Actions of Finite Groups on Substitution Tilings and Their Associated C*-algebras

FieldValue
dc.contributor.authorStarling, Charles B
dc.date.accessioned2012-02-01T16:53:25Z
dc.date.available2012-02-01T16:53:25Z
dc.date.created2012
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10393/20663
dc.identifier.urihttp://dx.doi.org/10.20381/ruor-5433
dc.description.abstractThe goal of this thesis is to examine the actions of finite symmetry groups on aperiodic tilings. To an aperiodic tiling with finite local complexity arising from a primitive substitution rule one can associate a metric space, transformation groupoids, and C*-algebras. Finite symmetry groups of the tiling act on each of these objects and we investigate appropriate constructions on each, namely the orbit space, semidirect product groupoids, and crossed product C*-algebras respectively. Of particular interest are the crossed product C*-algebras; we derive important structure results about them and compute their K-theory.
dc.language.isoen
dc.publisherUniversité d'Ottawa / University of Ottawa
dc.subjectTilings
dc.subjectOperator Algebras
dc.subjectK-theory
dc.subjectNoncommutative Geometry
dc.titleActions of Finite Groups on Substitution Tilings and Their Associated C*-algebras
dc.typeThesis
dc.faculty.departmentMathématiques et statistique / Mathematics and Statistics
dc.contributor.supervisorGiordano, Thierry
dc.embargo.termsimmediate
dc.degree.namePhD
dc.degree.leveldoctorate
dc.degree.disciplineSciences / Science
thesis.degree.namePhD
thesis.degree.levelDoctoral
thesis.degree.disciplineSciences / Science
uottawa.departmentMathématiques et statistique / Mathematics and Statistics
CollectionThèses, 2011 - // Theses, 2011 -

Files