INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
Role of Exon 2-Encoded β-Domain of the von Hippel-Lindau Tumor Suppressor Protein

by

Marie-Eve Bonicalzi

A thesis submitted to the School of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Masters of Science in Growth and Development
Department of Cellular and Molecular Medicine
Faculty of Medicine
University of Ottawa

June 12, 2001

*Portions of this thesis were published in The Journal of Biological Chemistry (Bonicalzi, M.E., Groulx, I., dePaulsen, N. and Lee, S., J. Biol. Chem. 276: 1407-1416).
*Experiments concerning the energy requirements for nuclear import were performed by Isabelle Groulx.

© Marie-Eve Bonicalzi, Ottawa, Canada, 2001
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
Abstract

Sporadic clear cell renal carcinomas (RCC) frequently harbor inactivating mutations in exon 2 of the von Hippel-Lindau (VHL) tumor suppressor gene. In this work, we examine the effect of the loss of exon 2-encoded β-domain function on VHL biochemical properties. Exon 2-encoded residues are not essential for VHL ability to assemble with elongin BC/Cullin-2 and to display E3-ubiquitin ligase activity \textit{in vitro}. However, exon 2-encoded β-domain is required for VHL-mediated NEDD8 conjugation on Cullin-2, proper formation of an extracellular fibronectin matrix, assembly with fibronectin and elongation factor-1α (EF-1α), a protein that we recently found to be associated with wild-type VHL \textit{in vivo}. Exon 2-encoded residues are also needed for VHL binding to hypoxia-inducible factor alpha (HIF-α) and for its subsequent ubiquitination. Localization studies in HIF-1α-null embryonic cells suggest that exon 2-encoded β-domain mediates transcription-dependent nuclear/cytoplasmic shuttling of VHL independently of assembly with HIF-1α and oxygen concentration. Therefore, we suggest that exon 2-encoded sequences of VHL are essential for VHL nuclear/cytoplasmic shuttling and for substrate HIF-α recognition and ubiquitination.
Table of Contents

Abstract .. ii

Table of Contents .. iii

List of Figures .. vi

List of Abbreviations ... viii

Acknowledgments .. xi

CHAPTER 1

Introduction ... 1

1.1 Kidney Cancer ... 2

1.2 The von Hippel-Lindau Tumor Suppressor Gene .. 3

1.2.1 Inherited RCC .. 3

1.2.2 Sporadic RCC ... 4

1.3 VHL: Caretaker or Gatekeeper? ... 6

1.4 Characterization of the *VHL* Gene Product .. 8

1.4.1 Interaction of VHL With Elongin B, Elongin C and Cullin-2 10

1.4.2 Similarities Between VBC/Cul-2 and Yeast SCF Complexes 10

1.4.3 E3 Ubiquitin Ligase Activity of the VBC/Cul-2 Complex 11

1.4.4 Possible Role of NEDD8 and Rbx1 in the Ubiquitination Process 12

iii
1.5 Which Protein is Targeted by the VBC/Cul-2 Complex for Ubiquitination? .. 18

1.5.1 Post-Transcriptional vs Transcriptional Control of Hypoxia-Inducible mRNAs .. 18

1.5.2 α and β Subunits of the Hypoxia-Inducible Factor (HIF) ... 19

1.5.3 VHL Targets HIF-α for Oxygen-Dependent Degradation ... 20

1.6 Why *VHL* Inactivation Would Lead to Carcinogenesis in the Kidney? ... 23

1.6.1 Role of VHL in the Regulation of the Cell Cycle Exit ... 23

1.6.2 Overexpression of TGF-α Upon Loss of VHL may Explain Tumor Initiation in RCC 24

1.7 Subcellular Localization and Trafficking of VHL ... 26

1.8 Nuclear Export of Many Nuclear Proteins is Required for Their Proteasome-Dependent Degradation 27

1.9 Distribution of Tumor-Derived Inactivating Mutations ... 29

1.10 Objectives of Study and Hypotheses ... 32

CHAPTER 2

Methods ... 34

2.1 Cell Culture, Transfections and Adenoviral Infections ... 35

2.2 Expression Vectors and Constructs .. 35

2.3 Construction of Adenovirus Vectors Trough Cre-lox Recombination .. 36

2.4 Nuclear Import Assay in Living Cells .. 38

2.5 *In vitro* Ubiquitination Assay .. 38
2.6 Immunoprecipitations and Immunoblotting 39
2.7 Immunofluorescence Staining 41
2.8 Fluorescence Analysis and Image Processing 42

CHAPTER 3

Results ... 43

3.1 Biochemical Characterization of the Exon 2-Encoded β-Domain of VHL ... 44
3.2 Exon 2-Encoded β-Domain is Required for VHL Binding to Fibronectin and Proper Assembly of a Fibronectin Extracellular Matrix .. 49
3.3 Role of Exon 2-Encoded β-Domain of VHL in Oxygen-Dependent Degradation of HIF-α 51
3.4 Exon 2-Encoded Residues Mediate Transcription-Dependent Nuclear/Cytoplasmic Trafficking of VHL Independently of Assembly with HIF-α and Oxygen Concentration 53
3.5 Exon 2-Encoded β-Domain is Required for VHL Binding to Elongation Factor-1α (EF-1α), a new VHL-Associated Protein . 60

CHAPTER 4

Discussion ... 67

References ... 77
List of Figures

Figure 1. VHL is a tumor suppressor gene .. 5

Figure 2. Schematic diagram of VHL protein ... 9

Figure 3. Similarities between the VBC/Cul-2 complex and the yeast SCF complex ... 15

Figure 4. The VHL tumor suppressor protein is a component of an active E3 ubiquitin ligase complex that is involved in the targeting of proteins for ubiquitination ... 16

Figure 5. NEDD8 conjugation to Cullin-2: possible role in the ubiquitination process ... 17

Figure 6. VBC/Cul-2 mediates the oxygen-dependent proteolysis of the hypoxia-inducible factor α subunit (HIF-α) .. 22

Figure 7. The transforming growth factor-α (TGF-α) might provide a growth advantage to RCC cells upon the loss of VHL tumor suppressor protein function .. 25

Figure 8. The crystal structure of VHL .. 31

Figure 9. Schematic diagram of VHL fusion proteins and characterization of adenovirus-mediated expression of VHL-GFP 47

Figure 10. Biochemical characterization of an exon 2-encoded β-domain mutant of VHL ... 48
Figure 11. VHL requires an intact β-domain to bind fibronectin and mediate proper extracellular matrix formation .. 50

Figure 12. HIF-α fails to bind to an exon 2-encoded β-domain mutant of VHL and accumulates in the nucleus of normoxic cells 55

Figure 13. Effect of oxygen tension and proteasome inhibitors on the subcellular localization and nuclear/cytoplasmic trafficking properties of adVHL-GFP .. 58

Figure 14. Exon 2-encoded residues mediate transcription-dependent trafficking of VHL independently of assembly with HIF-α 59

Figure 15. An exon 2-encoded β-domain mutant of VHL fails to bind to endogenous elongation factor-1α (EF-1α) 62

Figure 16. The binding of EF-1α to VHL is affected by inhibition of transcription with DRB ... 65

Figure 17. The binding of EF-1α to VHL is affected by the presence of GMP-PNP (non-hydrolyzable analog of GTP), GDP and the presence of oxygen .. 66

Figure 18. Hypotheses concerning the role of assembly of EF-1α with VHL ... 76

vii
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActD</td>
<td>Actinomycin D</td>
</tr>
<tr>
<td>ARNT</td>
<td>Aryl Hydrocarbon Receptor Nuclear Translocator</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>bHLH-PAS</td>
<td>Basic Helix-Loop-Helix-Per-ARNT-SIM</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-Coupled Device</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-Dependent Kinase</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>CI</td>
<td>Calpain Inhibitor I</td>
</tr>
<tr>
<td>CKI</td>
<td>Cyclin-Dependent Kinase Inhibitor</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Cul-2</td>
<td>Cullin-2</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DRB</td>
<td>5,6-Dichlorobenzimidazole Riboside</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EF-1α</td>
<td>Elongation Factor-1α</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal Growth Factor Receptor</td>
</tr>
<tr>
<td>Epo</td>
<td>Erythropoietin</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine Diphosphate</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine Triphosphate</td>
</tr>
<tr>
<td>Glut-1</td>
<td>Glucose Transporter-1</td>
</tr>
<tr>
<td>GMP-PNP</td>
<td>5'-Guanylyl-Imidodiphosphate Trisodium Salt</td>
</tr>
<tr>
<td>HIF-α</td>
<td>Hypoxia-Inducible Factor-α</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HRE</td>
<td>Hypoxia-Responsive Element</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LOH</td>
<td>Loss of Heterozygosity</td>
</tr>
<tr>
<td>LMB</td>
<td>Leptomycin B</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse Embryonic Fibroblasts</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>NEDD8</td>
<td>Neural precursor cell Expressed Developmentally</td>
</tr>
<tr>
<td>NES</td>
<td>Nuclear Export Signal</td>
</tr>
<tr>
<td>ODD</td>
<td>Oxygen-Dependent Degradation Domain</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene difluoride</td>
</tr>
<tr>
<td>RCC</td>
<td>Renal Clear Cell Carcinoma</td>
</tr>
<tr>
<td>RPTEC</td>
<td>Renal Proximal Tubule Epithelial Cell</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>SCF</td>
<td>SKP1/Cdc53/F-box Protein</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulfate-Polyacrylamide Gel</td>
</tr>
<tr>
<td></td>
<td>Electrophoresis</td>
</tr>
<tr>
<td>TGF-α</td>
<td>Transforming Growth Factor-α</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer Ribonucleic Acid</td>
</tr>
<tr>
<td>Ub</td>
<td>Ubiquitin</td>
</tr>
<tr>
<td>VBC/Cul-2</td>
<td>VHL/Elongin B/Elongin C/Cullin-2 Complex</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel-Lindau Gene</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel-Lindau Protein</td>
</tr>
<tr>
<td>ZPR1</td>
<td>Zinc Finger Protein 1</td>
</tr>
</tbody>
</table>
Acknowledgments

First, I would like to thank my supervisor Dr. Stephen Lee for his help and support during the last two years. Working under his supervision allowed me to discover the importance of setting up precise goals and work hard to achieve them. During that period, I acquired solid scientific knowledge and self-confidence.

I would like to thank my academic advisory committee: Dr. Pratt, Dr. Wouters and Dr. Sonnenfeld for their comments and suggestions during this project. I also thank Dr. Park, Dr. Slack and Steve Callaghan for their help with the adenovirus system.

I also thank Isabelle Groulx, Natalie dePaulsen, Jason Bailey and François Lafrenière for their support and friendship. Je voudrais dire un merci spécial à Isabelle, ma complice de labo, pour sa compréhension et ses mots d'encouragement lors des moments plus difficiles.

J'aimerais aussi remercier mes parents, mes soeurs et mon amoureux pour leur présence, leur amour et leur soutien moral. Je remercie aussi Marianne pour son oreille attentive et sa compréhension.

Lastly, I thank The Journal of Biological Chemistry for allowing me to use portions of a manuscript that was published in their January 12, 2001 issue, Vol. 276, pp.1407-1416. This work was supported by an Operating Grant from the Medical Research Council of Canada (MRC) to Dr Stephen Lee.
La mesure de l'homme

"Ce n'est pas celui qui critique qui est important, ni celui qui montre du doigt comment l'homme fort trébuche ou comment l'homme d'action aurait pu faire mieux. L'hommage est dû à celui ou à celle qui se bat dans l'arène, dont le visage est couvert de poussière et de sueur, qui va de l'avant vaillamment, qui commet des erreurs et en commettra encore, car il n'y a pas d'efforts humains sans erreurs et imperfections. C'est à lui ou à elle qu'appartient l'hommage, à celui ou à celle dont l'enthousiasme et la dévotion sont grands, à celui ou à celle qui se consume pour une cause importante, à celui ou à celle qui, au mieux, connaîtra le triomphe du succès, et au pis, s'il échoue, saura qu'il a échoué alors qu'il risquait courageusement.

C'est pourquoi la place de cet homme ou de cette femme ne sera jamais avec ces âmes tièdes et timides qui ne connaissent ni la victoire ni la défaite."

