INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600
Retinoic Acid-Independent Regulation of RARβ2 Gene
Expression During Cardiac Development

A Thesis Submitted to the School of Graduate Studies
University of Ottawa

In Partial Fulfilment of the Requirements for the Degree of
Master of Science
Department of Pharmacology
Faculty of Medicine

By

Craig A. Crippen

The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
Abstract

RARβ has been shown to be expressed in the developing heart at the 8 somite stage. Differentiation of EC cells with DMSO produces a mixture of embryonic cardiac, skeletal, endodermal and other mesodermal derivatives. The RARβ transcript reaches a maximum at day 7 of DMSO differentiation, concurrent with beginning of beating of cardiac muscle cells. Four different isoforms of RARβ have previously been identified. These include RARβ1,2,3 and just recently RARβ-4. The RARβ-2 isoform is predominantly expressed in the differentiated cardiac muscle cells. RT-PCR with isoform specific primers has been used to identify RARβ-2 as the predominant isoform. The RARβ-2 and RARβ-4 isoforms are transcribed from the promoter P2 which is associated with the RAREβ enhancer element, whereas the RARβ-1 and RARβ-3 isoforms are transcribed from the upstream P1 promoter which has no RARE. These results show, that like RA-treated EC cells, expression of the RARβ-2 isoform in DMSO differentiated P19 cells predominates.

This increase in RARβ-2 mRNA is not associated with an increase in transcriptional activation of the RAREβ-2/4 promoter. Stable transformants of the RAREβ-2-CAT reporter gene construct were pooled and differentiated with either RA or DMSO. The results obtained demonstrate that RA induced CAT activities increased to a maximum of 188 fold by day 3. Alternatively,
differentiation with DMSO showed no increase in CAT activity, demonstrating that this the RAREβ-2 enhancer was not activated during mesoderm formation. The increase in RARβ-2 mRNA levels was not due to another enhancer element as evidenced by nuclear run-on analysis.

To determine whether the expression of RARβ-2 is dependent on muscle, a mutant P19 cell line (D3), incapable of differentiating into cardiac or skeletal muscle following aggregation and exposure to DMSO was exposed to DMSO. The results show that there is no induction of RARβ upon differentiation of the defective P19 cell line. Since treatment of P19 cells with DMSO also forms skeletal muscle as well as cardiac muscle, myo D expressing P19 cells were aggregated in the absence of DMSO. The results show that while many of these cells differentiate into skeletal muscle, no induction of RARβ mRNA is observed.

RARβ2 mRNA levels seem to be regulated by a post-transcriptional mechanism. The stability of the DMSO induced RARβ2 message was determined using the transcriptional inhibitor actinomycin-D on day 4 and 7 of differentiation. The half life of the message was found to be approximately equal on both days. We postulate that stabilization of the message occurs at an earlier time point, and that accumulation of the message occurs up until Day 7 of differentiation.

Calcium chelating experiments were performed to determine if a lack of calcium would have an effect on the level of expression of the RARβ2 isoform. No
change in RARβ2 expression was seen following pretreatment for 48 hours with the calcium chelator EGTA.

Simultaneous administration of RA and DMSO to aggregating P19 cells blocked the up-regulation of Brachyury expression in these cells. No beating cardiac muscle was formed, however neuroectoderm was found to be the predominant cell type, indicating that the DMSO differentiating effect was usurped by the presence of RA. Addition of RA on day 2 of DMSO-differentiating P19 cells resulted in a variety of cell types not including neuroectoderm or beating cardiac muscle. Brachyury expression was not noticeably altered in this case, indicating that its transient induction expression pattern was already determined.

The effect of adding both DMSO (inducer of mesoderm formation) and RA (inducer of neuroectoderm formation) to P19 cells simultaneously resulted in the appearance of neuroectoderm. The results show a high level of ld expression as compared to those of normally DMSO differentiated P19 cells, indicating that neuroectoderm formation is accompanied by ld expression. It was also observed that addition of RA on day two of differentiation resulted in the formation of a variety of cell types, not including neuroectoderm or beating cardiac muscle.

The data presented here clearly demonstrate RA-independent regulation of RARβ-2 gene expression during mesoderm formation. The mechanism for
RARβ2 up-regulation during mesoderm formation is believed to be at the posttranscriptional level as evidenced by nuclear run-on analysis. Elucidating this mechanism of up-regulation would be of great importance in understanding the role of retinoid receptors throughout development and in the adult.
ACKNOWLEDGEMENTS

I would like to thank Dr. Christine Pratt for her guidance and support throughout these studies. I am grateful to the members of my thesis advisory committee, Drs. Bernard Jasmine and Mark Ekker, for encouragement and helpful suggestions. I am also grateful to Drs. Mike W. McBurney, Henry Sucov (Salk Institute) and Magnus Pfahl (LaJolla) for generous gifts of plasmids used in these studies.

I would also like to express my appreciation to my colleagues, Christine Teixeira, Neena Kushwaha, Keith Hubbard, Michael Menard and friends for their support, technical assistance and friendship.
TABLE OF CONTENTS

Abstract II

Acknowledgements VI

Table of Contents VII

List of Figures XII

List of Abbreviations XV

CHAPTER I - INTRODUCTION

Part A - Mediating the Retinoid Signal

1. Vitamin-A Deficiency in animals 1
2. Nuclear Receptors (CRBP + CRABP, RARs, RXRs) 2
3. Receptor Domains (A-F) 5
4. RXR heterodimers and homodimers 10
5. RARβ gene and isoforms 13
6. RARβ expression in the developing embryo 16

VII
Part B - Control of mRNA Stability

1. Decapping and 5'-3' poly(A) tail independent decay 18
2. Endonucleolytic decay prior to deadenylation 19
3. 3'-5' decay following poly(A) tail deadenylation 19
4. AU-rich elements in mRNA degradation 20

Part C - P19 Embryonal Carcinoma Cell Line

1. Origin of P19 cells and their use 23
2. Differentiating P19 cells with retinoic acid and dimethylsulfoxide 23
3. RAC65 - a mutant P19 cell line 31

Part D - Brachyury and Id in Muscle Development

1. Brachyury expression in embryos and P19 cells 33
2. bHLH proteins in muscle development 34
3. Id as an inhibitor of muscle development 35
4. Teratogenic effects of RA on muscle development 36

CHAPTER II - GENERAL MATERIALS AND METHODS

A. Cell Culture 38

B. Cell Experiments
- RA-differentiation 38
- DMSO-differentiation 39
CHAPTER III - RESULTS

1. RARβ mRNA is induced in EC cells differentiated with DMSO 51

2. RARβ-2 is predominantly expressed in differentiated muscle 51
3. Induction of RARβ in DMSO-differentiated cultures of P19 cells occurs in the absence of an increase in transcriptional activation of the RAREβ-2 promoter.

4. DMSO-induced differentiation has no effect on RARβ transcription.

5. RARβ is not expressed in D310 mutant P19 cells or in myo D expressing P19 cells differentiated into skeletal muscle by aggregation.

6. RARβ-2 mRNA is not stabilized between day 4 and day 7 of DMSO differentiation.

7. EGTA has no modulating effect on the expression of RARβ2 mRNA during DMSO differentiation from day 4 through day 7.

8. RA prevents \textit{Brachyury} expression in P19 cells differentiated with DMSO.

9. \textit{Id} expression is transiently downregulated in DMSO-differentiating P19 cells.
LIST OF FIGURES

CHAPTER I - INTRODUCTION

1-1 Diagrammatic representation of the action of retinoids with their cognate receptors
1-2 Nuclear receptor domains and their binding sites on DNA
1-3 A model for the ligand activation of RXR/RAR heterodimers
1-4 Proliferating P19 cells
1-5 DMSO-differentiated P19 cells
1-6 RA-differentiated P19 cells

CHAPTER III - RESULTS

3-1 Expression of RARβ in proliferating, DMSO-differentiated and RA-differentiated P19 and RAC65 cells

3-2 Isoform-specific RT-PCR amplification of RARβ-2 and RARβ1/β3 isoforms in water(W), control cells(C), DMSO-differentiated(D) and RA-differentiated(R) P19 cells
3-3 Transcriptional activity of RAREβ-2-CAT reporter gene construct in transfected P19 cells differentiated with either RA or DMSO

3-4 Nuclear Run-On analysis of RARβ in P19 cells and DMSO treated P19 cells

3-5 Northern blot analysis of RARβ expression in myoD expressing P19 cells following aggregation and in D310 cells following aggregation and exposure to DMSO

3-6 Half-life experiment of RARβ-2 mRNA on days 4 and 7 of DMSO differentiated P19 cells

3-7 Stability of RARβ-2 mRNA on day 4 of DMSO differentiation

3-8 Stability of RARβ-2 mRNA on day 7 of DMSO differentiation

3-9 Expression of RARβ-2 mRNA after pretreatment with EGTA for 48 hours in DMSO-differentiated P19 cells
Expression of *Brachyury* and Id mRNA in DMSO-differentiated P19 cells, DMSO-differentiated P19 cells with 1μM RA added on day 0, and DMSO-differentiated P19 cells with 1μm RA added on Day 2 of differentiation
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARE</td>
<td>AU-rich element</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AUBF</td>
<td>AU-binding factor</td>
</tr>
<tr>
<td>BES</td>
<td>N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid</td>
</tr>
<tr>
<td>bHLH</td>
<td>basic helix-loop-helix</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CAT</td>
<td>chloramphenicol acetyltransferase</td>
</tr>
<tr>
<td>Ci</td>
<td>curie</td>
</tr>
<tr>
<td>CTP</td>
<td>cytidine triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxycytidine triphosphate</td>
</tr>
<tr>
<td>dUTP</td>
<td>deoxyuridine triphosphate</td>
</tr>
<tr>
<td>DBS</td>
<td>donor bovine serum</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>embryonal carcinoma</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis(β-aminoethyl ether) N,N′,N′-tetraacetic acid</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
</tbody>
</table>
FBS fetal bovine serum
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GTF general transcription factor
GTP guanidine triphosphate
kb kilobase
ml millilitre
mM millimolar
mRNA messenger ribonucleic acid
ng nanogram
NP-40 nonidet P-40
PBS phosphate buffered saline
PCR polymerase chain reaction
PMSF phenylmethyl sulfonyl fluoride
RA all-trans retinoic acid
RAR retinoic acid receptor
RARE retinoic acid response element
RT-PCR reverse-transcriptase polymerase chain reaction
RXR retinoid-X receptor
SDS sodium dodecyl sulfate
SSC sodium chloride/sodium citrate
SSPE saline-sodium phosphate-EDTA
UV ultraviolet
μCi microcurie
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
</tbody>
</table>
Chapter I: Introduction

Part A - Mediating the Retinoid Signal

Vitamin-A is known to play an important role in normal growth, vision, and maintenance of tissue (Sporn et al., 1994) (Wolbach and Howe., 1925). The first most striking finding of the action of Vitamin-A is its ability to act in the positional identity of certain embryonic tissues such as the vertebrate limb, CNS, retina, and body axis (Hofmann and Eichele., 1994). Animals on vitamin-A deficient (VAD) diets develop a variety of symptoms including widespread squamous metaplasia and/or keratinizing squamous metaplasia of epithelia (Underwood., 1994) (Wolbach and Howe., 1925). Additionally, offspring of VAD females display a characteristic spectrum of congenital malformations (Wilson and Warkany., 1948) (Wilson and Warkany. 1949) (Warkany et al., 1948) including the heart and aortic arches, respiratory tract, diaphragm, eye, and urogenital tract. Administration of retinol to the diet of these VAD animals reverses all or nearly all of these congenital malformations. Interestingly, the gestational stage of administration of retinol determines which VAD-induced malformation is prevented, suggesting that Vitamin-A is required at several different stages of development.

