INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
EXPRESSION OF BIOLOGICALLY ACTIVE HUMAN GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR IN THE SEEDS OF TRANSGENIC TOBACCO

Zaman Alli

Thesis submitted to the Department of Biochemistry, Microbiology, and Immunology in partial fulfillment of the requirements for the degree of Masters in Science

University of Ottawa
Ottawa, Ontario, Canada
September, 2000

© Zaman Alli, Ottawa, Canada. 2000
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
ABSTRACT

The feasibility of producing recombinant (rt) and biologically active granulocyte-macrophage colony stimulating factor (GM-CSF) in the seeds of transgenic tobacco plants was investigated. The rice seed-specific glutelin promoter (Gt1) was used to direct the expression of the human (h) GM-CSF coding sequence in tobacco seeds. Transgenic tobacco plants producing rthGM-CSF were compared in biological assays with tobacco plants expressing a glutelin/rthGM-CSF fusion protein, driven by the Gt3 promoter. The glutelin/rthGM-CSF fusion construct encoded the first eight N-terminal amino acids from the rice glutelin-3 protein at the N-terminal of the mature hGM-CSF sequence.

The T7 Sequencing kit from Pharmacia was used to sequence and confirm the authenticity of the Gt1 expression construct. The glutelin-1 signal sequence was fused in the correct orientation to the hGM-CSF cDNA. The rthGM-CSF expression cassette (2.5 kb) was subcloned in a plant binary vector pRD400, which contained a kanamycin resistance gene. The pRD400 vector containing the 2.5 kb construct was used to transform Agrobacterium tumefaciens cells. Tobacco (Nicotiana tabacum cv. Xanthi) leaf sections were transformed by A. tumefaciens carrying the complete 2.5 kb construct. Transformed tobacco cells grew on kanamycin medium. Calli developed from these cells and eventually matured into flowering, fertile plants. Flowers were self-pollinated and seeds collected at different days after pollination.

Enzyme-linked immunosorbent assay (ELISA) data from thirty-two Gt1 tobacco plants were obtained. ELISA did not detect any rthGM-CSF in transgenic tobacco leaf extracts or non-transformed seed extracts. Transgenic tobacco seed extracts contained
rthGM-CSF up to a level of 0.03% of total extracted protein. The highest producing rthGM-CSF plants were used for further studies. The monocot glutelin-1 promoter was confirmed as being seed specific in tobacco plants.

Southern analysis of transgenic plants detected a 2.5 kb band corresponding to the original expression construct. A copy reconstruction experiment on two of these plants detected at least three copies of the gene in the highest expressers of rthGM-CSF protein while only one copy was present in a low expresser transgenic tobacco plant. RT-PCR data indicated rthGM-CSF transcripts were present in transgenic plants but absent in non-transgenic plants. Western blots conducted on protein extracts from seeds of transgenic plants showed bands of 19, 21 and 50 kDa.

Biological assays compared the in vitro activities of the two tobacco-produced rthGM-CSFs with that of the Escherichia coli produced rthGM-CSF protein. Seed extracts containing the rthGM-CSF and the fusion glutelin/rthGM-CSF proteins, as well as the E. coli derived rthGM-CSF showed an approximately equal in vitro proliferative effect on a TF-1 human GM-CSF dependent cell line. However, addition of non-transformed plant extracts to the assay containing the E. coli rthGM-CSF resulted in a five-fold decrease in the proliferation of TF-1 cells. It appeared that the rthGM-CSF produced in the seeds of tobacco plants was glycosylated and this may have stabilized its activity in the in vitro biological assay. These findings, which suggest that seed-produced rthGM-CSF is stable and biologically active, are discussed in relation to the global need for low-cost recombinant cytokines.
TABLE OF CONTENTS

Abstract .. ii
Table of Contents ... iv
List of Figures .. viii
List of Tables ... ix
Acknowledgments .. x
Abbreviations ... xi

Introduction .. 1

Overview .. 1

Classical expression hosts: microbial and mammalian transgenic expression systems ... 3

Recombinant DNA transfer technology: *Agrobacterium tumefaciens* transformation ... 5

Plants as bioreactors .. 6

Advantages of using plant systems as “pharming platforms” 7

Seed storage proteins: glutelin gene regulation and secretion of proteins 9

Seed protein homologies .. 9
Glutelin gene regulation .. 9
Glutelin processing and deposition .. 11

Advantages of using rice glutelin promoters for recombinant protein production .. 11

Some major groups of proteins successfully produced in plant systems 12

Plant derived antigens ... 12
Production of recombinant antibodies in plants .. 13

Granulocyte macrophage colony stimulating factor .. 13

Human GM-CSF receptors ... 15
Transduction of GM-CSF signal into the nucleus ... 16
Clinical applications of rthGM-CSF .. 16
Recombinant hGM-CSF from different expression systems 17
 Recombinant hGM-CSF from yeast systems ... 17
 Recombinant hGM-CSF from baculoviral systems 18
 Recombinant hGM-CSF from mammalian cell cultures 18
Effects of glycosylation on recombinant proteins: GM-CSF 19
Application of glutelin promoters in prior seed specific expressions 20
 Glycoprotein B complex in transgenic tobacco seeds 20
 Antecedent glutelin/hGM-CSF fusion peptide in tobacco seeds 21
Rationale and objectives .. 23
Materials and Methods .. 24
Materials .. 24
 Glutelin-1 promoter ... 24
 Glutelin-1 signal sequence ... 24
 Mature hGM-CSF coding sequence ... 24
Nopaline synthase sequence for polyadenylation .. 25
Tobacco leaves ... 25
Tobacco transformation vector ... 25
Chemicals and enzymes .. 25
Methods .. 26
 Sequencing of the Gt1 construct ... 26
Preparation and electrophoretic conditions for sequence analysis
 on polyacrylamide gels .. 27
Transformation, selection and growth of E. coli 28
LIST OF FIGURES

Figure 1. Recombinant hGM-CSF expression constructs ...49

Figure 2. Sequencing confirmation of construct integrity. ...50

Figure 3. The coding sequences of the Gt1 expression construct.51

Figure 4. Continuous selection for transformed tobacco leaf tissues.54

Figure 5. Genomic organization of three independent transgenic events.55

Figure 6. RT-PCR detection of the rthGM-CSF mRNA transcripts in seeds of transgenic tobacco plants...58

Figure 7. A standard curve for the estimation of rthGM-CSF in the seed extracts of transgenic tobacco plants...60

Figure 8. Immunoblot detection of the partially purified, ammonium sulphate precipitated, rthGM-CSF from tobacco seeds.................................63

Figure 9. Loading of protein samples on SDS gel. ..64

Figure 10. Biological activity of seed derived rthGM-CSF from Gt1 and Gt3 plants after 48 hours...66

Figure 11. The rthGM-CSF expression construct is stably inherited in the second generation...67
LIST OF TABLES

Table 1. Human GM-CSF immunoassay on rthGM-CSF extracted from tobacco seeds...61
ACKNOWLEDGMENTS

I thank all those involved in my academic career for their patience, understanding and support. I wish to gratefully acknowledge my supervisors' expert guidance and assistance throughout my research years, in particular, Dr. Illimar Altosaar and Dr. Peter R. Ganz. Dr. Ravinder Sardana was always willing to give technical advice and directions. Further gratitude is extended to my former and current thesis advisory committee members Dr. Denis G. Williamson, Dr. Anil Dudani and Dr. Eileen Tackaberry. My appreciation extends to the technical staff that assisted with the experiments, Connie Sauder, Gary Razon, Sue Porter and Danielle Bowness. This work was supported by the Canadian Red Cross (now Canadian Blood Services), the Natural Sciences and Engineering Research Council of Canada and Monsanto Canada.
ABBREVIATIONS

AP Alkaline phosphatase
BA 6-benzyladenine
BCIP 5-bromo-4-chloro-3-indolylphosphate p-toluidine salt
Bis-Acrylamide N,N'-methylene bisacrylamide
bp Base pair
CaMV Cauliflower mosaic virus
cDNA Complementary DNA
DAP Days after pollination
DEPC Diethylpyrocarbonate
DTT Dithiothreitol
EDTA Ethylene diamine tetraacetic acid
ER Endoplasmic reticulum
GUS β-glucuronidase
kDa Kilo Dalton
LB Luria Bertani medium
MW Molecular weight
mRNA Messenger RNA
MS Murashige and Skoog medium
NAA α-naphthalene acetic acid
NBT Nitroblue tetrazolium chloride
ng Nanogram
NOS-TER Nopaline synthase terminator
nt Nucleotide
PCR Polymerase chain reaction
PVPP Polyvinyl-polypyrrolidone
rpm Revolutions per minute
RT-PCR Reverse transcriptase-polymerase chain reaction
SDS Sodium dodecyl sulfate
SSC Sodium chloride and sodium citrate solution
TAE Tris-acetic acid-EDTA buffer
TBS Tris-buffered saline
T-DNA Transfer DNA
TEMED N,N,N',N'-tetramethylethylenediamine
TRIS Tris (hydroxymethyl)aminomethane
YEP Yeast extract, peptone and NaCl medium
Chapter 1

INTRODUCTION

Overview

Historically, when one needed a protein drug of animal origin, like insulin or interferon, the only choice was to extract it from the original same tissue like dog pancreas or human blood. With the advent of recombinant DNA technology, it is possible to produce the therapeutic protein in several expression systems including bacteria, yeast, animals, insect cells and plants (Ganz et al., 1996 and references therein). For recombinant protein production, promoters usually drive transgene-coding sequences from the new host organisms. For instance, if a human coding sequence is to be expressed in a plant system, a promoter from plants (or plant virus) may be used in the recombinant expression construct. Stable expression is possible if an organism incorporates the recombinant DNA into its genome. An expression plasmid, for example in bacteria, may need an antibiotic resistant gene for maintaining selection for expression. Once a protein of interest is produced, it can be purified from the recombinant source or production organism and administered during therapy. Insulin was the first recombinant therapeutic protein that was produced in bacteria (Bourgaize et al., 2000).

Bacteria belong to the prokaryotic kingdom, implying that they are mainly simple, single celled organisms. Eukaryotic organisms are extremely more complex than bacteria. For example, heteronuclear messenger RNA requires a series of modifications before it could leave the nucleus of a eukaryotic cell, for subsequent translation into a protein. When structural and functional relations are compared, bacteria do not need the complex mRNA and peptide processing enzymes as eukaryotes do. Therefore, if a therapeutic
protein, such as human erythropoietin, requires glycosylation for its in vivo activities. Bacteria will not serve as a suitable recombinant production system (Tsuda et al., 1990).

Recombinant proteins were first produced in bacteria and later, eukaryotic systems were investigated. Yeast and mammalian cells allowed for glycosylation of recombinant proteins that is not possible with bacterial systems, however, the yields were low. Further, like bacterial systems, mammalian cell culture systems required constant temperature, pH, and oxygen levels. This meant that scale-up of bioreactors was difficult. Plant systems were investigated in an attempt to eliminate some of the disadvantages associated with the earliest recombinant systems (Ganz et al., 1996).

The first attempt to produce a recombinant antibody in a plant system was conducted in 1989 (Hiatt et al., 1989). Transformation of tobacco leaf tissues leads to stable expression that resulted in a 1.3% yield of antibodies in the total soluble leaf proteins. Since then, plant systems have been continuously investigated in feasibility studies to produce a wide range of medical and industrial proteins. Some medically important proteins that were synthesized in plants include human insulin (Arakawa et al., 1998b) and erythropoietin (Matsumoto et al., 1995). Upon testing, these plant-produced proteins were found to have biological activities equivalent to the native proteins. This is why many life science companies (e.g. Monsanto, Pharmacia, Mogen) have commercial interests in transgenic research.

Various cDNAs for human cytokines have been harvested from the natural source or cloned and expressed in several recombinant expression systems. The purified cytokines were tested to better understand the molecular basis of diseases and this led to the use of cytokines for therapeutic applications. However, the costs associated with obtaining
cytokines have significantly impaired discoveries of additional potential applications of these cytokines. Therefore, the supply of recombinant cytokines is considered insufficient and limiting requiring considerable and immediate efforts to innovate new production strategies (Ganz et al., 1996).

The production of human granulocyte macrophage colony-stimulating factor (GM-CSF) in plants was postulated as a prospective abundant source. Prior work by this laboratory used the glutelin-3 promoter to drive the synthesis of a syllogistic peptide in tobacco plants. This new word was coined to reflect the N-terminal fusion peptide that allowed for mimicking of a plant-seed storage protein thereby conferring preferential processing and stability of the fusion peptide in the plant environment. This syllogistic strategy may also be referred to as an antecedent strategy since the mature protein consists of an N-terminal syllogen. The resulting protein synthesized in plant seeds was a truncated glutelin protein fused to the human (h) GM-CSF mature protein. The fusion peptide was found to be biologically active (Ganz et al., 1996). This is where my project started and it involved the production and assessment of the stability of the mature hGM-CSF in tobacco seeds without the syllogistic peptide. For this purpose, a new recombinant expression construct for hGM-CSF was initiated.

Classical expression hosts: microbial and mammalian transgenic expression systems

Protein supplement therapy requires production and purification of proteins from heterologous recombinant systems. be they bacterial, viral, yeast, animal or plant systems. One must consider the system carefully, however, to deliver cheap, safe, biologically active therapeutic agents. Many eukaryotic proteins produced in *E. coli* were found to mimic the effects of the native proteins both in vitro and in vivo. However, several reports have also
described the aggregation of recombinant proteins in bacteria as inclusion bodies, and this required additional costs in refolding (Burgess et al., 1987). In addition, bacteria cannot glycosylate proteins. Both bacterial systems and animal cell culture systems share disadvantages in the requirement for growth media and controlled environments. Human systems, for example, blood fractionation systems, have fluctuations in supplies as well as the possibility of contaminations by human specific pathogens (Ganz et al., 1996). Yeast systems may have additional glycosylation recognition sites leading to incorrectly glycosylated proteins (Ernst et al., 1987).

Mammalian expression systems can accomplish complex post-translational steps including glycosylation and correct folding of proteins to produce biologically active peptides. This is a major advantage over bacterial systems. Mammalian expression systems however have several inherent disadvantages at the core of the system. Slow cell multiplication results in low yield while maintenance costs are high; human pathogenic organisms could thrive in the cell culture medium and product contaminants albeit trace may infect patients; lack of cell walls make mammalian cells more susceptible to stirring damage (shear forces) resulting in cell death; additional inputs including fetal bovine serum and the need for purification of recombinant products result in higher prices. Complications arise during scale-up of bioreactors because it is difficult to maintain constant pH, temperature, the level of metabolic wastes and oxygen levels (Ganz et al., 1995, 1996). Therefore, these classical expression systems may not be competitive in terms of costs and yields for bioactive peptides if a suitable plant host is found.

The complete human genomic sequence will help to rapidly identify diseases with correlation of the defective genes. Hence, an upsurge in demand for more human therapeutic proteins is impending. Recombinant systems capable of rapid scale-up, high
yields of safe biologically active human proteins will be best suited for this task. To date, there exists no transgenic expression system that results in inexpensive, safe and biologically active human therapeutics. Plant-based genetic expression systems may serve as a vehicle for the biological assembly and production of human therapeutic proteins for global humanitarian purposes.

Recombinant DNA transfer technology: *Agrobacterium tumefaciens* transformation

A recombinant expression vector usually consists of several regulatory sequences: promoter, translational enhancer, targeting signals, coding region, terminator and polyadenylation signal. Once assembled, and the DNA sequence of the construct verified by sequencing, it may be introduced into a host organism via several available transformation techniques such as microinjection, electroporation, viral delivery, particle gun bombardment or via *Agrobacterium tumefaciens*. Gene transfer methods in plants were reviewed by Walden et al., 1995.

Improvements in transformation vectors lead to the likelihood of transforming both monocots and dicots (Walden et al., 1995; reviewed by Lindsey, 1996). While other transformation methodologies are possible, the use of *A. tumefaciens* is now routine for the invention of transgenic crops. In this system, the bacterial tumour-inducing (ti) plasmid contains a segment of DNA (transfer DNA or T-DNA) that normally integrates randomly into the genomes of host-specific plants. The gene products encoded by the regions outside the T-DNA borders of ti-plasmid allow for the genomic integration in plants. Wild-type *A. tumefaciens* infection of roots of plants leads to tumours. The host plant then synthesizes opines (nopaline and octopine). Modification of the T-DNA plasmid of *A. tumefaciens* allowed for the insertion of recombinant expression constructs between the T-DNA borders of binary vectors (Datla et al., 1992). Additional antibiotic resistant gene
insertions allow for the selection of cells that have integrated the genes of interest into their genomes.

