The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L’auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L’auteur conserve la propriété du droit d’auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-612-15760-1
ABSTRACT

This study presents a strategy for position feedback control, a so-called self-adjusting adaptive sliding mode controller, to obtain a desired steady state error for a DC-motor servo in the presence of Coulomb friction and stiction. Sliding mode controllers are of the type of nonlinear controllers which have been studied extensively by Russian scientists, including V.I. Utkin and V. Itkis. The self adjusting sliding mode control method that this thesis is focused on is an adaptive discontinuous controller with an approximated sliding mode trajectory. The study is concerned with both analytical and experimental performances of such a class of control strategy and a PID (proportional integral and derivative) controller in the presence of dry friction for the purpose of comparison. The study also investigates the effect of nonlinear phenomenon such as torque saturation on the states of the variables of such a system. The result of the paper is finally based on the suitable performance of the suggested control methodology utilizing a new form of sliding mode controller for the second order class of systems, rather than the conventional forms from V. Itkis and V.I. Utkin.
ACKNOWLEDGEMENT

I would sincerely like to thank Dr. D. Neacsulescu for this patience, efforts and valuable suggestions to me during the writing of this report.

I would also like to thank my parents, particularly my mother for her great support during my studies, and my uncle for this ongoing help.
TABLE OF CONTENTS

Abstract .. i
Acknowledgement .. ii
Table of Contents .. iii
List of Figures ... iv
Glossary of Necessary Symbols ... ix

CHAPTER I: INTRODUCTION

I.1 INTRODUCTION .. 1
I.2 LITERATURE SURVEY ... 4

CHAPTER II: THEORY OF PID, DISCONTINUOUS CONTROLLERS IN SLIDING MODE

II.1 PID CONTROLLER ... 6
 II.1.1 Pulse Transfer Function of the Digital PID Controller 7
 II.1.2 PID Transfer Function in S-domain ... 8

II.2 DISCONTINUOUS CONTROLLERS IN SLIDING MODE 9
 II.2.1 Discontinuous Control of A Second Order System in Sliding Mode Using Variable Structure System .. 9
 II.2.2 Discontinuous Control of A Double Integrator System 21
 II.2.2.1 The Effect of K-Gain of the Controller II.2-32 and Sampling Time 25
 II.2.2.2 The Sliding Conditions of A Double Integrator System 33
 II.2.2.3 Self-adjusting Adaptive Sliding Mode Control Method 37
 II.2.3 Section Summary and Conclusions ... 40

II.3 MODEL OF A DC-MOTOR SERVO SYSTEM .. 41
 II.3.1 The Effect of Coulomb Friction .. 42
 II.3.2 The Effect of Torque Saturation ... 49
 II.3.3 Section Summary and Conclusions ... 58

CHAPTER III: CONTROLLER DESIGN AND COMPUTER SIMULATIONS OF THE DC-MOTOR MODEL WITH PID AND SELF-ADJUSTING ADAPTIVE SLIDING MODE CONTROLLER

III.1 PID CONTROLLER ... 60
 III.1.1 The Effect of Coulomb Friction .. 69
 III.1.2 Section Summary and Conclusions ... 70

III.2 SELF-ADJUSTING ADAPTIVE CONTROLLER IN SLIDING MODE 71
 III.2.1 Alternatives for Control Algorithm .. 72
CHAPTER IV: THE DC-MOTOR SERVO MODEL OF THE EXPERIMENT

IV.1 HARDWARE ... 111
IV.1.1 DC-Motor Servo 115
IV.1.2 Photodiode Encoder 116
IV.1.3 Position Feedback Circuit 118
IV.1.4 The Z80 Interface Circuit (Sensor, Interlock Logic and Communication with Host PC) 121
IV.1.5 DC-Motor Servo Transfer Function for the Experiment ... 126

IV.2 SOFTWARE ... 127
IV.2.1 Interface Program 127
IV.2.2 Controllers Programs 127

CHAPTER V: EXPERIMENTAL RESULTS

V.1 PID CONTROLLER ... 132

V.2 DISCONTINUOUS CONTROLLERS IN SLIDING MODE ... 136
V.2.1 Choice of Sampling Time 136
V.2.2 Discontinuous Controller in Sliding Mode with Constant Switching Line 136
V.2.3 Self-Adjusting Adaptive Sliding Mode Controller ... 141

CHAPTER VI: FINAL CONCLUSIONS

VI.1 OVERVIEW ... 144
VI.2 FUTURE WORK ... 146
REFERENCES	APPENDIX-A	Type A & B Controllers in Matrix-X language (Pseudocode type) and The flow charts
APPENDIX-B	Flow Charts and Programs of B-1, B-2 and B-3	
APPENDIX-C	I/O Programs (Z80-PC)	
APPENDIX-D	DC-Motor Components (Experimental)	
APPENDIX-E	Simulations of DC-motor Servo System with PID Controller	
LIST OF FIGURES

II.1-1 Block Diagram of PID Controller ... 8
II.2-1 Phase-Plane Representation of the Regions 10
II.2-2 Block Diagram of Process, Discontinuous Controllers 11
II.2-3 Phase-Plane Representation of Simulation of II.2-2&19 18
II.2-4 Phase-Plane Representation of Parabolas for Double Integrator .. 22
II.2-5 Phase-Plane Representation of Parabolas in Switching and Sliding Mode . 23
II.2-6 Block Diagram of Double Integrator System Control 24
II.2-7 Phase-Plane of System Trajectory for II.2-34 24
II.2-8 Phase-Plane of Trajectories showing effect of Magnitude of K 25
II.2-9 Phase-Plane of Parabolas in Switching and Sliding Mode (K,Ts) 26
II.2-10 Phase-Plane of Parabolas showing actual and ideal motion in Sliding Mode ... 28
II.2-11 Phase-Plane of Trajectory for II.2-34 29
II.2-12 Velocity Error versus Time for Figure (II.2-11) 29
II.2-13 Phase-Plane of Trajectory of II.2-34 30
II.2-14 Velocity Error versus Time for Figure (II.2-13) 30
II.2-15 Phase-Plane Trajectory for II.2-34 31
II.2-16 Velocity error versus time for Figure (II.2-15) 31
II.2-17 Phase-Plane Trajectory for II.2-34 32
II.2-18 Phase-Plane Trajectory for II.2-34 33
II.2-19 Phase-Plane Parabolas for Boundary Switching Curves 35
II.2-20 Phase-Plane of Boundary Switching Curve II.2-38 36
II.2-21 Phase-Plane Trajectory for Self-Adjustable, Adaptive Control Strategy in Sliding Mode ... 39
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.3-1</td>
<td>Block Diagram of a Motor Servo System</td>
</tr>
<tr>
<td>II.3-2</td>
<td>Phase-Plane with effect of Coulomb Friction</td>
</tr>
<tr>
<td>II.3-3</td>
<td>Computer Simulation of II.3-1(with Coulomb Friction)</td>
</tr>
<tr>
<td>II.3-4</td>
<td>Computer Simulation of II.3-1(with Coulomb Friction)</td>
</tr>
<tr>
<td>II.3-5</td>
<td>Computer Simulation of II.3-1(without Coulomb Friction)</td>
</tr>
<tr>
<td>II.3-6</td>
<td>Phase-Plane with Saturation Regions</td>
</tr>
<tr>
<td>II.3-7</td>
<td>Phase-Plane of Trajectories and S-Plane for II.3-6 and 7</td>
</tr>
<tr>
<td>II.3-8</td>
<td></td>
</tr>
<tr>
<td>II.3-9</td>
<td></td>
</tr>
<tr>
<td>II.3-10</td>
<td></td>
</tr>
<tr>
<td>II.3-11</td>
<td></td>
</tr>
<tr>
<td>II.3-12</td>
<td></td>
</tr>
<tr>
<td>II.3-13</td>
<td></td>
</tr>
<tr>
<td>III.1-1</td>
<td>Block Diagram of PID Controller with ZOH</td>
</tr>
<tr>
<td>III.1-2</td>
<td>Block Diagram of DC-motor Servo System</td>
</tr>
<tr>
<td>III.1-3a</td>
<td>Root Locus Plot of III.2-1 - Case A(PID)</td>
</tr>
<tr>
<td>III.1-3b</td>
<td>Root Locus Plot of III.2-1 - Case B(PID)</td>
</tr>
<tr>
<td>III.1-4</td>
<td>Phase-Plane of the System Ts=.1Sec(PID)</td>
</tr>
<tr>
<td>III.1-5</td>
<td>Control Output Signal versus Time Ts=.1Sec(PID)</td>
</tr>
<tr>
<td>III.1-6</td>
<td>Phase-Plane of the System Ts=.03Sec(PID)</td>
</tr>
<tr>
<td>III.1-7</td>
<td>Control Output Signal versus Time Ts=.03Sec(PID)</td>
</tr>
<tr>
<td>III.2-1</td>
<td>Phase Portrait of I(t), Motion of Switching Line</td>
</tr>
<tr>
<td>III.2-2</td>
<td>Phase-Plane of Trajectory for Simulation-S1</td>
</tr>
<tr>
<td>III.2-3</td>
<td>c, cl, σ versus Position Error(S1)</td>
</tr>
<tr>
<td>III.2-4</td>
<td>c, cl, Position Error versus Time(S1)</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>III.2-5</td>
<td>(c, c_l, \sigma) versus (x_I(t)) (S1)</td>
</tr>
<tr>
<td>III.2-6</td>
<td>Phase-Plane of Trajectory - Detail A-A(S1)</td>
</tr>
<tr>
<td>III.2-7</td>
<td>Phase-Plane Trajectory for Simulation-S2</td>
</tr>
<tr>
<td>III.2-8</td>
<td>Phase-Plane Representation of Motion (S3, Coulomb Friction)</td>
</tr>
<tr>
<td>III.2-9</td>
<td>Acceleration versus Time(S3)</td>
</tr>
<tr>
<td>III.2-10</td>
<td>Position Error versus Time(S3)</td>
</tr>
<tr>
<td>III.2-11</td>
<td>Details of A-A(S3)</td>
</tr>
<tr>
<td>III.2-12</td>
<td>Velocity Error versus Time(S3)</td>
</tr>
<tr>
<td>III.2-13</td>
<td>Details of B-B(S3)</td>
</tr>
<tr>
<td>III.2-14</td>
<td>Phase-Plane of Trajectory (S4)</td>
</tr>
<tr>
<td>III.2-15</td>
<td>Acceleration versus Time (S4)</td>
</tr>
<tr>
<td>III.2-16</td>
<td>Position Error versus Time (S4)</td>
</tr>
<tr>
<td>III.2-17</td>
<td>Details of A-A(S4)</td>
</tr>
<tr>
<td>III.2-18</td>
<td>Velocity Error versus Time(S4)</td>
</tr>
<tr>
<td>III.2-19</td>
<td>Details of B-B(S4)</td>
</tr>
<tr>
<td>III.2-20</td>
<td>Phase-Plane of the System (S5)</td>
</tr>
<tr>
<td>III.2-21</td>
<td>Phase-Plane of the System (S6)</td>
</tr>
<tr>
<td>III.2-22</td>
<td>Block Diagram of DC-motor Servo - Type A Controller</td>
</tr>
<tr>
<td>III.2-23</td>
<td>Phase-Plane of the System - Case I</td>
</tr>
<tr>
<td>III.2-24</td>
<td>(x_I) versus Time - Case I</td>
</tr>
<tr>
<td>III.2-25</td>
<td>Control Signal to DAC-08C - Case I</td>
</tr>
<tr>
<td>III.2-26</td>
<td>Phase-Plane of System - Case II</td>
</tr>
<tr>
<td>III.2-27</td>
<td>(x_I) versus Time - Case II</td>
</tr>
<tr>
<td>III.2-28</td>
<td>Control Signal to DAC-08C - Case II</td>
</tr>
<tr>
<td>III.2-29</td>
<td>Phase-Plane of System (S7)</td>
</tr>
</tbody>
</table>
III.2-30 Phase Portrait of System (S7) ... 103
III.2-31 Phase-Plane of System (S8) ... 104
III.2-32 x_1, x_2, x_2 versus Time Near Origin (S8) 105
III.2-33 x_1, x_2 versus Time, with Coulomb Friction (S8) 105
III.2-34 x_1, x_2 versus Time, without Coulomb Friction (S8) 107
IV.1-1 Schematic Block Diagram of DC-motor Control Process 112
IV.1-2 Schematic Diagram of Components 113
IV.1-3 Photograph of Experimental DC-motor servo system 114
IV.1-4 Essential Parts of Conventional Servo Control 116
IV.1-5 Essential Parts of Encoder ... 117
IV.1-6 Output Signal for Optical transistor 117
IV.1-7 Encoder Signal Processing - Amplification 118
IV.1-8 Encoder Signal Processing - Clipping 119
IV.1-9 Encoder Signal Processing - Clipping (Detail) 119
IV.1-10 Encoder Signal Processing - Squaring 120
IV.1-11 Complete Encoder Circuit .. 120
IV.1-12 Schematic Block Diagram - DC-motor Servo Controller 122
IV.1-13 DAC-08C Electronic Circuit ... 123
IV.1-14 Voltage Amplification of the DC-motor Command Signal 124
IV.1-15 The Current Amplifier ... 125
IV.1-16 Edge Triggering Problem in Z80 131
V.1-1 Enclosed Phase-Plane of System Trajectory B_1 $T_s=.1$, 3 Holes 134
V.1-2 Enclosed Phase-Plane of System Trajectory B_1 $T_s=.03$, 3 Holes 135
V.2-1 Enclosed Phase-Plane of System Trajectory B_2 $T_s=.1$, 9 Holes 138
V.2-2 Enclosed Phase-Plane of System Trajectory Sliding Mode $T_s=.03$, 9 Holes ... 140
V.2-3 Enclosed Phase-Plane of System Trajectory Self-Adjusting Sliding Mode Controller, Ts=.03, 9 Holes
GLOSSARY OF NECESSARY SYMBOLS