The finding that excess retinoid administration also caused dysmorphogenesis lends further credence to the proposal that retinoids are key developmental factors.
The carboxylic acid derivative of retinol, retinoic acid (RA) is known to be a more potent teratogen than retinol, indicating that RA is the biologically active form of the vitamin. This theory is supported by the observation that post-partum VAD-induced defects may be either prevented or reversed by exogenous RA (except for vision) (Thompson et al., 1964).

The discovery of nuclear receptors for retinoids expanded our understanding of how retinoids could potentially influence levels of gene expression (figure 1-1). The incidence of developmental defects has also correlated with alterations in the level and/or pattern of expression of specific genes, some of which possess retinoic acid response elements (RAREs) in their promoter regions (Chambon., 1994). This observation suggests that retinoic acid acts through its receptors and directly regulates the expression of certain genes essential for normal development.

There are two classes of retinoid-binding proteins that are implicated in this signaling pathway. The first class includes the cellular retinol-binding proteins I and II (CRBPI and CRBPII) and the cellular retinoic acid binding proteins I and II (CRABPI and CRABPII). The two isoforms share amino acid sequence similarity, but are immunologically distinct and exhibit different affinities for retinoids (Bailey and Siu., 1988). It is also clear that these cellular binding proteins exhibit distinct patterns of expression in the developing embryo and the adult.
Figure 1-1: Action of retinoids with their cognate receptors. Vitamin-A is metabolized to retinol with the body, which can then undergo isomerization to retinaldehyde and then all-trans-retinoic acid, the carboxylic acid derivative of retinol. Retinoic acid can then be isomerized into 9-cis retinoic acid. Retinol and retinoic acid have cytoplasmic binding proteins termed cytosolic retinol binding protein I and II, and cytosolic retinoic acid binding protein I and II. 9-cis retinoic acid and all-trans retinoic acid are believed to act directly on gene expression by entering the nucleus and binding to retinoid receptors. (ROL) retinol, (RCHO) retinaldehyde, (RA) all-trans retinoic acid, (RBP) retinol binding protein, (RABP) retinoic acid binding protein, (CRBPI and CRBPII) cellular retinol binding protein I and II, (CRABPI and II) cellular retinoic acid binding protein I and II, (9-C-RA) 9-cis retinoic acid, (RARs) retinoic acid receptors, (RXRs) retinoid X receptors.
organism suggesting that they do indeed play a specific role in retinoid signaling. The exact role of these cytosolic proteins is still unknown but it has been suggested that they may be involved in retinoid storage, metabolism, and the regulation of the free level of biologically active retinoids within a given cell (Livrea and Packer., 1993) (Boylan and Gudas., 1992) (Fiorella and Napoli., 1991).

The second class of retinoid binding proteins involved in transducing the RA signal are the retinoic acid receptor family (RAR), and the retinoid-X receptor family (RXR). These receptors belong to a large superfamily of ligand-inducible transcription factors that include the steroid, Vitamin-D and thyroid hormone receptors, the insect ecdysteroid receptor and a number of orphan receptors whose ligands are still as yet unknown (Mangelsdorf et al., 1995).

The nuclear receptor superfamily can be broadly divided into four classes based on their dimerization and DNA binding properties. Class I receptors include the known steroid hormone receptors, which function as ligand induced homodimers and bind to DNA half-sites organized as inverted repeats. Class II receptors heterodimerize with RXR and characteristically bind to direct repeats. Class III receptors bind primarily to direct repeats as homodimers. Class IV receptors typically bind to extended core sites as monomers. Most of the orphan receptors fall into class II and IV categories.
A characteristic feature of these nuclear receptors is that they bind to regulatory regions in DNA called hormone response elements (HREs) and mediate gene expression. The unique ability of nuclear receptors, which sets them apart from other DNA binding proteins, is that they can act on the DNA through a highly conserved DNA binding domain (C) that contains two “zinc finger” motifs which allows the receptor to bind tightly to a particular DNA response element (Umenoso and Evans., 1989) (Leid et al., 1992) (Freedman et al., 1988) (figure 1-2). The DNA binding domain of each of these receptors spans a “core” of 66 residues that forms a highly conserved domain encompassing the two zinc finger modules followed by a carboxy-terminal extension. The core domain is conserved across all members of the receptor family and constitutes α-helices, one of which (the recognition helix) engages the major groove to make specific contacts with the bases of the half-site (Schwabe et al., 1993) (Luisi et al., 1991).

The ligands of these nuclear receptors bind within the ligand binding domain (E) at the carboxy terminus of the receptor. Also, within the ligand binding domain are sequences involved in nuclear translocation (Picard and Yamamoto., 1987) (Guiochon-Mantel et al., 1989), dimerization (Fawell et al., 1990), transactivation (Webster et al., 1988) (Webster et al., 1989) (Tora et al., 1989) (Lees et al., 1989) (Kumar et al., 1988) (Danielian et al., 1992) and interaction with heat shock protein (Dalman et al., 1991). It has been revealed that the ligand binding
Figure 1-2: Nuclear receptor domains and their binding sites on DNA.
Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) may interact
together in a heterodimeric combination on a hormone response element (HRE)
consisting of a core hexad consensus sequence by binding to a direct repeats of
this sequence spaced by five nucleotides (DR5). The receptors have multiple
domains from A-F in which there are conserved DNA binding regions (region C),
ligand binding domains (region E), AF-2 transactivation domains (region E),
dimerization domains (region E) and nuclear translocation (region E) (Pu)
purine, (RAR) retinoic acid receptor, (RXR) retinoid X receptor.
domain comprises a carboxy-terminal region of approximately 225 amino acids that is capable of autonomous ligand binding.

The intrinsic transcriptional activation region (AF-2) located within the ligand-binding domain controls ligand-dependent transcriptional events. Inactivation of the AF-2 domain in the mouse estrogen receptor by deletion completely blocks transcriptional activation while not affecting DNA or steroid binding (Danielian et al., 1992). The ligand-binding domain of any of the retinoid receptors, when fused to the DNA-binding domain of GAL-4 is capable of mediating retinoid-induced transcriptional activation from a GAL-4 reporter gene (Allenby et al., 1993). The deletion of the AF-2 region is responsible for the lack of transcriptional activation by v-erb-A, a mutant version of the thyroid hormone α receptor with oncogenic activity (Zenke et al., 1990) (Damm et al., 1989). COUP and ARP-1 which belong to the orphan receptor group because their ligand is unknown also lack an AF-2 region (Wang et al., 1989) (Ladas and Karathanasis., 1991). Since deletion of the AF-2 region does not influence DNA binding, it is not surprising that v-erb-A, COUP, and ARP-1 are involved in the repression of transcriptional activation mediated by other members of the nuclear receptor superfamily.

RARα, RARβ, and RARγ mutants with deleted AF-2 regions are unable to activate transcription and act as potent negative transcriptional regulators. The retinoic acid receptor differs from the estrogen receptor in that deletion of the
AF-2 region produces a receptor unable to bind 9-cis RA and only capable of binding all-trans RA. These observations indicate that the ligand-binding domain and the transactivation domain in the intact receptor function interdependently.

Additionally, in all nuclear receptors, there is a non-conserved transactivation domain (AF-1) which functions in a ligand-independent manner (Tora et al., 1989) (Nagpal et al., 1993), found in the N-terminal region of all nuclear receptors. This region can be shown to function in a ligand-independent autonomous manner. Also, both the AF-1 and AF-2 transactivation domains can act synergistically with one-another to activate transcription depending on the promoter (Tora et al., 1989) (Nagpal et al., 1992) (Nagpal et al., 1993).

The action of retinoids as potent effectors of cellular proliferation, differentiation, and developmental pattern formation is thought to occur solely through the binding of retinoic receptors to RAREs which are found in the promoter regions of retinoic-acid responsive genes. It has been found that RAR dependent gene activity requires the presence of RXR. However RXR-dependent gene activity is thought to be mediated by RXR homodimers and can be inhibited by the presence of RAR. RXR heterodimers typically bind to two half-sites consisting of a minimal core hexad consensus sequence PuG(G/T)TCA that may be arranged as two direct repeats, inverted repeats, or everted repeats depending on which response element is being bound (figure 1-2).
The uniqueness of each retinoid receptor is what gives this signalling pathway its diversity. The presence of a direct repeat (DR) response element was initially suggested by the studies on thyroid hormone (Koenig et al., 1987) and retinoic acid response elements (RAREs) (Leid et al., 1992). Later, a model was developed in which HREs for the Vitamin-D receptor (VDR), TR, and RAR are composed of DRs spaced by 3, 4, or 5 nucleotides (ie., DR3, DR4, DR5 respectively) (Umenoso et al., 1991). The subsequent demonstration that a DR1 serves as an RXR and peroxisome proliferator response element and a DR2 is a second RARE has expanded this model to the so-called 1-5 rule. By nature, all receptors that bind to either DRs of palindromic HREs do so as either heterodimers of homodimers. There are also a number of orphan receptors that can bind to only a single core elements as a monomer. Because DRs are asymmetric, heterodimer complexes should bind these elements in an asymmetric fashion. It has now been established that on DR3, DR4, DR5, RXR occupies the 5' half-site and the partner (VDR, TR, RAR respectively) occupies the 3' half-site (Zechel et al., 1994) (Perlman et al., 1993) (Kurokawa et al., 1993). On DR1, RXR can bind as both a homodimer and as a heterodimer with RAR. Interestingly, the polarity of the RXR/RAR heterodimer may be reversed. In many cell types, the consequence of this reverse polarity binding is that the RAR/RXR heterodimer is a potent repressor of the ligand-activated RXR homodimer (Kurokawa et al., 1995). Surprisingly, ligand-induced transcription activities for RXR are suppressed when complexed with VDR, TR, and RAR (Kurokawa et al., 1994). The restriction of RXR ligand binding within several of
these heterodimers indicates that 9-cis retinoic acid responsiveness of RXR is not a necessary consequence of heterodimerization. Thus, RXR is a critical component of heterodimer formation, which in turn is critical to generating diversity of hormone responses.

All three RAR isoforms bind all-trans RA and 9-cis RA with high affinity whereas the three RXR isoforms are only activated by 9-cis RA. Interestingly the amino acid sequence conservation of a particular RAR type is greater across species than observed for the three RAR types in a given species. It seems as though these receptors have been conserved through evolution to serve an important role involving retinoid signaling.

The RXR class of nuclear receptors contains three subtypes, RXRα, RXRβ, and RXRγ, that exhibit high homology among themselves and in their ligand and DNA binding domains. The F domain is absent. The above observations suggest that if RA-dependent transcriptional regulation in vivo is dependent on RAR/RXR heterodimers, then the pleiotropic effects of retinoids may be due, at least in part, in the regulated expression of different heterodimeric combinations, as well as the availability of free ligand within the cell.

A model for the ligand activation of RXR/RAR heterodimers, states that in absence of ligand, the RXR/RAR heterodimer complexed with corepressor(s) has a low affinity for DNA (Minucci et al., 1997). Ligand binding to RAR
stimulates displacement of the co-repressor(s) after which the heterodimer gains access to the RARE. Subsequent association with a co-activator(s) may stimulate interaction with the general transcription factors (GTFs) leading to transcriptional activation. However, binding of the ligand to the RXR partner does not by itself allow displacement of the co-repressor and does not allow heterodimer access to DNA. Binding of the ligand to both of the RXR/RAR heterodimer partners results in displacement of the co-repressor and association of multiple co-activators that provides greater stability in heterodimer DNA binding and interaction with GTFs leading to a higher transcriptional response.

The promoter region of the RARβ-2 gene contains three copies of this DR5. Induction of the RARβ2 gene by RA has been well-documented in many cell lines including F9 (Sucov et al., 1990) (De The et al., 1989) and P19 cells at the level of transcription via a RARE present in the P2 RARβ2 promoter (Mendelsohn et al., 1994a).

