subjectEquivariant Cohomology
dc.subjectGeometric Invariant Theory
dc.subjectRepresentation Theory
dc.titleGeometric Realizations of the Basic Representation of the Affine General Linear Lie Algebra
dc.typeThesis
dc.faculty.departmentMathématiques et statistique / Mathematics and Statistics
dc.contributor.supervisorSavage, Alistair
dc.degree.namePhD
dc.degree.leveldoctorate
dc.degree.disciplineSciences / Science
thesis.degree.namePhD
thesis.degree.levelDoctoral
thesis.degree.disciplineSciences / Science
uottawa.departmentMathématiques et statistique / Mathematics and Statistics
CollectionThèses, 2011 - // Theses, 2011 -

Files