a_1 or a_1 The exact ideal position-error parameter
a_2 or a_2 The exact ideal velocity-error parameter
a_2 The measured position error parameter
a_3 The measured velocity error parameter
b The ideal controller u parameter [bu]
b^* The measured controller u parameter [*bu]
c, C The slope of switching line
C_o The initial slope of switching line.
C_{max} The slope of switching line resulting from the sliding condition for the initial point [equation II.2-40]
$c(t), C(t)$ The slope variable of switching line
C_l, c_l The variable resulting from the sliding condition [equations II.2-39 and III.2-11]
D The Coulomb friction parameter [used in section III.2(S3-4) as $D\text{sgn}(x_2)$. The real value is $D=d_2w_0^2$]
D' The stiction parameter [used in section III.2(S3-4) as $D'\text{sgn}(x_2)$. The real value is $D'=d'_2w_0^2$]
d The Coulomb friction coefficient [used in section II.3 as $d_2w_0^2 \text{sgn}(x_2)$]
d' The stiction coefficient [used in section II.3 as $d'_2w_0^2 \text{sgn}(x_2)$]
$G(s)$ Transfer function in Laplace-transform
$G(z)$ Transfer function in z-transform
J Total mass moment of inertia of the system
J_L The mass moment of inertia of the load
J_M The motor mass moment of inertia of the shaft
K The gain of the sliding mode controllers

K' The gain of the sliding mode controller, type B [equation III.2-14]

k The integer constant $k=1,2,...n$

k_1 The secondary gain of the controller, type B [equation III.2-14]

K_p The proportional gain of the PID controller

m_T The parameter, representing different saturation levels (ideal and actual saturation)

R Resistor symbol

T Sampling time

T_c Coulomb friction torque

T_e Effective torque

T_M Motor torque

T_{sat} Saturation torque

T_s or T_i Sampling time

t Time

t_c Time constant of the system

t_o Initial time

t_s Settling time

V Voltage

u Controller [control law]

u' or U' The bound of controller u, for the space of $\sigma<0$

u^+ or U^+ The bound of controller u, for the space of $\sigma>0$

x 2×1 matrix consists of variables of the system x_1,x_2

$x\dot{}$ 2×1 matrix consists of derivatives of the variables of the system

x_i or x_1 The variable of position error
\(x_2 \) or \(x_2 \)
The variable of velocity error \([x_1=x_2]\)

\(z \)
The symbol used for the z-transform

\(\text{ZOH} \)
Zero Order Hold.

\(\delta \) or \(\delta(t) \)
The variable of the slope of switching line [equation II.2-41,42,43,44]

\(\delta_1(x_1,x_2) \)
The differences of the actual and measured parameters of the system [equation II.2-23]

\(\delta_1(x_1,x_2) \)
The differences of the actual and measured parameters of the system, which involves the term of the measured gain [equation II.2-30a]

\(\epsilon \)
The magnitude of increase of slope of switching line [equation II.2-42]

\(\Theta \) or \(\Theta_0 \)
Output angular position from DC-motor

\(\Theta_0 \) or \(\Theta_i \)
Desired angular position

\(\sigma \)
Switching line

\(w \)
\((\text{Omega})\) Damped frequency of the system

\(w_0 \)
\((\text{Omega})\) Natural frequency of the system

\(\xi \)
Damping coefficient

\(\xi_v \)
Damping coefficient because of viscous friction

\(\xi_T \)
Damping coefficient because of tachogenerator
"Variable structure system" or "Multivariable variable structure system[29]" is a series of nonlinear class system studies that systematically motivated many Russian scientists to design and find solutions. Among them who can be referred to here, are S.V. Emelyanov, V.I. Utkin, V. Itkis, V.A. Taran, N.E. Kostyleva, A.M. Shubladze, V.B. Yezerov, and E.N. Dubrovsky. The source of this motivation was the discontinuous systems which would not accept the conventional theories on the existence and uniqueness of a solution. A discontinuous system (reference[33]) is a system represented by differential equations with a discontinuous right-hand side. These equations can be approximated by a certain real system whose behaviour is unambiguously determined everywhere and a sliding mode is understood as a motion represented by the real system when its equations tend to the equations of an ideal system. The solution for this kind of system generally pertains to the verification of the existence of a sliding mode (regime) or surfaces [7,14,15,18,21,29,39,40,33] which can also be obtained by Lyapunov stability. The representation and analysis of such a class of dynamic is more popular using Andronov's phase-plane. This is the method that current notes has chosen for its analysis.

At this point, explanations are stated here to clarify the matter of differences between a discrete motion and a discontinuous motion. The discontinuity of this kind [7,14,15,18,21,29,39,40,33] is the characteristic of a dynamic system which defines the state of motion with different spaces of R, where discretization[26] is the piece-wise states of such
a motion using sampling time! On the other hand, a discrete motion can be discontinuous or continuous but it should not be misunderstood with a discontinuous motion. A discontinuous system of this class is nonlinear[39]. This explanation is given here, since the discontinuous motion of a system such as a DC-motor utilizing a sliding mode controller or the simulation of such a system and the analysis of the resulting phase-plane trajectory is not explained by the discrete term only.

In summary, the discontinuity of a dynamic system can result in a discontinuous solution using Variable Structure System Control defined in different spaces of R. This solution is applied to the outcome of the existence of the sliding regimes or the sliding conditions for such a class of systems as discontinuous controller. These conditions result in a function of the Lyapunov type.

The predecessor to the self-adjusting adaptive sliding mode controller[33,45...] is a discontinuous controller that in fact, copies such an ideal motion (trajectory) upon an approximated type (a curve rather than a line for a second order system) of sliding surfaces. In other words, the use of time variant switching surfaces is the main explicit characteristic of such a control methodology. This controller inherits such sliding surfaces based on the same verification of the existence of time-invariant switching surfaces. This class of controllers, for the second order systems, will be presented in this study, in a new form of control solutions rather than the conventional forms from V. Itkes and V.I. Utkin.

Coulomb friction [1,30,31,32,34,35,36] is a phenomenon that changes the dynamic regime of a system to a nonlinear type. The effect of such phenomenon and the various topics of accurate positioning in a feedback servo-system have been discussed in [30,31,35,38,...], specifically using Variable Structure Control system. The use of a self adjusting sliding mode controller to obtain a better dynamic performance, is one subject that
has not been considered by any other studies in the field of digital feedback servo-DC-motor control yet.

The present study, initially develops continuous controllers, specifically for the second order systems and then focuses on the side effect of such a class of solutions, called chattering. High frequency chattering of a system trajectory is the main problem of this class of controllers, which may excite the system dynamic model[28]. The second phase of the study is focused on the verification of the nonlinear phenomena such as Coulomb friction, stiction and torque saturation for a DC-motor model. In the third phase of this study, a PID controller is designed for such a system in order its results to be compared with the results of operation of the self-adjusting sliding mode controller in the presence of Coulomb friction and stiction. In the design phase of self-adjusting adaptive sliding mode controllers, simulations are performed initially in order to verify the performances and the necessary conditions of such a class of controllers and to simplify the experiments.

The present topic was proposed by my supervisor Dr. D. Neculescu.

1.2 LITERATURE STUDY

The majority of the reference sources in Variable Structure Control System are in Russia. In this field, the most extensive studies are found in [6,7,8,9,17,18,24,29,33,39]. These sources study discontinuous systems with differential equations which have discontinuous right-hand side. The control solutions for various system dynamics are presented in these sources. English references on Variable Structure System have also been presented in [12,14,15,16,21,28,33,40,41,45]. In this field, the complexity of the methods of
solutions are considerably involved with the increase of the degree of the system order. Because of this, higher order systems are concerned with higher number of switching surfaces and more complex verifications of the existence of such sliding surfaces [21,33,39].

The studies of optimal sliding conditions are illustrated by [16,17,24,25,37]. As a solution to the width of chattering and the effect of high frequency chattering on the states of the variables of the system, Slotline and Sastry [28] propose the use of boundary layer approach. The result of this approach is illustrated by simulations for a two degrees of freedom robot, without considering the effect of any nonlinear phenomenon on the system actuators. This paper leaves this subject open for more investigation. This is a good study on the design of such a class of controllers, but they should be applied with caution.

On the field of Coulomb friction and multivariable control strategy references [22,41] should be referred to. Also, in the field of Coulomb friction and the error compensation of its effect, references [13,32,38], study the control solutions for the accurate positioning of the actuators. In addition to the study on the effect of some nonlinear phenomena on the analog motor model wherein the present study is using its results, the Coulomb friction and stiction with phase-plane analysis are presented in [31]. This topic has also been considered in [1,30,34,35,36].

In the study of servo feedback control systems and Variable Structure Control, references [11,22,35] should be referred to. Reference [11] considers the solution as a high-gain feedback in its definition of such a class of controllers. This reference considers this methodology of control, for both a digital and an analog system. The results of these experiments illustrate the adaptive operation of such a control method on the variable state of a servo-motor, even when high friction is applied to the system. This result is demonstrated by the insensitivity of the system to changes of the system parameters. A
constant switching line is proposed as the ideal trajectory for such a system. This paper does not provide conclusions relating to the difficulty in the accurate positioning of the servo-motor wherein Coulomb friction is present. Reference [22] presents this class of control methodology for a digital position feedback DC-motor using a Z80-microprocessor. Different controllers utilize system dynamic variables such as voltage, current and torque wherein the conclusions indicate on a satisfactory performance of such controllers (i.e. trajectory of the system ends at the origin of the phase-plane). This study evaluates such a class of controllers for a constant switching line. The result of this paper indicates on the poor performance of the controller for the large magnitude of the slope of switching line in the form of switch. The paper recommends the use of a self-adjusting sliding mode controller by the term of "time varying switching line" as a solution for the switching modes of the variable states of the system. Other applications of this class of controllers (such as Impedance control...etc) are considered by other studies with various topics that because of their irrelevancy to the present topic they are not followed further here.
Chapter II

THEORY OF PID AND DISCONTINUOUS CONTROLLERS IN SLIDING MODE

II.1 PID CONTROLLER

The basic principle of the PID control scheme is to act upon the variable to be manipulated through a proper combination of three control actions:

a) Proportional control action, where the control action is proportional to the actuating error signal (the difference between the desired input and the feedback signal).

b) Integral control action where the control action is proportional to the integral of the actuating error signal.

c) Derivative control action where the control action is proportional to the derivative of the actuating error signal.
II.1.1 Pulse Transfer Function of the Digital PID Controller

The PID control action in analog controllers is given by [26]:

\[
 u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(t) \, dt + T_d \frac{de(t)}{dt} \right] \tag{II.1-1}
\]

where:

- \(e(t)\) error input signal to the controller.
- \(u(t)\) output signal of the controller.
- \(K_p\) proportional gain of the controller.
- \(T_i\) integral time (or reset time).
- \(T_d\) derivative time (or rate time).

In order to obtain the pulse transfer function for the digital PID controller, we may discretize equation (II.1-1) by approximating the integral term by the trapezoidal summation and the derivative term by a two-point difference form. The PID controller in z-domain (from [26], equation 3-66), is:

\[
 U(z) = \left[K_{pp} + \frac{K_I}{1-z^{-1}} + K_D(1-z^{-1}) \right] E(z) \tag{II.1-2}
\]

where:

- \(K_{pp} = K_p - (K_P T_s / 2 T_i) = K_p - (K_I / 2)\) proportional gain (z-domain).
- \(K_D = (K_P T_d / T_s)\) derivative gain.
- \(K_I = (K_P T_d / T_i)\) integral gain.
- \(E(z)\) error input signal to the controller.
- \(U(z)\) controller output signal.
- \(T_s\) sampling time.
II.1.2 PID Transfer Function in s-Domain

From II.1-1, taking the Laplace transform, we obtain:

\[u(s) = \left[K_p + \frac{K_i}{s} + K_d s \right] e(s) \] \hspace{1cm} (II.1-3)

where:

- \(K_p \) proportional gain.
- \(K_d = K_p T_d \) derivative gain.
- \(K_i = K_p / T_i \) integral gain.
- \(e(s) \) input error signal to the controller.
- \(u(s) \) output signal from the controller.

