The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-612-16474-8
CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER 1 INTRODUCTION
1. Claus reaction 1
2. NO$_x$ reaction 6
3. Others 7
References 9

CHAPTER 2 EXPERIMENTAL SECTION
1. Instrumentation 11
2. Sample cell 12
3. Vacuum line 14
4. Materials 14
 (1). Solid oxides 14
 (2). Gaseous chemicals 16
 (3). Other chemicals 16
References 17

CHAPTER 3 ALUMINA CATALYST
1. Introduction 18
 (1). Alumina 18
 (2). Hydroxyl groups on Al$_2$O$_3$ 19
 (3). Literature review 22
2. Results and discussion 24
 (1). Adsorption of H$_2$S 24
 (2). Adsorption of SO$_2$ 32
 (3). The static reaction between SO$_2$ and H$_2$S 43
3. Conclusion 54
References 55

CHAPTER 4 THE EFFECT OF BASICITY ON ALUMINA CATALYST
1. Introduction 57
2. Experimental 58
3. Results 59
 (1). Gravimetry 59
CHAPTER 5 SODIUM SILICA CATALYST (Na/SiO₂)

1. Introduction
 (1). Silica
 (2). Dehydroxylation of silica
 (3). Measurement of the -OH groups

2. Experimental

3. Results
 (1). Spectra of SiO₂ and Na/SiO₂
 (2). Adsorption of SO₂
 (3). Adsorption of H₂S
 (4). Adsorption of SO₂ followed by H₂S
 (5). Adsorption of H₂S followed by SO₂
 (6). Adsorption of a mixture of H₂S/SO₂

4. Discussion
 (1). Spectra of known oxysulfur species
 (2). Adsorption of SO₂
 (3). Adsorption of H₂S
 (4). The Claus reaction

References

CHAPTER 6 THE CLAUS REACTION ON ZEOLITES

1. Introduction

2. Experimental

3. Results and discussion
 (1). Adsorption of SO₂
 (2). Adsorption of H₂S
 (3). Adsorption of SO₂, evacuation, then addition of H₂S
 (4). Adsorption of H₂S, evacuation, then addition of SO₂
 (5). Adsorption of a mixture of H₂S and SO₂

4. Conclusion

References
CHAPTER 7 AN EVALUATION OF MAGNESIUM ALUMINATE SPINEL AS A SULFUR DIOXIDE TRANSFER CATALYST

1. Introduction 141
2. Results 142
 (1). Surface properties of spinel 142
 (2). Sulfation 145
 (3). Thermal stability and reducibility of sulfates 151
 (4). Discussion 153
3. Conclusion 158
 References 159

CHAPTER 8 THE INVESTIGATION OF NO₂ AND SO₂ ON Al₂O₃ AND CuO/Al₂O₃

1. Introduction 161
2. Experimental 163
3. Results and discussion 164
 (1). Surface characteristics of CuO/Al₂O₃ 164
 (2). NO₂ adsorption on Al₂O₃ 167
 (3). NO₂ adsorption on CuO/Al₂O₃ 176
 (4). Adsorption of NO₂, then SO₂ 179
 (5). Adsorption of SO₂, the NO₂ 183
4. Conclusion 187
 References 188

CHAPTER 9 AN INFRARED STUDY OF THE CHEMISORPTION OF PENTAMETHYLANTIMONY ON SILICA

1. Introduction 190
2. Results 192
 (1). Reaction between SbMe₅ and SiO₂ 192
 (2). Thermal stability 198
 (3). Reaction with H₂O 200
 (4). Reaction with HX 200
3. Discussion 202
 (1). Formation of the surface Si-O-SbMe₄ 202
 (2). Stable to thermal treatment 203
 (3). Stable to water treatment 204
 (4). Formation of X-SbMe₄ 204
4. Conclusion 204
 References 205
ABSTRACT

This thesis has been concerned with some aspects of the reactions of SO₂ and H₂S over various catalysts, and it has been peripherally concerned with the use of probe molecules to study the surface structure of silica. The major experimental technique has been infrared spectroscopy, sometime supported by data obtained from Raman spectroscopy, mass spectroscopy, temperature programmed desorption and gravimetric measurements.

Most of the work has been related to the Claus reaction, \(\text{2H}_2\text{S} + \text{SO}_2 \rightarrow \text{2H}_2\text{O} + \frac{3}{2}_\text{n}_\text{S}_\text{n} \). In Chapter 3 this reaction has been studied over \(\text{Al}_2\text{O}_3 \) catalysts, in Chapter 4 over sodium impregnated \(\text{Al}_2\text{O}_3 \) catalysts, in Chapter 5 over sodium impregnated \(\text{SiO}_2 \) catalysts, and in Chapter 6 over Y type zeolites.

Chapter 7 is concerned with a study of the oxidation of SO₂ over spinel (magnesium aluminate, MgAl₂O₄) with the view of examining the suitability of this material for adsorption of SO₃ (SO₂ + SO₃) during the regeneration of fluidized catalytic cracking (FCC) catalysts.

Chapter 8 is concerned with a study of the adsorption of NOₓ and of NOₓ/SO₂ mixtures over \(\text{Al}_2\text{O}_3 \) and CuO/Al₂O₃ catalysts, with respect to the Selective Catalytic Reduction (SCR) of NOₓ species.

The last Chapter, 9, is related to a very different study, an IR examination of the use of antimonypentamethyl, SbMe₅, as a molecule for probing the structure and accessibility of surface silanol (SiOH) groups on silica.

A brief summary of the work above, headed by the relevant chapter in this thesis, is given below.
Chapter 3:

The dissociative chemisorption of \(\text{H}_2\text{S} \) on alumina gives rise to infrared bands which have been attributed to \(\text{OH}, \text{Al-SH} \) and \(\text{Al-S} \) species. The interaction occurs with \(\text{AlOH} \) groups and coordinatively unsaturated acidic Al and basic O sites which are created by the thermal activation under vacuum when \(\text{Al}_2\text{O}_3 \) is heated at temperatures above about 300°C. Physical adsorption also occurs on Al sites and via hydrogen bonding to \(\text{AlOH} \) groups.

The chemisorption of \(\text{SO}_2 \) on alumina produces two species, one being a sulfite like species, probably \(\text{AlOSO}_2\text{H} \), having an infrared band in the range from 1070 to 1050 cm\(^{-1}\). This occurs via the interaction of \(\text{SO}_2 \) with \(\text{C}^{2-} \) sites. A second species, a hydrogensulfite probably having the structure \(\text{AlOSO}_2\text{H} \) has an IR band at 1010 cm\(^{-1}\) and occurs via a reaction with basic surface OH groups. Physical adsorption gives rise to species having infrared or Raman bands near 1330 and 1150 cm\(^{-1}\), close to the frequencies for the antisymmetric and symmetric SO stretching modes of the parent \(\text{SO}_2 \). Two unidentified species of unknown structure are in evidence as shown by very weak infrared bands near 1250 and 1200 cm\(^{-1}\).

Under static reaction conditions, preadsorbed \(\text{SO}_2 \) reacts with gaseous \(\text{H}_2\text{S} \) to give sulfur. On the other hand, preadsorbed \(\text{H}_2\text{S} \) does not react with \(\text{SO}_2 \) but instead, preadsorbed \(\text{H}_2\text{S} \) is displaced by the stronger acid \(\text{SO}_2 \). We have concluded that the mechanism of the Claus reaction over \(\text{Al}_2\text{O}_3 \) mainly involves a reaction between adsorbed \(\text{SO}_2 \) and gaseous \(\text{H}_2\text{S} \).

The adsorption of a 2:1 mixture of gaseous \(\text{H}_2\text{S}/\text{SO}_2 \) on \(\text{Al}_2\text{O}_3 \) has been investigated for the first time. The Claus reaction appears to occur readily at room temperature on \(\text{Al}_2\text{O}_3 \) and on several other oxide catalysts and a single species can be detected as the reaction proceeds, characterized by a sharp IR band at 1028 cm\(^{-1}\) and a pair of bands near 1200 cm\(^{-1}\). The sharp band is observed for all oxides and its wavenumber does not depend on the quantity of water present. On the other hand, the wavenumber of the pair of bands near 1200 cm\(^{-1}\) depends on the nature of the oxide and on the quantity of water present. Tentatively, all of these IR bands have been attributed to polythionate species which are generated during the Claus process, and it may correspond to an intermediate of Wackenroder's solution (\(\text{H}_2\text{S}/\text{SO}_2 \) in water).
Chapter 4:

At room temperature, sulfur dioxide reversibly adsorbs on Al_2O_3, $\text{Na/Al}_2\text{O}_3$ as well as $\text{Cs/Al}_2\text{O}_3$, and we have concluded that weak basic sites are implicated in the physisorption process. In addition, at least two strongly chemisorbed species are produced. The major species on Al_2O_3 and $\text{Na/Al}_2\text{O}_3$ has a strong IR band near 1050 cm$^{-1}$ and has been attributed to an adsorbed sulfite type species, probably involving an Al(OSO$_3$)$_2$ bond. This species is somewhat reactive with gaseous H_2S and leads to the formation of water and sulfur, two products of the modified Claus reaction. More sulfite is formed on $\text{Na/Al}_2\text{O}_3$ than on Al_2O_3. However, the sulfite on the more basic $\text{Na/Al}_2\text{O}_3$ catalyst is more strongly chemisorbed than on pure Al_2O_3, and it is less reactive with gaseous H_2S.

Sulfur is formed when gaseous H_2S is contacted with chemisorbed SO$_2$, but not when gaseous SO$_2$ is contacted with chemisorbed H$_2$S. The decrease of reactivity after impregnation with a large quantity of sodium or cesium can be attributed to the greater stability of the sulfite species adsorbed on the more basic sites of alkali-containing catalysts than the stability on pure Al_2O_3, these sulfite species being considered as intermediates in the modified Claus reaction. Others have proposed that the lower activity of a high sodium loaded alumina catalyst relative to pure alumina was due to either (i) the catalyst being too basic with excessive sodium or (ii) the need to have both acid and base sites, and sodium poison the acid sites. We conclude that hypothesis (i) is more plausible; a greater basicity is not necessarily a favourable factor for the modified Claus reaction.

Chapter 5:

Silica is inert in the Claus reaction. Therefore, the work in this chapter has been related to a study of the Claus reaction over a sodium on silica catalyst in an attempt to elucidate the role of sodium in this process. The results are very complex, but as with the other studies, sulfur was only produced after a reaction with pre-adsorbed SO$_2$ and gas phase H$_2$S and not in the reverse sequence. However, with Na/SiO$_2$, thiosulfate was a stable product of the reaction and it is believed that these were generated from less stable polythionates of the general formula $\text{S}_m\text{O}_6^{2-}$. vi
When a 2/1 mixture of $\text{H}_2\text{S}/\text{SO}_2$ was contacted with the catalyst, sulfur was produced and polythionates and thiosulfates were the major stable surface products detected. Various reaction schemes have been postulated which lead to the generation of thiosulfate which can subsequently lead to the generation of sulfur when H_2S and SO_2 and H_2O are present.

Chapter 6:

The adsorption capacity of the zeolites NaY and HY for SO_2 or for H_2S is considerably greater than Al_2O_3, Na/Al$_2$O$_3$ or Na/SiO$_2$. This can be attributed to the microporous nature of zeolites. However, the adsorption is mainly physical and there is little evidence for chemisorption of either reactant. None the less, the acidity of the zeolite does influence the quantity and strength of physically adsorbed species, this being lower for HY, as would be expected for the physical adsorption of acidic molecules on an acidic surface. On NaY, SO_2 adsorption is primarily believed to occur via coordination to sodium sites.

In common with Al_2O_3, Na/Al$_2$O$_3$ and Na/SiO$_2$, the Claus reaction occurs when mixtures of H_2S and SO_2 are contacted with NaY; no significant reaction occurs on HY. The primary role of the zeolite appears to be to bring the weakly held reactants together in a suitable orientation for reaction to occur. As with Al_2O_3 and Na/SiO$_2$, it would appear that polythionates, $\text{S}_m\text{O}_6^{2-}$, are generated in the Claus reaction.

Chapter 7:

The sulfation of magnesium aluminate spinel, MgAl$_2$O$_4$, via oxidation of SO_2 in excess oxygen in the temperature range from 350 to 650 °C has been studied using infrared spectroscopy and vacuum microbalance techniques. The major conclusions are:

(1). At least two types of surface sulfate species are formed for low doses of SO_2, but at higher doses, ionic like sulfate species become incorporated into the bulk of the spinel.
(2). The quantity of sulfate formed for a given dose of SO₂ increases with the temperature of oxidation (for a fixed time of oxidation) or with the time of oxidation (for a fixed temperature). The presence of the water vapour will increase the sulfate species, mainly bulk species.

(3). All types of sulfate species are thermally stable under vacuum to about 800 °C but are removed when heated in the range from 800 to 900 °C.

(4). In excess hydrogen, all sulfates are removed during heating from about 550 to 640 °C.

(5). The thermal stability and reducibility of sulfated spinel (3 and 4 above) have been compared with those of sulfated Al₂O₃, TiO₂, ZrO₂ and MgO. We have concluded that, of these materials, spinel is a superior FCC (fluid catalytic cracking) transfer catalyst by virtue of its high sorption capacity for sulfate species, and because the catalyst can be easily regenerated in H₂ at moderately low temperatures.

Chapter 8:

The adsorption of NO₂ and NO₂/SO₂ mixture on Al₂O₃ and CuO/Al₂O₃ catalysts has led to the following conclusions:

(1). Al₂O₃ has a catalytic capacity to reduce NO₂ to NO and NO⁺. The higher the activation temperature, the more NO and NO⁺ are found. The reduction sites may involve two coordinatively unsaturated Al⁺³ ions. The adsorption of NO₂ on Al₂O₃ to form NO₃⁻ species is so strong that the catalytic capacity is reduced. The assignments of different coordinated NO₃⁻ are also obtained.

(2). Preadsorption of SO₂ increases the ability of Al₂O₃ to reduce NO₂ to NO and NO⁺. On the other hand, preadsorption of NO₂ on Al₂O₃ increases the amount of SO₂ adsorbed. It gives strong bands at 1150 and 1370 cm⁻¹, which belong to sulfate species.
(3). For the CuO/Al₂O₃ catalyst investigated here (containing 1% Cu), there mainly exist Cu²⁺ cations in the CuO phase. Cu²⁺ ions in aluminate types, very few isolated Cu²⁺ in the Al₂O₃ lattice, and a few Cu⁺ ions in Cu⁺-O-Cu⁺ (x=1,2) states as well as a few Cu⁰ sites.

(4). Addition of copper greatly increases the ability of alumina to reduce NO₃⁻ to NO. The possible mechanism might involve the reaction \(2\text{Cu}⁺ + \text{NO}_2 \rightarrow 2\text{Cu}²⁺(\text{O}) + \text{NO} \), which suggests that increase of the Cu⁺ content greatly promotes the reduction activity of the catalysts. The impregnated sample also greatly decreases the stability of NO₃⁻ toward to SO₂.

(5). It seems SO₂ mostly adsorbs on surface basic sites which are connected with Cu²⁺ ions of CuO phase to form surface sulfate species and leave aluminate like Cu²⁺ cations (CuAl₂O₄) free to adsorb NO.

(6). SO₂ can be adsorbed on Cu⁰ sites to dissociate to SO and O species.

(7). Sulfated copper species on the surface can promote the reduction of NO₃⁻ to NO, NO⁺ and N₂O₃.

Chapter 9:

Infrared spectroscopy has been used to study the chemisorption of pentamethylantimony, SbMe₅, on silica. For temperatures of activation from room temperature to 1000°C, a single chemisorbed product is formed, =SiOSbMe₄. The hydrogen-bonded silanols react to completion faster than the isolated silanols. Unlike other reactive metal-alkyl compounds, there was no evidence for a significant reaction with siloxane sites. The chemisorbed species does not react with water vapor at room temperature or at 100°C. However, upon heating under vacuum to 250-300°C it decomposes to yield surface SiOMe groups and gaseous SbMe₃. Finally, the silanol groups can be regenerated when surface SiOSbMe₄ reacts with gaseous HCl to yield SbMe₄Cl, the reaction being: SiOSbMe₄ + HCl \(\rightarrow \) SbMe₄Cl + SiOH.
ACKNOWLEDGEMENTS

First of all, I wish to express my deepest and most sincere appreciation to my supervisor, Professor B. A. Morrow, for his guidance, encouragement and patience throughout the course of my Ph. D. work.

I would also thank Professor J. C. Lavalley for a fruitful cooperation between our two research groups.

I would like to thank the friends and colleagues in Professor Morrow’s lab. They have supported me in both a scientific way and a personal way throughout the course of my graduate studies in Ottawa. They are Carl, Andy, Bruce, Lyn, Steve, Dang and Dave. I really have a good time in working with them.

Finally, my thanks goes to my wife, Baoling, and my daughter, Rui, for their love, inexhaustible support and patience. I am equally very grateful to my parents who have always given support and encouragement towards everything I have done in my life and career.
Chapter 1

INTRODUCTION

Sulfur dioxide (SO₂) and several oxides of nitrogen (NOₓ) are the major pollutants in the atmosphere. Both contribute to the generation of acid rain, which exerts a harmful effect on the environment. Photolytic decomposition of NO₂ in the atmosphere may result in ozone formation.

In this thesis, infrared spectroscopy has been used to study the modified Claus reaction (SO₂ + 2 H₂S \rightarrow 2 H₂O + \frac{3}{2} S₈) on some metal oxides. Some NOₓ reactions on various metal oxide surfaces were also investigated. The characterization of the oxide surfaces plays an important role in heterogeneous catalysis. Various probe molecules were used to study the surface properties of the metal oxides and silica.

FTIR spectroscopy is a powerful tool for investigating the mechanisms of the interaction between a gas and a solid catalyst, and the in situ technique is particularly useful in this situation. The progressive decrease or growth of the IR bands shows the progressive loss or formation of some species on the surface. IR spectroscopy can also provide information on composition and structure of the surface compounds. These are the primary requirements for us to understand the mechanisms of interaction between surface groups and adsorbed species or reactants. The Claus reaction is a heterogeneous process involving gas-solid adsorption, and FTIR spectroscopy is perfectly suited for this investigation. SO₂ gas has adsorption bands at 1360 and 1151 cm⁻¹, while H₂S gas has a relatively weak band at about 2570 cm⁻¹. Many oxysulfur compounds are known and some have been identified by IR. The S-O stretching vibrational modes mainly lie from 1300 to 900 cm⁻¹, while S-O-S and S-S-O deformation vibrational modes lie in 800 to 400 cm⁻¹ spectral region. This is well suited for our mid-infrared spectroscopic study. Although
sulfur, one of the final products of the Claus process, has S-S vibrations below 500 cm\(^{-1}\), we can use Raman spectroscopy to overcome this problem. The NO, NO\(_2\), NO\(_3^-\) species also have vibrational modes in 2000-1000 cm\(^{-1}\) region. The oxides used here were Al\(_2\)O\(_3\), SiO\(_2\), ZrO\(_2\), MgO and various zeolites. Most of these oxides are transparent from 4000 to about 1000-800 cm\(^{-1}\). Therefore, most features of the adsorbed SO\(_4\) and NO\(_x\) species are "visible" by means of IR. Besides IR, vacuum microbalance techniques were also used in this thesis.

1. CLAUS REACTION

Besides its emission from volcanoes or other natural sources, the principal sources of sulfur dioxide are coal combustion (about 70% of the total from industrial sources), oil combustion and refining (20%), and metal ore smelting and others (10%) [1]. Industrial sulfur dioxide emissions are estimated at about 1.6x10\(^8\) tons a year. The oxidation of SO\(_2\) in the atmosphere is a very complex process and can be induced homogeneously by several oxidants such as OH\(^-\), O\(_3\), H\(_2\)O\(_2\), or it can be catalyzed by some metal ions like Fe\(^{3+}\), Mn\(^{2+}\), Cu\(^{2+}\) and some gases like NO\(_x\) [2]. The foremost chemical reaction of SO\(_2\) in the atmosphere is oxidation to SO\(_3\), which takes about 3-7 days depending on the weather conditions. Then SO\(_3\) will react with water to give sulfuric acid. SO\(_2\) can also dissolve in water and it can be subsequently oxidized to H\(_2\)SO\(_4\). Relatively pure rain water has a pH value around 5.5 - 5.7, but owing to the formation of acid rain, its pH can drop to as low as 2. The acid rain may result in the acidification of waters and soils, and in damage to buildings. It has been recognized as a global problem.

H\(_2\)S is another pollutant. It is very toxic and has very bad smell. Concerning the human activity, H\(_2\)S mainly comes from: (a) catalytic hydrodesulfurization (HDS) of crude oil (which contains about 0.2-5.0% sulfur); (b) fluid catalytic cracking (FCC) catalyst regeneration; (c) gasification of coal (0.3-3.0% by volume); (d) natural gas (about 1-5 mole percent of H\(_2\)S). For each 20,000 barrels of crude oil with a high sulfur content, like that from Kuwait (containing 2.5-4% of sulfur), approximately 45 tons of H\(_2\)S is formed under HDS treatment.
In the pioneer work by Carl Friedrich Claus in 1890 [3,4], hydrogen sulfide was partially oxidized to elemental sulfur and water by stoichiometric amount of air:

\[3 \text{H}_2\text{S} + \frac{3}{2} \text{O}_2 \rightarrow 3\text{H}_2\text{O} + \frac{3}{n} \text{S}_n \quad \Delta H_1 = -628 \text{kJ/mol} \quad (1-1) \]

The original Claus reaction took place in a single reactor on a bauxite catalyst. A big problem in this process was that the heat liberated was large and temperature control was very difficult. (The temperature in the reactor could reach about 1200 °C.) In 1938, I. G. Farben introduced the split-flow concept in the Claus process, that is, instead of single reactor, two reactors were used [5]. First, one third of hydrogen sulfide was burned completely to sulfur dioxide in a waste heat boiler (reaction 1-2):

\[\text{H}_2\text{S} + \frac{3}{2} \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{SO}_2 \quad \Delta H_2 = -519 \text{kJ/mol} \quad (1-2) \]

The gases were cooled to about 160 °C. The sulfur dioxide produced then reacted with the remaining two thirds of the hydrogen sulfide over the catalyst in a converter (reaction 1-3):

\[2 \text{H}_2\text{S} + \text{SO}_2 \rightleftharpoons 2 \text{H}_2\text{O} + \frac{3}{n} \text{S}_n \quad \Delta H_3 = -109 \text{kJ/mol.} \quad (1-3) \]

\(S_n \) species include \(S_2, S_4, S_6, S_8 \) and \(S_x \), which may exist in a complicated equilibrium. The advantage of the modified Claus process was that only about one fifth of total heat was evolved in the catalytic converter (comparing \(\Delta H_3 \) with \(\Delta H_1 \)). The reaction can be easily controlled and higher equilibrium conversions are obtained at the lower operating temperatures. Reaction (1-3) is strictly known as the modified Claus reaction, but it is commonly called 'the Claus reaction' today.

Despite the simple stoichiometric equation, the modified Claus reaction is very complicated. (i). The dry sulfur dioxide gas does not react with dry hydrogen sulfide in the absence of catalysts below 400 °C [6]. Suitable catalysts are necessary to let mutual oxidation and reduction take place in lower temperatures. (ii). Since the modified Claus reaction (reaction 1-3) is an
equilibrium, conversion in the catalytic stage is never complete. The reactions involve a large amount of heat, and from the thermodynamic point of view, a lower temperature favours the conversion of H₂S; however, this lower temperature must make the reaction go at a workable rate. Therefore, there will be a balance between the conversion of H₂S and the reaction rate. The activity of the catalyst at a low temperature is a crucial factor in determining the efficiency of the conversion. (iii). It is well known that the Claus reaction occurs over alumina and other solid oxide catalysts. But this reaction also occurs in the gaseous phase with a trace of water and in the liquid phase without a catalyst [7], although it might involve a different mechanism. Therefore, the real process might involve the gas reactions as well as heterogeneous catalyzed process. (iv). A further limitation on the conversion is also imposed by side process such as the formation of carbonyl sulfide, COS, and carbon disulfide, CS₂. These gases are produced by the interaction between H₂S, CO and hydrocarbons which are naturally present. (v). Finally, the chemistry of oxysulfur compounds is very complex and is not well understood [8, 9]. Therefore, although the Claus reaction has been known for over a century and the modified process has been known for over fifty years, details of the reaction are little understood.

Public awareness calls for stronger regulations to limit emissions of SO₂ and H₂S. It is estimated that to build a new coal-fired generating plant, about 30% of the total cost will go toward mandated environmental control [10]. Therefore, there is a requirement for more efficient methods to control emissions, and in turn, for more efficient catalysts.

Among Claus catalysts, pure alumina is widely used. In chapter 3, the modified Claus reaction on pure Al₂O₃ will be investigated. Although alumina as a Claus catalyst has been investigated by many reporters [11-20], the conclusions are usually vague and many controversies exist. We have reinvestigated the adsorption of SO₂ and H₂S on γ-Al₂O₃. In order to get more information, a series of alumina samples differing in activating temperature were studied. We also tried to introduce the gas in a very small quantity which lead to a very low coverage on the surface of the catalyst. The samples were made as thin as possible to overcome poor IR transmission below 1000 cm⁻¹.
Virtually all previous work has dealt with the reactions of preadsorbed SO\textsubscript{2} with gaseous H\textsubscript{2}S, or of preadsorbed H\textsubscript{2}S with gaseous SO\textsubscript{2}. However, in the modified Claus process, a 2:1 mixture of H\textsubscript{2}S/SO\textsubscript{2} is used. A unique feature of this thesis has been an examination of the reaction of various H\textsubscript{2}S/SO\textsubscript{2} mixtures over Al\textsubscript{2}O\textsubscript{3} and other oxide catalysts (MgO, ZrO\textsubscript{2}, TiO\textsubscript{2} and zeolites). By this means we have been able to tentatively identify more intermediates in the Claus process. This work is mainly discussed in Chapters 3 and 5, and the work relative to zeolites is described in chapter 6.

Although an alumina catalyst displays relatively high activity towards the Claus reaction, it is not sufficiently active towards carbonyl sulfide (COS) hydrolysis, which is necessary in the Claus process to eliminate undesired by-products like COS. Alumina may also be deactivated by sulfation, which happens if the conditions in the converter accidentally become oxidizing. Therefore, some additives were investigated to improve the performance of pure alumina. Some additives, like sodium and cesium, were added to alumina and these new catalysts were compared with pure alumina by spectral differences. Basic alkali metals were used because many reports have shown that the active sites for the Claus reaction are basic. It is well known that the addition of sodium increases the basicity of alumina, and it also increases the rate of the Claus reaction [21]. But it has also been shown that a higher sodium content on alumina gave rise to a very basic catalyst which was less active for the Claus process. This gave rise to the question of whether there might exist an optimum basicity, and the presence of excess sodium goes beyond the optimum making the catalyst too basic so as to not favour the Claus reaction. A second possibility is that the reaction needs both of basic and acidic sites to complete the catalytic process, and that the latter are poisoned by the presence of excess sodium. A comparison of these basic catalysts with pure alumina will reveal some factors concerning the adsorption of the SO\textsubscript{2} and H\textsubscript{2}S on basic or acid sites, and whether the Claus process occurs on basic sites or on both sites. This project is studied in the chapter 4.

In view of the possible role of sodium as a base modifier of Al\textsubscript{2}O\textsubscript{3} catalysts for the Claus reaction, we have attempted to study the effect of sodium alone on this reaction. To this end, we have supported sodium on SiO\textsubscript{2}, and we have studied the adsorption of SO\textsubscript{2} and H\textsubscript{2}S and their
reactions over this material. Silica is inert for the chemisorption of either of the reactants, or their mixtures, and by this means we have attempted to be able to study the role of sodium alone in the Claus process. This work is described in Chapter 5.

Zeolites are interesting catalysts because of their special properties such as acidity, Si/Al ratio, ion exchange modification, etc. Zeolite-Y is an intermediate silica-to-alumina ratio zeolite (about 2.0 to 5.0) and has a very high surface area, over 800 m²/g. Comparing the activities of Na-Y and H-Y zeolite for the Claus reaction, we can acquire a knowledge about the role of acidity. H-Y zeolite calcined at 480 °C has only Brønsted acidic sites [22] and this investigation might provide an opportunity to determine the role of Brønsted acidic sites in the Claus process. This study is described in the chapter 6.

2. NOₓ REACTIONS

It is reported that the concentration of SO₂ in the atmosphere is gradually decreasing while that of nitrogen oxides, NOₓ, is increasing [2, 23-25]. The amount of NOₓ (NO, NO₂, N₂O) which comes from human activity is about 6.0x10⁷ tons/year [23]. Removal of NOₓ from emission gas is becoming more and more important. So far, no technology exists that is completely satisfactory for the conversion of NOₓ components in the emission gas. Although many papers have been published, most of them were concerned on the so-called selective catalytic reduction (SCR) by NH₃. The reactions which occur during the SCR process are:

\[
4 \text{NO} + 4 \text{NH}_3 + O_2 \rightleftharpoons 4 \text{N}_2 + 6 \text{H}_2\text{O} \\
6 \text{NO}_2 + 8 \text{NH}_3 \rightleftharpoons 7 \text{N}_2 + 12 \text{H}_2\text{O}
\]

The catalysts used in the above process are usually a metal oxide supported on TiO₂, such as V₂O₅/TiO₂, or on zeolite. The main problem in the SCR process is the poisoning of the catalysts by SO₂ which usually accompanies NOₓ in most cases. The SCR process also consumes a lot of ammonia. Using NH₃ as the reductant has some drawbacks. One is the cost and another one
is that unreacted NH₃ is also environmentally objectionable. It is important to find ways to reduce NOₓ with a N-free reducing agent [26].

In most exhaust streams, both SO₂ and NOₓ are present. The current removal methods are complex and expensive, with many unwanted byproducts. While the reactions,

\[
\begin{align*}
\text{NO}_2 + \text{SO}_2 & \rightleftharpoons \text{NO} + \text{SO}_3 & \Delta G^\circ &= -35 \text{ kJ/mol}, \\
\text{NO} + \text{SO}_2 & \rightleftharpoons \frac{1}{2} \text{N}_2 + \text{SO}_3 & \Delta G^\circ &= -122 \text{ kJ/mol},
\end{align*}
\]

are thermodynamically favourable, no catalysts are known for these reactions and there are not many published accounts of the SO₂-NOₓ reaction on surfaces. Although the oxides of nitrogen are unstable thermodynamically, they are extremely stable in the kinetic sense [26,27]. In chapter 8, we have examined the species formed by the adsorption of NO, NO₂, SO₂ on Al₂O₃ and CuO/Al₂O₃. The CuO/Al₂O₃ catalyst was made by impregnation of (CH₃COO)₂Cu on Al₂O₃. After activation, the catalyst mainly contains CuO on the surface and Cu is 1% by mass. We choose to study CuO/Al₂O₃ because copper based catalysts are among the most intensively investigated catalysts for NOₓ reduction [26, 28]. In the NOₓ reduction process, it is important to develop catalysts which are heat resistant and alumina based catalysts are suitable for this purpose. To remove NOₓ and SOₓ simultaneously is a large project [29], and this chapter is a preliminary study of these reactions.

3. OTHER SYSTEMS

OH groups are present on the surface of solid oxides and these can have a strong influence on its catalytic properties. Some agents react with surface OH groups on an oxide and substitute the hydrogen atoms; these chemicals are usually called hydrogen sequestering (HS) agents. These substitution reactions result in an important area of surface chemistry, which can involve chemical synthesis, surface modification and catalysis. On silica, the surface silanol groups play an important role in the adhesive bonding of organic groups. Therefore, accessibility of the surface silanols is an important property of silica. Hydrogen sequestering agent, SbMe₅, has been
used to study the accessibility and reactivity of the surface silanol groups of silica. This study is presented in chapter 9.

In the petroleum industry, there is an important process called catalytic cracking. Catalytic cracking, in general, may be regarded as a method for converting high-boiling petroleum fractions into gasoline and other low-boiling fractions. The most widely used process is fluid catalytic cracking (FCC). However, during the cracking, organosulfur compounds are deposited on the catalyst, which remarkably reduces the catalyst's activity. Therefore, the catalyst is continuously withdrawn from the bottom of the reactor and moved into a regenerator. In order to regenerate a FCC catalyst, oxygen is introduced to burn off the deposited organosulfur compounds and coke, and a mixture of SO$_x$ (SO$_2$ + SO$_3$) is emitted. The mixture usually contains 90% SO$_2$ and 10% SO$_3$. The emitted SO$_x$ can be reduced by some gases such as methane [30], CO [31], or by H$_2$S in the Claus process. The Claus reaction has many advantages, e.g. elemental sulfur is a byproduct and the process is carried out under dry conditions. So, one way to control the emission of SO$_x$ is to add to the FCC catalyst a so-called SO$_x$ transfer catalyst. The transfer catalyst is capable of trapping the SO$_x$ species and turns them to relatively stable sulfates. Then, this transfer catalyst is re-activated by some reducing process and the sulfur compounds released in the reduction are collected in a safe way. It is evident that an ideal transfer catalyst should have a high trapping ability, and easily facilitate the oxidation of SO$_2$ to SO$_3$. The sulfates formed on transfer catalysts should also have a suitable stability so as not to decompose during the main catalytic process, but they must be easily reduced during the regeneration process. The regeneration is usually carried out by reducing the sulfates to hydrogen sulfide which is then treated via the modified Claus process to give elemental sulfur. Through infrared spectroscopy and vacuum microbalance techniques, we have investigated the potential of using magnesium aluminate spinel, MgAl$_2$O$_4$, as a FCC transfer catalyst. This work is described in chapter 7.
References

Chapter 2

EXPERIMENTAL SECTION

1. INSTRUMENTATION

The work involving infrared spectra was carried out on two infrared spectrometers: a Bomem DA3-02 spectrometer and a Bomem Michelson MB-100 instrument. Both are Fourier transform infrared (FTIR) spectrometers.

The DA3-02 instrument has two sample chambers, one with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector and the other has an ambient temperature deuterated triglycine sulphate (DTGS) detector. The instrument is capable of maximum resolution of 0.02 cm\(^{-1}\) and can record infrared spectra in the mid-infrared region from 5000-400 cm\(^{-1}\). Because the MCT detector has a higher sensitivity, the work on DA3-02 was mostly done using this detector. The spectral resolution was 4 cm\(^{-1}\) and normally 100 scans were acquired which required about 40 to 50 seconds.

The MB-100 instrument has a single DTGS detector and was used for most of the work reported in this thesis. The spectra were recorded using a resolution of 4 cm\(^{-1}\) with 15 scans requiring 42 seconds. Most experiments on this instrument were carried out by acquiring 5 to 25 scans prior to Fourier transformation, depending on the reaction requirements, but the experiments involving thin film samples usually needed 100 or more scans.

All spectra are shown in absorbance against wavenumber (cm\(^{-1}\)). Unless otherwise noted, all spectra were plotted as they were recorded without additional smoothing. Difference spectra were obtained by subtracting the background spectrum from the spectrum of interest.
The Raman spectra were obtained on a Jobin-Yvon HG-2 Raman spectrometer with the resolution at 8 cm\(^{-1}\). The sample irradiation was achieved by using an argon ion laser (488 nm) with a laser power at the sample ranging from 50 to 500 mW. These spectra were obtained in our laboratory by Carl Tripp and were reported in his thesis [1].

The B.E.T. measurements were carried out gravimetrically using an electronic vacuum microbalance to measure the quantity of \(N_2\) adsorbed at 77 K. The equipment is a model Sartorius 4433 and has a symmetrical two-arm configuration.

2. SAMPLE CELL

The infrared cell used in this laboratory has been described previously by Morrow and Ramamurthy [2] and is shown in Fig 2.1. The cell body was made of either pyrex or quartz depending on whether high heating temperatures (above 500 °C) were employed. The lower part of the IR cell has a furnace and two windows which were either NaCl, KBr or ZnSe, depending on the reaction conditions inside the cell, because some chemicals might react with the windows. ZnSe windows, for example, are inert to water, SO\(_2\) and H\(_2\)S, and, therefore, were used in studying the Claus reaction. The furnace region was wound with nichrome wire at a density of about four turns per centimetre. This was insulated by a layer of alumina. The pyrex cell could be heated to 500 °C, the quartz cell to 1200 °C. The upper part of the cell was made of pyrex. The two parts of the cell body were lubricated with the grease "Apiezon H". The windows of the cell were cooled by a fan when the sample was heated at high temperatures. The temperature of the cell was measured by a chromel-alumel thermocouple which was encased in a thin quartz tube and was inserted between the insulation mat and the heating wire. Inside the cell there was a sample holder which was made of quartz. The sample holder could be moved to or from furnace region by external magnets.
Fig 2.1 The infrared cell used in this work
3. VACUUM LINE

The vacuum line consisted of pyrex manifold, an oil diffusion pump and a mechanical pump. A liquid nitrogen trap was placed between the diffusion pump and the main manifold. The vacuum line was designed so that the IR cell and various gas containers could be easily connected. In this way, the infrared cell could be evacuated and various gas could be added in a known amount to the infrared cell. All stopcocks were constructed of pyrex and teflon. The grease "Apiezon N" was used to attach the vacuum line to the sample cell via ball joints. The base pressure with this system was 10^{-6} Torr, the pressure being measured by means of capacitance manometers and a Pirani gauge. The whole vacuum line was attached to a portable cart so that it could be moved close to the infrared spectrometer for in situ studies.

4. MATERIALS

(1). Solid oxides

The alumina, Degussa Alumin Oxid C, was from Degussa A.G. Frankfurt. The specific surface area was reported as nominally 100 m2/g and was found to be 105 m2/g in our laboratory. This alumina was mainly γ-alumina.

The silica was an aerosil type, Cab-O-Sil HS-5, which was obtained from Cabot Inc., U.S.A. The B.E.T. (N$_2$) surface area was 325 m2/g.

