Digital Watermarking Based Image and Video Quality Evaluation

FieldValue
dc.contributor.authorWang, Sha
dc.date.accessioned2013-04-02T20:27:23Z
dc.date.available2013-04-02T20:27:23Z
dc.date.created2013
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10393/23988
dc.identifier.urihttp://dx.doi.org/10.20381/ruor-2895
dc.description.abstractImage and video quality evaluation is very important. In applications involving signal transmission, the Reduced- or No-Reference quality metrics are generally more practical than the Full-Reference metrics. Digital watermarking based quality evaluation emerges as a potential Reduced- or No-Reference quality metric, which estimates signal quality by assessing the degradation of the embedded watermark. Since the watermark contains a small amount of information compared to the cover signal, performing accurate signal quality evaluation is a challenging task. Meanwhile, the watermarking process causes signal quality loss. To address these problems, in this thesis, a framework for image and video quality evaluation is proposed based on semi-fragile and adaptive watermarking. In this framework, adaptive watermark embedding strength is assigned by examining the signal quality degradation characteristics. The "Ideal Mapping Curve" is experimentally generated to relate watermark degradation to signal degradation so that the watermark degradation can be used to estimate the quality of distorted signals. With the proposed framework, a quantization based scheme is first implemented in DWT domain. In this scheme, the adaptive watermark embedding strengths are optimized by iteratively testing the image degradation characteristics under JPEG compression. This iterative process provides high accuracy for quality evaluation. However, it results in relatively high computational complexity. As an improvement, a tree structure based scheme is proposed to assign adaptive watermark embedding strengths by pre-estimating the signal degradation characteristics, which greatly improves the computational efficiency. The SPIHT tree structure and HVS masking are used to guide the watermark embedding, which greatly reduces the signal quality loss caused by watermark embedding. Experimental results show that the tree structure based scheme can evaluate image and video quality with high accuracy in terms of PSNR, wPSNR, JND, SSIM and VIF under JPEG compression, JPEG2000 compression, Gaussian low-pass filtering, Gaussian noise distortion, H.264 compression and packet loss related distortion.
dc.language.isoen
dc.publisherUniversité d'Ottawa / University of Ottawa
dc.subjectWatermarking based image and video quality evaluation
dc.subjectadaptive watermarking
dc.subjectsemi-fragile watermarking
dc.subjectDWT based watermark embedding
dc.subjectHVS masking
dc.titleDigital Watermarking Based Image and Video Quality Evaluation
dc.typeThesis
dc.faculty.departmentScience informatique et génie électrique / Electrical Engineering and Computer Science
dc.contributor.supervisorZhao, Jiying
dc.embargo.termsimmediate
dc.degree.namePhD
dc.degree.leveldoctorate
dc.degree.disciplineGénie / Engineering
thesis.degree.namePhD
thesis.degree.levelDoctoral
thesis.degree.disciplineGénie / Engineering
uottawa.departmentScience informatique et génie électrique / Electrical Engineering and Computer Science
CollectionThèses, 2011 - // Theses, 2011 -

Files