Eigenvalue and entropy statistics for products of conjugate random quantum channels

FieldValue
dc.contributor.authorNechita, Ion
dc.contributor.authorCollins, Benoît
dc.date.accessioned2010-08-30T13:55:28Z
dc.date.available2010-08-30T13:55:28Z
dc.date.created2010
dc.date.issued2010-08-30T13:55:28Z
dc.identifier.urihttp://hdl.handle.net/10393/19588
dc.description.abstractUsing the graphical calculus and integration techniques introduced by the authors, we study the statistical properties of outputs of products of random quantum channels for entangled inputs. In particular, we revisit and generalize models of relevance for the recent counterexamples to the minimum output entropy additivity problems. Our main result is a classification of regimes for which the von Neumann entropy is lower on average than the elementary bounds that can be obtained with linear algebra techniques.
dc.language.isoen
dc.subjectrandom quantum channels
dc.subjectvon neumann entropy
dc.subjectadditivity problem
dc.subjectweingarten calculus
dc.subjectminimum output entropy
dc.titleEigenvalue and entropy statistics for products of conjugate random quantum channels
dc.typeArticle
dc.identifier.doi10.3390/e12061612
CollectionMathématiques et statistiques // Mathematics and Statistics
Publications en libre accès financées par uOttawa // uOttawa financed open access publications

Files