The spinel (magnesium aluminate spinel) used was provided by DOW Chemical Co., as a product called Cernet. According to DOW, at least 99% of the Mg and Al atoms had the spinel structure, the rest being in the form MgO and Al$_2$O$_3$. The specific surface area reported by DOW is 120 m2/g. However, a B.E.T. analysis using nitrogen in our laboratory showed the values reported in Table 2.1 as a function of the temperature of activation in vacuum. An X-ray analysis showed that the sample remained as a normal spinel regardless of the temperature of activation used (up to 1100 °C) but that the diffraction peaks became narrower as the temperature of activation was increased, suggesting a higher degree of crystallinity for a higher activation temperature.
Table 2.1 Surface area of spinel as a function of the temperature of activation

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>22</th>
<th>150</th>
<th>450</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²/g)</td>
<td>142</td>
<td>183</td>
<td>183</td>
<td>178</td>
<td>140</td>
<td>36</td>
</tr>
</tbody>
</table>

* Sample was under evacuation for 1 hour at each temperature.

The zeolite-Y was in the sodium form (NaY, Union Carbide lot number 9680801014). Hydrogen-Y zeolite (HY) was prepared in the usual fashion by heating NH₄Y which was obtained by 2N NH₄⁺ aqueous ion exchange of NaY. Heating NH₄Y in vacuum at 120 °C for 0.5 hour and then at 450 °C for another 0.5 hour (pressure is about 10⁻⁵ Torr) evolves NH₃ leading to the hydrogen form, HY.

Zirconium dioxide (ZrO₂) is from Degussa as an "experimental product". It had a B.E.T. surface area 45 m²/g after vacuum activation at 450 °C. Gallium oxide (Ga₂O₃) was purchased from Alpha Ventron of Danvers, MA. This sample contains about 99.99% of pure Ga₂O₃ and the measurement surface area was 13 m²/g.

The solid oxide samples for infrared studies were prepared as self-supported discs which could be easily mounted in the sample holder. A preweighed amount of oxide was put in a 2.5 cm diameter stainless steel die which was then pressed under a desired pressure ranging from 10⁶-10⁸ Pa depending on the particular oxide and on the mass used. For example, a lower pressure (10⁶ Pa) was used to make a silica disc while a higher pressure, 10⁸ Pa, had to be used to make a Ga₂O₃ disc. The quantity of oxide in a given disc is expressed in mg/cm². For the alumina and spinel samples, the disc often adhered to the surface of the stainless steel die after pressing. In order to prevent this, lens paper or thin mica plates were placed between the die faces and oxide powder before pressing. The lens paper or mica plates could be easily removed from the discs later. Sometimes, in order to acquire a better knowledge of some spectral regions where the substrate is strongly absorbing, the thin film technique was used. A small quantity of oxide powder was uniformly put on a stainless steel die or on a clean quartz window. Then a
ZnSe window was placed above the powder and was gently rotated and pressed by hand so that the oxide adhered to the ZnSe window. This thin film usually contained 0.1 to 0.5 mg/cm² of oxide and could be mounted in the sample holder together with the ZnSe window. The film could be activated under vacuum up to 450 °C.

(2). Gaseous chemicals

The gases used were mostly from commercial sources. If necessary, gases could be purified before use by repeated freeze-pumping cycles and the purity was checked by infrared or mass spectroscopic analysis. For SO₂ and H₂S, impurities like water and CO₂ had to be removed. Water could be removed by distilling SO₂ or H₂S. The removal of CO₂ was done by passing SO₂ or H₂S through dried alumina (dried at 150 °C) several times. These were done in a vacuum line by freezing one container with liquid nitrogen and warming another container while the alumina powder was placed between them. NO and NO₂ were from Matheson. Purification of NO₂ was carried out with fresh P₄O₁₀ and could be checked by its infrared spectrum [3]. Commercial nitrogen dioxide usually contained traces of N₂O₅. This could be verified by condensing the gas at liquid nitrogen temperature. The trace of N₂O₅ would give a blue colour. In this case, the NO₂ gas had to be purified by mixing NO₂ with pure O₂, and reacting for at least one hour. N₂O₅ would react with O₂ to give NO₂. After reaction, the gas was passed through P₄O₁₀ to remove water. Then, the gas was frozen at liquid nitrogen temperature and evacuated to remove excess O₂. At this stage, pure NO₂ was obtained as a colourless product. To purify NO, it was first passed through P₄O₁₀ on the vacuum line in order to remove water, and then it was distilled several times until it was colourless [4].

(3). Other chemicals

SbMe₅ was kindly provided by Dr. Frank J. Feher, Professor of Chemistry, University of California, Irvine. All other chemicals used here which are not mentioned were obtained from standard commercial sources.
References

Chapter 3

ALUMINA CATALYST

1. INTRODUCTION

Alumina is a widely used catalyst in the modified Claus process and many papers about the properties of Al₂O₃ and its use in the Claus process have been published. Among them, there are no lack of controversies. In this chapter, the adsorption of SO₂ and H₂S have been studied in detail and, especially, we have investigated the behaviour of gaseous mixtures of H₂S/SO₂ on Al₂O₃. To our knowledge, this is the first time that infrared spectra of the mixture (H₂S:SO₂ = 2:1) adsorbed on oxide catalysts has been reported.

(1). Alumina

Alumina (Al₂O₃) is an important catalyst and catalyst support because of its high thermal stability and relatively high surface area. It exists in a number of crystalline forms which usually come from the dehydration of aluminum hydroxide [Al(OH)₃] or oxyhydroxide [AlO(OH)]. These varieties of alumina are based on the many different close packing structures of oxygen atoms and on the arrangements of Al³⁺ cations in octahedral and tetrahedral voids. The value of the radius ratio of r₆⁻/r₅⁺ in γ-Al₂O₃ (about 0.407 Å) is very close to the critical radius ratio value of the octahedral structure (0.414 Å), so Al³⁺ cations can enter either octahedral voids or tetrahedral voids. Among these crystalline forms, γ-alumina is most commonly used. It has a defect spinel structure.

The structure of spinel (Al₂MgO₄) is one of the important structural forms of A₂BO₄, in which oxygen atoms form cubic-closest-packed (ABCABC...) layers. In the unit cell there are 32 oxygen atoms, and 24 cations. In total there are 64 tetrahedral voids of which only 8 are occupied by B atoms, and 32 octahedral voids of which 16 are occupied by A atoms. A and B
are different atoms or the same atoms but in different environmental positions.

The structure of γ-alumina is very similar to that of spinel. Oxygen atoms form a close packed structure and there are 32 oxygen atoms and 21% Al$^{3+}$ cations (electrical neutrality satisfied) in the unit cell. Among the 24 occupied metal cation positions of the spinel, 2% positions are vacant, and this is the so-called defect spinel structure [1]. The structural formula can be expressed as: (Al$^{3+}_{89}$O$_{119}$)$_2$(Al$^{3+}_{89}$O$_{119}$)O$_4$, where O represent a vacant position.

In the powder diffraction X-ray spectra of γ-Al$_2$O$_3$, the spectral lines coming from the oxygen crystal lattice are sharp and other lines, especially those from Al$^{3+}$ cations in tetrahedral positions are broad. This suggests that the distribution of Al$^{3+}$ in γ-Al$_2$O$_3$ is random. The structure of γ-Al$_2$O$_3$, which is the most important alumina catalytically, is not well determined and the surface of the γ-Al$_2$O$_3$ is still a mystery [2].

Usually, γ-Al$_2$O$_3$ is obtained in a form of a powder. The particle size can be very small, so the specific surface area of γ-alumina is usually very large.

Alumina is among the most important catalysts in the modified Claus reaction because of its low cost, high durability and high activity. Marshneva et al. [3] reported that among 21 oxides, TiO$_2$, MgO, V$_2$O$_5$ and Al$_2$O$_3$ were most active catalysts for Claus reaction. In fact, activated alumina is used industrially as the catalyst in Claus plants to purify natural gas [4], and a typical Bauxite catalyst (Engelhard Industries Ltd.) which is widely used in Claus process contains mostly Al$_2$O$_3$ [5]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>87%</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>1.7%</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>1.4%</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>6.0%</td>
</tr>
<tr>
<td>insoluble</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

(2). Hydroxyl groups on Al$_2$O$_3$

Peri [6] reported that after evacuation for 100 hours at 25 °C, there still existed about 13
molecules of water on 100 Å² of surface of alumina. Although much of this water exists in the form of hydroxyl groups on the surface, some of the water remains in the molecular form. And after heating at 120 °C, there were 8.25 molecules left. At this state, we can see, using infrared spectroscopy, a broad band in the OH stretching region indicating that the hydroxyl groups on surface must be hydrogen-bonded. Only after heating above 150 °C, do isolated hydroxyl groups begin to appear (see Fig 3.1).

According to reports [1] there are at least five different types of hydroxyl on γ-Al₂O₃. If these hydroxyls are not hydrogen-bonded, their stretching vibrations have defined positions (see Fig 3.1).

![Diagram of hydroxyl vibrations](image)

The infrared intensities of these hydroxyl vibrations depend on their relative concentrations on the alumina surfaces. And these hydroxyl concentrations depend largely upon the exposed area on the different crystal faces [(100), (110) or (111)] to the total surface. So, the relative intensities of the hydroxyl vary with different samples.

For the infrared band assignments, Jones [7] suggested that the OH stretching frequency increased with the increasing negative charge on the oxygen atom of OH groups. According to this assignment, Ib has the highest wavenumber and the III mode has the lowest wavenumber. On the other hand, if one considers the residual negative charges left on the oxygen of the hydroxyl and stabilities of them when the proton is removed, the Brønsted acidities seems in the order: III > IIa > IIb > Ia > Ib [1].

20
Fig 3.1 Infrared spectra of γ-Al$_2$O$_3$ (6 mg/cm2) which had been degassed at different temperatures for 1-2 hours.
Dehydroxylation may occur when samples are heated. When this happens, bare Al^{3+} and O^{2-} sites are created. It appears that the bare Al^{3+} comes more likely from Ia or Ib sites, and O^{2-} sites come from III, II sites. For example, Ia and IIa sites condense as follows:

\[
\begin{align*}
\text{H} & \\
\text{O} & \\
\text{Al} & \\
\text{H} & \\
\text{O} & \\
\text{Al} & \\
\text{Al} & \\
\text{Al} & \\
\text{H}_2\text{O} & \\
\end{align*}
\]

\[\text{Al}^{3+} + \text{Al}^{3+} \rightarrow \text{Al}^{2+} + \text{Al}^{2+} + \text{H}_2\text{O} \quad (3 - 1)\]

Al^{3+} is a weak Lewis acid site and O^{2-} is a base site. It was suggested that the dehydroxylation of alumina below 400 °C produced weak Lewis acid and basic sites. Heating above 400 °C produced very strong Lewis acid sites by so-called irregular dehydroxylation leading to surface defects [8].

As a catalyst, γ-Al_2O_3 has a high activity only after dehydroxylation above 300 °C, which suggests that the Lewis acid and base sites produced by dehydroxylation are responsible for this. When heated at 700 °C, alumina can have 45% of -OH removed relative to alumina heated at 400 °C [9].

In this thesis, Al_2O_3 was activated under vacuum at different temperatures in order to investigate how the activities varied. For convenience, the alumina catalysts will be denoted as $\text{Al}(\text{C})$ where "C" is the activation temperature in degrees Celsius. For example, $\text{Al}(450)$ is a γ-Al_2O_3 catalyst which has been activated in vacuum at 450 °C.

(3). Literature review

In a series of studies, Datta and Cavell [10] concluded that H_2S adsorbed on alumina in two different forms, the dissociative form and undissociative form. The former came from the interaction between H_2S and an aluminum ion with an adjacent hydroxyl, as well as an oxide ion. Water was produced:
It yielded a Al-S species and the IR band should be below 1000 cm\(^{-1}\) which could not be detected by IR spectroscopy (see Fig 3.1, lower limit of transmission is about 1000 cm\(^{-1}\)). The undissociated form involved an aluminum ion and yielded a Al-SH\(_2\) species. This species had a pair S-H bands at 2570 cm\(^{-1}\) (SH\(_2\) stretch) and 1334 cm\(^{-1}\) (HSH deformation). There were also other bands at 1624 and 1570 cm\(^{-1}\). The band at 1624 cm\(^{-1}\) was postulated to be due to the water which came from the above reaction. The band at 1570 cm\(^{-1}\) was assigned by others as the species of Al=O [11]. But Lavalle [12] and Carl Tripp [13] showed that this was due to absorbed CO\(_2\) which was present as an impurity in the H\(_2\)S. In studying H\(_2\)S on Al\(_2\)O\(_3\), Kasumov [14] suggested that reaction (3-2) occurs:

\[
\text{H}_2\text{S} + (\text{O}^{2-})_{\text{surf.}} \rightarrow \text{H}_2\text{O} + (\text{S}^{2-})_{\text{surf.}} \quad (3 - 2)
\]

In this reaction, Kasumov suggested that the sulfur ions of H\(_2\)S exchange with oxygen ions of the \(\gamma\)-Al\(_2\)O\(_3\) surface. This dissociative species was active towards SO\(_2\) and the reaction leads to the formation of elementary sulfur.

Although several papers about the adsorption of SO\(_2\) on alumina have been published, the interpretation of the spectra is still quite ambiguous.

Gaseous SO\(_2\) has absorption bands at 1361 cm\(^{-1}\) (strong) and 1151 cm\(^{-1}\) (medium) due to the antisymmetric and symmetric SO\(_2\) stretching modes respectively. Deo \textit{et al.} [15] observed two bands at 1330 and 1140 cm\(^{-1}\) after the adsorption of SO\(_2\) on alumina. The band at 1330 cm\(^{-1}\) was assigned to the \(v_3\) asymmetric stretching vibration, and the 1140 cm\(^{-1}\) band to the \(v_1\) symmetric stretch of weakly adsorbed SO\(_2\). Chang [16] reported two additional bands at 1326 and 1050 cm\(^{-1}\). The band at 1326 cm\(^{-1}\) was stable to evacuation at 100 °C, and the band at 1050 cm\(^{-1}\) was attributed to SO\(_2^{2-}\) species which could be removed only after heating up to 800 °C. Karge and
Dalla Lana [17] studied the site blocking effect by preadsorbed bases and acids on alumina. They assigned the band at 1050 cm$^{-1}$ to chemisorption of SO$_2$ on basic $\text{cu}O^2-$ (cus ≡ coordinatively unsaturated sites), and the bands at 1330, 1326, 1150 cm$^{-1}$ were due to SO$_2$ physically adsorbed on acidic $\text{cu}Al^{3+}$ sites (weak adsorption). SO$_2$ could also be adsorbed on the basic hydroxyl groups. Datta and Cavell [18] showed that there were probably five distinct forms of adsorbed SO$_2$ on Al$_2$O$_3$. The band at 1050 cm$^{-1}$ was attributed to sulfite like species (SO$_2$$^2-$) which was strongly chemisorbed on an acidic surface site. The bands at 1255 and 1189 cm$^{-1}$, which were very weak in intensity, were attributed to two species which resulted from the chemisorption of SO$_2$ on Al$^{3+}$ acid sites. The pair of bands at 1322 and 1140 cm$^{-1}$ were implicated in the perturbation of the AlOH species absorbing at 3680 cm$^{-1}$ whereas the pair absorbing at 1334 and 1148 cm$^{-1}$ appeared to be associated with a shift of the AlOH absorbing at 3730 cm$^{-1}$; therefore, both species were thought to be due to hydrogen-bonded SO$_2$. The band at 1050 cm$^{-1}$ increased in intensity with higher activation temperatures above 140 °C. In another report [19], Dalla Lana et al. used TPD to show that the chemisorbed SO$_2$ existed in both undissociated and dissociated forms. SO$_2$ could be dissociated to SO on alumina. That is to say, both H$_2$S and SO$_2$ can be chemically dissociated on the surface of alumina.

2. RESULTS AND DISCUSSION

1. Adsorption of H$_2$S

We will first consider the changes in the OH stretching vibrational region. On Al(450), with the first dose of 0.09 Torr (about 90 μmol/g) H$_2$S, the bands from 3750-3790 cm$^{-1}$ decrease and among them, the band around 3772 cm$^{-1}$ decreases more quickly. With another dose of H$_2$S, the decrease in the 3790 cm$^{-1}$ band becomes more evident. The bands around 3750 and 3727 cm$^{-1}$ decrease slower than the bands around 3772 and 3790 cm$^{-1}$ (Fig 3.2 A). The change of the band around 3750 cm$^{-1}$ can be seen in this alumina only by the difference spectra as shown in Fig 3.2 B. [In all spectra the Al(450) background has been subtracted. Unless otherwise stated, all further spectra are difference spectra after background subtraction.] As the band at 3675 cm$^{-1}$ increases, the broad background from 3650-3200 cm$^{-1}$ also increases. A weak band at 3700 cm$^{-1}$ appears as more H$_2$S is added.

24
Fig 3. 2 Adsorption of H₂S on Al(450) in OH stretching region
(A). Addition of H₂S from 0.09 Torr to 3.70 Torr (the lowest one is the alumina background).
(B). The difference spectra of (A), after subtraction of the alumina background.
The change of the hydroxyl bands indicates that the isolated hydroxyls have different reactivities toward H_2S. The background from 3650 to 3200 cm$^{-1}$ increases, indicating that some hydrogen-bonded hydroxyls are formed and some water is produced (adsorbed water has a band in this region). Even with a large dose of H_2S, the 3790, 3772 cm$^{-1}$ bands are still present, although of low intensity. It appears that there is an isosbestic point at 3650 cm$^{-1}$. That is to say, there are isolated OH groups above 3650 cm$^{-1}$ and hydrogen-bonded OH groups below 3650 cm$^{-1}$. The reason why the band around 3772 cm$^{-1}$ is more reactive toward H_2S than the band at 3790 cm$^{-1}$ is still not very clear. Type Ia may be more accessible to H_2S than type II or III hydroxyls.

In the region from 2600-1600 cm$^{-1}$ there is a broad band centred at 2570 cm$^{-1}$ whose intensity increases with the quantity of H_2S added (Fig 3.3). This broad band probably has three peaks at 2540, 2567 and 2580 cm$^{-1}$ (Fig 3.3). With more H_2S, the band at 2567 cm$^{-1}$ becomes the dominant one. With evacuation, all bands decrease in intensity but that at 2580 cm$^{-1}$ decreases less and, in this situation, is finally the most intense one. There is also a weak band at 1620 cm$^{-1}$ (bending vibration of water); it is evident that water is formed when H_2S is added.

In accounting for the decrease of the isolated hydroxyl bands at 3790, 3772 and 3750 cm$^{-1}$ and the increase of the band at about 3550 cm$^{-1}$ with the first dose of H_2S, we can suggest that the isolated OH groups react with H_2S as follows:

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H} - - \text{Al} - - \text{Al} - \\
\end{array}
+ \begin{array}{c}
\text{H} \\
\text{O} \\
\text{S} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{S} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{S} \\
\end{array}
(3 - 3)
\]

The water so produced has bands at 3550 and 1620 cm$^{-1}$ and it desorbs following evacuation.

The band at about 3700 cm$^{-1}$ increased in intensity with the addition of H_2S. Lavalley et al. [20] suggested that the 3700 cm$^{-1}$ band was due to a new OH species formed from the reaction:
\[
\text{SH} \quad \text{H} \\
\quad I \\
\text{aHAl}^{2+} \quad \text{aH}O^2- \; + \; \text{H}_2\text{S} \; \rightarrow \; \text{Al} \quad \text{O} \\
(3 - 4)
\]

With further \(\text{H}_2\text{S}\) addition, the 3700 cm\(^{-1}\) band decreased in intensity while those at 3200 cm\(^{-1}\) and at about 2567 cm\(^{-1}\) increased in intensity. This might suggest that this OH group (at 3700 cm\(^{-1}\)) is involved in the formation of 2567 cm\(^{-1}\) species. When evacuated, the band at 3700 cm\(^{-1}\) increased in intensity while the band at 3200 cm\(^{-1}\) decreased in intensity. We assume that this chemisorption involves strong acidic Al\(^{2+}\) sites which are created by the thermal activation.

The 2580 cm\(^{-1}\) band which remains after evacuation lies in the spectral region associated with S-H stretching vibrations and is assigned to Al-S-H, which is produced in reactions (3-3) and (3-4). The reaction (3-4) may contribute more to this Al-SH species. This is supported by the evidence that on high temperature activated catalysts, those which contain fewer OH groups, the 2580 cm\(^{-1}\) band was more intense (Fig 3.4).

We might also expect some undissociated (physical) adsorption to occur. This may occur on basic sites O\(^{2-}\) or through H-bonding with OH groups on surface:

\[
\text{H} \quad \text{H} \\
\quad \text{S} \\
\quad \text{H} \\
\quad \text{O} \\
\quad \text{Al} \quad \text{Al} \\
(\text{Garcia [21]})
\]

The hydrogen-bonded S-H species should have lower vibrational frequencies than free S-H species, and the 2540 cm\(^{-1}\) band is so assigned. The free S-H band of physically adsorbed (Al:S\(_2\)) might have a vibration at about 2567 cm\(^{-1}\). Any of the isolated OH groups (I, II and III types, as well as the new OH groups adsorbing at 3700 cm\(^{-1}\)) might be involved in hydrogen bonding.
Fig 3.3 IR spectra of the adsorption of H₂S on Al₂O₃ (30 mg, activated at 450 °C).
Fig 3.4 The difference IR spectra of limited H_2S on Al(C)

On each catalyst, Al(C), there are two spectra. The top one is the alumina on which about 3.20 Torr of H_2S was adsorbed, and the lower one is after evacuation then for 5 minutes.
The band at about 1620 cm\(^{-1}\) is definite evidence of the formation of water. This may occur from the reaction of OH groups with \(\text{H}_2\text{S}\) (reaction 3-3) or via direct reaction with basic oxygen:

\[
\text{H}_2\text{S} + (\text{O}^{2-})_{\text{surf.}} \rightarrow \text{H}_2\text{O} + (\text{S}^{2-})_{\text{surf.}} \quad (3-2)
\]

Using different Al(C) catalysts and with the same small amount of \(\text{H}_2\text{S}\) (about 3 Torr), the higher temperature activated catalysts produced more chemisorbed species (Fig 3.4). On Al(150), there was only a weak band at about 2570 cm\(^{-1}\), and after evacuation, no band was left. On the other hand, with Al(1000), the band from 2585 to 2530 cm\(^{-1}\) decreased in intensity only slightly after evacuation. Al(1000) contains no OH groups on the surface, yet water was still produced, probably via reaction (3-2).

When \(\text{Al}_2\text{O}_3\) is heated above 400 °C, a peak near 1020 cm\(^{-1}\) appears which has been reported by Lavalle et al. [22] to be a strained Al-O-Al bridged site which was formed during the process of the dehydroxylation (Fig 3.5). After addition of \(\text{H}_2\text{S}\), this new peak disappears. It is probably the result of reaction (3-4).

Through the discussion above, we conclude that the adsorption of \(\text{H}_2\text{S}\) on \(\text{Al}_2\text{O}_3\) gives:

(i). Dissociative adsorption (or chemisorption):

\[
\begin{array}{ccc}
\text{H} & \text{H} & \text{H} \\
\text{O} & \text{O} & \text{S} \\
\text{Al} & \text{Al}
\end{array} + \text{H}_2\text{S} \quad \rightarrow \quad \begin{array}{ccc}
\text{SH} & \text{H} \\
\text{Al} & \text{O}
\end{array} \quad (3 \ - \ 3)
\]

\[
\text{H}_2\text{S} + (\text{O}^{2-})_{\text{surf.}} \rightarrow \text{H}_2\text{O} + (\text{S}^{2-})_{\text{surf.}} \quad (3 \ - \ 2)
\]

\(\text{AlS-H}\) has an IR band at about 2580 cm\(^{-1}\).
Fig 3.5 The gradual formation of the band at 1020 cm$^{-1}$ is shown from the difference spectra. The activation temperatures are from 300 °C to 700 °C.
(ii). Nondissociative adsorption:

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{S} & \\
\text{H} & \quad \text{or} \\
\text{O} & \\
\text{Al} & \quad \text{Al}
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{S} \\
\text{H} & \\
\text{O} & \\
\text{Al} & \quad \text{Al}
\end{align*}
\]

2540 cm\(^{-1}\) 2567 cm\(^{-1}\)

The free S-H bands have their IR vibration at about 2567 cm\(^{-1}\) and hydrogen-bonded S-H have a vibration at about 2540 cm\(^{-1}\). According to Marshneva et al. [23], there may exist another kind of adsorbed species on oxides. \(H_2S\) may adsorb on a \((S^2)_{\text{surf}}\) site, which comes from the complete decomposition of \(H_2S\) on the surface of oxides like Bi\(_2\)O\(_3\). However, considering there are very few \((S^2)_{\text{surf}}\) sites available on Al\(_2\)O\(_3\), this adsorption might not be important in this work.

(2). Adsorption of SO\(_2\)

In this thesis, most experiments have been done using Al(450). When a small dose of SO\(_2\) (0.08 Torr) was added (Fig 3.6 a), there were two broad bands at 1050 and 1010 cm\(^{-1}\) and three very weak bands at 1200, 1250 and 1325 cm\(^{-1}\). With further doses of SO\(_2\), new bands at 1147, 1361 and 1375 cm\(^{-1}\) appeared and the 1325 cm\(^{-1}\) band shifted to 1330 cm\(^{-1}\). (The 1375 and 1361 cm\(^{-1}\) peaks are the R and Q branches respectively of gas phase SO\(_2\)). When evacuated, the bands at 1375, 1361, 1330 and 1147 cm\(^{-1}\) disappeared and all others decreased slightly.

In the hydroxyl stretching region, after activating at 450 °C, as discussed before, the residual hydroxyl bands are at 3790, 3772, 3727 and 3684 cm\(^{-1}\) (Degussa, Aluminoxide C, see Fig 3.1). When SO\(_2\) was added, all of the residual hydroxyls decreased in intensity and a weak but broad band between 3600-3000 cm\(^{-1}\) formed (Fig 3.7 A). In the difference spectra, the positions of the hydroxyl groups were much clearer. After adding about 1.20 Torr of SO\(_2\), the intensities of the isolated hydroxyl groups did not decrease much further, but the broad band around 3500 cm\(^{-1}\) increased very quickly (Fig 3.7 B). Even with very large dose of SO\(_2\), weak isolated hydroxyl
peaks were still evident.

With H$_2$S, as discussed before, the peaks at 3790, 3772 cm$^{-1}$ decreased but that at 3727 cm$^{-1}$ almost did not change and that at 3675 cm$^{-1}$ increased. However, following SO$_2$ adsorption, all isolated OH peaks decreased in intensity. There is also an isosbestic point at 3650 cm$^{-1}$.

We will discuss the bands at low wavenumber with reference to specific species.

(a). The bands between 1100-980 cm$^{-1}$

We have confirmed that a peak near 1020 cm$^{-1}$ appeared after heating alumina over 400 °C (Fig 3.5). Lavalle [22] suggested that a strained Al-O-Al bridged site formed, which could be destroyed with the addition of H$_2$O, and also with H$_2$S. Therefore, when H$_2$S was added, a "negative" peak showed at about 1020 cm$^{-1}$. With a small dose of SO$_2$, alumina showed a small valley between 1050 and 1010 cm$^{-1}$ (see Fig 3.6). This gives rise to the question whether the two peaks at 1050 and 1010 cm$^{-1}$ are really due to two species, or whether this is one broad band with a negative "valley" in between.

The band around 1020-990 cm$^{-1}$ can be recognized only by difference spectra. We will show that the bands at 1050 and 1010 cm$^{-1}$ are real. (i). The two peaks at 1050 and about 1010 cm$^{-1}$ were also observed following SO$_2$ adsorption on Al$_2$O$_3$(300). However, it is known that the reactive AIOAl site responsible for the negative artefact at 1020 cm$^{-1}$ is not present when Al$_2$O$_3$ has only been activated at 300 °C. (ii). With different alumina samples and discs of different weight, these two bands are always present (Degussa alumina or Rhône-Poulenc alumina).

The band at 1050 cm$^{-1}$ has been assigned to a surface sulfite species of unknown structure in all previous studies of the adsorption of SO$_2$ on Al$_2$O$_3$ [17, 24, 25]. Although it is frequently formulated as "SO$_3^{2-}$", this is probably not strictly correct as this implies a sulfite species having C$_s$ symmetry, as in ionic sulfites. None the less, in the description below, we will continue to use this formula for convenience where it is to be understood that no particular mode of bonding to the surface is implied. We will show indeed that this species is likely a "sulfite" or SO$_3$
Fig 3.6 IR spectra of the adsorption of SO₂ on Al(450) (difference spectra)

(a). add 0.08 Torr (50-μmol/g) SO₂ and 10’.
(b). add 0.14 Torr SO₂ and 10’.
(c). add 0.46 Torr SO₂ and 10’.
(d). add 1.20 Torr SO₂ and 10’.
(e). evacuate for 10’.
Fig 3.7 IR spectra of adsorption of SO$_2$ on Al(450) in OH stretching region

(A). Adsorption spectra (no background subtraction): (a) Al$_2$O$_3$ which has been activated at 450 °C; (b) in contact with 0.08 Torr of SO$_2$; (c) in contact with 0.14 Torr of SO$_2$; (d) in contact with 0.46 Torr of SO$_2$; (e) in contact with 1.20 Torr of SO$_2$.

(B). Difference spectra of (A). The background spectrum, Al$_2$O$_3$ (a), has been subtracted from the subsequent spectrum.
containing species. On the other hand, the lower wavenumber band at about 1010 cm\(^{-1}\) is probably due to a hydrogen sulfite like species, HSO\(_3\)^{-}, and we will also use this formulation without necessarily specifying a mode of bonding or even a mode of attachment of H (which could be to an O or S atom).

Gas phase SO\(_2\) has vibrations at 1361 (\(\nu_3\)), 1151 (\(\nu_4\)). As a strong acidic reagent, SO\(_2\) can react with basic O\(^{2-}\) sites, and SO\(_3\)^{2-} can be formed. Free SO\(_3\)^{2-} has a C\(_{3v}\) symmetry, and has a doubly degenerate vibration \(\nu_3\) at 1010 cm\(^{-1}\), and a non-degenerate \(\nu_1\) at 960 cm\(^{-1}\). When SO\(_3\)^{2-} forms a complex the doubly degenerate vibration will be split. Newman and Powell [24] reported that three bands were at region 1093-1070 cm\(^{-1}\) and 1036-1024 cm\(^{-1}\) as well as 988 cm\(^{-1}\). On MgO, adsorption of SO\(_2\) gave bands at 1070, 1040, 975 cm\(^{-1}\) [25], and on CaO, bands at 1050 and 960 cm\(^{-1}\) were reported [16]. When Al\(_2\)O\(_3\) has been activated at high temperatures so as to eliminate all OH groups, this (the band near 1060 cm\(^{-1}\)) is the only IR band which can be observed in this spectral region. Therefore, the band at 1050 cm\(^{-1}\) is assigned to SO\(_3\)^{2-} species.

The band at 1010 cm\(^{-1}\) could be due to another sulfite species, possibly having a different structure. However, this band was more intense the lower the temperature of activation of the Al\(_2\)O\(_3\), conditions under which the OH concentration is higher. This suggests that this species might be formulated as HSO\(_3\)^{-}. However, true salts of HSO\(_3\)^{-} are rare and most of the common light alkali metal bisulfites are, in reality, salts of the disulfite ion, S\(_2\)O\(_5\)^{2-}. That is, attempts to concentrate solutions of HSO\(_3\)^{-} invariably lead to the formation of disulfite via the equilibrium:

\[
S_2O_5^{2-} + H_2O \rightleftharpoons 2HSO_3^{-}.
\]

We will return to the question of the assignment of this band later.

The band noted above at 1050 cm\(^{-1}\) for Al(450) was also observed for different temperatures of activation of the alumina, and the peak maximum was at a higher wavenumber the higher the activation temperature (Fig 3.8). The peak maximum was near 1070 cm\(^{-1}\) for Al(600), 1040 cm\(^{-1}\) for Al(300) and at 1020 cm\(^{-1}\) for Al(150).
Fig 3.8 IR spectra of adsorption of SO₂ on Al(C)
On Al(600), the highest band is at 1070 cm⁻¹, while on Al(450), it is at 1052 cm⁻¹, and near 1040 cm⁻¹ for Al(300), near 1020 cm⁻¹ for Al(150).
(b). The bands at 1330 and 1150 cm\(^{-1}\)

These bands are from physisorbed SO\(_2\) since they are very close to the stretching modes of SO\(_2\) in gas phase and they could be removed by brief evacuation at room temperature. Datta et al. [18] suggested that they came from the interaction between SO\(_2\) and hydroxyl groups. The \(\nu(\text{O-H})\) region changed upon physisorption of SO\(_2\) and the 1330/1150 cm\(^{-1}\) bands were more intense on Al(300) than on Al(600), the former having a higher OH content. However, the adsorption of SO\(_2\) on totally dehydroxylated alumina also showed the 1330/1150 cm\(^{-1}\) bands. Therefore, these two bands might also be due to weakly physically adsorbed SO\(_2\) on Al\(^{2+}\) sites as found by Karge during selective poisoning experiments when adsorption of SO\(_2\) was inhibited as the Lewis acid sites were blocked by adsorbed pyridine [26]. On the other hand, with increased basicity of the alumina (e.g. Na/Al\(_2\)O\(_3\) and Cs/Al\(_2\)O\(_3\), see chapter 4), the quantity of physisorbed SO\(_2\) (1330/1150 cm\(^{-1}\)) increased. Therefore, one can conclude that, on alumina, these species (1330/1150 cm\(^{-1}\)) may involve the sites of Al\(^{2+}\) and O\(^{2-}\) as well as OH which are weakly basic. The greater contribution of these two bands may come from OH sites because more intense bands are found on lower activated catalysts. A more precise assignment is difficult.

Raman spectra showed bands at 1150 and 1330 cm\(^{-1}\) due to weakly adsorbed SO\(_2\) and a very weak broad band near 1060 cm\(^{-1}\) (see Fig 3.9). The 1150/1330 cm\(^{-1}\) bands were eliminated by evacuation.

(c). The bands at 1200 and 1250 cm\(^{-1}\)

The band at 1200 cm\(^{-1}\) was always very weak, and we also observed another very weak band at 1250 cm\(^{-1}\), which was more apparent when the alumina had been activated at high temperature [see Fig 3.8 for Al(600)]. It has been attributed by Datta to a species coordinated to Al clusters, \(\text{Al}_x\text{SO}_2\) [18]. We can conclude nothing regarding these species because they are so weak in intensity.
Fig 3.9 Raman spectra

(a) Background Raman spectrum of Al(500);
(b) After the addition of 2 Torr of SO₂;
(c) After evacuation for 5', followed by the addition of 1 Torr of H₂S.
(d). Surface reactions

Fig 3.10 shows the time evolution of the spectral changes following the adsorption of 100 µmol/g of SO₂ on Al(300). Initially, there are bands at 1325, 1147, 1054 and 1016 cm⁻¹. With increasing time of contact the bands at 1325 and 1147 cm⁻¹ decrease while the peaks at 1057 and 1016 cm⁻¹ increase. After about 60 minutes, the 1057 and 1017 cm⁻¹ bands merge into one peak around 1040 cm⁻¹. It seems that physically absorbed SO₂ (1325 and 1147 cm⁻¹) gradually changes to sulfite or sulfite-like species.

From Fig 3.8, we can see that with the different temperatures of activation the peak maximum at about 1070 cm⁻¹ on Al(600) shifts to 1020 cm⁻¹ on Al(150). Further, there are more surface OH groups on the low temperature activated catalyst. Therefore, we tend to assign band near 1010 cm⁻¹ to S₂O₅²⁻ or HSO₃⁻ species.

In aqueous solution, it has been postulated that SO₂ reacts with H₂O to form H-S-O, O^1 hydrogen sulfite, which has a S-H linkage [27]. Another structure, H-O-S-O, does not exist in solution, but the HOSO⁻ radical is known [28]. Its O-H stretching vibration is at 3540 cm⁻¹, and a band at 1309 cm⁻¹ is the SO₂ asymmetric stretching vibration, and a band at 1097 cm⁻¹ is the SO₂ symmetric stretching vibration.

We do not observe a ν(S-H) band but there is a broad ν(O-H) band. Lavallee et al. [29] suggested that a band at 1020 cm⁻¹ was due to adsorbed HOSO₂ and not to HSO₃:

![image of chemical structure]

We have found that the preadsorption of SO₂ on alumina hinders the subsequent adsorption of CO₂, which indicates that SO₂ and CO₂ adsorb on common sites. Carbon dioxide is acidic and
Fig 3.10 Adsorption of SO₂ and H₂S on Al(300) (difference spectra)
(a). add 0.20 Torr (about 100 μmol/g) SO₂.
(b). after 5 min.
(c). after 15 min.
(d). after 30 min.
(e). after 1 hour.
(f). evacuate for 5 min.
(g). add 0.20 Torr H₂S (about 100 μmol/g).
(h). after 10 min.
(i). after 20 min.
it will be expected to adsorb on basic sites. On basic hydroxyl groups, chemisorbed CO$_2$ can form a hydrogen carbonate species:

\[
\begin{array}{c}
\text{OH} \\
\text{C = O} \\
\text{O} \\
\text{Al} \\
\text{O} \\
\text{Al} \\
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{OH} \\
\text{C = O} \\
\text{O} \\
\text{Al} \\
\text{O} \\
\text{Al} \\
\end{array}
\]

(3 - 7)

If the alumina has been pretreated by SO$_2$, a stronger acid than CO$_2$, the hydrogen carbonate species formed by adsorption of CO$_2$ are not detected. It is believed that, among the different types of OH groups existing after activation, the more basic OH groups attached to one of the coordinatively unsaturated aluminum cations are involved in the formation of hydrogen carbonate. Therefore, we expect that SO$_2$ will react with AlOH type Ia (3772 cm$^{-1}$) and AlOH type Ib (3790 cm$^{-1}$) to form hydrosulfite. These two kinds of OH groups are more basic than the others. But, definitive vibrational assignments are difficult because of the limit of sample transparency near 1000 cm$^{-1}$. The main peak near 1050 cm$^{-1}$ has been attributed to the surface sulfites in many reports [17, 24, 25]. As the temperature of activation is lowered, the peak shifts to lower wavenumber, which means that its formation could arise from an interaction with OH groups which are more prevalent on samples activated at lower temperatures. The CO$_2$ adsorption experiments confirm that these basic hydroxyls give HCO$_3^-$ species. From the evidence above, we attribute the band near 1010 cm$^{-1}$ to the possible formation of a hydrosulfite species of unknown structure.