The initial transformation step involves transforming *A. tumefaciens* with a binary vector containing the gene of interest that is then co-cultivated with damaged plant tissues. Injured leaves seem to attract the bacterium to the wound site. The region contained between the T-DNA gets randomly integrated into the host genome (Horsch *et al.*, 1985). Selection for transformed cells is possible when an antibiotic resistance gene such as kanamycin is included between the T-DNA regions. Transformed cells grow into a clump of undifferentiated cells known as a callus. Callus tissues may eventually differentiate and grow into shoots. From these shoots, transgenic plants will later develop. Unfortunately, successive regeneration of plantlets via tissue culture has not been predictable in all species. and slow progress has been accomplished on a gene-by-gene, plant-by-plant basis.

Plants as bioreactors

Plants are the main source of the world’s staple diet. Fruits, leaves, roots and seeds are the storage sites for the deposition of a variety of nutrients like carbohydrates, proteins, and vitamins. Food crops such as maize, rice and wheat are easy to propagate and the biomass obtained from these fields is low-cost (Cramer *et al.*, 1996). If a recombinant protein is expressed in the leaves of grain crops, it is possible to enhance the returns to the farmer if both the leaves and grains are utilized. Applied biotechnology has been used to produce many plant-based proteins: viral antigens, entomocidal proteins, human and industrial enzymes and cytokines (Herbers *et al.*, 1995; Cramer *et al.*, 1996; Ganz *et al.*, 1995, 1996). Specifically, some examples of human blood proteins that have been successfully expressed in plants are albumin, erythropoietin (Epo), granulocyte macrophage colony stimulating factor (GM-CSF), growth hormone, human protein C.
insulin, interferon, somatostatin, and tissue plasminogen activator (Cramer et al., 1996; Ganz et al., 1996). It was shown that these proteins could perform the same functions as their native proteins.

As many plant tissues are generally recognized as safe, the probability of health risks due to contamination with potential human pathogens and toxins is greatly reduced. These considerations have led to an increased interest in expressing important gene sequences from diverse origins (e.g. human, bacteria, virus) in plants (Tacket et al., 2000: www.prodigene.com). Since the seeds of many plant species are edible, therapeutic proteins produced in seeds, in some instances, may not require further processing and purification, offering the option of oral delivery. In fact, tubers from transgenic potato that produced 38-nm Norwalk virus-like particles were implicated in acquired oral immunity in humans (Tacket et al., 2000). Although seeds can remain dormant for years, it was only recently shown that recombinant seed proteins were easily stored at room temperature without degradation (Fiedler and Conrad, 1995; Stoger et al., 2000). Therefore, plants may be effective systems for the production of valuable proteins (Sijmons et al., 1990; Ganz et al., 1996).

Advantages of using plant systems as "pharming platforms"

Traditionally, transformation by Agrobacterium tumefaciens and the biolistic particle gun were used to generate transient or stable expression in both monocots and dicots. However, it is simple to introduce recombinant expression constructs into the genomes of plant systems using A. tumefaciens. Gene inserts into host plant genomes result in stable transgenic tissues. The short regeneration time for harvesting therapeutic proteins makes plants more attractive, contrasted with a transgenic cow for example, that takes at least one year to produce transgenic milk.
Plants, unlike bacteria, have the ability to process recombinant proteins in a similar manner as is observed in humans. For a review of protein processing in plants, (e.g. pre and pro peptide cleavages, N-linked glycosylations, disulphide bond formations, beta-hydroxylations, gamma-carboxylations) please see Cramer et al., 1996.

The high yielding biomass of plants offers an additional incentive to investigate plants as potential protein production factories. Increased recombinant protein production in plants may be possible by using plant signal sequences, increased pyrimidine (G + C) content of the gene/cDNA (Horvath et al., 2000) and endoplasmic reticulum retention sequences (Schouten et al., 1996).

Transgenic plant start-up costs are relatively low compared to industrial fermentation, cell culture, or blood fractionation facilities. Rapid scale-up is possible with plant systems, but it takes time to buy industrial space and equipment for cell culture systems. Additional costs are incurred by mammalian and bacterial systems for inputs such as cell culture media and bioreactors. Plant systems’ inputs such as sunlight, carbon dioxide, oxygen, water and soil are mostly free or obtained at minimal costs. Storage of recombinant proteins after industrial production is required in many expression systems, while recombinant proteins in leaves and seeds of plants were shown to be stable for long periods (Fiedler and Conrad, 1995; Fiedler et al., 1997; Stoger et al., 2000). Targeting of recombinant protein to edible plant seeds, roots and leaves may result in reduced purification costs. There is minimal risk associated with plant systems acting as vectors for delivery of infective human pathogens during therapeutic administration. After considering these advantages of plant systems for recombinant protein expression, the choice was made to assess tobacco seed capacity for rthGM-CSF accumulation.
Seed storage proteins: glutelin gene regulation and secretion of proteins

Seed protein homologies

Homologies between seed storage proteins may help elucidate shared regulatory and processing pathways. To determine the degree of homology between seed storage proteins from various plant species, legume-like polypeptide homologies were found between pea (dicot) and oat 12S globulin (monocot); among wheat, rye, and corn (Robert et al., 1985a); between rice glutelin (monocot) and soybean glycinin (dicot) (Robert et al., 1985b; Higuchi and Fukazawa et al., 1987) and between glutelin subfamilies (Gt1, Gt2, and Gt3) and the 11S legume storage protein (Okita et al., 1989).

Glutelins comprise the major portion of rice reserve proteins and are encoded by three subfamilies of genes: Gt1, Gt2 and Gt3. There are approximately five to eight gene copies within each subfamily. The degree of homology varies in each subfamily: Gt1 and Gt2 proteins are 87% homologous but both showed significant divergence when compared with the Gt3 protein sequence (Okita et al., 1989). Glutelin genes appear to share a common regulatory pathway. Hence, use of the Gt1 or Gt3 promoter along with a glutelin signal sequence in recombinant constructs may result in identical seed regulation.

Glutelin gene regulation

Glutelin genes are subjected to transcriptional regulation as other genes are in living organisms. The location of cis-acting sequences responsible for spatial and temporal endosperm expression of glutelin was investigated in transformed tobacco endosperm cells (Leisy et al., 1990; Zhao et al., 1994; Takaiwa et al., 1996). The beta-glucuronidase (GUS) and chloramphenicol acetyl transferase (CAT) fusion-gene activities allowed determination of the location and strength of endosperm expressions reported for the glutelin promoters. Glutelin promoters fused to these reporter genes directed the synthesis
of proteins only in tobacco seed endosperm cells, further confirming the specificity of the glutelin promoters in both monocots and dicots (Leisy et al., 1990; Zhao et al., 1994; Takaiwa et al., 1996). The promoter region contained between -441 and -237 bp conferred endosperm specific expression (Takaiwa et al., 1991). Transgenic tobacco plants expressing a rice Gt3 promoter fused to a CAT reporter coding sequence showed that glutelin accumulation begins at eight days after flowering (DAF) and peaks at sixteen DAF (Leisy et al., 1990). The rice seed storage prolamins, also follow a similar spatial and temporal expression pattern as rice glutelins (Shyr et al., 1992).

In another experiment, different mutated regions of the Gt3 promoter fused to reporter genes were analysed in tobacco (Zhao et al., 1994). Two glutelin promoter domains were needed for optimized endosperm expression: domain I (-346 to -263 bp) and domain II (-945 to -726 bp). Deletion of domain II led to a delay of approximately eight days when compared to the peak at which glutelin accumulates. Recently, additional data were reported of the existence of duplicate conserved AACA (from -73 to -61 bp and -212 to -200) and GCN4 (-165 to -158 bp and -96 to -92 bp) motifs responsible for seed-specific endosperm expressions (Takaiwa et al., 1996). Plants have similar gene regulatory mechanisms as animals (reviewed by Kuhlemeier, 1992) and thus recombinant constructs utilizing glutelin promoters may be recognized and processed correctly in plants. Therefore, expression constructs utilizing wildtype glutelin promoters are expected to maintain the same glutelin spatial and temporal expression in tobacco seeds. Since the glutelin promoter and signal sequences were used in the recombinant expression construct, its gene product processing will next be detailed as a possible pathway of secretion.
Glutelin processing and deposition

Glutelins are initially synthesised as large preproteins at the rough endoplasmic reticulum (Yamagata and Tanaka et al., 1986). Co-translational-dependent transport into the ER results in cleavage of the N-terminal 24 amino acid residue signal peptide. Additional processing in the Golgi apparatus results in matured glutelins being deposited into type-II protein bodies (PB-II). Type-I protein bodies were found to contain the next major rice storage proteins - prolamines. It is expected that the rthGM-CSF produced in transgenic tobacco plants will undergo similar processing as the glutelins. For a complete review on compartmentalization of proteins in rice and wheat, please see Okita, 1996.

Advantages of using rice glutelin promoters for recombinant protein production

Protein bodies provide a low-hydration environment necessary for the long-term stability of these proteins that are synthesized during embryogenesis. Only at specific times during the development of seeds are the seed storage promoters active and this ensures a smooth and orderly series of events to proceed (Leisy et al., 1990; Shyur et al., 1992; Zhao et al., 1994). A developmental time frame of 40-60 days results in a final protein content in mature rice grain of 6% (Ganz et al., 1996). In rice endosperm cells, glutelins comprise 80% of the seed reserve proteins (Okita et al., 1989). During storage of seeds, enzymatic activity in the dormant embryo is minimal, but upon germination, seed storage proteins are hydrolysed to supply amino acids for the growing plant. If mature grain is stored in a dry cool place, years may elapse between the time of seed maturation and germination. The same seed protein stability may be afforded to recombinant proteins of pharmaceutical interest.

It may be possible to express recombinant human proteins in seeds and study their expressions. The protein reserves remain stable as was recently shown for antibody
production in transgenic tobacco leaves and seeds (Fiedler and Conrad, 1995; Fiedler et al., 1997). Long-term stability of recombinant protein was also demonstrated in rice and wheat (Stoger et al., 2000). Production of therapeutic peptides in the “dry” seed environment is expected to reduce refrigeration costs and increase the possibility of edible forms of therapy. Therefore, seeds may be effective systems for the production of high-value pharmaceutical proteins (Tackaberry et al., 1999). Several experiments to produce recombinant peptides in tobacco seeds were conducted using glutelin promoters and these will be discussed below.

Some major groups of proteins successfully produced in plant systems

Plant derived antigens

Several reports have detailed antigen production in plants and these include: E. coli heat-labile enterotoxin β-subunit (Haq et al., 1995), hepatitis B surface antigen (Thanavala et al., 1995), rabies glycoprotein (McGarvey et al., 1995), insulin fused to the cholera toxin β-subunit (Arakawa et al., 1997, 1998a, b), Norwalk virus capsid protein (Mason et al., 1998) and human cytomegalovirus immunodominant glycoprotein B complex (Tackaberry et al., 1999). In several of these reports, the plant produced viral antigens were implicated in the development of oral immunity (Arakana et al., 1998a). The vaccines that were extracted from various plant tissues showed approximate equivalent ability to stimulate the immune system as the commercially available vaccines (Thanavala et al., 1995). For example, oral immunity resulted in production of IgA antibodies against the rabies virus in mice (Modelska et al., 1998). These studies demonstrated the feasibility of oral immunity using viral and bacterial antigens (Modelska et al., 1998). This technology may result in
future development of low-cost edible vaccines in plant systems (Mason et al., 1992, 1996, 1998; Arakana et al., 1998a, b).

Production of recombinant antibodies in plants

In addition to antigens, antibodies have been produced in many different cellular compartments of plants and animals. In 1989, Hiatt et al., became the first group to produce antibodies in plants. Since then, other recombinant antibodies have been produced. Mucosal antibody against genital herpes was produced in soybean and mammalian cell cultures (Zeitlin et al., 1998) and anti-tumour specific antibodies were recently produced in rice cell cultures (Torres et al., 1999). Rice cell cultures produced therapeutic antibodies against tumours, resulting in a maximum yield of 3.8 μg/g of callus tissue. Glycosylated antibodies from plant source were reported to confer high specificity for their native antigens and hence plant glycosylation patterns did not affect the antibody functions (Tavladoraki et al., 1993; Zeitlin et al., 1998). Further information on antibody production in plants may be obtained from the recent review of Conrad and Fiedler. 1998.

Granulocyte macrophage colony stimulating factor

Growth factors were originally identified by in vitro assays and each growth factor was named due to its effects on different cell types. The growth factor that stimulated the growth of certain types of white blood cells (eosinophils, neutrophils and monocytes) was designated Granulocyte Macrophage Colony Stimulating Factor (GM-CSF). In 1977, GM-CSF was discovered, but it was not until eight years later that the cDNA of human (h) GM-CSF was cloned (Wong et al., 1985a, b). The murine cDNA was isolated one year earlier (Gough et al., 1984). The mature secreted hGM-CSF is a single-chain polypeptide of 127 amino acid residues (Wong et al., 1985a, b; Cantrell et al., 1985; Lee et al., 1985).
Even though hGM-CSF showed approximately 70% amino acid sequence identity with the murine GM-CSF, they can only bind and activate their own receptors (Maliszewski et al., 1988; Leong et al., 1989).

Since the pleiotropic cytokine GM-CSF was discovery, it was found to stimulate the proliferation, maturation and function of a variety of hematopoietic cells (Sieff, 1987; Gasson, 1991; Klingemann et al., 1991). Additionally, GM-CSF has proliferative effect on non-hematopoietic cell lineages (Gasson, 1991; Nicola, 1989). However, more insights into its actions have accumulated over the years to include the modification of functional activity of eosinophils, neutrophils, monocytes and macrophages (Kleinermann et al., 1988; Sullivan et al., 1989) stimulation of T cell proliferation (Santoli et al., 1988) and induction of expression of interleukin-1 in neutrophils (Lindermann et al., 1988).

When hGM-CSF was extracted from different human tissues, it was found to be glycosylated resulting in an apparent MW of 23 kDa (reviewed by Quesniaux and Jones, 1998). The mature unglycosylated hGM-CSF has a MW of approximately 14 kDa as reported by: Wong et al., 1985a, b; Cantrell et al., 1985; Lee et al., 1985 and reviewed by Quesniaux and Jones, 1998. The bovine GM-CSF gene from a BT2 T-cell line was isolated and found to code for a 143 amino acid polypeptide. The mature protein results from cleavage of a 17 amino acid signal peptide leaving 126 amino acids (Maliszewski et al., 1988). The MW of mature unglycosylated bovine GM-CSF was predicted to be 14.3 kDa while expression of the bovine GM-CSF cDNA in the periplasm of E. coli resulted in a protein of 14.5 kDa on SDS-PAGE (Leong et al., 1989). The bovine GM-CSF protein alignment predicted greater than 50% homology with human and murine GM-CSF. Conservation of both the “location of cysteine residues and glycosylation sites.” was reported (Leong et al., 1989).
In humans, GM-CSF production is tightly regulated. It is produced in extremely low concentrations by many cells including T cells, B cells, macrophages, endothelial cells and fibroblast cells (Gasson, 1991; Metcalf, 1991a). Although, these cells can produce GM-CSF, increased GM-CSF production in both T and B lymphocytes may result from antigens or interleukin stimuli (Brizzi et al., 1995 and reviewed by Quesniaux and Jones, 1998). For example, increased transcription of hGM-CSF mRNA was found in a human myeloid leukemic cell line (M-07e) when it was stimulated with interleukin-3 or mast cell growth factor (Brizzi et al., 1995). Thus GM-CSF’s production is necessary for the proper functioning of the immune system.