The block diagram of the system is shown in Figure (II.1-1).

\[\theta_d(s) \rightarrow \theta(s) \rightarrow \text{CONTROL LAW} \rightarrow \text{PLANT} \rightarrow \theta_o(s) \]

Figure II.1-1 Block diagram of a plant with PID controller.
II.2 DISCONTINUOUS CONTROLLERS IN SLIDING MODE

II.2.1 Discontinuous Control of A Second Order System in Sliding Mode Using Variable Structure System

The state space equation of a second-order system is:

\[x = Ax \] \hspace{1cm} (II.2-1)

where:

\[A = \begin{bmatrix} 0 & 1 \\ -a_1 & -a_2 \end{bmatrix} \]

\[x = [x_1 \ x_2]^T \]

\(a_1, a_2 \) are constants, representing process parameters.
\(x_1 \) positional error function
\(x_2 \) error velocity

We shall assume that the device (such as a DC-motor) is regulated by a controller providing a control signal \(u(t) \) through an amplifier with a positive gain \(b \) (constant). Thus the control system in state-space representation is described by:

\[x = Ax + Bu \] \hspace{1cm} (II.2-2a)

where:

\[B = \begin{bmatrix} 0 \\ -b \end{bmatrix} \]
or:

\[
\begin{align*}
 x_1 &= x_2 \\
 x_2 &= -a_1x_1 - a_2x_2 - bu = f(x_1, x_2) - bu
\end{align*}
\]

(II.2-2)

In the case of a variable structure controller, using sliding mode, \(u \), the control law, is given by[21]:

\[
 u = \begin{cases}
 \alpha x_1 & \text{if } \sigma x_1 > 0 \text{ regions } \alpha^I, \alpha^{II} \\
 \beta x_1 & \text{if } \sigma x_1 < 0 \text{ regions } \beta^I, \beta^{II}
 \end{cases}
\]

(II.2-3)

where

\[
 \sigma = x_2 + cx_1
\]

(II.2-4)

\(\alpha, \beta \) are called gains of the controller (constants).

\(c \) is constant, defining the slope of switching line \(\sigma = 0 \).

Figure (II.2-1) represents the regions in the phase-plane.

Figure II.2-1 A phase plane representation of the regions.
In figure II.2-1, $\alpha^I, \alpha^{II}, \beta^I, \beta^{II}$, are the regions in the phase space of R, defined by two switches straight lines $x_1=0$, (coordinate axis) and $\sigma=0$. The four regions in this figure is defined by:

Region α^I : $x_1>0$, $\sigma>0$.
Region α^{II} : $x_1<0$, $\sigma>0$.
Region β^I : $x_1>0$, $\sigma<0$.
Region β^{II} : $x_1<0$, $\sigma>0$.

and:

σ, x_1 are called switching lines.

Figure II.2-2 shows the block diagram of such a system control.

![Block Diagram of a Process with Discontinuous Controller](image)

Figure II.2-2 Block diagram of a process with discontinuous controller.

$D_1=[0 \ 0], D_2=[0 \ 1], D_3=[1 \ 0]$

First, the existence of sliding regime on the switching lines is verified. The sliding condition from [4] [relation:1.3.14] or [21,33,45] is given by:

11
\[\lim_{\sigma \to 0} \sigma \leq 0 \quad \text{(II.2-5)} \]

From II.2-4, taking the derivative, thus we can write:

\[\sigma = c x_1 + x_2 \quad \text{(II.2-6)} \]

and, on the switching line, since:

\[\sigma = c x_1 + x_2 = 0 \quad \text{(II.2-7)} \]

or:

\[-c x_1 = x_2 \quad \text{(II.2-8)} \]

thus, substituting II.2-2 and II.2-8 into II.2-6, gives:

\[\sigma = -c^2 x_1 + a_2 c x_1 - a_1 x_1 - b u \quad \text{(II.2-9)} \]

And substituting II.2-9 into II.2-5, will result:

\[\sigma x_1 [-c^2 + a_2 c - a_1 - b (u/x_1)] \leq 0 \quad \text{(II.2-10)} \]

If \(\sigma x_1 \geq 0 \), from II.2-3 with \(u = \alpha \), we can write:

\[-c^2 + a_2 c - a_1 \leq b x \quad \text{(II.2-11)} \]

or:

\[\frac{[-c^2 + a_2 c - a_1]}{b} \leq \alpha \quad \text{(II.2-12)} \]

If \(\sigma x_1 < 0 \), thus from II.2-3 with \(u = \beta \), and using II.2-10, we can write:

\[-c^2 + a_2 c - a_1 \geq b \beta \quad \text{(II.2-13)} \]

or:
Consequently, the necessary and sufficient sliding conditions are:

\[
\begin{align*}
(a_2c - c^2 - a_1)/b & \leq \alpha & \text{if } x_1 \sigma \geq 0 \\
(a_2c - c^2 - a_1)/b & \geq \beta & \text{if } x_1 \sigma < 0
\end{align*}
\] (II.2-15)

Thus selections of the gains of \(\alpha, \beta \) correspond to II.2-15 will generate discontinuous control laws similar to II.2-3, which cause system type of II.2-2, to operate in sliding mode.

To consider the uncertainties in this class of controllers which arise from the actual system model (changes of loads, measured parameters, effect of noise and delays...and other perturbations) in such a way that the controllers can be suitable for implementing self-adjusting adaptive sliding mode strategy for the computer programs, we change the sliding conditions II.2-15, into a general form of discontinuous control equation in sliding mode with sgn function. This will change the selections of switching values \(\alpha \) and \(\beta \) into the choice of a constant K. To do so, we multiply both sides of equation II.2-15 by \(x_1 \). Then for \(x_1 > 0 \), we can write:

\[
\begin{align*}
(a_2c - c^2 - a_1)x_1/b & \leq \alpha x_1 & \text{if } \sigma \geq 0 \\
(a_2c - c^2 - a_1)x_1/b & \geq \beta x_1 & \text{if } \sigma < 0
\end{align*}
\] (II.2-16a)

and for \(x_1 < 0 \), we can write:

\[
\begin{align*}
(a_2c - c^2 - a_1)x_1/b & \geq \alpha x_1 & \text{if } \sigma < 0 \\
(a_2c - c^2 - a_1)x_1/b & \leq \beta x_1 & \text{if } \sigma \geq 0
\end{align*}
\] (II.2-16b)
The two inequalities II.2-16 a\&b are similar (in the case of attraction of hyperplanes to sliding line) and we are able to interchange the two constants \(\alpha \) and \(\beta \) with each other. The result for the conditions \(x_1 > 0 \) and \(x_1 < 0 \) can be represented by (II.2-16a). Satisfying the inequality II.2-16a, by adding \(\pm K \) on the left hand side of the equation, and considering that \(f(x_1, x_2) = -a_1x_1 - a_2x_2 \), we can write:

\[
(f(x_1, x_2) - c^2x_1 + K) / b = \omega x_1 \quad \text{if } \omega > 0 \quad (II.2-17a)
\]

\[
(f(x_1, x_2) - c^2x_1 - K) / b = \beta x_1 \quad \text{if } \omega < 0 \quad (II.2-17b)
\]

where: \(K \) is a positive constant.

This class of relations (II.2-17a\&b) can be represented as (II.2-3, is substituted into II.2-17a\&b and considering sgn function):

\[
u = (1/b) \left[f(x_1, x_2) - c^2x_1 + K \operatorname{sgn} (\omega) \right] \quad (II.2-17)
\]

where if relation II.2-8 is also considered, II.2-17 can be represented by:

\[
u = (1/b) \left[f(x_1, x_2) + c^2x_2 + K \operatorname{sgn} (\sigma) \right] \quad (II.2-18)
\]

The use of \(\operatorname{sgn}(\sigma) \) reduces the number of switching lines to one and also, because of the assumption of attraction of hyperplanes to switching lines, this will add a constraint to the V.I. Itkiss [21] parameter definition of \(a_1 \), \(a_2 \) as positive constants. The term \(f(x_1, x_2) \) in this class of controllers, eliminates the term of its type in II.2-2 which results in the adaptive operation of the controller II.2-18 in the system. On the other hand, in terms of having exact knowledge of the system parameters \(a_1 \), \(a_2 \), controller can operate independently from the variable state of the system \(a_1x_1 , a_2x_2 \).
We also follow the same contract from [33] as space u^+ belongs to $\sigma>0$, and u^- for $\sigma<0$. From this, space of $R^-(x,t)$ for the variable state of the system is defined by the states of $u^-(x,t)$ and $R^+(x,t)$, by $u^+(x,t)$.

To look for an appropriate controller out of its ideal state such as the type of candidate controller II.2.18 or those represented in [21,28,33], for a digital experiment, is not an easy task. The first step in this process is validation of such a class controller for its suitability and appropriateness for such a proposed system dynamic model (i.e. its performances from worst state to the best or its average state). In the literature study, we introduced this type of control methodology with extensive references wherein all had one piece of information in common, and that was ideal or if not, specific for the proposed processes. Regardless of such an idealistic mathematical analysis or such specific notations, the current study is focused on the results of simulations concerning with discrete motions for new form of represented sliding controllers. The discrete motion study from this point of view is considered here that a digital model is experienced and such simulations have similar results for a discrete system in order the performance and the robustness of the controller to be verified.

When controllers of the $K \text{sgn}(\sigma)$ type, in the neighborhood of the origin of the phase-plane, are numerically simulated\(^1\) for systems using solvers, chattering is observed in these systems trajectories (section II.2.2.1 and section III.2, simulation S4). Such a system motion is settled in a long time (in infinite time). This result in some cases, due to the choice of K, needed to be terminated in order to stop further chattering. To eliminate (notice here that in a digital system

\[^1\text{Term of numerically simulation indicates here, the effect of round-off errors in estimation of the variables of the system using a solver. This term also represents the effect of magnitude of sampling time.}\]
or discrete motion, the magnitude of sampling time is still one element which its effectiveness should not be forgotten in accurate positioning of the actuator for the following controller. this effect, controller II.2-18 can be reconfigured as follow:

\[
 u = (1/b) \left[f(x_1, x_2) + cx_2 + K|x_1|\text{sgn}(\sigma) \right]
\]

This way, if \(\lim_{t \to \infty} x_1 = 0 \), consequently, \(x_2 \) will be zero. Multiplication of \(K \) in II.2-18 by \(|x_1| \), does not change the sufficient and enough conditions of II.2-18 for having sliding mode, while the final chattering of the trajectory at the origin of the phase-plane will be dampened faster because of the effect of \(|x_1| \).

Increasing \(K \), in accordance with condition II.2-20, in the candidate controller II.2-19, may result in speeding the trajectory to reaching the switching line but from stability viewpoint, use of this condition is not compulsory [also consider 21]:

\[
 K > c^2
\]

For the purpose of "reaching phase" study [28] of this controller, consider Figure II.2-3.
Figure II.2-3 A phase plane representation to the numerical simulation of II.2-2 and discontinuous controller II.2-19. $c=10, K=30$, $x_1(0)=8$ Rad, $x_2(0)=0$, sampling time=.01 Sec.
Choice of K in concerning with constraints and perturbations.