Each of the RAR subtypes themselves have multiple isoforms generated as a result of the existence of two promoters. Additionally, the appearance of splice variants increases the number of subtypes. The isoforms share a common motif with each isoform for a given RAR type diverging only in the 5' untranslated region and the A region (figure 1-3). Furthermore, the expression of the second of each RAR isoform (i.e., RARβ2, α2, γ2) is modulated by RA through
Figure 1-3: Structure of the RARβ gene. The mouse retinoic acid receptor beta gene (RARβ) has four isoforms generated by alternative splicing which differ only in the A region. The RARβ1 and RARβ3 isoforms are driven from the P1 promoter whereas the RARβ2 and RARβ4 isoforms are driven from the P2 promoter which contains a RARE. (DBD) DNA binding domain, (LBD) ligand binding domain, (RARE) retinoic acid response element), (E1, E2...) exon1, exon2..., (mRARβ) mouse retinoic acid receptor beta.
RAREs present in the promoter regions of each of these genes, suggesting a further level of interactive signalling in this transduction pathway. Expression of RARβ in the mouse embryonic heart at the 8-somite stage (Livrea and Packer., 1993) has led us to investigate the expression of RARβ in these mixed cell populations.

Another mechanism, explaining the appearance of RARβ1/β3 transcripts which are driven by the P1 promoter, demonstrates that accumulation of β1/β3 transcripts by RA is not due to increased transcript initiation, but due to an RA-dependent release of a block in RNA chain elongation (Mendelsohn et al., 1994a). Clearly, transcriptional induction is not the sole mechanism by which retinoic acid exerts its developmental effects.

In a previous study, transgenic mice were generated in order to determine the expression of an RA-induced reporter construct in the developing mouse embryo (Rossant et al., 1991). Three copies of the oligonucleotide encoding the RARE were inserted upstream of the hsp68 promoter containing the lacZ gene. The RAREhspZ construct was then injected into the fertilized eggs of mice. Reproducible patterns of activation of this construct were established and suggest that at least one of the effects of RA are mediated by the direct interaction of the RARs and their cognate response elements. This study indicates that the RARE present in the RARβ2 promoter region can direct specific spatial and temporal expression of an hspZ transgene during mouse
embryogenesis. Interestingly, the pattern of expression of the transgene does not entirely mimic the expression of the endogenous RARβ gene during development. Early during embryogenesis, the transgene shows a more spatially restricted pattern of expression and a more precise time of onset of expression than reported for any of the RARs. However, later in development, the pattern of expression of the transgene became more complex and tissue restricted. These contradictory observations in levels of expression of the transgene and the endogenous RARβ gene suggest a possible post-transcriptional mechanism in the regulation of RARβ gene expression.
Messenger RNA (mRNA) degradation in eukaryotic cells is important in determining the levels and regulation of gene expression. Recently, many different, yet somewhat related mechanisms by which eukaryotic mRNAs are degraded have been elucidated. One mRNA decay pathway is initiated by shortening of the poly(A) tail followed by decapping and 5' to 3' exonucleolytic degradation of the transcript (Peltz et al., 1991) (Decker and Parker, 1994) (Bernstein and Ross, 1989). The length to which a poly(A) tail must be shortened for subsequent decay may differ between mammals and yeast. It is possible that deadenylation might lead to the loss of the poly(A)-binding protein (PABP) which might trigger further decay events (Shyu et al., 1991) (Chen et al., 1994).

In yeast, experiments suggest that deadenylation of the poly(A) tail to an oligo(A) tail exposes the RNA allowing it to become a substrate for a decapping reaction, thus exposing the transcript to 5' to 3' exonucleolytic decay. An important observation is that 5' to 3' decay is blocked by either deletion of an exonuclease gene (XRN1) (Larimer and Stevens, 1990) or insertion of secondary structure mRNA fragments that lack the cap structure and accumulate after deadenylation. The observation that deadenylation can result in decapping of the mRNA (Muhlrad et al., 1994) (Muhlrad et al., 1995) suggests some sort of interaction between the 5' and 3' ends. Even though there is no direct evidence
for this phenomenon, the abundance of circular polysomes seen in electron micrographs suggests that the 5' and 3' ends may be closely associated.

mRNA decay may also be initiated by decapping and 5' to 3' decay of the transcript independent of poly(A) tail shortening. An example is the degradation of the yeast PGK1 mRNA containing an early nonsense codon (Hagan et al., 1995). The generation of the destabilizing signal requires both the failure to translate a significant part of the coding region and the presence of specific sequences downstream of the nonsense codon (Zhang et al., 1995).

Eukaryotic mRNAs can be degraded via enconucleolytic cleavage prior to deadenylation. This is found to occur from experimental observations of transcripts such as the transferrin receptor (TfR) and Xenopus Xihbox2B mRNA where mRNA fragments are detected in-vivo that correspond to the 5' and 3' portion of the transcript and are consistent with internal cleavage within the 3' UTR (Brown et al., 1993) (Binder et al., 1994).

Another closely related pathway to degradation entails 3' to 5' decay after shortening of the poly(A) tail. However, it should not be expected that deadenylation necessarily exposes transcripts to 3' to 5' degradation since several mRNAs can be quite stable with essentially no poly(A) (Decker and Parker., 1993) (Chen et al., 1994). Importantly, an individual transcript can simultaneously be a substrate for more than one mechanism of decay (Muhlrad
et al., 1995) (Higgs and Colbert., 1994). This observation implies that mutations that inactivate one pathway may not always have significant effects on mRNA stability. Several sequence elements that promote rapid poly(A) shortening have been identified. These include sequences within the c-fos coding region and 3'-UTR which contains a prototypical AU-rich element (ARE) (Chen et al., 1994) and in the yeast MFA2 3'-UTR (Muhlrad and Parker., 1992). Several proteins have been identified which interact with the ARE (Zhang et al., 1993) (Katz et al., 1994). However, only one of these proteins, ARE/poly(U) binding factor has been shown to stimulate decay in vitro (Brewer., 1991).

The conservation of an adenylate/uridylate (AU)-rich region was first noted for genes coding for cytokines. (Caput., 1986) The first direct experimental evidence that the ARE can function to promote mRNA destabilization came from inserting a well-conserved region of 5' nucleotides containing AUUUA motifs from the 3' UTR of human granulocyte-macrophage-colony-stimulating factor (GM-CSF) (Shaw and Kamen., 1986). mRNA was inserted into the 3' UTR of β-globin mRNA. The otherwise stable β-globin mRNA was destabilized.

AREs vary in size from 50 to 150 nucleotides and generally contain multiple copies of pentanucleotide AUUUA. Some important observations concerning the necessity of AREs have recently been made. First of all, the presence of AUUUA motifs even in an AU-rich region does not guarantee a destabilization function of an ARE (Chen and Shyu., 1994). Secondly, AUUUA motifs play a
critical role in determining the destabilizing ability of c-fos, and GM-CSF AREs. For example the AUUUA motifs in the c-fos ARE together have an additive effect on destabilization as successive mutations of each motif leads to gradual loss of destabilizing function (Chen et al., 1994). Analysis of the c-fos ARE has demonstrated the importance of a large number of U residues. Also, several non-functional AU-rich sequences can be converted to potent destabilizing elements by placing the c-fos U-rich domain II immediately downstream (Chen and Shyu., 1994).

It is thus now clear that AUUUA need not be an integral part of a functional ARE, rather each ARE represents a combination of functionally and structurally distinct sequence motifs or domains such as AUUUA motifs, UUAUUUA(U/A)(U/A) nanomers, U stretches, and/or U-rich domains. The combination of these sequence features within an ARE determines the level of destabilizing function.

In order to understand how various AREs function, the role of various trans-acting factors (binding proteins) that interact with the AREs will have to be assessed. Numbers of, apparently distinct proteins (Zhang et al., 1993) (Katz et al., 1994) (Brewer., 1991) (Bohjanen et al., 1991), have been described that bind with high affinity to RNAs containing AUUUA repeats and/or U-rich regions. As of yet there is no direct evidence that any of the ARE-binding proteins play a role in mRNA degradation or stabilization in vivo, however, the binding activity of
ARE-binding proteins can correlate inversely or proportionately with the stability of mRNA that have an ARE.

The complexity of the pathways in which mRNA degradation occurs is attributed to both the deadenylation-dependent and deadenylation-independent pathways that exist. An integrated model of mRNA turnover may be proposed in the following way: all polyadenylated mRNAs would be degraded by the deadenylation-dependent pathway by default in association with deadenylation-independent mechanisms specific to individual mRNAs or classes of mRNAs. The overall rate of mRNA decay would be a function of its susceptibility to these pathways (Decker and Parker, 1994).
Part C - P19 Embryonal Carcinoma (EC) Cell line

P19 cells have been used for these experiments because the EC system is now assumed to be a reasonable substitute for the embryo for developmental studies. The questions that now arise concern the ability of a cell to commit to a specific cell lineage such as neuron or muscle. An approach to solving this problem is proposed by observations that allow various drugs to direct the differentiation of an EC cell line into different cell types.

The P19 cell line is an EC cell line derived from a primary teratocarcinoma formed by grafting a 7.5 day embryo into an adult testis (McBurney and Rogers., 1982). These cells are pluripotent, grow rapidly in culture, and can form a variety of embryonic tissues when injected into blastocysts.

Little or no differentiation results from aggregation of P19 cells, followed by four or five days in suspension, and finally by plating onto tissue culture grade surfaces. The majority of cells remain as EC cells (figure 1-4) and a few differentiate to form cells that resemble extraembryonic endoderm.

P19 cells can however be induced to differentiate extensively in culture by exposing the cells to certain drugs (McBurney et al., 1982) (Jones-Villeneuve et al., 1982) (Edwards et al., 1983), including dimethylsulfoxide (DMSO) and
Figure 1-4: Proliferating P19 cells. Cells are maintained in 3:1 DBS/FBS α-MEM medium for a period of 2 days to attain confluence. This figure is representative of cells maintained in the exponential growth phase for a period of 1.5 days.
retinoic acid (RA). For both DMSO and RA, the drugs need only be present for the first forty-eight hours of culture aggregation to be effective.

In the presence of 1% DMSO, aggregates of P19 cells develop large amounts of muscle tissue. (McBurney et al., 1982). Six to seven days after the experiment is initiated by cell aggregation and exposure to DMSO, cardiac muscle is present and contracting rhythmically (Figure 1-5). By day 9, skeletal muscle becomes evident. The number of myosin-containing cells reaches 10-15% by 8-9 days. The other cells in DMSO-treated cultures have not been well-characterized. Some have cytokeratin-containing intermediate filaments, indicating that they are epithelial in origin. The majority of the other cells are probably mesodermal derivatives due to indications of abundant and probably elastic fibers. A few EC cells remain (1%) in these cultures, but no neurons or glia are present.

The second group of drugs effective in influencing P19 differentiation are the retinoids. Exposure of P19 cells to RA at 1μM concentrations results in the formation of neurons, astrocyte glial cells, and fibroblast-like cells (McBurney et al., 1982) (figure 1-6).

The DMSO effect seems to be unique to P19 cells, where the effect of RA is more widespread, effecting differentiation in a variety of cell lines. DMSO is of no physiological significance, however retinoids are naturally occurring and are
Figure 1-5: Beating cardiac muscle in DMSO-differentiated P19 cells: P19 cells were aggregated in bacterial plates for a period of four days in 1% DMSO. The cells were then plated and maintained on tissue culture plates without DMSO for 3 additional days. These cells are representative of day 7 differentiated P19 cells within which there are mesodermal and endodermal cell types including beating cardiac muscle (▲).
Figure 1-6: Neuron formation in RA-differentiated P19 cells: P19 cells were aggregated in bacterial plates and exposed to 1μM RA for a period of four days. The cells were then plated and maintained without RA for an additional four days. This figure is representative of RA-differentiated P19 cells on day 8 of the differentiation process in which neuroectoderm is predominantly formed and neuronal projections are clearly present from the differentiated cell aggregates.
believed to play determinant roles in development. Both of these drugs are believed to act by "inducing" uncommitted EC cells to differentiate along a limited number of developmental avenues.