Mahatma K. Gandhi
CHAPTER 1

Introduction
1.1 Kidney Cancer

Renal cell carcinoma is the most common malignancy of the adult kidney. It is diagnosed in about 3900 Canadians each year and is responsible for more than 1450 death per year (Canadian Cancer Society, National Cancer Institute of Canada and Health Canada, 2000). Renal tumors have been divided into two different types based on histologic and morphologic features: 80-85% of renal cancers are of clear cell type (renal clear cell carcinoma-RCC) and 5-10% are of papillary type (Linehan et al., 1995). Renal clear cell carcinoma is most commonly diagnosed between age of 50 and 70. If detected at an early stage, prior to metastasis, many patients can be cured surgically. The estimated 5-year survival for patients with disease confined to the kidney is 90-95% (Linehan et al., 1997). Unfortunately, at the time of diagnosis, approximately one third of patients have already metastatic diseases (Linehan et al., 1995). Because of the sequestered location of kidneys within the retroperitoneum, RCC often remains asymptomatic until the tumor begins to be locally advanced or that metastasis have reached other organs. Moreover, when a metastatic disease develops, the prognosis for long-term survival is poor, with an estimated 5-year survival of 0-20% (Linehan et al., 1997). Therefore, effective treatment strategies are clearly needed.
1.2 The von Hippel-Lindau Tumor Suppressor Gene

1.2.1 Inherited RCC

The elaboration of new and effective treatment strategies will be possible only if we are in measure to understand the underlying genetic and molecular basis of renal clear cell carcinoma. The fact that inherited forms of renal cancer exist and that some chromosomal abnormalities can be associated with these tumors suggests a heritable genetic determinant for renal cell carcinoma exists. The most studied form of inherited renal cancer is the von Hippel-Lindau syndrome (VHL), an autosomal dominant disorder. Patients afflicted with this disease are predisposed to develop a wide variety of highly vascularized tumors that include retinal angioma, central nervous system (CNS) hemangioblastoma, pheochromocytoma, pancreas cyst and adenoma and renal clear cell carcinoma (RCC) (Gnarra et al., 1996a; Humphrey et al., 1996; Latif et al., 1993; Linehan et al., 1995). The estimated incidence of this disease is one in 36 000 live births and the penetrance is 97% by the age 60 years (Maher et al., 1991; Maher et al., 1990). Between 28-45% of affected VHL patients develop renal clear cell carcinoma and the mean age of diagnosis is 39 years old (Lamiell et al., 1989). The genetic evaluation of tumors from families with hereditary forms of conventional renal cancer has demonstrated the presence of VHL gene mutations (Bodmer et al., 1998; Gnarra et al., 1994; Li et al., 1993; Schmidt et al., 1995).
1.2.2 Sporadic RCC

The *VHL* gene is located to chromosome 3p25-p26 (Hosoe et al., 1990; Seizinger et al., 1988). The gene is predicted to be a tumor suppressor gene based on loss of heterozygosity (LOH) studies using tumors from VHL patients. In fact, the chromosome 3p that contains the wild-type *VHL* gene (inherited from the unaffected parent) was deleted in the VHL-associated tumors examined (Tory et al., 1989). Knudson two-hit hypothesis for tumor suppressor gene predicts that both copies of a gene must be inactivated for tumor formation to occur. Therefore, sporadic tumors should arise after somatic inactivation of both copies of the same gene responsible for the corresponding hereditary cancer (Knudson, 1971; Knudson and Strong, 1972). In keeping with Knudson two-hit model, inactivation or loss of both *VHL* alleles has been demonstrated in ~80% of sporadic clear cell renal carcinomas (Foster et al., 1994; Gnarra et al., 1994; Herman et al., 1994; Shuin et al., 1994). This strongly suggests that the loss of VHL protein function (caused by inactivation of both *VHL* alleles) is a crucial step for the development of clear cell carcinoma of the kidney. Figure 1 is a diagram comparing the different steps leading to tumor formation in the case of inherited and sporadic RCC. For VHL patients that are born with a constitutional germline mutation in every cell in their body, only one additional somatic event is enough to initiate tumorigenesis. Individuals afflicted with sporadic RCC have received at conception two normal copies of the *VHL* gene. Therefore, in the case of sporadic form of RCC, tumor formation will arise when a single target cell acquires inactivating mutations on both *VHL* alleles.
Figure 1. **VHL is a tumor suppressor gene.** According to the two-hit hypothesis of tumor suppressor genes, biallelic inactivations of the VHL gene causes inherited as well as sporadic renal clear cell carcinoma (RCC), the most common malignancy of human kidney.
von Hippel-Lindau disease

Sporadic VHL-related tumors

At conception

Somatic mutation

Tumor formation

Somatic mutation

Tumor formation
1.3 VHL: Caretaker or Gatekeeper?

Vogelsein et al. proposed a novel concept of tumor suppressor genes. They have suggested that tumor suppressor genes can be divided in two different classes: the caretakers (e.g. BRCA-1, BRCA-2, p53) and the gatekeepers (e.g. VHL, APC, Rb and NF-1) (Kinzler and Vogelstein, 1997). The caretakers are thought to play a role in genome stability and inactivation of those genes does not promote tumor initiation directly. Such genetic alterations will increase the probability of mutations of all genes including the second class of tumor suppressors, the gatekeepers. Gatekeepers are genes that directly regulate the growth of tumors by inhibiting growth or promoting cell death. It is also hypothesized that each cell type may have only one specific gatekeeper gene.

It has been suggested by Vogelstein that VHL may exert gatekeeper function in renal proximal tubule epithelial cells, which are thought to give rise to RCC (Kaelin and Maher, 1998; Kinzler and Vogelstein, 1997; Pause et al., 1998). In fact, several evidences are in agreement with this hypothesis:

1-) Patients with VHL syndrome may develop hundred of independent solid tumors during their life span. They have 1000-5000 fold higher chance to develop tumors than the general population. These numbers are high compared to patients affected by other inherited cancer syndrome caused by caretaker genes such as Li-Fraumeni disease (p53). These patients have 5-25 fold higher chance to develop one tumor during their lifespan compared to the general population (Kinzler and Vogelstein, 1996).
2-) The second \textit{VHL} allele is found to be mutated in microscopical localized tumors as in advanced tumors indicating that the mutation of the second \textit{VHL} allele is an early event in renal carcinogenesis. Loss of heterozygosity at the \textit{VHL} locus was even observed in early premalignant lesions of the kidney of \textit{VHL} patients (Lubensky \textit{et al.}, 1996; Zhuang \textit{et al.}, 1995).

3-) Reintroduction of \textit{VHL} is sufficient to correct several cancer-like phenotypes such as the ability to: grow in serum free media (Pause \textit{et al.}, 1998), form tumors in nude mice (Iliopoulos \textit{et al.}, 1995) and overproduce angiogenic factors such as VEGF, Glut-1 and TGF-\(\alpha\) (Gnarra \textit{et al.}, 1996b; Iliopoulos \textit{et al.}, 1996; Lonergan \textit{et al.}, 1998; Siemeister \textit{et al.}, 1996; Knebelmann \textit{et al.}, 1998). Another defect of RCC cancer cells is the inability to properly assemble an extracellular fibronectin matrix (Ohh \textit{et al.}, 1998). This defect can also be corrected by the reintroduction of wild-type, but not mutant, \textit{VHL} in \textit{VHL-}\(^{-}\) RCC cells. Fibronectin is an extracellular glycoprotein that binds to heterodimeric cell surface receptors known as integrins (Hynes, 1992; Ruoslahti, 1991). Loss of fibronectin matrix assembly is a recognized feature of cellular transformation (Chen \textit{et al.}, 1976; Hynes and Destree, 1978; Hynes \textit{et al.}, 1978; Lipkin \textit{et al.}, 1978; Ruoslahti, 1991; Vaheri \textit{et al.}, 1978). In normal cells, \textit{VHL} can normally bind to fibronectin associated with the endoplasmic reticulum (Ohh \textit{et al.}, 1998).

The identification of gatekeeper genes in various tissues and the elucidation of the cellular function of the corresponding proteins will provide crucial information to understand the molecular basis of human cancer.
1.4 Characterization of the VHL Gene Product

The VHL gene was cloned in 1993 (Latif et al., 1993), contains 3 exons and encodes a 213 amino acid protein (VHL) with an apparent molecular weight of 24-30 kDa following SDS-polyacrylamide gel electrophoresis (Figure 2) (Latif et al., 1993; Iliopoulos et al., 1995). However, a second VHL product is generated by translation initiation from an internal in-frame methionine residue at codon 54 (Blankenship et al., 1999; Iliopoulos et al., 1998; Schoenfeld et al., 1998). This shorter form of VHL is more abundant and has an apparent molecular weight of 18-20 kDa. All functional and biochemical studies performed to date have shown that both products behave similarly. Therefore, both VHL products will be referred to as the VHL protein.
Figure 2. Schematic diagram of VHL protein. VHL has three exons that code for a 213-amino acid protein. VHL assembles with elongin B, elongin C and Cullin-2 to form the VBC/Cul-2 complex. Exon 2 is the site of frequent mutations (blue triangles) in sporadic RCC, but not in the inherited RCC of VHL syndrome. Exon 3 mutations (yellow triangles) are mostly found in familial cases of RCC. Green triangles represent sites of mutations common for both sporadic and inherited forms of RCC. This diagram is not to scale.
1.4.1 Interaction of VHL With Elongin B, Elongin C and Cullin-2

VHL contains no functional and/or structural motifs that might provide insight as to its function (Foster et al., 1994; Duan et al., 1995a; Gao et al., 1995). Immunoprecipitation experiments have shown that VHL assembles with at least four other proteins: Rbx1, elongin B, elongin C and Cullin-2 (the complex will be hereafter referred to as VBC/Cul-2) (Figure 2) (Duan et al., 1995b; Kibel et al., 1995; Lonergan et al., 1998; Pause et al., 1997). Interaction studies have demonstrated that VHL binds directly to elongin C, which in turn binds with a separate domain to elongin B (Takagi et al., 1997), a small ubiquitin-like protein (Garrett et al., 1995). Moreover, it has been shown that elongin C forms a bridge between VHL and Cullin-2 and that the binding of elongin B to elongin C stabilizes the interaction VHL/elongin C/Cullin-2 (Duan et al., 1995b). VHL assembles with elongin C through residues 157-177 (exon 3) and Cullin-2 interacts with elongin C through its amino terminus (Figure 2) (Pause et al., 1999). I will talk more about Rbx1 later.

1.4.2 Similarities Between VBC/Cul-2 and Yeast SCF Complexes

Elongin C and Cullin-2 share structural homology with yeast (Saccharomyces cerevisiae) SKP1 and Cdc53, respectively (Bai et al., 1996; Lonergan et al., 1998; Mathias et al., 1996; Pause et al., 1997). SKP1 and Cdc53 bind to one another and assemble into the SCF complex (SKP1/Cdc53/F-box protein) that target specific protein for polyubiquitination and subsequent degradation by the 26S proteasome (Hopkin, 1997; Jackson, 1996). The
similarities between the structure of the SCF complex and the VBC/Cul-2 complex lead to the hypothesis that these proteins complexes might have similar functions (Figure 3) (Pause et al., 1999; Stebbins et al., 1999). In fact, VHL has recently been shown to be a component of an active E3 ubiquitin ligase complex involved in polyubiquitination (Iwai et al., 1999; Lisztwan et al., 1999). Moreover, disease-associated VHL mutants failed to show E3 ubiquitin ligase activity suggesting that this activity is crucial for VHL tumor suppressor function.

1.4.3 E3 Ubiquitin Ligase Activity of the VBC/Cul-2 Complex

Polyubiquitination is a multistep process that depends on the activities of several enzymes and leads to the formation of isopeptide bonds between C-terminal glycine residues of ubiquitin and ε-amino group of lysine residues of an acceptor protein (Figure 4). First, a ubiquitin must be activated by an ATP molecule to form a high-energy thiol ester intermediate with the E1 ubiquitin-activating enzyme. The activated ubiquitin will then be transferred to an E2 ubiquitin-conjugating enzyme from E1. The E3 ubiquitin protein-ligase (role played by the VBC/Cul-2 complex) will recruit the E2 ubiquitin-conjugating enzyme and the ubiquitin will then be transferred to a specific substrate. Finally, the polyubiquitinated protein will be degraded by the 26S proteasome (Figure 4) (Ciechanover, 1994; Hochstrasser, 1996). The SCF complex, the yeast E3 ubiquitin ligase, plays an important role in substrate recognition. The yeast SCF complex targets several substrates including G1-cyclins, cyclin-dependent kinase (CDK) inhibitors and the CDK-inhibitory kinase SWE1, for ubiquitination (Bai et
al., 1996; Feldman et al., 1997; Kaiser et al., 1998; Patton et al., 1998a; Skowyra et al., 1997; Willems et al., 1996).

1.4.4 Possible Role of NEDD8 and Rbx1 in the Ubiquitination Process

Recently, the Cdc53 subunit of yeast SCF was shown to be covalently modified by the conjugation of the ubiquitin-like protein RUB1 (Lammer et al., 1998; Liakopoulos et al., 1998). It was also shown that this modification of Cdc53 by RUB1 proceeds analogously to ubiquitination and with similar enzymes but it does not result in the targeting of the Cdc53 protein for degradation (Lammer et al., 1998; Liakopoulos et al., 1998).

NEDD8 (Neural precursor cell Expressed Developmentally Down-regulated 8), a ubiquitin-like protein (Kamitani et al., 1997), is presumed to be the human homolog of RUB1, displaying 59% homology with the yeast protein (Kumar et al., 1992). NEDD8 has been shown to modify Cullin-2 of the VBC/Cul-2 complex but only when VHL was present as a part of the complex (Figure 5) (Liakopoulos et al., 1999). In fact, tumorigenic-mutant forms of VHL which are unable to form the VBC/Cul-2 complex, fail to promote NEDD8 conjugation to Cullin-2 (Liakopoulos et al., 1999). However, more recent studies have suggested that VHL promotes, but is not essential for NEDD8 conjugation to Cullin-2 (Wada et al., 1999). Wada et al. have observed low level of Cullin-2 neddylation (NEDD8 conjugation) in VHL$^{-/-}$ 786-0 cells, suggesting that VHL is not the only molecule implicated in NEDD8 conjugation to Cullin-2 (Wada et al.,
1999). Taken together, the ligation of NEDD8 to Cullin-2 of the VBC/Cul-2 complex appears to be linked to VHL activity.