While using controllers with the characteristics shown in equation II.2-18 and 19, in actual system, we must select K cautiously. For instance, the actual parameters of a system in case of exact known, if it is shown by:

\[f(x_1, x_2) = -a_1 x_1 - a_2 x_2 \] \hspace{1cm} (II.2-21)

and when they are obtained by measurements, are represented by:

\[\hat{f}(x_1, x_2) = -\hat{a}_1 x_1 - \hat{a}_2 x_2 \] \hspace{1cm} (II.2-22)

Then, when controllers (II.2-18&19) are used on the system, an error \(\delta_e \) is generated as:

\[\delta_e(x_1, x_2) = |f(x_1, x_2) - \hat{f}(x_1, x_2)| \] \hspace{1cm} (II.2-23)

This error must be considered in choosing K. Taking this error into account, the controllers II.2-18&19 can be written as:

\[u = \frac{1}{b} \left[\hat{f}(x_1, x_2) + cx_2 + K \text{ sgn}(\sigma) \right] \] \hspace{1cm} (II.2-24)

\[u = \frac{1}{b} \left[\hat{f}(x_1, x_2) + cx_2 + K |x_1| \text{ sgn}(\sigma) \right] \] \hspace{1cm} (II.2-25)

To clarify the effect of uncertainties in the choice of K, equation II.2-24 is substituted into II.2-2, and we obtain:

\[x_2 = f(x_1, x_2) - \hat{f}(x_1, x_2) - cx_2 - K \text{ sgn}(\sigma) \] \hspace{1cm} (II.2-26)

with regard to \(\delta_e \) from II.2-23, equation II.2-26 will be:
\[x_2 = \delta_e(x_1, x_2) - cx_2 - K \text{sgn}(\sigma) \]

(II.2-27)

And if noise \(N(t) \) (assuming a white noise), is present in the system, then II.2-27 becomes:

\[x_2 = \delta_e(x_1, x_2) - cx_2 - K \text{sgn}(\sigma) + N(t) \]

(II.2-28)

Therefore, the selection of \(K \) must be accomplished in such a way that (also, consider [4]--[relation 6-24, without the noise] and [22]):

\[K \geq \text{Max}|\delta_e(x_1, x_2)| + \text{Max}|N(t)| \]

(II.2-29)

If the condition II.2-20 is also considered here, we can write:

\[K \geq \text{Max}|\delta_e(x_1, x_2)| + \text{Max}|N(t)| + c^2 \]

(II.2-30)

Gain of the amplifier \(b \), can also be a measurement(\(\hat{b} \)) [4]. This term must be considered in II.2-29 or 30. Assuming:

\[\delta_e^I(x_1, x_2) = f(x_1, x_2) - \hat{b}^{-1} \hat{f}(x_1, x_2) \]

Then:

\[K \geq [b^{-1}b][\text{Max}|\delta_e^I(x_1, x_2)| + \text{Max}|N(t)|] \]

(II.2-30a)

In this way, the "reaching phase" is significantly concerned with the magnitude of \(\delta_e^I(t) \). This problem is discussed in the section III.2.2.A, simulation S6 (consider the matter of natural frequency of the system and \(\delta_e^I(t) \)).

To show the system behavior during sliding motion, and the effect of \(K \) and \(c \), a review of a simple double integrator system by phase plane analysis, is presented in the following section. This system analysis,
will help us to explain the strategy of the self-adjusting adaptive control system in sliding mode, and will permit us to develop another form of discontinuous control law, in sliding mode, which is illustrated by the simulations of the system II.2-2 in the section III.2.1.A.
II.2.2 Discontinuous Control of A Double Integrator System

Consider a double integrator system as (from [27]):

\[
\begin{cases}
 \dot{x}_1 = x_2 \\
 \dot{x}_2 = -u
\end{cases}
\]

(II.2-31)

Equation II.2-31, describes two families of parabolas in phase plane by defining control law as:

\[u = K \text{sgn}(\sigma) \]

(II.2-32)

For this purpose, consider Figure (II.2-4) and [27].

where:

\[C_n \] is a constant dependent on initial conditions, \(x_1(0), x_2(0) \).

\[n = 1, 2, 3, \ldots n \]

If we define a switching line of the form of II.2-4 \(\sigma = cx_1 + x_2 \), the motion trajectory of the system for any given initial condition, will be directed to the origin of the phase plane correspond to:

\[x_1(t) = x_1(t_0) e^{-c(t-t_0)} \]

(II.2-33)

(Also consider [4, 21, 33])
Figure II.2-4 Phase-plane representation of parabolas in the space of R,R', for the system II.2-31 and controller type of II.2-32.

where: t_0 is the initial time.

This motion is accomplished in two modes:

a) switching mode represented in Figure II.2-5a.

b) sliding mode represented in Figure II.2-5b.

The system motion will be in the switching mode if the sliding conditions (section II.2.2.2) are not satisfied. These trajectories are given by:
\[
\begin{cases}
x_2 = -K & \text{if } \sigma \geq 0 \\
x_2 = +K & \text{if } \sigma < 0
\end{cases} \quad (II.2-34)
\]

The block diagram of this class of system model is represented in Figure (II.2-6).

\[\text{A - Switch} \quad \text{B - Slide}\]

Figure II.2-5 Phase-plane representation of parabolas, in switching and sliding mode.
Figure II.1-6 Block diagram of a double integrator system and discontinuous control law represented by II.2-32 [σ=cx_1+x_2].

Figure II.2-7 shows a numerical simulation of the system II.2-34. This plot represents the behavior of such a system for a step initial change (angular position). The motion of the trajectory in the phase-plane is towards the origin by chattering upon sliding line σ=0.

Figure II.2-7 Phase-plane representation of the system trajectory represented by: II.2-34 (a numerical simulation using Euler integration method), sampling time=.01 Sec., c=1, K=20, x_1(0)=θ_0=1.5 Rad., x_2(0)=0 Rad/Sec.
II.2.2.1 The Effect of K-Gain of the Controller II.2-38 and Sampling Time

The magnitude of \(K \) of the discontinuous part as \(K \operatorname{sgn}(\sigma) \) of the controller II.2-32, has the most significant role in the operation of the system in switching and sliding modes. The high values of \(K \) (defined in relation with the magnitude of sampling time and \(|x_1(0)| \)) has two favorable effects. First, if magnitude of \(K \) is increased, the span of parabolas will be increased (Figure II.2-8 and \(K_2 \) in this figure).

![Figure II.2-8: Phase-plane representation of trajectories showing the effect of changes of the magnitude of \(K \).](image-url)
Type of parabolas with gain of \(K_2 \), leads to sliding states whereas parabolas with \(K_1 \) have a high tendency to switching mode (switching because of high consumption of time and the large range of changes of the position error is not desirable). The second favorable effect of the high magnitude of \(K \) is the possibility of the compensation of the resulting errors because of uncertainties which arise from the actual system dynamic model. This subject has been analyzed in the section II.2.1, by equations II.2-30 and 30a.

1-Trajectories effect of \(K_1,K_2 \)
2-...for the changes of sampling time

Figure II.2-9 Phase-plane representation of parabolas, in switching and sliding mode, showing effect of changes of the \(K \) and \(T_s \).
The favorable effects of the large magnitude of \(K \) may also cause side effects on the system. These become more complicated if it is accompanied by changes of the magnitude of sampling time. An unlimited increase of \(K \) will result in high frequency (from [28]) "which may excite high frequency of the dynamics associated with the control system, which has been neglected in the course of modeling" which means large span of parabolas here (Figure II.2-9(1)) and increase of the magnitudes of bounds of velocity-error, which increase the width of chattering. From Figure II.2-9(2), the decrease of sampling time, for any specific choices of \(K \), reduces magnitudes of bounds of velocity-error which also results in the decrease of width of chattering and increase of the frequency of chattering. The effect of magnitudes of \(K \) and sampling time, on the system trajectory, from view point of width of chattering, are both in the same direction. This also implies that the increasing \(K \), increases the size of closed-loop trajectory in the origin of the phase-plane. Similarly for the magnitude of sampling time this closed-loop can be large or small (contrary to II.2-33 and its mathematical result for the system ideal state (not discrete)). To observe these effects on the system trajectory represented by II.2-34, compare the following simulations of such a system in Figures II.2-11 through 14, for the changes of \(K \) and \(T_s \). The closed-loop trajectory at the origin of the phase plane, which indicates on the presence of chattering of the position error \(x_1(t) \), and velocity-error \(x_2(t) \), in infinite time is represented in Figures II.2-13,15,17,18, for the simulations of such a system model. In this way, since the increase of \(K \) and sampling time will increase width of the chattering of \(x_1 \) and \(x_2 \) in infinite time, limiting \(x_1 \) (in order to reach the desired steady state error) or a termination condition for stopping further chattering will be necessary (when \(K \) and \(T_s \) are fairly large).

Large increase in \(K \) beyond a certain value, causes the velocity error to chatter between zero (small value near to zero. Or once sign of velocity-error changes), and a value (Figure II.2-18). Since \(K \) is very large, system trajectory, at the origin of the phase plane, will be of the form of a closed-loop (one of disadvantages of high gain
controllers of this class in discrete motion). In present digital feedback DC-motor model, the resulting motion in such a probable case will be in backward and forward rotation towards the target. In cases similar to figure II.2-17,18, where for any consecutive sampling time switch occurs, rules in Figure II.2-9 will be invalid. These are the cases that sampling frequency is equal to frequency of the chattering. On the other hand, for the large K in concerning with initial conditions, selection of the sampling time will describe the chattering frequency. In the actual model, these trajectories is also observed for such cases of the choices of T_s and K, when term $\delta_e^I(t)$ is small even if rule of $\omega_s >> 2\omega_o$ is considered for such discrete system.

Figure II.2-10 (A) and (B) are the representations of an ideal and actual state of a (discrete) system trajectory using, any class of discontinuous controllers in sliding mode for the second order systems.

![A-Actual Trajectory](image1) ![B-Ideal Trajectory](image2)

Figure II.2-10 Phase-plane representation of parabolas, representing actual sliding motion and an ideal motion in sliding mode.
Figure II.2-11 Phase-plane representation of the trajectory of the system represented by II.2-34 (A numerical simulation by Euler integration method), sampling time=.01 Sec., c=1, K=20, $x_1(0)=[\theta_0]=19.74$ Rad., $x_2(0)=0$ Rad/Sec.

Figure II.2-12 Velocity error versus time. For the simulation of Figure II.2-11. (sampling time=.01 Sec., c=1, K=20, $x_1(0)=[\theta_0]=19.74$ Rad., $x_2(0)=0$ Rad/Sec.)
Figure II.2-13 Phase-plane representation of the trajectory of the system represented by II.2-34 (A numerical simulation by Euler integration method), sampling time=.1 Sec., c=1, K=20, $x_1(0)=[\theta_0]=19.74$ Rad., $x_2(0)=0$ Rad/Sec.

Figure II.2-14 Velocity error versus time. For the simulation of Figure II.2-13. (sampling time=.1 Sec., c=1, K=20, $x_1(0)=[\theta_0]=19.74$ Rad., $x_2(0)=0$ Rad/Sec.)
Figure II.2-15 Phase-plane representation of the trajectory of the system represented by II.2-34 (A numerical simulation by Euler integration method), SHOWING EFFECT OF INCREASE OF K. sampling time=.1 Sec., c=1, K=100, \(x_1(0)=\theta_0 \) =19.74 Rad., \(x_2(0)=0 \) Rad./Sec.

Figure II.2-16 Velocity error versus time. For the simulation of Figure II.2-15. (sampling time=.1 Sec., c=1, K=100, \(x_1(0)=\theta_0 \) =19.74 Rad., \(x_2(0)=0 \) Rad./Sec.)
In order to show the effect of very large gains, system II.2-31 with controller II.2-32 has been simulated for the gains of $K=100$ and $K=200$. As these curves show, the closed-loop trajectory has grown and the frequency of chattering has been decreased.

Figure II.2-17 Phase-plane representation of the trajectory of the system represented by II.2-34 (A numerical simulation by Euler integration method), sampling time=.1 Sec., $c=1$, $K=100$, $x_1(0)=\theta_0=9.74$ Rad., $x_2(0)=0$ Rad/Sec.
Figure II.2-18 Phase-plane representation of the trajectory of the system represented by II.2-34 (A numerical simulation by Euler integration method), sampling time=.1 Sec., c=1, K=200, x_1(0)=[θ_o]=9.74 Rad., x_2(0)=0 Rad./Sec.

Meanwhile K, for this initial position error, is a large value (i.e. k=200 and Figure II.2-18).

II.2.2.2 The Sliding Conditions of A Double Integrator System

Recalling, sliding condition; equation II.2-5, as:

\[\lim_{σ \to 0} \dot{σ} = 0 \]

and, equations II.2-6&8 as:

\[-cx_1 = x_2 \]

33
\[\sigma = cx_2 + x_2 \]

and from II.2-34, rewriting:

\[
\begin{align*}
\dot{x}_2 &= -K & \text{if } \sigma \geq 0 \\
\dot{x}_2 &= +K & \text{if } \sigma < 0
\end{align*}
\]

we substitute II.2-34 into II.2-6, and we write:

\[
\begin{align*}
\dot{\sigma} &= -Kc^2 x_1 & \text{if } \sigma \geq 0 \\
\dot{\sigma} &= +Kc^2 x_1 & \text{if } \sigma < 0
\end{align*}
\]

Then, from II.2-35, with considering II.2-5, we conclude:

\[
\begin{align*}
|x_1| &\leq K/c^2 & \text{(II.2-36)} \\
|x_2| &\leq K/c & \text{(II.2-37)}
\end{align*}
\]

Conditions II.2-36&37, must be both satisfied in order to force the system II.2-34 to operate in sliding mode. These inequities are described in Figure II.2-19.
Figure II.2-19 Phase-plane representation of parabolas, representing boundary switching curves.