To summarize, the adsorption of SO$_2$ on alumina gives sulfite species which may form on ε$_{\text{eq}}$O$^2-$ sites (band at 1050 cm$^{-1}$) and hydrosulfite species (1010 cm$^{-1}$) which might be produced at surface basic OH groups (probably OH types I and II). There are weakly physisorbed forms of SO$_2$ (bands at 1330 and 1150 cm$^{-1}$) which are attributed mainly to OH sites but might also partly arise from adsorption on acid ε$_{\text{eq}}$Al$^{3+}$ sites and on basic ε$_{\text{eq}}$O$^2-$ sites. Finally, there are two unknown species which have very weak and broad bands near 1250 and 1200 cm$^{-1}$.

42
(3). The static reaction between SO₂ and H₂S.

(a) Adsorption of SO₂ then H₂S:

Fig 3.11A shows a typical spectrum following adsorption and evacuation of SO₂ on Al(450). When H₂S was added, the 1325 cm⁻¹ band disappeared and a band at 1620 cm⁻¹ (H₂O) appeared (Fig 3.11B). When more H₂S was added, the band at 1620 cm⁻¹ further increased (spectrum not shown). This suggests that the Claus reaction is taking place. In Raman studies, the bands near 1330 and 1150 cm⁻¹ due to physically adsorbed SO₂ disappeared following evacuation at room temperature. When H₂S was added, intense Raman bands at 151, 220 and 480 cm⁻¹ characteristic of S₈ [30] were observed (Fig 3.9).

An AlSH band at 2570 cm⁻¹ was never observed in IR or Raman spectra when any quantity of H₂S was added to preadsorbed SO₂. It is apparent that the Al³⁺ sites which would normally be adsorption centres for H₂S were occupied by SO₂, sulfur or H₂O.

In IR spectra, the bands at about 1000 and 1050 cm⁻¹ decreased with time following addition of H₂S, the 1000 cm⁻¹ band at a faster rate (Fig 3.11). At this stage, adding CO₂ produced a small quantity of hydrogen-carbonate species (bands at 1650, 1445 and 1230 cm⁻¹), which indicated that some sites previously occupied by SO₂ species were available for CO₂ adsorption (Fig 3.11 E,F).

(b) Adsorption of H₂S, then SO₂:

On Al(450), addition of H₂S gave rise to the weak peak at 3700 cm⁻¹ (AlO-H), and broad bands around 2570 cm⁻¹ (AlS-H). After evacuation, there was only a very weak band near 2580 cm⁻¹. Upon adding SO₂, the 2580 cm⁻¹ band disappeared immediately, and a very weak band appeared at 1620 cm⁻¹ due to H₂O (much weaker than that which was previously observed when H₂S was added to preadsorbed SO₂), along with bands at 1050 cm⁻¹ (SO₃²⁻) and at about 1000 cm⁻¹. If more SO₂ was added, bands at 1330 and 1150 cm⁻¹ appeared, and the overall spectrum was virtually identical to that which was observed previously for adsorbed SO₂ alone on Al(450).
Fig 3. 11 Adsorption of SO₂, then H₂S (difference spectra)

(A). add 2.20 Torr SO₂ to Al(450) and after 15', then evacuate for 5'.
(B). add H₂S 2.33 Torr.
(C). after 15'.
(D). evacuate for 5'.
(E). add CO₂ 3.34 Torr.
(F). after 15'.
In Raman spectroscopic experiments, when SO$_2$ was added to preadsorbed H$_2$S on Al(500), no Raman bands due to S$_8$ were detected and the spectrum resembled that which was previously observed when SO$_2$ alone was added to Al$_2$O$_3$. However, when the SO$_2$ was evacuated and more H$_2$S added, S$_8$ bands at 151, 220 and 480 cm$^{-1}$ were clearly detected.

(c) Summary:

With respect to the mechanism of the Claus reaction on Al$_2$O$_3$, Karge et al. [17] suggested that the process involved adsorbed SO$_2$ and gaseous H$_2$S. However, Datta and Cavell [31] suggested that the reaction could equally take place between adsorbed H$_2$S and SO$_2$ gas. Kasurnov [14] reported that SO$_2$ gas also reacted with surface S$^2-$ species which formed from the dissociative adsorption of H$_2$S.

In the present study, no sulfur was produced when SO$_2$ was added to preadsorbed H$_2$S. The Raman results have clearly shown that the generation of sulfur requires the presence of chemisorbed SO$_2$ insofar as S$_8$ was only detected if H$_2$S was added to preadsorbed SO$_2$, and not if SO$_2$ was added to preadsorbed H$_2$S. Therefore, we conclude that Al-S, as suggested by Kasurnov [14], does not contribute significantly to the Claus reaction under these circumstances. On the other hand, the SH band from preadsorbed H$_2$S did disappear when SO$_2$ was added. However, SO$_2$ is a stronger acid than H$_2$S and one might expect SO$_2$ to displace adsorbed H$_2$S. When H$_2$S was readded, S$_8$ was generated, and the infrared spectrum was virtually identical to that which was observed when only SO$_2$ was added to Al$_2$O$_3$. Therefore, we conclude that the Claus process does not occur to a significant extent via a reaction between pre-adsorbed H$_2$S and gaseous SO$_2$ but, rather, the reaction mainly involves a reaction of chemisorbed SO$_2$ with gaseous H$_2$S.

(4). Adsorption of a mixture of H$_2$S and SO$_2$.

The stoichiometry of the Claus reaction between H$_2$S and SO$_2$ is 2:1 (2H$_2$S + SO$_2$ \rightleftharpoons 2H$_2$O + $\frac{3}{2}$ S$_8$). However, most previous spectroscopic studies have only examined the reaction of either H$_2$S or SO$_2$ alone, or one gas after the other. Only Datta reported an infrared
spectroscopic study of a 2:1 H$_2$S/SO$_2$ mixture on alumina but the gases were added separately and with a low coverage [31]. In their report, when SO$_2$ was added followed by H$_2$S to give a mixture on alumina, only the 1060 cm$^{-1}$ band was found. Because the real reaction is under the stoichiometry of 2:1, we have reinvestigated the reaction under these conditions.

The gases were mixed with the desired proportion just before addition to the cell. The basic result, for a 2:1 mixture, is shown in Fig 3.12 A-F. There was the appearance of a very sharp peak at 1028 cm$^{-1}$, two broader ones at 1230 and 1186 cm$^{-1}$, and a band at 1627 cm$^{-1}$ due to the deformation mode of H$_2$O, all of which grew in intensity with increasing contact time. On the other hand, the spectrum of gas phase and physically adsorbed SO$_2$ near 1330 cm$^{-1}$ decreased in intensity with time. Accompanying these spectral changes, the disc progressively became yellow.

Evacuation produced the spectra shown in the Fig 3.12 G-J; although most bands in this region decreased slightly in intensity, the band at 1186 cm$^{-1}$ immediately shifted to 1175 cm$^{-1}$ whereas that at 1230 cm$^{-1}$ appeared to shift to 1285 cm$^{-1}$ and intensified. That is, the 1230/1186 cm$^{-1}$ bands apparently shifted to 1285/1175 cm$^{-1}$ upon evacuation. The readdition of water completely regenerated the original spectrum which was formed before evacuation (see Fig 3.12 K).

The γ-Al$_2$O$_3$, used for this investigation has a surface area 105 m2/g. It was necessary to have at least an initial pressure of 1.7 to 1.8 Torr of the 2:1 mixture in the 300 ml volume cell in order to observe the above spectra. The mass of the disc was about 30 mg. This is important relative to the number of surface sites which absorb SO$_2$. For less than 1.7 Torr we only observed the normal spectrum of adsorbed SO$_2$, and all gas phase bands disappeared. For greater pressures, we could easily observe the decrease in the intensity of gas phase SO$_2$ as the reaction proceeded. This may be a partial explanation of why other studies have not reported this result.

The same bands were also observed if slightly different ratios of H$_2$S/SO$_2$ were used. We only used ratios from 1.5 to 3, but as long as there was excess gas phase SO$_2$, the same infrared spectrum was observed. For example, using a pressure of about 2.8 Torr and a 3:1 mixture, no
Fig 3.12 The adsorption of a mixture (H₂S/SO₂=2/1) on Al(450)

A-F. The spectra show the adsorption of a mixture (4.8 Torr) on ZrO₂, the contact time being from 5 minutes to 1.5 hour.
G-J. Subsequently evacuate for 5 minutes to 18 hours.
K. Re-add water vapor to (J).

47
gas phase SO$_2$ was detected and the spectrum resembled that which was observed for SO$_2$ alone adsorbed on Al$_2$O$_3$.

Using D$_2$S in place of H$_2$S, there was no shift of the 1028 cm$^{-1}$ band. The 1230 cm$^{-1}$ band appeared at the same frequency, but the 1186 cm$^{-1}$ band was now strongly overlapped by the D$_2$O deformation mode.

The addition of water before the introduction of the mixture gave the same results except that the peaks in this region increased more rapidly, which suggests that the adsorption of water facilitates the reaction. It is evident that water plays an important role in the formation of the species responsible for these bands.

A similar infrared spectrum was observed following the adsorption of the 2:1 mixture on zirconia, ZrO$_2$. However, ZrO$_2$ is more transparent than Al$_2$O$_3$ to lower wavenumber, the limit of transmission being about 900 cm$^{-1}$. Fig 3.13A shows a spectrum of SO$_2$ alone adsorbed on ZrO$_2$(450); this is dominated by a very broad band between about 1050 and 900 cm$^{-1}$ with a single sharper peak at 927 cm$^{-1}$. The spectrum did not change with time. Figure 3.13B-G shows the spectral features observed following admission of a 2:1 mixture to ZrO$_2$(450). There was the growth of a sharp band at 1028 cm$^{-1}$ and of water at 1612 cm$^{-1}$ and a decrease in the intensity of the bands due to SO$_2$ near 1330 cm$^{-1}$. This is qualitatively similar to that which was observed using Al$_2$O$_3$. However, although bands near 1200 cm$^{-1}$ also appeared on ZrO$_2$, their frequencies were different, being at 1257/1157 cm$^{-1}$. Evacuation did not alter the spectrum.

The addition of water produced a significant spectral change, as shown in Fig 3.13H. There was an intensification of the 1028 cm$^{-1}$ band, and the pair near 1200 cm$^{-1}$ shifted to 1234/1184 cm$^{-1}$, almost identical to that observed under these conditions for Al$_2$O$_3$. Finally, evacuation resulted in a broadening of the 1028 cm$^{-1}$ band (Fig 3.13I) and the 1200 cm$^{-1}$ pair shifted back to 1257/1157 cm$^{-1}$.

With both oxides, we measured the shifts of the peaks for partial or complete replacement
Fig 3.13 The Adsorption of SO₂, mixture (H₂S/SO₂) and H₂O on ZrO₂(450)

A. SO₂ alone adsorbed on ZrO₂.
B-G. A 2:1 mixture adsorbed on ZrO₂.
H. H₂O vapor (8 Torr) adsorbed on (G).
I. evacuate (H) for 5 minutes.
of oxygen-16 by oxygen-18. This was accomplished by using $S^{18}O_2$ in place of $S^{16}O_2$ in a 2:1 mixture and following its adsorption on an unexchanged or on an oxygen-18 exchanged Al_2O_3. The progressive shift of the bands for replacement of oxygen-16 by oxygen-18 could also be followed for Al_2O_3 or ZrO_2 if 99% $H_2^{18}O$ was added after the normal bands due to the adsorption of the mixture were developed. A sequence of spectra developed by the latter method on ZrO_2 for a nearly 100% ^{16}O, about 50% each of $^{16}O/^{18}O$ and about 90% ^{18}O are shown in Fig 3.14.

For either Al_2O_3 or ZrO_2, the most noticeable effect of oxygen-18 exchange was the appearance of a total of four bands for the sharp 1028 cm$^{-1}$ band for partial exchange. The dominant band for 90% ^{18}O substitution was at 976 cm$^{-1}$, whereas for about 50% exchange the frequencies were at 1028, 1007, 990 and 976 cm$^{-1}$. For 50% exchange, the relative intensities were approximately in the ratio of 1:3:3:1. This is clear evidence that an SO_3 unit is the functional group responsible for the generation of the 1028 cm$^{-1}$ band, the four species for partial or complete exchange being as follows:

\[
\begin{align*}
&16O \\
16O - S - 16O \quad &18O \\
16O - S - 16O \quad &16O - S - 18O \quad &18O - S - 18O \\
1028 \text{ cm}^{-1} \quad &1007 \text{ cm}^{-1} \quad &990 \text{ cm}^{-1} \quad &976 \text{ cm}^{-1}
\end{align*}
\]

The shifts of the 1234/1184 cm$^{-1}$ pair of bands is ambiguous because of the greater breadth of the bands. The general pattern is also shown in Fig 3.14 and it appears that although both bands shift by about 40 cm$^{-1}$ to low wavenumber for complete substitution of ^{16}O by ^{18}O [1234/1184 shifting to 1193/1154 cm$^{-1}$], for intermediate substitution it appears that the bands are at about 1213/1170 cm$^{-1}$. This could suggest that these bands arise from the antisymmetric and symmetric stretching modes of an SO_2 unit as follows:

\[
\begin{align*}
&16O \quad 16O \\
S \quad S \quad &18O \quad 18O \\
1234/1184 \text{ cm}^{-1} \quad &1213/1170 \text{ cm}^{-1} \quad &1192/1154 \text{ cm}^{-1}
\end{align*}
\]
Fig 3.14 The adsorption of a mixture (\(\text{H}_2\text{S}/\text{SO}_2=2\)) on \(\text{ZrO}_2\)(450)

The bands in 900-1300 cm\(^{-1}\) spectral region shift with \(^{18}\text{O}\) substitution. (a) nearly 100% \(^{16}\text{O}\); (b) about 50% \(^{16}\text{O}/^{18}\text{O}\); (c) about 90% \(^{18}\text{O}\).
We have noted the similarities and differences between the IR spectra of the mixture adsorbed on alumina and on zirconia, that is, a strong band at 1028 cm\(^{-1}\) which was not sensitive to the presence of water, and a pair of bands near 1200 cm\(^{-1}\) which were sensitive to water. These spectral features were also observed for the adsorption of the mixture on other oxides. The frequencies in the presence of water are as follows: Ga\(_2\)O\(_3\) 1028, 1232/1190 cm\(^{-1}\), TiO\(_2\) 1028, 1234/1188 cm\(^{-1}\), MgO 1028, 1242/1196 cm\(^{-1}\). The spectral changes for Ga\(_2\)O\(_3\) were virtually identical to those observed for alumina, whereas those for TiO\(_2\), were similar to ZrO\(_2\), the '1200 pair' after evacuation being at 1253 and 1168 cm\(^{-1}\).

It is apparent that the frequencies of the observed bands, and particularly that at 1028 cm\(^{-1}\), are largely unaffected by the nature of the surface, even a strongly basic one such as MgO. On the other hand, the surface does play a role, because no IR bands were observed when the mixture was adsorbed on silica, an oxide which is inert in the Claus reaction (see Chapter 5). For the other oxides, the bands developed slowly, in parallel with the IR band due to water; therefore, it is evident that water is important, and water is an initial product of the Claus reaction.

One of the yet unsolved problems of sulfur chemistry is the composition of aqueous solutions of H\(_2\)S and SO\(_2\), the so-called Wackenroder’s solution. This solution, which gradually turns milky upon standing because of the formation of colloidal sulfur, defies chemical analysis and complete understanding. What is known is that an extremely complex mixture of polythionates are formed, S\(_n\)O\(_{2n}\), and the corresponding thionic acids, H\(_2\)S\(_n\)O\(_{2n}\), in various amounts depending on the reaction conditions. It is believed that the first stable product of the reaction is tetrathionic acid, H\(_2\)S\(_4\)O\(_6\). In common with most thionic acids, only salts have been characterized by spectroscopic techniques, the acids themselves cannot be isolated and positively identified.

It is not fruitful to review all of the speculative literature [32, 33] on the subject because most of the postulated intermediates leading eventually to sulfur in Wackenroder’s liquid have not been identified, such as thiosulfuric acid, H\(_2\)S\(_2\)O\(_3\), or thiosulfurous acid, H\(_2\)S\(_2\)O\(_2\). What is clear is that the observed infrared spectrum is very similar to those which have been observed
by Steudel et al. [34], for a series of polythionate salts of the formula \(S_n O_6^{2-} \), \(n = 4-6 \). These species have 4 to 6 sulfur atoms linked in a linear chain with two terminal \(\text{SO}_3 \) groups. A single sharp band near \(1028 \ \text{cm}^{-1} \) is attributed to the symmetric \(\text{SO}_3 \) stretching mode and a doublet near \(1200 \ \text{cm}^{-1} \) is assigned to the antisymmetric \(\text{SO}_3 \) stretching modes. The spectra are remarkably similar to those observed in the present work and we believe that we are in some sense looking at the infrared spectrum of the polythionate products of Wackenroder’s liquid. The tentative observation that the pair of bands near \(1200 \ \text{cm}^{-1} \) had \(^{18}\text{O} \) shifts which appeared to be consistent with a \(\text{SO}_2 \) group is not really relevant if in fact this band is due to nearly degenerate antisymmetric stretching modes of an \(\text{SO}_3 \) unit [and the breadth of the bands in any case made it difficult to accurately assess the number of components generated by partial oxygen exchange].

It is tempting to assign the observed spectral features to two or more unknown reactive intermediates in the generation of elemental sulfur. The facts do not bear this out. First, the three bands grow in unison, suggesting that a single species is generated (or at least all species are generated with the same concentration). Second, the species generated is very stable, it is not desorbed by prolonged evacuation, and the re-addition of water simply regenerates the original spectrum. This is not a characteristic of a reactive and difficult to detect intermediate, hitherto unidentified.

It is apparent from the above that there exist many unanswered questions. That the high wavenumber pair of bands depends on the nature of the surface and on the quantity of water present is a particular puzzle. On zirconia, little water is generated from the reaction itself when compared to alumina; however, when water was added, the wavenumbers of these bands was identical on both oxides. This lends further support to the notion that these bands are indeed associated with Wackenroder’s liquid when excess water above a certain minimum quantity is present. Upon evacuation, the species is possibly more perturbed by the surface, or by deprotonation. This aspect needs clarifying in the future and more oxides will have to be examined before firm conclusions can be reached.

Another aspect which needs further study is the question of the effect of the \(\text{H}_2\text{S}/\text{SO}_2 \) ratio.
In this work, only a few experiments were carried out due to time limitations but it would be desirable to fully examine the effect of ratio of the reactants in relation to the total pressure used. This study used ratios no higher than 3 and pressures no greater than about 8 Torr. In a future study, using the more transparent ZrO$_2$, this laboratory will look into the question of whether or not additional IR bands can be observed when reactant ratios much greater than or much less than 2 are used. We also want to look at the effect of the degree of hydroxylation of the surface and the number of surface hydroxyl groups present. Studies of this nature are necessary before any mechanistic conclusions can be reached.

3. CONCLUSION

The dissociative chemisorption of H$_2$S on alumina gives rise to infrared bands which have been attributed to OH, Al-SH and Al-S species. The interaction occurs with AlOH groups and coordinatively unsaturated acidic Al and basic O sites which are created by the thermal activation under vacuum when Al$_2$O$_3$ is heated at temperatures above about 300°C. Physical adsorption also occurs on Al sites and via hydrogen bonding to AlOH groups.

The chemisorption of SO$_2$ on alumina produces two species, one being a sulfite like species, probably Al$_2$SO$_3$O$_2$, having an infrared band in the range from 1070 to 1050 cm$^{-1}$. This occurs via the interaction of SO$_2$ with Al-\equivO$^-$ sites. A second species, a hydrogensulfite probably having the structure Al$_2$SO$_3$H has an IR band at 1010 cm$^{-1}$ and occurs via a reaction with basic surface OH groups. Physical adsorption gives rise to species having infrared or Raman bands near 1330 and 1150 cm$^{-1}$, close to the frequencies for the antisymmetric and symmetric SO stretching modes of the parent SO$_2$. Two unidentified species of unknown structure are in evidence as shown by very weak infrared bands near 1250 and 1200 cm$^{-1}$.

Under static reaction conditions, preadsorbed SO$_2$ reacts with gaseous H$_2$S to give sulfur. On the other hand, preadsorbed H$_2$S does not react with SO$_2$ but instead, preadsorbed H$_2$S is displaced by the stronger acid SO$_2$. We have concluded that the mechanism of the Claus reaction over Al$_2$O$_3$ mainly involves a reaction between adsorbed SO$_2$ and gaseous H$_2$S. In contradiction
with the study of Kusamov [14], Al-S species do not appear to play a significant role in the Claus reaction over Al$_2$O$_3$.

The adsorption of a 2:1 mixture of gaseous H$_2$S/SO$_2$ on Al$_2$O$_3$ has been investigated for the first time. The Claus reaction appears to occur readily at room temperature on Al$_2$O$_3$ and on several other oxide catalysts and a single species can be detected as the reaction proceeds, characterized by a sharp IR band at 1028 cm$^{-1}$ and a pair of bands near 1200 cm$^{-1}$. The sharp band is observed for all oxides and its wavenumber does not depend on the quantity of water present. On the other hand, the frequencies of the pair of bands near 1200 cm$^{-1}$ depends on the nature of the oxide and on the quantity of water present. Tentatively, the bands have been attributed to a polythionate species which is generated during the Claus process, and it may correspond to an intermediate of Wackenroder’s solution. Further research is necessary in order to elucidate the structure of the species responsible for these bands.

References

Chapter 4

THE EFFECT OF BASICITY ON AN ALUMINA CATALYST

1. INTRODUCTION

Alumina is the most commonly used catalyst for the modified Claus reaction. The active sites for this reaction, as discussed in chapter 3 and elsewhere [1, 2], are basic. In chapter 5 we will show that silica impregnated with NaOH demonstrates some Claus activity while pure silica is inert. It is known that the addition of sodium increases the basicity of alumina [3, 4]. While prior studies have also shown that a catalyst which contained 3.9 mass percent sodium on Al₂O₃ gave rise to a very basic catalyst, it was only moderately active for the modified Claus reaction [5]. Therefore, two explanations have been proposed for this behaviour: (i) the greatly augmented basicity makes the catalyst less active for this reaction (i.e., there exists an optimum basicity, and the presence of sodium goes beyond the optimum making the catalyst too basic), or (ii) the reaction needs basic and acid sites, the latter being poisoned by the presence of excess sodium.

The purpose of the present investigation is two-fold: firstly to study the effect of sodium on the adsorption of SO₂ on Al₂O₃; secondly to compare the reactivity of the adsorbed SO₂ species with gaseous H₂S on Al₂O₃ and on sodium impregnated Al₂O₃ (Na/Al₂O₃) catalysts. The catalysts are gamma Al₂O₃ and gamma Al₂O₃ impregnated with 0.13 mole sodium per 100 g of sample (equal to 3 mass percent sodium). A limited number of infrared spectroscopic experiments were done with cesium impregnated Al₂O₃ (Cs/Al₂O₃) in order to compare the effect of using a more strongly basic dopant than sodium. The cesium doped alumina was made by the same impregnation method with 0.13 mole per 100 g of catalyst, which corresponds to about 17 mass
percent. The techniques used are gravimetry, infrared (IR) and Raman spectroscopies, and temperature programmed desorption (TPD).

2. EXPERIMENTAL

The gamma alumina sample, provided by Rhône-Poulenc, France, was used for all of the gravimetric and temperature programmed desorption (TPD) studies reported herein. It had a BET surface area of 244 m²/g and a pore volume of 0.52 cm³/g after vacuum activation at 350 or 600 °C. Sodium impregnated alumina, used in gravimetric and TPD studies, containing 0.13 mole Na per 100 g of sample after drying, was prepared by mixing Rhône-Poulenc alumina with a solution of sodium acetate. This wet sample was dried at 120 °C and was calcined in air overnight at 450 °C. After calcining the sample had a BET surface area of 235 m²/g and a pore volume of 0.45 cm³/g. The alumina, used in infrared and Raman studies, was a Degussa alumina (Aluminomoxid C) which had a BET surface area of 105 m²/g. The impregnated Al₂O₃, used in IR and Raman studies, was made by the same method but with Degussa alumina. Some of the infrared work was also carried out using Rhône-Poulenc alumina and no significant spectral differences were noted.

The cesium impregnated alumina was prepared by mixing Al₂O₃ with a cesium hydroxide solution so as to give a sample which, after drying, contained 0.13 mole of cesium per 100 g of dry catalyst (17 mass percent Cs). However, during the normal calcining process at 450°C, this very basic catalyst adsorbed atmospheric CO₂ and the surface was contaminated with carbonates. These could be eliminated if the calcined catalysts was heated at 700°C under vacuum, after which it was contacted with the vapour pressure of water at room temperature (to rehydroxylate the sample). This was then reactivated in vacuum at the desired temperature. The Cs/Al₂O₃ sample was only used in infrared studies in order to compare the quantity of SO₂ adsorbed on this material with respect to the less basic Al₂O₃ and Na/Al₂O₃.

Prior to use, samples were activated by heating under vacuum for about 1 to 3 hours at a specific temperature, during which time the base pressure dropped to less than 10⁻⁴ Torr. For
convenience as before, the various samples will denoted below as \(\text{Al}_2\text{O}_3(\text{C}) \), \(\text{Na/Al}_2\text{O}_3(\text{C}) \) or \(\text{Cs/Al}_2\text{O}_3(\text{C}) \) where ‘C’ is the activation temperature in degrees Celsius, i.e. \(\text{Na/Al}_2\text{O}_3(450) \) is a sample of sodium on alumina which has been activated in vacuum at 450 °C.

Infrared studies were carried out using Nicolet MX1 FTIR, Bomem DA3-02 or Bomem Michelson MB FTIR spectrometers at a resolution of 4 cm\(^{-1}\). Raman spectra were recorded using a Jobin-Yvon HG2 instrument (8 cm\(^{-1}\) resolution) and sample irradiation was achieved using an argon ion laser (488 nm) with laser power ranging from 50 to 500 mW.

For TPD studies, about 5 kPa of SO\(_2\) (about 37.5 Torr) were contacted with the activated sample at room temperature (22 ± 1 °C) and after 20 minutes the sample was evacuated at room temperature for 1 hour. It was then heated (5 °C/min) under a helium flow (20 cm\(^3\)/min) and the desorbed gases were analyzed quantitatively and qualitatively by gas chromatography. Gravimetric measurements were done using a McBain thermobalance.

All of the gravimetric and TPD experiments were performed by A. B. Mohammed Sadd in the laboratory of J. C. Lavallely, Caen, France.

3. RESULTS

(I). Gravimetry:

A series of gravimetric measurements were made on \(\text{Al}_2\text{O}_3 \) and \(\text{Na/Al}_2\text{O}_3 \) samples by contacting each sample with 40 Torr of SO\(_2\) at room temperature. The total quantity adsorbed, and the quantities physically or chemically (irreversibly) adsorbed are shown in Table 4.1. The total quantity adsorbed represents both physically and chemically adsorbed species. The amount chemically adsorbed was determined to be that which remained following evacuation for 2 hours at room temperature, the difference being the quantity physically adsorbed.
Table 4.1
Gravimetric measure of the quantity of SO$_2$ adsorbed (molecule/nm2) as a function of the temperature of activation

<table>
<thead>
<tr>
<th></th>
<th>Al$_2$O$_3$(350)</th>
<th>Na/Al$_2$O$_3$(350)</th>
<th>Al$_2$O$_3$(600)</th>
<th>Na/Al$_2$O$_3$(600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$ total</td>
<td>3.1</td>
<td>4.3</td>
<td>3.0</td>
<td>4.4</td>
</tr>
<tr>
<td>SO$_2$ chemisorbed</td>
<td>1.8</td>
<td>2.8</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>SO$_2$ physisorbed</td>
<td>1.3</td>
<td>1.5</td>
<td>1.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

These results show that the quantity adsorbed is greater for the Na/Al$_2$O$_3$ samples but that there is not a large difference for the same catalyst but with different activation temperatures. We also measured the mass change of each sample after the evacuation at room temperature followed by heating at 2 °C/min up to 600 °C and found that the curves were quasi-parallel (Fig 4.1 A) indicating that the quantity of chemisorbed SO$_2$ was always greater on the Na/Al$_2$O$_3$ sample. Further, all SO$_2$ was desorbed from pure Al$_2$O$_3$ after heating to 600 °C whereas about 0.4 molecule/nm2 remained on the Na/Al$_2$O$_3$.

(2). TPD experiments:

Fig 4.1B shows the TPD profiles following adsorption on the 600 °C activated samples. For both Al$_2$O$_3$ and Na/Al$_2$O$_3$ samples there was a relatively sharp desorption near 100-120 °C. Further, there was a tapering off of the desorption curve to high temperature, with a poorly defined peak near 290 °C for Al$_2$O$_3$ and a more distinct peak near 380 °C for Na/Al$_2$O$_3$(600). In agreement with the gravimetric results, all SO$_2$ desorbed from pure Al$_2$O$_3$ by 600 °C, but not from Na/Al$_2$O$_3$.

60
Fig 4. 1 (A) Effect of temperature of the mass of chemisorbed SO$_2$ on Al$_2$O$_3$(600) (a) and Na/Al$_2$O$_3$(600) (b). (B) TPD spectra of SO$_2$ adsorbed on Al$_2$O$_3$(600) (a) and Na/Al$_2$O$_3$(600) (b).
(3). Infrared and Raman experiments of adsorbed SO$_2$:

As discussed in chapter 3, gaseous SO$_2$ has absorption bands at 1361 (strong) and 1151 cm$^{-1}$ (medium) due to the antisymmetric and symmetric SO$_2$ stretching modes respectively [6]. Following the introduction of 20 Torr of SO$_2$ on Al$_2$O$_3$(450), Na/Al$_2$O$_3$(450) and Cs/Al$_2$O$_3$(450), IR bands near these frequencies were observed. After spectral subtraction of the contribution from the gas phase, relatively symmetrical bands at 1335 and 1148 cm$^{-1}$ for Al$_2$O$_3$(450), 1340 and 1150 cm$^{-1}$ for Na/Al$_2$O$_3$(450) or 1330 and 1147 cm$^{-1}$ for Cs/Al$_2$O$_3$(450) (Fig 4.2) were observed. Similar bands were also observed following addition of SO$_2$ to other catalysts which were activated at different temperatures. On Al$_2$O$_3$(350), these two bands (1137 and 1335 cm$^{-1}$) could be removed by evacuation for 5 minutes at room temperature, showing that they arose from physisorbed SO$_2$. [On Al$_2$O$_3$(450) or other high temperature catalysts, there is a very weak band at 1325 cm$^{-1}$ which remains after evacuation.] These two bands, 1147 and 1335 cm$^{-1}$, were most intense in the case of Cs/Al$_2$O$_3$. The relative integrated intensities (band areas) for all three samples are shown in Table 4.2. In agreement with the gravimetric results for Al$_2$O$_3$ or Na/Al$_2$O$_3$, we found that the activation temperature did not greatly influence the band areas if the activation temperature was not too high, but they were greater for the alkali-containing samples.

<table>
<thead>
<tr>
<th>Band (cm$^{-1}$)</th>
<th>Al$_2$O$_3$(450)</th>
<th>Na/Al$_2$O$_3$(450)</th>
<th>Cs/Al$_2$O$_3$(450)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1147 cm$^{-1}$</td>
<td>1.0</td>
<td>2.2</td>
<td>4.7</td>
</tr>
<tr>
<td>1335 cm$^{-1}$</td>
<td>7.6</td>
<td>13.0</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Table 4.2

Relative band areas (arbitrary units) for physically adsorbed SO$_2$

The spectra of the species which were irreversibly adsorbed (chemisorbed) at room temperature following evacuation are shown in Figure 4.3. (These are difference spectra, after background subtraction, Al$_2$O$_3$ being totally adsorbing below about 1000 cm$^{-1}$.) For Al$_2$O$_3$(450),
Fig 4.2 Infrared spectra of physically adsorbed SO$_2$ on Al$_2$O$_3$(450), Na/Al$_2$O$_3$(450) and Cs/Al$_2$O$_3$(450).
Fig 4.3 Infrared spectra of chemisorbed SO₂ on corresponding catalysts (the background of Al₂O₃, Na/Al₂O₃, and Cs/Al₂O₃ have been subtracted).
there was a broad band at 1050 cm$^{-1}$, while for Na/Al$_2$O$_3$(450), there were a broad asymmetric band having a maximum near 1050 cm$^{-1}$ and a shoulder near 1147 cm$^{-1}$. For each sample, there is a weak shoulder near 1200 cm$^{-1}$. For Cs/Al$_2$O$_3$(450), a weak band at 1050 cm$^{-1}$ and a strong band at 1095 cm$^{-1}$ as well as a strong band at 1147 cm$^{-1}$. (Because of its strongly basic nature, there may be some unique Cs-sulfite species, and we will return this point later.) In agreement with the order of basicity, the amount of chemisorbed species is in the order Cs/Al$_2$O$_3$ > Na/Al$_2$O$_3$ > Al$_2$O$_3$.

In Raman spectroscopy, the behaviour of Na/Al$_2$O$_3$ is the same as Al$_2$O$_3$ (Al$_2$O$_3$ was shown in Fig 3.9). We observed the bands near 1150 and 1340 cm$^{-1}$ which were due to physically adsorbed SO$_2$ on Al$_2$O$_3$. These bands disappeared following evacuation at room temperature. But the very weak band near 1050 cm$^{-1}$ for both catalysts (see Fig 3.9) was not removed by evacuation.

In the AlO-H spectral region, the IR of pure alumina after activation at 450 °C showed distinct bands at 3790, 3772, 3727 and 3684 cm$^{-1}$ due to AlO-H vibrations, and for Na/Al$_2$O$_3$(450) there was a sharp band centred near 3738 cm$^{-1}$ and a shoulder at 3680 cm$^{-1}$, whereas for Cs/Al$_2$O$_3$, there was a weak band near 3700 cm$^{-1}$ (Fig 4.4). Following adsorption of SO$_2$, the sharper bands of Al$_2$O$_3$ in the 3800-3600 cm$^{-1}$ spectral region decreased in intensity and were replaced by a very broad absorption extending from about 3600 to 2800 cm$^{-1}$. This effect is shown more clearly by the difference spectra in Figure 4.5 where the negative peaks in the O-H spectra region correspond to the decrease in intensity of the positive peaks in Figure 4.4 as a result of the adsorption of SO$_2$. For any temperature of activation, this broad band (from 3600 to 2600 cm$^{-1}$) was much more intense for Na/Al$_2$O$_3$ and Cs/Al$_2$O$_3$ than for pure Al$_2$O$_3$. However, in all cases there was a broad weak absorption near 2400 cm$^{-1}$ though it was much less intense on pure Al$_2$O$_3$.

(4). Comparison between adsorbed SO$_2$ and CO$_2$:

In a previous study Lavalle et al. [7] and our laboratory (see chapter 3) showed that the
Fig 4.4 Infrared spectra of the hydroxyl groups on Al₂O₃, Na/Al₂O₃ and Cs/Al₂O₃.
Fig 4.5 Difference spectra after the addition of SO$_2$ to Al$_2$O$_3$, Na/Al$_2$O$_3$, and Cs/Al$_2$O$_3$.
preadsorption of SO₂ on Al₂O₃ blocked the subsequent adsorption of CO₂ (SO₂ is a stronger acid than CO₂) indicating that both of the probes SO₂ and CO₂ adsorbed on common sites. In particular, the hydrogencarbonate species formed by adsorption of CO₂ on the OH groups did not form if the alumina had been pretreated by SO₂, suggesting that hydrogensulfite species might be formed by reaction with the same OH sites. Therefore, in order to further characterize the adsorption sites, we have studied the effect of addition of CO₂ on Al₂O₃(450), Na/Al₂O₃(450) and Cs/Al₂O₃(450).

The adsorption of CO₂ on basic oxides gives rise to IR bands in the spectral region between 1200 and 1700 cm⁻¹ due to carbonate or hydrogencarbonate species [8]. On Al₂O₃, CO₂ adsorption mainly gives rise to hydrogencarbonates characterized by bands at 3610 cm⁻¹ (νOH), 1650, 1480 and 1450 cm⁻¹ (νCOO⁻) and 1235 cm⁻¹ (δOH). Such species are also formed on Na/Al₂O₃ (corresponding bands at 3620, 1650, 1435 and 1235 cm⁻¹) with additional carbonate species characterized by bands near 1600, 1345, 1090 and 1060 cm⁻¹. Progressive heating under vacuum in the temperature range from 100 to 350 °C resulted in the preferential removal of the bands due to hydrogencarbonate species. A higher temperature is necessary to eliminate all of the species from Na/Al₂O₃ than from pure Al₂O₃ (350 °C verses 250 °C, respectively) demonstrating the greater basicity of the former catalyst.