The regulation and biochemical significance of Cullin-RUB1 or NEDD8 conjugation are not clear at present. However, recent studies have shown that disruption of NEDD8 modification in both mammalian and fission yeast cells, significantly reduced the level of in vitro SCF ubiquitin ligase activity of Cullin-1 (Furukawa et al., 2000; Morimoto et al., 2000; Podust et al., 2000; Read et al., 2000). In addition, the same studies have demonstrated that NEDD8 modification of Cullin-1 of the SCF complex stimulates the ability of the complex to support efficient ubiquitin polymerization, leading to degradation of the targeted substrate (Furukawa et al., 2000; Morimoto et al., 2000; Podust et al., 2000; Read et al., 2000; Wu et al., 2000).

Kamura et al. have shown that the conjugation of RUB1 to Cdc53 is activated by the presence of another protein, Rbx1 (Kamura et al., 1999). Similarly, NEDD8 modification of human Cullin-2 is also dependent on the presence of Rbx1 (Kamura et al., 1999). The RING-H2 finger protein Rbx1 (also called Hrt1 or ROC1) is a subunit of both the SCF and the VBC/Cul-2 complexes (Bai et al., 1996; Feldman et al., 1997; Lisztwan et al., 1999; Lyapina et al., 1998; Patton et al., 1998ab; Skowyra et al., 1997). Studies on the mechanism of action of Rbx1 suggest that it would also activate the ubiquitination process of both complexes (Kamura et al., 1999). The exact mechanism by which Rbx1 can activate these processes (neddylation and ubiquitination) is still unknown. Since NEDD8 is localized primarily in the nucleus (Kamitani et al., 1997), Furukawa et
al. have suggested that Rbx1 facilitates *in vivo* NEDD8 modification of Cullin-1 (Cdc53 homolog) by promoting its nuclear accumulation. Neddylation possibly enhances the ubiquitination process, therefore, Rbx1-mediated Cullin-1 nuclear accumulation might explain the simultaneous effect of Rbx1 on both processes.
Figure 3. Similarities between the VBC/Cul-2 complex and the yeast SCF complex.
A) SKP1 and Cdc53 bind to one another and assemble with Cdc4 to form the yeast SCF complex. B) Elongin C, elongin B and Cullin-2 assemble with VHL to form the VBC/Cul-2 complex. Elongin C and Cullin-2 share structural homology with yeast SKP1 and Cdc53, respectively. This diagram is not to scale.
Figure 4. The VHL tumor suppressor protein is a component of an active E3 ubiquitin ligase complex that is involved in the targeting of proteins for ubiquitination. Ubiquitination is a multistep process that depends on the activity of several enzymes. A ubiquitin molecule (Ub) must be first activated by an ATP to form a high-energy thiol ester intermediate with the E1 ubiquitin-activating enzyme (1). The activated ubiquitin molecule will then be transferred to an E2 ubiquitin-conjugating enzyme (2). Finally, in the presence of an E3 ubiquitin protein-ligase (the substrate recognition particle), the E2 ubiquitin-conjugating enzyme will transfer the ubiquitin molecule to a specific substrate (3). At the end, polyubiquitinated proteins are degraded by the 26S proteasome (4-5). This diagram is not to scale.
Ubiquitination: A Multistep Process

1. E1 Activating enzyme

2. E2 Conjugating enzyme

3. E3 Ubiquitin ligase

4. 26S proteasome

5. + ATP
Figure 5. NEDD8 conjugation to Cullin-2: possible role in the ubiquitination process. The ligation of NEDD8 to Cullin-2 of the VBC/Cul-2 complex appears to be linked to VHL activity and might be important for its tumor suppressor function. We suggest a model in which neddylation of Cullin-2 would enhance the ability of the VBC/Cul-2 complex to promote substrate ubiquitination and subsequent degradation. This diagram is not to scale.
1.5 Which Protein is Targeted by the VBC/Cul-2 Complex for Ubiquitination?

1.5.1 Post-Transcriptional vs Transcriptional Control of Hypoxia-Inducible mRNAs

A well-established characteristic of VHL-associated tumors is that they are generally highly vascularized (Kaelin and Maher, 1998). In fact, it has been shown that angiogenic factors such as erythropoietin (Epo), glucose transporter-1 (Glut-1), vascular endothelial growth factor (VEGF) and transforming growth factor-alpha (TGF-α) are constitutively expressed in cells lacking VHL (Krieg et al., 1998; Wenger and Gassmann, 1997; Wizigmann-Voos et al., 1995). Those factors are generally produced in larger quantities in normal cells only under hypoxic (low oxygen) conditions. This is not the case for VHLΔ cells, which have high expression levels of those hypoxia-inducible mRNA, even at ambient oxygen concentration (Gnarra et al., 1996b; Iliopoulos et al., 1996; Siemeister et al., 1996; Stratmann et al., 1997). Many hypoxia-inducible genes have been shown to contain hypoxia-responsive elements (HREs) (Guillemin and Krasnow, 1997; Wenger and Gassmann, 1997). Under hypoxic conditions, these HREs are recognized by the transcription activator HIF alpha subunits (hypoxia-inducible factor-α) (Gradin et al., 1996; Wang et al., 1995). HIF-α expression is required for normal physiological response to hypoxia (Carmeliet et al., 1998; Iyer et al., 1998; Ryan et al., 1998; Semenza, 1999). Therefore, it has been suggested that HIF-α would be one potential target for VBC/Cul-2-mediated degradation. In
keeping with this hypothesis, upon the loss of VHL function in RCC, HIF-α would accumulate to high levels, regardless of oxygen concentration. This would cause VHL "−" RCC to undergo a constitutive hypoxia-like response associated with the overexpression of angiogenic factors leading to hypervascularization of VHL disease-associated tumors. Nonetheless, earlier studies have suggested that hypoxia-inducible mRNAs might be regulated at the level of transcription (Mukhopadhyay et al., 1997) or at the level of mRNA stability (Gnarra et al., 1996b; Iliopoulos et al., 1996; Knebelmann et al., 1998; Lonergan et al., 1998; Siemeister et al., 1996). In fact, Iliopoulos et al. did show a 4-fold decrease in VEGF mRNA stability in VHL-expressing 786-0 cells (Iliopoulos et al., 1996). Therefore, other mechanisms might explain why hypoxia-inducible mRNAs are found to be more abundant in VHL "−" RCC cells: 1- VHL fails to degrade HIF-α and an increased transcription of hypoxia-inducible genes occurs, 2- HIF-α protein itself indirectly confers a higher stability to hypoxia-inducible mRNAs, 3- VHL degrades or controls a protein other than HIF-α that would regulate the fate of hypoxia-inducible mRNAs.

1.5.2 α and β Subunits of the Hypoxia-Inducible Factor (HIF)

The hypoxia-inducible factor (HIF) is a heterodimeric basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) domain protein that consists of an alpha (HIF-α) and a beta subunit (HIF-β) (Wang et al., 1995). As mentioned above, HIF alpha subunit is present in VHL "−" cells only in hypoxic conditions. In the case of the beta subunit of HIF, also known as the aryl hydrocarbon receptor
nuclear translocator (ARNT) (Gassmann and Wenger, 1997; Hankinson, 1995; Schmidt and Bradfield, 1996), its expression is oxygen-independent (Huang et al., 1996). Analysis of structure and function of HIF-α have revealed that the N-terminal part of the protein (containing the bHLH-PAS domain) is required for DNA binding (Jiang et al., 1996; Reisz-Porszasz et al., 1994). The C-terminal part of HIF-α contains domains responsible for HIF nuclear localization, protein stabilization and transactivation (Huang et al., 1998; Jiang et al., 1996; Jiang et al., 1997; Kallio et al., 1998). As for HIF-β (ARNT), previous studies have shown that it is indispensable for HIF-α DNA binding and transactivation (Forsythe et al., 1996; Gassmann and Wenger, 1997; Gradin et al., 1996; Salceda et al., 1996; Wood et al., 1996) but is not required for accumulation and nuclear translocation of HIF-α in hypoxia (Chilov et al., 1999).

1.5.3 VHL Targets HIF-α for Oxygen-Dependent Degradation

Studies have shown that hypoxia does not modify HIF-α mRNA levels, suggesting that HIF-α protein content is regulated by a post-transcriptional mechanism involving stabilization of HIF-α protein levels (Huang et al., 1996; Kallio et al., 1997; Salceda and Caro, 1997). Moreover, studies have shown that HIF-α contains an oxygen-dependent degradation domain (ODD) constituted of residues 401 to 603. The removal of this ODD domain of HIF-α was shown to stabilize the protein even in presence of normal concentration of oxygen (20%) (Huang et al., 1998). Maxwell et al. have shown that VBC/Cul-2 and HIF-α co-immunoprecipitate, and that VBC/Cul-2 is present in the hypoxic HIF-α DNA-
binding complex (Maxwell et al., 1999). Moreover, other studies have clearly shown that residues 530 to 652 of HIF-α are required for the binding to VHL (Ohh et al., 2000). The fact that the domain required for binding to VHL and the ODD domain of HIF-α are overlapping strongly suggests that VHL is implicated in the destabilization of HIF-α protein in normoxia. Many studies have clearly confirmed that the VBC/Cul-2 complex is in fact an E3 ubiquitin ligase that targets the alpha subunit of HIF for oxygen-dependent degradation (Figure 6) (Cockman et al., 2000; Huang et al., 1998; Iwai et al., 1999; Lisztwan et al., 1999; Maxwell et al., 1999; Ohh et al., 2000; Salceda and Caro, 1997).
Figure 6. VBC/Cul-2 mediates the oxygen-dependent proteolysis of the hypoxia-inducible factor-α subunit (HIF-α). The loss of VHL function causes RCC cells to express high levels of the hypoxia-inducible factor α subunit (HIF-α). HIF-α accumulates to high levels regardless of the oxygen concentration since VHL E3 ubiquitin ligase function is abrogated. This results in the overexpression of angiogenic factors such as vascular endothelial growth factor (VEGF), glucose transporter-1 (Glut-1) and transforming growth factor-α (TGF-α).
Oxygen-Dependent Degradation of HIF by VHL

NORMOXIA

Normal cells
VHL positive

E3 Ligase

HYPOXIA

RCC cells
VHL negative

No E3 Ligase

No E3 Ligase
1.6 Why VHL Inactivation Would Lead to Carcinogenesis in the Kidney?

1.6.1 Role of VHL in the Regulation of the Cell Cycle Exit

As mentioned above, VHL$^{+/}$ RCC tumors are highly vascularized because of HIF-α-mediated overproduction of angiogenic factors. However, this characteristic does not explain tumorigenesis. What happens exactly after the inactivation of the second VHL allele? A well-known characteristic of the majority of cancer cells is their inability to exit the cell cycle by serum deprivation. In fact, Pause et al. have shown that VHL-negative RCC cells as other cancer cells continue to grow in low serum (Pause et al., 1998). They have also shown that the reintroduction of VHL in these cells restores their ability to exit the cell cycle and enter G$_0$/quiescence in low serum (Pause et al., 1998). Moreover, the cell cycle exit of VHL-expressing RCC cells was accompanied by an increase level of p27, a cyclin-dependent kinase inhibitor (CKI) (Pause et al., 1998). It was previously shown that p27 levels normally increase in quiescent cells and rapidly decrease after serum re-stimulation (Elledge and Harper, 1994; Sherr and Roberts, 1995). VHL was the first tumor suppressor found to be involved in the regulation of cell cycle exit. This finding was consistent with the gatekeeper function of VHL in the kidney.
1.6.2 Overexpression of TGF-α Upon the Loss of VHL may Explain Tumor Initiation in RCC

The transforming growth factor-α (TGF-α) is a VHL-regulated growth and angiogenic factor. The reintroduction of VHL in VHL^{−/−} human RCC cell line 786-0 causes a decrease in TGF-α levels in a manner reminiscent of VEGF or Glut-1 (Knebelmann <i>et al.</i>, 1998). Aside from its established role in angiogenesis (Lee <i>et al.</i>, 1995), TGF-α can act as a specific growth factor for renal proximal tubule epithelial cells (RPTECs), which are believed to give rise to RCC (Gomella <i>et al.</i>, 1989; Humes <i>et al.</i>, 1991). Recent studies have shown in fact that TGF-α stimulates the proliferation of VHL^{−/−} RCC cells through the stimulation of the epidermal growth factor receptor (EGFR) (de Paulsen <i>et al.</i>, 2001). Also, it was shown that the high level of TGF-α present in VHL^{−/−} RCC cells is sufficient to promote the growth of those cells without the need for any other exogenous growth factors (Figure 7) (de Paulsen <i>et al.</i>, 2001). Moreover, interfering with this TGF-α/EGFR autocrine loop, significantly reduces the ability of VHL^{−/−} RCC cells to grow in low serum (de Paulsen <i>et al.</i>, 2001). Another interesting finding in agreement with these results is the fact that the blockade of the EGF receptors prevents RCC tumor formation in nude mice (Ciardiello <i>et al.</i>, 1998; Prewett <i>et al.</i>, 1998). Therefore, it seems that the loss of VHL in RPTEC, resulting in TGF-α overproduction, may be the event that confers growth advantage to RCC cells and lead to tumor formation.
Figure 7. The transforming growth factor-α (TGF-α) might provide a growth advantage to RCC cells upon the loss of VHL tumor suppressor protein function. Upon the loss of VHL function in RCC, HIF-α accumulates to high levels, regardless of the oxygen concentration. This causes VHL^{−/−} RCC to undergo a constitutive hypoxia-like response associated with the overexpression of vascular endothelial growth factor (VEGF), glucose transporter-1 (Glut-1) and TGF-α. Since TGF-α can act as a specific growth stimulatory factor for kidney cells, it is hypothesized that the loss of VHL function causes RCC by enabling these cells to undergo a TGF-α-mediated autocrine loop.
Transforming Growth Factor-α: TGF-α