It has been previously shown that a mutant of the P19 cell line does not differentiate in response to RA (Pratt et al., 1990). This mutant cell line (RAC65) expresses an RARα gene (RARα') that is truncated in the C-terminus region and behaves as a dominant negative repressor of RA-induced gene expression. The DNA binding region of the RARα' gene is intact, however, the RA-binding domain has been partially deleted and thus acts as a dominant negative repressor of RAREs containing promoters. In this RAC65 cell line, RA-induced expression of Hox 1.6, Hox 1.4 and Hox 1.3, is markedly decreased while RARβ induction is equivalent to untreated cells (Pratt et al., 1993). The RARβ transcript is not apparent in northern blots for untreated cells, yet is present in RA treated RAC65 cells, suggesting regulation of the transcript by posttranscriptional mechanism(s).

Is RARβ expressed exclusively in differentiating cardiac myocytes? As mentioned previously, differentiation of P19 cells with DMSO results in a variety of cell types including cardiac and skeletal muscle. We wish to determine whether expression is ubiquitous or restricted to one cell type. In order to accomplish this, we will determine messenger RNA levels of RARβ in the mutant
P19 cell line D3 which is unable to differentiate in DMSO as well as in myoD expressing P19 cells which form skeletal muscle upon aggregation.
Part D - Brachyury and Id in Muscle Development

In the vertebrate embryo, cardiac muscle derives from the splanchnic mesoderm, part of the lateral mesoderm. The Brachyury gene is essential for the development of posterior mesoderm in the mouse. Embryos, lacking a functional Brachyury gene die at 10 days of gestation due to insufficient mesoderm formation (Beddington et al., 1992). Since no Brachyury transcripts are found in adult tissues, those areas affected by its mutation require the protein for mesoderm formation or maturation.

In Xenopus embryos, mesoderm-inducing factors such as activin A and basic FGF have been shown to induce Brachyury expression rapidly and in the presence of cycloheximide (Smith et al., 1991). These results indicate that this is an immediate-early response to mesoderm induction. Additionally, injection of Brachyury mRNA results in ectopic mesoderm development (Cunliffe and Smith, 1992).

The P19 line of EC cells (McBurney and Rogers, 1982) when aggregated and differentiated with DMSO shows transient bursts of Brachyury expression which precede the appearance of markers of cardiac muscle (Vidricaire et al., 1994). The presence of Brachyury is aggregation, but not DMSO dependent. Mesoderm only forms with exposure to DMSO following aggregation, thus it is postulated that DMSO enhances the cells response to Brachyury protein,
possibly through the release of calcium from intracellular stores (Morley and Whitfield, 1993). In this same study, Brachyury mRNA expression in RA differentiated cells is restricted to those cells exposed to intermediate RA concentrations that induce mesodermal differentiation.

The basic helix-loop-helix (bHLH) proteins play an important role during embryonic development and cellular differentiation. The basic domain is required but not sufficient for the DNA binding activity of these proteins, because dimer formation is also required. Most bHLH proteins bind to a DNA sequence (CANNTG). It has been shown that, depending on the type of dimer formed (homodimer versus heterodimer), these proteins bind to DNA with altered affinities and sequence specificities (Blackwell and Weintraub, 1990) (Davis et al., 1990) (Murre et al., 1989). Generally, the binding affinity of the heterodimers is much higher than that of the homodimers for a given DNA site.

Several members of the bHLH family of transcription factors appear to play a pivotal role in mesodermal development including MyoD (Weintraub et al., 1991), and Twist (Wolf et al., 1991). The function of mammalian HLH proteins has been most clearly established in muscle cells. Understanding the mechanisms that regulate muscle differentiation in tissue culture led to the discovery of 4 myogenic skeletal muscle-specific bHLH proteins: MyoD (Davis et al., 1987), myogenin (Wright et al., 1989) (Edmondson and Olson, 1989), Myf-5 (Braun et al., 1989), and MRF4 (Braun et al., 1990) (Miner and Wold, 1990).
(Rhodes and Konieczny., 1989). The DNA binding activity of tissue-restricted HLH proteins such as MyoD may be modulated by their interaction via the HLH domain with more widely expressed HLH members such as E12 and E47 (Murre et al., 1989a) which form heterodimers with tissue-specific bHLH proteins (Lassar and Weintraub., 1992).

A subset of HLH proteins, the Id family, lack the basic DNA-binding domains characteristic of bHLH proteins. The Id proteins are thought to inhibit the transcriptional effect of bHLH proteins through dimerization. Such Id/bHLH heterodimers are incapable of binding to DNA. Four Id genes have been isolated: Id1 (Benezra et al., 1990), Id2 (Sun et al., 1991), Id3 (Christy et al., 1997), Id4 (Reichmann et al., 1994).

Id genes are highly expressed in undifferentiated growing cells as well as in some tumor cells, but down-regulated in quiescent cells and during differentiation (Barone et al., 1994) (Kreider et al., 1992) (Jen et al., 1992) (Biggs et al., 1992) (Christy et al., 1997) (Benezra et al., 1990). It has been postulated that Id proteins may serve as general inhibitors of differentiated states by blocking the activity of bHLH proteins that are required for specific differentiation programs.

The fact that all known Id proteins can inhibit the binding of MyoD/E2A protein complexes to the E-box of the MCK enhancer (Reichmann et al., 1994) (Christy
et al., 1997) (Sun et al., 1991) (Benezra et al., 1990) supports the hypothesis that the HLH proteins without basic domains may be involved in inhibitory myogenesis. Consistent with a role in myogenes, Jen et al., 1992 demonstrated that overexpression of the Id1 gene in the C2C12 murine muscle cell line leads to a delay in the onset of muscle cell differentiation.

Although skeletal and cardiac muscle express many of the same muscle-specific genes, skeletal muscle bHLH proteins are not expressed in the heart. However, indirect evidence suggests that bHLH proteins may participate in the control of cardiac muscle gene expression (Litvin et al., 1993). Heart formation during vertebrate embryogenesis involves the commitment of mesodermal precursor cells to the cardiac lineage and the subsequent formation of a primitive heart tube, which undergoes looping, formation of the outflow tract, and atrial and ventricular cavities and septation to form the mature four-chambered heart. Very little is actually known of the genetic pathways controlling cardiac morphogenesis or differentiation.

What are the effects of retinoic acid on P19 cells that have entered or will enter the cardiac myogenic program? Retinoic acid has been shown to have inhibitory effects on the expression of the skeletal muscle determination factor myf5 while it enhances the expression of myoD and myogenin in C2.7 mouse myogenic cells (Carnac et al., 1993). Excess RA has many teratogenic effects on cardiac development in vivo. Depending on the animal model system and timing of the
addition of RA these effects vary. RA-induced cardiac truncation is seen in the chick. Increasing doses of RA result in deletion of the ventricles, the atrium and the sinous venosus. Excess RA is also associated with aorticopulmonary septation failure (Zelent et al., 1991). Since P19 cells constitutively express the RARα and RARγ receptors (Pratt et al., 1990), while expressing the RARβ during cardiac muscle differentiation, these cells should provide an in vitro model of the molecular effects of RA on cardiac myogenesis and function.

Since the Brachyury gene is known to be necessary for mesoderm formation in both Xenopus and the mouse and that Ild is an inhibitor of muscle cell differentiation, we will investigate the ability of high concentrations of retinoic acid to alter their expression levels in P19 cells destined to differentiate into mesodermal and endodermal cell types, including beating cardiac muscle. These results should indicate whether the Brachyury and Ild genes are sufficient for cardiac muscle formation in the face of a potent teratogen such as retinoic acid. We will also observe whether beating cardiac muscle or neuroectoderm is formed when RA is added at various times during the differentiation process.
Chapter II - General Materials and Methods

A. Cell Culture

P19 and RAC65 cells were maintained in α-MEM (Gibco/BRL) supplemented with 2.5% fetal bovine serum (FBS)(Cansera) and 7.5% donor bovine serum(DBS)(Cansera). Cells were plated at density sufficient to attain confluence in two days. At this point, the media was removed by aspiration, and the cells washed twice with 1X phosphate buffered saline (PBS) solution. 2ml of trypsinizing solution (0.1% trypsin, 1mM EDTA in 1X PBS) was then added to the cells, and incubated for 1 minute at 37°C. The cells were subsequently resuspended in the trypsinizing solution with a pasteur pipette and suction bulb. The trypsinizing solution was neutralized by adding the solution of single cells to new cell culture plates containing fresh media.

B. Cell Experiments

RA-Differentiation

Retinoic acid can be present for as little as 4 hours and still be effective in inducing the irreversible differentiation of virtually all cells in a culture (Berg and McBurney. 1990). Both P19 and RAC65 cells were exposed to a final concentration of 1μM all-trans retinoic acid (t-RA) dissolved in ethanol for a period of 24 hours before total cellular RNA isolation.
DMSO-Differentiation

At concentrations of 0.5%-1% (v/v) DMSO efficiently induces P19 cell aggregates to develop into a wide variety of mesodermal and endodermal cell types (McBurney and Jones-Villeneuve et al., 1982) (Edwards and Haris et al., 1983). P19 and RAC65 cells were aggregated in the presence of 1% DMSO in 10ml bacterial plates for a period of four days with a media change after 48 hours. Following this, the cells were plated on tissue culture dishes with standard α-MEM (2.5% FBS, 7.5% DBS) supplementation for the remaining period of differentiation.

C. Transfection Experiments

DNA uptake by cells in culture is markedly enhanced when the nucleic acid is presented as a calcium phosphate-DNA co-precipitate (Graham and van der Eb. 1973). A more highly efficient protocol for introducing DNA into these cells involves allowing the calcium phosphate-DNA coprecipitate to form slowly in the tissue culture medium during prolonged incubation (6 hours) and under controlled conditions of pH and CO₂ tension (Chen and Okayama. 1987). 9 μg of RAREβ-CAT DNA plus 6 μg of pgk-puromycin plasmid was mixed with 0.5ml of 0.25 M CaCl₂. 0.5 ml of 2X BES-buffered saline (50mM BES (N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid), and 280mM NaCl, 1.5mM Na₂HPO₄(2H₂O)) was added dropwise to this mixture and left to stand for 20 minutes at room temperature. The CaCl₂/DNA/BES-buffered saline solution was added to the media dropwise while gently swirling. The cultures were then
incubated for 6 hours at 37°C in a humidified incubator with a 5% CO₂ atmosphere. After 6 hours, the media was removed by aspiration and rinsed once with fresh media. Fresh media was then added and the culture incubated for 24 hours at 37°C in a humidified incubator in an atmosphere of 5% CO₂. Following 18-24 hours of incubation in nonselective medium to allow expression of the transferred gene(s) to occur, the cells are trypsinized and replated in a selective medium containing 2μg/ml of puromycin.

D. Assay for chloramphenicol acetyltransferase activity

The chloramphenicol acetyltransferase (CAT) enzyme is a widely used reporter gene for indirect assay of promoter activity in transfected mammalian cells. To assay putative promoters in mammalian cells, a derivative of pSV2CAT has been constructed (pSVOCAT (Gorman and Moffat et al., 1982)) in which the promoter region of SV40 is replaced by the promoter being tested. Acetylated forms of chloramphenicol produced by the activity of CAT can be measured at the endpoint of an enzymatic reaction by liquid scintillation.