These figures show that if one point is outside of the boundary curve, the motion of trajectory will be led to a switch to the opposite side, but once the point remains inside of the region (of the boundary switching curve), it must stay inside of the region by following the inner parabolas. For instance, the motion of the point D (Figure II.2-20) which is defined by x_1 and x_2, conditions of sliding mode, (II.2-36&37) can follow parabolas passing through the origin of the phase-plane. These parabolas are called boundary switching curves and are defined by substitution of II.2-36 into switching line (equation II.2-7), thus we can write:

$$Kx_1 + |x_2|x_2 = 0$$ \hspace{1cm} (II.2-38)
This curve in a complete state is depicted in Figure (II.2-20).

Figure II.2-20 Phase-plane representation of boundary switching curve represented by II.2-38.
II.2.2.3 Self-Adjusting Adaptive Sliding Mode Control Method

From [21][pages: 168-178] and [45][pages: 205-229] and [12][pages 57-60, 169-180], a strategy is introduced as "Self Adjusting (Adaptive) Control System in Sliding Mode".

One of the problems in discontinuous control of systems in sliding mode with time-invariant switching surfaces is the adjustment of the slope of switching line (for a second-order type) so that system could operate in sliding mode. The self adjusting adaptive control system in sliding mode, is a recent method which can adjust the slope of switching line in the sliding regime by itself. This yields states of trajectory close to time-optimal response without the direct identification of the plant parameters.

As the author Zinober (1974) [45] states "for a linear system as:

\[\dot{z} = A z + bu \]

The basic self-adjusting adaptive sliding mode controller has the control law as (in our study we are presenting a new form of this class of controllers for the second order systems (II.2-19&18));

\[u = - \text{sgn}(v) \]

where \(v \) is the linear switching function:

\[v = k^T z = q^{n-1} a_{n-1} z_1 + q^{n-2} a_{n-2} z_2 + \ldots + a_0 z_0 \ (q > 0, a_i > 0) \]

the \(z_i \) are the chosen state variables, \(q \) is the variable control parameter and the \(a_i \) are constants. The necessary conditions for sliding (or chattering) motion on \(v = 0 \) with \(q \) constant have already been described (II.2-5, \(v > 0 \)). The self adjusting adaptive sliding mode controller is the strategy which changes \(q \) as a constant parameter to a time variant kind, by infinitesimal changes as:
q(t) = q(t)(1+c)

consequently, v(t) as time-varying switching surface, will lead the states of variables of the system to the origin of the phase-plane by testing the sliding conditions for the next switching surface".

Consider the double integrator system described in section (II.2.2). Now, for an initial point \((x_1, 0)_o\), the slope of switching line is (for \(x_2 = 0\), II.2-36, is considered here):

\[
c^I = \left[\frac{K}{|x_1(t_0)|} \right]^{1/2}
\]

\[
(II.2-39)
\]

\(c^I\) is named as \(C_{max}^i\) at this point (which results sliding motion of the system). In this way, any selection less than \(C_{max}^i\) guarantees the sliding motion of the system. For this purpose, \(C_0\) is selected in such a way that:

\[
C_0 < C_{max}^i
\]

\[
(II.2-40)
\]

And is initialized to the first slope of switching line \(\delta_1\) as:

\[
\delta_1 = \delta(t=0) = C_0
\]

\[
(II.2-41)
\]

At this point, the strategy describes the motion of the trajectory in the phase-plane based on small \((c)\) increases of the slope of switching lines as:

\[
\delta(t_n) = \delta(t_{n-1}) + c
\]

\[
(II.2-42)
\]

or:

\[
\delta_n = \delta_{n-1} + c
\]

\[
(II.2-43)
\]

where switching line by itself can be defined by:
\[\sigma_n = n \cdot x_1 + x_2 \] \hspace{1cm} (II.2-44)

Now, for this purpose, consider figure II.2-21.

Figure II.2-21 Phase-plane representation of trajectory using self adjustable adaptive control strategy in sliding mode.

From the initial condition to point A, the system will follow trajectory, defined by II.2-34 \((u^*(x,t))\). In order to follow trajectory from point A, sign of \(\sigma_1 \) is tested and the states of variables of the system will be directed to point B, by II.2-34, where point B, is the point which satisfies the sliding condition II.2-36, for the next switching line (II.2-44) as:

\[\sigma_2 = \delta_2 x_1 + x_2 \]

where \(\delta_2 \) is computed by II.2-43.
Maintaining this strategy and increasing $\delta(t)$ by c, the trajectory paths will be forced to reach to the origin of the phase-plane on an approximated switching curve.

In section III.2 this method is presented with the algorithms and simulations for the various conditions.

The next section is dedicated to the effect of nonlinear elements such as Coulomb friction, stiction and torque saturation for the linear feedback control of systems such as a DC-motor model.

II.2.3 Section Summary and Conclusions

In summary, three types of discontinuous controllers for linear second order systems were developed and reviewed here. These controllers will be tested with "Self-Adjusting Adaptive Sliding Mode Control Method".

The effects of K-gain of the controller (specifically) II.2-32, which has similar effects for II.2-18 and rather II.2-19 on the control of the states of variables of a second-order system, were analyzed. Also, the effects of changes of the magnitude of sampling time on such a system, specifically for the controller of the type of II.2-32, which has similar effects for the II.2-18 & 19, were investigated. The results of simulations for II.2-19 and II.2-32 which have been obtained for a time-invariant switching line indicate the existence of lag phase in reaching state and closed loops at the origin of the phase-plane (for only type "A" (i.e. having K sgn(σ) term)). Regardless of some choices of K and T_s, it will be shown that the proposed time-varying switching line controller in sliding mode has better performance for similar selections of such elements in the control of a second-order system in comparing with time-invariant type. These results will be presented in section III.2 and in the final conclusions, section VI.
II.3 MODEL OF A DC-MOTOR SYSTEM

(The effects of some nonlinear phenomena on the step response of a position control system)

A position control system can often be approximated by a second order differential equation with the result that its responses to step inputs can be studied using the phase plane.

The approach is used below to illustrate the effect of some nonlinear phenomena such as Coulomb friction, stiction and torque saturation on the performance of an analog position control of a DC-motor from [5]. These results are specifically illustrated here for understanding the discrete motion of such a system by simulations which have not been considered anywhere yet.

Referring to Atherton's study, the block diagram of a system feedback DC-motor model in terms of the parameters ω_0, ξ_y and ξ_T can be shown as Figure (II.3-1).

![Block Diagram](image)

Figure II.3-1 A block diagram of the system

The figure has been purposely drawn to show the separate effects of
\(\xi_p \) and \(\xi_T \), since the system cannot be analyzed in terms of their sum \(\xi \) when nonlinearity occurs between the operational amplifier and the motor output[5].

II.3.1 The Effect of Coulomb Friction

When Coulomb friction on the motor shaft is taken into account (such as DC-motor), the variable state of the system can be described by (from [5]):

(With \(\theta_1 = 0, x_1 = \theta_0 \) and \(x_2 = \theta_0 \))

\[
\begin{cases}
 x_1 = x_2 \\
 x_2 = -\omega_0^2 x_1 - 2\xi_0 x_2 - d\omega_0^2 \text{sgn}(x_2) = f(x_1, x_2) - d\omega_0^2 \text{sgn}(x_2)
\end{cases}
\]

where:

\(\xi = \xi_p + \xi_T \)

\(T_c = Jd\omega_0^2 \text{sgn}(x_2) \) equivalent Coulomb friction torque.

The motion in the phase-plane is thus described by two linear differential equations, one valid for \(x_2 \) positive and the other for \(x_2 \) negative. The line \(x_2 = 0 \), is referred to as switching line. In both cases the phase portraits about an origin are shifted to the singular point \(O_1(-d, 0) \) for \(x_2 > 0 \) or \(O_2(d, 0) \) for \(x_2 < 0 \). Further more, any point on the \(x_1 \) axis between these singular points is an equilibrium point at which trajectories terminate [5](Figure (II.3-2)).

For the initial conditions \(x_1(0) = -u_0 \) and \(x_2 = 0 \). and with a selection of \(u_0 \gg d \), the phase-plane trajectory will terminate at \(O_1 \).
when \(\xi = 1 \), since the linear response has no over-shoot. With \(0 \leq \xi < 1 \), however the trajectory will terminate anywhere between \(O_1 \) and \(O_2 \), and the exact point depends upon \(\xi \) and the magnitude of \(u_0 \).

![Figure II.3-2 Phase plane with effect of Coulomb friction](image)

We also note[31] that when two surfaces are rubbing, or in sliding contact, a finite force is required to initiate motion and the surfaces are said to stick. The magnitude of the sticking force in stiction is larger than the Coulomb friction force. Its value depends on the specific materials in contact, their surfaces finishes, the normal force, and usually can only be determined by testing. Thus, the force used to accelerate the mass must exceed the stiction force to initiate motion. Once the motion starts the stiction force decreases (as a function of velocity) and normally approaches the Coulomb level at relatively low velocities.

The effect of stiction can be modeled in the same way as the term of Coulomb friction in the system represented by II.3-1. The coefficient of this model, because of the different magnitude, will be represented here in \(d' \).
Numerical simulations of the system model II.3-1

The following simulations are performed in order to show the effect of Coulomb friction on the system represented by II.3-1, in a discrete motion in comparing with the results from [5].

Figures (II.3-3, 4) are the results of computer simulation of the system represented by equation II.3-1 when Coulomb friction is considered in the system. Figure (II.3-5) represents an ideal trajectory of the equation II.3-1 when d=0. In this simulation Euler-integration method was used to solve the nonlinear system.

From Figures (II.3-3 and 4), since $\xi=.7$, system trajectories crosses the axis x_1 at point B (between origin and (+d,0)). The resulted error for the different magnitudes of the sampling time (compare distances 'a' in these figures) is the effect of following factors:

a- Method of solution of the nonlinear system .

b- Numerical values (round-off errors).

c- Sampling time.

Where the magnitude of sampling time plays the major role if it is selected a fairly large (with respect to the choice of $\omega_s>>2\omega_0$). Consequently, for a digital feedback linear control system the resulting trajectory is mainly related to the magnitude of sampling time and precision of the digital processors. For instance, enormous simulations for different magnitudes of ξ, x_1 and sampling time implemented where the results showed that the point A may not be obtained for a discrete system if the choice of sampling time is not in an acceptable range, for $\xi>1$ and for an appropriate selection of the magnitude of $x_1(0)$.

Also, considering both Figures (II.3-3 & 4), a similar motion trajectory is noticeable. As these two figures show, the states of variables of the system after point B, still remains active until the origin of the phase-plane is reached. As a matter of fact, this class of motion in an actual model of such a system does not exist, and once point B is reached, motion is terminated, and since the equation of II.3-1, by itself, is a model to represent the effect of the dissipative
Coulomb torque (as $T_c = J \omega_0^2 \text{sgn}(x_2)$), the effect of numerical round-off errors and mainly the magnitude of sampling time must be considered here as the reasons for such a erratic motion. In other words, these results should not confuse us with a wrong trajectory representation of such a system dynamic model in reaching point B. The effects of elements introduced above (in simulation) cause the term $d\omega_0^2 \text{sgn}(x_2)$ to act as an error compensator upon the variables of the system model (II.3-1) where finally results in a sliding motion towards the origin of the phase-plane (similar to a sliding controller with relay amplitude of $d\omega_0^2$, and a switching line $\sigma=x_2$). The sliding motion after point B as the result of present simulations, is a noticeable point in recognizing the point of the effect of Coulomb friction torque on the state of system trajectory, which are used in simulations of the section III.2.2.