Normal cells
VHL positive

RCC cells
VHL negative

Growth in low serum: NO

YES
1.7 Subcellular Localization and Trafficking of VHL

Another characteristic of VHL is the fact that it localizes predominantly to the cytoplasm but with some nuclear signal (Corless et al., 1997; Duan et al., 1995a; Iliopoulos et al., 1995; Lee et al., 1996; Los et al., 1996). Like several proteins that are localized between the nucleus and the cytoplasm, it was shown that VHL shuttles between these two compartments (Corless et al., 1997; Iliopoulos et al., 1995; Lee et al., 1996; Los et al., 1996; Tsuchiya et al., 1996; Ye et al., 1998). Moreover, this nucleocytoplasmic trafficking requires ongoing transcription (Lee et al., 1999). In fact, inhibition of the transcription with a RNA polymerase II-specific inhibitor (5,6-dichlorobenzimidazole riboside-DRB) causes VHL to be redistributed to the nucleus, a consequence of a decreased nuclear export rate (Lee et al., 1999). The same effect can be observed with other transcription inhibitors such as Actinomycin D (ActD) or α-amanitin (Lee et al., 1999). Also, ongoing protein synthesis is not required for the redistribution effect of transcriptional inhibitors (Lee et al., 1999). This suggests that the effect obtained with DRB or ActD treatment on VHL localization is the result of inhibition of new RNA synthesis (Lee et al., 1999). Also, the shuttling of VHL is insensitive to leptomycin B (LMB), a drug that affects CRM1-mediated nuclear export of protein containing a classical, leucine-rich nuclear export signal (NES) (Nishi et al., 1994; Wolff et al., 1997). When VHL is fused to a classical NES and induced to shuttle in a leptomycin-sensitive and transcription-insensitive manner, it is unable to function as a negative regulator of Glut-1 levels (Lee et al., 1999).
These observations suggest that VHL exports from the nucleus through a CRM1-independent pathway and that the proper nucleocytoplasmic shuttling of VHL is required for its tumor suppressor function. More recently, our group has shown that the nuclear export of VHL-fused to the green fluorescent protein (VHL-GFP) is Ran-mediated and ATP hydrolysis-dependent (Groulx et al., 2000). Moreover, the association of VHL with Cullin-2 is not required for the export of VHL-GFP (Groulx et al., 2000). These results suggest that VHL must contain a nuclear export domain, which plays a role in the nuclear export of the VBC/Cul-2 complex.

1.8 Nuclear Export of Many Nuclear Proteins is Required for Their Proteasome-Dependent Degradation

Hdm2 is another E3 ubiquitin ligase that shuttles between the nucleus and the cytoplasm (Honda et al., 1997; Roth et al., 1998). Inhibition of nuclear export of Hdm2 results in the accumulation of p53, suggesting that Hdm2 shuttling is required for p53 degradation in the cytoplasm (Roth et al., 1998; Freedman and Levine, 1998). p53 is a tumor suppressor protein that has an important role in cellular mechanisms required to maintain genomic integrity in response to cellular stress (Ko and Prives, 1996; Levine, 1997). Hdm2 utilizes a classical nuclear export signal (NES) to export from the nucleus. In fact, leptomycin B treatment of various cell lines led to an increase in the steady-state levels of the p53 protein as a result of an increase in its stability (Freedman and Levine, 1998). p53 tumor suppressor protein is present at low levels in the cells. In response to
physiological stress, p53 protein levels rise and it becomes active as a transcription factor. p53 induces the transcription of genes such as Bax, p21 and GADD45 that induce growth arrest and apoptosis (el-deiry et al., 1993; Kastan et al., 1992; Miyashita and Reed, 1995; Okamoto and Beach, 1994). p53 protein also induces transcription of Hdm2, its negative regulator, creating an autoregulatory feedback loop (Wu et al., 1993).

Other proteins also need nuclear export in order to be degraded by the proteasomes. One example is p27kip1, a protein that acts at a particular stage of the cell cycle to inhibit another group of cell-cycle proteins. Claret et al. have found that p27kip1 interacts with an other protein called Jab1 (Claret et al., 1996). They found that increasing the levels of Jab1 causes increased breakdown of p27kip1. Tomoda et al. have shown that binding of Jab1 to p27kip1 causes relocalization of p27kip1 from the nucleus to the cytoplasm (Tomoda et al., 1999). They have also shown that p27kip1 is not degraded in the presence of leptomycin B, a drug that affects the nuclear export of proteins from the nucleus. These results clearly indicate that Jab1 controls the activity of p27kip1 by promoting its nuclear export and subsequent degradation. Whether Jab1 is a component of the ubiquitin/proteasome system or only a transporter of p27kip1 is not yet clear.

These two examples, together with the E3 ubiquitin ligase and shuttling activity of VHL provide indications that nuclear export of many nuclear proteins might be required for their proteasome-dependent degradation.
1.9 Distribution of Tumor-Derived Inactivating Mutations

The crystal structure of VHL has been reported. VHL mainly consists of two independent domains: a large β-domain that spans residues 64 to 154 and an α-helical domain (α-domain) that encompasses most of the C-terminal part of the protein (residues 157-189) (Figure 8) (Stebbins et al., 1999). Tumor-derived inactivating mutations (279 entries; Beroud et al., 1998) are found across the VHL protein indicating that both domains play a critical role in VHL tumor suppressor function (Figure 2) (Stebbins et al., 1999). There is, however, an interesting correlation between the nature and localization of inactivating mutations and the clinical consequences in patients afflicted with inherited VHL syndrome. Individuals with Type II VHL syndrome develop pheochromocytoma and have generally inherited a mutation in the exon 3-encoded α-domain. Type I VHL syndrome differs from Type II in that patients do not develop pheochromocytoma and are likely to have inherited a mutation in the hydrophobic core of the β-domain (Chen et al., 1995). There is also an intriguing disparity in the distribution of tumor-derived missense mutations between the inherited and sporadic form of RCC. Mutations in the α-domain of VHL are much more frequent in the inherited form of RCC (Gnarra et al., 1994), whereas, sporadic RCC frequently harbor inactivating point mutations in exon 2 (Figure 2). This includes point mutations at the exon 2 boundary that cause a splice defect producing a mRNA that lacks exon 2 sequences altogether (Gnarra et al., 1994). Exon 2 mutations are rare in VHL patients and it has been suggested that such mutations might not be easily tolerated
and thus not transmitted in the germline (Gnarra et al., 1996a). The discrepancy in
the distribution of mutations between sporadic and inherited RCC suggests that
exon 2 and exon 3-associated mutations probably inactivate VHL function in
different ways.
Figure 8. The crystal structure of VHL. VHL is a 213 amino acid protein containing an acidic domain, a large β-domain that spans residues 64 to 154 and an α-helical domain (α-domain) that encompasses most of the C-terminal part of the protein (residues 157-189). Mutations in the α-domain are more frequent in the inherited form of RCC whereas sporadic RCC harbor inactivating point mutations in exon 2 (β-domain) of VHL. This diagram is not to scale.
1.10 Objectives of Study and Hypotheses

As I mentioned before, VHL patients have several naturally occurring mutations within exon 3 of the VHL gene. The role of a few residues within this exon is well understood since they correspond to the ones required for VHL binding to elongin C and formation of the VBC/Cul-2 complex (Duan et al., 1995b; Kibel et al., 1995; Kishida et al. 1995; Lonergan et al., 1998). However, sporadic cases of RCC frequently harbor inactivating point mutations in exon 2. It has been shown that a splicing defect of exon 2, resulting in a VHL protein lacking amino acids 114-154, is also often found in sporadic RCC (Gnarra et al., 1994).

Exon 2-encoded residues 114-154 are mostly hydrophobic and form three of the seven β-strands of the β-domain (Stebbins et al., 1999). These residues are hypothesized to play a role in substrate protein recognition although recent in vitro experiments have revealed that they might not be required for VHL binding to HIF-α (Tanimoto et al., 2000). Also, it was suggested by Lee et al. (1999) that transcription-dependent trafficking of VHL is mediated by sequences encoded by exon 2. This statement was based on the observation that a deletion mutant of exon 2, as opposed to wild-type VHL, failed to accumulate in the nucleus upon arrest of transcription with an actinomycin D (Act D) treatment. However, the exact details concerning the role that exon 2-encoded sequences play in VHL-mediated tumor suppression function are not yet elucidated. Furthermore, it is unclear why inactivating mutations in exon 2 of VHL cause a more severe and aggressive form of RCC.
In this thesis, we further examine the role of these sequences in cells by comparing a tumor-derived VHL mutant that lacks residues 114-154 to the known biochemical properties of wild-type VHL and mutant VHL lacking the exon 3-encoded α-domain. In particular, we wanted to look at the ability of these three VHL constructs to:

1- bind to Cullin-2 and HIF-α

2- act as an E3 ubiquitin ligase

3- properly assemble an extracellular fibronectin matrix

4- shuttle in a transcription-dependent manner

5- mediate oxygen-dependent degradation of HIF-α

Hypotheses:

- Exon 2-encoded β-domain of VHL is involved in substrate recognition and nucleocytoplasmic trafficking.

- Exon 2-encoded β-domain of VHL is required to mediate the oxygen-dependent degradation of HIF-α.
CHAPTER 2

Methods
2.1 Cell Culture, Transfections and Adenoviral Infections

The VHL^{−/−} 786-0 RCC cells and HeLa cells were obtained from the American Type Culture Collection (Rockville, MD). 786-0 renal carcinoma have undergone loss of heterozygosity at the VHL locus, and the remaining VHL allele contains a frameshift mutation (Gnarra et al., 1994). The VHL-GFP cell line corresponds to 786-0 cells stably transfected with the VHL-GFP fusion protein as described elsewhere (Lee et al., 1999). The 117-4 (VHL^{−/−}; referred to as 117) cells were a kind gift from Dr James R. Gnarra (LSU Health Sciences Center, New Orleans, LA, USA). The mouse embryonic fibroblasts (MEF) nullizygous for HIF-1α were a kind gift from Dr. Randy Johnson (Department of Biology, University of California, SD, USA) (Ryan et al., 2000). Cell lines were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal calf serum, 100 units/ml Penicillin and 100 µg/ml Streptomycin in a 37°C, humidified, 5% CO₂-containing-atmosphere incubator. Transient transfections were performed overnight using a standard calcium phosphate method. Viruses were used as freeze/thaw lysates and all infections were also performed overnight.

2.2 Expression Vectors and Constructs

The human VHL cDNA, which codes for a 213-amino acid VHL protein, was subcloned into pcDNA 3.1(-) (Invitrogen) vector in the Nhe I restriction site. A FLAG epitope tag (DYKDDDDK) was added to the N-terminus of the VHL cDNA open reading frame. A cDNA coding for an enhanced fluorescence version
of GFP (Fred 25; Stauber et al., 1995) was subcloned downstream and in-frame of VHL cDNA (between Nhe I and BamHI sites) to produce the VHL-GFP fusion protein. A deletion mutant of the last 56 amino acids was fused to GFP to produce the ΔE3-GFP fusion protein. Another deletion mutant of VHL lacking amino acids 114-154 was fused to GFP to produce the E2-GFP fusion protein. Both deletion mutants were cloned in the NheI sites of pcDNA 3.1(-) using standard PCR, double PCR methods and cloning methods. Two GFP in tandem were also cloned into pcDNA 3.1(-) to produce the GFP-GFP fusion protein. VHL-GFP-NES, ΔE2-GFP-NES and GFP-GFP-NES were produced by fusion of VHL-GFP, ΔE2-GFP and GFP-GFP at their C-terminus to the strong NES of HIV Rev, LPPLERLTL (NES) (Fisher et al., 1995). All constructs were verified by standard DNA sequencing.