On different days of differentiation, following transfection of RAREβ2-CAT, either with 1μM RA or 1% DMSO, the medium was removed and the cells washed 3 times with 10ml 1X PBS. The dishes were let to stand at an angle for 2-3 minutes to allow the last traces of PBS to drain to one side. The last traces of PBS were removed by aspiration. 200μl of 0.25M Tris(pH 7.8) was added to each plate and the cells were scraped into a 1.5ml microfuge tube and stored at
-20°C. Analysis of the samples involves freeze/thawing the cell suspension 3 times with gentle vortexing during the thawing phase. Equivalent amounts of protein from each sample (50-100μg) was made up to 30μl and mixed with 20μl of 100mM Tris-Cl(pH 7.8) and heated for 10 minutes at 65°C to inactivate deacetylases in the extract. The samples were then centrifuged at 12,000 rpm for 10 minutes at 4°C and the supernatant was removed and transferred to a fresh tube. The sample was then transferred to a water bath set at 37°C. The reaction involved adding 27μl of 1.0M Tris pH 7.8, 64μl of 5mM chloramphenicol, 67.4 μl H2O, 1.5μl 3H-acetyl CoA, 40μl cell extract and heating for 1 hour at 37°C. Following this incubation, the samples were put on ice and extracted twice with 200μl ice-cold ethyl acetate, vortexing for 1 minute each time. The upper phase was added to a scintillation tube containing 3ml of scintillation fluid. This extraction procedure was then repeated and the upper phase added to the scintillation tube. The amount of radioactivity was then determined by liquid scintillation counting.

E. Plasmid Constructs

All expression plasmids were based on the promoter sequences from the mouse pgk gene (Adra and Boer et al., 1987). The RAREβ-CAT reported construct was the gift of Dr. Henry Sucov (Salk Institute) and consists of a 3.5 kb Xho1-Sal1 fragment containing 3kb of promoter sequence driving the CAT gene. Thanks to Dr. Magnus Pfahl (LaJolla) for mouse RARβ cDNA, and Dr. Michael McBurney
(Ottawa) for the pgk-myo-D expression vector, the P19 mutant D3 cell line and the cardiac actin cDNA.

F. RNA Isolation

Total cellular RNA was isolated by the lithium chloride-urea method. Media was removed from the cells by aspiration and the cells were then washed twice with 1X PBS. 2ml of 3M LiCl/8M Urea was then added to the cells and stored at -20°C. The cell culture plates were scraped with a rubber policeman into a 15ml polypropylene falcon tube. The cell suspension was then polytroned at 21,000 rpm for two minutes at 4°C and then stored at 4°C overnight. The following day, the suspension was centrifuged at 7000 rpm for 30 minutes at 4°C. The supernatant was then removed by aspiration and 0.5ml 3M LiCl was added to the remaining pellet. Using 26 gauge syringes, the pellet was resuspended in 3M LiCl and transferred to a 1.5ml eppendorf tube. The 15ml falcon tube was then rinsed with 0.5ml 3M LiCl, that was then added to the eppendorf tube. This eppendorf tube was then centrifuged at 12,000 rpm for 15 mintues at 4°C to pellet the selectively precipitated RNA. The supernatant was removed by aspiration and washed with 70% EtOH before resuspending in 200μl diethylpyrocarbonate (DEPC)-treated H2O (RNase free). 20μl of this solution was mixed in 980μl DEPC H2O and added to a quartz cuvette for the spectrophotometric quantitation of mRNA at 260 and 280 nm (Sambrook and Fritsch et al., 1989).
G. Northern Blot Analysis

20μg of total cellular RNA was separated on 1% agarose-formaldehyde gels (15ml 10X RNA gel buffer (200mM MOPS, 50mM NaOAc-3H2O, and 10mM EDTA), 7.6ml formaldehyde, and 1.5g agarose in 127.4ml H2O). RNA samples were precipitated with ethanol and sodium acetate, and resuspended in 30μl RNA sample buffer (50% deionized formamide, 10% formaldehyde, and 1X RNA gel buffer). 4μl RNA loading buffer (containing 5% ethidium bromide) was then added to the samples which were then electrophoresed for 2-3 hours at 120V in a running buffer containing 5% formaldehyde and 1x RNA gel buffer. The separated RNA was then transferred overnight with a 20X SSC solution to a nylon membrane (MSI). Following transfer, the blot was then UV crosslinked and stored in a plastic bag at 4°C.

The UV crosslinked blots were incubated in hybridization solution (50% deionized formamide, 25% 20X SSPE, 1% SDS, 10% 50X Denhardt’s solution, and 5% salmon sperm DNA (5ml/ml)) for at least two hours. Probe labeling was carried out using the Prime-It Random Primer Labeling Kit (Stratagene). 50-100ng of template DNA in a final volume of 45 μl of H2O was denatured at 100°C for five minutes. The denatured DNA was then quick cooled on ice and added to the pre-made reaction tube containing enzyme, buffer, and nucleotides. 50μCi of [α-32P]dCTP was then added to the reaction mixture and incubated for 10 minutes at 37°C. The radiolabelled probes were then denatured again at 100°C for five minutes and quick cooled on ice before adding
to the hybridization solution. The hybridization was carried out overnight at 42°C in a water bath. Following hybridization, the membranes were washed twice for 20 minutes in 2X SSPE and 0.1% SDS at room temperature and then twice for 5 minutes in 0.1X SSPE and 0.1% SDS at 65°C. The membranes were then exposed to DuPont film at -80°C.

Re-probing of the blots was accomplished by stripping the blots at 65°C for 1 hour with a mixture of 50% DF and 2X SSPE in H₂O. The blots were then washed for 1 minute in 0.1X SSPE at room temperature. Pre-hybridization was then carried out as previously outlined.

H. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

The reverse transcriptase reaction was performed by adding 1μg of mRNA to 4μl random hexamers (1:100 dilution), 6.5μl DEPC H₂O, and 0.5 μl RNase inhibitor. This mixture was then heated to 70°C for 10 minutes and quenched on ice. 4μl first strand buffer (Gibco/BRL), 1μl 10mM dNTPs, 2μl DTT (0.1M), and 1μl Reverse Transcriptase (Gibco/BRL) was then added to the reaction mixture and incubated at 42°C for 1 hour. At the end of the reaction, the enzyme was heat inactivated at 95°C for 5 minutes and quenched on ice.

An 5μl aliquot of this 20μl reaction was then used in a 100μl PCR reaction. The reaction consisted of 10μl of 10X PCR buffer, 2μl 10mM dNTPs, 3μl 50mM
MgCl₂, 5μl primers (10μM each), 0.5μl Taq polymerase and 69.5μl ddH₂O. The mixture was overlayed with 70μl mineral oil. Tubes were then pulse centrifuged to collect the contents at the bottom of the tube. The tubes were incubated initially for five minutes at 94°C to completely denature the DNA template. Following this step, 30 cycles of PCR amplification were completed as follows: denaturing at 94°C for 45 seconds, anneal at 55°C for 30 seconds, extend at 72°C for 90 seconds. Extension of the template was accomplished by incubating for an additional 10 minutes at 72°C and maintained at 4°C. Samples were stored (if necessary) at -20°C.

The common 3' primer that was used to amplify the RARβ2 and RARβ1/β3 isoforms was derived from the B region of the mRARβ cDNA, amino acids 161-168 (5'-GGCGGACGTCTTCAACGAAACTT-3'). Amplification of the RARβ2 and RARβ1/β3 isoforms require 5' sequence-specific primers. (5'-CGTGGACTTTTCTGTGCGGGCTCG-3') was used for amplification of the RARβ2 isoform while (5'GTGATTCTGGACCGGTAGTAA-3') is the other 5' primer used for amplification of the RARβ1/β3 isoforms. Following amplification, 20μl aliquots were electrophoresed on a 1.2% agarose gel and stained with ethidium bromide (EtBr). The RARβ2 specific probe was fabricated using RARβ2 specific primers: (5' primer 5'-CGTGGACTTTTCTGTGCGGCTCG-3', 3' primer 5'-GTATGCGGCGGTGCTGGCAT-3') and a RARβ DNA template. The PCR protocol
used for amplification of the RARβ2 specific probe was the same as previously mentioned.

I. Southern Blot Analysis

20μl aliquots from the 100μl RT-PCR reactions were loaded into an agarose DNA gels (1% agarose, 1X TAE (0.04M Tris-acetate, 0.001M EDTA), 2μl ethidium bromide) and electrophoretically separated. The gel was then denatured in a 1.5 M NaCl and 0.5M NaOH solution for 45 minutes and then neutralized in a solution of 1.5M NaCl and 1M Tris (pH 7.4) for an additional 45 minutes. The DNA was then transferred to a nylon membrane (MSI), UV cross-linked, blocked with prehybridizing solution, and probed with multi-prime labelled cDNA fragments.

J. Slot-Blotting DNA

The RARβ exon 3 DNA probes consist of a RT-PCR product derived from primers 5'-GCACAGAAAACCTCCACG-3' (nucleotides 389-406) and 5'-AGTATGCCGCTGCTGCCATT-3' (nucleotides 593-611) A Pst1 digest of α-Tubulin, and linearized pTZ18R (Pharmacia) were used as positive and negative controls respectively. Exon 7 from RARβ was fabricated using primers (5'-GGTGGCATGAAATGGCTGAT-3') and (5'-TATACCCAGAGCAAGACAC-3'). DNA was prepared for slot-blotting by diluting the DNA in TE(pH 8.0) up to 400μl and adding 40μl 3M NaOH. The samples were then incubated for 45 minutes at 60-70°C (to destroy RNA and denature DNA), cooled to room temperature and
neutralized by adding 440μl 2M NH₄OAc(pH 7.0). Following this procedure, the DNA was immobilized by UV-crosslinking onto the nylon membrane. The membranes were then pre-hybridized for at least 2 hours at 42°C prior to addition of RNA probe from nuclear runoff procedure.

K. Nuclear Run-On Analysis

Isolation of nuclei from P19, DMSO and RA-treated cells was performed by removing the medium from the cells and rinsing twice with 5ml ice-cold PBS. The cells were scraped, resuspended in 5ml ice-cold 1X PBS, and collected in 15-ml polypropylene tubes. The cells were then pelleted by centrifugation for 2 minutes at 500xg, and the supernatant removed by aspiration. The pellet was loosened with gentle vortexing for 5 seconds, and 4ml of NP-40 lysis buffer (10mM Tris-Cl, pH 7.4, 10mM NaCl, 3mM MgCl₂, 0.5% (v/v) NP-40) was added while vortexing as the buffer is added. The cells were then incubated in the lysis buffer for 5 minutes on ice and then centrifuged at 1400 rpm for 5 minutes at 4°C to pellet the nuclei. The nuclear pellet was resuspended in 4ml of NP-40 lysis buffer by gently vortexing and centrifuged again at 1400 rpm for 5 minutes at 4°C. The supernatant was then removed by aspiration and nuclei were stored at -100°C in 200μl glycerol storage buffer (50mM Tris-Cl, pH 8.3, 40% (v/v) glycerol, 5mM MgCl₂, 0.1mM EDTA).

To perform nuclear runoff transcription, the nuclei were thawed at room temperature and centrifuged at 8000 rpm for three minutes at 4°C. Excess
supernatant was removed by aspiration prior to adding 63µl of initial reaction solution (20µl 5X reaction buffer (1.5M (NH₄)₂SO₄, 0.5M Tris pH 7.9, 0.02M MgCl₂, 0.02M MnCl₂, 1M NaCl, 2mM EDTA, 0.5mM PMSF), 1.5µl 0.1M DTT, 10µl 100mM Creatine Phosphate, 1µl 100mM GTP, ATP, CTP, 2.5 10U/µl RNase inhibitor, 1µl 100mM PMSF, 10µl 50% glycerol, 15µl DEPC H₂O.) and 15µl of 10mCi/ml [α-³²P]UTP to pelleted nuclei. The mixture was then incubated for 30 minutes at 28°C with periodic mixing.