To show how such a trajectory slides (this is beyond the scope of the present study to discuss the proof of such a motion, but as an explicit explanation of such a phase of system in order not to be alias with the result of an error compensator such as sliding mode controller, these notes are followed) upon x_1 axis (recalling again; of a numerical simulated model type of II.3-1), when a singular point such as A or B does not exist (as end of the motion), equation II.2-32, and Figure (II.2-7), where; $c=0$, $K=d\omega_0^2$, are recalled here. We know that from equation II.3-1 the effective torque of the DC-motor is modeled by: $J f(x_1, x_2)$, and we also know once, $|f(x_1, x_2)| < d\omega_0^2$ (equation II.3-1), point B is reached and system trajectory must be terminated here. But since, $x_2 < 0 (\sigma<0)$, the trajectory is defined by:

$$x_2 = \alpha(t)$$

and when $x_2 \geq 0 (\sigma \geq 0)$, the trajectory is defined by:

$$x_2 = \beta(t)$$

where α, β are positive

and since $\alpha(T_\text{s}+\Delta T_\text{s}) < \beta(T_\text{s}+\Delta T_\text{s})$ [33, sec.2] (for $x_1 > 0$ and the reverse for $x_1 < 0$) (singularities will occur if $\alpha(t) \geq \beta(t)$ in the form of closed-loops [case of existence of point A or B], thus according to Figure (II.2-8),
these differences results in different spans of parabolas (which cause the motion to be towards the origin), and since switch occurs between two plus and minus values, result will be a sliding motion (chattering) similar to a resulting trajectory of the dynamic model represented by II.2-34. Thus, system trajectory by chattering, moves towards the origin of the phase plane (Figure (II.3-3 & 4)).
Figure II.3-3 A computer simulation of the EFFECT OF COULOMB FRICTION represented by equation II.3-1. $\omega = 4$ Rad/Sec, $\xi = .7$, $d = .8$ Rad, $x_1(0) = .9 \text{ Rad,}$ $x_2(0) = -.07$ Rad/Sec, Sampling Time $T = .01$ Sec.
Figure II.3-4
A computer simulation of the EFFECT OF COULOMB FRICITION represented by equation II.3-1. \(\omega = 4 \) Rad/Sec, \(\xi = .7 \), \(d = .8 \) Rad, \(x_1(0) = .9 \) Rad, \(x_2(0) = -.07 \) Rad/Sec, Sampling Time \(T = .1 \) Sec,

\[
[f(x_1, x_2) = -2\xi \omega x_2 - \omega^2 x_1]J = \text{Effective torque}
\]
Figure II.3-5 A computer simulation WITHOUT COULOMB FRICTION represented by equation II.3-1. $\omega_0 = 4$ Rad/Sec, $\xi = .7, d = 0$ Rad, $x_1(0) = .9$ Rad, $x_2(0) = -.07$ Rad/Sec. Sampling Time $T = .1$ Sec.

II.3.2 The Effect of Torque Saturation

When a nonlinear operation takes place in the power amplifier or the motor, the equation of the motion has to be modified as follows[5]:

$$\theta + 2\xi \omega_0 \dot{\theta} = \omega_0^2 T (1 - \theta - 2\xi \theta / \omega_0)$$ \hspace{1cm} (II.3-2)
Assuming that $\theta_1=0$, and the nonlinearity to be ideal saturation with limit levels $\pm h_T$, occurring at input levels of $\pm \delta_T$, the phase-plane can be divided into three regions, by two switching lines defined by:

\[
\begin{align*}
\sigma_1 &= \sigma + \delta_T \\
\sigma_2 &= \sigma - \delta_T \\
\sigma &= \theta + 2\xi \theta / \omega
\end{align*}
\]

the function f_T in II.3-2 is:

\[
f_T = \begin{cases}
+ h_T & \text{when } \sigma < -\delta_T \text{ region I} \\
- m T \sigma & \text{when } |\sigma| < \delta_T \text{ region II} \\
- h_T & \text{when } \sigma > \delta_T \text{ region III}
\end{cases}
\]

where:

\[m_T = h_T / \delta_T.
\]

(m_T, actually represents different saturation levels of the actual and ideal system. This magnitude can normally be assumed to be one).

Models of the motions of the system in these regions can be represented by the following differential equations:

\[
\begin{align*}
\dot{x}_1 &= -2 \xi_{\nu} \omega x_1 + \omega^2 h \\
\dot{x}_2 &= -2 \omega x_2 (\xi_{\nu} + m T \xi_{\nu}) - \omega^2 m T x_1 \text{ if } |\sigma| < \delta_T \text{ region II (II.3-3)} \\
\dot{x}_2 &= -2 \xi_{\nu} \omega x_2 - \omega^2 h \text{ if } \sigma > \delta_T \text{ region III}
\end{align*}
\]

Fig. II.3-6 shows these regions.
To show the system behavior represented by II.3-3, first, we have to specify the types of trajectories in the above three regions. The trajectories of the regions I and III, are similar to a double integrator system trajectory represented by II.3-34, and are of the forms of parabolas depicted in Figure (II.2-4) as: FORM-A and FORM-B. For the region II, the poles of the system are (assuming θ₁=0):

\[x', x'' = \theta', \theta'' = -\xi' \omega_o^2 w \left[\xi'^2 - m_T \right]^{1/2} \] \hspace{1cm} (II.3-4)

where:

\[\xi' = \xi_v + m_T \xi_T \] \hspace{1cm} (II.3-5)

When \(\xi_v, \xi_T \) are zero, the system will have two imaginary poles and if

\[\xi'^2 - m_T > 0 \]
or:

\[[m_T]^{1/2} < \xi^* \xi_T + m_T \xi_T \quad (\text{II.3-6}) \]

death trajectory will be of the form of FORM-D (Figure (II.3-7)), which represents an overdamped stable system. If

\[[m_T]^{1/2} > \xi^* \xi_T + m_T \xi_T \quad (\text{II.3-7}) \]

then, the trajectory can be configured as FORM-C as Figure (II.3-7), and the system will be an underdamped system with complex conjugate poles.

Figure II.3-7 Phase-plane representation of trajectories and s-plane of second-order type defined by II.3-6 & 7

The Simulations of the Model II.3-3

To clarify the effect of torque saturation on a DC-motor behavior under linear feedback control, numerical simulations have been implemented by the Euler integration method for the solution of nonlinear system represented by II.3-3. These simulations are performed here for different values of \(\xi_T \), \(\xi_T^* \), and \(\delta_T \), and the results are depicted in the following figures. The parameters of the relation II.3-3, are
initialized as:

\[
\begin{cases}
 h_T = 5. \text{ Rad/Sec}^2 \\
 \omega = 4 \text{ Rad/Sec}
\end{cases}
\]

\[\xi = 0.0, \theta_0(0) = -2.8 \text{ Rad}, x_1(0) = \theta_1(0) - \theta_0(0) \text{ Rad}, \]

\[x_2(0) = \theta_0(0) - \theta_1(0) = 0 \text{ Rad/Sec}, \text{ and the sampling time is selected to be } T_s = 0.01 \text{ Sec (in order to obtain } \omega > > 2 \omega). \]

Figure II.3-8

\[\xi_T = 1 \times 10^{-3}, \delta_T = 2\]

Figure II.3-9

\[\xi_T = 0.1, \delta_T = 2\]
Figure II.3-10
\(\xi_T = 1.0, \delta_T = 2 \)

Figure II.3-11
\(\xi_T = 0.1, \delta_T = 0.5 \)
Figure II.3-12
$\varepsilon_T = .1, \delta_T = .1$

Figure II.3-13
$\varepsilon_T = .8, \delta_T = .1$
SIMULATIONS ANALYSIS.

To analyze the results of the simulated system II.3-3, for the changes of ξ_T and δ_T, the damping coefficient due to viscous friction, has been kept zero ($\xi_p = 0$) in Figures (II.3-8,9,10,11,12,13).

Maintaining $\delta_T = 2$ in Figures (II.3-8,9,10), the effect of changes of the damping coefficient ξ_T (due to the velocity feedback from the tachogenerator) from almost zero (Figure (II.3-8)), to one (Figure (II.3-10)), are shown. The responses of such a system are analyzed as:

a- An almost unstable motion (Figure (II.3-8) and marginal stability) with trajectories of the types of: FORM A & B & C.

b- Stable motion (Figure (II.3-9)) with trajectories of the types of: FORM A & B & C (for such system which is overdamp in region II).

c- Stable motion (Figure (II.3-10)) with represented trajectories of the forms of: FORM A & D (which is underdamp in region II).

By further increases of ξ_T, the system behavior will remain unchanged as Figure (II.3-10) shows (Consider II.3-6).

Results from Figures (II.3-8,9,10), imply that, only for very small magnitudes of ξ_p and ξ_T, the system can be unstable (effect of round-off numerical values of the states of variables of the system and the sampling time) or for even $\xi_p = 0$ and $\xi_T = 0$ system stays in a limit cycle (sinosoidal motion of the position-error for infinite time).

Maintaining $\xi_T = 0.1$ and decreasing the distance of the two switching lines ($\sigma = 0, \sigma = 0$) from $\delta_T = 0.5$ in Figure (II.3-11), to $\delta_T = 0.1$ in Figure (II.3-12), system responses will be stable motions (Figure (II.3-11&12)) with the representative trajectories of the types of: FORM-A, FORM-B, FORM-C. These results clarify that for $0 < \xi_T < (m_T)^{-1/2}$, changes of the distance of switching lines do not change the forms of such trajectories in the region II (i.e. Forms A,B,C, and stable motion).

Keeping $\delta_T = 0.1$ (Figure (II.3-13)), and increasing damping coefficient ξ_T, the response of the system will be a stable motion with
trajectories of the types of FORM-A, FORM-B and FORM-D. Therefore, when
$\xi' > (m_T)^{1/2} > 0$, the forms of A & B are accompanied by FORM-D into region
II which shows that for the small magnitudes of δ_T when ξ' is high, the
system is able to ignore this region (i.e. by demonstrating trajectories
of the types of FORM-A and FORM-B in region II). This is not only
because of the effect of numerical round-off errors of the solver, but
also the magnitude of sampling time is not small enough (in this case
$T_s = 60T_o$) in order to have a similar ideal trajectory (i.e. having only
FORM-D trajectory) in region II. By selecting a smaller δ_T or changing
the magnitude of sampling time, state of motion will be of sliding type
with demonstrating chattering. These forms of parabolas in region II are
much closer to the actual system behavior if a digital feedback control
system is used (A discrete system).

At this point, it is completely evident if ξ_T increases,
trajectories emerge of the type of FORM-D, and it should not surprise us
(Consider condition II.3-6 (When this condition is satisfied, form of
the trajectory in region II is configured as FORM-D)).

Relation II.3-5 show that the system behavior is more sensitive to
the changes of ξ_T rather than changes of ξ_v if only $m_T > 1$. And the
reverse is true for $m_T < 1$. In other words, differences of the actual and
ideal saturation levels are effective in the states of the motion of the
system DC-motor (i.e. exact measurements of the levels of T_{sat} are
important here). Also, changes of the parameters of the system
(different parameter measurements) result in different states of the
system motion. Consequently, system motion (forms of the trajectories)
is sensitive to parameter variation (Also effect of dust, temperature,
corrosion, etc. which may result a time-variant system).

From the equation II.3-3, the magnitudes of slopes of switching
lines, are related to the magnitude of ξ_T. If ξ_T becomes zero, these
lines will be vertical. In this way, for the large distance of the
switching lines, if $\xi_v = 0$, result will be comparable with the result of
the simulation in Figure (II.3-8) (or having limit cycle), and if ξ_v
increases ($\xi_v > 0$), system variable state will be in a stable condition
with trajectories of the types of FORM-D and FORM-C. But, if the
distance of the switching lines becomes very small, system variable state is in a sliding mode towards the origin of the phase plane.

II.3.3 Section Summary and Conclusions

What is the goal of these notes? To collect these results for a feedback control DC-motor system, using a discrete PID controller, without tachogenerator (no damping effect because of this), following conclusions are obtained:

1. Coulomb friction results in steady state errors. Contrary to the result for an analog DC-motor system model, the magnitude of such final error is dramatically related to the magnitude of the sampling time (rather than resulting final error as \(x_1(t=m) = d \)). Such resulting error is also observed for PID controller (Consider section III.1 and the effect of Coulomb friction).

2. If the viscous friction coefficient is small that it can be assumed to be zero, the state of the motion of the system with torque saturation limits is in unstable condition and depends upon \(T_s \), may result in oscillation for long time. This result does not differ for any magnitude of such limits (distance of switching lines)[for the initial conditions in the saturated regions]. Similar result can also be observed from PID control system of this type.

3. The levels of the torque saturation result in different states of motion of the system relating to the magnitude of viscous coefficient and mainly the magnitude of sampling time. These states can be represented by sliding, underdamp and overdamped phases for \(\xi > 0 \). If these limits (i.e. \(T_{sat} \)) are very small, the DC-motor dynamic model can no longer be represented by a continuous second-order system. Such motion follows the state of sliding mode. Similar system behavior can be observed from PID controller used in feedforward of such a system.

4. The Differences in the measurements of the system parameters result in different system motions. From high oscillatory kind to...
this way, the system behavior is sensitive to its exact measured parameters. This result is also obtained when a PID controller is present in feedforward loop.