2.3 Construction of Adenovirus Vectors Through Cre-lox Recombination

CRE8 and 293 cells were obtained from Dr. David Park (University of Ottawa, Ottawa, Ontario, Canada) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal calf serum (FCS). The construction and properties of CRE8 cells are described elsewhere (Chen et al., 1996). The pAdlox vector and the Ψ5 viral DNA were also obtained from Dr. Park. VHL-GFP was subcloned into the HindIII and BamH1 sites. Mutant VHL were subcloned in the endogenous NotI site of VHL at residue 60 and BamH1. Transfections were done according to Graham and van der Eb (1973). Typically, a confluent 10-cm
diameter dish of CRE8 cells (1.6x10⁷) was split into 5- to 6-cm diameter dishes for transfection 2 to 4 hours later. Each dish received 3 μg of pAdlox vector (containing the foreign VHL construction) and 3 μg of ψ5 viral DNA in a final volume of 0.5 ml of CaPO₄, which was applied to the cells on day 1. After sixteen hours, the 10% FCS DMEM was changed for 2% FCS DMEM. Cells were fed again with fresh 2% DMEM after 64 hours. Between day 8 and 10, we had a sizable infection in each dish: almost all the cells were rounded up or floating. Cells were harvest and resuspended in their culture media (no need for trypsin: infected CRE8 cells are detached easily from the bottom of the dish). Lysates were prepared by freezing/thawing three times with an alternating liquid N₂/37°C water bath. Each virus was then passed sequentially through CRE8 cells twice (10-cm diameter dish infected with 200 μl of lysate and cells are harvest after 48 hours, etc.). Finally, a plaque purification assay was performed in order to isolate the recombinant adenovirus expressing adVHL-GFP, adΔE2-GFP or adΔE3-GFP. Plaques containing the recombinant adenovirus were identified by looking at the GFP fluorescence under the inverted microscope. Each recombinant adenovirus were then amplified in CRE8 cells to obtain larger quantities. The amount of lysate required to obtain 90-100% of cells infected was determined experimentally for each adenovirus.
2.4 Nuclear Import Assay in Living Cells

HeLa cells were plated on a 35-mm dish with a hole at the bottom replaced by a glass coverslip and transfected overnight with VHL-GFP-NES, ΔE2-GFP-NES and GFP-GFP-NES. Cells were washed with PBS and incubated for 2 hours in DMEM at 37°C with or without metabolic poisons (6 mM 6-deoxyglucose and 0.02% sodium azide), at 4°C or at 37°C with 10 μM leptomycin B (Nishi et al., 1994; Wolff et al., 1997).

2.5 In Vitro Ubiquitination Assay

VHL−/− 786-0 RCC cells infected with the three different adenoviruses and 786-0 cells stably expressing VHL-GFP were lysed in the presence of 1% Triton X-100, 20 mM Tris-HCl pH 8.0, 137 mM NaCl with protease inhibitors (2 μg/ml leupeptin, 2 μg/ml aprotinin, 1 μg/ml pepstatin A) for 30 min. at 4°C. Whole cell lysates were first immunoprecipitated with anti-FLAG M2 monoclonal antibody. Precipitates were washed 5 times with a buffer containing 20 mM Tris-HCl pH 7.5, 5 mM MgCl₂, 2 mM DTT. The total volume of the reaction mixture was adjusted to 20 μl. E1 ubiquitin-activating enzyme (100 ng), E2 ubiquitin-conjugating enzyme (200 ng), 0.5 μg of ubiquitin aldehyde, 0.5 μg of ubiquitin and an ATP-regenerating system (0.5 mM ATP, 10 mM creatine phosphate, and 10 μg of creatine phosphokinase) were added to the reaction mixture (complete mixture). The reaction was stopped after 2 hours incubation at 37°C by adding 4X SDS loading buffer. Samples were boiled 10 min. and separated on an 8% SDS-PAGE and blotted onto a PVDF membrane. Blots were blocked and incubated in the
presence of a mouse anti-ubiquitin antibody (Berkeley Antibody Company). The E1 ubiquitin-activating enzyme and the E2 ubiquitin-conjugating enzyme were a kind gift from Dr Kazuhiro Iwai (Kyoto University, Kyoto, Japan).

2.6 Immunoprecipitation and Immunoblotting

Immunoprecipitation of HIF-1α and HIF-2α: VHL-/- 786-0 cells expressing endogenous HIF-2α or 117-4 cells expressing endogenous HIF-1α were exposed 4 hours to hypoxia (0.1% O₂) sixteen hours after infection. Proteasomal inhibition was performed with 100 µM Calpain Inhibitor I (CI) for 2 hours. When still in the hypoxic chamber, cells were were washed several times with PBS and scraped from the petri dishes in lysis buffer containing 100 mM NaCl, 0.5% Igepal CA630, 20 mM Tris-HCl (pH 7.6), 5 mM MgCl₂, and 1 mM sodium orthovanadate with 2 µg/ml leupeptin, 2 µg/ml aprotinin, 1 µg/ml pepstatin A and 1 mM 4-(2-aminoethyl) benzene sulphonyl fluoride. Tubes were put back in normoxia and kept at 4°C for 30 min. with rocking. After clearance by centrifugation, 1 mg aliquots of lysate were incubated 2 h at 4°C with anti-FLAG M2 beads (Scientific Imaging Systems, Eastman Kodak Company, CT). Beads were washed, boiled and loaded on an 8% SDS-PAGE and blotted onto PVDF membranes using standard methods. Blots were blocked with 3% milk powder in PBS containing 0.2% Tween 20 and were then incubated in presence of anti-HIF-1α (Transduction Laboratories), anti-HIF-2α antibody (Novus Biologicals) or an anti-FLAG M2 monoclonal antibody (Sigma). **Immunoprecipitation of Cullin-2, NEDD8 and Fibronectin:** VHL-GFP cells and infected 786-0 cells were lysed in 100 mM NaCl, 0.5% Igepal CA630, 20
mM Tris-HCl (pH 7.6), 5 mM MgCl₂, and 1 mM sodium orthovanadate with 2 μg/ml leupeptin, 2 μg/ml aprotinin and 1 μg/ml pepstatin A. After clearance by centrifugation, 1 mg aliquots of lysate were incubated 2 h at 4°C with anti-FLAG M2 beads. Beads were washed, boiled and loaded on an 8% SDS-PAGE and blotted onto PVDF membranes using standard methods. Blots were blocked with 3% milk powder in PBS containing 0.2% Tween 20 and were then incubated in presence of anti-Cullin-2 (Liakopoulos et al., 1999; provided by Dr Arnim Pause, Max-Plank Institute, Germany), anti-NEDD8 (Alexis), anti-fibronectin (Dako Diagnostic) or anti-FLAG M2 monoclonal antibody (Sigma). For total cell lysates, cells were washed several times in PBS, scraped from the petri dishes, centrifuged and resuspended in 4% SDS in PBS (Lee et al., 1996). The samples were boiled for 5 min., and the DNA was sheared by passage of lysates through 19-gauge needles. Protein concentration was determined by bicinchoninic acid method (Pierce) and was use to normalize protein loading in whole-cell immunoblot assay.

Immunoprecipitation of EF-1α: VHL-GFP cells or infected 786-0 cells were lysed in 100 mM NaCl, 0.5% Igepal CA630, 20 mM Tris-HCl (pH 7.6), 5 mM MgCl₂, and 1 mM sodium orthovanadate with 2 μg/ml leupeptin, 2 μg/ml aprotinin and 1 μg/ml pepstatin A. After clearance by centrifugation, 1 mg aliquots of lysate were incubated overnight at 4°C with pre-blocked anti-FLAG M2 beads (pre-blocked with bovine serum albumin (BSA) 2 mg/ml for 2 hours). Beads were washed, boiled and loaded on an 8% SDS-PAGE and blotted onto PVDF membranes using standard methods. Blots were blocked with 3% milk powder in PBS containing
0.2% Tween 20 and were then incubated in presence of a mouse anti-EF-1α antibody (Upstate Biotechnology) and a mouse anti-FLAG M2 antibody (Sigma).

2.7 Immunofluorescence Staining

For Fibronectin: VHL^{−/−} RCC 786-0 cells, or VHL-GFP cells, were infected and were grown on coverslips for 6 days, washed three times with PBS, and fixed/permeabilized in prechilled 95% ethanol at -20°C for 30 min. Ethanol was then aspirated, and the residual ethanol was allowed to air dry at 4°C. Cells were stained with polyclonal anti-fibronectin antibody (5 μg/ml) (Dako Diagnostic) 1 hour at room temperature. The coverslips were then washed with PBS three times and incubated with CyTM3-conjugated anti-rabbit antibody (Jackson ImmunoResearch, PA) diluted 1/1000 for 1 hour at room temperature. Coverslips were washed 3 times with PBS, incubated 2 min. with Hoechst 33342 and mounted with fluoromount-G (Southern Biotechnology Associates, AL) on slides. For HIF-1α: 117 cells or transiently transfected 786-0 with HIF-1α were grown on coverslip and infected with the three different adenoviruses overnight. Cells were washed three times with PBS, fixed/permeabilized in PBS containing 4% formaldehyde 30 min. at room temperature, washed again 3 times with PBS and incubated 1 hour at room temperature with anti-HIF-1α antibody (Transduction Laboratories, KY) diluted 1/1000 in PBS/ 1% Triton X-100/ 10% FCS. The cells were washed in PBS and incubated for 60 min. in the presence of a CyTM3-conjugated anti-mouse antibody (Jackson ImmunoResearch, PA) diluted 1/1000. The cells were washed
in PBS, incubated 2 min. in Hoechst 33342 and mounted with fluormount-G on slides.

2.8 Fluorescence Analysis and Image Processing

GFP fluorescence images were captured using a Zeiss Axiovert S100TV microscope with a C-Achromat 40X water immersion objective, equipped with an Empix digital charge-coupled device (CCD) camera using Northern Eclipse software. Images were manipulated with Northern Eclipse, and Adobe Photoshop software as described elsewhere (Lee et al., 1999). GFP images were always taken before Hoechst images to minimize any possible bleaching effect.
CHAPTER 3

Results
3.1 Biochemical Characterization of the Exon 2-Encoded β-Domain of VHL

The VHL protein, encoded by the VHL gene that contains three exons, can be divided into three independent domains: an acidic domain, a β-domain and an α-domain (Figure 9A). Sporadic RCC frequently harbor inactivating mutations in exon 2-encoded part of the β-domain whereas these mutations are relatively rare in individuals afflicted with inherited VHL syndrome (Gnarra et al., 1994). To study the role of exon 2-encoded β-domain in VHL tumor suppressor function, a cDNA encoding a tumor-derived truncation of residues 114-154 was fused to GFP to produce the ΔE2-GFP fusion protein (Figure 9B). This truncation mutant is the consequence of point mutations that cause a splice defect producing a mRNA that lacks exon 2 sequences altogether (Gnarra et al., 1994). ΔE2-GFP is predicted to have a partial, if not total, loss of β-domain function while retaining an intact, exon 3-encoded α-helical domain. A tumor-derived truncation of the exon 3-encoded α-helical domain (last 56 C-terminal residues), which retained intact the sequences of the β-domain, was also fused to GFP (ΔE3-GFP) (Figure 9B). ΔE2-GFP, ΔE3-GFP as well as wild-type VHL-GFP were cloned in pAdlox vector and adenoviruses (adΔE2-GFP, adΔE3-GFP and adVHL-GFP) were produced to high titers (Figure 9B) (Hardy et al., 1996). Adenovirus was chosen as a method to reintroduce VHL since it eliminates the necessity to produce stable clones of different VHL−/− RCC cell lines. VHL−/− RCC cells were infected with very high
efficiency with 90-95% of cells displaying GFP fluorescence (Figure 9C). In adenovirus-infected cells, adVHL-GFP was mostly localized to the cytoplasm with some nuclear signal, consistent with data obtained with stable transfectants. In contrast to recombinant adenovirus expressing VHL alone (without GFP; Kim et al., 1998), adVHL-GFP did not restrain proliferation of VHL−/− RCC cells, or other cell lines such as 293 cells, even when expressed to very high levels (data not shown). Glut-1 protein levels were significantly decreased in VHL−/− 786-0 RCC infected with adVHL-GFP in normoxia compared to uninfected cells or cells infected with an adenovirus that expressed GFP alone (data not shown). Western blot analysis indicated that adΔE2-GFP accumulated to levels similar to those of adVHL-GFP and adΔE3-GFP suggesting that adΔE2-GFP is a stable protein (Figure 9D). We conclude that the adVHL-GFP protein produce from an adenovirus is a functional molecule and shares similar characteristics with VHL.