Human GM-CSF receptors

The receptors for hGM-CSF are composed of a ligand specific 80 kDa α-subunit and a 120 kDa β-subunit (Gearing et al., 1989; Hayashida et al., 1990; Kitamura et al., 1991). The receptor’s β-subunit can also bind IL-3 and IL-5. Both hematopoietic cells and non-hematopoietic cells express receptors for GM-CSF. These three cytokines (GM-CSF, IL-3 and IL-5) have similarities in their structures and have been classified as belonging to the type I cytokine receptor superfamily. The α-subunit binds GM-CSF with low affinity ($K_d \sim 10$ nM) while the β-subunit requires the assistance of the α-subunit to bind GM-CSF (Rajotte et al., 1997). Aspartate 112 of hGM-CSF was identified as a possible amino acid responsible for interacting with arginine 280 of the α-subunit of the receptor (Hercus et al., 1994). Mutant mice lacking the receptor’s β-subunit showed no GM-CSF receptor binding (Robb et al., 1995). In the absence of α-subunit, GM-CSF cannot bind and activate the β-subunit. As a result, it was suggested that the α-subunit must recruit the β-subunit and convert the complex into a high affinity one ($K_d \sim 50$ pM) (Hayashida et al., 1990). Once receptors are activated, the signals must be transmitted to the nucleus.
Transduction of GM-CSF signal into the nucleus

The α and β-subunits of the GM-CSF receptor require signal transduction proteins to regulate the cell cycle (Polotskaya et al., 1993; Ronco et al., 1995). Mutational analyses showed that the GM-CSF α-subunit receptor is responsible for cell growth (Polotskaya et al., 1993, 1994) while the intracellular β-subunit activates the Janus kinase-2 signalling pathway (Brizzi et al., 1996; reviewed by D'Andrea and Gonda, 2000). Janus kinase-2 activation during GM-CSF stimulation resulted in transcription of the cell cycle genes c-fos and c-myc (Watanabe et al., 1996). The β-subunit was reported to activate the mitogen-activated protein (MAP) kinase pathway (reviewed by Quesniaux and Jones, 1998).

Clinical applications of rthGM-CSF

A significant amount of data on GM-CSF has accumulated on its molecular mechanisms leading to the observed effects on multiple cells. This growth factor plays a vital role in regulating the production and function of white blood cells (granulocytes and monocytes) and thus is of great importance in fighting infections (Metcalf 1991a, b). A very low count of granulocytes is associated with susceptibility to serious infections. In recent years, it has been found that GM-CSF has many beneficial clinical uses in the areas of chemotherapy, bone marrow transplantation, cancer and AIDS (Metcalf 1991a, b). Thus, it offers potential opportunities for the treatment of certain medical conditions (e.g. congenital neutropenia, infections in individuals diagnosed with low numbers of granulocytes and defects in blood cell formations). As a result of successful clinical trials, GM-CSF has been approved in different countries for clinical use (reviewed by Quesniaux and Jones, 1998).
Recombinant hGM-CSF from different expression systems

Practical methods to produce hGM-CSF in sufficient quantities for clinical use have relied on recombinant DNA methods. For example, rthGM-CSF was produced in COS-1 (Wong et al., 1985b), yeast (Ernst et al., 1987) and Namalwa cells (Okamoto et al., 1990). Transfection of hGM-CSF cDNA into COS-1 monkey kidney cells resulted in production of rthGM-CSF with identical properties as the rthGM-CSF derived from a human T cell line (Wong et al., 1985b). When E. coli was used to produce hGM-CSF, only one band of approximately 15 kDa was seen on a Western blot (Burgess et al., 1987). Production of rthGM-CSF in yeast resulted in both O-linked and N-linked glycosylations (Ernst et al., 1992).

Recombinant hGM-CSF from yeast systems

To secrete rthGM-CSF in yeast, a fusion construct was made with the yeast α-mating factor secretion peptide and the mature hGM-CSF cDNA (Ernst et al., 1987). Both O-linked and N-linked glycosylations were reported for the secreted rthGM-CSF. Westerns blots showed 14.5 kDa, 15.5 kDa, and 18 kDa bands. A smear was observed between 30-100 kDa. Endoglycosidase H treatment (cleaves core N-linked mannose chains) or site directed mutagenesis of both N-linked glycosylation sites resulted in only two observable bands at 14.5 and 15.5 kDa. From these experiments, the 15.5 kDa band was identified as an O-linked glycosylated species. It was concluded that some form of O-linked and N-linked glycosylations were present in the higher MW species. Higher secretion rates (90%) were observed for the glycosylated 50 kDa protein when compared to the unglycosylated 14.5 kDa protein (20%).
Recombinant hGM-CSF from baculoviral systems

Several biologically active proteins were produced in baculoviral-infected cells including hGM-CSF (Schuh and Morrissey, 1999), porcine GM-CSF (Inumaru et al., 1998) and porcine IL-18 (Muneta et al., 2000). Expression of the hGM-CSF gene in *Spodoptera frugiperda* {Sf9}, common name: Fall Armyworm} cell culture using viral infection resulted in secretion of biologically active hGM-CSF. Bands of apparently 14.5 kDa, 15.5 kDa and 16.5 kDa were detected on western blots (Chiou and Wu, 1990). The observation of a single band when cells were treated with tunicamycin, or when rthGM-CSF from Sf9 cell culture was N-link deglycosylated led the authors to conclude that the two higher MW species were N-linked glycosylated proteins. Baculoviral infection of *Bombyx mori* (silkworm) nuclear cells with the hGM-CSF gene also yielded three different molecular masses of rthGM-CSF {15 kDa, 18 kDa and 20 kDa} (Shi et al., 1996). Other reports showed Sf9 cell culture secreted functional rthGM-CSF (Au et al., 1996).

Recombinant hGM-CSF from mammalian cell cultures

COS-1 cells from monkey kidney or Chinese hamster ovary (CHO) cells have been used to produce recombinant bovine (Maliszewski et al., 1988) and human (Luo et al., 1995) GM-CSF polypeptides as well as hGM-CSF-EPO fusion proteins (Coscarella et al., 1997). Transfection of hGM-CSF cDNA into COS-1 monkey kidney cells resulted in production of rthGM-CSF with identical properties as the rthGM-CSF derived from a human T cell line (Wong et al., 1985b). Further, the rthGM-CSF protein produced by monkey kidney COS-1 cells was reported to be biologically active, as assessed by proliferation studies on a hGM-CSF dependent leukemic cell line (Luo et al., 1995). It was suggested that the adeno-associated virus 2 used by this group of researchers to transflect COS-1 cells might prove valuable in therapeutic conditions requiring administration of GM-CSF. In fact, several adenoviral vectors for expression of Lac Z, interleukin 6, or
canine GM-CSF were injected into the bone marrow of dogs to assess the therapeutic effectiveness for administration via viral infection (Foley et al., 1997). Analysis of infected bone marrow cell supernatants revealed that the canine GM-CSF gene was actively transcribed and biologically active resulting in a "localized myeloid expansion." In another related experiment to deliver recombinant protein to the lungs of cystic fibrosis patients, viral infection lead only to short-term therapy (Crystal et al., 1994).

It is obvious from the various expression studies in different systems that the quest for delivery of safe biologically active therapeutics is ongoing. Human therapy, requiring erythroid differentiation, may utilize a fusion protein of human GM-CSF with human Epo since the chimera was shown to be better at stimulating erythroid differentiation than the same combination of both of the individual growth factors (Coscarella et al., 1997). In the near future, the demand for rthGM-CSF is likely to increase. The high cost of this recombinant product, however, is a limiting factor. Therefore, alternative methods of production should be investigated to ensure its safe and economical supply (Ganz et al., 1996).

Effects of glycosylation on recombinant proteins: GM-CSF

In plants and insects, N-linked glycosylated proteins usually have two sugar residues {β-(1,2)-xylose and α-(1,3)-fucose} that are not found in mammals. In plant systems, sialic acid is not present, however it was found in mammalian glycosylated proteins (reviewed by Chrispeels and Faye, 1996). During therapeutic application of recombinant proteins from plants or insect sources, the above mentioned sugars may stimulate the immune system and eventually, the recombinant proteins may become inactivated. This inactivation may be due to the development of antibodies directed against the plant or insect produced proteins. The ability to harvest biologically active human
proteins from plants in large quantities may require modification of a suitable plant host for achievement of this goal (Cabanes-Macheteau et al., 1999). In an attempt to modify tobacco suspension cells to glycosylate proteins with mammalian sugar residues, an N-linked glycosylation enzyme (β 1,4-galactosyltransferase) was introduced (Palacpac et al., 1999). This enzyme modified the host N-linked glycosylation pattern and its substrate was found on plant cell glycosylated proteins.

Human erythropoietin (Epo) showed similar proliferative activity as GM-CSF and IL-3 on a human TF-1 cell line (Kitamura et al., 1989). Deglycosylation of hEpo was reported to increase its in vitro activity. Its in vivo activity, however, was significantly impaired (Tsuda et al., 1990; Higuchi et al., 1992). GM-CSF differs from Epo in that its deglycosylated form is still active in vivo. Therefore, one may conclude that in vitro, the carbohydrate moieties are not necessary for the biological activity of some proteins, but are necessary for others. The glycosylation restraints imposed by the E. coli expression system was not worth further investigation for proteins requiring glycosylation for their in vivo activities. Therefore, an ideal plant system for human cytokine production is needed that will save time and lives.

Application of glutelin promoters in prior seed specific expressions

Glycoprotein B complex in transgenic tobacco seeds

The first attempt to spatially and temporally produce an oral subunit vaccine as a "farmaceutical" occurred in our Ottawa laboratory. This was achieved in seeds utilizing the well-characterized glutelin-3 promoter and its associated signal sequence (Tackaberry et al., 1999). The human cytomegalovirus immunodominant glycoprotein B complex (HCMV IG-BC) was targeted to the seeds of transgenic tobacco plants but not to leaves or
stems. The HCMV IG-BC was detected by electron microscopy in protein bodies of tobacco endosperm cells (E. Tackaberry; personal communication). Again, the Gt3 promoter demonstrated its seed specific expression status. Further, the glutelin signal sequence was needed for correct targeting to the protein bodies of endosperm cells.

ELISAs specific for the HCMV IG-BC detected a synthesis range of 70-146 ng/mg of total soluble extracted seed protein. These values for the recombinant protein represent a maximum of 0.01% of total soluble proteins that accumulated in transgenic tobacco seeds. Although the recombinant protein accumulation levels were relatively low when compared to the 4% accumulation level observed for the phaseolin protein expressed in transgenic rice seeds under the control of a different glutelin promoter (Zheng et al., 1995), tobacco was used only as a test organism for processing and stability of the HCMV IG-BC. Antigenic specificity of the plant synthesized HCMV IG-BC was demonstrated using a human fibroblast cell line. This suggested that tobacco could process the viral subunit vaccine with high fidelity for possible vaccine applications. It was suggested that other antigens might be targeted to the seeds of plants for synthesis of human and animal vaccines (Tackaberry et al., 1999).

Antecedent glutelin/hGM-CSF fusion peptide in tobacco seeds

Our laboratory became the first to demonstrate the feasibility of producing a recombinant human fusion cytokine in transgenic tobacco seeds (Ganz et al., 1996). This group recognized the need for an ample supply of rthGM-CSF and so turned to plant systems to alleviate the impending shortage of cheap, safe and biologically active cytokines. Since GM-CSF was the most widely studied cytokine and its cDNA was commercially available, it was a good candidate protein to study its expression in plant systems. The recombinant expression construct that was made would putatively result in
the synthesis of an N-terminal sylogen composed of the first eight residues of the glutelin-3 protein fused in frame with the mature hGM-CSF sequence (Figure 1). For targeting the synthesis of the protein into seeds, the glutelin-3 promoter was utilized. This approach was highly successful, resulting in seed specific accumulation of the fusion protein.

Correspondingly, for amassing of the recombinant fusion cytokine explicitly in the protein bodies of seeds, the glutelin-3 signal sequence was used. Whether the glutelin-3 signal sequence was cleaved or not and if the fusion cytokine accumulated in the endosperm compartments was not demonstrated. However, the antecedent cytokine did accumulate in transgenic tobacco seeds and was found to be biologically active. On Western blots, two distinct bands were detected that were 19 kDa and 21 kDa. This experiment demonstrated that tobacco seeds have the ability to process a human fusion cytokine such that it retained its biological functions. The stability of the syllogistic cytokine may be due to its true human/foreign nature being masked by the antecedent glutelin-3 fusion peptide. Alternately, this antecedent peptide might allow for preferential processing of the fusion cytokine in the plant seed environment.
Rationale and objectives

The production of human cytokines in plants may offer a cheap, safe and biologically active source of human therapeutic proteins. Before this project, no matured human cytokines were expressed in plant seeds. However, in a previous study from our laboratory, rthGM-CSF was produced in tobacco seeds as a fusion peptide. The fusion peptide consisted of the first eight amino acids of the glutelin-3 mature protein as an antecedent peptide. This antecedent peptide was postulated to offer added stability to the hGM-CSF and to impart preferential processing in the tobacco seed environment. Alternately, syllogistic cytokine stability in tobacco seeds may be due to its true human/foreign nature being masked by the antecedent glutelin-3 fusion peptide. Thus, it became crucial for the present Gt1 experiment to proceed to resolve the effects of the antecedent peptide on hGM-CSF processing in transgenic tobacco seeds. The fusion cytokine, although it accumulated in tobacco seeds and was found to be biologically active, may not be approved for human cytokine therapy. The final goal of expressing human cytokines in recombinant expression systems is for human therapeutic application. The objectives of this project were to express the mature hGM-CSF in tobacco seeds and determine its stability in the plant environment. Rice glutelin promoters are among the strongest endosperm promoters known. The Gt3 promoter is considered weaker than the Gt1 promoter and hence the Gt1 rice glutelin promoter was used for targeting the production into tobacco seeds. Further to the objectives of this project was to resolve whether the seed environment was capable of processing the non-syllogistic rthGM-CSF peptide such that it retains its full biological activity.
Chapter 2

MATERIALS AND METHODS

Materials

Glutelin-1 promoter

The glutelin-1 promoter was obtained from Dr. Tom Okita (Washington State University, Pullman, WA). I had subcloned this promoter into the rthGM-CSF expression construct at the start of this thesis (Figure 1). However, the sequences that encoded the amino acids (mature hGM-CSF coding sequence and the glutelin-1 signal sequence) had not been sequenced to confirm the integrity of the Gt1 expression construct. Therefore, its sequencing became part of this thesis project.

Glutelin-1 signal sequence

The coding region of the glutelin-1 signal sequence (SS) was amplified from Japonica rice genomic DNA using the polymerase chain reaction. This PCR experiment was conducted by Dr. Ravinder Sardana and Ms Connie Sauder (University of Ottawa, Ottawa, Ontario, Canada). The PCR amplified product was given to Dr. Eileen Tackaberry (Bureau of Biologicals and Radiopharmaceuticals, Health Canada, Ottawa, Ontario, Canada) who subcloned the SS into the multiple cloning site of a second pGEM4Z plasmid.

Mature hGM-CSF coding sequence

The mature hGM-CSF coding sequence was obtained from R&D Systems (Minneapolis, MN, USA) in the BBG 12 plasmid. An ATG sequence had been fused to the mature hGM-CSF coding sequence such that the native human signal sequence was not included in the BBG 12 plasmid.
Nopaline synthase sequence for polyadenylation

The nopaline synthase sequence for termination of transcription (NOS-TER) was obtained from a 35S/hGM-CSF/NOS-TER vector. This plasmid was previously used to transform tobacco in Dr. Illimar Altosaar's laboratory.

Tobacco leaves

Young tobacco leaves from non-transformed tobacco plants (Nicotiana tabacum cv. Xanthi) were available in the laboratory. Sterilized leaf sections were transformed with the rthGM-CSF expression construct driven by the glutelin-1 promoter. This construct is referred to as the Gt1 construct (Figure 1, Results section).

Tobacco transformation vector

The National Research Council of Canada, Saskatoon, Saskatchewan, provided the plant transformation vector pRD400 which contained the neomycin phosphotransferase II gene for resistance to the antibiotic kanamycin (Datla et al. 1992).

Chemicals and enzymes

Solutions were prepared with chemicals from the following suppliers: Sigma, Fisher Scientific, Promega and Gibco BRL. Restriction and modifying enzymes were obtained from Boehringer Mannheim, Gibco BRL, Promega, and New England Biolabs. Radionucleotides (deoxycytidine triphosphatase: 32P-dCTP and deoxynucleoside triphosphates: 35S-dNTP) were from Amersham. Antibiotics (ampicillin, carbenicillin, and kanamycin) were from Gibco BRL. Customized oligonucleotide primers for PCR amplification and sequencing were synthesized by Dr. G. Alvarado (Synthaid Biotechnologies Inc., Nepean, Ontario).
Methods

Generally, experimental techniques were slightly modified from the previously published standard procedures (Sambrook et al., 1989).