5. Consequently, torque saturation in a DC-motor system changes the continuous state of the feedback control model to a discontinuous system. The state of the initial conditions of such model are effective elements in modifying the resulted motion.
Chapter III

CONTROLLER DESIGN AND COMPUTER SIMULATIONS OF THE DC-MOTOR MODEL WITH PID AND SELF-ADJUSTING ADAPTIVE SLIDING MODE CONTROLLER

III.1 PID CONTROLLER

The dynamic equation of the present DC-motor system with known parameters (this will be calculated in the section IV.1.5 (equation IV.1-2)), can be represented in state space as:

\[
\dot{\theta} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \theta + \begin{bmatrix} 0 \\ 38.86 \end{bmatrix} u
\]

(III.1-1)

where \(u \) is the equivalent input control voltage to the DAC-08C in Dec. (decimal) and \(\theta \) is the sensory position in number of holes of the rotary disk. The transfer function of the system, thus, is given by:

\[
G_p(s) = \frac{\theta(s)}{u(s)} = \frac{38.860}{s(s+1)}
\]

(III.1-2)

Assuming that the system is under unit feedback position control and \(G_p \) is the open loop transfer function of the system, The time constant \(t_c \), and the settling time \(t_{ss} \) of the closed-loop system are:

\[t_c = (1/2)^{-1} = 2 \text{ Sec} \]
\[t_{ss} = 4t_c \text{ (2\% criterion, } 0 < \xi < 0.9) = 8 \text{ Sec} \]
The block diagram of the position control of the system with PID controller is depicted in Figure (III.1-1) with a ZOH (Zero Order Hold).

Figure III.1-1 A block diagram of a PID controller with ZOH.

Taking into account the settling time of the unit feedback closed loop system and the selection criterion of $T_s \ll t_c$, we select the sampling time as:

a) $T_s = 0.03$ Sec
b) $T_s = 0.1$ Sec

Now, considering the transfer function of ZOH as:

$$G_z(s) = \frac{(1 - e^{-Ts})}{s}$$ \hspace{1cm} (III.1-3)

where $T = T_s$.

The combined transfer functions of ZOH and DC-motor, can be written as:

$$G_{p&zoh}(s) = \frac{(1 - e^{-Ts})(38.860)}{s^2 (s+1)}$$ \hspace{1cm} (III.1-4)

Z-transformation of $G_{p&zoh}$ (equation III.1-4), for each sampling time is:
for $T_s = .03$ Sec

$$G_{p&zoh}(z) = \frac{.0173 \ (Z+.9900)}{(Z-1)(Z-.9704)} \quad \text{(III.1-5a)}$$

for $T_s = .1$ Sec

$$G_{p&zoh}(z) = \frac{.188 \ (Z+.9672)}{(Z-1)(Z-.9048)} \quad \text{(III.1-5b)}$$

Considering the PID transfer function equation II.1-2 in z-domain and $G_{P&ZOH}$ and considering block diagram of the Figures (III.1-1 and 2), we can obtain the PID controllers in discrete form as (method of solution from [26]):

For the case (a) as $T_s = .03$ Sec

$$u(k) = u(k-1) + 11.1e(k) - 20.7649e(k-1) + 9.6948e(k-2) \quad \text{(III.1-6a)}$$

For the case (b) as $T_s = .1$ Sec

$$u(k) = u(k-1) + 1.1e(k) - 1.9853e(k-1) + 0.8958e(k-2) \quad \text{(III.1-6b)}$$

where u is the output from the PID controller in Dec.[0-127] and e is the error signal ($e = \theta_d - \theta$ [hole], input signal to PID controller).

Figure III.1-2 The block diagram of the DC-motor servo system.
In this design, the \(G_{\text{tot}}(z) \) (the open-loop transfer function of the Figure (III.1-1)) and the \(G_{\text{cl}}(z) \) (the closed-loop transfer function of the Figure (III.1-2)), for the two above selections of the sampling time are:

for \(T_s = .03 \text{ Sec} \)

\[
G_{\text{tot}}(z) = \frac{.0173z^2 + .0016z - .0154}{z^3 - 2z^2 + 1} \tag{III.1-7a}
\]

\[
\theta(z) = \frac{.1922z^2 + .0173z - .1712}{z^3 - 1.8096z^2 + 1.0171z - .1697} \tag{III.1-8a}
\]

\[
G_{\text{cl}}(z) = \frac{\theta(z)}{\theta_d(z)} = \frac{.1880z^2 + .0126z - .1636}{z^3 - 2z^2 + 1} \tag{III.1-7b}
\]

\[
\theta(z) = \frac{.2068z^2 + .0139z - .1800}{z^3 - 1.7932z^2 + 1.0139z - .1800} \tag{III.1-8b}
\]

where \(\theta_d \) is in number of holes.

and the closed-loop damping coefficient, time constant and the poles are:

for \(T_s = .03 \text{Sec} \):

\[
\begin{align*}
& t = .1672 \text{ Sec} \quad [t_{\text{ss}} = .6687 \text{ Sec}], \quad \xi = 1 \\
& z_1^c = .309 \\
& z_2 = .6631 \\
& z_3 = .8387
\end{align*}
\]

for \(T_s = .1 \text{Sec} \):

\[
\begin{align*}
& t = .6042 \text{ Sec} \quad [t_{\text{ss}} = 2.417 \text{ Sec}], \quad \xi = 1 \\
& z_1^c = .3670 \\
& z_2 = .5788 \\
& z_3 = .8474
\end{align*}
\]
The two Figures (III.1-3a and 3b), show the root locus of the block diagram represented in the Figure (III.1-1) in z-plane. These figures show the representative roots for the choices of the proportional gain K_p.

Figures (III.1-4 and 5), show the response of the system III.1-7b (III.1-8b) for the desired input $\theta_d=3$ Holes. Figures (III.1-6 and 7), show the response of the system III.1-7a (III.1-8a), for the same desired input. In these simulations, because of the discrete motion, system naturally shows overshoot. These overshoots are shown in both phase-plane representations of the system (Figures (III.1-4 and 6)). The magnitude of overshoot because of this is increased if desired input increases (even for $\xi=1$). For instance: simulating the system with sampling time .03 Sec, for desired input $\theta_d=15$ Holes, resulted in an maximum overshoot as $M_p=-2$ Holes. The two Figures (III.1-5 and 7) show the output control signal to the DAC-08C. In the actual model, since the magnitude of Coulomb friction is high (equivalent 20 Dec.), for this desired input, system may not show any motion for the sampling time .1 Sec (control signal can not exceed a maximum 3 Dec. (Figure (III.1-5)). These simulations are (purposely) performed for the following conditions:

\[x_1(-2)=0, x_1(-1)=0, x_1(0)=\theta_d=3 \text{ Holes}, (x_1=e), u(-1)=0 \]

Also consider the simulations in APPENDIX-E, for different initial conditions.
Figure III.1-3a The root locus of the system represented by Figure (III.2-1), and the representation of the roots of characteristic equation for the proportional gain of \(K_p = 11 \) and sampling time \(T_s = 0.03 \) Sec
Figure III.1-3b The root locus of the system represented by Figure (III.2-1), and the representation of the roots of characteristic equation for the proportional gain of $K_p=1.1$ and the sampling time $T_s=.1$ Sec
Figure III.1-4 Phase-plane representation of the system (case (a)).

(A numerical simulation of the experimental DC-motor model for the $T_s = 1$ Sec)

Figure III.1-5 Control output signal versus time (Sec).
Figure III.1-6 Phase-plane representation Figure III.1-7 Control output of the system (case (b)).
(A numerical simulation of the experimental DC-motor model for the $T_s = 0.03$Sec)
III.1.1 The Effect of Coulomb Friction

As it is studied in section II.2, for a system motion such as DC-motor system under linear feedback control (A "P" controller), in the presence of Coulomb friction, the final position error in the neighborhood of the origin of the phase plane can be observed (consider \(d'\approx d\)). For a desirable resulting error by conditioning or adapting the controller, constraints may be subjected to the desirable dynamic.

To show this effect, we assume a PID controller operates in a feedforward loop shown in the block diagram of the Figure (II.3-1) (after first comparator). Similar to Figure (II.3-3), the state of variables of the system will be towards point \(A^{(w)}\) and once Coulomb friction torque causes the termination of the motion, the velocity-error becomes zero, and the control output voltage from PID, given by II.1-1, as:

\[
U = K_p x_1 + K_d \frac{d}{d} x_2 + K_i \int x_1 dt
\]

will be changed into:

\[
U = K_p x_1 + K_i \int x_1 dt
\]

Or

\[
U = x_1(t=\omega) (K_p + T_s K_i)
\]

From this point, since \(x_1\) remains unchanged for each sampling time, the above input signal \(U\), for the restart of the motion of the system can not compensate, resulting error (if \(d' > d\), section II.3) and DC-motor sticks at this point (point \(A\) (ideally), Figure (II.3-3)). The same input voltage in each sampling time is applied but no motion occurs and the position error remains at \(x_1(t=\omega)\) (consequently a constant dependant upon \(\xi, T_s\) and \(x_1(0)\)). The resulting error may be reduced by the changes of the gains of the controller, but this may result in changes of the system trajectories. These kind of adaptations may result in undesirable dynamic of the system.
III.1.2 Section Summary and Conclusions

Since the characteristic polynomial of the PID control of the DC-motor is of third degree, analytically, the step response of the system, for different ranges of inputs (in the absence of external forces and frictions), should not vary too much in the term for the magnitude of overshoot, but use of a discrete system may cause overshoot even for $\xi>1$. Dependant upon the increase of the magnitude of the desired input the resulting overshoot will be increased.

Constraints in a structure of a digital process of a plant, some times does not permit the PID controllers to be designed for $\xi=1$ and even existence of round-off errors and precision of the digital signal processors (D/A, A/D, filters and op-amps...) and discretization may cause overshoot of the PID control trajectory. Consequently if the task of the system is path tracking (such as spot welders and gas cutters [4,23]), PID controller, by itself will not be a good choice.

The response of this type of controllers in the presence of Coulomb friction and stiction on the system, is usually accompanied by steady state errors. This response is the effect of continuous control operation of the controller in the neighborhood of the origin of the phase plane in where equilibrium zone of the Coulomb friction starts.

Variable states of the system with PID controller is influenced by torque saturation (similar to Figures (II.3-8 to 13). Consider the results of the simulations at the end of the section III for this purpose).
This section is divided into two parts. The first part presents the design of control algorithms. The second part presents the results of the performances of the controllers with the computer simulations. Because the results from mathematical analysis, are in fact not normally comparable with the results from the actual system (particularly a digital system (discrete system)), the following simulations are performed in order to help us in the analysis of the results of the experiment. Note that these results were obtained for the case of having exact knowledge of the parameters of the system (i.e. $\delta_c(t)=0$), except for the simulation S6. In this section two controllers in sliding mode as: type-A: with the term $[K \text{sgn}(\sigma)]$, and type-B: with the term $[K |x_1| \text{sgn}(\sigma)]$ are tested for the following purposes:

1) Comparing performances of the controllers in the presence of Coulomb friction and stiction.

2) Investigating the performances of the controllers for various initial conditions if it is proved there is a switch in the system.

3) Studying the various magnitude of K and resulting frequency of the chattering.

4) Obtaining the conditions for the controllers in order to eliminate the effect of Coulomb friction and stiction.

5) Investigating the sensitivity of the controllers for the various magnitudes of K and σ for the states of switches and obtaining their limits.

6) Studying the effect of saturation on the performance of the controllers.

7) Investigating the effect of uncertain parameters of the system.

8) Investigating the effect of noise on the performance of the controller.

9) Verifying the solutions for increasing the performance of the controllers and their robustness.

10) Introducing candidate controllers for the compensation of the steady state error, resulting from Coulomb friction and stiction.
Since the volume of the results of the simulations does not permit us to present all of them here, therefore, only the parts conveying the main conclusions, will be illustrated.

III.2.1 Alternatives for Control Algorithm

Two algorithms for the implementation of the self adjusting (adaptive) controller in sliding mode, are presented here. One for a controller type of $\begin{bmatrix} K \ sgn(\sigma) \end{bmatrix}$, and second, for the controller type of $\begin{bmatrix} K \ |x_1| \ sgn(\sigma) \end{bmatrix}$.

III.2.1.A Controller Type A (with the term $K \ sgn(\sigma)$)

In order to model the system for numerical computations, a solution for the nonlinear discontinuous system must be present. For the initial conditions as:

\[
\begin{align*}
\theta(0) &= \theta_0 \\
\dot{\theta}(0) &= 0. \\
\ddot{\theta}(0) &= 0.
\end{align*}
\]

(III.2-1)

The Euler integration method is used to solve the nonlinear system. This method is described by the following equations:

\[
\begin{align*}
\theta(t+\Delta t) &= \theta(t) + \Delta t \dot{\theta}(t) \\
\dot{\theta}(t+\Delta t) &= \theta(t) + \Delta t \dot{\theta}(t) + (1/2) \Delta t^2 \ddot{\theta}(t)
\end{align*}
\]

(III.2-2)

(III.2-3)

In order to find a suitable controller, the following control law is selected:
\[u = (1/b)[f(x_1, x_2) + K \operatorname{sgn}(\sigma)] \quad (\text{III.2-4}) \]

If \(\text{III.2-4} \) is substituted into equation \(\text{II.2-2} \), it gives:

\[x_2 = -K \operatorname{sgn}(\sigma) \quad (\text{III.2-5}) \]

The equation \(\text{III.2-5} \), represents a double integrator system (section II.2.2). where for a step change in position, the errors (position, velocity, acceleration) will be computed as (assuming \(\theta_d = 0 \)):

\[\begin{align*}
 x_1(t) &= \dot{\theta}(t) \\
 x_2(t) &= \ddot{\theta}(t) \\
 x_3(t) &= \theta(t)
\end{align*} \quad (\text{III.2-6}) \]

The flow-chart of this algorithm is presented in APPENDIX-A.