We next examined the biochemical properties of adΔE2-GFP in comparison to adVHL-GFP and adΔE3-GFP. The β-domain mutant adΔE2-GFP still retained the ability to assemble with Cullin-2 (Figure 10A) and to exhibit E3 ubiquitin ligase activity in vitro (Figure 10B) to levels similar to those observed for adVHL-GFP. The α-helical domain deletion mutant (adΔE3-GFP) failed to assemble with Cullin-2 and to display E3 ubiquitin ligase activity in vitro, as expected. While the experiments described above were being performed, it was notice that a second band, which migrated slower than Cullin-2, was found in the adVHL-GFP lane but was lacking from the adΔE2-GFP lane (Figure 10A). NEDD8 is an ubiquitin-like molecule, which is conjugated to Cullin-2 in a VHL-
dependent manner (Liakopoulos et al., 1999; Kamitani et al., 1997). Western blotting with an anti-NEDD8 antibody revealed that the slower migrating form of Cullin-2 is conjugated to NEDD8 (Figure 10C). Therefore an intact exon 2-encoded β-domain is not required for VHL ability to assemble with Cullin-2 and to function as an E3 ubiquitin ligase in vitro but is necessary for VHL-mediated NEDD8 conjugation on Cullin-2.
Figure 9. Schematic diagram of VHL fusion proteins and characterization of adenovirus-mediated expression of VHL-GFP. A) Schematic diagram of VHL protein. VHL has three exons that code for a 213-amino acid protein containing an acidic domain, a β-domain and an α-domain. B) Schematic diagram of VHL fusions to GFP. The GFP was fused at the C-terminus (black box [not in scale]), resulting in VHL-GFP fusion protein. A cDNA encoding a tumor-derived truncation of residues 114-154 (strike box) was fused to GFP to produce ΔE2-GFP. A tumor-derived truncation of the exon 3-encoded α-domain (strike box) was also fused to GFP to produce ΔE3-GFP. A FLAG tag (shadow box) was fused to the N-terminal of all three constructs. ΔE2-GFP, ΔE3-GFP and VHL-GFP were cloned in pAdllox vector to prepare adenoviruses. adΔE2-GFP, adΔE3-GFP and adVHL-GFP refer to proteins obtained following the infection with the corresponding adenovirus. C) 90-95% of VHL−/− RCC cells (786-0) displayed GFP fluorescence following infection with the adenovirus adVHL-GFP. 786-0 cells were infected overnight (16 hours) and adVHL-GFP pictures were obtained by CCD camera (left panel). Counterstaining with Hoechst 33342 dye (2 μg/ml for 2 min.) provided staining of all nuclei (right panel). D) adΔE2-GFP, adΔE3-GFP and adVHL-GFP accumulated to similar levels following adenoviral infection of 786-0. Total cell lysates were run on an 8% SDS-PAGE and transferred to a PVDF membrane. The membrane was then blocked and incubated in the presence of a mouse anti-FLAG M2 antibody.
Figure 10. Biochemical characterization of an exon 2-encoded \(\beta\)-domain mutant of VHL. A) An intact \(\beta\)-domain is not required for VHL ability to assemble with Cullin-2. Stable VHL\(^{-}\) RCC 786-0 cells stably expressing FLAG-tagged VHL-GFP or 786-0 cells infected or not infected with the adenoviruses ad\(\Delta\)E2-GFP, ad\(\Delta\)E3-GFP and adVHL-GFP were lysed and immunoprecipitated with anti-FLAG M2 beads. Precipitated proteins were run on SDS-PAGE (8% acrylamide) and transferred on PVDF membranes. The membranes were then blocked and incubated in the presence of a rabbit anti-Cullin-2 (top panel) or a mouse anti-FLAG M2 (bottom panel) antibody. Notice that a second band migrates slower than Cullin-2 in the VHL-GFP and adVHL-GFP lanes only. This represents NEDD8 conjugation to Cullin-2 (further confirmed in C)). B) An intact \(\beta\)-domain is not required for VHL ability to function as an E3 ubiquitin ligase \textit{in vitro}. \textit{In vitro} ubiquitination reactions were performed as described in Materials and Methods (complete mixture) except for 2 negative controls: adVHL-GFP was immunoprecipitated with anti-FLAG M2 beads and incubated with the complete mixture except the E1 enzyme (first lane starting from the left) or ubiquitin (third lane starting from the left). Reactions were stopped by adding 4X sample buffer. Samples were electrophoresed in 8% SDS-PAGE and transferred to a PVDF membrane. The membrane was then blocked and incubated in the presence of a mouse anti-ubiquitin antibody. C) Exon 2-encoded \(\beta\)-domain is required for VHL-mediated NEDD8 conjugation to Cullin-2. Immunoprecipitations were performed exactly like for Cullin-2. Immunoprecipitated proteins were run on an 8% SDS/PAGE and transferred to a PVDF membrane. The membrane was then blocked and incubated in the presence of a rabbit anti-NEDD8 antibody.
3.2 Exon 2-Encoded β-Domain is Required for VHL Binding to Fibronectin and Proper Assembly of a Fibronectin Extracellular Matrix

VHL−/− RCC cells are unable to promote assembly of an extracellular fibronectin matrix and the reintroduction of VHL was shown to be sufficient to correct this defect (Ohh et al., 1998). We wanted to verify if exon 2-encoded β-domain of VHL is required for binding to fibronectin and for proper formation of a fibronectin extracellular matrix. Adenovirus-mediated reintroduced adVHL-GFP displayed similar activity than VHL and restored the ability of VHL−/− RCC cells to properly produce a fibronectin extracellular matrix (Figure 11A; VHL-GFP). In contrast, adΔE2-GFP was unable to rescue this defect (Figure 11A). Fibronectin was observed in an ER-like intracellular distribution in uninfected cells as well as in cells expressing adΔE2-GFP. Immunoprecipitation analysis revealed that adVHL-GFP was able to assemble with fibronectin whereas adΔE2-GFP failed to do so (Figure 11B). The adΔE3-GFP was also unable to bind to fibronectin and correct the fibronectin deposition defect of VHL−/− RCC. Therefore, VHL requires an exon 2-encoded β-domain to bind to fibronectin and mediate proper extracellular matrix formation.
Figure 11. VHL requires an intact β-domain to bind fibronectin and mediate proper extracellular matrix formation. A) adΔE2-GFP is unable to produce a fibronectin extracellular matrix. Uninfected VHL−/− 786-0 cells, VHL−/− RCC 786-0 cells stably expressing FLAG-tagged VHL-GFP or infected with adVHL-GFP, adΔE2-GFP or adΔE3-GFP were grown on coverslips for 6 days. Cells were washed, fixed, incubated with Hoechst for 2 min. (blue) and stained with a rabbit anti-fibronectin antibody (red). Pictures were obtained by CCD camera and superposition of fibronectin and Hoechst-stained nuclei frames was done with Adobe Photoshop. Arrows are pointing at fibronectin deposition. B) adΔE2-GFP is unable to bind fibronectin. Stable VHL−/− RCC 786-0 cells stably expressing FLAG-tagged VHL-GFP or 786-0 cells uninfected or infected with the adenoviruses adΔE2-GFP, adΔE3-GFP and adVHL-GFP were lysed and immunoprecipitated with anti-FLAG M2 beads. Precipitated proteins were run on an 8% SDS-PAGE and transferred on PVDF membranes. The membranes were then blocked and incubated in the presence of a rabbit anti-fibronectin (top panel) or a mouse anti-FLAG M2 (bottom panel) antibody.
3.3 Role of Exon 2-Encoded β-Domain of VHL in Oxygen-Dependent Degradation of HIF-α

It was recently shown that one of the major defects of VHL^{−/−} RCC cells are their inability to mediate oxygen-dependent degradation of HIF-α and reintroduction of wild-type VHL was sufficient to correct this defect (Maxwell et al., 1999). In vitro studies have also revealed that truncation mutants of exon 2 and exon 3 of VHL are still able to bind to HIF-α (Tanimoto et al., 2000), which likely assemble with sequences encoded by exon 1 (residues 64 to 113) (Cockman et al., 2000). Since these experiments were performed in vitro, we wanted to look at the ability of wild-type VHL (adVHL-GFP) and the two VHL deletion mutants (adΔE2-GFP and adΔE3-GFP) to bind and degrade endogenous HIF-α. Adenovirus-mediated reintroduction of adVHL-GFP was sufficient to restore VHL^{−/−} RCC cell line 117 (HIF-1α) and 786-0 (HIF-2α) ability to mediate degradation of HIF-α in normoxia (Figure 12A). HIF-α levels were not affected by expression of adΔE2-GFP or adΔE3-GFP (Figure 12A). We notice that adVHL-GFP assembled with a significant amount of HIF-α (1α and 2α) in hypoxia and in the presence of the proteasome inhibitor CI (Figure 12B). In contrast to data obtained in vitro, immunoprecipitation analysis revealed that adΔE2-GFP and adΔE3-GFP failed to bind to HIF-α in adenovirus infected cells (Figure 12B; top panels). We did not detect binding of HIF-α to adΔE2-GFP and adΔE3-GFP in cells expressing low to very high levels of the fusion proteins (data not shown). These results indicate that
an intact exon 2-encoded β-domain, as well as the α-domain, is required for VHL assembly with HIF-α in cells.

It has been hypothesized that HIF-1α requires a hypoxic environment to import in the nucleus most likely assembled into complexes that contain VBC/Cul-2 (Tanimoto et al., 2000; Kallio et al., 1998). To further examine the role of hypoxia and VHL in nuclear import of HIF-α, the subcellular localization of endogenous HIF-1α was examined by immunofluorescence in VHL−/− 117 RCC cells uninfected or infected with different VHL constructs. Data shown in Figure 12C revealed that endogenous HIF-1α accumulated exclusively in the nucleus of uninfected VHL−/− RCC 117 cell line even though these cells were incubated in normoxia (Figure 12C; a, e, i). This demonstrates that HIF-1α is able to import in the nucleus even in the presence of oxygen and in the absence of VHL. Strong HIF-1α nuclear signal was also observed in cells expressing adΔE2-GFP (Figure 12C; c, g, k) as well as adΔE3-GFP (Figure 12C; d, h, l) whereas it was essentially undetectable in cells expressing reintroduced adVHL-GFP (Figure 12C; b, f, j). We then examined the subcellular localization of overexpressed HIF-1α in RCC VHL−/− 786-0 cells (which express endogenous HIF-2α instead of HIF-1α). A strong HIF-1α signal was detected exclusively in the nucleus of normoxic RCC VHL−/− 786-0 cells transiently transfected with HIF-1α cDNA that were either uninfected (Figure 12C; m), infected with GFP alone (data not shown) or infected with adΔE2-GFP (Figure 12C; o) and adΔE3-GFP (Figure 12C; p). Addition of proteasome inhibitors or incubation in hypoxia led to nuclear accumulation of
endogenous or overexpressed HIF-α regardless of the presence of adVHL-GFP or mutants, as expected (data not shown). HIF-1α was also detected in the nucleus of normoxic RCC VHLΔ786-0 cells when co-transfected with different smaller deletions mutants of exon 2 (Δ115-123, Δ128-141 and Δ141-154), with a cancer-causing substitution at residue 117 (W to R) in exon 2, or at residue 98 (Y to N) in exon 1, fused to GFP (Figure 12D). These results demonstrate that HIF-1α is able to import in the nucleus regardless of oxygen concentration or assembly with VHL.

3.4 Exon 2-Encoded Residues Mediate Transcription-Dependent Nuclear/Cytoplasmic Trafficking of VHL Independently of Assembly with HIF-α and Oxygen Concentration