Following the transcription reaction, 10µl of 9mg/ml DNase (Gibco) and 10µl of 11mg/ml tRNA was added to the reaction solution and incubated at 37°C for 15 minutes. Following this, 1ml of TRIzol (Gibco/BRL), and 200µl of chloroform was added to the mixture. The mixture was then shaken by hand for 15 seconds and incubated at room temperature for 3 minutes prior to centrifuging at 12,000 rpm for 15 minutes at 4°C. The top layer (aqueous phase) was then transferred to a fresh tube and precipitated by adding 500µl isopropanol, and incubating the samples at -20°C for 30 minutes. The samples were then centrifuged again at 12,000 rpm for 10 minutes at 4°C. The supernatant was then aspirated and the pellet resuspended in 250µl of 20mM Hepes (pH 7.5), 5mM EDTA, 62.5µl 1M NaOH, and left on ice for 10 minutes. The reaction was then quenched to adding 125µl 1M Hepes (free acid, pH is around 5.5). RNA was precipitated by adding 50µl of 3M NaOAc, 1000µl EtOH and leaving at -80°C for 15 minutes. The tubes were then centrifuged at 12,000 rpm for 15 minutes at 4°C to pellet
the RNA. The pellet was washed with 70% EtOH. The RNA pellet was resuspended by heating at 65°C for 15 minutes in 500μl of hybridization solution. A comparative analysis between samples was conducted by measuring the number of counts in a 5μl aliquot. Each sample was then normalized to the sample with the lowest counts. This ensured that equivalent amounts of signal were are allowed to hybridize to each membrane. The RNA was then denatured at 85-90°C for 10 minutes and then added to the DNA fragments immobilized onto a nylon membrane and hybridized for 48 hours at 42°C. The membrane was washed with 2X SSC and 0.1% SDS at room temperature, and if necessary, washed with 0.1X SSC, and 0.1% SDS at 65°C for five minutes to remove non-specific binding of RNA probe. The blot was exposed to DuPont film at -80°C for at least one week.

L. Actinomycin-D Experiments

Actinomycin-D is proposed to act by binding to a premelted DNA conformation found within the transcriptional complex. This acts to immobilize (or pin) the complex, preventing the elongation of growing RNA chains (Sobell., 1985). Actinomycin-D is hence useful in blocking transcription within mammalian cells and measuring mRNA half-life. Cells were cultured as previously described. 20μg of actinomycin-D was added to the cells after day 4 and day 7 of differentiation. Total cellular RNA was collected as previously described ranging from 0 to 5 hours hours following administration of actinomycin-D. 20μg of RNA from each sample was run on a denaturing RNA gel, transferred to a nylon
membrane and probed with a RARβ2 specific probe. The extent of RARβ2 hybridization was quantified by photo densitometry (MCID Imaging Research Inc.) of the autoradiogram and results were plotted after normalization for loading on the basis of hybridization to GAPDH. Half-lives were calculated by regression analysis.

M. Calcium Chelating Experiments:
The calcium chelator, EGTA, has been shown to block the induction of Brachyury expression in aggregated P19 cells if present at concentrations higher than that of calcium in normal medium (Vidricaire and Jardine et al., 1994). Cells were differentiated with 1% DMSO as previously described and 2mM EGTA added to the cells 48 hours prior to total cellular RNA isolation. RNA was collected on day 4, 5, 6, and 7 of differentiation.
Chapter III - Results

RARβ mRNA is induced in EC cells differentiated with DMSO

It has been shown that both P19 and the mutant P19 cell line RAC65 can be successfully differentiated in the presence of 1% DMSO. The variable cell types formed include embryonic skeletal and cardiac muscle as well as other endodermal and mesodermal derivatives (Umenoso and Evans., 1989) (Webster et al., 1989). Northern blot analysis (figure 3-1) clearly indicates that RARβ is not produced in any detectable amounts in undifferentiated P19 or RAC65 cells. RARβ is induced in both P19 and RAC65 cells following RA administration within a few hours, although induction is much less pronounced in the latter. Exposure of both P19 and RAC65 cells to DMSO does not induce RARβ expression within 2 days, however, by Day 4 of differentiation, the RARβ transcript is clearly visible. The level of RARβ mRNA reached a maximum at approximately day 7 of differentiation which coincides with the onset of beating muscle.

RARβ2 is predominantly expressed in differentiated muscle

Reverse transcriptase polymerase chain reaction (RT-PCR) with isoform specific primers that would either indicate the presence of RARβ1/β3 or RARβ2 isoforms determined which of the four known RARβ isoforms were expressed in these DMSO differentiated cells. These blots were probed with full-length cDNA from
Figure 3-1: RARβ expression in DMSO and RA differentiated EC cells. P19 and RAC65 cells (RA nonresponsive) were exposed to either 1μM RA or 1% DMSO for neuronal or mesodermal differentiation respectively. Proliferating undifferentiated P19 cells (C) contain undetectable levels of RARβ by northern blot analysis. Alternatively RA differentiation of P19 cells results in a dramatic upregulation of RARβ mRNA. Administration of 1μM RA to RAC65 cells results in a slight increase of RARβ indicative of an RA-independent mechanism for RARβ upregulation. Differentiation of both P19 and RAC65 cells with DMSO results in increased RARβ expression in an RA-independent fashion. RARβ expression peaks by day 7, concurrent with the onset of rhythmic contraction in the cardiac muscle cells. An exon 7 probe common to all isoforms was used to identify RARβ expression levels. (C) control, (RA) all-trans retinoic acid, (DMSO) dimethylsulfoxide.
Figure 3-2: RARβ2 and RARβ1/β3 expression in DMSO and RA differentiated P19 cells. Southern blot analysis with a probe common to all isoforms in combination with reverse transcriptase polymerase chain reaction (RT-PCR) was conducted with isoform-specific primers for either RARβ2 or RARβ1/β3 with mRNA isolated from undifferentiated P19 cells (C), DMSO-differentiated P19 cells on day 7 of differentiation (D), or RA-differentiated P19 cells 24 hours after addition of 1μM RA (R). From these results it is apparent that the predominant isoform expressed in DMSO-differentiated P19 cells is the RARβ2 isoform. In order to obtain a sufficient signal to observe RARβ1/β3 expression, the southern blot for these isoforms was exposed approximately 10 times longer than that for the RARβ2 isoform. (W) water control with no RNA, (C) control RNA from proliferating P19 cells, (D) DMSO-differentiated P19 cells, (R) RA-treated P19 cells.
mRARβ. The results in Figure 3-2 demonstrate that the RARβ2 isoform is predominantly expressed during DMSO-induced differentiation.

Induction of RARβ in DMSO-differentiated cultures of P19 cells occurs in the absence of an increase in transcriptional activation of the RAREβ-2 promoter

In order to assess the involvement of the RAREβ promoter in DMSO-induced differentiation, we isolated stable transformants of the RAREβ2-CAT reporter gene construct and differentiated pooled clones of these cells with either 1μM RA or 1% DMSO. Figure 3-3 illustrates that RA progressively induced CAT activities starting from day one of differentiation up to a maximal of 188-fold by day 3. RA-induced CAT activity persisted several days after its withdrawal. Transcription from the RAREβ2-CAT reporter plasmid compared with a promoter-less vector transfected control lysate (data not shown) showed that there was no increase in CAT activity in DMSO treated P19 cells at any point during the differentiation process.

DMSO-induced differentiation has no effect on RARβ transcription

Since it was possible that the RAREβ2-CAT construct did not contain a sufficient amount of the promoter region to demonstrate the influence of DMSO on transcription, we performed nuclear run-on analysis of RARβ gene transcription in DMSO differentiated cells. The results in Figure 3-4 show that while there is
Figure 3-3: Induction of the RAREβ2 promoter in DMSO and RA differentiated cells: P19 cells were stably transfected with the RAREβ2-CAT reporter construct and differentiated with either 1μM RA or 1% DMSO. CAT activity was measured from day 1 through day 8 of differentiation for a total of 3 independent experiments performed from one transfection. Results are shown as an average of the three experiments ±S.E.M. No induction was seen in DMSO-differentiated RAREβ2-CAT containing P19 cells, however a dramatic induction of CAT activity was seen for those transfected cells differentiated with retinoic acid (maximum of 188 fold on day 4).
D0 D1 D4 RA

RAR β

TUBULIN
Figure 3-4: RARβ transcription in DMSO and RA differentiated P19 cells: Nuclear run-on analysis was performed on P19 cells differentiated with either 1% DMSO or 1μM RA. Day 0 and Day 1 of DMSO differentiation showed no significant increase in RARβ transcription. A slight increase was only apparent on Day 4 of DMSO differentiation. Retinoic acid-treated P19 cells were used as a positive control for RARβ transcription 48 hours following administration of 1μM RA. A common exon 7 probe was used to identify levels of RARβ expression. α-Tubulin was digested with Pst1 and slot-blotted to provide an internal control for the experiment. (D0, D1, D4,) day 1, day 2, day 4 of DMSO differentiation, (RA) 48 hours following 1μM RA administration.
a very low constitutive level of transcription off of the RARβ gene, there is only a very slight increase in RARβ transcription from day 0 to day 4 of DMSO differentiation. Compared to the increase observed for RA-treated P19 cells, this slight increase is not expected to account solely for the dramatic upregulation of RARβ2 mRNA. Since the level of RARβ expression dramatically increases by day 4 of differentiation (Figure 3-1), the lack of transcriptional induction at this time suggests some other mechanism for the increase in expression.

RARβ is not expressed in D3 mutant P19 cells or in MyoD expressing P19 cells differentiated into skeletal muscle by aggregation

Aggregation and treatment of P19 cells with DMSO results in the differentiation of these cells into a variety of tissue types. While cardiac muscle and skeletal muscle primarily form during differentiation, endoderm and mesoderm are also formed (Edwards et al., 1993) (Rudnicki and McBurney., 1987). While the RARβ2 isoform appears to be expressed prior to skeletal muscle formation, it is still possible that skeletal cells might express this receptor. In order to determine this, we have differentiated P19 cells which stably express myoD (P19(MyoD)). P19(MyoD) cells form cultures of skeletal muscle without the evolution of other cell types following aggregation in the absence of DMSO (Skerjanc et al., 1994). We have therefore looked at the levels of RARβ mRNA in pooled populations of P19 cells stable transfected with myoD following aggregation to address this question. Figure 3-5 shows that while a large
Figure 3-5: RARβ expression in MyoD expressing P19 cells and in D3 aggregated cells: Northern blot analysis was conducted in order to assess which cell type(s) may be responsible for the increased expression of RARβ. P19(myoD) transfected P19 cells were aggregated in the absence of DMSO. Since these cells form cultures of skeletal muscle, as evidenced by the increased expression of cardiac actin, without the evolution of other cell types we were able to conclude that RARβ is not expressed in skeletal muscle that might be formed during the DMSO-differentiation process. The cells of the mutant P19 cell line, D3, which is unable to differentiate into cardiac or skeletal muscle were aggregated and exposed to DMSO. The results showed that no muscle was formed by the apparent lack of cardiac actin demonstrating that RARβ expression is indeed dependant on the presence of muscle. Positive and negative controls were provided by RA-differentiated P19 cells (RA) (48 hours following adminstration) and undifferentiated P19 cells (C).
proportion of these cells differentiate into skeletal muscle between day 4 and day 6 as evidenced by their expression of increasing levels of cardiac actin, no RARβ mRNA can be seen. Moreover, since this differentiation is achieved by aggregation in the absence of DMSO, it is possible to conclude that the process of aggregation, is on its own, insufficient to induce RARβ expression. As a positive control for RARβ expression, RA-treated P19 cells have been used. A mutant P19 cell line, D3, that is unable to differentiate into cardiac or skeletal muscle following aggregation and exposure to DMSO was used to determine whether the expression of RARβ2 is dependent on the presence of muscle. Figure 3-5 also shows that when D3 cells were aggregated and exposed to DMSO, no induction of RARβ cold be seen on days 4, 5, and 6.