The increased basicity of Na/Al₂O₃ was also demonstrated in a sequence of experiments whereby SO₂ was pre-adsorbed at room temperature followed by evacuation of SO₂ at a given temperature, and finally, CO₂ was added at room temperature. We found that it was necessary to evacuate the SO₂ treated Al₂O₃ at 150 °C before the subsequent addition of CO₂ produced a spectrum of hydrogencarbonates. However, using Na/Al₂O₃, evacuation at 250 °C was necessary before carbonates were observed. For Cs/Al₂O₃, evacuation below 150 °C caused no change in the spectrum of the sulfur-containing species and no carbonates formed with the addition of CO₂. Only after evacuation at 200 °C, were some sulfur-containing species lost and a trace of carbonates were formed when CO₂ was re-introduced into the cell. As in the case of Na/Al₂O₃, evacuation at 250 °C caused a large decrease in intensities of the bands due to sulfur-containing species and carbonates could be observed with the addition of CO₂. This again demonstrates that
SO₂ is more tenaciously held on the more basic Na/Al₂O₃, Cs/Al₂O₃ than on pure Al₂O₃.

The significance of these results will be discussed in more detail later in connection with the H₂S/SO₂ reaction on these catalysts.

(5). Reaction between chemisorbed SO₂ and H₂S:

In order to study the reaction between chemisorbed SO₂ and gaseous H₂S, SO₂ was chemisorbed on Al₂O₃(450) (see chapter 3). The addition of H₂S to this sample resulted in the disappearance of the shoulder at 1200 cm⁻¹, a decrease in intensity of the 1050 cm⁻¹ band, and the appearance of a band at 1620 cm⁻¹, the latter being indicative of the formation of water. The addition of H₂S did not result in the appearance of a SH band as was previously observed for adsorption of H₂S alone on Al₂O₃ [9, 10]. Finally, heating caused a further decrease in the intensity of the 1050 cm⁻¹ band. Qualitatively similar results were found for the different Al₂O₃(C) samples.

In a separate experiment, after adsorption of SO₂ followed by H₂S, the gaseous H₂S was evacuated at room temperature, and then CO₂ (P₀ = 2 Torr) was introduced. This resulted in the appearance of the spectrum of hydrogen carbonate species. Recall that under similar conditions, but without introduction of H₂S, CO₂ did not adsorb on Al₂O₃ pretreated with SO₂. Therefore, OH sites capable of interacting with CO₂ must have been created during the SO₂/H₂S reaction. These basic hydroxyls could have been formed either from the reaction of H₂S with the species responsible for the 1050 or 1200 cm⁻¹ bands, or as a result of the formation of water. However, when H₂O along was added to chemisorbed SO₂ on Al₂O₃(450) the 1200 cm⁻¹ band disappeared and there was practically no effect on the band at 1050 cm⁻¹. Therefore, we conclude that the H₂O generated from the SO₂/H₂S reaction was not responsible for the decrease in the intensity of the 1050 cm⁻¹ band, but rather this resulted from a reaction with H₂S. We can make no conclusion regarding the reactivity of the species responsible for the 1200 cm⁻¹ band with H₂S.

The same series of experiments were carried out using SO₂ pretreated Na/Al₂O₃(450) which
has a band 1050 cm\(^{-1}\) and a shoulder 1150 cm\(^{-1}\) as well as very weak band at 1200 cm\(^{-1}\) (Fig 4.6a). The addition of H\(_2\)S caused the preferential disappearance of the 1150 cm\(^{-1}\) band and a decrease in the intensity of the 1050 cm\(^{-1}\) band, but less so than for pure Al\(_2\)O\(_3\). Species at 1200 cm\(^{-1}\) also disappeared. Water was also formed (1620 cm\(^{-1}\), see Fig 4.6b) but less so than for pure Al\(_2\)O\(_3\). After evacuation at room temperature, the addition of CO\(_2\) gave no bands due to carbonates or hydrogen carbonates, confirming that adsorbed SO\(_2\) species are less reactive on Na/Al\(_2\)O\(_3\) than on Al\(_2\)O\(_3\). And furthermore, heating caused much less decrease in the intensity of 1050 cm\(^{-1}\) (Fig. 4.6c-d) than that involving the pure Al\(_2\)O\(_3\) catalyst.

Finally, for Al\(_2\)O\(_3\) and Na/Al\(_2\)O\(_3\), the appearance of a yellowish colour after the introduction of H\(_2\)S suggests formation of sulfur via the modified Claus reaction. Raman spectroscopy confirmed this conclusion. Following addition of H\(_2\)S to preabsorbed SO\(_2\) on either catalyst, intense Raman bands at 151, 220 and 480 cm\(^{-1}\) characteristic of S\(_8\) were observed (Fig 3.9).

(6). Reaction between chemisorbed H\(_2\)S and SO\(_2\):

Details of the adsorption of H\(_2\)S alone on Al\(_2\)O\(_3\) are reported in the previous chapter. In this chapter, we are concerned mainly with the adsorption of SO\(_2\) and its subsequent interaction with H\(_2\)S so we can compare the behaviour of Al\(_2\)O\(_3\) with that of Na/Al\(_2\)O\(_3\). But the salient features to note are, in agreement with other work, that H\(_2\)S physically adsorbs on Al\(^{3+}\) sites and Al-OH sites of alumina to produce IR bands at 2567 and 2540 cm\(^{-1}\), and that it additionally dissociated to give ALOH (3700 cm\(^{-1}\)) and AISH (2580 cm\(^{-1}\)) species, or to give S\(^{2-}\) species (see chapter 3).

On Na/Al\(_2\)O\(_3\) more complex spectra were observed after addition of H\(_2\)S. NaSH species were produced, as shown by IR spectroscopy (2585 cm\(^{-1}\)), as well as H\(_2\)O on Na/Al\(_2\)O\(_3\) (1630 cm\(^{-1}\), HOH deformation mode) and there was evidence for the presence of surface sulfides [11]. Finally, about 50% more H\(_2\)S was adsorbed (either physically or irreversibly) on Na/Al\(_2\)O\(_3\) than on pure Al\(_2\)O\(_3\) [11]. Although more H\(_2\)S was adsorbed by Na/Al\(_2\)O\(_3\) than Al\(_2\)O\(_3\) there was no significant increase in the intensity of the HS band.

After having chemisorbed H\(_2\)S at room temperature on Al\(_2\)O\(_3\)(450), SO\(_2\) was added. This
Fig 4.6 (a) Infrared spectrum of Na/Al₂O₃(450) after addition of excess SO₂, followed by evacuation (background subtracted); (b) After addition of H₂S to (a) (Pₐ = 3 Torr) at room temperature for 30 minutes; (c) After heating (b) at 100 °C under evacuation; (d) After heating (c) at 200 °C under evacuation.
caused the disappearance of the v(SH) band but did not hinder the chemisorption of SO$_2$, giving rise to a broad band near 3550 cm$^{-1}$, and appearance of a band near 1050 cm$^{-1}$. The band resulting from the formation of water was hardly visible. We conclude that there is some interaction, but that the conditions are not favourable for the modified Claus reaction to take place. The same conclusion was reached using Raman spectroscopy. Preabsorbed H$_2$S did not react with SO$_2$ to produce Raman bands characteristic of S$_8$. Conversely, if H$_2$S was re-added after the above addition of SO$_2$, then S$_8$ was again detected. Similar results were observed using Na/Al$_2$O$_3$. Although more H$_2$S was adsorbed on Na/Al$_2$O$_3$, no S$_8$ was found, we suggest that surface Na$_2$S species do not react with SO$_2$.

4. DISCUSSION

(1). Nature of the catalysts:

The IR spectra of our gamma Al$_2$O$_3$ in the OH stretching vibrational region are similar to those reported in the literature [12-15]. However, given that the surface structure of gamma Al$_2$O$_3$ from the surface science point of view is largely unknown [16], it would be inappropriate to attempt a detailed description of the Na/Al$_2$O$_3$ or Cs/Al$_2$O$_3$ surface. Impregnation with alkali results in the removal of most of the fine structure in the OH stretching region (e.g. Fig 4.4). In agreement with other work relative to Na/Al$_2$O$_3$, the disappearance of the high and low wavenumber OH bands at 3790 and 3690 cm$^{-1}$ shows that Al-O-Na groups are formed, and this suggests that the sodium is well dispersed on the surface [3, 17]. However, XPS or zero point of charge (z.p.c.) measurements on similar materials have shown that, at sodium coverage similar to ours, there could also be islands of Na$_2$O or of sodium aluminate [18]. Ivanov et al. also reported that a very small amount of Na$_2$O was on the surface of Na/Al$_2$O$_3$ [19]. In our case, we do not believe that the formation of this species is excessive because the surface area and the pore volume was not significantly changed by the addition of sodium. Further speculation concerning the nature of the surface is unwarranted.

Finally, Fledorow et al. [20] studied the surface properties of the alumina samples which contain 2 to 5 mass percent of NaOH or LiOH by impregnation. The results show the alkali
metal ions can react not only with Brønsted acid sites but also with Lewis acid sites (LAS). The poisoning effect upon LAS will increase with increasing ionic radius of the metal alkali ion. Considering our experiments with Na and Cs, the impregnation will cause the catalysts have the LAS order: Al₂O₃ > Na/Al₂O₃ > Cs/Al₂O₃. And the basicity order should be: Cs/Al₂O₃ > Na/Al₂O₃ > Al₂O₃.

(2). Physisorbed SO₂:

As discussed in chapter 3, the two stretching modes of SO₂ in the gas phase are at 1361 cm⁻¹ (ν₁, antisymmetric SO₂ stretch) and at 1151 cm⁻¹ (ν₂, symmetric SO₂ stretch). The complexation of SO₂ with some acids and bases has been studied [21]. With strong electron pair acceptors (Al or Ga halides), an Al:OSO or Ga:OSO interaction arises and ν₁ and ν₂ shift to near 1450 and 1090 cm⁻¹, respectively. With strong electron pair donors such as pyridine or triethylamine, a N:SO₂ interaction arises and these modes shift to near 1275 and 1125 cm⁻¹, respectively.

In the present study, the IR or Raman bands of physisorbed SO₂ on Al₂O₃ are very close to those of the free molecule, showing that the interaction with the surface is weak. As has been discussed in chapter 3, the interaction with Al₂O₃ is mainly via the AIOH groups and on Al³⁺ sites. We also note (Table 4.1) that there is more physisorbed SO₂ on Al₂O₃(350) than on Al₂O₃(600), the former having a higher OH content.

The gravimetric (Table 4.1) and IR (Table 4.2) studies show that more SO₂ is physisorbed on Na/Al₂O₃ than on Al₂O₃ alone. In a previous study, Waqif et al. showed that the quantity of physisorbed SO₂ increased as the sodium loading was increased in 0.05% increments from 0.0% to 3% [22]. The IR bands were observed at 1335 and 1147 cm⁻¹, very close to those reported for SO₂ complexation with very weak bases such as ethylene, ethanol dioxane and water [21]. Therefore, we assume that adsorption occurs on basic O²⁻ or OH⁻ on Na/Al₂O₃. The peaks due to physical adsorption of SO₂ on Cs/Al₂O₃ had the greatest intensity (Fig 4.2). In the spectrum of Cs/Al₂O₃, there were fewer OH groups than on Al₂O₃ or on Na/Al₂O₃, so the higher adsorption capacity probably comes from basic O²⁻ sites reacting with SO₂. On Al₂O₃, Karge and Dalla Lana
[23] studied the adsorption of SO$_2$ after poisoning the catalyst with different acid or base probes. Because NH$_3$ and pyridine partly hindered observation of the 1334 cm$^{-1}$ band, and BF$_3$, HCl or CH$_3$COOH did not, they concluded that physisorbed species mainly reside on acidic sites. The present results show that physisorption also occurs on basic sites.

For both Al$_2$O$_3$ and Na/Al$_2$O$_3$, the TPD results show that the physisorbed species are desorbed at a relatively low temperature, 100-120 °C.

(3). Chemisorbed SO$_2$:

These species can be attributed to IR bands which remain after evacuation. Both the IR and gravimetric results show that the number of these species is greater for sodium loaded alumina than for Al$_2$O$_3$. (We will discuss Cs/Al$_2$O$_3$ later.) The species with or without Na are characterized by a strong broad band near 1050 cm$^{-1}$, accompanied by a shoulder to higher wavenumber, near 1150 cm$^{-1}$ for Na/Al$_2$O$_3$ and a very weak band near 1200 cm$^{-1}$ for both Al$_2$O$_3$ and Na/Al$_2$O$_3$. The TPD results show that the chemisorbed species desorbed in a wide temperature range, having a maxima from 290 to 350 °C, thus demonstrating their greater thermal stability relative to the physisorbed species.

The main peak near 1050 cm$^{-1}$ on Al$_2$O$_3$(450) has been universally attributed to the formation of a surface sulfite on alumina, probably of structure Al-O-SO$_2$, as discussion in chapter 3 and in many reports [23-26]. The adsorption of SO$_2$ on Na/Al$_2$O$_3$ has only been the subject of a few studies. Zotin and Faro [5] showed that the presence of Na on alumina increased the quantity of SO$_2$ irreversibly adsorbed at 100 °C. It went from 0.49 mmol/g on pure gamma Al$_2$O$_3$ to 0.76 mmol/g on 3.9% Na/Al$_2$O$_3$, which corresponds respectively to 1.5 and 2.6 molecules/nm2. These values are close to those found in the present study (Table 4.1), confirming the greater adsorption capacity of Na/Al$_2$O$_3$ relative to Al$_2$O$_3$. We also found that the species formed were more thermally stable on Na/Al$_2$O$_3$, a result which will be discussed further below in connection with H$_2$S/SO$_2$ reaction. The increased basicity of Na/Al$_2$O$_3$ undoubtedly is responsible for both the increased number of sulfite species and their thermal stability. The 1050 cm$^{-1}$ band observed in
the case of Na/Al₂O₃(450) is assigned to sulfite species on alumina whose basicity is increased by the presence of sodium. It is not possible to show that bulk Na₂SO₃ is formed because its characteristic IR band [6] at 970 cm⁻¹ is below the limit of transmission (about 1000 cm⁻¹) of Al₂O₃. However, the number of chemisorbed species does not depend significantly on the activation temperature of either catalyst (Table 4.1). This is not what one would expect if the interaction was only between SO₂ and O²⁻, the latter species being expected to be more abundant when the activation temperature leading to dehydroxylation is higher. Therefore, we assume that SO₂ can react with equal facility with O²⁻ or with OH⁻ to form sulfite, or even to form a hydrogensulfite species, HSO₃⁻ or HOSO₂⁻, or disulfite, S₂O₅²⁻.

The formation of HOSO₂⁻ could account for the very broad band in the 3500-3300 cm⁻¹ spectral region when SO₂ chemisorbs on Na/Al₂O₃(450) and Cs/Al₂O₃(450). Note that the formation of S₂O₅²⁻ has been observed when introducing SO₂ to a Na/SiO₂ catalyst (see chapter 5). This species is characterized by a band at 657 cm⁻¹. However, solid Na₂S₂O₃ has a strong band [27] in the IR at 1180 cm⁻¹ which might correspond to the weak shoulder near 1150 cm⁻¹ for Na/Al₂O₃.

Finally, in order to compare the effect of basicity, a more strongly basic catalyst Cs/Al₂O₃ was used. Further, some oxysulfur ions exist as cesium salts and not as sodium salts, for example, solid CsHSO₃ is a stable compound while solid NaHSO₃ does not exist [28]. Therefore, more species might be expected from the chemisorption of SO₂ on Cs/Al₂O₃ than on either Al₂O₃ or Na/Al₂O₃. This is confirmed. The band at 1147 cm⁻¹ was much stronger than that barely observed on Al₂O₃ or on Na/Al₂O₃, and, in addition to the 1050 cm⁻¹ band, there was a new strong feature at 1095 cm⁻¹. The overall intensity was considerably greater than that observed for the other catalysts (Fig 4.3). The identity of these species is as yet unknown, but we prepared a sample of CsHSO₃ and, in common with its Raman spectrum, the strongest IR band is near 1118 cm⁻¹, so that one of the 1147 or 1095 cm⁻¹ bands may be partially attributable to this species. The strongest band in the Raman spectrum of Cs₂S₂O₅ is 1050 cm⁻¹. Further speculation is unwarranted.
(4). Reaction between SO_2 and H_2S:

The major purpose of this part of this thesis has been to compare the adsorption of SO_2 on Al_2O_3, and Na/Al_2O_3 and to compare the reactivity of chemisorbed SO_2 with H_2S on these catalysts. For pure Al_2O_3, the decrease in the intensity of the band near 1050 cm$^{-1}$ with the concomitant formation of water when H_2S was added has been reported by others [23, 25, 29] and by our laboratory (see chapter 3). However, we have shown that this species, although present to a greater extent on Na/Al_2O_3 than on Al_2O_3 (gravimetric, IR and Raman results), is less reactive to H_2S on Na/Al_2O_3, an effect which can be attributed to greater basicity of the Na/Al_2O_3 catalyst. That is, the sulfite is more strongly chemisorbed on Na/Al_2O_3 and its reactivity with H_2S is accordingly reduced. The TPD results confirm this trend; higher temperature are required to desorb sulfite from Na/Al_2O_3.

For Al_2O_3 and Na/Al_2O_3 the Raman results have shown that the generation of sulfur required the presence of chemisorbed SO_2 insofar as S_8 was only detected if H_2S was added to preabsorbed SO_2, and not if SO_2 was added to preabsorbed H_2S. Moreover, in the latter instance, sulfur was generated following the re-introduction of H_2S after addition of SO_2. Noting that SO_2, being a stronger acid than H_2S, can displace adsorbed H_2S from some surface sites (the SH band disappears), we conclude that the reaction to produce sulfur at room temperature on both of these catalysts involves the reaction of gaseous H_2S with chemisorbed SO_2.

Further speculation concerning the mechanism of the reaction to generated sulfur is unwarranted in the absence of additional experimental evidence. For example, we have shown that the shoulder near 1150 or 1200 cm$^{-1}$ disappear after contacting chemisorbed SO_2 with either H_2S or H_2O, the latter being a product of the reaction. Quite apart from not knowing the structure of these species, we can conclude nothing via-à-vis their reactivity with H_2S.

5. CONCLUSIONS

At room temperature, sulfur dioxide reversibly adsorbs on Al_2C_3, Na/Al_2O_3 as well as Cs/Al_2O_3, and we have concluded that weak basic sites are also implicated in the physisorption
process. In addition, at least two strongly chemisorbed species are produced. The major species on Al₂O₃ and Na/Al₂O₃ has a strong IR band near 1050 cm⁻¹ and has been attributed to an adsorbed sulfite type species, probably involving an Al₂SO₄ bond. This species is somewhat reactive with gaseous H₂S and leads to the formation of water and sulfur, two products of the modified Claus reaction. More sulfite is formed on Na/Al₂O₃ than on Al₂O₃. However, the sulfite on the more basic Na/Al₂O₃ catalyst is more strongly chemisorbed than on pure Al₂O₃, and it is less reactive with gaseous H₂S.

Sulfur is formed when gaseous H₂S is contacted with chemisorbed SO₂, but not when gaseous SO₂ is contacted with chemisorbed H₂S. The decrease of reactivity after impregnation with a large quantity of sodium and cesium can be attributed to the greater stability of the sulfite species adsorbed on the more basic sites of alkali-containing catalysts [5] than the stability on pure Al₂O₃, these sulfite species being considered as intermediates in the modified Claus reaction [23, 25, 29]. Zotin and Faro [5] proposed that the lower activity of a high sodium loaded alumina catalyst relative to pure alumina was due to either (i) the catalyst being too basic with excessive sodium or (ii) the need to have both acid and base sites, and sodium poisons the acid sites. We conclude that hypothesis (i) is more plausible; a greater basicity is not necessarily a favourable factor for the modified Claus reaction.

References

Chapter 5

SODIUM SILICA CATALYST (Na/SiO₂)

1. INTRODUCTION

It is known that pure silica is inactive for the Claus process but silica impregnated with sodium catalyzes the Claus reaction [1,2]. The purpose of this work is to find out the effect and the function of sodium on the Claus reaction. Another goal is to find possible common features between Na/SiO₂ and Al₂O₃ or Na/Al₂O₃, the last two having been discussed in the previous chapters. The advantage of using Na/SiO₂ in studying the Claus process is that this catalyst has "two windows" of partial transparency between 500 and 1000 cm⁻¹, which is important in identifying SO₂ angle deformation vibrations (500-700 cm⁻¹) and S-S stretching vibrations (400-700 cm⁻¹). This region is opaque for Al₂O₃ and most other oxides used in Claus catalysis. In order to understand the Na/SiO₂ catalyst and prepare for the work to be described in chapter 9 in which surface hydroxyl groups will be studied, we will give here a brief review of the nature of silica.

(1). Silica

Synthetic amorphous silica is an important catalyst and catalyst support, and it is also used in other applications as rubber fillers, and as a stationary phase for chromatography. There are some excellent reviews about silica [3-7]. Natural silica has limited uses because of its low surface area (about 30 m²/g). Three kinds of synthetic silica exist, silica gel, precipitated silica and pyrogenic or aerosil silica. In this work, aerosil type silica has been used.

Precipitated silica and silica gel are prepared in the liquid phase. They are usually produced by the hydrolysis of Na₂SiO₃, SiCl₄ and Si(OC₂H₅)₄ under acid conditions. Aerosil silica, on the other hand, is produced in the gas phase by burning SiCl₄ in a hydrogen-oxygen flame at about
1000 to 1100°C. The ratio of the three components determines the particle size and surface characteristics of these so-called pyrogenic or fumed silicas [8].

For silica gel and precipitated silica, the properties depend on the sizes of the micropores and on the types of hydroxyl groups on the surface and in the pores [9-12]. For aerosil, because it lacks micropores its properties depended mainly on the particle size and on the concentration of the different types of hydroxyl groups on the surface.

The bulk structure of all amorphous silicas consist of SiO₄ units which are covalently linked to each other by oxygen atoms in a continuous network but in a random way [13]. X-ray diffraction studies show clearly that there is no long range order and that the Si-O-Si bond angles may change considerably [14].

It has been found that aerosil has the following infrared bands (cm⁻¹) after activation at 50-150 °C [15-17]: (See Fig 5.1 and Fig 5.2)

<table>
<thead>
<tr>
<th>3747</th>
<th>3720</th>
<th>3650</th>
<th>3520</th>
<th>1850</th>
<th>1630</th>
<th>1100</th>
<th>800 cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H stretches</td>
<td>combination</td>
<td>Si-O-Si stretches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) The 3747 cm⁻¹ band is well established as being due to isolated surface hydroxyl groups which do not interact with neighbouring hydroxyls [15-17].

(b) The 3720 and 3520 cm⁻¹ bands are assigned as the free and H-bonded silanols of a pair or chain of adjacent silanols:

```
  3520 H H H 3720 cm⁻¹
    \ / \ / \ /
   O O O
  | | |
 Si Si Si
```
During thermal dehydroxylation, adjacent hydroxyls may condense to liberate water, a point which will be discussed further later.

(c) The 3650 cm\(^{-1}\) band is relatively weak and broad and is attributed to hydroxyls which are perturbed due to interparticle contact. These hydroxyls are generally inaccessible to most hydrogen sequestering agents which are capable of reacting with other accessible hydroxyls [16, 18].

Any of the above hydroxyl groups may be singly attached to a silicon atom (single OH groups) or be doubly attached to a silicon atom (geminal hydroxyl groups) [6, 15-18]:

(d) The intense bands around 1100 and 800 cm\(^{-1}\) are due to bulk Si-O-Si stretching vibrations (Fig 5.2). X-ray diffraction has shown that Si-O-Si bond angle variation may be as large as 20° from the average angle of 144° [14].

82
Fig 5.1 Infrared spectra of silica in SiO-H stretching region

(A). 50 mg of SiO₂ (no treatment).
(B). after evacuation for 1 hour at 25 °C.
(C). after evacuation for 1 hour at 300 °C.
(D). after evacuation for 1 hour at 450 °C.
Fig 5.2 Silica spectra
SiO$_2$ (Cab-O-Sil) 50 mg, activated at different temperatures under vacuum.
(2). Dehydroxylation of Silica

The infrared spectrum of water which is physically adsorbed on silica has a very a broad peak near 3450 cm\(^{-1}\) (symmetric and antisymmetric OH stretching modes, see Fig 5.1 A) and a band at 1620 cm\(^{-1}\) which is due to the angle deformation mode. The amount of adsorbed water depends on the concentration of surface hydroxyl groups. Physically adsorbed water can be desorbed from typical samples of aerosil type silicas after evacuation for 1 hour (Fig 5.1 B). This has been confirmed by infrared and gravimetric studies [18].

Further evacuation under vacuum in the temperature range from room temperature to about 150 °C does not alter the infrared spectrum of aerosil [18]. However, evacuation at temperatures above 150 °C results in the evolution of water which is generated by the collapse of hydrogen-bonded adjacent silanol groups, as follows: (see also Fig 5.1 C,D)

\[
\begin{align*}
\text{H} & \quad \text{H} & \quad \text{O} \\
/ & \quad \text{/} & \quad / \\
\text{O} & \quad \text{O} & \quad \text{Si Si} & \quad \text{+ H}_2\text{O} \\
\uparrow & \quad \downarrow & \quad \downarrow & \quad \downarrow
\end{align*}
\]

The majority of the H-bonded silanols are removed if the silica is heated for 1 h at 450°C, whereas evacuation up to this temperature has no effect on the initial number of isolated silanols (3747 cm\(^{-1}\) band). However, if there are an odd number of silanol groups, then after collapse of H-bonded pairs there is a residual isolated silanol and this results in an increase in the intensity of the isolated silanol band at 3747 cm\(^{-1}\).

\[
\begin{align*}
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
/ & \quad \text{/} & \quad \text{/} & \quad / \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O} \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
\text{Si} & \quad \text{Si} & \quad \text{Si} & \quad \text{Si Si} & \quad \text{+ H}_2\text{O}
\end{align*}
\]

The elimination of the vicinal silanols at temperatures up to 450 °C creates siloxane bridges.
which can be reversibly rehydroxylated when water is added at room temperature.

\[
\begin{align*}
&\text{O} \\
&\text{\textbackslash \\ \textbackslash} \\
&\text{Si} \quad \text{Si} \\
+ \quad \text{H}_2\text{O} &\rightleftharpoons 2 \text{SiOH}
\end{align*}
\]

On the other hand, heating under vacuum at temperatures above 450 °C, and particularly at 800 °C or higher, causes elimination of the isolated silanols and gives rise to the appearance of two new bands at 908 and 888 cm\(^{-1}\) in the infrared spectrum which are due to highly strained four membered siloxane rings [15, 19, 20].

\[
\begin{align*}
&\text{\textbackslash \textbackslash} \\
&\text{Si} \quad \text{Si} \\
&\text{\textbackslash \textbackslash} \\
&\text{O} \quad \text{O}
\end{align*}
\]

These groups are very reactive and the strained siloxane bond can be broken as a result of the dissociative chemisorption of some volatile metal halogen or metal alkyl type species, for example, the reaction with BF\(_3\) being as follows [21]:

\[
\text{SiOSi} + \text{BF}_3 \rightarrow \text{SiOBF}_2 + \text{SiF}
\]

The site also reacts with NH\(_3\) or alcohols (ROH) to produce SiOH and either SiNH\(_2\) or SiOR [19, 22].

(3). Measurement of the -OH groups

The hydroxyl concentration (OH groups per nm\(^2\)) can be measured by a variety of methods, and a summary of the results for numerous silicas has been given by Zhuravlev [23]. It is apparent that the surface of all silicas of whatever origin, when fully hydroxylated, contain about 4.6 to 5 OH groups/nm\(^2\). The silica used in this work contains about 1.4 OH groups per nm\(^2\) after activation in vacuum at 450 °C [18].

Prior work in our laboratory has been aimed at measuring the number of hydroxyl groups which are accessible to various hydrogen sequestering agents of varying steric dimension, such as, AlMe\(_3\), GaMe\(_3\), BCl\(_3\), TiCl\(_4\), ZnMe\(_2\) and (Me\(_2\)Si\(_2\))NH [16,18]. For example, BCl\(_3\) might react
with H-bonded or single hydroxyls differently, as illustrated below:

\[
\equiv \text{Si - O} \quad \equiv \text{Si - O} \\
\text{H} \quad \text{H} \\
\downarrow \quad \downarrow \\
\quad \Rightarrow \text{B - Cl} + 2 \text{HCl} \uparrow \\
\equiv \text{Si - O} \\
\text{H} \\
\equiv \text{Si - O} \\
\text{H}
\]

\[
\equiv \text{Si - O - H} + \text{BCl}_3 \quad \Rightarrow \equiv \text{Si - OBCl}_2 + \text{HCl} \uparrow
\]

The work to be described in Chapter 9 is concerned with the measurement of the reactivity of antimony pentamethyl, SbMe₅, with the silanol groups on silica.

2. EXPERIMENTAL

The Na/SiO₂ samples were prepared by impregnation of Cab-O-Sil HS-5 (325 m²/g) from the solutions of NaOH or CH₃COONa, the quantities of sodium compounds being chosen so as to give a dried sample which contain 3% sodium by weight. The wet slurries were dried overnight in an oven at about 110 °C and the dried mass was ground in a mortar and stored for further use. Thereafter, different samples were prepared from this stock by calcining at different temperatures. For example, Na/SiO₂(150) and Na/SiO₂(450) samples were calcined in air at 150 or 450 °C for 4 hours. A disc was then prepared and these samples were activated in vacuum for 1 h at 150 or 450 °C respectively. After impregnation and drying at different temperature, the specific surface areas of the catalysts were as follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature</th>
<th>Area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂(pure)</td>
<td>450°C</td>
<td>325 m²/g</td>
</tr>
<tr>
<td>Na/SiO₂</td>
<td>150°C</td>
<td>170 m²/g</td>
</tr>
<tr>
<td>Na/SiO₂</td>
<td>450°C</td>
<td>130 m²/g</td>
</tr>
</tbody>
</table>

The Na/SiO₂ samples from CH₃COONa usually had a higher specific surface area than those from NaOH. For example, the Na/SiO₂(450) from NaOH had a BET surface area 100 m²/g and
that from CH₃COONa was 130 m²/g. For Na/SiO₂(150) sample, NaOH is the only source of Na⁺ because CH₃COONa molecule does not decompose at 150 °C. No infrared differences between two kinds of Na/SiO₂(450) were observed. The IR spectra shown in this chapter were all obtained from the sodium acetate preparation if activation temperature is over 300 °C.

For infrared studies, sample discs containing about 6 to 10 mg/cm² of Na/SiO₂ were pressed in a die at a pressure of about 10⁷ Pa before being mounted in the infrared cell. All of the reactants were obtained from commercial sources and precautions were taken to ensure that no water was present. Infrared spectra were recorded either on a Bomem DA3-02 or Michelson MB-100 FTIR at a resolution of 4 cm⁻¹.

Raman spectra were recorded using a dispersive Jobin-Yvon HG2 double monochromator using a Spectra Physics argon or krypton ion laser. Power level at the sample varied from about 30 mW to 1000 mW. In all cases a 90 degree scattering geometry was employed and the resolution was about 6 cm⁻¹. For studying the Raman spectra of sodium salts, a small quantity of each salt was generally pressed into a small disc which was inserted in a quartz cell for appropriate vacuum treatment. For studying the Na/SiO₂ samples, about 100 mg of catalyst was generally pressed into a 12 mm diameter disc and then mounted in the Raman cell. All of the Raman results were obtained by Carl Tripp in our laboratory [24].

3. RESULTS

(1). Spectra of SiO₂ and Na/SiO₂

The background spectrum of pure silica in the 500 to 4000 cm⁻¹ spectral region after activation in vacuum at 150, 450 and 1000 °C are shown in Figure 5.2, and Figure 5.3 shows that of Na/SiO₂(450) and Na/SiO₂(150). The sharp band at 3747 cm⁻¹ is due to isolated SiOH groups, and the strong totally absorbing broad features centred at 1150 and 800 cm⁻¹ are due to SiOSi modes of silica. In both cases, the SiO-H band shapes were similar for both pure and Na doped SiO₂ but the SiO-H bands intensities were much lower on the Na doped SiO₂, suggesting that SiOH may have been partially replaced by SiONa. Below 1300 cm⁻¹, the only accessible spectral
Fig 5.3 Spectra of Na/SiO$_2$

(A). 50 mg, activated at 150 °C under evacuation for 1 hour.
(B). 50 mg, activated at 450 °C under evacuation for 1 hour.
regions are in the two 'windows' of partial transmission between 1000 and 870 cm\(^{-1}\) and from 750 to 550 cm\(^{-1}\). As will be discussed further, the latter region proved to be the more useful from the diagnostic point of view.

We have verified that none of the reactants, SO\(_2\) and H\(_2\)S alone or in any combination gave rise to new features in this region (1000-500 cm\(^{-1}\)) when absorbed on pure silica activated at any temperature (150 °C to 1000 °C).

The characteristic vibrational frequencies associated with inorganic SO\(_x\) and SH containing species (whether ionic or not) are as follows: SH stretching vibrations, 2500-2600 cm\(^{-1}\); SO\(_x\) stretching vibrations, 950-1250 cm\(^{-1}\); SO\(_x\) angle deformation vibrations, 500-700 cm\(^{-1}\); S-S stretching vibrations, 400-700 cm\(^{-1}\). Therefore, in view of the opacity of SiO\(_2\) from about 1000 cm\(^{-1}\) to 1300 cm\(^{-1}\), the infrared study of adsorbed sulfur species has been mainly restricted to the SH stretching region and to the S-S stretching and SO\(_x\) deformation region below 700 cm\(^{-1}\). We will first discuss the results of various systems, and the basis of most of the spectroscopic assignments will from part of the Discussion.

(2). Adsorption of SO\(_2\)

The infrared spectrum following addition of SO\(_2\) to Na/SiO\(_2\) produced a well defined peak at 657 cm\(^{-1}\) accompanied by a broad absorption near 620 cm\(^{-1}\), shown in Figure 5.4. (This feature can be seen more clearly after subtraction of the silica background (Fig 5.4 B-A) and the remaining IR spectra will be presented in this format.) Evacuation decreased the intensity of the 657 cm\(^{-1}\) band revealing more clearly a band at 635 cm\(^{-1}\) (Fig 5.5 C). Addition of water provoked an increase in the intensity of the 635 cm\(^{-1}\) band whereas that at 657 cm\(^{-1}\) decreased and finally disappeared (Fig 5.5 D-F). If this sample was subsequently heated under vacuum, the 635 cm\(^{-1}\) band only significantly started to decrease in intensity after heating at 300 °C, but it was still distinctly present after heating at 500 °C. Re-addition of SO\(_2\) caused the reappearance of the 657 cm\(^{-1}\) band without a significant decrease in the intensity at 635 cm\(^{-1}\). Finally, following adsorption of S\(^{18}\)O\(_2\), the 657 cm\(^{-1}\) band shifted to 640 cm\(^{-1}\), and following addition of
Fig 5.4 The spectra of Na/SiO₂ in two "window" regions

(A). Na/SiO₂ after activated at 450 °C.
(B). add 4.32 Torr SO₂.
(B-A). difference spectrum.
Fig 5.5 Adsorption of SO₂ on Na/SiO₂ (difference spectra)

(A). add 4.32 Torr of SO₂ on 30 mg SiO₂.
(B). after 30 minutes.
(C). evacuate for 5 minutes.
(D). add 1.71 Torr of H₂O.
(E). after 30 minutes.
(F). evacuate for 5 minutes.
H$_2^{18}$O, the 635 cm$^{-1}$ band appeared at 611 cm$^{-1}$.

Saad [25] used Na/SiC instead of Na/SiO$_2$ in the same experiments. With the Na/SiC sample the region below 600 cm$^{-1}$ is more accessible and it showed that, under the same experimental conditions, the 657 cm$^{-1}$ band was accompanied by low wavenumber bands at 559 and 446 cm$^{-1}$. Introduction of successive doses of water confirmed that these bands diminished in intensity as new bands appeared at 635 and 495 cm$^{-1}$. The re-addition of SO$_2$ caused the bands at 657, 559 and 446 cm$^{-1}$ to reappear without a significant decrease in intensity at 635 cm$^{-1}$.

No new IR bands were observed above 1300 cm$^{-1}$ and, in the 1000 to 850 cm$^{-1}$ spectral region, only a broad continuous absorption was observed after spectral subtraction during adsorption of SO$_2$ (Fig 5.4 B-A). This broad band persisted during the experiments to be described later and no diagnostic information could be obtained. For this reason, only the spectra which were observed in the 750-550 cm$^{-1}$ spectral region will be shown hereafter.

(3). Adsorption of H$_2$S

The addition of H$_2$S to Na/SiO$_2$ caused the appearance of very weak IR band at 2590 cm$^{-1}$ which is due to a SH stretching mode, these modes being very weak in the infrared; there was also a very broad band near 3000 cm$^{-1}$ and sharp band at 1620 cm$^{-1}$ which indicates that water was formed as a reaction product (Fig 5.6). In the Raman spectrum, addition of H$_2$S to solid NaOH give rise to a very strong band at 2540 cm$^{-1}$. Solid NaSH has a strong Raman band at this wavenumber [24].

(4). Adsorption of SO$_2$ followed by H$_2$S

Figure 5.7A shows a characteristic spectrum of SO$_2$ chemisorbed on Na/SiO$_2$. It has a relatively distinct peak at 657 cm$^{-1}$ with a weaker broad band to lower wavenumber. Following the addition of H$_2$S the spectrum was transformed into that shown in Fig 5.7C. It has two peaks at 645 and 680 cm$^{-1}$, and there was a band due to the deformation mode of water at 1620 cm$^{-1}$.

93
Fig 5.6 The adsorption of H₂S on Na/SiO₂(450)
Fig 5.7 Adsorption of \(\text{SO}_2 \), and then \(\text{H}_2\text{S} \)

(A). add 5 Torr of \(\text{SO}_2 \) and after 30'.
(C). add 0.60 Torr of \(\text{H}_2\text{S} \).
(E). after 15'.
(G). after 120'.
(I). add 3.00 Torr of \(\text{H}_2\text{O} \).