We recently demonstrated that VHL mediates transcription-dependent nuclear/cytoplasmic trafficking of the VBC/Cul-2 complex (Lee et al., 1999; Groulx et al., 2000). Addition of 5, 6-dichlorobenzimidazole riboside (DRB), an inhibitor of RNA Polymerase II activity, causes an important increase of nuclear VBC/Cul-2 by blocking VHL-mediated nuclear export of the complex. The dependence of transcription for trafficking is abolished by a deletion of exon 2-encoded sequences (Lee et al., 1999). We next wanted to determine if exon 2-encoded residues also regulate subcellular trafficking of VHL in conditions known to affect HIF-α stability, such as oxygen concentration and if it is able to do so independently of assembly with HIF-α. adΔE2-GFP is a small molecule (40kDa).
Its presence in the nucleus might be simply the outcome of unregulated passive diffusion through the nuclear pore complex rather or utilization of signal-mediated and regulated energy-dependent processes. Therefore, the first step consisted of determining if the β-domain mutant required energy expenditure for nuclear import before further investigating its role in VHL-mediated shuttling of BC/Cul-2. To do so, we developed a new assay to test for energy requirement for nuclear import in living cells based on fusing proteins to the energy-dependent HIV (human immunodeficiency virus) REV nuclear export signal (NES). NES confers strong nuclear export properties to fusion proteins leading to their cytoplasmic accumulation at steady state (Fisher et al., 1995). GFP-GFP-NES rapidly accumulated in the nucleus upon inhibition of NES function at 4°C or with metabolic poisons, as expected, since this fusion protein is able to passively diffuse in and out of the nucleus (Groulx et al., 2000). In contrast, VHL-GFP-NES and ΔE2-GFP-NES strictly remained in the cytoplasm at 4°C or in the presence of metabolic poisons (data not shown) indicating that both fusion proteins are unable to passively diffuse in the nucleus. ΔE2-GFP-NES and VHL-GFP-NES accumulated in the nucleus upon incubation with Leptomycin B, a drug that specifically inhibits NES function (Nishi et al., 1994; Wolff et al., 1997) at 37°C, but not at 4°C indicating that both fusion protein contain energy-dependent nuclear import signals (data not shown). These observations demonstrate that VHL ability to confer energy-dependent nuclear import properties to a reporter GFP is independent of assembly with HIF-α and exon 2-encoded β-domain residues.
Figure 12. HIF-α fails to bind to an exon 2-encoded β-domain mutant of VHL and accumulates in the nucleus of normoxic cells.
A) adΔE2-GFP failed to mediate oxygen-dependent degradation of HIF-α. VHL-/- 786-0 RCC cells (HIF-2α) and 117-4 cells (HIF-1α) were uninfected or infected with adVHL-GFP, adΔE2-GFP and adΔE3-GFP. Total cell lysates were run on an 8% SDS-PAGE, transferred to PVDF membranes. The membranes were blocked and incubated in presence of a mouse anti-HIF-1α (top panel) or a rabbit anti-HIF-2α (bottom panel) antibody.
B) adVHL-GFP assembled with endogenous HIF-1α (117 cells) or with endogenous HIF-2α (786-0 cells) but adΔE2-GFP and adΔE3-GFP failed to do so. Cells were put under hypoxic conditions (0.1% O2) for 4 hours in presence of the proteasome inhibitor Calpain Inhibitor I (CI). Cells were lysed and immunoprecipitation was performed with anti-FLAG M2 beads for 2 hours. Immunoprecipitated proteins were run on an 8% SDS-PAGE and blotted onto PVDF membranes. Membranes were blocked and incubated in the presence of a mouse anti-HIF-1α (top left panel), a rabbit anti-HIF-2α (top right panel), or a mouse anti-FLAG M2 antibody (bottom panels).
C) Nuclear import of HIF-α occurs regardless of oxygen tension. VHL-/- RCC 117 cells (endogenous HIF-1α) (a-l) or 786-0 cells transiently transfected with HIF-1α (m-p) were uninfected or infected with the adenoviruses adVHL-GFP, adΔE2-GFP and adΔE3-GFP. Cells were washed, fixed and stained with a mouse anti-HIF-1α antibody. Counterstaining of cells with Hoechst 33342 dye provided staining of all 117 cells nuclei (i-l).
D) Line drawing of mutant VHL-GFP, which were co-transfected with HIF-1α cDNA in VHL-/- RCC 786-0 cells. Arrows indicate single amino acid substitutions at residue 98 and 117 whereas black bars indicate small deletion mutants within exon 2. HIF-1α accumulated in the nucleus in normoxia when co-transfected with these VHL mutants.
Exon 2-encoded β-domain mediates transcription-dependent trafficking of VHL and VBC/Cul-2 and the next step was to test if this domain was sensitive to conditions known to affect HIF-α stabilization. GFP fluorescence analysis of living cells indicated that the steady state distribution of adVHL-GFP was unaffected by oxygen tension (Figure 13; a, j). Addition of the RNA Polymerase II inhibitor DRB caused nuclear accumulation of adVHL-GFP, regardless of oxygen concentration (Figure 13; b, k). It has been recently suggested that proteasome inhibitors, which prevent proteasome-mediated degradation of ubiquitinated proteins, might also act as general inhibitors of nuclear export (Scheffner, 1999; Tomoda et al., 1999). Interestingly, a strong shift in the steady state distribution toward the nucleus of adVHL-GFP was observed upon incubation with the proteasome inhibitor CI, or lactacystin (data not shown) in normoxia and hypoxia (Figure 13; c, l). adΔE3-GFP steady state distribution is more nuclear than adVHL-GFP and is unaffected by oxygen concentration (Figure 13; g, p). Addition of DRB or CI also caused an important nuclear accumulation of adΔE3-GFP with few cells displaying exclusive nuclear signal (Figure 13; h, i, q, r). In contrast, the localization of the β-domain mutant adΔE2-GFP remained unchanged regardless of oxygen tension, proteasome inhibitors or RNA Polymerase II inhibitors (Figure 13; d-f, m-o). One possible explanation for adΔE2-GFP insensitivity to DRB and CI is that this mutant is unable to bind to HIF-α. These observations led us to test if the effect of DRB and CI on shuttling of VHL are intrinsic to exon 2-encoded residues or if this activity is mediated by HIF-α. To test this, VHL shuttling was analyzed in mouse embryonic fibroblasts.
that do not express endogenous HIF-α (Figure 14). We noticed that adVHL-GFP steady state subcellular localization was unaffected by the absence of HIF-1α (Figure 14; a, c). Likewise, addition of DRB caused nuclear accumulation of adVHL-GFP in HIF-1α−/− as well as in HIF-1α+/+ cells (Figure 14; b, d). The localization of both mutants was unaffected by the absence or presence of HIF-1α (Figure 14; e, g, i, k). The α-domain mutant adΔE3-GFP accumulated in the nucleus upon incubation with DRB whereas adΔE2-GFP was unaffected by this treatment in HIF-1α−/− and HIF-1α+/+ cells. The effect of CI was essentially the same as DRB on the three fusion proteins (data not shown). The same data was obtained in hypoxia (data not shown). Put together, these results demonstrate that oxygen tension and HIF-α have no effect on VHL nuclear/cytoplasmic shuttling properties. They also indicate that exon 2-encoded β-domain plays a role in nuclear/cytoplasmic trafficking of VHL, which is independent of its role in binding to HIF-α.
Figure 13. Effect of oxygen tension and proteasome inhibitors on the subcellular localization and nuclear/cytoplasmic trafficking properties of adVHL-GFP.

Subcellular localization of adVHL-GFP and mutants in cells grown in normoxia (20% O₂) and hypoxia (0.1% O₂) in the presence of absence of DRB or CI. VHL⁺⁺ RCC 786-0 cells were infected with adVHL-GFP, adΔE2-GFP and adΔE3-GFP and incubated in normoxia (a-i) or for 4 hours in hypoxia (j-r). Cells were grown without further treatments (a, d, g, j, m, p), were treated with DRB (25μM) for two hours (b, e, h, k, n, q) or with calpain inhibitor I (CI; 100μM) for 2 hours (c, f, i, l, o, r). GFP fluorescence images of living cells were captured using a Zeiss Axiovert S100TV microscope equipped with an Empix digital charged-couple device (CCD) camera.
Figure 14. Exon 2-encoded residues mediate transcription-dependent trafficking of VHL independently of assembly with HIF-α. HIF-1α−/− or HIF-1α+/+ mouse embryonic fibroblasts (MEF) cells were infected with adVHL-GFP, adΔE2-GFP and adΔE3-GFP and incubated in normoxia in the presence or absence of DRB (25μM) for 2 hours. Addition of CI (100μM) for 2 hours essentially gave the same results as DRB (data not shown). The exact same data were also obtained for cells incubated in hypoxia (data not shown).
3.5 Exon 2-Encoded β-Domain is Required for VHL Binding to Elongation Factor-1α (EF-1α), a new VHL-Associated Protein

Previous work has shown that exon 2-encoded residues are needed for transcription-dependent shuttling of VHL (Lee et al., 1999). Therefore, it has been hypothesized at the time that other proteins might regulate VBC/Cul-2 cellular trafficking via assembly with VHL "shuttling domain", such as exon 2. Since the exon 3 deletion mutant retains the ability to shuttle in a transcription-dependent manner, immunoprecipitation experiments were performed with this mutant in order to find novel associated proteins. As predicted, Dr Lee found a protein of 50 kDa (p50) that assembled strongly with this exon 3 deletion mutant of VHL but only weakly with the VBC/Cul-2 complex. This later observation is not surprising since proteins involved in trafficking and localization often interact weakly with their respective complexes (Gorlich and Mattaj, 1996; Ohno et al., 1995; Pollard et al., 1996). Since exon 3 deletion mutants lack the ability to bind to BC/Cul-2, we suggest that they might be more able to associate with p50.

p50 was purified and was sent for microsequencing (Harvard Microchemistry Facility, Boston). It was identified as the translation elongation factor-1α (EF-1α). EF-1α is a GTP-binding protein known to be involved in diverse cellular processes including protein biosynthesis (Moldave, 1985), embryogenesis (Krieg et al., 1989), cell proliferation (Sanders et al., 1996),
organization of the cytoskeleton (Condeelis, 1995). EF-1α was also shown to be an ubiquitin isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrate (Gonen et al., 1996). More interestingly, EF-1α was recently shown to be involved in the aminoacylation-dependent export pathway of nuclear tRNA in yeast (Grosshans et al., 2000). Furthermore, the interaction of zinc finger protein (ZPR1) with EF-1α upon epidermal growth factor (EGF) treatment causes the redistribution of both proteins to the nucleus (Gangwani et al., 1998). These latter results are appealing since they implicate EF-1α in nucleocytoplasmic trafficking.

Here, we wanted to see if endogenous EF-1α was able to bind to the VBC/Cul-2 complex obtained by infection of VHL+/− RCC 786-0 cells with adVHL-GFP. Indeed, immunoprecipitation experiment revealed that adVHL-GFP was able to assemble with endogenous EF-1α (Figure 15A). In contrast, adΔE2-GFP failed to do so, suggesting that the exon 2-encoded β-domain of VHL is required for its assembly with EF-1α (Figure 15B). In addition, we confirmed that the exon 3-encoded α-domain is not required for this interaction since the exon 3 deletion mutant (adΔE3-GFP) is also able to bind to EF-1α (Figure 15B).
Figure 15. An exon 2-encoded β-domain mutant of VHL fails to bind to endogenous elongation factor-1α (EF-1α). A) VHL⁻/⁻ RCC 786-0 cells infected or not infected with the adenovirus adVHL-GFP were lysed and immunoprecipitated with pre-blocked anti-FLAG M2 beads overnight at 4°C. Precipitated proteins were run on SDS-PAGE (8% acrylamide) and transferred on PVDF membranes. The membranes were then blocked and incubated in the presence of a rabbit anti-Cullin-2 (top panel), a mouse anti-FLAG M2 (middle panel) or a mouse anti-EF-1α antibody (bottom panel). B) VHL⁻/⁻ RCC 786-0 cells infected or not infected with the adenoviruses adΔE2-GFP, adΔE3-GFP and adVHL-GFP were lysed and immunoprecipitated with pre-blocked anti-FLAG M2 beads overnight at 4°C. Precipitated proteins were run on SDS-PAGE (8% acrylamide) and transferred on PVDF membranes. The membranes were then blocked and incubated in the presence of a mouse anti-FLAG M2 (top panel) or a mouse anti-EF-1α (bottom panel) antibody. * The band observed in all 4 lanes represents the heavy chain of the M2 antibody used for immunoprecipitation.
Since exon 2-encoded β-domain of VHL seems to be required for its assembly with EF-1α, this suggests that EF-1α might be implicated in the transcription-dependent shuttling of VHL. Therefore, we next wanted to see if inhibition of the transcription with DRB would affect the interaction between EF-1α and VHL. Indeed, inhibition of the transcription decreased the amount of EF-1α bound to adVHL-GFP (Figure 16A, bottom panel), without affecting the total cellular levels of adVHL-GFP and EF-1α and the amount of adVHL-GFP immunoprecipitated (Figure 16Aand 16B). We can therefore suggest a model by which EF-1α would be responsible for the transcription-dependent nuclear export of the VBC/Cul-2 complex. According to this model, inhibition of transcription would dissociate EF-1α from the complex and result in nuclear accumulation of the VBC/Cul-2 complex.

Most proteins involved in cellular trafficking use the GTP/GDP cycle as source of energy. Since EF-1α is a GTP-binding protein, we first looked at the ability of EF-1α to bind VHL in the presence of GMP-PNP (a non-hydrolyzable analog of GTP) or GDP. We found that EF-1α failed to assemble with adVHL-GFP in the presence of GMP-PNP but GDP had no effect on complex assembly (Figure 17A). These results suggest that a GTP/GDP cycle might regulate the interaction between adVHL-GFP and EF-1α. Also, we wanted to test if other conditions would have an effect on the association of EF-1α with the VBC/Cul-2 complex. We looked at the effect of oxygen concentration on the EF-1α/adVHL-GFP interaction. We have incubated stably transfected VHL−/− RCC 786-0 cells
with VHL-GFP in normoxia or hypoxia for 4 hours. Immunoprecipitation analysis revealed that low level of oxygen tends to increase EF-1α binding to VHL (Figure 17B). The amount of EF-1α bound to VHL-GFP in normoxia in the stable cell line is very low compared to the amount bound to adVHL-GFP in normoxia with 786-0 cells infected with the adenovirus. This is the result of the different levels of expression of VHL-GFP that we obtain with the two methods (stably transfected cell lines vs adenoviral infection). Therefore, we conclude that the binding of EF-1α to the VBC/Cul-2 complex seems to be regulated by different factors. EF-1α is the first protein which assembly to VHL is regulated by environmental conditions such as oxygen concentration or forms of energy available. However, more work needs to be done in order to understand the details and the biochemical significance of this regulated interaction.
Figure 16. The binding of EF-1α to VHL is affected by inhibition of transcription with DRB. A) VHL knockout RCC 786-0 cells infected (or not) with adVHL-GFP were treated or not treated with DRB at a final concentration of 25 μM for 2 hours. Cells were lysed and immunoprecipitations were performed with pre-blocked anti-FLAG M2 beads overnight at 4°C. B) VHL knockout RCC 786-0 cells infected (or not) with adVHL-GFP were treated as in A) but were lysed in 4% SDS in PBS. Immunoprecipitates (A) and total cell lysates (150μg) (B) were run on an 8% SDS-PAGE and transferred to PVDF membranes. The membranes were blocked and incubated in presence of a mouse anti-FLAG M2 or a mouse anti-EF-1α antibody. 786-0 lysate correspond to total cell lysate of 786-0 cells that were lysed in 4% SDS in PBS (150 μg).
Figure 17. The binding of EF-1α to VHL is affected by the presence of GMP-PNP (non-hydrolyzable analog of GTP), GDP and the presence of oxygen. A) VHL" RCC 786-0 cells infected (or not) with adVHL-GFP in normoxia were lysed and immunoprecipitations were performed with pre-blocked anti-FLAG M2 beads in the presence of GMP-PNP or GDP (2 mM) overnight at 4°C. Immunoprecipitates were run on an 8% SDS-PAGE and blotted onto PVDF membranes. Membranes were blocked and incubated in the presence of a mouse anti-FLAG M2 (top panel) or a mouse anti-EF-1α (bottom panel) antibody. B) VHL" RCC 786-0 cells stably transfected (or not) with VHL-GFP were incubated in normoxia or in hypoxia for 4 hours. Cells were lysed and immunoprecipitations were performed with pre-blocked anti-FLAG M2 beads overnight at 4°C. Immunoprecipitates were run on an 8% SDS-PAGE and blotted onto PVDF membranes. Membranes were blocked and incubated in the presence of a mouse anti-FLAG M2 (top panel) or a mouse anti-EF-1α (bottom panel) antibody. 786-0 lysate correspond to total cell lysate of 786-0 cells that were lysed in 4% SDS in PBS (150 µg).
CHAPTER 4