Sequencing of the Gt1 construct

The instructions contained in the T7 sequencing kit (Procedure C: Standard Annealing of Primer to Double-Stranded Template, Pharmacia Biotech) were used to sequence approximately 2 µg of the Gt1 plasmid DNA as described below. Four different primers (10 pmol each) were used in both forward and reverse reactions. The four primers are as follows (1) 5’- GCA CGA TGA TTT CTC ATT G - 3’, (2) 5’ - ATG GCA CCC GCC CGG TCA - 3’, (3) 5’ - TGG GAG CAT GTG AAT GCC AT - 3’ (4) 5’ - AGC AGG AAG TTC AGG - 3’. Only primer (1) was from outside the coding region of the Gt1 construct and, it bound the construct at approximately -60 bp from the start of the glutelin signal sequence. The Gt1 construct contained in the pGEM4Z plasmid was denatured and then ethanol precipitated as recommended by Pharmacia Biotech. Primers were added to the resuspended DNA along with the supplied primer-annealing buffer. After heating the reaction at 65°C for 5 min, the microfuge tubes were immediately transferred to a 37°C water bath for 10 min. The reaction tube was removed from the water bath and placed at room temperature for a further 5 min. Additional components were added to the labelling reaction: dCTP, dGTP, dTTP, NaCl, T7 DNA polymerase (3.2 units) and 35SdATP. After a brief centrifugation step, the reaction was incubated at room temperature for five minutes. Aliquots of this reaction were transferred to four sequencing mix tubes. Each of the four tubes contained four different dNTPs along with one of the four ddNTP but in a lower concentration. After incubating for five minutes at 37°C, the reaction was terminated by the addition of the supplied stop solution {0.3% bromophenol blue, 0.3% xylene cyanol FF, 10 mM EDTA (pH 7.5), 97.5% deionised formamide}.

26
Preparation and electrophoretic conditions for sequence analysis on polyacrylamide gels

Slight modifications were made to the previously published, standard procedure (Sambrook et al., 1989). The glass plates and spacers for the polyacrylamide gel assembly were soaked with warm water and thoroughly scrubbed with a sponge. Soap was applied to the sponge and the above mentioned gel assembly parts were scrubbed a second time. If residual silicone was present on the glass plates, a KOH/methanol solution (5 g KOH/100 mL methanol) was used to remove it. After washing with warm tap water, distilled water was used in a final wash. The gel assembly parts were wiped with ethanol and allowed to dry. The short glass plate for the inside gel assembly was placed in a chemical hood and siliconized with Sigmacote. The gel apparatus was assembled with two flexible 0.4 mm plastic spacers positioned on the outer side edges but between the two glass plates. The top and bottom of the gel assembly had no spacers. To prevent leakage, the bottom edge of the gel assembly was sealed with 50 mL of a 6% acrylamide solution {5.7% acrylamide, 0.3% bis-acrylamide, 46% urea, 45 mM Tris base, 45 mM boric acid, 2 mM EDTA (pH 8.0)} containing 250 μL of 25% ammonium persulphate and 250 μL TEMED. The sequencing gel was also composed of a 6% acrylamide gel solution prepared by the addition of 150 μL of 25% ammonium persulphate and 150 μL TEMED to 150 mL of a 6% acrylamide solution as above. The gel solution was swirled to mix and immediately poured between the two glass plates. The shark teeth comb was positioned upside-down at the top of the assembly but between the two glass plates. Distilled water was carefully added to the top of the comb and on top of the gel solution. The sequencing gel assembly was wrapped with plastic wrap to prevent further oxidation and the gel was allowed to polymerize overnight. The next day, the plastic wrap was removed along with the comb and the bottom gel seal. The top of the gel was briefly washed with distilled water, and the comb was inserted such that its teeth slightly penetrated the gel front. The
sequencing gel electrophoresis buffer (1X TBE: 45 mM Tris base, 45 mM boric acid, 2 mM EDTA (pH 8.0)) was added to the Bio-Rad electrophoresis apparatus assembly and the gel was pre-run for an hour at 40W. The T7 sequenced reaction samples were denatured at 80°C for two minutes before loading into the wells. The samples were electrophoresed into the gel for 3 h (short run) and 6 h (long run) at 40 W. It was possible to load the samples for the long run, three hours in advance of the short run and this allowed for analysis of up to 300 bp of sequenced data. The determination of the sequences of both long and short runs on the same gel saved time. Once the electrophoresis was completed, the gel apparatus was disassembled and the gel was allowed to bind to a 3MM Whatman filter paper. The gel, supported by the filter paper, was wrapped with plastic wrap and dried for 1 h in a Gel Slab Dryer at 80°C (BIORAD). The paper was then unwrapped and placed into an X-ray cassette along with an X-ray film. The X-ray film was developed using a standard procedure within 2 days (Sambrook et al., 1989). Sometimes a longer period of exposure was required to increase the intensity of the signals. The derived sequencing data was compared to the predicted sequence of the construct.

Transformation, selection and growth of E. coli

The glutelin-1 expression construct contained in the pRD400 vector (Gt1/pRD400) was used to transform 50 μL of competent cells. Competent E. coli DH5α-cells were obtained from Gibco BRL and transformed using the protocol provided by the supplier. The Gt1 construct was previously assembled and was made available at the start of this project. Briefly, competent cells were thawed on ice for 30 min and 1 μg of the Gt1/pRD400 plasmid DNA was added. The content was gently pipetted five times and left on ice for 30 min. After a heat shock treatment at 37°C for 30 s. one mL of Luria-Bertani (LB) medium (10 g/L bactotryptone, 5 g/L yeast extract, 10 g/L NaCl, pH 7.0) was added.
The mixture was inverted several times and incubated at 37°C for 1 h. Following a 1 min centrifugation step (Micro-Centrifuge Model 235B, Fisher Scientific), the pelleted cells were resuspended in approximately 60 μL of LB medium. Thirty microlitres was spread on LB/1.3% agar plates containing 50 μg/mL kanamycin. After incubating overnight at 37°C, the antibiotic resistant colonies were picked and grown in LB medium containing 50 μg/mL kanamycin. These bacterial cultures were used for DNA isolation as described below.

Preparation of competent *A. tumefaciens* cells

About 10 μL of *A. tumefaciens* cells (LBA 4404) were plated on YEP/agar plates (10 g/L yeast extract, 10 g/L peptone, 5 g/L NaCl, 1.5% agar, pH 7.0) containing no antibiotics. These plates were incubated at 28°C for 2-3 days, within which time colonies appeared. Several single colonies were each grown in 5 mL of YEP medium for 15 hours. Each overnight culture was transferred to 45 mL of fresh YEP medium (contained no agar) contained in 500 mL sterile flask. Cultures grew until an O.D. of approximately 0.5 was achieved. The bacterial cultures were poured into sterile 50-mL centrifuge tubes and centrifuged (3000 rpm, 4°C, 5 min). After discarding the supernatants, the pellets were resuspended in 1 mL of 20 mM CaCl₂. Aliquots of 100 μL competent cells were dispensed in pre-chilled 1.5 mL sterile microfuge tubes. Competent *A. tumefaciens* cells were stored at -70°C until needed.

Transformation of *A. tumefaciens* cells

The freeze-thaw method from Clontech was used to transform an aliquot of competent *A. tumefaciens* cells (100 μL) with the Gt1/pRD400 construct (1 μg). After adding the plasmid DNA, the cells were gently mixed by pipetting and then incubated on ice for 30 min. After the incubation period, liquid nitrogen was used to freeze the cells.
The cells were thawed at 37°C for 10 min, afterward, 1 mL of YEP medium was added and the tube was inverted several times to mix. The mixture was incubated at 28°C for 4 hours. Following a 30 s centrifugation step, the pelleted cells were resuspended in approximately 60 μL of the remaining YEP medium and 30 μL was spread on a YEP plate (1.5% agar, 50 μg/mL kanamycin). The plates were incubated at 28°C for 2-3 days to allow for antibiotic resistant colonies to appear. These colonies were used to prepare the inoculant.

Inoculant preparation

A transformed *A. tumefaciens* colony carrying the Gt1 construct (pRD400 backbone) was used to inoculate 5 mL YEP medium containing 50 μg/mL kanamycin in a sterile 30 mL test-tube. After shaking (260 rpm) at 28°C for 24 h. a second inoculation using 45 mL YEP/kanamycin medium (50 μg/mL kanamycin) was initiated using the first 5 mL inoculated culture. The second inoculated culture was incubated as above but only for 4 h. A sterile 50-mL centrifuge tube was used to collect the culture (O.D. ~ 0.5) and for centrifugation (3,000 rpm, 4°C, 7 min). The supernatant was discarded and the tubes were inverted to remove most of the antibiotic medium. After resuspending the pellet in 5 mL of YEP medium without antibiotics, the culture was poured into a sterile Petri dish for transformation of the sterilized tobacco leaf sections.

Non-transformed tobacco leaf sterilization

Young tobacco leaves (*Nicotiana tabacum* cv. Xanthi) were freshly harvested and placed into sterile petri dishes contained in a laminar flow hood. Leaves were sterilised for 30 s in 70% ethanol followed by a 10 min soak in 1% Javex (6% sodium hypochlorite). After three washes with sterile dH₂O, the leaves were placed into a second sterile petri dish.
containing sterile dH₂O. The leaves were cut with a sterile surgical blade into small sections, approximately one cm square. Leaf sections were transformed by *A. tumefaciens* harbouring the Gt1 rthGM-CSF expression construct as described below.

Transformation of sterile leaf sections

A slight modification was made to the previously published procedure for transformation of tobacco (Horsch et al., 1985). Distilled water from sterilized leaf sections was removed by briefly blotting the leaf sections onto sterile filter paper. The leaf sections were transferred into the *A. tumefaciens* suspension. After 5 min., the leaf sections were blotted onto sterile filter paper before being placed onto tobacco co-cultivation medium {1X MS (Murashige and Skoog medium, Gibco BRL), 3% sucrose, 1.0 mg 6-benzyladenine [BA], 0.1 mg/L alpha-naphthalene acetic acid [NAA], pH 5.8, 0.8% agar}. Approximately four leaf sections were placed into each petri dish before sealing with Parafilm. Subsequently, the plates were incubated in the dark at 20°C for two days.

Calli induction and regeneration of transgenic plants

Leaf sections from the above co-cultivation plates were transferred to a regeneration medium (1X MS, 3% sucrose, 1 mg/L BA, 0.1 mg/L NAA, pH 5.8, 0.8% agar, 500 mg/L carbenicillin and 300 mg/L kanamycin). Carbenicillin was used to kill *A. tumefaciens* cells while kanamycin selected for transformed leaf cells. Calli were induced from transformed leaf cells at 20°C and a photoperiod of 16 h light and 8 h dark. Within one month, calli developed and eventually some shoots appeared. When shoots were at least 4 mm long, they were dissected and placed into magenta jars containing a rooting medium (1X MS, 2% sucrose, pH 5.8, 0.8% agar, 500 mg/L carbenicillin, 300 mg/L kanamycin). After one month, plantlets developed roots and were transferred
into pots containing soil. To prevent desiccation, plants were placed in the greenhouse and covered with transparent plastic bags. The greenhouse photoperiod was the same as above but the temperatures were different (light: 26°C, dark: 20°C). After one week, plastic bags were removed and plants were allowed to grow to maturity. Plants were watered when needed and fertilized with a water-soluble fertilizer every two weeks. Transgenic tobacco plants normally matured and flowered within six to nine months.

DNA extraction from tobacco leaves

Young developing leaves were collected from transformed and non-transformed tobacco plants. The leaf surfaces were washed with distilled water and approximately 3 grams of leaves were placed into a sterile mortar that was pre-chilled with liquid nitrogen (LN). Leaves were grounded to a fine powdery white flour. Liquid nitrogen was added several times during the course of grinding to keep the tissues hard and to prevent degradation of the DNA. Each sample was added to a 50-mL centrifuge tube containing 5 mL of buffer S \{100 mM Tris.HCl (pH 8.5), 100 mM NaCl, 50 mM EDTA (pH 8.0), 2% SDS, 0.1 mg/mL proteinase K, 10 mM DTT\}. The centrifuge tubes were inverted several times to mix their contents and afterwards, they were incubated at 37°C for 1 h. After the incubation period, 5 mL of buffered \{100 mM Tris.HCl (pH 8.5), 100 mM NaCl, 50 mM EDTA\} saturated phenol was added to each sample and the tubes were placed at 37°C for 30 min. The mixtures were centrifuged (3,000 rpm, 4°C, 10 min) and the top aqueous phases were transferred into new 50-mL centrifuge tubes. The DNA/RNA was precipitated with 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of 99% ethanol. The precipitation step proceeded at 20°C on a rotary shaker with gentle rocking. Eventually, nucleic acids settled at the bottom of the tubes and the mixtures were centrifuged (3,000 rpm, 4°C, 5 min). The supernatants were removed using clean pipettes that were flame drawn. The pellets were allowed to dry and then were resuspended in 0.5 mL of TE buffer
(10 mM Tris.HCl, 1 mM EDTA, pH 8.5). To remove contaminating RNAs, 100 μg of RNase A was added to each sample. After incubating at 37°C for 2 hours, one volume of 1:1 buffered saturated phenol to chloroform was added. The samples were inverted several times to mix and centrifuged (3,000 rpm, 4°C, 10 min). The top (aqueous) phases were carefully removed and the DNA was precipitated as above but the samples were placed at 0°C overnight. The DNA pellets were collected after a centrifugation step (3,000 rpm, 4°C, 10 min). The DNAs were resuspended each in 200 μL of dH₂O and the concentrations were determined by measuring the optical densities at 260 nm using a spectrophotometer. The integrity of the genomic DNAs was assessed via electrophoresis on a 0.8% agarose gel.

Restriction analyses on DNAs

Plasmid or genomic DNA was digested with the appropriate restriction endonucleases as recommended by the enzyme supplier. For Southern analyses, 40 μg of total genomic DNA was digested overnight at 37°C while plasmid DNAs were digested for 3 hours at 37°C.

Agarose gels for DNA electrophoreses

Digested genomic DNAs were electrophoresis in 0.8% agarose gels (0.8 g agarose/100 mL 1X TAE) that contained ethidium bromide. For RT-PCR experiments, 1% agarose gels were used (1 g agarose/100 mL 1X TAE buffer). Upon solidifying, the gel was submerged in 1X TAE buffer (50X TAE buffer: 242 g Tris base, 57.1 mL glacial acetic acid, 100 mL 0.5 M EDTA (pH 8.0)). After the DNAs were digested, 6X gel loading buffer (30% glycerol, 0.25% xylene cyanol FF, and 0.25% bromophenol blue) were added to obtain a final 1X gel loading buffer concentration. A brief centrifugation step followed and the samples were loaded into the gel lanes. Phage lambda DNA/Hind III
marker and \(\Phi X \ 174 \) RF DNA/Hae III marker were loaded as standards. The DNA was electrophoresed at a constant 5 volts per square cm of gel. After the electrophoresis was completed, the gel was UV illuminated (Fotodyne) and photographed using a Polaroid camera (Polaroid MP.4 LandCamera).

Southern analysis of total genomic DNA

After running the restriction-digested samples on an agarose gel as above, the DNA was transferred onto a nitrocellulose membrane (High Bond N. Amersham) and probed with the radiolabelled \(\text{EcoR} V \text{Hind} \) III Gt1 rthGM-CSF expression construct. The gel was photographed as above and placed into a DNA denaturation solution (1.5 M NaCl, 0.5 M NaOH). After 1 h, the gel was rinsed with dH\(_2\)O and placed into a neutralization buffer {1 M Tris.HCl (pH 7.5), 1.5 M NaCl}. During the hour-long neutralization step, the transfer apparatus was set-up as previously described (Sambrook *et al.*, 1989) using 20X SSC (3.0 M NaCl, 300 mM sodium citrate, pH 7.0) as the transfer buffer. Two pieces of 3MM filter paper were wrapped halfway around a glass plate with the ends directly in the transfer buffer. The gel was placed on top of the 3MM filter papers, and a nitrocellulose membrane, presoaked in dH\(_2\)O, was placed on top of the gel. Two additional pieces of 3MM filter paper were presoaked in 2X SSC and placed on top of the membrane. A stack of paper towels was placed onto the transfer set-up. A 500-gram weight was placed on top of the paper towels. The transfer proceeded at 20°C for 18 h. As the paper towels became wet, they were replaced with dry ones. After the transfer was completed, the membrane was soaked in 2X SSC to remove any agarose that was sticking to it. The membrane was allowed to air-dry before the DNA was fixed by baking under vacuum (80°C, 2 h).
Extraction and purification of DNA from bacteria

Miniprep kits were obtained from QIAGEN (Mississauga, Ontario). The QIAprep Spin Miniprep kit protocol was used to extract and purify plasmid DNA from bacteria. In this procedure, transformed E. coli cells carrying the plasmid of interest were grown overnight at 37°C in 3.0 mL of LB or YEP medium supplemented with the appropriate antibiotic (ampicillin 100 µg/mL or kanamycin 50 µg/mL). Cells were poured into 1.5 mL microfuge tubes and centrifuged (Model 235B, Fisher Scientific) for 1 min to obtain the bacterial pellet. The supernatants were poured off and the pellets were completely resuspended in 250 µL of Buffer P1 (QIAGEN). Then 250 µL of lysis buffer (P2, QIAGEN) was added to each sample. The alkaline lysis was allowed to proceed for 4 min before being neutralized with 350 uL of buffer N3 (QIAGEN). The lysates became cloudy and were centrifuged (10 min at 4°C). The supernatants were applied to QIAprep spin columns and centrifuged for 30 s. After washing the spin columns, the DNA was eluted with 50 µL of TE (10 mM Tris.HCl, 1 mM EDTA, pH 8.5). Generally, 5 µL of DNA was electrophoresed on 0.8% agarose gels to assess the quality and yield. More accurate quantifications were performed by spectrophotometry using a wavelength of 260 nm. The DNA was used for cloning, making probes, or restriction endonuclease analyses.