(B). after evacuation for 5'.
(D). after 5'.
(F). after 30'.
(H). after evacuation for 30'.
(not shown). With longer contact time the 645 cm\(^{-1}\) peak gradually disappeared and those at 680 and 1620 cm\(^{-1}\) intensified (see Fig 5.7 C-G). The 680 cm\(^{-1}\) band did not change following evacuation, or following the addition of an excess of water vapour at room temperature, evacuation of the water, and subsequent heating to 150 °C. However, heating at near 200 °C caused the 680 cm\(^{-1}\) band to diminish in intensity and it disappeared if heated in the range from 200 °C to 300 °C and a yellowish deposit appeared on the cell walls. The band positions did not change when D\(_2\)S was substituted for H\(_2\)S, whereas with S\(^{18}\)O\(_2\), the bands previously at 680 and 645 cm\(^{-1}\) after addition of H\(_2\)S now appeared near 668 and 630 cm\(^{-1}\) (not shown). Experiments with Na/SiC in Lavalle's laboratory [25] showed that the band noted above at 680 cm\(^{-1}\) was accompanied by a broad lower wavenumber band at 555 cm\(^{-1}\).

We have also investigated the sensitivity of the 635 cm\(^{-1}\) band to H\(_2\)S. As discussed previously, the addition of H\(_2\)O to Na/SiO\(_2\) pretreated with SO\(_2\) gave a strong band at 635 cm\(^{-1}\). Addition of H\(_2\)S at room temperature to this sample caused a slight decrease in the intensity at 635 cm\(^{-1}\) and the appearance of a weak band at 680 cm\(^{-1}\) (Fig 5.8). Notably, no band appeared at 645 cm\(^{-1}\). With time, the 635 cm\(^{-1}\) band decreased in intensity and that at 680 cm\(^{-1}\) intensified and it was accompanied by a shoulder at 700 cm\(^{-1}\). Heating to 50 °C did not modify the spectrum, but upon heating at 100 °C the 680 cm\(^{-1}\) band doubled in intensity and that at 635 cm\(^{-1}\) decreased. Finally, heating to about 200 °C eliminated the 635 cm\(^{-1}\) band and approximately halved the intensity of that at 680 cm\(^{-1}\).

(5). \textit{Adsorption of H}_2\text{S followed by SO}_2

If SO\(_2\) was added to chemisorbed H\(_2\)S on Na/SiO\(_2\) the 680 cm\(^{-1}\) and 645 cm\(^{-1}\) bands appeared immediately although the latter was asymmetric to low wavenumber (Fig 5.9C). After 5 minutes a band emerged at 623 cm\(^{-1}\) followed by another near 605 cm\(^{-1}\). With longer contact time, the band initially at 645 cm\(^{-1}\) shifted to about 650 cm\(^{-1}\) and decreased in intensity whereas those at 605 and 680 cm\(^{-1}\) intensified and that at 623 cm\(^{-1}\) weakened (Fig 5.9 A-H).

Evacuation at room temperature after 2 hours reaction did not alter the spectrum, except that
Fig 5.8 Adsorption of SO₂, then H₂O and H₂S

(A) After addition of 4.32 Torr of SO₂ and evacuation for 5', 1.71 Torr of H₂O is added to 20 mg of Na/SiO₂(450); (B) after addition of 3.75 Torr of H₂S; (C) 5' later; (D) 15' later; (E) 1 hour later.
Fig 5.9 Adsorption of H₂S, then SO₂

(A). add 3.40 Torr of H₂S for 30'.
(C). add 0.42 Torr of SO₂.
(E). after 15'.
(G). after 60'.
(I). heat at 50 °C for 0.5 hour.
(K). heat at 150 °C for 0.5 hour.

(B). evacuate for 5'.
(D). after 5'.
(F). after 30'.
(H). evacuate for 5'.
(J). heat at 100 °C for 0.5 hour.
(L). heat at 250 °C for 0.5 hour.
water was removed (Fig 5.9H). Heating under vacuum at between 100 °C and 150 °C caused the disappearance of the bands at 650, 623 and 605 cm\(^{-1}\) (Fig 5.9 I-L) and the appearance of a new band at 635 cm\(^{-1}\). Heating at about 300 °C resulted in the decrease in the intensity of the 680 cm\(^{-1}\) band as noted previously, whereas that at 635 cm\(^{-1}\) was present, albeit weaker, and it could be observed even after heating at 400 °C.

(6). Adsorption of a mixture of H\(_2\)S/ISO\(_2\)

We have studied the adsorption of a 2:1 mixture of H\(_2\)S/SO\(_2\) on Na/SiO\(_2\), and the spectra are shown in Fig 5.10. Bands at 645 and 680 cm\(^{-1}\) appeared immediately upon introduction of the mixture and there was little additional change over the following hour except for a general intensity increase and the appearance of a very weak band near 605 cm\(^{-1}\) and a shoulder at 623 cm\(^{-1}\). Although not shown, the IR band due to water appeared initially and continued to grow in intensity over the following hour. The spectrum did not change after heating at 50 °C (Fig 5.10 G), but following heating at 150 °C the 645 cm\(^{-1}\) band disappeared, that at 680 cm\(^{-1}\) approximately doubled in intensity, and there was a yellow deposit of sulphur on the cell walls.

4. DISCUSSION

(1). Spectra of known oxysulfur species

In order to interpret the spectra observed from the adsorption of various sulphur species on the Na/SiO\(_2\) catalysts, we have relied on the group frequency concept as it applies to sodium salts of known structure. It is important to realize that the solution chemistry of the oxyanions of sulfur is exceedingly complex and is still not well understood. For example, SO\(_2\) when dissolved in water gives a complex mixture, sometime called sulfurous acid (H\(_2\)SO\(_3\)) for convenience, but this species has never been isolated and identified. Rather, the solution is reported to contain hydrated SO\(_2\) and the ions H\(_3\)O\(^+\), \(\text{S}_2\text{O}_5^{2-}\) and HSO\(_3\) with very small amounts of SO\(_3^{2-}\) and HOSO\(_2\)\(^-\). Additionally, when H\(_2\)S and SO\(_2\) are both dissolved in water, a complex solution, called "Wackenroder's liquid" (see chapter 3) [26, 27] is produced which stoichiometrically leads to the formation of elemental sulphur via a reaction
Fig 5.10 Adsorption of a mixture of $\text{H}_2\text{S}/\text{SO}_2$

(A). add 1.20 Torr of mixture gas.
(C). after 15'.
(E). after 60'.
(G). heat at 50 °C for 1 hr.
(I). heat at 150 °C for 1 hr.
(B). after 5'.
(D). after 30'.
(F). evacuate for 5'.
(H). heat at 100 °C for 1 hr.
\[\text{SO}_2 + 2\text{H}_2\text{S} \iff ^3\text{S}_\text{s} + 2\text{H}_2\text{O} \]

The stoichiometry is deceptively simple and a large number of $\text{S}_n\text{O}_y^{z-}$ species (hydrated or not) have been detected or postulated, such as the thiosulphate ion, $\text{S}_2\text{O}_3^{2-}$; the tetrathionate ion, $\text{S}_4\text{O}_6^{2-}$, and various polythionates, $\text{S}_n\text{O}_6^{2-}$.

The sulfur in SO_2 is in the +4 oxidation state and on a catalyst surface, one might additionally have any of the +4 state ions SO_3^{2-}, HSO_3^- or $\text{S}_2\text{O}_3^{2-}$. However, during reduction to elemental sulfur in the Claus process, species having an oxidation state between +4 and 0 might appear as intermediates or as stable species. Some possible ionic species, with the average oxidation state in parentheses, follow (this list is not comprehensive): $\text{S}_2\text{O}_6^{2-}$ (+3.3), $\text{S}_2\text{O}_5^{2-}$ (+3), $\text{S}_4\text{O}_6^{2-}$ (+2.5) and $\text{S}_2\text{O}_3^{2-}$ (+2). Further, these species might be partially or completely protonated during the Claus reaction, e.g. HS_2O_6^- or $\text{H}_2\text{S}_2\text{O}_6$. Therefore, we have examined the infrared and Raman spectra of a number of $\text{S}_4\text{O}_7^{2-}$ salts. The characteristic SO stretching modes occur in the approximate range from 1250 to 950 cm$^{-1}$ and the OSO angle deformation modes lie near 700 to 450 cm$^{-1}$.

In solution the dithionite ion ($\text{S}_2\text{O}_4^{2-}$) has a tendency to disproportionate to $\text{S}_2\text{O}_3^{2-}$ and HSO_3^- under acidic conditions, or to S^{2-} and SO_3^{2-} under alkaline conditions. The solid is reported to decompose in the absence of air if moisture is present to yield $\text{S}_2\text{O}_3^{2-}$ and HSO_3^-, and upon heating the solid generates $\text{S}_2\text{O}_3^{2-}$, SO_3^{2-} and SO_2. This complexity perhaps explains why there are conflicting descriptions of the IR spectrum of sodium dithionite in the literature. Takahashi et al. [28] reported a pair of weak bands in the IR spectrum of solid Na$_2$S$_2$O$_4$ at 645 and 654 cm$^{-1}$ (spectrum not shown) and at 640 and 652 cm$^{-1}$ in the Raman spectrum. Sato et al. [29] showed an IR spectrum of Na$_2$S$_2$O$_4$ in KBr discs which had very weak bands at about 645 and 660 cm$^{-1}$. However, the Sadler spectrum of this compound [30] in KBr shows no bands in this region but instead there was a very weak band near 620 cm$^{-1}$. We obtained a pure sample of Na$_2$S$_2$O$_4$ and confirmed that the spectrum was identical to the Sadler spectrum.

Since any of the above ions, (and others not mentioned) might be expected in the Claus reaction when sodium is present, we have examined the infrared and Raman spectra of a number
of salts (in solution and as solids) and, because most of the spectra are already in the literature, we will not reproduce those spectra.

(a). Na$_2$SO$_4$

Na$_2$SO$_4$ salt with KBr is shown in Fig 5.11A. The main feature is three bands: 1131, 640 and 617 cm$^{-1}$.

(b). Na$_2$SO$_3$

The spectrum of Na$_2$SO$_3$ is in Fig 5.11B. We have the bands in interesting region at 1215(w), 1138(w), 1050(shoulder), 974, 632, 495 cm$^{-1}$. According the reference [31], the Raman frequencies for Na$_2$SO$_3$ are 990, 950, 639 and 499 cm$^{-1}$.

(c). Na$_2$S$_2$O$_3$

We have the spectra of both Na$_2$S$_2$O$_3$.5H$_2$O and Na$_2$S$_2$O$_3$ (Fig 5.11 C and D). The Na$_2$S$_2$O$_3$ is from the dehydration of Na$_2$S$_2$O$_3$.5H$_2$O. Heating at 100 °C under evacuation should result Na$_2$S$_2$O$_3$.5H$_2$O to loss five water molecules to form Na$_2$S$_2$O$_3$. The main features are at 1130, 1008, 684, 675, 555 cm$^{-1}$.

(d). Na$_2$S$_2$O$_5$

The infrared spectrum of Na$_2$S$_2$O$_5$ is shown in Fig 5.11E. There are bands at 1185, 1072, 1055, 982, 662, 654, and 567 cm$^{-1}$. The bands in the Raman spectrum, according to B. Meyer [32], are shown in Table 5.1.

(e). "NaHSO$_3"$

According to Meyer et al. [31,32], NaHSO$_3$ and KHSO$_3$ do not exist except in solution. The commercial solid 'NaHSO$_3$' is in reality Na$_2$S$_2$O$_5$ and we have verified this by Raman spectroscopy. However, RbHSO$_3$, CsHSO$_3$ and tetra-alkyl ammonium salts of HSO$_3^-$ (HSO$_3^-$ or SO$_3^-$H$^+$) do exit, and bands in Raman spectrum of these solids are reported near 625 and 510 cm$^{-1}$. The data of Raman spectra of RbHSO$_3$ and CsHSO$_3$ are in Table 5.1.
Fig 5.11 IR spectra of some oxysulfur species (2.5% in KBr)
(A). Na₂SO₄.
(B). Na₂SO₃.
(C). Na₂S₂O₃·5H₂O.
(D). Na₂S₂O₅.
(E). Na₂S₂O₇.
(f). Other sulfur-oxygen compounds

A figure (Fig 5.12) of the characteristic Raman bands for oxygen-containing inorganosulfur compounds is from reference [29].

Table 5.2 gives a list of reported IR bands in the 1200 to 500 cm\(^{-1}\) spectral regions.

![Tentative assignments for Raman bands of oxysulfur compounds]

Fig 5.12 Raman bands of oxysulfur compounds (from ref. 29)
<table>
<thead>
<tr>
<th>$K_2S_2O_3$ (aqueous)</th>
<th>$Na_2S_2O_3$</th>
<th>$K_2S_2O_3$</th>
<th>$Rb_2S_2O_3$</th>
<th>$Cs_2S_2O_3$</th>
<th>$RbHSO_3$</th>
<th>$CsHSO_3$</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>168 s.p</td>
<td>224 m</td>
<td>217 m</td>
<td>220 m</td>
<td>224 m</td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>200 s.p</td>
<td>268 vs</td>
<td>244 vs</td>
<td>242 vs</td>
<td>240 vs</td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>235 vs.p</td>
<td>318 m</td>
<td>318 m</td>
<td>315 m</td>
<td>315 m</td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>309 s.p</td>
<td>432 s</td>
<td>434 s</td>
<td>432 s</td>
<td>435 s</td>
<td>508 m</td>
<td>509 m</td>
<td>E(HSO$_3^-$)</td>
</tr>
<tr>
<td>395 w.dp</td>
<td>513 w</td>
<td>525 w</td>
<td>519 w</td>
<td>519 w</td>
<td>515 w</td>
<td>519 w</td>
<td>A''</td>
</tr>
<tr>
<td>424 s.p</td>
<td>555 w</td>
<td>557 w</td>
<td>543 w</td>
<td>545 w</td>
<td></td>
<td></td>
<td>A''</td>
</tr>
<tr>
<td>467 m.p</td>
<td>568 w</td>
<td>558vw</td>
<td>558 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510 w.dp</td>
<td>650 vw</td>
<td>643 vw</td>
<td>643 vw</td>
<td>643 vw</td>
<td>621 w</td>
<td>626 w</td>
<td>A$_1$(HSO$_3^-$)</td>
</tr>
<tr>
<td>555 s.p</td>
<td>659 vw</td>
<td>658 s</td>
<td>654 s</td>
<td>654 s</td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>659 s.p</td>
<td>977 w</td>
<td>970 w</td>
<td>950 w</td>
<td>952 w</td>
<td>1037 s</td>
<td>1038 s</td>
<td>A$_1$(HSO$_3^-$)</td>
</tr>
<tr>
<td>709 m</td>
<td>1064 s</td>
<td>1060 s</td>
<td>1047 s</td>
<td>1047 s</td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>966 w.p</td>
<td>1085 s</td>
<td>1088 w</td>
<td>1071 w</td>
<td></td>
<td></td>
<td></td>
<td>A'</td>
</tr>
<tr>
<td>1021 s.p</td>
<td>1128 m.d.p</td>
<td>1171 w</td>
<td>1178 m</td>
<td>1154 w</td>
<td>1132 s</td>
<td>1122 s</td>
<td>E(HSO$_3^-$)</td>
</tr>
<tr>
<td>1052 s.p</td>
<td>1170 w.d.p</td>
<td>1171 w</td>
<td>1178 m</td>
<td>1155 w</td>
<td></td>
<td></td>
<td>A''</td>
</tr>
<tr>
<td>1085 s.p</td>
<td>1196 w.d.p</td>
<td>1203 w</td>
<td>1188 w</td>
<td>1181 w</td>
<td>1188 w</td>
<td>1193 w</td>
<td>A''</td>
</tr>
<tr>
<td>1128 m.d.p</td>
<td>1242 vw</td>
<td>1250 vw</td>
<td>1260 w</td>
<td>2573 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cationic vibrations omitted: vs = very strong; m = medium; w = weak; vw = very weak; p = polarize; dp = depolarized.
<table>
<thead>
<tr>
<th>Na_2SO_4</th>
<th>Na_2SO_4</th>
<th>"NaHSO_4"</th>
<th>NaHSO_4^*</th>
<th>$\text{Na}_2\text{S}_2\text{O}_3$</th>
<th>$\text{Na}_2\text{S}_2\text{O}_4$</th>
<th>$\text{Na}_2\text{S}_2\text{O}_4^*$</th>
<th>$\text{Na}_2\text{S}_2\text{O}_4^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>495 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514 m</td>
<td></td>
<td></td>
<td>515 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>526 m</td>
<td></td>
<td></td>
<td>530 m</td>
<td>525 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>537 m</td>
<td>538 w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>555 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>567 m</td>
<td></td>
<td></td>
<td>567 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>580 w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>617 s</td>
<td>620 w</td>
<td>620</td>
<td>625 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>632 m</td>
<td>635 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640 m</td>
<td>654 vw</td>
<td>654 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>662 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>675 vs</td>
<td>684 vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>720 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>974 vs</td>
<td>977 s</td>
<td>970 w</td>
<td></td>
<td>982 vs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>990 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>1008 vs</td>
<td></td>
<td></td>
<td>1010 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1028 m</td>
<td>1030 vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1040 vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1059 s</td>
<td>1050 s</td>
<td>1055 w</td>
<td></td>
<td></td>
<td>1068 s</td>
<td></td>
</tr>
<tr>
<td>1104 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1072 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1084 w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1138 vw</td>
<td>1131 vs</td>
<td></td>
<td>1130 vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1149 vs</td>
<td></td>
<td>1150 vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1173 w</td>
<td>1170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1182 vw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data from Saad's thesis [25]; ** Data are come from Saddler IR spectra; * From ref. [29].
All others are from our lab.
(2). Adsorption of SO_2

Chemisorbed SO_2 initially gave rise to bands at 657 and 560 cm$^{-1}$ which are also present in the spectrum of $Na_2S_2O_3$. Hence we attribute these to the presence of disulfite species. There was also a broad feature from about 635 to 615 cm$^{-1}$. A band at 635 cm$^{-1}$ intensified at the expense of the 657 cm$^{-1}$ band following evacuation, or following the addition of water. Eventually the 657 cm$^{-1}$ species was eliminated, but re-addition of SO_2 re-generated the 657 cm$^{-1}$ band. Because the 657 and 635 cm$^{-1}$ bands showed a significant ^{18}O shift, these modes cannot be attributed to S-S vibrations.

The generation of disulfite probably arises from an interaction of SO_2 with sodium oxide, rather than surface NaOH. The spectrum in the OH region shows that a weak isolated SiOH peak is present after activation, but there is no evidence of a broad lower wavenumber trail which might be ascribed to H-bonded SiOH or NaOH (the O-H frequency of NaOH as recorded in our laboratory is at 3636 cm$^{-1}$). Without specifying a structure for this oxide of sodium (or whether sodium is bonded to silica or not), we assume that a reaction of the following type occurs:

$$O^{2-} + 2SO_2 \rightarrow S_2O_3^{2-}$$

That the addition of H$_2$O which generates a new species could be accounted for by postulating the following equilibrium:

$$S_2O_3^{2-} + H_2O \rightleftharpoons 2HSO_3^- \quad \text{or} \quad 2HOSO_3^-$$

There are several problems with this proposal. The species responsible for the 635 cm$^{-1}$ band is extremely thermally stable, resisting evacuation even up to 500 °C. One would expect evacuation to reverse this process. Further, although hydrogensulfite species are present in solution, sodium hydrogensulfite does not exist in the solid state (attempts to concentrate solutions of NaHSO$_3$ always reverse the above equilibrium leading solid Na$_2$S$_2$O$_3$). Therefore, the high thermal stability of the species responsible for the 635 cm$^{-1}$ band is inconsistent with an attribution to a hydrogensulfite type species, based on the known chemistry of sodium salts of this ion. Finally, although no spectroscopic data exists for the HOSO$_3^-$ ion, HSO$_3^-$ salts of Cs and Rb exist. We prepared solid CsHSO$_3$ and recorded its IR spectrum; in this spectral region there was a sharp band at 623 cm$^{-1}$, close to that reported at 626 cm$^{-1}$ in its Raman spectrum.
We found that prolonged evacuation also generates the 635 cm$^{-1}$ species, and that re-addition of gaseous SO$_2$ generates disulfite. This could be accounted for by the following equilibrium:

$$\text{S}_2\text{O}_5^{2-} \rightleftharpoons \text{SO}_3^{2-} + \text{SO}_2 \ (g)$$

In this case, we would attribute the 635 cm$^{-1}$ band to the sulfite ion. There is some spectroscopic support for this assignment. Solid Na$_2$SO$_3$ has a sharp band at 630 cm$^{-1}$, accompanied by an equally intense sharp band at 495 cm$^{-1}$. We cannot observe the latter spectral region using Na/SiO$_2$, but using Na/SiC a sharp band at 495 cm$^{-1}$ appeared in concert with the generation of the 635 cm$^{-1}$ band.

If the above hypothesis is correct, we have to account for the formation of sulfite species when water is added to disulfite. It is to be noted that when SO$_2$ is added to Na/SiO$_2$ there is, in addition to the 657 cm$^{-1}$ band, a broad contour from about 635 to 615 cm$^{-1}$. We carried out the following supplementary experiment. Several drops of an aqueous solution of Na$_2$S$_2$O$_5$ were placed on an ZnSe window and allowed to dry in air. The spectrum recorded after visible traces of water had evaporated is shown in Fig 5.13A. There is a broad band with a maximum near 615 cm$^{-1}$, asymmetric to higher wavenumber, having shoulders near 630 and 660 cm$^{-1}$. Evacuation for 2 hours at room temperature resulted in no change. However, following heating in the closed cell at 100 °C, new IR bands appeared at 631 and 657 cm$^{-1}$, and at 200 °C the 631 cm$^{-1}$ feature dominated the spectrum (Fig 5.13 C). Using the more transparent CdTe as a support material, but now heating under vacuum at 100 °C, two distinct bands at 631 and 494 cm$^{-1}$ were the major spectral features (Fig 5.13 D). Although not shown, the spectra in the 900 to 1300 cm$^{-1}$ spectral regions for the samples corresponding to those shown in Figure 5.13D and C, were identical to that of sodium sulfite.

Bearing in mind that the chemistry of aqueous solutions of sodium disulfite is essentially that of aqueous sodium sulfite, or of SO$_2$ dissolved in water (H$_2$O $+$ SO$_2$ \rightarrow 'H$_2$SO$_3$'), we postulate the following process when water is added to adsorbed SO$_2$ on Na/SiO$_2$:

$$\text{S}_2\text{O}_5^{2-} + \text{H}_2\text{O} \ (\text{excess}) \rightleftharpoons \text{SO}_3^{2-} + {'H}_2\text{SO}_3$$

In this case, evacuation eliminated the broad continuum near 620 cm$^{-1}$ as a result of the desorption of 'H$_2$SO$_3$' as water and SO$_2$, leaving the very stable sulfite species on the surface.
Fig 5. 13 Na$_2$S$_2$O$_5$ sample on ZnSe and CdTe windows

A. IR spectrum observed after placing a few drops of an aqueous solution of Na$_2$S$_2$O$_5$ on a ZnSe window and allowing the excess water evaporated until a moist residue remained or following evacuation of this mixture for 1 hour (no spectral differences noted between the two cases).

B. Heating A in closed cell at 100 °C for 2 h.

C. Heating B in closed cell at 200 °C for 1 h.

D. As for A, but deposit on a CdTe window, and evacuated for 1 h at 100 °C under vacuum.
(3). Adsorption of H$_2$S:

The addition of H$_2$S to Na/SiO$_2$ gave rise to a very weak IR band at 2590 cm$^{-1}$, a broad band at 3100 cm$^{-1}$ and sharper band at 1630 cm$^{-1}$. In the Raman spectrum, addition of H$_2$S to solid NaOH gave rise to a very strong band at 2540 cm$^{-1}$ whereas no such band observed for the adsorption on solid Na$_2$O.

The above results might suggest that H$_2$S dissociates on Na/SiO$_2$(450) or on solid NaOH to produce water via the reactions:

$$\text{NaOH} + \text{H}_2\text{S} \rightarrow \text{NaSH} + \text{H}_2\text{O} \quad \text{(a)}$$

$$2 \text{NaOH} + \text{H}_2\text{S} \rightarrow \text{Na}_2\text{S} + 2\text{H}_2\text{O} \quad \text{(b)}$$

However, Fiuji and Takeda [33] found that the adsorption of H$_2$S on solid NaOH produced mainly NaSH and there were less than 5% sodium sulfide or polysulfide. Therefore, although reaction (b) might occur, there is probably a further reaction of the Na$_2$S as follows:

$$\text{Na}_2\text{S} + \text{H}_2\text{S} \rightarrow 2\text{NaSH}$$

(4). The Claus reaction

The chemistry taking place during the interaction between H$_2$S and SO$_2$ on Na/SiO$_2$ is evidently very complex. Given that the chemistry of Wackenroder's liquid is not well understood we can only speculate about the identity of the some intermediates which manifest themselves by the appearance of infrared bands in the 500 - 700 cm$^{-1}$ spectral region.

For convenience, we will discuss the results in terms of the three major reaction sequences studied, designated as follows:

(a) Adsorption of SO$_2$ followed by the addition of H$_2$S;
(b) Adsorption of H$_2$S followed by the addition of SO$_2$;
(c) Adsorption of a 2:1 mixture of H$_2$S and SO$_2$.

The observed spectral changes can conveniently be illustrated by Reaction Scheme A (RSA) in which the wavenumbers of the observed IR bands are indicated for each of the spectral
sequences above. RSA is intended to summarize the IR spectroscopic observations without any bias as to the identity of the species which are responsible for each observed band. For example, looking at the top horizontal line, this indicates that adsorption of SO₂ gives rise to an IR band at 657 cm⁻¹ and when water is subsequently added, a new IR band at 635 cm⁻¹ is generated. And so on for the remaining spectral changes for the various reaction sequences.

The Reaction Scheme B (RSB) shown below RSA contains the identity of some of the species which have been discussed previously; for example, the 657 cm⁻¹ band can probably be assigned to S₂O₅²⁻, and the 635 cm⁻¹ band to SO₃²⁻. The identity of the other species will be discussed below.

We have shown that a strong band appears near 680 cm⁻¹ during all of the above reaction conditions. Because this band has a significant ¹⁸O shift to lower wavenumber, this species is probably due to an SO₂ deformation mode, and not to a S-S stretching mode. This band is at the same wavenumber and has the same band shape as that which we have observed for sodium thiosulphate and 1-3% by mass sodium thiosulfate supported on silica. Further, using SiC as a support, we observed the parallel growth of a band at 555 cm⁻¹ which is also observed in the IR spectrum of Na₂S₂O₃. Heating the sample to about 300 °C after generation of the 680 cm⁻¹ band at room temperature caused its disappearance and the appearance of a yellowish deposit of sulphur on the cell walls. When supported Na₂S₂O₃ was heated to 300 °C, the 680 cm⁻¹ band disappeared and we observed the appearance the same yellowish deposit.

In a Raman investigation [24] of the SO₂/H₂S reaction on Na/SiO₂ at low laser power (50 mW), no bands were observed. However, if the laser power was increased to 200 mW, strong peaks at 152, 220 and 480 cm⁻¹ characteristic of S₄ were observed. In a previous Raman study [24], it was reported that solid sodium thiosulfate decomposed to give sulfur with an argon ion laser operating at 700 mW whereas no decomposition occurred using a HeNe laser at 90 mW.

From the ensemble of results above, we conclude that 680 cm⁻¹ band can be assigned to the thiosulphate ion, S₂O₅²⁻. This is so indicated in RSB.
Reaction Scheme A (RSA)

\[
\begin{align*}
\text{SO}_2 \quad \text{(a)} & \quad \rightarrow \quad 657 \quad + \quad \text{H}_2\text{O} \quad \rightarrow \quad 635 \\
& \quad \downarrow \quad +\text{H}_2\text{S} \quad \downarrow \quad +\text{H}_2\text{S} \\
& \quad 645 \quad \stackrel{\text{c}}{\longrightarrow} \quad 680 \quad +\text{SO}_2 \quad \stackrel{-\text{SO}_2}{\longrightarrow} \quad 657 \quad \text{(partial conversion)} \\
& \quad \downarrow \quad +\text{SO}_2 \\
\text{H}_2\text{S} \quad \text{(b)} & \quad \rightarrow \quad \text{HS}^\cdot\text{S}^2 \quad \rightarrow \quad \text{H}_2\text{S}/\text{SO}_2 \quad \text{(mixture)}
\end{align*}
\]

Reaction Scheme B (RSB)

\[
\begin{align*}
\text{SO}_2 \quad \text{(a)} & \quad \rightarrow \quad \text{S}_2\text{O}_5^2 \quad + \quad \text{H}_2\text{O} \quad \rightarrow \quad \text{SO}_3^2 \quad \\
& \quad \downarrow \quad +\text{H}_2\text{S} \quad \downarrow \quad +\text{H}_2\text{S} \\
& \quad \text{S}_\text{m}\text{O}_6^2 \quad \stackrel{\text{c}}{\longrightarrow} \quad \text{S}_2\text{O}_5^2 \quad +\text{SO}_2 \quad \stackrel{-\text{SO}_2}{\longrightarrow} \quad \text{S}_2\text{O}_5^2 \quad + \quad \text{S} \quad \text{(partial conversion)} \\
& \quad +\text{SO}_2 \\
\text{H}_2\text{S} \quad \text{(b)} & \quad \rightarrow \quad \text{HS}^\cdot\text{S}^2 \quad \rightarrow \quad \text{H}_2\text{S}/\text{SO}_2 \quad \text{(mixture)}
\end{align*}
\]

(a) Addition of \(\text{SO}_2 \) followed by evacuation of excess.
(b) Addition of \(\text{H}_2\text{S} \) followed by evacuation of excess.
(c) Addition of a 2:1 mixture of \(\text{H}_2\text{S}/\text{SO}_2 \).
Although thiosulfate is a stable product of the reaction at room temperature, a new IR band at about 645 cm\(^{-1}\) appears to be due to a precursor species under reaction conditions (a) and (b) insofar as this band appeared immediately then decreased in intensity as that at 680 cm\(^{-1}\) intensified. Under either of reaction conditions (a) or (b), there was a quasi isosbestic point between the 645 and 680 cm\(^{-1}\) bands, showing a correspondence between the disappearance of the species responsible for the 645 cm\(^{-1}\) band and the formation of thiosulfate (see Fig 5.14). However, during reaction condition (c) with a 2/1 stoichiometric mixture of H\(_2\)S/SO\(_2\), the ratio of the intensities of the 645/680 cm\(^{-1}\) bands remained almost constant as water was generated. Further, during the course of reaction, the originally white sample disc slowly turned greyish, suggestive of the formation of a small particle size solid deposit. This could be due to small particles of S\(_8\), and only by heating to about 130 °C do these sublime to the cell walls and appear as a yellowish deposit.

The conversion of the 645 cm\(^{-1}\) band to the 680 cm\(^{-1}\) band during reaction sequence (a) could be stopped (the spectral changes ceased) if H\(_2\)S was evacuated. If SO\(_2\) was subsequently readded, there was about a 20% decrease in the intensity of the 680 cm\(^{-1}\) band and the band at 657 cm\(^{-1}\) reappeared. Evacuation of SO\(_2\) resulted in a reversal of this process, the 657 cm\(^{-1}\) band disappeared and the 680 cm\(^{-1}\) band reappeared. This process is indicated by the double arrows to the right of the position of the 680 cm\(^{-1}\) band in RSA where the words 'partial conversion' have been included. In RSB we suggest that this is due to the possible equilibrium:

\[
S_2O_3^{2-} + SO_2 \rightleftharpoons S_2O_5^{2-} + S
\]

We will now discuss the origin of the 645 cm\(^{-1}\) band. A mechanistic interpretation of the results would be difficult without the knowledge that the IR bands at 645 and 680 cm\(^{-1}\) were also observed when the mixture was adsorbed on Na/SiO\(_2\). Without these results, one would be tempted to attribute the 645 cm\(^{-1}\) band to a relatively unstable intermediate in sequences (a) or (b) which ultimately results in the formation of thiosulfate, 680 cm\(^{-1}\). However, during the adsorption of the mixture (sequence (c)), both the 680 and 645 cm\(^{-1}\) bands grow in intensity in unison, and both bands remained unchanged in intensity or shape if the mixture was evacuated.
Fig 5. 14 Continuous reaction of H₂S and SO₂ on Na/SiO₂

(A). addition of SO₂, evacuation, addition of H₂S;
(B). addition of H₂S, evacuation, addition of SO₂.
Therefore, the species responsible for the 645 cm\(^{-1}\) band cannot be an unstable intermediate. Indeed, even during the generation of the 680 cm\(^{-1}\) band in the static reaction between preadsorbed H\(_2\)S with gaseous SO\(_2\) or in the reverse sequence, if the gaseous reactant was evacuated before the 645 cm\(^{-1}\) intensity had been reduced to zero, the reaction stopped and the 645 cm\(^{-1}\) remained with constant intensity at the point where the evacuation commenced.

Therefore, we are faced with the difficult situation of trying to devise a mechanism for a reaction which ultimately leads to the generation of thiosulfate when H\(_2\)S/SO\(_2\) interact over Na/SiO\(_2\). Water is also formed. The pattern of spectral changes in the presence of the mixture is reminiscent of the reaction of the mixture over Al\(_2\)O\(_3\); in the Na/SiO\(_2\) case, IR bands due to water and the bands at 680 and 645 cm\(^{-1}\) increased in intensity in unison over a period of an hour.

The adsorption of the H\(_2\)S/SO\(_2\) mixture provides a medium where Wackenroder's solution can develop. We can assume, as was postulated in the case of Al\(_2\)O\(_3\) and ZrO\(_2\) (and other oxides), that a polythionate, S\(_m\)O\(_6\)^{2-}, is formed, and we note that all of these have an IR band near 640 cm\(^{-1}\) [34]. The 645 cm\(^{-1}\) band is, therefore, assigned to S\(_m\)O\(_6\)^{2-}. The 645 cm\(^{-1}\) band shows evidence of shoulders to high and low wavenumber, and indeed, its peak maximum varied considerably according to the conditions of reaction, usually being in the range from 644 to 650 cm\(^{-1}\). Some polythionates also have IR bands between 620 to 600 cm\(^{-1}\), and during some of the reactions under static conditions there have been weak IR bands in this wavenumber region in addition to the major peaks at 645 and 680 cm\(^{-1}\) (e.g reaction sequence (b)).

Unlike the situation of Al\(_2\)O\(_3\) and ZrO\(_2\) where few experiments have been carried out, several thousand spectra have been recorded in this study of the Na/SiO\(_2\) system. The system Cs/SiO\(_2\) has also been examined in the hope that HSO\(_3\)\(^-\) species might be identified given that solid CsHSO\(_3\) is a stable species having a known IR spectrum. No new insights were found.

It is evident that there is a mixture of oxysulfur species, protons and water on Na/SiO\(_2\) and that the partially or totally protonated oxyanions of sulfur might be stabilized on the surface. The
IR spectra of most of these species are largely unknown, an exception being the Raman spectrum of the HS\(_2\)O\(_3\) ion which has recently been published [35]. In our case, we just do not know how the IR spectrum of a polythionate ion \(S_mO_6^{2-}\) ion would be affected if it were to be partially or totally protonated.

The 645 cm\(^{-1}\) band did not appear under one set reaction conditions. If water was added to preadsorbed SO\(_2\), this eliminated the 657 band and caused the appearance of a relatively strong and sharp band at 635 cm\(^{-1}\) which was attributed to sulfite. Subsequent addition of H\(_2\)S resulted in a slow appearance of the band at 680 cm\(^{-1}\), and a slow decrease in the intensity of the 635 cm\(^{-1}\) band; the band at 645 cm\(^{-1}\) was not detected. Having shown that the sulfite species is very thermally stable, we also conclude that it is not particularly reactive with H\(_2\)S, a conclusion which was also reached regarding the reactivity of sulfite species on sodium impregnated Al\(_2\)O\(_3\) catalysts. We have to assume that the generation of S\(_2\)O\(_3^{2-}\) from SO\(_3^{2-}\) does not involve a polythionate in this instance. Having previously suggested that 'H\(_2\)SO\(_3\)' is a product of this step, in the presence of H\(_2\)S this would yield elemental sulfur, and it is well established that thiosulfate can be formed directly from the reaction SO\(_3^{2-}\) + S \(\rightarrow\) S\(_2\)O\(_3^{2-}\).

In summary, all works on sulfur chemistry comment on the incredible complexity of the H\(_2\)S/SO\(_2\)/H\(_2\)O system [26, 27, 36]. Therefore, it is highly probable that other reactive intermediates exist on Na/SiO\(_2\) but they are present in such low concentration that they escape detection. It is not worth speculating further.
REFERENCES

117

THE CLAUS REACTION ON ZEOLITES

1. INTRODUCTION

Alumina or bauxite are employed as the main catalysts in the Claus process on an industrial scale. Zeolites, however, are also interesting catalysts in view of their special properties such as Brønsted acidity, very high surface area, pore structure, variable Si/Al ratio and ion exchange modification. An investigation of the behaviour of zeolites on the Claus reaction might help us to expand our knowledge about this process and the role of the surface acidity and basicity.