Discussion
Inactivating mutations of the VHL tumor suppressor gene are distributed equally between the β- and α-domains suggesting that both domains play a key role in tumor suppression (Stebbins et al., 1999). Yet, the nature and localization of the mutations has a profound effect on the clinical manifestations in inherited VHL syndrome (Chen et al., 1995). Likewise, sporadic RCC tumors are much more likely to harbor mutations in exon 2, which mutations are rarely found in individuals afflicted with inherited VHL syndrome (Gnarra et al., 1994). The discrepancy in the distribution of inactivating mutations between sporadic and inherited RCC implies that exon 2-associated mutations might inactivate VHL function in different ways than exon 3-associated mutations. We show here that loss of exon 2 or exon 3 function essentially gives rise to the same cellular defects in RCC, which includes aberrant nuclear accumulation of HIF-α in normoxia and inability to produce an extracellular fibronectin matrix. However, loss of exon 2 function appears to have a lesser effect on the overall activity of the VHL protein compared to loss of α-domain activity. The major defects of the β-domain mutant that we were able to identify were its inability to bind to HIF-α and fibronectin and to mediate transcription-dependent shuttling of VHL. The binding results are similar to those recently reported by two other groups, which also demonstrated that missense mutations in exon 1-encoded portion of the β-domain also abrogated VHL assembly to HIF-α but not to BC/Cul-2 (Cockman et al., 2000; Ohh et al., 2000). A deletion of the α-domain caused a more complete loss of function since this mutant failed to assemble with BC/Cul-2 as well as with substrate proteins and act as an E3 ubiquitin ligase. This is not the consequence of a truncation of the α-
domain since a missense mutation at residue 162 in the Elongin C-binding box has recently been reported to cause similar defects (Lonergan et al., 1998; Stebbins et al., 1999). There is a discrepancy between data obtained in vitro and in culture inasmuch as truncations of exon 2- and exon 3-encoded sequences of VHL are still able to assemble with HIF-α in vitro (Cockman et al., 2000; Ohh et al., 2000; Tanimoto et al., 2000). Either ΔE2-GFP and ΔE3-GFP fold in a different way in vivo compared to in vitro or these mutants have a yet uncharacterized defect that prevents their assembly with HIF-α in cells. Interestingly, an alternative spliced mRNA of the VHL gene that lacks exon 2 sequences has been reported to be produced in several independent tissues and cell lines (Gnarra et al., 1996a). A VHL protein without exon 2 sequences might change substrate specificity from HIF-α to another unidentified protein, while still acting as an E3 ubiquitin ligase. An endogenous protein product originating from a mRNA lacking exon 2 sequences still remains to be identified. Nevertheless, the data presented in this report are in good agreement with the proposed model predicted by the crystal structure of VHL that the β-domain of VHL is involved in substrate protein, as well as fibronectin, recognition (Stebbins et al., 1999). They also demonstrate that tumor-derived mutations inactivate VHL functions in different ways, which may lead to distinct cellular phenotypes.

The study of adΔE2-GFP has also revealed other interesting biochemical aspects about the function of exon 2-encoded sequences one of which is that it is required for VHL-mediated NEDD8 conjugation on Cullin-2. The functional relevancy of this post-translational modification is still unknown but it has been
suggested that it might play a role in protecting Cullin-2 from self-ubiquitination (Schoenfeld et al., 2000). Data shown here are somewhat in disagreement with this model since equal amounts of Cullin-2 can be found bound to VHL and adΔE2-GFP, regardless of conjugation to NEDD8. NEDD8 conjugation is reported to be a nuclear event (Kamitani et al., 1997). adΔE2-GFP can be detected in the nuclear compartment at steady state and the lack of NEDD8 conjugation activity cannot be simply explained by a defect in nuclear import of the VBC/Cul-2 complex. This argument is supported by a novel assay presented here, which enables the analysis of energy requirement for nuclear import of proteins in living cells. Energy expenditure for nuclear import is a hallmark of signal-mediated and regulated nuclear/cytoplasmic trafficking processes (Moore and Blobel, 1992; Gorlich and Mattaj, 1996; Nigg, 1997). The observation that adΔE2-GFP retains the ability to import in the nucleus in an energy-dependent manner suggest that other protein/protein interactions involved in nuclear import of the VBC/Cul-2 complex are not affected by loss of function of exon 2-encoded sequences. Likewise, we noticed HIF-α signal exclusively in the nucleus of normoxic VHL−/− cells indicating that HIF-α is able to import even in the absence of hypoxic conditions and assembly with VHL. These data are somewhat surprising since it is generally believed that HIF-α contains a nuclear import signal that is activated only in hypoxia (Kallio et al., 1998). One possible interpretation of these data is that the hypoxia-inducible nuclear import of HIF-α is regulated by VHL, which might play a role in retaining HIF-α in the cytoplasm in normoxia.
Results shown here suggest that transcription-dependent nuclear/cytoplasmic shuttling and steady state distribution of VHL are not affected by oxygen tension and does not require assembly with HIF-α. However, we did find that adVHL-GFP accumulated in the nucleus upon incubation with proteasome inhibitors, similarly to the effect obtained with DRB treatment. Drugs that inhibit proteasome-mediated degradation of proteins have been hypothesized to also interfere with general nuclear export processes (Scheffner, 1999; Tomoda et al., 1999). Sensitivity to proteasome inhibitors is mediated by exon 2-encoded β-domain in a manner reminiscent to DRB. We have previously shown that VHL transcription-dependent shuttling domain act dominantly on the VBC/Cul-2 complex and that DRB is a good inhibitor of VHL-mediated VBC/Cul-2 nuclear export in living cells and in vitro (Groulx et al., 2000). It is conceivable that CI also blocks exon 2-mediated nuclear export of VHL leading to nuclear accumulation of VBC/Cul-2. It is unlikely that the observed nuclear accumulation of adVHL-GFP is the consequence of HIF-α-mediated nuclear retention since proteasome inhibitors, and DRB, have similar effects on VHL in HIF-null MEFs. The presence of adΔE2-GFP in the cytoplasm at steady state might be explained by a fraction of VHL that is not importable at a given time. Alternatively, the existence of other, less efficient, nuclear export signals within the complex might gain dominance upon loss of function of exon 2-encoded residues.

As mentioned earlier, VHL does not share sequence homology with other known protein, not even a leucine-rich region for nuclear export (Fornerod et al., 1997; Fukuda et al., 1997). In fact, Groulx et al. (2000) have shown that VHL
shuttling is not affected by a treatment with leptomycin B, a drug that affects CRM1-mediated nuclear export of protein containing a classical, leucine-rich nuclear export signal (NES) (Nishi et al., 1994; Wolff et al., 1997). Results presented in this thesis are in agreement with previous studies suggesting that exon 2-encoded β-domain of VHL is the "transcription-dependent trafficking domain" (Lee et al., 1999). It is possible that new sequences involved in transcription-dependent nuclear/cytoplasmic trafficking will eventually be characterized. However, VHL might also interact (through exon 2-encoded residues) with other proteins that would play a role in VBC/Cul-2 cellular trafficking. Groulx et al. have shown that VHL exports from the nucleus through a Ran-mediated and ATP hydrolysis-dependent manner. Nevertheless, the hypothesis that other factors might be required for VHL nuclear export still remains.

In this perspective, the finding that VHL exon 2-encoded β-domain is required for the interaction with endogenous EF-1α is very interesting. One hypothesis is that EF-1α might regulate the transcription-dependent shuttling activity of VHL through its association with the VBC/Cul-2 complex. The results presented here are in agreement with this hypothesis. We have shown that a decreased amount of EF-1α is bound to the complex upon treatment with DRB. According to this model, inhibition of transcription with DRB would cause a disruption of the interaction between VHL and EF-1α and would result in a defective nuclear export of the complex. This would explain the nuclear accumulation of the VBC/Cul-2 complex that we observe upon DRB treatment. Alternatively, EF-1α, a protein mostly localized in the cytoplasm at steady state,
might play a role of cytoplasmic retention. In this case, a treatment with DRB would also result in nuclear accumulation of the complex due to the lost of cytoplasmic anchory.

Previous studies have suggested that VHL-GFP does not require assembly with Cullin-2 to engage in nuclear export (Groulx et al., 2000). However, its presence is necessary for the E3 ubiquitin ligase activity of the VBC/Cul-2 complex. Similarly to studies on Cullin-2 interaction with VHL, it will be important in the near future to determine how and when EF-1\(\alpha\) binds to VHL. Experiments will be needed to try to find out if EF-1\(\alpha\) can also mediate nuclear export of VHL without its other partners (BC/Cul-2). EF-1\(\alpha\) is a very abundant protein and is essential for cellular survival because of its major role in protein translation. Therefore, new strategies will have to be established in order to study EF-1\(\alpha\) functional role in intact cells, since no EF-1\(\alpha\) knock out cell lines are viable.

Other experiments will be performed in order to:

1- Precise the sequences involved in the interactions VHL/HIF-\(\alpha\) and VHL/EF-1\(\alpha\), respectively. Since the exon 2-encoded \(\beta\)-domain seems to be required for the interaction with both proteins, we can hypothesize that HIF-\(\alpha\) and EF-1\(\alpha\) bind to very close sequences and that binding of one of these proteins prevents VHL interaction with the other. We can hypothesize that EF-1\(\alpha\) would be a "chaperone", and that binding of EF-1\(\alpha\) to VHL would prevent binding of HIF-\(\alpha\).
2- Clarify if EF-1α is involved in the oxygen sensing mechanism related to VHL activity and subsequent degradation of HIF-α. In this work, I have shown that EF-1α binding to VHL can be affected by many conditions, in particular hypoxia. Hypoxia seems to increase the amount of EF-1α bound to VHL. It is generally accepted by scientists working in this field that hypoxia have a direct effect on the E3 ubiquitin ligase activity of the VBC/Cul-2 complex. However, there is not yet clear evidence that it is the case. Some studies have shown that ubiquitination of HIF-α is inhibited by desferroxamine, a compound used to mimic hypoxia (Ohh et al., 2000). Whether hypoxia and desferroxamine stabilize HIF-α through the same molecular mechanism(s) remains to be determined. Does the increased binding of EF-1α to VHL in hypoxia occur to prevent binding to HIF-α? HIF-α ubiquitination? Since the hypoxic condition is highly related to the energy forms available, it will be also important to look at the energy requirement for EF-1α binding to VHL. The results that I have presented here suggest that EF-1α binds more to VHL when put in presence of GDP. Therefore, it will be necessary to determine if the binding of EF-1α to VHL is affected mainly by the oxygen concentration itself or by the forms of energy present under hypoxia. More experiments need to be performed in order to answer all of these questions.
Put together, the results presented in this thesis support the model that exon 2-encoded residues are involved in two independent functions: mediating transcription-dependent nuclear/cytoplasmic trafficking of the VBC/Cul-2 complex and binding to HIF-α substrate. We are still in the process of identifying relevant sequences involved in signal-mediated and Ran-dependent nuclear/cytoplasmic trafficking of VBC/Cul-2 complex. Also, we plan to further examine the role of EF-1α in intact cells. This will surely provide important clues in the elucidation of VHL-mediated tumor suppressor function.
Figure 18. Hypotheses concerning the role of assembly of EF-1α with VHL. EF-1α regulated assembly with VHL suggests that EF-1α might be implicated in the transcription-dependent export of VHL or that EF-1α might act as a chaperone which prevents the interaction between VHL and substrate HIF-α. This diagram is not to scale.
Regulated assembly

-GDP/GTP
-HYPOXIA/NORMOXIA
-DRB
References

Inhibition of transcription elongation by the VHL tumor suppressor protein.
Science 269: 1402-1406

(1998), Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. *Genes Dev.* **12**: 149-162

Kallio, P.J., Pongratz, I., Gradin, K., McGuire, J., and Poellinger, L. (1997), Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and

88

Moore, M.S., and Blobel, G. (1992), The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. *Cell* 69: 939-950

proteincosplexes that regulate cell division and methionine biosynthesis in yeast.
Genes Dev. 12: 692-705

Salceda, S., Beck, I., and Caro, J. (1996), Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. _Arch. Biochem. Biophys._ **334**: 389-394

Salceda, S., and Caro, J. (1997), Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. _J. Biol. Chem._ **272**: 22642-22647

Wu, K., Chen, A., and Pan, Z.Q. (2000), Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. *J. Biol. Chem.* **275**: 32317-32324