Generation of the probe and geneclanning

The original Gtl transformation construct contained in the pGEM4Z plasmid was digested with EcoRI and Hind III to release the 2.522 kb fragment. The restriction endonuclease Sca I was also added to the reaction. The backbone of the pGEM4Z plasmid (2.7 kb) was cut with Sca I to enhance separation on a 0.8% agarose gel into three fragments: 2.522 kb transformation construct and the Sca I-restricted plasmid backbone consisting of a 1.7 kb and a 1.0 kb fragment. The 2.522 kb fragment was excised under UV and recovered from the agarose gel using a geneclanning kit (QIAEX II) from
QIAGEN. Briefly, three volumes (3 mL QX l/g of agarose) of buffer QX I was added to a 1.5 mL microfuge containing the agarose fragment and 30 μL of QIAEX II silica particle mixture. The QIAGEN supplied high chaotropic salt contained in the QX I buffer used large anions to disrupt sugar monomers and polymers of agarose. The mixture was incubated for 10 min at 50°C and vortexed every 2 min. The sample was centrifuged for 30 s and the supernatant discarded. The pellet was washed with 500 μL of QX I buffer and centrifuged for 30 s. Two additional washes followed using 500 μL of the supplied PE buffer. The pellet was air-dried for 15 min and eluted with 50 μL of 10 mM Tris.HCl (pH 8.5). The DNA was recovered after a 30 s centrifugation step to pellet the silica particles. The DNA concentration was estimated on an agarose gel (0.8%) and used for the probe labelling reaction.

Radiolabelling of the probe

The probe for Southern hybridization was labelled using the Ready.To.Go DNA Labelling Beads (dCTP) Kit from Pharmacia. The Manufacturer’s Standard Protocol was followed for the labelling reaction. Briefly, boiling for 3 min at 100°C denatured approximately 50 ng of the gene cleaned EcoR I/Hind III digested expression construct. The reaction was placed immediately on ice for 2 min. After a brief pulse centrifugation step, the DNA and 50 μCi of [³²P]dCTP were added to the supplied reaction tube. The solution was mixed by vortexing and briefly pulse centrifuged before incubating at 37°C for 15 min. The supplied reaction mixture consisted of the following components: reaction buffer, dATP, dGTP, dTTP, Klenow fragment (7-12 units) and random oligodeoxyribonucleotides (mainly 9-mers). Unincorporated nucleotides were removed from the labelled DNA fragments by centrifuging through a MicroSpin S-300 HR column (Pharmacia). The purified DNA was collected as the flow-through from the column.
Prehybridization and hybridization for Southern blots

The baked nitrocellulose membrane was placed in 5X SSC solution for 5 min and transferred to a tray containing 50 mL of prehybridization buffer. The prehybridization and hybridization buffers were composed of the following components: 50% deionised formamide, 5X Denhardt’s solution {0.1% ficoll, 0.1% polyvinyl-polypyrrolidone (PVPP) and 0.1% BSA}, 5X SSC, 0.1% SDS, and 100 pg/mL denatured salmon sperm DNA. The membrane was incubated at 42°C in the prehybridization buffer with constant, gentle shaking (50 rpm). After two hours, the prehybridization buffer was replaced with 30 mL of fresh hybridization buffer. The purified radioactive probe was boiled for 3 min and rapidly cooled on ice. After 5 min on ice, the probe was added to the hybridization solution. The hybridization was allowed to proceed at 42°C for 16 hour with gently constant shaking at 50 rpm. The nitrocellulose membrane was carefully removed and placed into a tray containing 400 mL of 2X SSC and 0.1% SDS solution. The first wash was conducted at room temperature (20°C). The second and third washes were at 65°C (15 min each) in 400 mL of a 1X SSC solution containing 0.1% SDS. The final wash was performed at 65°C (15 min) but the composition of the 400 mL solution was 0.4X SSC and 0.1% SDS. The membrane was removed and placed onto a piece of filter paper to air dry for half an hour before being wrapped in plastic wrap. The wrapped membrane was placed in a cassette and an X-ray film was placed on top of the membrane. Two intensifying screens sandwiched the radioactive membrane and the X-ray film. The film was developed using a standard procedure (Sambrook et al., 1989).

Collection of seeds

At maturity, flowers were self-pollinated and tagged (dated). Seeds were harvested at specific days after pollination (DAP). Seeds were collected from the early to the mid-maturation stage (6-15 DAP). After harvesting the seeds, they were kept on ice and
quickly scraped away from the pods. Seeds from different plants were transferred into separate cryovials and kept frozen at -70°C until needed for mRNA or protein extractions.

Extraction of total seed RNA

A previously published procedure for the collection of RNA was slightly modified for the collection of RNA from seeds (Verwoerd et al., 1989). Seeds were collected between 6-11 DAP to get a wide range of seed mRNAs. Extreme care was taken to avoid contamination: gloves and sterile surgical blades were used for different samples. Seeds, scraped away from pods, fell directly into liquid nitrogen. Seeds were grounded in liquid nitrogen to a fine powdery flour using a sterile mortar and pestle. A pre-weighed 1.5 mL microfuge tube was used to collect approximately 100 mg of ground seeds and, immediately, 500 µL of hot (80°C) extraction buffer was added {{(1 : 1) phenol : 0.1 M LiCl, 100 mM Tris.HCl [pH 8.0], 10 mM EDTA, 1% SDS}}. To homogenize the mixtures, the tubes were vortexed for 30 seconds and 250 µL of 24 : 1 (chloroform : isoamylalcohol) was used to extract the ribonucleic acids. A five-minute centrifugation step followed and the top aqueous phases were transferred to new tubes. One volume of 4 M LiCl was added to each sample. The RNAs were allowed to precipitate overnight at 4°C. After centrifuging for five minutes, the pellets were collected and each re-dissolved in 250 µL of diethyl pyrocarbonate (DEPC)-treated water. After addition of 0.1 volume of 3 M NaOAc (pH 5.2), the RNAs were precipitated using two volumes of 99% ethanol, and placed at -70°C for two hours. Following a 10 min centrifugation step, the supernatants were removed and the RNA pellets were washed with 70% ice-cold ethanol (containing 30% DEPC water). The pellets were collected after centrifuging for 10 min and were dried at 37°C. The RNA pellets were re-dissolved in 50 µL of DEPC water and stored in 10 µL aliquots at -70°C. No RNA was extracted from leaves since the hGM-CSF specific ELISA kit detected no rthGM-CSF in transgenic and non-transgenic tobacco leaves.
Preparation of RNA gels

Gels, buffers and samples were prepared in DEPC water. The integrity of the above extracted RNAs was assessed by electrophoresis on a 1.0% agarose gel containing 1.9% formaldehyde. The gel tray, gel comb and electrophoresis chamber were washed with distilled water and presoaked overnight in a DEPC solution containing 1% SDS. The 1X RNA electrophoresis buffer (MOPS [3-(N-morpholino) propanesulfonic acid]/EDTA) was prepared from a 10X stock solution (10X MOPS/EDTA buffer: 0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0). To each 5 μL of RNA sample were added 25 μL of RNA loading buffer (0.75 mL deionized formamide, 0.15 mL of 10X MOPS electrophoresis buffer, 0.24 mL of 37% formaldehyde, 0.1 mL DEPC-treated dH2O, 0.1 mL glycerol, 0.08 mL of 10% (w/v) bromophenol blue). The RNA samples containing the RNA loading buffer were placed at 65°C for 15 min. After cooling to 50°C, 1 μg of ethidium bromide was added to each sample. Prior to loading the RNA samples, a pipette was used to flush the sample wells with fresh 1X RNA electrophoresis buffer. After a brief centrifugation step, the RNA samples were loaded into the flushed wells and the gel ran at a constant 30 V. After electrophoresis, the gel was visualized and photographed under UV illumination (Fotodyne) as described for DNA agarose gels. Quantification of the RNAs by spectrophotometry (260 nm) was also conducted. Total RNAs were used in RT-PCR experiments.

Reverse transcriptase (RT) and polymerase chain reaction (PCR) (RT-PCR) experiments

Reverse transcriptase experiment

Total RNA was isolated from the developing seeds of transformed and non-transformed tobacco plants as described above. RT-PCR experiments were performed to detect the presence of hGM-CF mRNA transcripts using the Advantage™ RT-for-PCR
Kit from CLONTECH. The supplied total RNA from human placenta along with PCR specific glyceraldehyde-3-phosphate-dehydrogenase (G3PDH) primers was used as a positive control for the RT-PCR reactions. The cDNA synthesis reaction contained 0.5 µg of total seed RNA or 1 µg human placenta total RNA or water (negative control). reaction buffer {50 mM Tris.HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂}, dNTP mix (0.5 mM each), 20 µM of oligo (dT)₁₈ primer, 1 unit of RNase inhibitor and 200 units of Moloney-Murine Leukemia Virus reverse transcriptase. After incubating for 1 h at 42°C, the cDNA reaction was stopped by heating at 94°C for 5 min. The reaction was diluted five fold and the cDNAs were amplified as described below.

Polymerase chain reaction experiment

The PCR reaction was preformed to amplify a 384 bp fragment from the hGM-CSF cDNA that was achieved in the RT experiment. The PCR reaction was performed using a PCR buffer {50 mM KCl, 20 mM Tris.HCl (pH 8.4), 2.5 mM MgCl₂} and the following components were added to the reaction: 0.1 mM of each dNTP, 20 ng of both the forward and reverse primers, 10 µL of the diluted cDNAs, and one unit of Taq DNA polymerase. The forward and reverse primers were: forward primer, 5' - ATG GCA CCC GCC CGG. TCA - 3'; and reverse primer, 5' - CTC CTG GAC TGG CTC CCA - 3'. A 100 µL aliquot of light mineral oil was placed into each reaction tube and the tubes were briefly centrifuged (3,000 rpm, 4 s). Initially, the samples were denatured at 95°C for 3 min. Thirty-two cycles (45 s at 95°C, 45 s at 55°C, 45 s at 72°C) were performed using a Microcycler apparatus (Eppendorf). Finally, an extension step at 72°C for 3 min was performed. The PCR reactions were analysed on a 1% agarose gel.
Extraction of total seed protein

Approximately 500 mg of early to mid-maturation tobacco seeds were placed into a pre-chilled mortar. A pestle was used to grind the seeds to a fine powder. The pulverized seeds from each sample were scooped up using sterilized spatulas and placed into pre-weighed 1.5 mL microfuge tubes. The tubes containing the samples were weighed again and the net weights were determined. Protein extraction buffer {50 mM Tris.HCl (pH 8.0), 50 mM NaCl, 1 mM EDTA, 0.1% (v/v) triton-X 100, 1% (w/v) insoluble polyvinyl-polypyrrolidone (PVPP), 1% (w/v) ascorbic acid, 25 µL of a 200 mM solution of phenylmethyl-sulfonyl fluoride} was immediately added in a one to one (v/w) ratio. For example, 500 µL of protein extraction buffer was added to 500 mg of seeds. The samples were vortexed to ensure complete mixing and centrifuged (13,000 rpm, 4°C, 10 min). The supernatants were transferred to new tubes and the pellets discarded or re-extracted as desired using the same extraction buffer ratio as above. The total protein content of the seed extracts was determined with the Bio-Rad Protein Assay Kit that uses the method of Bradford (Bradford, 1976). Bovine serum albumin was used as a protein standard. The extracted seed proteins were used in rthGM-CSF specific ELISA, biological activity assays and ammonium sulphate precipitations for Western blots.

Ammonium sulphate precipitation

Ammonium sulphate precipitations were conducted on total protein extracts from both transformed and non-transformed tobacco seeds as described previously (Wong et al., 1985a; Harris, 1989). Briefly, a two-step process was conducted to partially purify the plant-produced rthGM-CSF from other seed proteins. The first 0-65% precipitation step involved the addition of 404 mg of ammonium sulphate per mL of total protein extract. The second precipitation step, 65-95%, used 208 mg ammonium sulphate per mL of initial starting total protein extract. After addition of the 404 mg of ammonium sulphate to the
1 mL of total protein extracts, the tubes were tapped gently to mix and placed on ice (4°C). During the 2 h incubation period, the tubes were occasionally inverted. The 0-65% precipitated proteins were pelleted via centrifugation (13,000 rpm, 4°C, 10 min). The supernatants were carefully removed and added to new 1.5 mL microfuge tubes containing the second amount of ammonium sulphate. The tubes were inverted several times to mix and allowed to precipitate overnight at 4°C. After 16 hours, the tubes were centrifuged as above and the supernatants removed. The pellets were resuspended in 70 µL of sterile Tris (pH 8.0) containing 0.1% BSA. Bradford and ELISA analyses were conducted on the reconstituted protein samples. The following quantities of reconstituted protein samples were used in the SDS-PAGE gel: NT 191.7 µg, NT/rthGM-CSF from *E. coli* 274.5 µg, EB/rthGM-CSF from *E. coli* 23.25 µg, plant #14 163.32 µg and plant F1A(#14) 62.2 µg. Please note that the NT and NT/rthGM-CSF reconstituted protein extracts contained more total proteins than the other samples.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

The SDS-PAGE gel was prepared as described previously (Sambrook *et al.*, 1989). The separating gel was a 15% Tris-glycine SDS-PAGE gel while the stacking gel was a 5% Tris-glycine SDS-PAGE gel. The 15% SDS-PAGE gel contained 4.6 mL H₂O, 10 mL of 30% acrylamide mixture (29.0% acrylamide and 1.0% bis-acrylamide, Bio-Rad), 5.0 mL of 1.5 M Tris (pH 8.8), 0.2 mL of 10% SDS, 0.2 mL of 10% ammonium persulfate and 0.008 mL of TEMED. The 5% stacking gel contained 3.4 mL dH₂O, 0.83 mL of 30% acrylamide mixture (29.0% acrylamide and 1.0% bis-acrylamide, Bio-Rad), 0.63 mL of 1.0 M Tris (pH 6.8), 0.05 mL of 10% SDS, 0.05 mL of 10% ammonium persulfate and 0.005 mL of TEMED. The electrophoresis buffer contained 25 mM Tris.HCl (pH 8.3), 250 mM glycine and 0.1% SDS. Ammonium sulphate precipitated samples were diluted with distilled water to reduce the ammonium sulphate concentration to less than 1%. Gel
loading buffer were added to the diluted precipitated samples to obtain a final concentration of 1X SDS buffer {20 mM Tris (pH 8.0), 1 mM EDTA, 2.5% SDS, 0.1% (w/v) bromophenol blue and 5% 2-β-mercaptoethanol}. After heating at 100°C for 3 min, the samples were centrifuged (13,000 rpm, 4°C, 3 min) and loaded into the wells. The prestained SDS-PAGE MW standards were from Bio-Rad (catalogue number 161-0318). The prestained MW standards as shown in Lane 1. Figure 9 were A: β-galactosidase, 127.0 kDa; B: bovine serum albumin, 84.0 kDa; C: ovalbumin, 49.5 kDa; D: carbonic anhydrase, 35.3 kDa; E: soybean trypsin inhibitor, 28.1 kDa; F: lysozyme, 20.5 kDa; G: a rthGM-CSF band that appeared to migrate at 18 kDa; H: aprotinin, 7.0 kDa. The BIO-RAD Mini-PROTEAN® II Cell electrophoresis apparatus was used for the SDS-PAGE gel electrophoresis. The gel ran at 9.0 V until the dye touched the bottom of the resolving gel.