There have been other studies of zeolites as Claus catalysts, but most investigations were focused on X-type zeolites. According to E. M. Flanigen [1], A and X zeolites belong to low Si/Al ratio zeolite (about 1 to 1.5); Y and L type zeolites are of intermediate Si/Al ratio (about 2 to 5); ZSM-5 is classed as a high Si/Al ratio zeolite (about 10 to 100). As discussed in previous chapters, pure silica is not a Claus catalyst but alumina shows a relatively high catalytic activity. An intermediate Si/Al ratio zeolite, zeolite-Y, should be a good candidate for studying the catalytic behaviour of zeolites and the role of the framework AlO₄ tetrahedra. And by comparing the zeolite NaY with zeolite HY which is a strong acidic catalyst, we may acquire some knowledge about the effect of surface acidity on Claus process whereas surface basic sites had been shown to be the Claus active centres on Al₂O₃, Na/Al₂O₃ and Na/SiO₂ as discussed before.

Deo et al. [2] studied the adsorption and reaction of H₂S and SO₂ on γ-alumina, and on the zeolites NaY (Na⁺ exchanged Y-type zeolite), HY (H⁺ ion exchanged Y-type zeolite), and DY (D exchanged Y-type zeolite). The results lead them to believe that the functional step was primarily to bring the reactants together in a suitable orientation on zeolite. They found that the
acidity did not seem to be the primary factor responsible for their catalytic activity in the Claus reaction. In Deo's report, no infrared information below 1300 cm$^{-1}$ was given because the transparency was cut off by the background adsorption of zeolite, being similar to that of silica.

Karge and Rasko studied H$_2$S adsorption on zeolites with systematically varied Si/Al ratios [3]. When Si/Al ratios were less than 2.5 or at least equal to 2.5, H$_2$S dissociated to give OH bands at 3650 and 3580 cm$^{-1}$ and an HS band at 2560 cm$^{-1}$. Na$^+$ ions at the walls of supercage were the centres for dissociation of H$_2$S. NaY (Si/Al > 2.5) adsorbed H$_2$S but no dissociation occurred. The Si/Al ratio also had an affect on the oxidation of H$_2$S. In this paper, no Claus reaction was reported.

Ziolek observed the Claus reaction in a dynamic system [4]. X-type zeolites were found to adsorb more H$_2$S or SO$_2$ than the Y-type and this adsorption capacity increased also for ion exchanged zeolites, in the order K > Na > Li.

The adsorption of H$_2$S on some transition metal exchanged zeolite was studied by Howard and Kadir [5]. They concluded that ν_3 of H$_2$S and ν(SH$^-$) bands were very close to each other at about 2560 cm$^{-1}$.

Karge et al. [6,7] studied Claus reaction on zeolites by using IR and UV-visible spectroscopic techniques. During the adsorption process, acidic OH groups developed on MX (M = Li, Na, K, Rb, Cs), but they were not found on MY zeolites. SO$_2$ was adsorbed on NaX with traces of water to give HSO$_3^-$, 1240 cm$^{-1}$, and H$_2$S was adsorbed to give HS$^-$ species. And no matter which one was added first for SO$_2$ and H$_2$S, the results were the same, postulated to be:

\[
\begin{align*}
2\text{HSO}_3^- + \text{H}_2\text{S} & \rightarrow \text{S}_2\text{O}_4^{2-} + \text{S} + 2\text{H}_2\text{O} \\
2\text{HSO}_3^- + 2\text{HS}^- & \rightarrow \text{S}_2\text{O}_4^{2-} + \text{S}^2^- + 2\text{H}_2\text{O} \\
\text{S}^2^- + 2\text{SO}_2 & \rightarrow \text{S}_2\text{O}_3^{2-} + 2\text{S}.
\end{align*}
\]

S$_2$O$_4^{2-}$, S$_2^2-$ and S$_2$O$_3^{2-}$ were the suggested intermediates in the Claus reaction. The starting point was the formation of HSO$_3^-$. The band at 2560 cm$^{-1}$ was assigned as HS$^-$ species; the band at 1240 cm$^{-1}$ as HSO$_3^-$ species; the band at 1315 cm$^{-1}$ as physically adsorbed SO$_2$ species. No S$_2$O$_4^{2-}$
IR bands was observed but 320 nm in UV/vis was assigned as the species of $S_2O_4^{2-}$ [6,7].

The adsorption of H_2S on ZSM-5 zeolite was reported [8]. The interesting aspect of this report was that the deconvolution of the 2620-2500 cm$^{-1}$ spectral region showed three bands: asymmetric ν_3, symmetric ν_1, and stretching vibration of H_2S on extra lattice material ($\nu_3 > \nu_1 > \nu_{extra}$). H_2S was observed as molecular species on Na- and H-ZSM-5 zeolite surfaces.

Only Karge et al. [6] observed the band at 1240 cm$^{-1}$, no other paper has dealt with the region below 1200 cm$^{-1}$. In our experiments with thinner sample disc and with a FTIR spectrometer, we have shown clear bands about 1200 cm$^{-1}$, which is an important region for identifying S-O species, as was discussed in chapter 3.

2. EXPERIMENTAL

The zeolite-Y used was in the sodium form and will be designated as NaY. Hydrogen-Y (HY) was prepared in the usual fashion by heating zeolite NH$_4$Y which was obtained by 2N NH$_4^+$ aqueous ion exchange of NaY. The activation temperature for NaY was 450 °C under evacuation. To activate HY, two steps have to be followed. First, one heats the disc of NH$_4$Y in the IR cell under vacuum at 120 °C for half hour, and then, the temperature is raised to 450 °C under evacuation for another half hour. The infrared spectrum showed no NH$_3$ species remain on the HY sample after this activation.

3. RESULTS AND DISCUSSION

(1). Adsorption of SO$_2$

After activation at 450 °C for 1 hour, NaY has only a weak 3695 cm$^{-1}$ band in OH stretching vibrational region while HY still has intense 3650, 3550 cm$^{-1}$ bands and two very weak bands at 3745 and 3695 cm$^{-1}$ (see Fig 6.1). The band at 3695 cm$^{-1}$ is due to traces of water which are attached to the Na$^+$ ions, and the band at 3745 cm$^{-1}$ is assigned to a Si-OH species (equal to 3747 cm$^{-1}$ band on pure silica). The characteristic band at 3650 cm$^{-1}$ on HY is reasonably ascribed to
framework hydroxyl groups in the supercages because it is accessible to most reagents. Another band at 3550 cm\(^{-1}\) is less certain and some conclude it is an OH in the sodalite-prism complex [9]. Because this weak band at 3695 cm\(^{-1}\) is found on HY, we conclude that the exchange of H\(^+\) with Na\(^+\) ions was not complete (usually 80% to 90% exchanged), which is normal.

The adsorption of SO\(_2\) on HY causes a large change in OH stretching region. A new band at 3420 cm\(^{-1}\) appears but there is also a "negative peak" at about 3650 cm\(^{-1}\) (Fig 6.2, these being difference spectra, after subtraction of the background spectrum prior to adsorption, as will be done in succeeding figures). The band at 3550 cm\(^{-1}\) diminished a little only with larger doses of SO\(_2\). After evacuation, almost all bands due to adsorption of SO\(_2\) are removed and the OH returns to that which was observed prior to adsorption. Following adsorption of SO\(_2\) on NaY, the weak band at 3695 cm\(^{-1}\) decreases and a weak band at 3650 cm\(^{-1}\) appears (Fig 6.3). After evacuation, there is a weak band around 3650 cm\(^{-1}\).

For both zeolites, there is a weak peak near 2500 cm\(^{-1}\) which is a combination mode of the symmetric and antisymmetric SO\(_2\) stretching modes. Only the band due to the antisymmetric stretching mode of physically adsorbed SO\(_2\) near 1330 cm\(^{-1}\) can be observed for adsorbed SO\(_2\) because of the limited transmission below 1200 cm\(^{-1}\). The band at 1330 cm\(^{-1}\) was considerably more intense for the same quantity of SO\(_2\) than that which was observed for SO\(_2\) adsorption on Al\(_2\)O\(_3\) or on Na/Al\(_2\)O\(_3\). After evacuation for 5 min, the 1330 cm\(^{-1}\) band was almost eliminated for HY, whereas this band was only reduced by about 50% for NaY. As will be discussed later, this is probably related to the greater acidity of HY relative to that of NaY, the adsorption of acidic SO\(_2\) being weaker on the acidic zeolite. The enhanced adsorption capacity of the zeolite to that of Al\(_2\)O\(_3\) is almost certainly related to the micropore structure of the zeolite which has a greater capacity for physically adsorbing a given molecule.

In 5(H\(_2\)O) region, a weak peak at 1640 cm\(^{-1}\) appeared after adding SO\(_2\) to NaY but this band was not found for SO\(_2\) adsorption on HY.

For HY, the change in the spectrum of the OH groups, especially that at 3650 cm\(^{-1}\), is quite
Fig 6.1 IR spectra of HY (top curve) and NaY (lower curve)

30 mg of zeolite under evacuation at 450 °C and cool to room temperature.
Fig 6.2 Adsorption of SO$_2$ on HY

(A). add 0.05 Torr of SO$_2$ (50 µmol/g).
(B). add 0.15 Torr of SO$_2$ (150 µmol/g).
(C). add 0.61 Torr of SO$_2$ (610 µmol/g).
(D). add 1.34 Torr of SO$_2$ (1340 µmol/g).
(E). add 2.40 Torr of SO$_2$ (2400 µmol/g).
(F). add 4.40 Torr of SO$_2$ (4400 µmol/g).
(G). evacuate for 5 minutes.
Fig 6.3 Adsorption of SO$_2$ on NaY

(A). add 0.12 Torr of SO$_2$ (120 μmol/g).
(B). add 0.46 Torr of SO$_2$ (460 μmol/g).
(C). add 0.96 Torr of SO$_2$ (960 μmol/g).
(D). add 1.96 Torr of SO$_2$ (1960 μmol/g).
(E). evacuate for 5'.
evident, but after evacuation almost all OH bands return to their initial intensity. We suggest that SO$_2$ is adsorbed on OH sites through a weak hydrogen bond. Because the band at 1330 cm$^{-1}$ is very symmetric on HY, it seems that there is only one kind of physisorption site. And this physically adsorbed SO$_2$ is in the supercages (responsible for the perturbation of the acidic OH groups absorbing at 3650 cm$^{-1}$ in the supercages of HY [9]). After evacuation, there is a weak 1330 cm$^{-1}$ band which may come from the fact that H$^+$-Na$^+$ exchange was not complete on HY. A HY zeolite calcined at 480 °C has only Brønsted acidity [11, 12] and it is said that the Brønsted acidic sites are associated with the framework aluminum [13]. Our HY sample was activated at 450 °C and it should contain mainly Brønsted acidic sites. There is no evidence that [HSO$_3^-$] was produced. Once the H$^+$ ions are replaced by Na$^+$ ions, the adsorption capacity for SO$_2$ is somewhat increased and the strength is much greater. This might suggest that SO$_2$ is adsorbed on the framework (AlO$_x$)Na$^+$ sites. A possible species might be described as: (AlO$_x$)Na$^+$:SO$_2$. The van der Waals interaction force, which comes from the polarization of the interacting species, plays a major role in this interaction. The Coulombic interaction of the Na$^+$ ions plays a secondary role. This might explain why the adsorption capacity of ion exchanged zeolites is in the order K > Na > Li [4].

Smaller ions like Li$^+$ and Mg$^{2+}$ (diameters less than 1 Å), are mostly located inside the small cages of the zeolite, while larger ions, like K$^+$ and Rb$^+$ (diameters larger than 1 Å), are located in the supercages [14]. Na$^+$ ions, having a diameter of about 0.98 Å, are found in either the small cages or in the supercages. Considering the molecular size of SO$_2$ and the spectral change at 3650 cm$^{-1}$, we believe that the adsorption site is in the supercages, especially on the so-called S$_4$ sites in the supercages [15, 16]. Then, the existence of Na$^+$ ions on the zeolite helps to stabilize adsorbed species.

To conclude, although a considerable quantity of SO$_2$ can adsorb on HY, because of the presence of Brønsted acid sites, only weak physisorption occurs in the supercages. The stronger adsorption of SO$_2$ on NaY occurs mainly on Na$^+$ sites associated with framework AlO$_4^-$ The quantity of SO$_2$ which is physically adsorbed on either zeolite is much greater than that which physically adsorbed on Al$_2$O$_3$ or on Na/Al$_2$O$_3$ for the same quantity of gas added, and this is

126
mainly a reflection of the high internal surface area (pore structure) of the zeolites.

(2). Adsorption of H_2S

The spectrum of H_2S adsorbed on HY in the 3800 - 3000 cm$^{-1}$ spectral region is much like that of SO_2 adsorbed on HY except that the hydrogen bonded OH band is shifted to lower wavenumber, around 3115 cm$^{-1}$ (Fig 6.4). This suggests that H-bonded H_2S is more strongly held than is H-bonded SO_2. The band at 3650 cm$^{-1}$ decreased and the band at 3550 cm$^{-1}$ was almost unchanged. After evacuation, almost all OH bands recovered their initial intensity but the band at 3650 cm$^{-1}$ decreased slightly (Fig 6.4 A-F). The spectral change in the OH spectral region for H_2S on NaY was much smaller (Fig 6.5). With increasing dosage of H_2S the background between 3700-2800 cm$^{-1}$ increased in intensity. After evacuation, there was clearly a growth in the band at 3695 cm$^{-1}$ and there was a broad band near 3430 cm$^{-1}$ (Fig 6.5H).

In 2600-2300 cm$^{-1}$ v(HS) spectral region, there is a broad band centred at 2575 cm$^{-1}$ on both zeolites (Fig 6.4, and Fig 6.5). For NaY, a careful analysis of the overlapping bands shows at least four different bands at 2605, 2575, 2565, and 2530 cm$^{-1}$. On HY, they are at 2605, 2585, 2575 and 2530 cm$^{-1}$ (see Fig 6.6). All of these bands are eliminated following evacuation, showing that they are from physisorption.

For both zeolites, there is a band at 1640 cm$^{-1}$, but the intensity on NaY is much higher than on HY (Fig 6.4 and Fig 6.5). In the 1400-1100 cm$^{-1}$ region, there is not much change and the background decreases in intensity below 1300 cm$^{-1}$.

After evacuation of H_2S on NaY, a band at about 1640 cm$^{-1}$ remained. Dry NaY has a strong adsorbability for water. We can not exclude the possibility of water desorbing from the cell walls to the zeolite but a blank test showed that such an intense band did not appear. Therefore, we suggest that the water found in this experiment is mainly from the reaction of H_2S with the surface. This possibly comes from the reaction of H_2S with some active O^2- sites. The reaction is:

$$\text{O}^2- + \text{H}_2\text{S} \rightarrow \text{S}^2- + \text{H}_2\text{O}.$$

127
Fig 6.4 Adsorption of H₂S on HY
(A). add 60 μmol/g of H₂S.
(B). add 150 μmol/g of H₂S.
(C). add 600 μmol/g of H₂S.
(D). add 1400 μmol/g of H₂S.
(E). add 4000 μmol/g of H₂S.
(F). after evacuation for 5 min.
Fig 6.5 Adsorption of H$_2$S on NaY

(A). add 0.04 Torr of H$_2$S (40 μmol/g).
(B). add 0.10 Torr of H$_2$S (100 μmol/g).
(C). add 0.50 Torr of H$_2$S (500 μmol/g).
(D). add 1.10 Torr of H$_2$S (1100 μmol/g).
(E). add 2.00 Torr of H$_2$S (2000 μmol/g).
(F). add 3.50 Torr of H$_2$S (3500 μmol/g).
(G). add 10.00 Torr of H$_2$S (10000 μmol/g).
(H). evacuate for 10 minutes.
Fig 6.6 The adsorption of H_2S on NaY and HY (about 4.00 Torr H_2S on 20 mg zeolites)
The IR bands between 2620 and 2300 cm\(^{-1}\) arise from physically adsorbed H\(_2\)S. They are more distinct with lower H\(_2\)S pressures and they can be resolved into four bands. On HY the situation is almost the same except the bands are much weaker, the intensities being about a quarter of that for NaY with the same pressure of H\(_2\)S. There is not much difference in the positions of these bands on NaY or HY. Because the bands at 2605 and 2530 cm\(^{-1}\) are observed at very low H\(_2\)S pressures, and the intensities do not change much with higher H\(_2\)S pressure, we assign them to the SH stretching vibrations of H\(_2\)S adsorbed on the Lewis acidic sites. It has been speculated that two kinds of Lewis acidic sites on zeolites; one is a pentagonal site and other is a tetrahedral site, both being associated with the nonframework aluminum residues [13]. These two bands (2605 and 2530 cm\(^{-1}\)) cannot be the asymmetric and symmetric SH vibrational modes of the same species because they are too far apart. The intensities of the bands at 2575 and 2565 cm\(^{-1}\) (or 2585, 2575 cm\(^{-1}\) on HY) increase in parallel with the increase of the pressure of H\(_2\)S, and they are assigned to the asymmetric and symmetric SH modes of H\(_2\)S molecules interacting with the OH groups or O\(^{2-}\) sites in the supercages. The serious perturbation of the band at 3650 cm\(^{-1}\) by the adsorption of H\(_2\)S on HY, and the formation of the new band at 3110 cm\(^{-1}\) support the notion that adsorption mainly occurs in the supercages. Further speculation is unwarranted.

In conclusion, H\(_2\)S physically adsorbs on zeolite-Y through OH or O\(^{2-}\) sites and on the Lewis acidic sites, but the dissociative chemisorption is found only on NaY. Water may be produced by replacement of O\(^{2-}\) by S\(^{2-}\) on the some active O\(^{2-}\) sites.

(3). Adsorption of SO\(_2\), evacuation, then addition of H\(_2\)S:

After evacuation of preadsorbed SO\(_2\) on NaY, gaseous H\(_2\)S was added. Several OH bands appear at 3695, 3615, 3524, 3428, and 3245 cm\(^{-1}\) (Fig 6.7) and they intensify with increasing time of contact. The weak SO\(_2\) combination band at about 2500 cm\(^{-1}\) disappears immediately and a \(\nu\)(HS) band at about 2570 cm\(^{-1}\) appears. A \(\delta\)(H\(_2\)O) band at 1640 cm\(^{-1}\) appears initially, and its intensity increases with the time. The band at 1330 cm\(^{-1}\) disappears. And new bands at 1252 and 1211 cm\(^{-1}\) grow initially, and then decrease with longer contact time. These new bands have not been reported before.
Fig 6.7 Adsorption of \text{SO}_2\text{, then }\text{H}_2\text{S on NaY}
(A). add \text{SO}_2 \text{ 2000 } \text{μmol/g, then evacuate for 5 min.}
(B). add \text{H}_2\text{S 1350 } \text{μmol/g.}
(C). after 60 min.
(D). evacuate for 5 min.
Because the band due to physically adsorbed SO$_2$ at 1330 cm$^{-1}$ decreases in intensity quickly upon addition of H$_2$S and a strong S(H$_2$O) band at 1640 cm$^{-1}$ grows, the Claus reaction between adsorbed SO$_2$ and gaseous H$_2$S probably occurs.

$$2\text{H}_2\text{S(g)} + \text{SO}_2 \rightarrow \frac{3}{4}\text{S}_8 + 2\text{H}_2\text{O}.$$

The water produced might react with excess H$_2$S to form many different hydrogen bonded OH groups (3600-3200 cm$^{-1}$). At this stage, the zeolite changed from white to light grey. After evacuation of the gas phase at room temperature, the sample was heated at about 170°C and sulfur was deposited on the cell walls.

The addition of H$_2$S to preadsorbed SO$_2$ on HY did not generate any new spectral features and the spectrum of adsorbed SO$_2$ on HY did not change. Therefore, the bands observed at 1250 and 1210 cm$^{-1}$ are unique to NaY. They probably belong to the same species as was found for the adsorption of a H$_2$S/SO$_2$ mixture on Al$_2$O$_3$ (1235/1190 cm$^{-1}$), ZrO$_2$ (1256/1155 cm$^{-1}$), MgO (1245/1203 cm$^{-1}$). This point will be discussed further later in connection with the adsorption of the H$_2$S/SO$_2$ mixture. However, it is evident that the acidity of the surface has a strong influence on the Claus reaction. The HY zeolite is very acidic, and there was no evidence for this reaction.

(4). Adsorption of H$_2$S, evacuation, then addition of SO$_2$:

We have seen that HY is a poor adsorbent of H$_2$S and after evacuation of preadsorbed H$_2$S all IR bands disappeared. The subsequent addition of SO$_2$ yielded a spectrum which was similar to that of SO$_2$ on HY. No additional reaction could be detected and, as was found in the previous section, HY is inactive for the Claus reaction.

In the same experiment using NaY, a new band at 3650 cm$^{-1}$ formed when SO$_2$ was added but the band at 3695 cm$^{-1}$ did not change much (Fig 6.8). In this case, there was only a weak combination band at about 2500 cm$^{-1}$. The band at 1640 cm$^{-1}$ increased slightly and we conclude
Fig 6.8 Adsorption of H₂S, then SO₂ on NaY

(A). add 10 Torr (10000 μmol/g) of H₂S, then evacuate for 10 minutes (the same spectrum as in Fig 6.5H).
(B). add 0.06 Torr (60 μmol/g) of SO₂.
(C). after 15’.
(D). after 30’.
that only a little water was formed (compared with the situation of preadsorption of SO₂). A band at 1330 cm⁻¹ appeared (physisorbed SO₂) along with bands near 1250 and 1215 cm⁻¹ which were found for addition of H₂S to preadsorbed SO₂ on NaY. Following addition of a ten fold greater dose of SO₂, the intensity of the water band increased by about 10% and the pair of bands at 1250/1215 cm⁻¹ disappeared.

Therefore, the preadsorption of H₂S on NaY does not favour the Claus reaction, as was found for Al₂O₃ and Na/Al₂O₃. However, for NaY the explanation probably lies in the fact that H₂S does not apparently chemisorb on NaY, and that which is physically adsorbed is readily pumped away. The result agrees with the findings reported by Karge and Dalla Lana [18].

(5). Adsorption of a mixture of H₂S and SO₂.

A low dose of the H₂S/SO₂ mixture (H₂S:SO₂ = 2:1) was added to NaY. Fig 6.9A shows that broad OH bands between 3000 to 3700 cm⁻¹ appear. A sharp δ(H₂O) band at 1640 cm⁻¹ indicates that water is formed. Very weak bands at about 2600 cm⁻¹ (H₂S) and 1330 cm⁻¹ (SO₂) are shown, which indicates that little free H₂S and SO₂ exist. These bands disappeared after a few minutes reaction. Two bands at 1254 cm⁻¹ and 1219 cm⁻¹ are observed at the very beginning, and their absorbencies decrease with time. With about 500 μmol/g of the mixture, the 1254/1219 cm⁻¹ bands disappeared after 1 hour of reaction, while both OH bands and δ(H₂O) increased in their intensities. Compared with Al₂O₃ and other metal oxides, under the same conditions, the 1254/1219 cm⁻¹ pair on NaY are less stable and converts faster to other species.

It is to be noted that the water band at 1640 cm⁻¹ is more intense than that which was observed for adsorption of the same quantity of the mixture on Al₂O₃, and ZrO₂. Further, the two bands at 1254/1219 cm⁻¹ are much weaker and eventually disappeared. With the other oxides, these two peaks usually increased in intensity with increasing time of contact. On the other hand, in the case of the spectra shown in Figure 6.9, although there was a weak band initially at 1330 cm⁻¹ due to physically adsorbed SO₂, this disappeared rapidly and there was no evidence of the presence of gas phase SO₂. Fig 6.10A shows the IR spectrum observed when a much larger dose
Fig 6.9 The adsorption of a $\text{H}_2\text{S}/\text{SO}_2$ mixture on NaY

(A). add mixture gas ($\text{H}_2\text{S}/\text{SO}_2=2$) 1200 μmol/g on NaY.
(B). after 5 min.
(C). after 60 min.
(D). evacuate for 5 min.
Fig 6.10 A large dose of H$_2$S/SO$_2$ mixture was added to NaY (A). 24 Torr of mixture was added to NaY; (B). after evacuation for 15 minutes; (C). after adding 9 Torr of H$_2$O.
of the mixture was added, 24 Torr or 25 mmol/g. In this case the IR spectrum of gas phase SO$_2$ can be observed, the water band is very intense and the pair of bands near 1200 cm$^{-1}$ are at 1240/1221 cm$^{-1}$. None of the IR bands shown in Fig 6.10A changed in intensity with further time of contact. However, evacuation yielded the spectrum shown in Fig 6.10B; gas phase SO$_2$ is eliminated, the intensity of the water band diminishes and the pair of bands is now at 1254 and 1216 cm$^{-1}$. The shift to high and low wavenumber of the pair of bands near 1200 cm$^{-1}$ upon evacuation was also observed following evacuation when the mixture was adsorbed on Al$_2$O$_3$ or on ZrO$_2$. Upon re-addition of water the spectrum shown in Fig 6.10C was observed, this being qualitatively similar to that in Fig 6.10A (except for the absence of gas phase or physically adsorbed SO$_2$), again mimicking the behaviour which was observed for adsorption of the mixture on the other oxides.

It is apparent that the absorption capacity of NaY is much larger than Al$_2$O$_3$ or ZrO$_2$, a direct manifestation of the microporous nature of zeolites. The same can be said of the adsorption of H$_2$S or SO$_2$ alone. The 1330 cm$^{-1}$ band of physically adsorbed SO$_2$ on NaY (Fig 6.3) is very intense, as is the v(HS) mode for adsorbed H$_2$S (Fig 6.5) in comparison with those which were observed for adsorption of either gas on Al$_2$O$_3$.

It would appear that, by virtue of its porous structure, NaY has much higher ability per gram of catalyst to adsorb and convert SO$_2$/H$_2$S via the Claus reaction than does Al$_2$O$_3$. The same cannot be said of the HY form of the zeolite; when the mixture was added, there was no evidence of the Claus activity, which is consistent with the weak adsorption of the acids H$_2$S or SO$_2$ on this acidic catalyst. Therefore, we can firmly conclude that although porosity is important as it relates to the quantity of an adsorbent which can be held by a catalyst, excessive acidity impedes this process and we assume that catalyst acidity has a very negative impact on the Claus reaction.

4. CONCLUSION

The adsorption capacity of the zeolites NaY and HY for SO$_2$ or for H$_2$S is considerably
greater than Al$_2$O$_3$, Na/Al$_2$O$_3$ or Na/SiO$_2$. This can be attributed to the microporous nature of zeolites. However, the adsorption is mainly physical and there is little evidence for chemisorption of either reactant. None the less, the acidity of the zeolite does influence the quantity and strength of physically adsorbed species, this being lower for HY, as would be expected for the physical adsorption of acidic molecules on an acidic surface. On NaY, SO$_2$ adsorption is primarily believed to occur via coordination to sodium sites which can act as active centre.

In common with Al$_2$O$_3$, Na/Al$_2$O$_3$ and Na/SiO$_2$, the Claus reaction occurs when mixtures of H$_2$S and SO$_2$ are contacted with NaY; no significant reaction occurs on HY. The primary role of the zeolite appears to be to bring the physically held reactants together in a suitable orientation for reaction to occur. As with Al$_2$O$_3$ and Na/SiO$_2$, it would appear that polythionates, S$_m$O$_6^{2-}$, are generated in the Claus reaction.

References

Chapter 7

AN EVALUATION OF MAGNESIUM ALUMINATE SPINEL AS A SULFUR DIOXIDE TRANSFER CATALYST

1. INTRODUCTION

Crude oil contains sulfur, the quantity ranging from about 0.2-5% by mass, depending on its source. The sulfur is mostly in the form of organosulfur compounds [1]. In petrochemical processes using fluidized catalytic cracking (FCC) catalysts, about 45-55% of the sulfur in the crude oil is converted to H₂S, 35-45% remains in the liquid products and about 5-10% is deposited on the catalyst as coke [2]. During the oxidative regeneration of an FCC catalyst when coke and occluded organosulfur deposits are "burned off" in oxygen at elevated temperatures, a SO₂+SO₃ mixture (SOₓ) is generated [2-7]. The gas which comes from the catalytic cracker catalyst recovery furnace can be the largest source of particulate air pollution in a refinery operation. This is a serious pollutant gas because of its high concentration. Although SOₓ emissions can be controlled by flue gas scrubbing or feedstock desulfurization, these are laborious and costly. A better strategy is to control SOₓ emissions (about 90% SO₂ and 10% SO₃) during regeneration is to add to the FCC catalyst a so-called SOₓ transfer catalyst which is capable of trapping the SOₓ species produced as sulfates. The ideal transfer catalyst should be able to easily facilitate the oxidation of SO₂ to SO₃, have a high sorption capacity for the sulfur (VI) species produced, form relatively thermally stable sulfates, and be easily regenerated. The regeneration is carried out by reducing the sulfates to hydrogen sulfide which are then treated via the modified Claus process.

In this chapter, we report the results of an investigation on magnesium aluminate spinel (hereinafter referred to as spinel, MgAl₂O₄) as a potential SOₓ transfer catalyst. The experiments are based on infrared spectroscopy and vacuum microbalance techniques to examine the sorption
ability of the spinel. We also study the possible sulfate structures formed on the spinel, and the stability of the sulfate toward heat and hydrogen. Many patents claim that spinel is an efficient SO$_2$ transfer agent [8-11] and its role in a more complex system with cerium oxide has recently been discussed [2]. Our results are compared with those previously obtained for Al$_2$O$_3$ [12], TiO$_2$ [12], ZrO$_2$ [13], SiO$_2$ [14], and MgO [15] for which there is a wide range of stabilities and structures of the sulfate species formed. As will be discussed below, we conclude that spinel is a superior material as a SO$_2$ transfer catalyst.

2. RESULTS

(1). Surface properties of spinel

The infrared spectrum of spinel activated in vacuum at 250 °C for 2 hours is shown in Fig 7.1. It is characterized by a broad and relatively featureless absorption from 3800 to 3400 cm$^{-1}$ due to surface OH groups, two strong bands at 1545 and 1428 cm$^{-1}$ due to carbonate species, and a region of total absorption below 950 cm$^{-1}$ due to absorption by the lattice modes of MgAl$_2$O$_4$. A carbon analysis revealed that the original sample contained 0.84% carbon. Progressive heating of the sample resulted in a decrease in the intensities of both the carbonate and OH peaks, with the latter showing some structure having infrared bands at 3750 (shoulder) 3737 and 3680 cm$^{-1}$ (see Fig 7.1 for 450 and 750 °C), different from those of Al$_2$O$_3$ [16] and MgO [17]. Heating above 900 °C removed all traces of carbonate and hydroxyl species, but the surface area also started to decrease markedly (Fig 7.2). The results showed that the spinel surface structure was stable below 650 °C but that the surface area had a large change in a temperature range between about 700-900 °C. This suggests that spinel as transfer catalyst should be used and regenerated at a temperature below about 700 °C.

We have studied the adsorption of some probe molecules such as pyridine, CO$_2$, and CO$_2$ on spinel activated at 450 °C in order to assess the nature of the acid-base sites. The results were similar to those which have been reported by Morterra et al. [18] and will not be reported here except to note that this sample of spinel appears to be similar to that which has been investigated previously. That is, the Lewis acidity and basicity is intermediate between that of MgO and
Fig 7.1 Infrared spectra of a 10 mg/cm2 spinel sample after heating in vacuum at the indicated temperatures in °C.
Fig 7.2 Surface area of spinel as a function of the temperature of activation. BET measurements are made up evacuation for 1 hour at each temperature.
Al₂O₃, Al₂O₃ having the stronger Lewis acid sites and MgO having the stronger base sites. This stronger basicity of spinel relative to alumina is clearly demonstrated by the observation that carbonates readily form on spinel from the adsorption of carbon dioxide from the air, whereas this does not occur on Al₂O₃. Accordingly, any spinel that is used as an industrial FCC transfer catalyst will likely contain carbonate initially, and for this reason, the sulfation experiments to be described below were carried out without attempting to remove these species. That is, the activation and sulfation temperatures were in the range from 450 to 650 °C.

(2). Sulfation

The sulfation process was carried out by introducing a known quantity of SO₂ or H₂S (expressed as μmol/g of spinel) in a large excess of oxygen followed by heating at a specified temperature in a quartz cell. As has been found with other oxides (except for SiO₂), sulfation could arise from oxidation of H₂S or SO₂, or via impregnation (including SiO₂) with ammonium sulfate followed by activation at 450-650 °C [12-15]. Fig 7.3 compares the infrared spectra observed via oxidation of SO₂ (400 μmol/g) at 450 °C with that obtained via impregnation using 400 μmol/g of ammonium sulfate followed by activation at 450 °C. Unlike the situations with Al₂O₃, TiO₂ or ZrO₂, the spectra are quite different according to the mode of sulfation. Finally, the spectra in Fig 7.3 are superimposed upon the steeply rising background of spinel in the 1100 to 950 cm⁻¹ spectral region. For the subsequent spectra, the background spectrum of the activated spinel has been subtracted from those obtained after sulfation so as to give a straight baseline (such a subtraction is not possible with the impregnated spinel).

Fig 7.4 shows the spectra observed following the oxidation of increasing quantities of SO₂ for 2 hours at 550 °C on a sample preactivated in vacuum at the same temperature. Three bands at 1350, 1135 and 1055 cm⁻¹ are observed initially for 25 μmol/g of SO₂. For increasing quantities of SO₂ (Fig 7.4B, 4C) one notes the appearance of a shoulder at 1375 cm⁻¹, a band near 1290 cm⁻¹ and a shoulder near 1025 cm⁻¹. For even greater quantities (Fig 7.4D, 4E), the peak in the centre of the spectrum increases in intensity and broadens with the appearance of a shoulder near 1175 cm⁻¹. Finally, the oxidation of the same quantities of H₂S (not shown here)
Fig 7.3 IR spectra of (A) spinel after oxidation at 450 °C of 400 µmol/g of SO₂ in excess oxygen followed by evacuation at 450 °C. (B) IR spectrum of spinel after impregnation from solution with 400 µmol/g ammonium sulfate followed by heating under vacuum at 450 °C. The increasing background absorption at the right of each curve is due to adsorption by spinel below 1000 cm⁻¹ and in the remaining spectra (Figs 7.4-7.8), the background spectrum of the activated spinel has been subtracted.
Fig 7.4 Infrared spectra of spinel after oxidation of the indicated quantities of SO₂ (μmol/g). In each case the oxidation was at 550 °C for 2 hours and the sample was evacuated for 0.5 hour at 550 °C afterwards.
under the same experimental conditions gave almost identical spectra although the shoulder at 1175 cm\(^{-1}\) was slightly more intense than in the case of SO\(_2\) oxidation.

Fig 7.5A, B, C and D shows the effect of varying the temperature of oxidation of SO\(_2\) while curves E, F and G show the effect of changing the time of oxidation at the same temperature. These curves show that there is an increase in the intensity of the intense central peak near 1175 cm\(^{-1}\) for either increasing in the temperature of sulfation from 300 to 650 °C, or the time of sulfation at a fixed temperature (550 °C). Finally, Fig 7.6A shows the spectrum obtained with a spinel which was calcined in air at 1320 °C (BET surface area 20 m\(^2\)/g), activated at 600 °C and then sulfated with 200 μmol/g of SO\(_2\) in excess O\(_2\) at 600 °C for 18 hours. On this low surface area spinel, the spectrum is notable for the absence of bands in the 1400-1350 cm\(^{-1}\) spectral region, and presents major features at 1240, 1175, 1110 (doublet) and 1025 cm\(^{-1}\). Subsequent spectra show the effect of evacuating the sample at increasing temperatures to 750 °C.

The results described are very different from those found for alumina and titania [12] insofar as the overall band profile for spinel changed considerably according to the quantity of SO\(_2\) (or H\(_2\)S) oxidized, or with the time or temperature of oxidation, indicating that several sulfate type species were produced. Even on ZrO\(_2\), where three surface sulfate type species were found [13], the differences in the present case are much more pronounced as the overall spectral intensity increases. A further difference relative to other oxides is the presence, after long oxidation periods, or on low surface area samples, of a very intense band at 1175 cm\(^{-1}\), a characteristic of bulk sulfate ions [19] which generally have an intense band in the spectral region from 1100 to 1200 cm\(^{-1}\). A spectrum which was very similar to that shown in Fig 7.6 was also observed in a study of sulfation of SO\(_2\) on MgO and this was attributed to bulk or ionic type sulfate species [15].

A vacuum microbalance study of the sulfation of spinel confirmed that the sorption capacity of this material is high. A 400 mg spinel sample (20 fold greater than that used in the IR studies) was activated at 650 °C and sulfated with 1000 μmol/g of SO\(_2\) at 550 °C for 66 hours.
Fig 7.5 Infrared spectra of sulfated spinel (1000 μmol/g) showing the effect of temperature (curves A-D at the left) and time (curve E-G at the right) on the intensity of the sulfated bands. For curves A-D, the sulfation time was 2 hours and the temperature of sulfation was as indicated. For curves E-G, the temperature of sulfation was 550 °C and the time of sulfation in hours was indicated.
Fig 7.6 (A) Sulfation of a low surface area spinel at 600 °C with 200 μmol/g of SO$_2$ for 14 hours followed by evacuation for 1 hour at 600 °C. (B) and (C), spectra observed after evacuation of (A) at 700 °C and then at 750 °C for 1 hour respectively.
After 60 hours the mass was constant and, assuming that SO₂ becomes oxidized to SO₃ which in turn adsorbed to give sulfate, the gain in mass corresponded to 872 μmol/g. This number is probably to be considered a lower limit for the amount of sulfate formed from 1000 μmol/g of SO₂ because, during heating for 60 hours, some of the surface carbonates would certainly be displaced (as has been confirmed in other IR studies) giving rise to an opposing decrease in mass of the sample as sulfate is formed. Thus, practically all of added SO₂ can be transformed into sulfate under these conditions. In a similar experiment with 1000 μmol/g of SO₂ on alumina, the quantity of sulfate formed after 40 hours was 290 μmol/g and 310 μmol/g after 80 hours. In this case only 31% of the added SO₂ was converted to sulfate, clearly showing that the sorption capacity of alumina is less than that of spinel under the same conditions.