RARβ2 mRNA is not stabilized between day 4 and day 7 of DMSO differentiation

P19 cells were differentiated with 1% DMSO for 4 and 7 days. Actinomycin-D, an inhibitor of transcription, was added at the end of day 4 or day 7 DMSO differentiated P19 cells, and total cellular RNA was collect from zero through five hours. Figures 3-6 is a Northern blot analysis of this experiment probed with a RARβ2 specific probe. Densitometric readings of these blots has determined that there is no stabilization of the RARβ2 message between days 4 and 7 of differentiation. Figures 3-7 and 3-8 are logarithmic plots of normalized densitometric readings used for the calculation of mRNA half-life. It has been determined that the half-life of the RARβ2 message on Day 4 is approximately
Figure 3-6: Half-life of RARβ2 on day 4 and day 7 of DMSO differentiation: Northern blot analysis was conducted on Actinomycin-D treated cells isolated from 0 through 5 hours on either day 4 or day 7 of DMSO differentiation in order to assess the half-life of the RARβ2 message on different days of differentiation. The blots were probed with an isoform-specific RARβ2 probe as well as the GAPDH control probe.
Day 4 of differentiation

\[\ln(A_0/A) \]

Hours

0 1 2 3 4 5 6
Figure 3-7: Logarithmic plot of RARβ half-life on day 4 of DMSO differentiation: Linear regression analysis of densitometric readings from figure 3-6 demonstrates that the half-life of the RARβ2 message on Day 4 of DMSO differentiation is 2.2 hours.
Day 7 of differentiation

\[\ln(\frac{A_d}{A}) \]

Hours

0 1 2 3 4 5 6

-1 0 1 2
Figure 3-9: Logarithmic plot of RARβ half-life on day 7 of DMSO differentiation: Linear regression analysis of densitometric readings from figure 3-6 demonstrates that the half-life of the RARβ2 message on day 7 of differentiation is 2.1 hours.
2.2 hours while the half-life of the Day 7 RARβ2 transcript is approximately 2.1 hours. We propose that because the half-life of the RARβ2 message on day 4 and day 7 is approximately equal, RARβ2 mRNA is stabilized before day 4 of the differentiation process. Thus, after this time the observed increase in RARβ message is likely due to accumulation of the already stabilized transcript.

EGTA has no modulating effect on the expression of RARβ2 mRNA during DMSO differentiation from Day 4 through Day 7

Since DMSO is known to have an effect on intracellular levels of calcium, we investigated the effect of 2mM EGTA on RARβ2 expression on days 4 through 7 of DMSO-induced differentiation. DMSO differentiated P19 cells were pretreated for 48 hours with 2mM EGTA and collected on days 4,5,6,7. Northern blot analysis with an RARβ2 isoform specific probe (figure 3-9) demonstrates that chelation of calcium with EGTA does not affect the RARβ2 mRNA levels to any significant extent.

RA prevents Brachyury expression in P19 cells differentiated with DMSO

P19 cells when aggregated and exposed to DMSO differentiate into a variety of mesodermal and endodermal cell types (McBurney et al., 1982). We investigated the expression of the Brachyury gene when P19 cells were differentiated with DMSO and treated with 1μM RA on day 0 and day 2 of the
Figure 3-9: Expression of RARβ2 in EGTA-treated DMSO-differentiated P19 cells: Northern blot analysis was conducted on DMSO-differentiated P19 cells isolated on day 4, 5, 6, and 7 of differentiation and DMSO-differentiated P19 cells exposed to 2mM EGTA 48 hours prior to total RNA isolation. The blot was probed with the RARβ2 isoform-specific probe as well as the internal control GAPDH. The results indicate that calcium chelation by EGTA has no effect on the level of RARβ2 expression in DMSO-differentiated cells. (D4, D5, D6, D7) Day 4, Day 5, etc....
differentiation process. Brachyury expression has been shown to be expressed transiently in these cells before the appearance of markers of the differentiated cell types (Vidricaire et al., 1994). We differentiated the cells with DMSO and added RA on either day 0 or day 2 and observed Brachyury mRNA expression. Brachyury mRNA was present at very low to undetectable levels in undifferentiated P19 cells and dramatically increased to peak at day 2 before declining in DMSO treated P19 aggregates (Figure 3-10). Aggregation and treatment with both 1μM RA and 1% DMSO added on day 0 resulted neuroectoderm formation by day 7, not including beating cardiac muscle. Brachyury was not transiently expressed in these cells, indicating that mesoderm formation did not take place. When RA was added 48 hours into the differentiation process, there was no alteration in Brachyury expression on day 4 through 10, however a mixture of cell types were not including beating cardiac muscle or neuroectoderm. Thus, even though Brachyury expression was not altered, the formation of beating cardiac muscle could not take place. This supports the finding that Brachyury expression is not sufficient for cardiac muscle formation.

Id expression is transiently downregulated in DMSO-differentiating P19 cells

Figure 3-10 illustrates that the expression of Id mRNA is downregulated on day 1 and 2 of DMSO differentiation as compared to proliferating P19 cells. The
The diagram shows a comparison of protein expression levels across different treatments labeled as P19, DMSO, RA D0, and RA D2. The proteins analyzed are BRAC, ID, and GAPDH. The expression levels are quantified and represented by the intensity and distribution of the bands.
Figure 3-10: Brachyury and Id expression in differentiated P19 cells: In order to assess the ability of RA to influence the formation of cardiac muscle, both Brachyury and Id mRNA levels were examined in P19 cells differentiated with DMSO, with DMSO and 1μM RA (added on day 0 of differentiation), and with DMSO and 1μM RA (added on day 2 of differentiation). The results indicate that Brachyury expression is transiently upregulated in DMSO-differentiated cells, but is not apparent in both DMSO and RA treated cells when RA is added simultaneously with DMSO on day 0. Id expression levels are downregulated on the first 2 days of P19 differentiation with DMSO and appear to increase back to normal levels by day 4. When RA is added 2 days into the DMSO differentiation process, Id levels mimic that seen in DMSO-differentiated P19 cells, but when RA is added simultaneously with DMSO, Id levels remain constant. This finding is consistent with the observation that when RA is added simultaneously with DMSO, neuron formation is prominent on day 8 of the differentiation process. (P19) DMSO-differentiated P19 cells, (RA D0) 1μM RA added on day 0 of differentiation, (RA D2) 1μM RA added on day 2 of differentiation, (BRAC) Brachyury
levels of Id however, have increased by day 4 of differentiation back up normal levels found in undifferentiated P19 cells. The simultaneous administration of both RA and DMSO results in the evolution of neuroectoderm, consistent with RA-induced differentiation. This finding is paralleled by the lack of downregulation of Id mRNA on day 1 and 2 of differentiation. Administration of 1μM RA for 48 hours on day 2 of differentiation does not appear to have an effect on Id mRNA levels following exposure. Nevertheless, no beating muscle could be found by day 7 to 10 of differentiation. It is not clear what cell types were formed from the simultaneous administration of 1μM RA on day 2 of the differentiation process, but it was quite apparent that beating muscle nor neuroectoderm was not present. These results show that the transient downregulation of Id on day 1 and 2 of the muscle differentiation process is not sufficient in itself for cardiac muscle formation.
Chapter IV - General Discussion

Presently, the primary mechanism for the mediation of the RA signal is through the RAR and RXR classes of nuclear receptors. Retinoic acid is believed to upregulate the expression of its own receptor RARβ through two distinct mechanisms. As reported by Mendelsohn et al., 1994a, the modulation of the RARβ1/β3 transcripts occur via a RA-dependent release of a block in RNA chain elongation. In the case of the RARβ2/β4 isoforms, RA-inducibility is mediated by a response element present in the P2 promoter region (Hoffman et al., 1990) (De The et al., 1990). The RARE present in the RARβ promoter region is comprised of two direct repeats of the core sequence 5'-GTTCAC-3' which can be activated in several different cell types which express RARs (Sucov et al., 1990) (De The et al., 1990). It has previously been shown that the RARβ isoform is also induced by RA in P19 EC cells (Pratt et al., 1990). The transcriptional enhancer activity of the RAREβ has to the point been the sole mechanism by which the increase in RARβ2 expression has been demonstrated. This study clearly demonstrates that RARβ gene expression is strongly induced in a RA-independent manner for P19 cells aggregated and differentiated with (DMSO).

At the presomitic stage of mouse development (day 7.5 to day 8), p.c., RARβ expression in transverse sections at the level of the primitive streak, is lower in the midline than in the lateral regions, thought not being tissue related.
Expression of RARβ in the newly formed mesenchyme lateral to the streak at early stages was reflected at later stages as expression in the lateral plate mesoderm, inducing that association with the heart (Rossant et al., 1991). At the 4-7 somite stage of development (day 8 p.c.), the two heart tubes come together and fuse in the ventral midline as the foregut forms, and the heart begins to beat. In embryos of the 8-10 somite stage (day 9 p.c.), RARβ transcripts are detected in the lateral and intermediate mesoderm and as in the previous stages, absent from the somites.

The tissue specific and temporally restricted expression of RARβ during mouse embryogenesis suggests a specific role for this receptor during development. Since the presence of RARβ transcripts is thought to be due to activation of the RARE in its promoter region, it is surprising that in transgenic mice, harbouring a RAREβ-LacZ reporter gene construct, there is no cardiac expression at the 8-10 somite stage of development. This observation implies that posttranscriptional mechanisms may play a large role in the level of RARβ gene expression. Taken together, our observations that RARβ expression peaks in DMSO differentiated cells shortly after the onset of cardiac muscle contraction, and that RARβ transcripts appear in the heart at specific times during development strongly suggests that the RARβ plays a pivotal role in normal cardiac development as evidenced by Osmond et al., 1991, who observed that excess levels of retinoic acid in the early chick embryo prevents fusion of the heart tubes. They believe that one of the teratogenic effects of retinoic-induced malformations seen in
mammalian embryos and humans (Lammer et al., 1985) may be related to a disruption of precardiac cell-matrix interactions and inhibited cell migration during cardiac formation.

Recent genetic evidence supporting the concept that RXR/RAR heterodimers act as transcriptional transducers of the RA signal during development has demonstrated a role for retinoid receptors in heart development. Mice embryos null for RXRα display a decrease in thickness of the ventricular myocardium (Kastner et al., 1994). This thin myocardium is believed to be attributed to a decrease in the number of “primary” myocytes in the primitive myocardial wall. Interestingly, RARα1 null mutants do not demonstrate any disruption of embryonic development and thus suggests combinatorial or overlapping functions for the various RAR isoforms. RARα null mutants do however display a spectrum of abnormalities related to Vitamin-A deficiency. Thus RARα1 and RARα2 are largely functionally redundant.

RARβ2 null mutants have little or no effect on development (Mendelsohn et al., 1994b), whereas combination mutants result in many developmental abnormalities including the heart (Luo et al., 1996). These studies have indicated that multiple RARβ isoforms are implicated in RA signaling in vivo. Comparisons of the phenotypes from this compound null mutant with other previously reported phenotypes of RAR compound mutants give much insight into the functional roles of the RARβ and RARα isoforms in development.
The observation that RARβ2 mRNA is upregulated in DMSO-differentiated P19 cells which contain primary mesodermal derivatives including cardiac muscle supports the hypothesis that this upregulation may be cardiac-cell specific. Our experiments with myoD expressing p19 cells rule out the possibility that the receptor is expressed in mesoderm derived skeletal muscle. Additionally, by using the D3 mutant P19 cell line, we have established that the induction of RARβ is dependent on the presence of muscle as no increase in RARβ mRNA was evidenced throughout the differentiation process. From this data, we can thus conclude that the gene is expressed in either the embryonic cardiac muscle or the germ layer or both.