Protein transfer

The proteins in the SDS-PAGE gel were transferred onto a nitrocellulose membrane using the BIO-RAD TRANS-BLOT® SD, SEMI-DRY TRANSFER CELL apparatus as per the manufacturer's specifications. Briefly, the SDS-PAGE gel was placed onto two pieces of 3MM filter paper that were presoaked in transfer buffer (39 mM glycine, 48 mM Tris.HCl, 0.037% SDS, 20% methanol, pH 8.3). The gel and the chromatographic papers were positioned onto the transfer apparatus such that the gel was on top of the assembly. The nitrocellulose membrane was placed into dH₂O and then soaked in the transfer buffer for three minutes. The nitrocellulose membrane was placed in direct contact with the gel followed by two pieces of chromatography paper. The chromatographic papers were pre-soaked in transfer buffer before positioning onto the nitrocellulose membrane. Five mL of transfer buffer was pipetted on top of the assembly and the air bubbles were removed by gently rolling a glass pipette over the transfer
assembly. Excess transfer buffer was blotted away from the base of the apparatus. The transfer was allowed to proceed at 10 mA for two hours. At the end of the transfer, the paper sheets were carefully removed and the nitrocellulose membrane was immediately placed into 40 mL of cold (4°C) blocking buffer {20 mM Tris (pH 7.4), 0.9% NaCl, 0.25% gelatine, 0.1% triton X-100 (v/v), 0.02% SDS}. After the transfer, the SDS-PAGE gel was stained overnight with a 0.25% Coomassie brilliant blue R250 solution (45 mL ethanol, 45 mL dH2O, and 10 mL glacial acetic acid). The gel was destained using a solution composed of 45% ethanol and 10% glacial acetic acid.

Probing and detection of rthGM-CSF

The primary antibody solution was prepared by diluting the polyclonal hGM-CSF specific antibody (R&D Systems) to approximately 1/2200 times in the blocking buffer. All antibody solutions were stored at 4°C. The nitrocellulose membrane was removed from the overnight blocking buffer and placed at 4°C for 16 h in the primary antibody solution. The membrane was then washed three times with wash buffer {20 mM Tris (pH 7.4), 0.9% NaCl, 50 µL Tween 20 (Sigma)}. Each wash was performed on a rotary shaker with gentle rocking for 20 min at room temperature (20°C). The rabbit anti-goat secondary antibody (alkaline phosphatase conjugated) was diluted 1/3333 times in the blocking buffer and the membrane was incubated for two hours at room temperature. Two brief washes with wash buffer were conducted for 15 min each. Detection of antibody binding was in alkaline phosphatase (AP) buffer {100 mM Tris.HCl (pH 9.5), 100 mM NaCl, 50 mM MgCl2}. Each membrane was incubated with 10 mL of AP buffer. 44 uL of nitroblue tetrazolium chloride (NBT) and 33 uL of 5-bromo-4-chloro-3-indolyolphosphate p-toluidine salt (BCIP). Once bands developed, the membrane was washed with dH2O and allowed to air dry.
Human GM-CSF-specific ELISA

Tobacco seeds from early to mid-maturation stage (9-15 DAP) were used for extraction of total soluble proteins as described above. The extracts were centrifuged (13,000 rpm, 4°C, 10 min) and the supernatants were transferred to new tubes. The rthGM-CSF concentrations were determined using a QuantiKine™ kit with instructions from R&D systems. The QuantiKine™ is a hGM-CSF enzyme linked immunosorbent assay kit (ELISA). Total seed extracted proteins were determined by the Bradford method (Bradford, 1976). Briefly, the ELISA was performed using a microtitre plate coated with a monoclonal antibody for hGM-CSF. Plant protein extracts as well as E. coli produced rthGM-CSF were allowed to bind to the antibodies. The wells were washed three times with the supplied wash buffer to remove unbound proteins. The second antibody which is linked to horseradish peroxidase was allowed to bind to rthGM-CSF at a different site resulting in a sandwich arrangement. The wells were washed a second time and the colour reaction was initiated. After development of the colour reaction, the reaction was stopped and the samples were transferred to a new microtitre plate. The microtitre plate was read in a spectrophotometer at 450 nm. The data from the E. coli derived rthGM-CSF was used to generate a standard curve as recommended by R&D Systems. The concentration of rthGM-CSF was determined for each plant extract. The seeds of all transgenic plants produced rthGM-CSF as assessed by ELISA. Further, analyses were also conducted on total leaf protein extracts from some transgenic tobacco plants and no rthGM-CSF was detected.

Biological assays

The human bone marrow erythroleukemia, TF-1 cell line (Kitamura et al., 1989) was obtained from American Type Culture Collection (ATCC). The cells were grown as suspension cultures in RPMI 1640/glucose (pH 7.0) medium, supplemented with 1 ng/mL.
E. coli derived rthGM-CSF (R&D Systems) and fetal bovine serum (10%). The cells were washed twice with 1X PBS and resuspended at a concentration of 2.0 X 10^5 cells/mL in RPMI 1640/glucose (pH 7.0). A 0.5 mL volume of cells (1 X 10^5) was transferred into each well of a 24-well tissue culture plate. An aliquot of 0.5 mL RPMI 1640/glucose/20% fetal bovine serum (pH 7.0), containing one of the following samples were added to each well: 1 ng/mL rthGM-CSF (E. coli derived), transgenic tobacco seed extract containing 1 ng/mL of plant derived rthGM-CSF, seed extract from a NT plant, seed protein extraction buffer. Final concentrations are RPMI + 10% fetal bovine serum +/- 1ng/mL of rthGM-CSF or buffer or NT seed protein extract. Cells were grown at 37°C and monitored every 48 hours. All experiments were done in duplicate under sterile conditions. For the experiment where the cell growth was measured at 96 hours, additional aliquots (seed derived protein, as well as E. coli derived rthGM-CSF) were added to the growing cells at 48 hours.

Live cells were counted using haemocytometry/trypa blue exclusion. A 50 uL aliquot of cells was removed from the assay and added to 50 uL of a 0.05% trypan blue solution. After mixing, the solution was then pipetted into the wells of a hemocytometer chamber having a depth of 0.1 mm. The hemocytometer was place under a microscope with a 40X magnification. Only clear, live cells were counted from the four large corner squares. The concentration of cells was then determined taking into account the volume occupied by the cells and the dilution factor. The averages of two independent experiments were used in Microsoft Excel to generate the biological assay graphs. The standard deviations were also calculated using Microsoft Excel.
Chapter 3

RESULTS

Sequence and restriction analyses on the Gt1 rthGM-CSF expression construct

The DNA fragment encoding the mature hGM-CSF was placed under the control of the rice glutelin-1 promoter (Gt1). The rthGM-CSF obtained from two Gt1 transgenic plants was used for comparison in biological assays with the glutelin/hGM-CSF fusion protein produced by a Gt3 plant (Figure 1). As stated before, transformed Gt3 plants were available in the laboratory of Dr. Illimar Altosaar at the time this thesis commenced. Data obtained for the Gt1 construct by the dideoxy sequencing method using the T7 Sequencing Kit confirmed that the complete glutelin-1 signal sequence was fused in-frame with the coding sequence of the mature hGM-CSF sequence (Figures 2-3).

Restriction analyses were used to deduce the orientation of the glutelin-1 promoter and the NOS-TER sequences in the rthGM-CSF expression construct as present in the pGEM4Z plasmid (Figure 1). When the Gt1 expression construct contained in the pGEM4Z plasmid was digested with EcoRI, HindIII and ScaI, a 2.5 kb was observed. This 2.5 kb fragment was expected for the Gt1 construct. When the above mentioned plasmid was digested with EcoRI and BglII (BglII cuts at the 3' end of the promoter and the 5' end of the glutelin signal sequence), an expected band of 1.8 kb was observed that represented the Gt1 promoter. Further analysis using EcoRI, HindIII and BglII resulted in expected fragments of 1.8 kb and 0.722 kb fragments. Restriction analyses using EcoRI and HindIII conducted on the Gt1/pRD400 plasmid also showed a 2.5 kb band representative of the Gt1 rthGM-CSF expression construct (data not shown). Further,
restriction analyses using EcoRI and HindIII conducted on DNA extracted from A. tumefaciens cells that grew on YEP/kanamycin medium showed that cells harboured the 2.5 kb Gt1 rthGM-CSF expression construct (data not shown).
Figure 1. Recombinant hGM-CSF expression constructs. The mature hGM-CSF coding sequence (390 bp) was placed under the control of two rice glutelin promoters Gt1 and Gt3 as shown. Note that the Gt3 construct, in addition to the 72 bp signal sequence, contained the N-terminal 24 nucleotide glutelin coding sequence (encoding an eight amino acid residue syllogistic peptide) fused in-frame with the mature hGM-CSF coding sequence. This additional glutelin sequence is absent from the Gt1 construct. These constructs were each subcloned into separate pRD400 plant transformation vectors. The NOS-TER sequences from *A. tumefaciens* (260 bp) were included for termination (of transcription and polyadenylation). The diagrams are not to scale and are further discussed in the text.
Figure 2. Sequencing confirmation of construct integrity. Autoradiograph detection of the junction of the glutelin-1 signal sequence and the mature hGM-CSF coding sequence as discussed in the "Methods" sections on sequencing. Panel A: arrow 1 points to the translation start site of the glutelin-1 signal sequence while arrow 2 points to the start of the mature hGM-CSF coding sequence. The letters at the top of the autoradiogram represent the dideoxynucleotides where the sequences were terminated. Panel B: from top to bottom, the determined nucleotide sequences, reading from arrow 1 to 2 in the autoradiogram.
ATGGCATGGAATAATGCCCCATAGTTTCTTTCAACGTTTTGCTTGTTC
CTCTTTGCGATGGCTCCCCTAGCCATGGGACCCCGCCTTAGCTGCTGG
CCAGCCACGCAGCCCTGGGAGCATGTGAATGCAATCCAGGAGCCCG
CGTCTCCTGAACCTGAGTAGAGACACTGCTGCTGAGATGAATGAAACA
GTAGAAGTGATATCAGAAAATGTGGGACCTCCAGGAGCCGACCTTGCTA
CAGACCCGCCTGGAGCTGTCACAAGCAGGCGCTCGGGGCAAGCCTACC
AAGCTCAAGGGCCCCCTTGACCATGTGCGCCAGCCACTACAAGCAGCAC
TGCCCTCCAACCCCGGAAACTCTCTGTCAGGACCCGATTTATCAACCTTT
GAAAGTTTCAAAGAGAACCTGAAGGACTTCTCCTGCTTGTACATCCCCTTT
GACTGCTGGAGCCAGTCCAGGGAGTTGAATA

Figure 3. The coding sequences of the Gt1 expression construct. The start of the sequence shows the first 72 nt for the glutelin-1 signal sequence (brown and green indicate codons) and is immediately followed by the mature hGM-CSF coding sequence as was present in the BBG 12 plasmid from R&D Systems (red). The hGM-CSF sequence is preceded by an ATG codon and ends with duplicate stop codons (black). For RT-PCR experiments, only the red region was amplified (384 bp). The length of the entire construct is 462 bp and was determined using the T7 sequencing kit as described in the “Methods” sections on sequencing.
Transgenic tobacco plants, integration of hGM-CSF DNA and its transcripation

Selection for acquired antibiotic resistance in calli and plantlets

Putatively transformed *A. tumefaciens* cells containing the chimeric pRD400/Gt1 expression construct were used to transform tobacco leaf sections. Selection for antibiotic resistance leaf cells was conducted on a regeneration medium containing two antibiotics: carbenicillin and kanamycin. Carbenicillin is known to kill *A. tumefaciens* cells. Kanamycin was expected to kill non-transformed tobacco cells. Putatively transformed tobacco cells developed into clumps of dedifferentiated tissues known as calli. In Figure 4, Petri dish A shows non-transformed (NT) leaf sections that necrotized while Plate B shows vigorously growing calli tissues and plantlets. One hundred percent of leaf sections on the antibiotic selection medium developed one to several pieces of green calli tissue. Plantlets were further selected for antibiotic resistance when they were placed into a rooting medium containing the same two antibiotics. Roots developed from all plantlets and thereafter, whole plants were transferred to soil. In total, 32 independent Gt1 transgenic plants were regenerated and chosen for further studies.

Southern analyses

The molecular basis for the acquired antibiotic resistance in transgenic Gt1 plants was investigated by performing Southern blots. Genomic DNA from several Gt1 plants was isolated from leaves, purified, digested with EcoR I and Hind III, fractionated by agarose gel electrophoresis, transferred onto nylon membrane and probed with labelled EcoR I-Hind III fragments (Figure 1) containing the hGM-CSF mature coding sequence. An expected fragment of 2.522 kb was seen for three Gt1 plants (Figure 5: lanes 4-6). No
bands were observed for the NT plant (Figure 5: lane 3). In addition to the three plants shown in Figure 5, eleven other transformed and regenerated tobacco plants were analysed via Southern blotting and all plants tested positive for the 2.522 kb hGM-CSF expression construct (data not shown).
Figure 4. Continuous selection for transformed tobacco leaf tissues. The photograph shows leaf sections on a regeneration medium after one month of selection on 300 mg/L kanamycin and 500 mg/L carbenicillin as described in the “Methods” section on calli induction. Leaf sections in Petri dish A were not transformed and therefore necrotized. Plate B shows leaf sections that were transformed with A. tumefaciens harbouring the rthGM-CSF expression construct: proliferation of resistant cells into calli and morphogenesis into plantlets was observed.
Figure 5. Genomic organization of three independent transgenic events. Genomic DNA (40 ug) from each tobacco plant was digested with restriction enzymes and loaded onto a 0.8% agarose gel. After electrophoresis, the DNA was transferred to a nitrocellulose membrane and probed with a gel purified and radiolabelled EcoR I-Hind III Gt1 construct as shown in Figure 1 and described in the “Methods” sections on Southern. Lanes 1 and 2: the EcoR I-Hind III insert released from the plasmid containing the Gt1 construct; lanes 3-6: DNA cleaved with EcoR I and Hind III from a non-transformed plant and three Gt1 transgenic plants {14, F1A(14) and 38} respectively. Detection of independent genomic insertion events, lanes 7-10 and lanes 11-14: DNA cleaved with EcoR I alone and Hind III alone respectively. For lanes 7-10 and lanes 11-14, the same plant DNA order is maintained as for lanes 3-6: DNA from a non-transformed plant followed by three transgenic plants {14, F1A(14) and 38} respectively. Arrows indicate the sizes of the detected bands in the autoradiogram.
Correlation of rthGM-CSF expression at the genomic level

Further analyses on the Gt1 plants that expressed high (plant #14 and its progeny F1A(14)) and low levels (#38) of rthGM-CSF were conducted to determine the number of stably integrated expression constructs within their genomes. Plants 14 and F1A(14) were easy to study due to the high level of rthGM-CSF that could be derived from their seeds. For comparison with the high expressers, a low Gt1 rthGM-CSF expresser plant 38 was used. Purified genomic DNA was digested with either EcoRI or HindIII, fractionated by agarose gel electrophoresis, transferred onto a nitrocellulose membrane and probed with labelled EcoRI-HindIII fragments (Figure 1) containing the mature hGM-CSF coding sequence. At least three copies of the Gt1 expression construct were present in the plants producing high levels of rthGM-CSF {Figure 5: plant 14 and its progeny F1A(14)}. However, at least one copy of the Gt1 expression construct was present in the low expresser Gt1 plant 38 (Figure 5). This data served to clarified the inheritance pattern for the progeny plant F1A(14) of three copies of the Gt1 expression construct.