(3). Thermal stability and reducibility of sulfates

The thermal stability under vacuum and the reducibility of the various sulfate species was studied using 450 and 550 °C sulfated samples, and the results were qualitatively similar in each case although for equal sulfation doses and equal sulfation times the infrared peaks were less intense in the 450 °C case, as explained earlier. Fig 7.7A shows the effect of heating a sulfated spinel (100 μmol/g SO₂) at increasing temperatures after initial sulfation at 550 °C followed by evacuation at 550 °C. Between 550 °C and 700 °C the intensity of the 1375 cm⁻¹ band increased whereas that at 1360 cm⁻¹ remained practically constant and the only other change, which was more clearly seen in the subtracted spectra (not shown), was a slight decrease in intensity near 1175, 1225 and 1290 cm⁻¹. Beyond 800 °C there was a large decrease in all bands, leaving very weak peaks at 1375, 1175 and 1025 cm⁻¹. Fig 7.7B shows a series for a sample which was similarly sulfated overnight with 400 μmol/g of SO₂ and which contained bulk sulfate species (1175 cm⁻¹) in addition to surface species. In this case the heating caused a large decrease in the intensity of the 1175 cm⁻¹ band accompanied by an increase in the intensity of that at 1375 cm⁻¹. Finally, vacuum microbalance experiments confirmed that there was only a small loss in mass during heating of a sulfated spinel from 450 to 800 °C (heating rate at 1 °C/min), reconfirming that there is little decomposition up to 800 °C and in accord with the infrared results.
Fig 7.7 (A) The spinel was sulfated with 100 µmol/g of SO₂ for 1 hour at 550 °C (top curve) followed by evacuation at the indicated temperatures in °C. (B) The spinel was sulfated with 400 µmol/g of SO₂ for 14 hours at 550 °C (top curve) followed by evacuation at the indicated temperatures in °C. (C) The spinel was sulfated with 100 µmol/g of SO₂ at 550 °C for 8 hours and then evacuated at 550 °C (top curve). Then, 40 Torr of hydrogen (1 Torr = 133.3 Pa) was added at 20 °C and the cell was heated for 1 hour at the indicated temperatures in °C.
Fig 7.7C shows the affect of heating a sulfated (100 μmol/g SO₂) spinel in excess hydrogen gas at increasing temperatures. There is a small uniform decrease in intensities of all bands from initial state after heating at 450 to 550 °C and a very large change thereafter, all bands essentially disappearing after heating about 600 °C. It is apparent that under the presence of the hydrogen the sulfate species are much less stable on spinel. For large initial doses of SO₂, where bulk sulfate was additionally present, there was also an almost uniform decrease in the intensities of all bands in the 550 to 650 °C temperature range. Microbalance experiments showed that a spinel sulfated with 200 μmol/g of SO₂ underwent no mass loss in a large excess of hydrogen up to 500 °C, but beyond this temperature there was a large decrease in mass between about 550 °C to 640 °C, and at higher temperatures the mass of the sample was essentially constant again. The temperature for 50% mass loss was 590 °C and with a more highly sulfated sample (1000 μmol/g SO₂) this temperature was 610 °C. These results are also in agreement with those observed via infrared spectroscopy, bearing in mind that the temperature was increased at a constant rate in the microbalance experiments whereas heating was at a series of fixed temperatures in the IR case.

(4). Discussion

The previous studies have shown that only surface sulfates were formed on Al₂O₃ [12], TiO₂ [12], and ZrO₂ [13] from the oxidation of SO₂, and on SiO₂ [14] via impregnation with ammonium sulfate followed by vacuum activation. Further, three distinct sulfate types were found on ZrO₂ but a single type on the other oxides. Isotopic exchange using H₂¹⁸O showed that the single sulfate species was type (-O)₂S=O on Al₂O₃ and TiO₂, but of type

\[\text{(-O)}₂\text{S=O} \]

containing 2 equivalent S=O bonds on SiO₂. The infrared spectrum of sulfated spinel is more complex than that which was observed using the above oxides insofar as multiple species, both surface and bulk, can be formed. Only on MgO was there evidence for bulk as well as surface species, the surface species being of type
but containing non-equivalent S=O bonds [15].

For sulfated spinel, like the other oxides, the infrared bands in the region from 1375 to 1350 cm$^{-1}$ must be attributed to surface species containing one or two S=O oscillators, and the strong peak at 1175 cm$^{-1}$, like MgO, must be attributed to bulk sulfate. At low coverage (Fig 7.4A) three bands are observed at 1350, 1135 and 1055 cm$^{-1}$ which are probably attributable to a single species. Following H$_2$O exchange the 1350 cm$^{-1}$ peak gave only one shifted component for partial exchange, suggesting that this species has the structure (-O)$_2$S=O containing a single S=O oscillator.

The 1350 cm$^{-1}$ peak, even at the lowest coverage has a shoulder to higher wavenumber. As the coverage increases, peaks at both positions intensify and appear to shift to higher wavenumber, eventually appearing at 1360 and 1375 cm$^{-1}$ (Fig 7.4B-E). Accompanying this is the appearance of a shoulder at 1025 cm$^{-1}$ and new weak peaks at 1225 and 1290 cm$^{-1}$. The experiments carried out on the thermal stability of the sulfated spinel show (Fig 7.7A) that the last peaks to disappear are those at 1375 and 1025 cm$^{-1}$, and these bands can, therefore, be assigned to a second surface species of unknown structure. (It is not possible to measure the O-18 shift of the 1375 cm$^{-1}$ peak because it is always overlapped by that at 1360 cm$^{-1}$). The origin of the 1290 cm$^{-1}$ and 1225 cm$^{-1}$ peaks remains obscure because their intensities always are weak but they might be due to another surface sulfate like species. On MgO [10] the surface species having two non equivalent S=O oscillators gave rise to infrared bands at 1230 and 1420 cm$^{-1}$, but it is also true that the bulk sulfate species has a considerable shoulder at 1225 cm$^{-1}$ (Fig 7.6). The latter is formed at the highest coverages, or when the surface area is very low, or via impregnation with (NH$_4$)$_2$SO$_4$ (Fig 7.3) and is characterized by a peak of considerable intensity at 1175 cm$^{-1}$. However, this species also has bands and shoulders at other frequencies which overlap with those which have been attributed to surface sulfates.
It is disappointing that we cannot positively identify the structures of some of the sulfates species, or indeed, even to specify exactly how many sulfate species form on spinel. However, the purpose of this work was not to determine the structure of the different sulfate species formed, which were expected to be numerous given the complexity of this mixed oxide system. Rather, the purpose of this work was to understand why spinel is used to remove SO_x from FCC flue gas. The infrared and gravimetric results provide information about the nature of sulfated spinel as compared to the other oxides studied, and this provides some insight into the relative possible utility of spinel as an FCC transfer catalyst.

If water vapour is present during the process of sulfation, the bulk like sulfate species are more abundant than that without water, shown at Fig 7.8.

The observation of infrared bands characteristic of bulk sulfate and the discovery that large quantities of sulfate can be incorporated into the bulk of the spinel show that this material has a high sorbent capacity for SO_x gas. This capacity for spinel is much greater than that of alumina because the latter only has surface sulfate species and its sorption capacity is, therefore, limited. On the other hand, bulk species also form on magnesia [15,20]. However, the ideal FCC transfer catalyst would be one where the sulfates are thermally stable but are easily reduced during regeneration process. This study has shown that the bulk and surface sulfates on spinel only decompose at relatively high temperatures. Moreover, the experiments with hydrogen show that there is no significant difference in the cases with which any of the sulfate species can be reduced. Both infrared and gravimetric measurements indicate that all are removed from the surface at about 550 to 640 °C.

Fig 7.9 shows schematically, via horizontal lines, the temperature ranges where the sulfate species on spinel and some other oxides [12, 13, 15] were either reduced in hydrogen (curve A) or were removed via desorption under vacuum (curve B). The shorter the line the narrower was the temperature range for complete removal. The vertical bar shows the approximate temperature at which half of the species had been removed. This figure shows that sulfates are more easily reduced on spinel than on magnesia [20]. And from Fig 7.2, we have shown that the surface area
Fig 7.8 Effect of H$_2$O on the intensity of the sulfate bands. (---), spinel heated with 100 µmol/g SO$_2$ and excess O$_2$. (...), spinel heated with 100 µmol/g SO$_2$, 600 µmol/g H$_2$O and excess O$_2$. Both were heated at 550 °C for 2 hours, then evacuated at 400 °C for another 0.5 hour.
Fig. 7.9 Schematic showing the temperature ranges for reduction of sulfates in hydrogen on various oxides (Part A) and for thermal decomposition under vacuum (Part B), see text. The vertical bar indicates the approximate temperature at which about 50% of the sulfates had disappeared (this could not be determined with precision for temperature above 800 °C, the maximum attainable with the microbalance).
of the spinel does not change much at reduction temperature, about 620 °C. Therefore, in terms of the ability to be regenerated, spinel appears superior to MgO as an SO₂ transfer catalyst. It is interesting to note that alumina has a thermal stability comparable to that of spinel, and the sulfates can be reduced in hydrogen at a slightly lower temperature range. However, as stated previously, its sorption capacity is inferior to that of spinel by virtue of not incorporating bulk sulfates. In conclusion, of the materials listed in Fig 7.9, spinel appears to be most suitable as an FCC SO₂ transfer catalyst.

3. CONCLUSIONS

The sulfation of magnesium aluminate spinel, MgAl₂O₄, via oxidation of SO₂ in excess oxygen in the temperature range from 350 to 650 °C has been studied using infrared spectroscopy and vacuum microbalance techniques. The major conclusions are:

(1). At least two types of surface sulfate species are formed for low doses of SO₂, but at higher doses, ionic like sulfate species become incorporated into the bulk of the spinel.

(2). The quantity of sulfate formed for a given dose of SO₂ increases with the temperature of oxidation (for a fixed time of oxidation) or with the time of oxidation (for a fixed temperature). The presence of the water vapour will increase the sulfate species, mainly bulk species.

(3). All types of sulfate species are thermally stable under vacuum to about 800 °C but are removed when heated in the range from 800 to 900 °C.

(4). In excess hydrogen, all sulfates are removed during heating from about 550 to 640 °C.

(5). The thermal stability and reducibility of sulfated spinel (3 and 4 above) have been compared with those of sulfated Al₂O₃, TiO₂, ZrO₂ and MgO. We have concluded that, of these materials, spinel is a superior FCC transfer catalyst by virtue of it high sorption capacity for
sulfate species, and because the catalyst can be easily regenerated in H$_2$ at moderately low temperatures.

REFERENCES

Chapter 8

THE INVESTIGATION OF NO₂ AND SO₂ ON Al₂O₃ AND CuO/Al₂O₃

1. INTRODUCTION

Nitrogen oxides (NₓOᵧ, most commonly NO and NO₂) are also noxious pollutants of the atmosphere. It is estimated that the amount of NO₂ produced by industrial and daily activities is about 60 x 10⁶ T/year [1, 2], and they are mainly produced by the combustion of fossil fuels. Nitrogen oxides are very toxic especially near the pollution sources because of higher concentrations. Like SOₓ, they exist in flue gas and can also contribute to the formation of acid rain. It was verified that nitrogen oxides contribute to the ozone problem [3, 4].

Because nitrogen forms a number of oxidation states many kinds of nitrogen oxides can exist, but NO and NO₂ are most important in air pollution. NO is the primary product while NO₂ is the secondary product of combustion processes (NO + ½ O₂ → NO₂).

In controlling NO₂ pollution of flue gas, the most successful method is the so-called Selective Catalytic Reduction (SCR) process (NO₂ + NH₃ → N₂ + H₂O), which can remove about 95% of nitrogen oxides. However, larger capital investments and operating expenses are required for this. The catalysts in this process usually are metal oxides [2, 5]. Other methods are limited to about 60% removal [6].

A catalytic process that simultaneously removes sulphur dioxide and nitrogen oxides would be highly desirable. According to published reports, there is a process to remove "simultaneously" NOₓ and SO₂ [2, 7]. First, both NOₓ and SO₂ gases are oxidized to their highest oxidation states by active oxygen-containing radicals, like O and OH. Then under an ammonia environment, ammonium salts [NH₄NO₃, (NH₄)₂SO₄] are formed, which can be used as fertilizers.

161
The removal of NO\textsubscript{x} and SO\textsubscript{2} is reported to be about 70% and 40%, respectively. The high energy consumption, which is needed to produce the active oxygen-containing radicals, is one of the shortcomings of this process. This process is not a catalytic reaction between NO\textsubscript{x} and SO\textsubscript{2}.

It is well known that NO\textsubscript{2} can catalyze the oxidation of SO\textsubscript{2} to SO\textsubscript{3} by so-called lead chamber process:

\[
\begin{align*}
\text{SO}_2 + \text{NO}_2 & \rightleftharpoons \text{SO}_3 + \text{NO} \\
\text{NO} + \frac{1}{2} \text{O}_2 & \rightleftharpoons \text{NO}_2.
\end{align*}
\]

And for NO, the thermodynamic data of the reaction

\[
\text{NO} + \text{SO}_2 \rightleftharpoons \frac{1}{3} \text{N}_2 + \text{SO}_3
\]

are favourable with \(\Delta G = -156.69 \text{ kJ/mol}\) at 25 °C. This process seems to be more attractive because N\textsubscript{2} is not objectionable from an environmental standpoint.

There has been little study of the SO\textsubscript{2}-NO\textsubscript{x} reaction on surfaces. This is unfortunate because SO\textsubscript{2} and NO\textsubscript{x} both are in stack gas and can cause air pollution. If we can remove both in the same reaction, we "kill two birds with one stone". But so far, there is no catalyst in this field and only some minor progress has been made in liquid phase [8]. There is another reason why studying the SO\textsubscript{2}-NO\textsubscript{x} reaction is interesting. SO\textsubscript{2} must be oxidized to SO\textsubscript{3} or H\textsubscript{2}SO\textsubscript{4} for acid-rain to be produced, and there are a number of mechanisms by which this can occur. The reaction may occur in the gas phase under photo-chemical initiation, or may be a heterogeneous process, catalyzed by particulates in the atmosphere. In either case an oxidizing agent must be present. This could be molecular oxygen, ozone or NO\textsubscript{2}, if it is present. Thus, the study of the surface reaction of NO\textsubscript{2} and SO\textsubscript{2} is relevant to one of the possible mechanisms of production of acid rain.

CuO/Al\textsubscript{2}O\textsubscript{3} has been used as the sorbent-catalyst for the simultaneous removal of SO\textsubscript{2} and NO\textsubscript{x} [9]. It was thought that during the process, CuO/Al\textsubscript{2}O\textsubscript{3} reacted with SO\textsubscript{2} to form a surface
sulfate, which then catalyzed the selective reaction of NH$_3$ with NO$_x$ to form N$_2$. This performance is still under investigation and the nature of the sorbent-catalyst and mechanism are not well understood. CuO/Al$_2$O$_3$ was also used as the catalyst in the reduction of NO with carbon monoxide [10, 11]. Copper catalysts and various alumina supported catalysts are also applied to control NO$_x$ emission from automobile exhaust gas [12].

The adsorption behaviour of NO and CO on copper oxides has attracted a great deal of attention and many different surface sites have been found [10, 13, 14, 15]. The adsorption of SO$_2$, CO and thiophene show that the CuO/Al$_2$O$_3$ catalyst has four different adsorption sites [13]. They are Cu$^{2+}$, Cu$^+$ sites in a matrix of Cu$^{2+}$, Cu$^+$ site in a matrix of Cu$^+$ and Cu0 site. Leung et al. [16] investigated the adsorption of SO$_2$ on Cu(100) by Electron Energy Loss Spectroscopy. It was reported that on the Cu(100) surface, SO$_2$ dissociated to give SO and O, which will further react with other SO$_2$ molecules to produce adsorbed sulfite and sulfur species. To the best of our knowledge, no studies of NO$_2$ adsorption on copper-alumina catalysts have been reported.

Our aim is to investigate the surface compounds which are formed during the adsorption of SO$_2$ and NO$_2$ on Al$_2$O$_3$ and CuO/Al$_2$O$_3$, and their stabilities to thermal treatments and toward other gases. It will be beneficial to increase our knowledge of the interaction between these two gases in the presence of a catalyst, as this will aid in the design of new catalysts for preventing these pollutants from escaping into the atmosphere. In this report, we will show that the introduction of CuO to alumina greatly decreases the stability of NO$_3$ species on the surface, therefore, NO$_2$ can be reduced much more easily. Using the probe molecules, CO and NO, the surface sites of the CuO/Al$_2$O$_3$ sample were also studied.

2. EXPERIMENTAL

CuO/Al$_2$O$_3$ catalysts were prepared by impregnation of Al$_2$O$_3$ (γ-type, Degussa Alumin Oxid C) from a solution of Cu(CH$_3$COO)$_2$·H$_2$O. The wet slurries are dried at 110 °C for several hours in a furnace and subsequently calcined in an oven at 450 °C for 2 hours. The dried sample contains 1% copper by weight.
For IR study, about 50 mg of CuO/Al₂O₃ was used. After the disc was activated at 450 °C for 0.5 hour under evacuation, 40 to 50 Torr of O₂ is introduced into the cell and the oxidation process took 2 to 3 hours at 450 °C. Before each experiment, the sample was evacuated at 450 °C for about 0.5 hour to remove O₂ and was then allowed to cool to room temperature.

3. RESULTS AND DISCUSSION

(1). Surface characteristics of CuO/Al₂O₃

IR spectra of CuO/Al₂O₃ background show not much difference from pure Al₂O₃(450) after being activated at 450 °C under evacuation except that the impregnation sample lost most of the fine structure in the OH stretching region (not shown).

After the oxidation and subsequent evacuation, CO gas is introduced into the cell at room temperature to probe the catalyst surface. CO adsorption shows that the catalyst surface contains Cu⁺ and Cu⁰ sites, 2124 cm⁻¹ band for Cu⁺-CO site and 2106 cm⁻¹ band for Cu⁰-CO site (see Fig 8.1 A). There is also a very weak band around 2170 cm⁻¹, which is assigned as CO on Cu²⁺ sites. These assignments are made by comparison with previous publications [10, 14, 15]. The C-O stretching vibration of gaseous CO is at 2143 cm⁻¹. To explain a higher C-O vibration frequency (above 2143 cm⁻¹) on the surface of the some metal oxides, the reasonable theory is the σ-complex concept which involves adsorption of CO on cations (coordinatively unsaturated cations). Binding in such complexes is attained via the unshared electron pair at the C atom to unfilled metal orbitals. In this situation, C-O bond is strengthened and the frequency of νeq shifts to higher wavenumber. Hence, the band at 2170 cm⁻¹ is assigned as Cu²⁺-CO. The appearance of carbonyl stretching frequencies lower than 2143 cm⁻¹ is usually interpreted as being due to the donation of electron density from metal d-orbitals of suitable symmetry to previously vacant antibonding π*-orbitals of CO. The ability of Cu to donate electron density should increase in the order Cu²⁺ < Cu⁺ < Cu⁰. Since accepting electron density into π* orbitals decrease the strength of the carbonyl bond, the carbonyl stretching frequency of complexed CO is expected to decrease in the order Cu²⁺ > Cu⁺ > Cu⁰, in accord with the literature assignments. Another interpretation
Fig 8.1 Difference IR spectra observed after CO or NO adsorption on CuO/Al₂O₃

A:
1a. 2 Torr of CO in contact with 50 mg CuO/Al₂O₃(450).
2a. after evacuation for 5 min.

B:
1b. 1.6 Torr of NO in contact with 50 mg CuO/Al₂O₃(450).
2b. after evacuation for 5 min.
is physical adsorption. Usually, physical adsorption shifts the adsorption band toward lower frequency [17].

In this experiment, addition of CO gas shows that Cu$^+$ and Cu0 sites are present on the surface. Interaction of CO with CuO/Al$_2$O$_3$ catalyst in the temperature range 20 to 200 °C could result in the reduction of CuO to Cu$^+$ [17, p190]. It is not certain whether the Cu$^+$ or Cu0 sites are the results of the reduction of Cu$^{2+}$ by CO or whether they are produced during evacuation at 450 °C in the activation process. In the latter process some CuO may undergo reduction

\[4\text{CuO} \rightarrow 2\text{Cu}_2\text{O} + \text{O}_2\]

But considering that the temperature is 450 °C and CuO (bulk) has a melting point of 1326 °C, the above process might only partly contribute to the formation of Cu$^+$. We suggest that most of the Cu$^+$ sites are probably formed by reduction of surface Cu$^{2+}$ sites by CO. For Cu0 sites they might come from the further reduction of Cu$^+$ with CO. It is evident that some surface Cu$^{2+}$ are more sensitive toward reduction. But, the surface of the sample mainly contains Cu$^{2+}$ ions, as expected. The band of CO at Cu$^{2+}$ sites (Cu$^{2+}$-CO), at 2170 cm$^{-1}$, is usually very weak, as shown in our experiment, and can be eliminated very easily by brief evacuation at room temperature.

Further, probing the surface of CuO/Al$_2$O$_3$ by NO, we find some bands between 1850-1950 cm$^{-1}$ (Fig 8.1 B). After evacuation at room temperature, the feature at 1876 cm$^{-1}$ is predominant. This band is due to Cu$^{2+}$-NO, in which the Cu$^{2+}$ cation is in the CuO phase [17, 18]. The band at about 1900 cm$^{-1}$ is from the adsorption of NO on surface Cu$^{2+}$ ions of the aluminate-type (CuAl$_2$O$_4$). This band is weakly bonded and a brief evacuation can eliminate it. The appearance of a high frequency tail at about 1920 cm$^{-1}$ with large dose of NO indicates that there are very few ionically bound Cu$^{3+}$ cations which are located in Al$_2$O$_3$ lattice (isolated Cu$^{3+}$). In particular, the bands due to Cu$^{+}$-NO (1740-1780 cm$^{-1}$) are undetectable when NO is added, and this further supports the interpretation that the surface Cu$^+$ and Cu0 sites are mostly formed by CO reduction.

It is reported that the Cu$^{2+}$ ions in associated sites (Cu$^{2+}$-O-Cu$^{2+}$) are more easily reducible than isolated Cu$^{2+}$ ions [17, p73]. If Cu$^+$ sites on CuO/Al$_2$O$_3$ are mostly from CO reduction, Cu$^+$ sites should be in state of Cu$^{+}$-O-Cu$^{2+}$ or Cu$^{+}$-O-Cu$^+$ (in associated states). As there is only one

166
kind of Cu⁺-CO band (2124 cm⁻¹) detected in these experiments, we suggest that all Cu⁺ ions are in these states whether they are from reduction by CO or from reduction by heating under vacuum. Hence the IR spectra of adsorbed NO and CO confirm that on this CuO/Al₂O₃ catalyst (1% of Cu), there are mainly Cu²⁺ cations on a CuO surface (responsible for νNO 1876 cm⁻¹), some Cu²⁺ sites of the aluminate type (CuAl₂O₄) and very few isolated Cu²⁺. There are also few Cu⁺ and Cu⁰ sites mainly on the CuO surface.

(2). NO₂ adsorption on Al₂O₃

NO₂ is strongly adsorbed on alumina. The strongest adsorption bands occurred at about 1600 cm⁻¹ and 1240 cm⁻¹. The following is the discussion of the spectra observed when NO₂ is adsorbed on pure Al₂O₃.

(i). 3200-3800 cm⁻¹ region

After activation at 450 °C, pure alumina has OH bands at 3790 cm⁻¹ (Ib), 3774 cm⁻¹ (Ia), 3728 cm⁻¹ (IIa), and 3684 cm⁻¹ (III). When NO₂ is adsorbed on Al(450), the 3774 cm⁻¹ band disappears first (Fig 8.2 top). It appears that NO₂ prefers to react with type Ia OH group first, then reacts with type Ib OH group (3790 cm⁻¹). Only after all Ia and Ib types have been reacted, then NO₂ reacts with other OH groups. As more NO₂ is added, the stretching bands of the isolated OH groups become poorly resolved, and the broad band at about 3600 cm⁻¹ increases.

NO₂ is an acidic molecule and as expected, it will attack the basic sites of alumina surface. The observation of the change of OH groups might suggest occurrence of the hydrogen bonds or even HONO₂ species. The latter seems more likely and it will be verified by thermal treatment process later.

Why does NO₂ prefer to react with Ia instead of reacting with Ib? According to Knozinger and Ratnasamy's estimation the acidic order of hydroxyl groups on alumina surface is Ib < Ia < IIb < IIa < III. NO₂ gas, as an acidic oxide, would be expected to react first with most basic site, type Ib, rather than Ia. When CO₂ reacts with thorium dioxide, the hydrogen carbonates are
Fig 8.2 Adsorption of NO$_2$ on Al(450)

Top. IR spectra in OH stretching region (no Al$_2$O$_3$ background was subtracted). (a). 30 mg alumina, after activation at 450 °C. (b). add 0.11 Torr of NO$_2$. (c). add 0.41 Torr of NO$_2$. (d). add 1.02 Torr of NO$_2$. (e). add 1.72 Torr of NO$_2$.

Bottom. Difference spectra in 1000-2400 cm$^{-1}$ region. Al$_2$O$_3$ background (a) has been subtracted.
formed essentially from the OH groups having the highest wavenumber [19]. Also on ZrO₂, CO₂ was found to react preferentially with the OH groups having the highest wavenumber OH bands (ν_{eff} = 3775 cm⁻¹). This OH group is considered to be most basic sites [20].

In this reaction, besides the basicity, there might be other factors that affect the reactivities of the surface hydroxyl groups. Because the detailed mechanism of the reactions of NO₂ with Al₂O₃ are not known, any interpretation of the observed order of reactivity can only be considered as speculative. Nevertheless, it is possible that type Ib OH groups are less sterically accessible than type Ia OH groups in some special surfaces.

On the other hand, it appears that the band at 3790 cm⁻¹ is easier to restore than the band at 3774 cm⁻¹ when the system is under evacuation at increasing temperatures (Fig 8.3). In Fig 8.3 the experiment shown in Fig 8.2 is continued. It is seen that upon increasing the temperature at which the sample is evacuated, the band at 3728 cm⁻¹ reappears first, at about 200 °C. The band at 3790 cm⁻¹ reappears at about 300 °C, and the band at 3774 cm⁻¹ reappears at about 350 °C. This is just the reverse order of the experiment in Fig 8.2. It is evident that the species formed by reaction with Ia site is more stable than the species formed by reaction with OH groups of type Ib.

(ii). 1900-2300 cm⁻¹ region

There are broad bands at about 1960 cm⁻¹ on higher temperature activated alumina (Fig 8.4). The evacuation at room temperature lowers its intensity a little. Parkyns [21] assigned 1960-1970 cm⁻¹ to NO⁺, without conclusive evidence. When NO loses an electron, it is removed from an anti-bonding π*-orbital, and a sharp increase in the vibrational frequency occurs. As we can see that NO⁺ species in SnCl₄.N₂O₄ is at 2216 cm⁻¹, in NO⁺HSO₄ is at 2540 cm⁻¹, and in NO⁺NO₂ is at 2240 cm⁻¹. All NO⁺ species have bands over 2200 cm⁻¹ [17]. Comparing with the table below and a frequency of free NO at about 1876 cm⁻¹, we tend to assign the band around 1960 cm⁻¹ to NO species on Al⁺⁺ sites.
Stretching Frequencies of NO [22]

<table>
<thead>
<tr>
<th>bond order</th>
<th>molecule</th>
<th>cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>NO⁺</td>
<td>2345</td>
</tr>
<tr>
<td>2.5</td>
<td>NO</td>
<td>1876</td>
</tr>
<tr>
<td>2</td>
<td>NO⁻</td>
<td>1353</td>
</tr>
<tr>
<td>1.5</td>
<td>NO²⁻</td>
<td>897</td>
</tr>
</tbody>
</table>

The appearance of bands due to NO indicates that some of the NO₂ has decomposed on Al₂O₃ to yield NO.

The intensity at 1960 cm⁻¹ strongly depends on the activation temperature of alumina. On Al(800), the band at 1960 cm⁻¹ is much more intense than that on Al(450), while on Al(300) it is absent. On Al(800), the band is asymmetric and on Al(1000), there apparently exist two bands (see Fig 8.4). This can be observed much more clearly when SO₂ is added. When this is done two bands near 1939 cm⁻¹ and 1987 cm⁻¹ are seen apparently (see next parts), and we will show that there are no SO₄ bands in this region. The appearance of the two bands suggests that NO is adsorbed on at least two distinct surface sites. (The difference in frequency may relate to differences in Lewis acidity in the surface sites. The more electron-withdrawing sites should accept more electron density from NO₂⁺, leading to higher vibrational frequencies.) It is probable that high temperature activation creates different Lewis acid sites. Adsorption of NO on these sites could account for the presence of two bands.

There is a very weak band at 2250 cm⁻¹ in this region and it can be assigned to NO⁺ species adsorbed on Al sites because all NO⁺ species in inorganic complexes give frequencies above 2200 cm⁻¹. Parkyns assigned the band at 2250 cm⁻¹ to NO₂⁺, the but nitronium ion NO₂⁺ has its N-O antisymmetric stretching vibration (v₃) above 2350 cm⁻¹ [22]. Davis et al. [23] studied the adsorption of NO₂ on SiO₂-Al₂O₃, and a 2280 cm⁻¹ band was assigned as NO⁺. In all experiments here, the band of NO⁺ species is very broad and weak. Preadsorption of SO₂ increases the intensity of the 2200 cm⁻¹ peak (discussed later).

170
Fig 8.3 IR spectra of the species obtained by adsorption of 1.72 Torr NO₂ followed by evacuation at (a) 25 °C, (b) 100 °C, (c) 250 °C, (d) 300 °C, (e) 350 °C for 1 hour. The inset in the upper left corner shows the OH region of the spectrum during this experiment. This is the continuation of the experiment shown in Fig. 8.2
Fig 8.4 Adsorption of NO$_2$ (0.38 Torr) on Al$_2$O$_3$ (30mg)

These are difference spectra and the activated temperatures are shown in Al(C).
(iii). 1200-1700 cm\(^{-1}\) region

When nitrogen dioxide reacts with alumina strong bands at about 1240 and 1600 cm\(^{-1}\) are observed. With small doses of \(\text{NO}_2\), we clearly observe at least four bands at about 1600 cm\(^{-1}\) (1565, 1591, 1620 and 1655 cm\(^{-1}\)) and three bands at about 1250 cm\(^{-1}\) (1230, 1250 and 1292 cm\(^{-1}\)). When more \(\text{NO}_2\) is added, the bands at 1655 and 1230 cm\(^{-1}\) broaden and become unresolved, and only 5 bands remain in this region (Fig 8.2 bottom part). To the best of our knowledge, no other authors have reported the appearance of the bands at 1655 and 1230 cm\(^{-1}\). Using of \(^{15}\text{NO}_2\) instead of \(^{14}\text{NO}_2\) shifts these bands to lower wavenumbers. When a mixture of \(^{14}\text{NO}_2\) and \(^{15}\text{NO}_2\) is used, no bands attributable to species containing more than one nitrogen are observed. (Such species would be expected to have same band at a frequency between those observed for pure \(^{14}\text{NO}_2\) and pure \(^{15}\text{NO}_2\).)

The activation temperatures of the alumina had a strong effect on the spectra. Some bands due to the surface species formed during adsorption of \(\text{NO}_2\) are given in the following table and in Fig 8.4.

The frequencies of bands observed following \(\text{NO}_2\) adsorption on \(\text{Al}_2\text{O}_3\)

<table>
<thead>
<tr>
<th>(\text{Al}(300))</th>
<th>(\text{Al}(450))</th>
<th>(\text{Al}(800))</th>
<th>(\text{Al}(1000))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{14}\text{NO}_2)</td>
<td>(^{14}\text{NO}_2)</td>
<td>(^{15}\text{NO}_2)</td>
<td>(\Delta)</td>
</tr>
<tr>
<td>1253</td>
<td>1250</td>
<td>1219</td>
<td>31</td>
</tr>
<tr>
<td>1292</td>
<td>1290</td>
<td>1272</td>
<td>18</td>
</tr>
<tr>
<td>1562</td>
<td>1564</td>
<td>1528</td>
<td>36</td>
</tr>
<tr>
<td>1289</td>
<td>1589</td>
<td>1553</td>
<td>36</td>
</tr>
<tr>
<td>1622</td>
<td>1620</td>
<td>1585</td>
<td>35</td>
</tr>
<tr>
<td>1655</td>
<td>1657(sh)</td>
<td>1620(sh)</td>
<td>37</td>
</tr>
</tbody>
</table>

173
For high temperature activated Al₂O₃, above 800 °C, the band around 1290 cm⁻¹ disappears, and the band at 1655 cm⁻¹ may be covered by the stronger band at 1620 cm⁻¹.

Free NO₃⁻ has D₃h symmetry and has bands at 1400 (v₂), 1053 (v₁) and 720 cm⁻¹ (v₄). When NO₃⁻ is bonded to other atoms, the D₃h symmetry is lowered and v₁ (E) splits to give two bands [9]. The bands around 1240 cm⁻¹ and 1600 cm⁻¹ are from the splitting of v₁ [21, 24]. But with different bonding situations, these two bands might give different wavenumbers. Parkyns [21] assigned the bands at 1246, 1290 cm⁻¹ to symmetric NO₂ stretching modes, the bands at 1564, 1589, 1620 cm⁻¹ to antisymmetric NO₂ stretching modes. The latter three bands were assumed to be due to three possible modes of coordination of the nitrate ion:

\[
\begin{array}{c}
\text{O} & \text{O} \\
\backslash / & \backslash / \\
\text{N} & \text{N} \\
\backslash / & \backslash / \\
\text{O} & \text{O} & \text{O} \\
\text{Al} & \text{Al} & \text{Al} \\
\end{array}
\]

unidentate 1564 1290 cm⁻¹ 1225--1250 cm⁻¹
bidentate 1589 1225--1250 cm⁻¹
bridging 1620 1225--1250 cm⁻¹

According to Pozdnyakov et al. [24], the bands at 1245, 1600, 1620 cm⁻¹ (no other bands were observed in this range in their experiments) were assigned to bridging nitrate. There is also an similar assignment of the stretching vibrations of NO₃⁻ in reference [15].

We find one more band at about 1655 cm⁻¹. This can be observed by carefully adding a small dose of NO₂ to the sample. If the pressure of NO₂ is a little higher, say about 2 Torr, the 1655 cm⁻¹ band will be covered by the strong band at around 1620 cm⁻¹. With higher activation temperature alumina (over 800 °C), no 1655 cm⁻¹ band can be found. Interestingly, we notice there is no 1290 cm⁻¹ band either. We assume that 1657 cm⁻¹ and 1290 cm⁻¹ are from the same species, hydrogenonitrato HONO₂. The reasons are: (a) addition of NO₂ causes the ν₉ bands at 3790 and 3774 cm⁻¹ to disappear. It is clear that NO₂ reacts with type I OH group. The
products are not simply hydrogen-bonded species, because high temperatures, 300 to 350 °C, are needed to regenerate the OH groups; (b) the band at 1655 cm⁻¹ decreases with heating before 200 °C and 3728 cm⁻¹ increases a little at the same time, while other bands in 1500-1700 cm⁻¹ do not change so much with heating at an increasing temperature. It is generally believed that hydrogenonitrato (at 1655 cm⁻¹) is less stable toward heating (See Fig 8.3); (c) As the temperature of heating is increased, the 1655 cm⁻¹ band loses more intensity, and the loss is proportional to the gain in intensity of the AlOH bands at 3790 and 3774 cm⁻¹ which are being regenerated (Fig 8.3, c-e). When the bands at 3790 and 3774 cm⁻¹ almost completely recover their initial intensities, the species responsible for the 1655 and 1290 cm⁻¹ bands have been eliminated.

Note the relative intensities around 1600 cm⁻¹. As the activation temperature increase, the relative intensities of 1620 and 1591 cm⁻¹ are higher (Fig 8.4). When the samples are highly dehydroxylated, there will be more acid sites, and the formation of bidentate and bridging NO₃⁻ may be more favourable.

There are at least two bands near 1250 cm⁻¹ beside the 1290 cm⁻¹ band. With a small dose of NO₂ there are apparently bands at 1230 and 1250 cm⁻¹ (spectrum b in Fig 8.2 lower part). With more NO₂ is added, the strong 1250 cm⁻¹ band covers the band at 1230 cm⁻¹.

Thermal treatments usually can help us understand the bonding modes of surface species. All species in this region are relatively stable to thermal treatment. Under evacuation and heating over 200 °C, all these bands (around 1200-1700 cm⁻¹) decrease in intensity, and after heating over 350 °C, the bands around 1200-1700 cm⁻¹ can be eliminated. The order of thermal stability of the spectral features is: 1591 ≈ 1565 > 1620 > 1655 cm⁻¹ and 1250 = 1230 > 1290 cm⁻¹.

From the above the discussion, we tend to assign the bands as follows:

1565 - 1230 cm⁻¹ to unidentate NO₃⁻ (Δν₂ = 330 cm⁻¹),
1591 - 1250 cm⁻¹ to bridging (or polydentate) NO₃⁻ (Δν₂ = 340 cm⁻¹),
1620 - 1230 cm⁻¹ to bidentate NO₃⁻ (Δν₂ = 390 cm⁻¹).

175
1657 - 1290 cm\(^{-1}\) to HONO\(_2\). \((\Delta v_3 = 370\ cm\(^{-1}\)).\)

The stabilities of NO\(_3^+\) toward SO\(_2\) are in accord with this assignment [see part 4, 5]. After addition of SO\(_2\), the band at 1565 cm\(^{-1}\) will lose more intensity since unidentate species are less stable compared with the others.

This conclusion is different from reference [21]. This assignment is also different from reference [17], in which bridging species were assigned to higher vibrational wave number.