For the ease of studying the changes of the slope of switching lines, the curve of \(l(t) \) versus \(x_1(t) \), is introduced here as the representative motion of the switching line. This curve is given by:

\[l(t) = -c(t)x_1(t) \quad (\text{III.2-7}) \]

\(l(t) \) is shown in the phase-plane in the Figure (III.2-1). As this figure shows, the broken curves in the form of lines towards the origin of the phase-plane represent switching lines.

To distinguish this curve from the trajectory of the system, this curve is showed by a dashed-dotted curve and system trajectory is represented by a solid curve in all phase-plane representations.

To read graphs easier, the following chart is also presented here:
(from II.2-39) \[C_{\text{max}} = \left(\frac{K}{|x_1(t_0)|} \right)^{1/2} \] (III.2-8)

(from II.2-40&41) \[\delta_i = C_0 = \frac{C_{\text{max}}}{nn} \] (III.2-9)

(from II.2-42) \[\epsilon = [C_0] / n \] (III.2-10)

(from II.2-36)

Magnitude of cond. \[Cl(t+\Delta t) = K / [\delta(t+\Delta t)+\epsilon]^2 \] (III.2-11)

Figure III.2-1 Phase portrait of the curve of \(l(t) \), demonstrating the motion of the switching line.
III.2.1.B Controller Type B (with the term $K | x_1 | \text{sgn}(\sigma)$)

The second control law is selected from section II.2.2 (equation II.2-19):

$$u = \frac{1}{b}[f(x_1, x_2) + C_2 x_1 + k^T | x_1 | \text{sgn}(\sigma)]$$

Substituting into equation (II.2-2), gives:

$$
\begin{cases}
 x_2 = -C_2 x_1 + k^T | x_1 | & \text{if } \sigma > 0 \\
 x_2 = -C_2 x_1 + k^T | x_1 | & \text{if } \sigma < 0 \\
\end{cases}
$$

(III.2-12)

Comparing with equation II.2-34 (for the double integrator dynamic equation), III.2-12 can be represented as:

$$
\begin{cases}
 -K_2 = -C_2 x_1 + k^T | x_1 | & \text{if } \sigma > 0 \\
 +K_2 = -C_2 x_1 + k^T | x_1 | & \text{if } \sigma < 0 \\
\end{cases}
$$

(III.2-13)

Considering, the condition of $k^T > C^2$, then we can define k^T as:

$$
K^T = C^2 + k_1
$$

(III.2-14)

where k_1 can be selected to be a small positive value.

The two algorithms of the controllers of the types A and B can be seen in APPENDIX-A. In this algorithm for the condition of III.2-11, the information about the states of variables of the system for the last sampling time are used (a similar Gaussian approach has been applied (a sampling time behind)).

In order the system to reset itself when its trajectory crosses axis x_2, this condition is also added to this algorithm (type B):
\[\delta(t) = \delta_1 \quad \text{if } \text{sgn}(x_1) \text{ changes and the error-position is in acceptable range.} \]

(reset of the system can also be possible by condition II.2-36)
III.2.2 The Results of Simulations

III.2.2.A Type A Controller Simulation
(for the sampling time $T_s=0.01$ sec.)

SIMULATION-S1: The case of an arbitrary initial position-error.
($\delta_c(t)=0$)

\[
\begin{aligned}
& K=10 \\
& n=3 \\
& nn=8 \\
& x_1(0)=2.00 \text{ Rad}, \ x_2(0)=0 \text{ Rad/Sec}
\end{aligned}
\]

![Phase-plane representation of the trajectory.](image)

Figure III.2-2 Phase-plane representation of the trajectory.
Figure III.2-3 \(c, c1, s\) versus position-error.

Figure III.2-4 \(c, c1, \text{position-error versus time (Sec)}\).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5
c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6
Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A').
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, cl, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5
c, c_1, s versus $x_1(t)$ (detail rectangle $A\prime-A\prime$).

Figure III.2-6
Phase plane representation of the trajectory (detail rectangle $A-A$).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A' \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A' \)).
Figure III.2-5 \(c, c1, s\) versus \(x_1(t)\) (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A').
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A\!-\!A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A\!-\!A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, cl, s versus $x_1(t)$ (detail rectangle $A'-A'$).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle $A-A'$).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle $A'-A$).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle $A-A$).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, cl, s versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle $A'-A$).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle $A-A$).
Figure III.2-5 \(c, rl, s\) versus \(x_1(t)\) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, cl, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_0, s \) versus \(x_1(t) \) (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c_1, c_2, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A').
Figure III.2-5 \(c, c_1, s\) versus \(x_1(t)\) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A'-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A' \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A' \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c,c_{1},s versus $x_{1}(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A'-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A–A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A–A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).

79
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'\sim A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A'\sim A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A'-A \)).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c1, s versus x₁(t) (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5
c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6
Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, cl, s versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, \hat{c}_1, s versus $x_1(t)$ (detail rectangle $A'-A$).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle $A-A$).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c1, s versus x(t) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(\text{c,cl,s versus } x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A' - A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A - A \)).
Figure III.2-5 \(c_1, c_2, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A'-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A'-A \)).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A').

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).

79
Figure III.2-5 c,cl,s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, cl, s versus $x_1(t)$ (detail rectangle $A^\prime-A$).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle $A-A$).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, \phi, s \) versus \(x_1(t) \) (detail rectangle \(A'\-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A\-A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t)\) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle \(A-A \)).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle \(A-A \)).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A'-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A'-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 \(c, c_1, s \) versus \(x_1(t) \) (detail rectangle A'-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
Figure III.2-5 c, c_1, s versus $x_1(t)$ (detail rectangle A-A).

Figure III.2-6 Phase plane representation of the trajectory (detail rectangle A-A).
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
; THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED ***********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------ X2 COMPUTATIONS ------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+ BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
*************** MAIN PROGRAM *********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED *********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5,]
;
CALC:
;------ X2 COMPUTATIONS ------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[(AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
; ********************* MAIN PROGRAM *********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
; ********************* MAIN PROGRAM ENDED *********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;—— X2 COMPUTATIONS ———
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A,SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(2+Bbb)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
******************** MAIN PROGRAM ENDED ********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;
-------- X2 COMPUTATIONS ---------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG. 32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED **********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5:]
;
CALC:
;------ X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[(AAA/S)(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
;IN computations reg. 32H is not used
;
*************** MAIN PROGRAM ***************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
LD CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=’1’]
IRET
;
*************** MAIN PROGRAM ENDED ***************
;
;
[FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5,]
;
CALC:
-------- X2 COMPUTATIONS --------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[(AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
CALL CALC
EI
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED ***************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;---------- X2 COMPUTATIONS -----------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ;IN computations reg. 32H is not used
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=1']
IRET
 ; *************** MAIN PROGRAM ENDED ***********************
 ;
 ; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
 ;
CALC:
 ;------ X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=1']
IRET
;
*************** MAIN PROGRAM ENDED ***************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------- X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=([AAA/S(S+BBB)])
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ;IN computations reg. 32H is not used
 ; ****************** MAIN PROGRAM ******************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
 ; ****************** MAIN PROGRAM ENDED ******************
 ;
 ; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
 ;
CALC:
 ;------ X2 COMPUTATIONS ------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
;IN computations reg. 32H is not used
;
*************** MAIN PROGRAM ***************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED ***************
;
[FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------ X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THIHE POSITIVE VOLTAGE [TABLE-A,SECTION IV .1,4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED ***********************
;
[FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;
------ X2 COMPUTATIONS --------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=([AAA/S(S+BBB)])
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
; ******************************** MAIN PROGRAM ***********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=‘1’]
IRET
; ******************************** MAIN PROGRAM ENDED ***********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------ X2 COMPUTATIONS ------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2’S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A, SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[(AAA/S)+BBB)]
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ;IN computations reg. 32H is not used
 ; ****************** MAIN PROGRAM ******************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
 ; ****************** MAIN PROGRAM ENDED ******************
 ;
 ; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
 ;
CALC:
;----- X2 COMPUTATIONS -----
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
; THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
; *********************** MAIN PROGRAM ***********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
; *********************** MAIN PROGRAM ENDED ***********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5,]
;
; CALC:
;--------- X2 COMPUTATIONS ---------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
;IN computations reg. 32H is not used
; ****************** MAIN PROGRAM ******************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
; ****************** MAIN PROGRAM ENDED ******************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------- X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
*************** MAIN PROGRAM **********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#10 ;LATCH OPEN [P34='1']
IRET
;
*************** MAIN PROGRAM ENDED **********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;-------- X2 COMPUTATIONS ---------------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A,SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=([AAA/S](S+Bbb))
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
; ******************** MAIN PROGRAM ***********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
; ******************** MAIN PROGRAM ENDED ***********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------- X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
; *************** MAIN PROGRAM **********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
; *************** MAIN PROGRAM ENDED **********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------- X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A,SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ;IN computations reg. 32H is not used
 ; ********************** MAIN PROGRAM **********************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=1']
IRET
 ; ********************** MAIN PROGRAM ENDED **********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;---------- X2 COMPUTATIONS ----------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
; THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[(AAA/SS+BBB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
; ** MAIN PROGRAM *************************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34='1']
IRET
; ** MAIN PROGRAM ENDED *********************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;--------- X2 COMPUTATIONS ---------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A, SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]={AAA/S(S+BBB)}
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %23
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ; IN computations reg. 32H is not used
E I
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=1]
IRE T
 ; **************** MAIN PROGRAM ENDED ****************
 ;
 ; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
 ;
CALC:
 ;-------- X2 COMPUTATIONS --------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
; THE POSITIVE VOLTAGE [TABLE-A,SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+B BB)]
LD %32,#1 ;BBB AT REG.32H
;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
; IN computations reg. 32H is not used
;
*************** MAIN PROGRAM ***************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [T_s=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=1]
IRET
;
*************** MAIN PROGRAM ENDED ***************
;
; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
;
CALC:
;------- X2 COMPUTATIONS -------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2'S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10
LD %2F,#00 ;REG. 2FH USED FOR THE T1 .1SEC COUNTER
LD %30,#00 ;REG. 30H, DIRECTION SENSOR [SET + DIRECTION] FOR
 ;THE POSITIVE VOLTAGE [TABLE-A.SECTION IV.1.4]
LD %31,#20 ;AAA=20 AT REG. 31H,[THETA/U]=[AAA/S(S+BBB)]
LD %32,#1 ;BBB AT REG.32H
 ;REG. %33 IS IN USE DURING CALCULATIONS
LD %34,#00 ;CHECK SIGN REG. OF X2 AT REG. %25
LD %35,#00 ;CHECK SIGN REG. OF X1 AT REG. %21
 ;IN computations reg. 32H is not used
 ; ************************* MAIN PROGRAM *************************
EI
CALL CALC
R4R4:
LD FLAGS,#00
CP %25,#00 ;TERMINATION CONDITION, checking reg. 25 [x1=0] in 1e-4 sec.
JP LE,R5R5
LD FLAGS,#00
CP %2F,#10 ;IF VALUE AT REG. 2FH <= 10
JP LE,R4R4 ;JUMP TO R4R4:
LD %2F,#00 ;ELSE, VALUE AT REG. 2FH=ZERO [Ts=.1SEC, T1=.01SEC]
CALL CALC ;call function CALC
JP R4R4 ;TRY NEXT POINT
R5R5:
DI
LD TMR,#00
LD %F6,#0 ;STOP MOTOR, ENDED
LD %02,#140 ;OPEN PORT-2
OR %03,#%10 ;LATCH OPEN [P34=‘1’]
IRET
 ; ************************* MAIN PROGRAM ENDED *************************
 ;
 ; [FUNCTIONS CALC, MUL, DIV, IRQ2, IRQ5;]
 ;
; CALC:
;-------- X2 COMPUTATIONS ---------
LD %23,%22 ;X1(t-Ts) TO REG. %23
COM %23
INC %23 ;2’S COMPLEMENT OF REG. 23H
LD %21,%25 ;UPDATE X1
LD %34,#00
ADD %23,%21 ;X1(t)-X1(t-Ts) AT REG. %23
LD FLAGS,#00
CP %23,#00
JP GE,PLUS
COM %23
INC %23

B2-10