A study which generated a null mutation for the RARβ gene (Luo et al., 1995) (all isoforms disrupted) in the mouse found that mice homozygous for the RARβ mutation are viable and fertile, and exhibit no obvious external or internal abnormalities including the heart. This result indicates that the RARβ gene is not essential for normal cardiac development. This result is unexpected because the specific expression pattern of the RARβ gene suggests that it plays an important and distinct role in mouse development (Mendelsohn et al., 1992) (Ruberte et al., 1993) (Ruberte et al., 1991) (Dolle et al., 1990) (Dolle et al., 1989). Also, the specific spatial and temporal expression of an RARE-hsp-βgalactosidase transgene during mouse embryogenesis was shown to mimic closely the expression of the RARβ gene. This observation significantly complicates assigning a specific function(s) to each RARβ gene. This in
combination with other studies have demonstrated that none of the individual RAR isoforms play a pivotal role in the process of development.

As previously reported by Zelent et al., 1991, small amounts of RARβ1 and RARβ3 transcripts were present in RA-treated P19 cells, in accordance with the hypothesis that RA-induced RARβ1/β3 transcript accumulation results from a release of a block to elongation. We have also found the presence of small amounts of the RARβ1 and RARβ3 transcripts by RT-PCR and Southern Blot analysis in DMSO differentiated cells. Clearly however, the major transcript as shown by isoform specific RT-PCR is the RARβ2 isoform.

Compound mutants with the RARβ2 isoform (αβ2) have demonstrated abnormalities of the heart and great vessels, all of which have been described in the offspring from VAD rats (Wilson et al., 1953) (Wilson., 1949). These data demonstrate that RARs are transducing the retinoid signal necessary for proper myocardial growth, aorticopulmonary and ventricular septation, and patterning of aortic arches. Even though none of these studies has specifically implicated the RARβ2 isoform as necessary for cardiac differentiation, due to significant functional redundancy among receptors, the data presented here strongly suggest a very specific role for the RARβ2 isoform in cardiac development.

The lack of a large transcriptional induction of either a RAREβ2 reporter gene or the endogenous RARβ in DMSO differentiated P19 cells suggests a
posttranscriptional mechanism for the regulation of RARβ2 mRNA in developing cardiac muscle/mesoderm. The nuclear run-on experiment indicates a constitutive basal activity from the RARβ gene promoter. Mendelsohn et al., 1994a, has shown a small amount of hybridization to the RARβ2 first exon in nuclear run-on experiments that increases in the presence of RA. Taken together these results suggest that regulation of RARβ2 mRNA occurs through a primarily posttranscriptional mechanism in developing cardiac muscle/mesoderm.

A possible mechanism for this may be differentiation dependent stabilization of the RARβ2 transcript. Our actinomycin-D experiments on Day 4 and Day 7 of differentiation show no increase in stability of the RARβ2 transcript. Due to very low constitutive RARβ2 levels in undifferentiated P19 cells, it is difficult to assess the half-life of this transcript in vitro. We have proposed that the RARβ2 message is stabilized early-on in the differentiation process, (before day 4) and that between days 4 and 7 of differentiation, we are observing accumulation of the transcript. In addition to stabilization of the transcript, we have observed a small, yet observable increase in the level of transcription of the message. Taken together, this data suggests that a combination of transcriptional and posttranscriptional events are involved in the increased expression of the RARβ2 message.
The 3'-UTR region of the RARβ gene contains four copies of the AUUUA motif. As previously mentioned, the presence of this motif in the A-U rich element (ARE) does not guarantee any kind of destabilizing function since it could be inactivated by neighbouring sequences. The existence of trans factors which interact with labile mRNAs at or near the AUUUA destabilizing elements might play a role in the half-life of RARβ mRNA (Wodnar-Filipowicz and Moroni., 1990) (Schuler and Cole., 1988). A-U binding factor -AUUUA (AUBF-AUUUA) RNA complexes have been previously shown to protect mRNA from rapid degradation in certain instances, leading to regulation of gene expression (Malter et al., 1990).

The mechanism of action of DMSO on biological systems is unknown, but the similarity of the responses of various cells to DMSO suggests that a common mechanism may be involved in inducing the differentiation of these cells. Based on studies of 45Ca$^{2+}$ uptake over 24 hours, it has been suggested that in MEL cells, DMSO triggers a Ca$^{2+}$ surge which is necessary but not by itself sufficient to induce differentiation (Tsiftsoglu et al., 1981) (Bridges et al., 1981). Therefore DMSO action may be mediated at least partly through Ca$^{2+}$ and Ca$^{2+}$ mediated processes. DMSO has been shown to act on an inositol-trisphosphate-independent Ca$^{2+}$ storage site (Morley and Whitfield., 1993). Whether the presence of calcium during the process of differentiation was sufficient to stabilize the RARβ2 transcript, we performed a calcium chelation experiment with EGTA and measured RARβ2 mRNA levels. This experiment demonstrates
that the presence of a specific calcium chelator (EGTA) had no effect on the presence of the RARβ2 mRNA message, indicating that calcium does not seem to play a significant role in the regulation of RARβ2 mRNA during cardiac muscle/mesoderm. Whether this finding rules out involvement of binding proteins which may stabilize the transcript remains to be seen, but Ca\(^{2+}\) does not appear to play a role in mediating RARβ2 stabilization during DMSO differentiation.

The observation that Brachyury expression is transiently upregulated in differentiating P19 cells supports the hypothesis that this gene is required for mesoderm formation. Brachyury is known to be necessary but not sufficient for mesoderm formation in the mouse (Willison., 1990) (Wilkinson et al., 1990) (Hermann et al., 1990). The differentiation of P19 cells with DMSO forms mesodermal cell types including cardiac as well as skeletal muscle. Exposure of P19 cells to 1μM RA at either the beginning of differentiation or shortly after (day 2) has established if the differentiation program initiated by aggregation and exposure of DMSO could be interrupted or altered. The results obtained suggest that RA has a stronger differentiating effect on the cells than DMSO as evidenced from the formation of neurons in day 0 RA-treated cells. The expression of Brachyury following administration of RA on day 2 did not change indicating that the course of Brachyury expression had been previously determined. However, no cardiac muscle or skeletal muscle types were observed to have formed. This again demonstrates the more potent ability of RA
to affect the differentiation process. The lack of Brachyury up-regulation in P19 cells treated with RA as well as DMSO suggests that mesoderm is not formed with this type of exposure. Consistent with this hypothesis is the lack of cardiac beating muscle in these cell cultures. That RA has apparently no effect on Brachyury mRNA levels when administered on day 2 of differentiation implies that this molecular pathway has already been initiated. However, no cardiac muscle is present from days 7 to 10 of differentiation indicating that other important steps within the process of differentiation were altered by the presence of retinoic acid.

Id expression has been linked to cellular proliferation as well as differentiation. In addition to Brachyury expression, we also wanted to investigate the expression levels of Id in DMSO-differentiated cells with or without RA being added on either day 0 or day 2 of differentiation. P19 cells aggregated and exposed to DMSO show a dramatic down-regulation of Id levels on day 1 and 2 of differentiation. However, the levels return to that previously found in proliferating P19 cells by day 4 of differentiation. Addition of RA on day 0 of DMSO differentiation resulted in the maintenance of Id levels through to day 10. From this and the observation that only neurons were formed by day 10 of differentiation, it appears that the initiation of muscle formation did not take place in this experiment. Addition of RA on day 2 had no effect on Id levels even though no beating cardiac muscle was formed. Since Id levels remain high, it is possible that Id remains bound to various bHLH proteins, influencing levels of
gene expression, possibly not allowing the cells to differentiate as they normally would outside RA's influence.

RA appears from these results to have a more dominant effect over DMSO in the process of differentiation. This is supported by the finding that RA acts through nuclear receptors to alter levels of gene expression while DMSO does not appear to be physiologically significant and appears to act more indirectly in the differentiation process, possibly through regulation of intracellular calcium levels.

These observations of both Brachyury and Id expression suggest that RA has a more profound effect on cell fate during differentiation, perhaps because it acts more directly through nuclear receptors to alter gene expression. Though the mechanism of DMSO-induced differentiation has not yet been elucidated, it seems likely that DMSO acts more indirectly in the differentiation process, possibly through regulation of intracellular calcium levels.

The expression levels of both Brachyury and Id appear to play an important role in cardiac muscle formation. High levels of expression of each of these genes within cells could give us insight into the genes necessary for muscle development. Thus, transfection studies with these genes in P19 cells will prove useful in determining their role as molecular mediators of the differentiation process.
It still remains to be determined by what mechanism RARβ2 is upregulated in DMSO-differentiated cells. Additional stability experiments performed on earlier days of differentiation could give insight into whether the increase in RARβ2 expression is due to mRNA stabilizing mechanisms. Transfection of full-length RARβ under control of a weak promoter into P19 cells followed by DMSO-treatment should show whether stabilization of the transcript is the primary mechanism by which its upregulation is accomplished. This novel finding that RARβ2 is upregulated in an RA-independent fashion has added to the level of complexity in which retinoids participate in the process of development.

The results of this study have concluded that expression of the RARβ2 isoform is strongly induced in differentiating cardiac muscle derived from P19 embryonal carcinoma cells in a RA-independent manner and that the RARβ1/3 isoforms are expressed at lower levels in differentiating cardiac muscle. The mechanism by which this upregulation occurs is believed to be post-transcriptional and may involve mRNA stabilization. Also, it has been shown that the transient increase and transient decrease in Brachyury and Id expression respectively, are not sufficient for cardiac muscle formation in DMSO differentiating P19 cells.
References

Boylan JF and Gudas LJ. (1992). The level of CRABP-1 expression influences the amounts and types of all-trans retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem 267, 21486-21491

Braun T, Buschhausen DG, Bober E, Tannich E, Arnold HH. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8, 701-709

Edmondson DG and Olson EN. (1989). A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. *Genes Dev.* **3**, 628-640

Katz DA, Theodorakis NG, Cleveland DW, Lindsten T, Thompson CB. (1994). AU-A, and RNA-binding activity distinct from hnRNP A1, is selective for AUUUA

Koenig RJ, Brent GA, Warne RL, Larsen PR, Moore DD. (1987). Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. Proc Natl Acad Sci USA 84, 5670-5674.

Muhlrad D, Decker CJ, Parker R. (1994). Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5' to 3' digestion of the transcript. Genes Dev. 8, 855-866

Nagpal S, Friant S, Nakshatri H, Chambon P. (1993). RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization _in vivo_. _EMBO J_ 12, 2349-2360

Reichmann V, Cruchten IV, Sablitzky F. (1994). The expression pattern of \(\text{ld4} \), a novel dominant negative helix-loop-helix protein, is distinct from \(\text{ld1}, \text{ld2} \) and \(\text{ld3} \). *Nucleic Acids Res.* 22, 749-755

Wang L, Tsai SY, Cook RG, Beattie WG, Tsai M, O'Malley BW. (1989). COUP transcription factor is a member of the steroid receptor superfamily. *Nature* 340, 163-166

Webster NJG, Green S, Tasset D, Ponglikitmongkol M, Chambon P. (1989). The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon. *EMBO J* 8, 1441-1446

Wright WE, Sassoon DA, Lin VK. (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56, 607-617

Zechel C, Shen XQ, Chen JY, Chen ZP, Chambon P, Gronemeyer H. (1994). The dimerization interfaces formed between the DNA binding domains of RXR, RAR, and TR determine the binding specificity and polarity of full-length receptors to direct repeats. EMBO J 13, 1425-1433