Comparing with CO\(_2\) on alumina [19], \(\Delta v_3\) [\(\Delta v_3 = v_4 (CO_3) - v_2 (CO_3)\)] of unidentate carbonate is the smallest, and the \(\Delta v_3\) of bidentate carbonates are larger than that of polydentate carbonates. In our assignments, \(\Delta v_3\) of different species agree with this order though all these three \(\Delta v_3\) values are not markedly different from each other.

(3). NO\(_2\) adsorption on CuO/Al\(_2\)O\(_3\)

Adding NO\(_2\) to CuO/Al\(_2\)O\(_3\) (activated at 450 °C) also gives the bands around 1600 and 1240 cm\(^{-1}\) as on pure Al(450), but copper impregnated sample shows some distinct bands between 1800-2300 cm\(^{-1}\) (Fig 8.5 b). This is quite different from pure alumina Al(450) which has only weak bands around 1960 cm\(^{-1}\) (Fig 8.5 a). As from the previous discussion in section (2), the band around 1960 cm\(^{-1}\) is assigned to NO on Al\(^{3+}\) sites. NO in the gas phase has a band at about 1876 cm\(^{-1}\), and NO\(^+\) species have bands around 2300 cm\(^{-1}\). (N\(_2\)O has bands at about 2215 and 2240 cm\(^{-1}\).) The band found in this experiment at 2340 cm\(^{-1}\) (very weak) is assigned to NO\(^+\) species at Cu\(^{2+}\) sites and the band at 2210 cm\(^{-1}\) is the vibration of N\(_2\)O on surface.

Apparently, the introduction of CuO on alumina greatly increases the reducing power. Without the existence of reductants, part of the NO\(_2\) can be reduced to NO\(^+\) and NO, or even lower oxidation states (like N\(_2\)O). The oxidation of surface Cu\(^+\) to Cu\(^{2+}\) must be invoked to explain the reduction of NO\(_2\):

\[2Cu^+ + NO_2 \rightarrow 2Cu^{2+}(O) + NO. \]
Fig 8.5 The adsorption of NO₂ (1.0 Torr) on pure Al₂O₃ (A), and on CuO/Al₂O₃ (B). Both catalysts have been activated at 450 °C for 1 hour under evacuation.
The oxidation of Cu^+ and Cu^0 can be clearly demonstrated by adding CO to CuO/Al$_2$O$_3$ before or after introducing NO$_2$. Adsorption of CO before gives bands due to Cu$^+$-CO (2126 cm$^{-1}$) as well as Cu0-CO (2106 cm$^{-1}$). All these CO bands can be eliminated immediately if we then introduce NO$_2$ to cell (not shown). If CO is added after NO$_2$ preadsorption, no CO bands are observed. (Cu$^{2+}$-CO band are very weak at room temperature. Some CO may react with NO$_2$ to produce NO, but the presence of the excess CO still does not produce a Cu$^+$-CO band). The formation of Cu$^{2+}$-NO complex should produce an absorption band at about 1780 cm$^{-1}$. It is possible that all Cu$^+$ and Cu0 sites are oxidized to Cu$^{2+}$ by the addition of NO$_2$. In probing Cu/Al$_2$O$_3$ with CO and NO (section 1), we found that there were only very few Cu$^+$ or Cu0 species on the surface. Increasing the number of Cu$^+$ would increase the reducing power of the copper catalysts.

In section (2-ii), we noticed that some weak bands at about 1960 cm$^{-1}$, which were assigned to NO species, are found on the high temperature activated alumina. By comparison with the change from Cu$^+$ to Cu$^{2+}$ on CuO/Al$_2$O$_3$ catalyst, it is possible that some similar process happens on pure alumina catalyst. Two neighboring coordinately unsaturated aluminum ions may react with NO$_2$ to give NO:

$$2\text{Al}^{2+} + \text{NO}_2 \rightarrow 2\text{Al}^{(n-1)+}(O) + \text{NO}.$$

The bond strength of O-NO is about 305 kJ/mol at 25 °C and is even less than that of H-SH (381 kJ/mol) [25], which was found to be decomposed on Al$_2$O$_3$. The cleavage of O-SO bond has also been observed on alumina [26] and the bond strength in this case is much higher, about 552 kJ/mol. Therefore, the reaction above is possible. It is evident that a high activation temperature favours the formation of coordinatively unsaturated surface Al ions, therefore, more intense NO bands can be found, as shown on Al(800) and Al(1000). This process must involve two adjacent Al ions and the abundance of this defect (coordinatively unsaturated Al ions adjacent to each other) is not expected to be large.
(4). Adsorption of NO$_2$, then SO$_2$

When SO$_2$ is added to an NO$_2$ treated Al$_2$O$_3$ sample, the bands due to preadsorbed NO$_2$ show surprisingly little change. Only after a longer contact time, do we observe a decrease in intensity in the NO$_3^-$ vibration region (Fig 8.6). The band at 1565 cm$^{-1}$ decreases much more. It is consistent with our previous assignment that the band at 1565 cm$^{-1}$ is due to a unidentate NO$_3^-$ species and that it is less toward to SO$_2$. The addition of SO$_2$ on high temperature activation alumina pretreated with NO$_2$ usually splits the broad band at 1960 cm$^{-1}$ into two species, one being at 1938 cm$^{-1}$ and the other at 1987 cm$^{-1}$. They are assigned to NO adsorbed on different Al$^{3+}$ sites.

Adding SO$_2$ to a Cu/Al$_2$O$_3$ sample with preadsorbed NO$_2$ causes all NO$_3^-$ bands to decrease gradually, and an intense and broad band due to sulfur species is seen in the 1000-1400 cm$^{-1}$ region. The broad bands from 1860 to 2300 cm$^{-1}$ also become more intense (see Fig 8.7). After a longer contact time, there are strong bands around 1045, 1150 and 1370 cm$^{-1}$. Because these bands also appear when a mixture of (NO$_2$ + SO$_2$) is added to Al$_2$O$_3$, and they are strongly adsorbed on the surface, we tend to assign them to sulfate species. The bands around 1045 and 1370 cm$^{-1}$ are probably from the surface sulfate species, which can be confirmed by the sulfation of Al$_2$O$_3$ with SO$_2$ and O$_2$ or by impregnation of Al$_2$O$_3$ with Al$_2$(SO$_4$)$_3$$\cdot$18H$_2$O [27]. The broad bands around 1150 cm$^{-1}$ may be assigned to the bulk sulfate ions [28]. Their presence suggests that some SO$_2$ gas has been oxidized to SO$_4^{2-}$ species at the expense of NO$_3^-$ species. The bands responsible for sulfate species are resistant to thermal decomposition up to 500 °C.

Interestingly, in the region from 1800 to 2300 cm$^{-1}$ in another experiment (see Fig 8.8), the broad band near 1970 cm$^{-1}$ disappears gradually and new broad bands at about 2080 cm$^{-1}$ are produced. Usually the broad band at 1900 cm$^{-1}$ is asymmetric, and at best we can observe at least two bands at about 1876 and 1898 cm$^{-1}$. With the adsorption of SO$_2$ the shoulder at 1876 cm$^{-1}$ gradually disappears and species at 1898 cm$^{-1}$ shifts to about 1900 cm$^{-1}$ and becomes symmetric.

The band at 1970 cm$^{-1}$ has been assigned to NO on an Al$^{3+}$ site, but this species is less stable
Fig 8.6 Adsorption of NO₂ then SO₂ on Al₂O₃

(a). 0.30 Torr of NO₂ in contact with Al(1000) for 20', then evacuate for 10'.
(b). 0.28 Torr of SO₂ is added to (a) for 20'.
Fig 8.7 Adsorption of NO₂, then SO₂ on CuO/Al₂O₃,

(a). 1.44 Torr of NO₂ in contact with CuO/Al₂O₃(450) for 15’, then evacuation for 5’.
(b). 1.74 Torr of SO₂ is added to (a).
(c). after 4 hours.
Fig 8.8 Adsorption of NO$_2$, then SO$_2$ on CuO/Al$_2$O$_3$

(A). add NO$_2$ 1.00 Torr and stand for 15 minutes. (B). evacuate for 5 minutes. (C). add SO$_2$ 1.24 Torr. (D). after 15 minutes (E). after 45 minutes. (F). evacuate for 5 minutes.
and NO will transfer to Cu2+ sites to form a more stable Cu2+-NO species, which results in an increase in intensity at about 1900 cm-1. For longer contact time or with high pressure of NO\textsubscript{2} and SO\textsubscript{2} gases, the band peak at 2215 cm-1 will shift to higher wavenumber at about 2240 cm-1. The bands at 2240 and 2215 cm-1 obviously belong to N\textsubscript{2}O species. The broad band at about 2080 cm-1 has not yet been assigned.

We have observed that the surface Cu2+ ions are not in a uniform environment, and a broad band from 1875 to 1930 cm-1 appears when NO\textsubscript{2} is added. With the addition of SO\textsubscript{2}, the shoulder band at 1876 cm-1 disappears and a strong band at 1900 cm-1 becomes symmetric. This demonstrates that the SO\textsubscript{2} is predominantly adsorbed at basic sites which are connected with Cu2+ ions on the CuO surface. (And probably will react with isolated Cu2+, but this species is so little in concentration that we couldn’t make any conclusion.) The Cu2+ ions in CuAl\textsubscript{2}O\textsubscript{4} type are still available for the adsorption of NO, which is responsible for the band at 1900 cm-1.

(5). Adsorption of SO\textsubscript{2}, then NO\textsubscript{2}

When SO\textsubscript{2} is added to pure Al\textsubscript{2}O\textsubscript{3}, we observe the chemisorbed species at 1050 cm-1 and a weak band at 1325 cm-1 (as shown in chapter 3). The adsorption sites that produce the species to give the 1050 cm-1 band, as discussed before, are surface Lewis basic O2- sites. On adding NO\textsubscript{2}, besides all NO\textsubscript{2} bands which appear when NO\textsubscript{2} is added alone, all SO\textsubscript{2} derived bands increase in intensity (not shown). There are also new bands near 1150 and 1350 cm-1 (broad). The bands around 2200 and 1960 cm-1 become more intense. This is especially noticeable with Al\textsubscript{2}O\textsubscript{3} activated at higher temperatures.

It looks as if NO\textsubscript{2} and SO\textsubscript{2} absorb on Al\textsubscript{2}O\textsubscript{3} on different sites and do not affect each other very much. However, SO\textsubscript{2} preadsorption promotes NO\textsubscript{2} interaction with alumina, producing more NO+ and NO. It is also possible that preadsorption of SO\textsubscript{2} might create more acidic sites because SO\textsubscript{2} attacks Lewis basic sites. NO species attack acid sites, like surface cations, to give the intense bands around 1900-2250 cm-1.

183
Adding SO$_2$ to CuO/Al$_2$O$_3$ gives a somewhat similar spectrum to that which was observed with pure alumina. However, the introduction of CuO provides more complicated micro-environments and increases the basicity of the surface. Therefore different adsorbed states are expected to occur. There are weak bands at about 1325 cm$^{-1}$. The 1050 cm$^{-1}$ band which usually appeared on pure Al$_2$O$_3$ is now at 1040 cm$^{-1}$ (see Fig 8.9 A). We have shown that SO$_2$ predominately adsorbs on the basic sites which are connected with Cu$^{2+}$ ions of CuO phase, but not with the Cu$^{2+}$ ions in CuAl$_2$O$_4$ forms. Adding CO on CuO/Al$_2$O$_3$, in another experiment, we get bands at 2170 (weak), 2122 and 2106 cm$^{-1}$. At this stage, adsorption of SO$_2$ eliminates the 2170 cm$^{-1}$ band immediately, and the band at 2106 cm$^{-1}$ decreases gradually and finally disappears, while the band at 2122 cm$^{-1}$ shifts to 2130 cm$^{-1}$ then gradually moves back to 2126 cm$^{-1}$ (Fig 8.10). Because SO$_2$ first attacks the basic sites which connects Cu$^{4+}$ ions in CuO phase, the Cu$^{2+}$-CO species at 2170 cm$^{-1}$ (mainly from Cu$^{3+}$ on CuO surface) is eliminated quickly. To explain why the band at 2122 cm$^{-1}$ shifts to 2130 cm$^{-1}$ with the addition of SO$_2$, it is suggested that the electron density of the Cu$^+$ site is lowered by the formation of neighbouring O\rightarrowSO$_2$ species. In this way, the electron pair on the C atom moves more closely to the metal centre and strengthens the C-O bond, shifting the C-O frequency to higher wavenumber. As time passes, the band at 2130 cm$^{-1}$ can move back to 2126 cm$^{-1}$. This may suggest that the environment of Cu$^+$ has been changed. For example, the Cu$^+$$\rightarrow$O-Cu$^{2+}$ bonds could break or some new sulfur species could be formed. There are many ways to try to account for the shift of this band, but speculation is unwarranted.

A most interesting observation is the behaviour of the band at 2106 cm$^{-1}$ (see Fig 8.10). This Cu0-CO band gradually disappears, which suggests that the Cu0 species has been oxidized. Because the band at 2126 cm$^{-1}$ (due to Cu$^+$-CO) does not increase, the Cu0 species might be oxidized to Cu$^{2+}$. This transfer is a slow process. In the absence of NO$_x$ or other oxidizing agents, the possible mechanism is that SO$_2$ dissociates on Cu0 sites to give SO and O species. Leung et al. have demonstrated this phenomena on the Cu(100) surface [16]. Our experiments also demonstrate that SO$_2$ is dissociated to SO and O atoms on Cu0 sites in this Cu/Al$_2$O$_3$ catalyst.
Fig 8.9 Adsorption of SO$_2$, then NO$_2$ on CuO/Al$_2$O$_3$

(A). add SO$_2$ 1.40 Torr and stand for 15 minutes, then evacuate for 5 minutes. (B). add NO$_2$ 1.77 Torr. (C). after 30 minutes.
Fig 8.10 Adsorption of CO and SO$_2$ on CuO/Al$_2$O$_3$
Finally, adding NO₂ to a CuO/Al₂O₃ sample after SO₂ results in the formation of broad bands at about 1900, 2060 and 2215 cm⁻¹ (Fig 8.9 B-C). The band at 1900 cm⁻¹ is apparently symmetric. This observation also supports the fact that there is only one kind of surface Cu²⁺ ion available after SO₂ treatment. The Cu²⁺ ions on the CuO surface have been connected with SO₄ species and Cu²⁺ in other sites are still free to adsorb NO to give a 1900 cm⁻¹ band. Since the bands due to nitrogen containing species in lower oxidation states are more intense when SO₂ has been preadsorbed, it is suggested that surface copper sulfate species favour the reduction of NO₂ to NO or other lower oxidation state species.

4. CONCLUSION

(1). Al₂O₃ has a catalytic capacity to reduce NO₂ to NO and NO⁺. The higher the activation temperature, the more NO and NO⁺ are found. The reduction sites may involve two coordinatively unsaturated Al³⁺ ions. The adsorption of NO₂ on Al₂O₃ to form NO₃⁻ species is so strong that the catalytic capacity is reduced. The assignments of differently coordinated NO₃⁻ are also obtained.

(2). Preadsorption of SO₂ increases the ability of Al₂O₃ to reduce NO₂ to NO and NO⁺. In the development of the SCR (Selective Catalytic Reduction) process, a number of problems exist. One of them is that the catalysts (customarily used for this process are metal oxides supported on TiO₂ and zeolite) are easily poisoned by SOₓ. Alumina seems to have higher resistance to SOₓ poisons. This may be useful in the SCR process in which NOₓ are reduced by NH₃ to N₂. On the other hand, preadsorption of NO₂ on Al₂O₃ increases the amount of SO₂ adsorbed. It gives strong bands at 1150 and 1370 cm⁻¹, which belong to sulfate species.

(3). For the CuO/Al₂O₃ catalyst investigated here (containing 1% Cu), there mainly exist Cu²⁺ cations on CuO phase, Cu²⁺ ions in aluminate types, very few isolated Cu²⁺ in Al₂O₃ lattice, and a few Cu⁺ ions in Cu⁺-O-Cuₓ⁺ (x=1,2) states as well as a few Cu⁰ sites.
(4). Addition of copper greatly increases the ability of alumina to reduce NO₂ to NO. The possible mechanism might involve the reaction \(2\text{Cu}^+ + \text{NO}_2 \rightarrow 2\text{Cu}^{2+} \text{(O)} + \text{NO} \), which suggests that an increase of Cu⁺ content would greatly promote the reducing activity of the catalysts. The impregnated sample also greatly decreases the stability of NO₃⁻ toward to SO₂.

(5). It seems SO₂ mostly adsorbs on surface basic sites which are connected with Cu²⁺ ions of CuO phase to form surface sulfate species and leave aluminate like Cu²⁺ cations (CuAl₂O₄) free to adsorb NO.

(6). SO₂ can be adsorbed on Cu⁰ sites to dissociate to SO and O species.

(7). Sulfated copper species on the surface can promote the reduction of NO₂ to NO, NO⁺ and N₂O.

Elucidation of the detailed structure of the active centres and the mechanism proposed to account for these observations in this work call for further investigation.

References

Chapter 9

 ADSORPTION OF PENTAMETHYLANTIMONY (SbMe₅) ON SILICA (SiO₂)

1. INTRODUCTION

The chemical vapour deposition (CVD) of volatile organometallic compounds on oxide surfaces is a useful method for preparing novel mixed oxide catalysts [1-5]. When the organometallic species is an alkyl compound, additional information regarding the texture of the surface and the structure of the surface hydroxyl layer can be obtained [6,7]. Such organoalkyls are part of a class of compounds generally known as hydrogen sequestering (HS) agents by virtue of their ability to react with surface OH groups [7,8]. Reactions of surface OH groups with HS agents, in practice, are also important in many other areas of chemistry [9-14]. Examples are chemical synthesis, heterogeneous catalysis and surface modifications. Particular interest has been directed toward the use of methyl derivatives of Zn [15], Cd [16], Hg [17], Al [18], and Ga [19] because they are relatively small and they are capable of sequestering a large number of surface hydroxyl groups.

Pentamethylantimony, SbMe₅, is a potential HS agent whose reactivity with oxides has not been explored, although its reaction with the hydroxyl groups on a partially condensed silsesquioxane has been confirmed [20]. Its reaction with various hydroxyl configurations on SiO₂ might be expected to occur as follows:

SINGLE: \[\text{SiOH} + \text{SbMe}_5 \rightarrow \text{SiOSbMe}_4 + \text{CH}_4 \] (1)

H-BONDED: \[\frac{\text{SiOH} \quad \text{SbMe}_5}{\text{Si-O}} \rightarrow \frac{\text{Si-O}}{\text{SbMe}_3 + 2\text{CH}_4} \] (2)

190
GEMINAL:

\[
\begin{align*}
\text{Si} & \quad \text{OH} + \text{SbMe}_3 \quad \longrightarrow \quad \text{Si} & \quad \text{O} \quad \text{SbMe}_3 + 2\text{CH}_4 \\
\text{Si} & \quad \text{OH} & \quad \text{O} \quad \text{SbMe}_3 + 2\text{CH}_4
\end{align*}
\]

In addition, as has been previously found for AlMe₃, SbMe₃ might react with siloxane sites as follows:

\[
\begin{align*}
\text{Si} & \quad \text{O} \quad \text{SbMe}_3 + 2\text{CH}_4
\end{align*}
\]

We report here a detailed study of the chemisorption of SbMe₃ on a fumed or pyrogenic silica, the thermal stability of the sequestered surface, and its reaction with H₂O, HCl and HBr.

The silica used in these experiments was Cab-O-Sil grade HS-5, which is commercially available from Cabot Inc., U.S.A. It had a BET surface area of 325 m²/g and was used "as received". This silica has been fully characterized previously in our laboratory, both with respect to the accessibility of the surface silanols to other HS reagents [6,7], and to H/D exchange probes of varying steric sizes [6]. The surface silanol density after activation at 150 °C is 3.1/nm² of which 2.5/nm² can undergo H/D exchange using D₂O or ND₃. About 1.1 of these are isolated silanols (single or geminal), 1.4 are hydrogen-bonded (single or geminal) and 0.6 are inaccessible due to interparticle contact. After vacuum activation at 450 °C only isolated silanols remain, the density being about 1.4/nm². Following vacuum activation at 1000 °C the density of the silanols falls to about 0.5/nm². In this text, as before, we will designate each silica sample by the symbol Si(C) where "C" is the temperature of activation in degrees Celsius.

The sample of SbMe₃ is kindly provided by Dr. Frank J. Feher, Professor of the University of California, Irvine.
2. RESULTS

(1) Reaction between SbMe₃ and SiO₂

The infrared of Si(150) from 4000 to 2500 cm⁻¹ is dominated by a sharp feature at 3747 cm⁻¹ due to isolated non-interacting surface silanol groups. This peak is accompanied by broader features at 3720, 3650 and 3520 cm⁻¹ (Figure 9.1, also see Chapter 5). The 3720 and 3520 cm⁻¹ spectral features are due to H-bonded SiOH groups and the 3650 cm⁻¹ band is due to silanols which are perturbed due to interparticle contact. The 3520 cm⁻¹ band is assumed to be due to H-bonded SiOH groups that act as proton donors, while the band at 3720 cm⁻¹ is assumed to be due to H-bonded accepting SiOH groups.

\[\ce{H-|O=|O-H} \]\n
Heating under vacuum at 450 °C removes most of the H-bonded and perturbed silanols (eliminated by condensation of silanols to yield siloxane bridges and water) leaving an intense peak at 3747 cm⁻¹ which is asymmetric to low wavenumber (Figure 9.1B). Finally, activation at 800 to 1000 °C results in the removal of the low wavenumber asymmetry leaving a relatively sharp and symmetric peak at 3747 cm⁻¹ (Figure 9.1C).

The perturbed silanols (3650 cm⁻¹) are inaccessible to most HS agents whereas all of the isolated silanols react with typical HS agents [6,7]. Depending on the molecular size and the degree of steric hindrance, the H-bonded silanols are more or less accessible to most HS agents (and H/D exchange agents). Figure 1A’, 1B’ and 1C’ show the resultant IR spectra after completely reaction (i.e. no further spectral changes can be found, usually after 1 hour of adsorption) of Si(150), Si(450) and Si(1000) respectively with excess SbMe₃ at room temperature, and after evacuation of the gas phase for 5 minutes.

In every case, new spectral features appeared in the CH₂ stretching region from 3000 to 2800 cm⁻¹, the most intense peak being near 2970 cm⁻¹. Figure 9.2 shows the corresponding difference
Fig. 9.1 Infrared spectra of silica after activation in vacuum for 1 hour at 150 °C (A), 450 °C (B) or 1000 °C (C). Curves A', B' and C' are the infrared spectra which were observed after complete reaction of each silica surface with excess SbMe₃ at room temperature followed by evacuation for 5 min. Figures A and B have been displaced for convenience of display.
spectra after subtraction of the spectra before reaction from that after complete reaction; peaks going down correspond to spectral features which have been eliminated by the reaction, those pointing upward correspond to the creation of new spectral features. The inset to Figure 9.2 shows the CH$_2$ stretching region for each silica, each spectrum having been scaled so that the 2970 cm$^{-1}$ peak has the same maximum intensity.

Activated temperatures of silica from 150 to 1000 °C do not affect chemisorption spectra very much in the region 3200 to 500 cm$^{-1}$ (there are two opaque regions below 1300 cm$^{-1}$). The spectra in the CH stretching region in Figure 9.2 are qualitatively similar, apart from minor shifts in wavenumber, suggesting that the same product distribution is formed regardless of the temperature of activation of the silica. The wavenumbers (± 2 cm$^{-1}$) of the observed features are 3010, 2972, 2930, 2910 and 2800 cm$^{-1}$. Gaseous or physically adsorbed SbMe$_5$ has IR bands at 3010, 2960, 2915 and 2900 cm$^{-1}$. In each case, methane was the only gas phase product of the reaction. We will show later in discussion part that a single product, SiOSbMe$_4$, is formed as a result of reaction (1) or (3b).

Thin silica disks are opaque to infrared radiation between about 1300 to 1000 cm$^{-1}$ (Figure 9.3A). Outside of these regions, additional IR bands for SbMe$_5$/SiO$_2$ were observed at 1412, 860, 700 and 564 cm$^{-1}$ (Figure 9.3B). The IR spectrum of gaseous or physically adsorbed SbMe$_5$ has several CH$_3$ deformation modes near 1412 cm$^{-1}$, four CH$_3$ rocking modes at 827, 772, 729 and 694 cm$^{-1}$ (all very sharp and intense) and 516 cm$^{-1}$ (IR active asymmetrical equatorial Sb-C stretching mode) [21].

For Si(450) or Si(1000), the course of the reaction is too fast to be followed using infrared spectroscopy when an excess of reactant is present. The band at 3747 cm$^{-1}$ disappears in about five seconds, the time required to carry out a single scan. However, for Si(150), the interaction between SbMe$_5$ and SiO$_2$ surface is a relatively slow process. Then, the differences in the rate of reaction between isolated and hydrogen-bonded silanols can be seen if the quantity of reactant added is equal to the number of accessible silanols. Figure 9.4 shows such a series of spectra in the OH stretching region.
Fig 9.2 Infrared difference spectra from Figure 1, showing the spectral changes observed following reaction with SbMe₅. Curve A corresponds to [A' minus A] from figure 1, and so forth for B and C. The inset reproduces the above spectra in the CH stretching region after normalization so that the intensities of the strongest peak near 2970 cm⁻¹ are equal.
Fig 9.3 A, background infrared spectrum of 4 mg/cm² Si(450). B, difference infrared spectrum (after subtraction of curve A) following complete reaction of the silica spectrum shown in curve A from that after reaction with SbMe₅. The excessive noise level between about 1250 and 1020 cm⁻¹ is due to the total absorption for both samples in this spectral region.
Fig 9.4 A, infrared spectra of Si(150). B to H, infrared spectrum observed immediately after addition of SbMe$_3$ (Curve B) and, with decreasing intensity following curve B, after 10, 20, 40, 60, 120 and 180 seconds. Inset. From bottom to top, difference spectra showing the silanols which have reacted immediately after addition of SbMe$_3$ (bottom curve) and during 10 second intervals thereafter at 10, 20, 30 and 40 seconds.
Details of the reaction are more clearly seen in difference spectra which show what has 'reacted' during selected time intervals. The inset to Figure 9.4 shows such spectra recorded at 10 second intervals during the first 40 seconds of reaction. The peaks going down represent silanols which have reacted during each time interval. Note that although there was continuing reaction of the isolated silanols after about 30 seconds, there was essentially no further reaction of the hydrogen-bonded silanols, as evidenced by the bands at 3720 and 3520 cm\(^{-1}\) which reacted during the first three reaction intervals but not thereafter. This shows that the hydrogen-bonded hydroxyls are more active toward to SbMe\(_5\). Finally, if the quantity of SbMe\(_5\) added was twice the number of accessible silanols, the spectral features were qualitatively similar but the reaction rate was faster.

(2). Thermal stability

In the second part of experiment, the samples are heated at various temperatures after adsorption of SbMe\(_5\) and after evacuation for five minutes.

A fully reacted Si(150) was heated under evacuation for 1 hour at 100 °C, 200 °C, 250 °C and 300 °C and spectra in the 3900 to 2700 cm\(^{-1}\) spectral region are shown in Figure 9.5. The most noticeable effects were the appearance of a sharp peak near 2858 cm\(^{-1}\) which particularly intensified after heating at or above 250 °C, and the partial reappearance of the 3747 cm\(^{-1}\) isolated silanol band. The bands at 3010 and 2910 cm\(^{-1}\) diminish and a new peak at 2959 cm\(^{-1}\) appears. After heating at 300 °C, the spectrum in the CH\(_2\) stretching region was virtually identical to that of a methoxylated silica containing surface SiOCH\(_3\) groups [22]. There are bands at 2990, 2959, 2928 and 2858 cm\(^{-1}\) in CH\(_3\) stretching vibration region. There is also 1466 cm\(^{-1}\) (does not show). For 250 °C heating the spectrum was a mixture of that due to the initially observed species and SiOCH\(_3\). A similar result was obtained if the silica had been activated at a higher temperature such that only isolated silanols were initially present. Finally, the gaseous products after heating to 300 °C were trapped and analyzed by infrared and mass spectroscopy. Both indicated that SbMe\(_5\) was the sole gas phase product [23,24].
Fig 9.5 A. infrared spectrum of Si(150) after complete reaction with SbMe$_3$. Curves (B) - (E) show the IR spectra recorded after heating under vacuum for 1 h at the indicated temperature.
(3). Reaction with H_2O

Addition of water vapour (8 Torr) to $\text{SbMe}_3/\text{SiO}_2(450)$ system after complete reaction at room temperature did not alter the spectrum of "adsorbed SbMe_3". In OH stretching region, a broad band from 3000 cm$^{-1}$ to 3660 cm$^{-1}$ was formed (not shown). This is due to the physically adsorbed water, which has a characteristic vibration near 3400 cm$^{-1}$. Evacuation at 100 °C removed physically adsorbed water and restored the initially spectrum in observation region. We conclude that the surface species is very stable toward water in room temperature.

(4). Reactions with HX

Treating SbMe_3 with HX gives methane and Me_3SbX [25]. In the same fashion, addition of excess HCl gas to SbMe_3 sequestered Si(450) (Figure 9.6A) yielded the infrared spectrum shown in Figure 9.6B. Apart from the very broad and intense feature centred at 3150 cm$^{-1}$, there was partial restoration of the 3747 cm$^{-1}$ peak and in the CH$_4$ region there was a new band at 3025 cm$^{-1}$ in addition to the sharp feature at 2930 cm$^{-1}$, and the shoulder near 2910 cm$^{-1}$ had disappeared. Only unreacted HCl was seen in the gas phase spectrum. Heating at 100 °C for 1 hour after evacuation of the gas phase caused a decrease in the intensity of all bands below 3700 cm$^{-1}$ and a further increase in intensity of the 3747 cm$^{-1}$ band (Figure 9.6C). These change progressed further after additional heating at 100 °C (Figure 9.6D). Finally, heating at 150 °C caused removal of virtually all SbMe_3 created features in the CH$_4$ stretching region and complete restore of the 3747 cm$^{-1}$ band to its intensity prior to reaction with SbMe_3 (Figure 9.6E).

In the low wavenumber spectral region, infrared bands near 1412 and 700 cm$^{-1}$ changed slightly in intensity following addition of HCl but there was no frequency shift. The peak at 860 cm$^{-1}$ shifted to 870 cm$^{-1}$, that at 564 cm$^{-1}$ shifted to 570 cm$^{-1}$.

Finally, the spectra observed following addition of HBr in place of HCl. The spectrum was virtually identical to those as that happened with HCl in Figure 9.6.
Fig 9.6 A, infrared spectrum of Si(450) after complete reaction with SbMe₃. B, infrared spectrum after addition of 9 Torr of HCl to A. C, spectrum after evacuation of B and heating under vacuum at 100 °C for 1 h. D, heating after spectrum in C for an additional 1.5 h at 100 °C. E, heating at 150 °C under vacuum for 1 h.
3. DISCUSSION

(1). Formation of the surface Si-OSbMe₄

The reaction of SbMe₅ with silica appears to be remarkably simple. Regardless of the temperature of activation or the degree of hydrogen bonding of the silanols, the observed spectral features over the accessible range were the same. Four peaks in C-H stretching region for all silica samples are in constant proportion. Further, in experiments where small incremental doses of SbMe₅ were added, even at the first appearance of a spectrum in the CHₓ region the relative intensities and frequencies of the observed bands were the same as those which were observed for saturation coverage (spectra not shown). This was also true in the case of Si(1000) where a reaction with siloxane sites might be expected. That is, there was no evidence for the formation of SiCH₃ and we conclude that reaction (4) does not occur to a significant extent. The spectral evidence (see below) suggests that SiOSbMe₄ is the major surface species formed, probably via reactions (1) and (3b). The activation temperature does not play an important role in this situation but on lower temperature activated silica, more OH groups are available and therefore, more surface antimony species are produced. There is no evidence for the formation of >SbMe₃ surface species via a reaction with geminal silanols as depicted in scheme (3a).

Further evidence for the formation of Si-O-SbMe₄ is that there is a band at 564 cm⁻¹. No matter what activation temperature is used, there is always a band at 564 cm⁻¹ when SbMe₅ is added. According to reference [26], the assignments for vₐ (MC, Sb-C₃ stretching modes) are:

- (CH₃)₃Sb 513 cm⁻¹
- (CH₃)₃Sb²⁺ 582 cm⁻¹
- (CH₃)₄Sb⁺ 574 cm⁻¹
- (CH₃)₅Sb 516 cm⁻¹.

We observed 517 cm⁻¹ for SbMe₅ (gas phase), while the chemisorbed band at 564 cm⁻¹ is much closer to the band of (CH₃)₄Sb⁺ and this further supports our assignment to the sole product as SiOSbMe₄.
The rocking modes of SbMe₃ lie between 829 and 694 cm⁻¹ and the new infrared bands observed in this spectral region for SbMe₃/SiO₂ at 858 and 700 cm⁻¹ undoubtedly can be assigned to the rocking modes of SiOSbMe₄. For example, Sb-CH₃ rocking modes in a series of XOSbMe₄ compounds [25] occur near 840 and 690 cm⁻¹. Finally, the 1412 cm⁻¹ band which is common to most SbMe₃ species is a CH₃ angle deformation mode, and the weak peak at 2800 cm⁻¹ would most reasonably be the overtone.

In time resolved experiments (Figure 9.4) or in incremental titration experiments (not shown) where SbMe₃ was added to hydroxylated Si(150), there was again no evidence for the formation of more than one chemisorbed Sb-methyl containing surface species. In the entire spectral range the bands created were identical regardless of the temperature of activation. Therefore, hydrogen-bonded silanols do not react according to reaction 2, but rather, as with most other reactive methyl containing HS agents [6,7], they react as depicted in scheme (1). However, the hydrogen-bonded silanols which are accessible to the reactant react faster than those which are isolated (disappearance of the 3720/3520 cm⁻¹ bands, see Figure 9.4). A similar result was found by Feher for reaction of SbMe₃ with a partially condensed silsesquioxane [20].

(2). Stability to thermal treatment

Although the chemisorbed product is relatively thermally stable, heating at 300 °C results in the formation of SiOCH₃ and gaseous SbMe₃. The reaction is apparently:

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{CH}_3 - \text{Sb} & \quad \downarrow \quad \Delta \\
\text{CH}_3 & \quad \rightarrow \\
\text{O} & \quad + \quad \text{Sb(CH}_3)_3 \uparrow
\end{align*}
\]

According to Yates et al. [27], bands at 3000, 2962, 2857, and 1470 cm⁻¹ represent SiOCH₃. (1466 cm⁻¹ is the deformation frequencies of -OCH₃). It is very reasonable to believe that the
peaks at 2990, 2959, 2857, 1466 cm\(^{-1}\) in our experiments are come from Si-O-CH\(_3\).

(3). Stability to water vapour

The stability of the surface species to water vapour was somewhat surprising relative to other metal-methyl HS agents giving the normal propensity for the metal-carbon bond to cleave to yield methane and MOH. However, it seems that the OSbMe\(_4\) species is remarkably stable to hydrolysis in other compounds (Me\(_4\)SbOH is stable in aqueous solution [24,28]).

(4). Formation of XSbMe\(_4\)

In the reaction with HCl, the intensity of the band due to isolated SiOH was restored after mild heating. The complete reaction would be:

\[
\text{SiO} \text{SbMe}_4 + \text{HCl} \rightarrow \text{SiOH} + \text{ClSbMe}_4
\] (6)

We did not detect methane in the gas phase, instead, some FSbMe\(_4\) type species was found on the sample and on cell windows. The compound FSbMe\(_4\) has pronounced IR bands in the CH stretching region at 3018 and 2930 cm\(^{-1}\) [29], as compared to the bands at 3025 and 2930 cm\(^{-1}\) in the present case. A prominent peak in the range from 3000 to 3020 cm\(^{-1}\) is also a common feature of other XSbMe\(_4\) or XOSbMe\(_4\) compounds [30]. Infrared bands near 870 and 700 cm\(^{-1}\) are not inconsistent with the formation of ClSbMe\(_4\). This molecule would be expected to strongly interact with the generated SiOH groups giving rise to the broad band having a maximum near 3200 cm\(^{-1}\). This disappears after heating under vacuum at about 150 °C as the ClSbMe\(_4\) is removed from the reaction cell and the isolated SiOH peak is completely restored.

4. CONCLUSION

\(\equiv\text{SiO} \text{SbMe}_4\) is the only detectable product of the reaction between silica and SbMe\(_3\) regardless of the temperature of activation (room temperature to 1000 °C). When present, the
hydrogen-bonded silanols react to completion faster than the isolated silanols. Unlike other reactive metal-alkyl compounds, there was no evidence for a significant reaction with siloxane sites. The chemisorbed species does not react with water vapour at room temperature or at 100 °C. However, upon heating to 250 to 300 °C it decomposes to yield surface SiOMe groups and gaseous SbMe₂. Finally, the surface OH groups can be regenerated by adding HX agents to SbMe₂/SiO₂ and heating at about 150 °C under evacuation.

As a final note, SbMe₃ reacts with accessible surface silanols to produce only one species, Si-O-SbMe₄. Therefore, SbMe₃ might be an ideal methyl containing HS agent for the accurate determination of the number of hydroxyl groups on Si(450) to Si(1000) because, unlike AlMe₃, there is no significant reaction with siloxane sites (reaction 4). Additionally, a gravimetric measure of the mass change following chemisorption would give a rapid measure of the OH concentration. Previously, the reaction of ZnMe₂ has been used for this purpose [15], but in a forthcoming publication we will show that the reaction of ZnMe₂ with silica is the most complex of all metal-alkyl HS agents and that these molecules are unsuitable for the determination of the silanol concentration.

References

[16]. Dodonov, V. A., Oleynik, A. A., Molotovshchikova, M. B., Lysenko, G. N. and