Analyses on transgene transcription

To check if the transgene was actively transcribed, total RNA was extracted from the developing seeds {9-11 days after pollination (DAP)} of Gt1 plants 14 and its progeny F1A(14). The presence of the hGM-CSF mRNA was detected by a combination of reverse transcriptase (RT) and polymerase chain reaction (PCR) experiments using hGM-CSF sequence-specific primers. The PCR amplified fragment of 384 bp was observed for plants that produced the highest levels of rthGM-CSF. The data was obtained for plants 14 and F1A(14) and is presented in Figure 6: lanes 4-5. Without the RT experiment, no fragment was PCR amplified from total RNA and hence the RNA was not contaminated with
genomic DNA (Figure 6: lanes 10-11). The negative controls (non-transformed tobacco seed RNA and water) did not show any amplified product further confirming that the amplified fragments were not artifacts. The glyceraldehydes-3-phosphate-dehydrogenase (G3PDH) mRNA was present in the total human placenta mRNA that was supplied as a positive control with the RT-PCR kit. When the G3PDH specific primers were used in RT-PCR experiments, a 927 bp band was observed (Figure 6: lane 6).
Figure 6. RT-PCR detection of the rthGM-CSF mRNA transcripts in seeds of transgenic tobacco plants. The cDNAs generated using the RT-PCR kit were PCR amplified and subjected to gel electrophoresis as described in the “Methods” sections on RT-PCR. Lanes 1, 8 and 12: *Hae* III markers; lane 2: mature hGM-CSF coding sequence (384 bp) amplified from a pGEM4Z plasmid containing the Gt1 expression construct; lane 3: total RNA from a non-transformed plant; lanes 4-5: total RNA from transformed plants 14 and F1A(14); lane 6: G3PDH, a positive control (927 bp) from the RT-PCR kit; lane 7: no template; lanes 9-11: total RNA from a non-transformed plant and transformed plants 14 and F1A(14) respectively without the reverse transcription step.
Human GM-CSF-specific ELISA and Western blot analyses on seed derived rthGM-CSF

ELISA detection of rthGM-CSF from the seeds of transgenic tobacco plants

To test if the seeds from the transgenic plants produced rthGM-CSF, protein extracts from transgenic and NT plants were assayed using the Quantikine™ hGM-CSF immunoassay kit. The assay tested developing seeds that were collected at different days after pollination (DAP). A standard curve was generated using E. coli derived rthGM-CSF (e.g. Figure 7). The optical density values obtained at 450 nm. for unknown samples, were used to estimate the rthGM-CSF concentrations from the standard curve. The results of the ELISA data on representative plants are shown in Table 1. The transgenic seed extracts contained rthGM-CSF to a level of 736 ng/mL of total protein extract (Table 1: plant 14). This value corresponds to 251 ng/g (rthGM-CSF/total extracted seed proteins) or 0.025% of total soluble proteins. However, plant F1A(14) produced rthGM-CSF to a level of 612 ng/mL of extract or 287 ng/g of extracted seed proteins. This value is 0.029% of total soluble seed proteins. Contrast these results for these two transgenic tobacco plants with the NT tobacco plant that give a reading of 0.0 ng/mL of rthGM-CSF. Thirty-two Gt1 plants were analysed via ELISA for the presence of hGM-CSF in the seed extracts. All transgenic plants produced rthGM-CSF in seeds that ranged from 8 ng/mL to 736 ng/mL of seed extract (data not shown). The seed extracts from an NT plant or the leaf extracts from transformed plants showed no immunoreactive material.
Figure 7. A standard curve for the estimation of rthGM-CSF in the seed extracts of transgenic tobacco plants. The rthGM-CSF specific ELISA kit from R&D Systems was used to generate the standard curve. The data was generated using *E. coli* derived rthGM-CSF from R&D Systems. Only the linear portion of the graph was used to derive the unknown rthGM-CSF concentrations in transgenic tobacco seed extracts. Additional information can be found in the “Methods” section on ELISA.
Table 1. Human GM-CSF immunoassay on rthGM-CSF extracted from tobacco seeds.

<table>
<thead>
<tr>
<th>Transgenic event</th>
<th>[GM-CSF] ng/mL of protein extract<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>736</td>
</tr>
<tr>
<td>38</td>
<td>13.5</td>
</tr>
<tr>
<td>F1A(14)</td>
<td>612</td>
</tr>
</tbody>
</table>

^aThe quantity of rthGM-CSF contained in the primary seed extracts was estimated using the Quantikine[™] kit from R&D Systems. Diluted seed extracts were added to pre-coated microtitre wells containing hGM-CSF specific monoclonal antibodies. The unbound substances were washed away with the wash buffer. The amount of rthGM-CSF was quantified using a horseradish peroxidase conjugated secondary antibody and a chromogen solution. A standard curve was generated using *E. coli* produced rthGM-CSF and the unknown concentrations from plant extracts were determined as described in the “Methods” section on ELISA. NT, non-transformed tobacco plant as control.
Western blot analysis

Further characterization of the expressed recombinant protein utilized Western blotting experiments on soluble protein extracts from seeds of transgenic plants 14 and F1A(14). Distinct bands ranging in size from 19-21 kDa from the seed extracts of two transgenic plants were observed (Figure 8: lanes 5-6). No bands of this size range were detected from the seed extracts of a non-transformed plant. In addition to the distinct 19-21 kDa bands, higher molecular weight protein(s) of about 50 kDa from seed extracts of transgenic tobacco plants also reacted with the hGM-CSF antibodies. The result is shown for the two plants in Figure 8: lanes 5-6. A higher MW band (approximately 55 kDa) appeared in all four lanes that contained plant proteins (Figure 9, Lanes 4-7). The E. coli derived rhGM-CSF appeared as a distinct band at 18 kDa. After the proteins were transferred to the nitrocellulose membrane, the SDS-PAGE gel was stained with Coomassie blue to determine the efficiency of protein transfer (Figure 9). The prestained standards are shown in lane 1 (Figures 8 and 9).
Figure 8. Immunoblot detection of the partially purified, ammonium sulphate precipitated rthGM-CSF from tobacco seeds. After electrophoresis in an SDS-PAGE gel, the proteins were transferred to a nitrocellulose membrane and probed with hrtGM-CSF specific antibodies. Detection utilized alkaline phosphotase linked secondary antibodies as described in the “Methods” section on probing and detection of rthGM-CSF. Prestained SDS-PAGE standards (additional bands are shown in Figure 9) lane 1: ovalbumin, 49.5 kDa and lysozyme, 20.5 kDa. Lanes 2-3: 80 ng and 30 ng of *E. coli* derived rthGM-CSF (14 kDa); lane 4: *E. coli* derived rthGM-CSF added to seed extract from a non-transformed plant; lanes 5-6: protein extracts from seeds of transgenic plants 14 and F1A(14); lane 7: seed extract from a non-transformed plant. Arrows on the right point to bands in the transformed plant lanes 14 and F1A(14).
Figure 9. Loading of protein samples on SDS gel. After transferring to the nitrocellulose membrane in Figure 8, the SDS-PAGE gel was stained with Coomassie blue as described in the “Methods” section on protein transfer. After destaining, the gel was photographed. Lane 1: prestained MW standards from Bio-Rad. A: β-galactosidase, 127.0 kDa; B: bovine serum albumin, 84.0 kDa; C: ovalbumin, 49.5 kDa; D: carbonic anhydrase, 35.3 kDa; E: soybean trypsin inhibitor, 28.1 kDa; F: lysozyme, 20.5 kDa; G: a rthGM-CSF band that appeared to migrate at 18 kDa; H: aprotinin, 7.0 kDa. Lanes 2-7 represent the same samples as shown in Figure 8. Note that the NT samples (Lanes 4 and 7) had more protein in order to detect any non-specific binding of antibodies in Figure 8.
Biological assessment of the seed-derived rthGM-CSF proteins

Further analyses were pursued to determine if the rthGM-CSF produced in transgenic seeds were biologically active. Both Gt1 and Gt3 seed-derived extracts were analysed. The hGM-CSF dependent TF-1 cell line was used (Kitamura et al., 1989) to determine cell viability after incubation with or without commercially available rthGM-CSF or aliquots of tobacco seed extracts. The results of these experiments are presented in Figure 10. The bioassay medium alone (without rthGM-CSF), NT seed extracts and the protein extraction buffer (EB) did not support TF-1 cell proliferation. The seed-derived extracts from the Gt1 and Gt3 plants as well as the E. coli derived rthGM-CSF when added individually to the medium supported TF-1 cell proliferation.

The extracts from NT tobacco seeds decreased the proliferation of TF-1 cells (Figures: 10-11). For example, with the addition of both E. coli derived rthGM-CSF and NT seed extract to the same medium, a 40% decrease in the number of TF-1 cells was observed (Figure 10). This decrease in rate of proliferation was obtained by comparing the number of viable cells found at 48 hours when E. coli derived rthGM-CSF alone was added to the medium.

To gain information on the activity of rthGM-CSF expressed in the first generation of a progeny plant F1A(14), biological assays were continued until 96 hours. The results of these experiments are presented in Figure 11. At 96 hours, the seed extracts from the second regenerant F1A(14) plant stimulated the growth of the initial number of starting TF-1 cells, by 20-fold. This increase is equivalent to proliferation by E. coli derived rthGM-CSF. When both E. coli derived rthGM-CSF and NT extracts were added together to the medium with TF-1 cells, the increase in the number of viable cells achieved was only 5-fold.
Figure 10. Biological activity of seed derived rthGM-CSF from Gt1 and Gt3 plants after 48 hours. Human TF-1 cells were grown as suspension cultures. At the start of the experiment, 1×10^5 cells were pipetted in duplicate into the wells of a sterile culture plate. The cells were incubated at 37 °C in the presence or absence of aliquots of seed extracts from non-transformed or transformed plants or *E. coli* derived rthGM-CSF. All wells containing rthGM-CSF had a final concentration of 1 ng/mL of rthGM-CSF. Cell viability measurements were determined using haemocytometry/trypsin blue exclusion. M: medium; NT: non-transformed seed extract; Gt1(14), F1A(14) Gt1 and Gt3: seed extracts; EB: protein extraction buffer. The experiment is further discussed in the “Methods” section on biological assays.
Figure 11. The rthGM-CSF expression construct is stably inherited in the second generation. Seed extract from a progeny plant was analysed for its proliferative effect on TF-1 cells. The data represent the proliferation of cells as measured at 96 hours. TF-1 cells were grown as suspension cultures and 1 X 10^5 cells were pipetted in duplicate into the wells of a culture plate. The cells were incubated at 37 °C in the presence or absence of E. coli derived rthGM-CSF or aliquots of seed extracts from either a non-transformed plant or a transformed plant F1A(14). All wells containing rthGM-CSF had a final concentration of 1 ng/mL of rthGM-CSF. Cell number and viability were determined using haemocytometry/trypsin blue exclusion. M: medium; NT: non-transformed seed extract; F1A(14) Gt1: seed extract; EB: protein extraction buffer. The experiment is further discussed in the “Methods” section on biological assays.
Chapter 4

DISCUSSION

Analysis of transgene(s)

Here is the first reported expression of a matured human cytokine that specifically accumulated in the seeds of transgenic tobacco plants. The previously reported cytokine that was produced in transgenic tobacco seeds by Ganz et al., 1996 consisted of an N-terminal syllogen composed of the first eight residues of the glutelin-3 protein fused in frame with the mature hGM-CSF sequence. This is also the first report of the use of the glutelin-1 promoter and glutelin-1 signal sequence fused together in-frame with a cytokine for expression in a plant system. Alternately, the Gt3 syllogistic cytokine was driven by the glutelin-3 promoter and utilized the glutelin-3 signal peptide for targeting to the endosperm cells. Although, the Gt1 and Gt3 signal sequences encoded identical signal peptides, the cytokine expression constructs utilized two different promoters from the same family and resulted in the putative syntheses of two different proteins. Therefore, these two experiments, though similar in nature, cannot be equated.

The hGM-CSF coding sequence lacked its own signal sequence but included an N-terminal methionine codon derived from the commercially available BBG12 plasmid. Previous reports showed that the N-terminal methionine was not cleaved from the mature rthGM-CSF protein when it was expressed in E. coli. However, this did not affect the protein's biological activity (Burgess et al., 1987). Further, the Gt3 rthGM-CSF from tobacco was shown to be biologically active and this protein should also contain an N-terminal methionine (Ganz et al., 1996). Therefore, the ATG codon at the 5' end of the

68
mature hGM-CSF coding sequence was retained in the new Gt1 construct with no apparent destabilizing effect on the protein structure.

The utilization of *A. tumefaciens* for generating transgenic tobacco plants was simple and required no specialized apparatus. After the co-cultivation period of the leaf sections with *A. tumefaciens* harbouring the Gt1 expression construct, the selection process was initiated. From Figure 4, it appeared that the concentration of the two selection antibiotics, carbenicillin and kanamycin, was adequate for this experiment. One may deduce that the selection procedure was effective in eliminating non-transformed tobacco cells thereby preventing development of non-transformed plantlets. Hence, all of the tobacco cells surviving selection developed into transgenic calli and eventually differentiated into transgenic plantlets. Since one hundred percent of leaf sections that were co-cultivated with *A. tumefaciens* cells developed one to several pieces of calli tissue, *A. tumefaciens* is ideal for transforming tobacco. Other transformation methods including the particle bombardment method result in significantly lower transformation rates.

No phenotypic abnormalities were observed for any of the regenerated plants. This may indicate that the insertion site(s) of the Gt1 expression construct(s) did not disrupt any genes that are responsible for the overall visual characteristics. However, if mutation of an absolutely essential gene occurred in some transformed tobacco cells, most likely, these cells will not survive and hence could not grow into matured plants. Further, self-pollination and germination of seeds indicated that the parental lines were fertile and viable. For example, plant F1A(14) was a progeny of plant 14 and both demonstrated almost identical genotypic and phenotypic characteristics.
The molecular basis for the acquired antibiotic resistance in transgenic Gt1 plants was investigated by performing a Southern blotting experiment. Southern analysis served several purposes. In particular, Southern blots confirm that the putatively transformed tobacco plants acquired the Gt1 expression construct and that the antibiotic selection procedure was effective. Further, the integrity of the Gt1 expression construct was also deduced from the Southern blot and this indicated the expected size of 2.5 kb (Figure 5). No rearrangement of the Gt1 expression construct was observed which suggests that the rthGM-CSF constructs were functional. The stringency of the hybridization conditions was adequate and hence, no bands appeared for the NT plant lane.

Further, the kanamycin gene for antibiotic resistance appeared to also have had no rearrangements that may result in a loss of its function. If the kanamycin gene was active but no Gt1 expression construct was detected, this would indicate a rearrangement or breakage of the T-DNA during *A. tumefaciens* mediated transformation. Growth on kanamycin and detection of the Gt1 expression construct on a Southern blot seem to indicate that the entire DNA sequence contained between the T-DNA borders were transferred into the genomes of transgenic plants. Therefore, *A. tumefaciens* mediated transformation of tobacco leaf sections coupled with selection on the antibiotic media was an effective method of generating transgenic tobacco plants.

The possible molecular mechanism that resulted in higher and lower production of rthGM-CSF in three Gt1 plants was investigated. The number of stably integrated Gt1 expression constructs within the genomes of high expressor plants 14 and F1A(14) was determined to be at least three copies while the low expressor plant 38 had at least one copy (Figure 5: lanes 7-14). This pattern seem to correlate well with the expression levels observed for plant 14 and its progeny F1A(14). The inheritance pattern of transgenes for
the progeny plant F1A(14) suggests that there were no genomic rearrangements. Although only three Gt1 plants were analysed, it may be possible to increase recombinant protein accumulation in the seeds of transgenic tobacco plants by increasing the transgenes from one to three copies.

The RT-PCR experiment allowed for the detection of the mRNA transcripts arising from the rthGM-CSF gene. The stability of the seed mRNA obtained from the Gt1 construct was not known. Therefore, seeds were collected from different days after pollination (9-11 DAP). The presence of the mRNA transcripts in plants 14 and F1A(14) and their absence in the NT plant seem to strengthen our hypothesis that the rthGM-CSF protein was being produced via translation of the transgenes mRNAs (Figure 6: lanes 3-5). To further confirm that the RT-PCR steps were true and the mRNA was not contaminated with DNA, no product was PCR amplified when the mRNA was used as a template for the PCR reaction (Figure 6: lanes 9-11). Total mRNA from human placenta was used in the RT-PCR experiment as a positive control. The observation of a 927 bp band indicated that the RT-PCR experiment was successful at every stage (Figure 6: lane 6). The RT-PCR results indicated that the mRNA supplied was intact and that the RT-PCR steps were authentic. Taken together, the antibiotic selection, Southern and RT-PCR analyses seem to indicate that the putatively transformed plants are real and are not artifacts. However, this experiment will only be successful if the transgene(s) are correctly processed resulting in function recombinant hGM-CSF accumulation.

Analysis of recombinant hGM-CSF

To determine whether putatively transformed plants produced rthGM-CSF in the leaves or seeds, the Quantikine™, hGM-CSF ELISA kit was used. The sensitivity of the
assay was reported at 2.8 pg of rthGM-CSF by R&D Systems. The analyses required for this project were somewhat limited by the very nature of the experiments being conducted. Collection of seeds required plants to flower and seeds to be collected at specific DAP. In some cases, regenerated plants became infected and died before analyses were conducted. Hence more than 32 transgenic plants were generated, for example, the previously mentioned low expresser plant #38 has a plant identification number that is greater than 32 - the number of transgenic plants analysed by ELISA. The cost of the ELISA kit was approximately $540.00. Generation of the standard curve using E. coli derived rthGM-CSF decreased the number of sample wells that were available for determining the unknown rthGM-CSF concentrations in protein extracts. The hGM-CSF ELISA Kit expires within one month of first use and plants flower at different times. These constraints significantly consumed the limited financial resources that were available to analyse these transgenic plants and hence, only one set of values was obtained for each standard ELISA curve.

The seeds of all transformed tobacco plants produced rthGM-CSF up to 736 ng/mL of protein extract, and this indicated that every transgenic plant had the capacity to accumulate the recombinant cytokine. No rthGM-CSF was detected in the seeds of an NT plant (Table 1). The competent application of recombinant DNA technology, coupled with plant transformation technology, resulted in transgenic tobacco plants not producing rthGM-CSF in the leaves but explicitly in seeds. The specificity of the glutelin-1 promoter was confirmed when the leaves of transgenic tobacco plants were analysed via ELISA and no rthGM-CSF was observed. In a related work, the use of a different rice glutelin promoter resulted in accumulation of phaseolin protein up to a level of 4% of the total soluble seed proteins in transgenic rice (Zheng et al., 1995). Similarly, ferritin expressed
under the control of a larger rice glutelin promoter, accumulated at the level of 0.01-0.3% of the total rice seed protein (Goto et al., 1999). Therefore, the next stage of the project will be conducted in rice to determine if higher yields are possible.

The actual rthGM-CSF levels present in the seeds of transgenic plants are most likely higher because the re-extracted pellets were found to have significant amounts of rthGM-CSF protein (data not shown). In addition, it was found that the levels of rthGM-CSF protein varied for various lots of seeds collected at different DAP and or even from the same plant (data not shown). These results (Southern, independent genomic inserts. RT-PCR, and ELISA data), for the parent plant 14 and progeny plant F1A(14) are not too radically different. Overall, the data indicate the possibility of a predictable pattern of transgene expression in the progeny of a tobacco plant having approximately the same number of inserts.

The Western blot analysis was the most intricate experiment conducted. Initially, the transgenic crude seed protein extracts did not give any positive result when analysed via Western blotting experiments. A previous report showed hGM-CSF precipitated at 80% ammonium sulphate saturation (Wong et al., 1985a). The precipitated fraction obtained between 65% and 95 % ammonium sulphate saturation resulted in higher yields of rthGM-CSF than the fraction obtained at 80% ammonium sulphate saturation (data not shown). The ammonium sulphate precipitation experiments should result in the removal of some plant proteins and does not result in a homogenous form of the plant synthesized rthGM-CSF. Therefore, ammonium sulphate precipitation experiments were conducted to obtain only partially purified rthGM-CSF from the transgenic seed extracts of two transgenic plants {14 and F1A(14)}. The appearance of distinct bands of 19, 21, and 50 kDa from the seed extracts of these two transgenic plants in Western blots further
confirmed the presence of the rthGM-CSF in the seeds of transgenic tobacco plants (Figure 8: lanes 5-6). In case of the seed-produced rthGM-CSF, the 19-21 kDa bands may be glycosylated although it remains to analyze the carbohydrate structure. The high-molecular weight band (~50 kDa) most likely represents another glycosylated form of the rthGM-CSF protein. Although the NT lane in the Western blot was devoid of bands in the 19-50 kDa size ranges, an approximate 55-kDa band did appear. This 55-kDa band also appeared in other lanes containing plant derived proteins and this may be due to non-specific binding of the rthGM-CSF antibodies.

These observations are parallel to reports on the production of rthGM-CSF in yeast and human Namalwa cells. For example, rthGM-CSF produced in transformed yeast cells ranged in size from 14.5 kDa to 50 kDa (Ernst et al., 1987). Similarly, the Namalwa cell-derived rthGM-CSF showed heterogeneity in the molecular mass of the protein ranging from 16-35 kDa as determined by Western blot analysis (Okamoto et al., 1990). In the hGM-CSF protein backbone, there are two potential N-linked glycosylation sites at Asn27 and Asn37 (Cantrell et al., 1985; Lee et al., 1985). In the Namalwa cell studies, it was proposed that the largest size of rthGM-CSF (25-35 kDa) had both sites N-linked, glycosylated, the intermediate size had one site N-linked glycosylated and the smallest size molecules (16-18kDa) had neither site glycosylated (Okamoto et al., 1990).

A number of factors such as the cellular environment, protein structure and molecular interactions can affect the state and efficiency of glycosylation. For example, the human and mouse GM-CSF proteins are 60% homologous but were differentially glycosylated during secretion by a yeast host (Ernst et al., 1987). About 50% of the mouse GM-CSF was not glycosylated in yeast. Similarly, phaseolin, a plant storage protein, was
synthesized as a mixture of singly-glycosylated and fully-glycosylated proteins when expressed in yeast (Vitale et al., 1993).

Because the signal peptides of seed storage proteins such as zeins, glutenins and legumins from different plant species such as maize, wheat and field beans were correctly processed in transgenic tobacco plants (Robert et al., 1989; Bagga et al., 1995; Fiedler and Conrad, 1995), it is quite likely that the rice glutelin signal peptide (24 amino acid residues) was also cleaved from the rthGM-CSF proteins. The exact cleavage of the signal peptide should release the mature rthGM-CSF in Gt1 plants, and mature rthGM-CSF protein with the eight glutelin amino acid syllogistic peptide on the N-terminal end in Gt3 plants (Ganz et al., 1996). Ideally, N-terminal peptide sequencing can confirm the hypothesis for cleavage of the signal peptide.

Furthermore, the proper cleavage of the glutelin signal peptide should permit rthGM-CSF proteins to follow the secretory pathway and, through electron microscopy studies, it should be possible to find the exact subcellular locations of both the Gt1 and Gt3 recombinant factors. In a different targeting experiment in our lab, the Gt3 promoter and its associated signal sequence were used to target a human cytomegalovirus immunodominant glycoprotein B complex (HCMV IG-BC) to the seeds of tobacco plants (Tackaberry et al., 1999). The HCMV IG-BC was found to localize in protein bodies of tobacco endosperm cells (E. Tackaberry; personal communication). In addition, the 15-kDa-zein protein from maize, after correct processing in the ER of transgenic tobacco plants, accumulated in novel ER-derived protein bodies in the endosperm cells (Bagga et al., 1995).
Once a recombinant protein is produced, it will be of little use if it is non-functional. It is this very reason why the crude seed protein extracts from transgenic plants were analysed in biological assays. One key point here is the use of both Gt1 and Gt3 seed-derived extracts simultaneously in biological assay experiments. The TF-1 cell line is an hGM-CSF dependent cell line that was previously used in biological assays (Kitamura et al., 1989). The results in Figure 10 indicated proliferation of the TF-1 cells was only possible when rthGM-CSF from E. coli or from transgenic (Gt1 and Gt3) seeds were added to the medium. This experiment showed that TF-1 cells required rthGM-CSF for their proliferation and that no TF-1 cell proliferative factor(s) were present in the NT seed extracts.

The Gt3 synthesized glutelin/hGM-CSF syllogistic peptide was used for comparison with the rthGM-CSF produced by Gt1 plants. The design of the “N-terminal bit” was to mask or disguise the foreign protein since storage proteins like glutelins are known to be stable in tobacco endosperm cells (Leisy et al., 1990; Zheng et al., 1993). Further, since glutelin is normally targeted into stable protein bodies, “N-tagged” rthGM-CSF with the syllogistic or antecedent peptide of glutelin was an attempt to increase its stability in an endosperm environment (Ganz et al., 1996). Since the biological assay for both the Gt1 and Gt3 rthGM-CSF was done in the presence of seed proteins and there were approximate equivalent activities for both proteins, it is inconclusive whether the syllogistic approach, of making the foreign protein as more plant-like, is useful. However, both recombinant proteins were biologically active and “N-terminal” tagging did not affect rthGM-CSF biological activity.

In addition to the NT extracts not having any proliferative capacity on TF-1 cells, it appeared to diminished the biological activity of the E. coli derived rthGM-CSF on TF-1
cells (Figure 10). The decrease was so drastic that even the Gt1 rthGM-CSF extracts appeared to be better or equivalent to the mixed cocktail of *E. coli* derived rthGM-CSF and NT extract in supporting the growth of TF-1 cells. This shows that compound(s) in the NT tobacco seed extracts may reduce the biological activity of non-glycosylated *E. coli* derived rthGM-CSF. It is possible that some of the rthGM-CSF from *E. coli* was degraded by plant protease(s).

These observations would suggest that biological activity of tobacco seed-derived rthGM-CSF proteins is also similarly affected. However, the transgenic seed extracts (i.e. from Gt1 and Gt3 plants) are somewhat more effective in supporting the proliferation of TF-1 cells than the mixed cocktail of *E. coli* derived rthGM-CSF and NT extracts. This indicates that the seed-derived rthGM-CSF is more active in supporting the TF-1 cells and this may be due to an increased stability of glycosylated forms of seed-derived rthGM-CSF in the presence of other plant proteins.

Additional information on the effects of the NT extract and the rthGM-CSF protein from the progeny plant F1A(14) were obtained from the biological assay that continued on to 96 hours. A 20-fold stimulation of TF-1 cell proliferation was observed when the seed protein extracts from the F1A(14) plant was used in this biological assay (Figure 10). This stimulation of TF-1 cells was equivalent to proliferation of TF-1 cells obtained by *E. coli* derived rthGM-CSF. The effect of the NT seed extract on *E. coli* derived rthGM-CSF was significant to decrease the 20-fold proliferative effect to only 5-fold. This again suggests that the seed extract from an NT plant contained substance(s) that diminished the activity of the *E. coli* derived rthGM-CSF. The rthGM-CSF protein produced by monkey kidney COS-1 cells and the murine rGM-CSF produced in transgenic tobacco calli and plant tissues were reported to be biologically active as assessed by proliferation studies on
GM-CSF dependent leukemic cell lines (Luo et al., 1995; Lee et al., 1997). These reports support the experimental results being reported in this thesis for the rthGM-CSF expressed in Gt1 tobacco seeds.

As discussed earlier, the seed-derived rthGM-CSF appears to be glycosylated. Although plant N-glycosylation patterns might be somewhat different than humans (e.g. presence of xylose, fucose), the glycosylated tobacco rthGM-CSF might be better tolerated in human therapy than the \textit{E. coli} derived rthGM-CSF (Schuh and Morrissey, 1999). Clinical trials showed that the glycosylated yeast-derived rthGM-CSF resulted in decreased adverse effects when compared to \textit{E. coli} derived rthGM-CSF. Therefore, the carbohydrate structure of the seed-derived rthGM-CSF needs to be analysed, although, glycosylation does not seem to be essential for biological activity of hGM-CSF, either \textit{in vivo} or \textit{in vitro} (Kaushansky et al., 1987; Moonen et al., 1987; Burgess et al., 1987). However, previous reports suggested that rthGM-CSF preparations expressed in yeast, bacteria or mammalian cells have variations in their pharmacokinetics, biological activity and immunogenicity (Dorr, 1993; Hovgaard et al., 1993; Robison and Myers, 1993). These variations may lead to increased clinical toxicity of rthGM-CSF and thus may influence the clinical use of human GM-CSF. Further work on seed-derived rthGM-CSF is needed to determine the direction this project may take.
Conclusion

In this research, the expression of rthGM-CSF was studied in the tobacco system that utilized the well-characterized glutelin-1 promoter. The glutelin-1 promoter and its associated signal sequence were used for direct deposition into the stable, low hydrated compartments of tobacco seeds. This resulted in a highly ordered accumulation of rthGM-CSF in the seed of transgenic tobacco plants. Further, the rthGM-CSF was found to be biologically active as assessed on TF-1 cells suggesting that the seed compartment is suitable for rthGM-CSF production. An antecedent peptide may not be necessary for recombinant cytokine accumulation in transgenic tobacco. Currently, other cDNAs are being expressed in several plant systems, as the initial transgenic rthGM-CSF produced in tobacco appeared as though it was correctly processed. These promising results should act as a foundation for further studies in edible plant systems (carrot, grapes, rice).

The experimental results suggest that it is feasible to produce biologically active rthGM-CSF, and probably other colony stimulating factors also, in the seeds of a higher plant. Further fine tuning of the promoter, signal sequences, proper codon choice (Sardana et al., 1996; Cheng et al., 1998) and host plant combinations (e.g. rice and other cereals) should make it possible to produce very high levels of recombinant proteins in the seeds of several plant species. This work has important implications for the use of edible plant seeds as future bioreactors and for the delivery of drugs.
Future directions

Since successful expression of a cytokine in the seeds of tobacco plants was demonstrated when the seed-specific rice glutelin-1 promoter was used, most likely, the expression of the Gt1 construct in rice will similarly yield positive results. It is important that other analyses on the tobacco-produced rthGM-CSF be conducted (administration in laboratory animals, electron microscopy, carbohydrate moiety analyses and N and C terminal sequencing) to determine the full structural and functional nature of the recombinant protein. This study can be extended to produce other therapeutically useful cytokines, antigens and antibodies in plants using different targeting sequences: promoters, signal sequences and ER retention sequences. Studies to increase recombinant protein yield will need to fine-tune the cDNAs with plant-like codons and determine the most efficient copy number of transgenes needed to achieve maximum expression levels in other plant systems.
REFERENCES

from patients receiving granulocyte-macrophage colony-stimulating factor. *Br. J.
Hematol.* 71: 475-484.

Tackaberry, E., Dudani, A.K., Prior, F., Tocchi, M., Sardana, R., Altosar, I. and Ganz.
P.R. 1999. Development of biopharmaceuticals in plant expression systems:
cloning, expression and immunological reactivity of human cytomegalovirus
glycoprotein B (UL55) in seeds of transgenic tobacco. *Vaccine* 17: 3020-3029.

2000. Human immune responses to a novel norwalk virus vaccine delivered in

Takaiwa, F., Kikuchi, S. and Oono, K. 1989. The complete nucleotide sequence of new

for the endosperm-specific expression of a rice glutelin chimeric gene in transgenic

Takaiwa, F., Yamanouchi, U., Yoshihara, T., Washida, H., Tanabe, F., Kato, A. and
responsible for the endosperm-specific expression of members of the rice glutelin

Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A. and Galeffi, P.
1993. Transgenic plants expressing a functional single-chain Fv antibody are

Acad. Sci. USA* 92: 3358-3361.

Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stoger, E., Drossard, J., Christou, P.,
system for functional diagnostic and therapeutic antibodies. *Transgenic Res.* 8:
441-449.

transcription from the GM-CSF promoter in synergy with either protein kinase C or

Tsuda, E., Kawanishi, G., Ueda, M., Masuda, S. and Sasaki, R. 1990. The role of
405-411.

receptor exists as a preformed receptor complex that can be activated by GM-CSF.

Yamagata, H. and Tanaka, K. 1986. The site of synthesis and accumulation of rice storage

Yusibov, V., Modelska, A., Steplewski, K., Agadjanyan, M., Weiner, D., Hooper, D.C. and
Koprowski, H. 1997. Antigens produced in plants by infection with chimeric plant
viruses immunize against rabies virus and HIV-1. Proc. Natl. Acad. Sci. USA 94:
5784-5788.

Zeitlin, L., Olmsted, S.B., Moench, T.R., Co, M.S., Martinell, B.J., Paradkar, V.M.,
monoclonal antibody produced in transgenic plants for immunoprotection of the

regulation of the rice glutelin Gt3 gene are conferred by at least two spatially

Zhao, Y., Okita, T.W. 1995. Interactions of the glutelin Gt3 5’ flanking regulatory regions
with rice nuclear proteins. Plant Cell. Physiol. 36: 1657-1667

5’ distal and proximal cis-acting regulator elements are required for developmental

beta-phaseolin is synthesized, processed, and accumulated in the vacuolar type-II