INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI
Molecular Cloning of Three Genes Encoding

SNF1/AMPK Protein Kinases from

Drosophila melanogaster

By

(C) Eduardo N. Taboada

Thesis submitted to the
School of Graduate Studies and Research
in partial fulfillment of the requirements for the
Doctor of Philosophy degree in Biology

University of Ottawa
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-52279-2
ACKNOWLEDGEMENTS

I would like to express a most sincere thank you to my supervisor Dr. Donal Hickey, for providing me with a rich learning experience, for providing invaluable support and guidance, for his patience and encouragement, and above all, for going above and beyond the call of duty in looking out for the best interests of myself and my fellow students.

I am also thankful to the members of my research committee, Dr. B. Benkel, Dr. G. Carmody and Dr. T. Moon for their helpful advice.

I would also like to pass many thanks to my various labmates past and present, who have over the years provided excellent assistance, ideas, and discussions, scientific and otherwise.

I am also very thankful to the Taboada, Scarinci-Taboada and Mykytczuk families, for providing me with encouragement, strength, patience, love and support.

Lastly, I want to extend my warmest thoughts to Oksana Mykytczuk. While the road we have traveled has meandered greatly, the trip has certainly been memorable.
ABSTRACT

Drosophila melanogaster provides a rare example of glucose repression in a metazoan and there is evidence for the functional conservation between the yeast and *Drosophila* glucose repression pathways. In an effort to characterize potentially conserved molecular components of the *Drosophila* glucose repression pathway, possible *Drosophila* homologues of genes known to play a role in yeast glucose repression were sought.

A number of different genes are known to play a role in the yeast glucose repression pathway and the *SNF1* gene, encoding a serine-threonine protein kinase, has the essential function of releasing genes from glucose repression in response to glucose starvation. *SNF1* homologues have been found in a number of different organisms and recent molecular and biochemical evidence has revealed that the mammalian AMP-activated protein kinases (AMPKs), known to regulate fatty acid and sterol metabolism in response to stress, represent the mammalian homologues of *SNF1*. SNF1 kinase homologues have been found across diverse eukaryotic lineages thus making them ideal candidates for cloning. We therefore took aim at cloning possible SNF1 homologues in *Drosophila*.

Three novel *Drosophila* protein kinases were cloned and found to represent homologues of previously reported protein kinases. Two of the *Drosophila* protein kinase genes reported here, *DM_SNF1B-1* and *DM_SNF1B-2* are found clustered in tandem within a 4-kb region of the *Drosophila* genome. The encoded polypeptides share intermediate levels of sequence similarity with SNF1 but share higher levels of sequence similarity with the putative human protein kinase KP78, a marker protein lost in chemically induced primary carcinoma of the pancreas.

The third *Drosophila* protein kinase gene *DM_SNF1A*, which is found in a single copy in the *Drosophila* genome, was found to share high similarity with the yeast *SNF1* and an even higher level of similarity (92% similarity within the catalytic domain) with the mammalian AMPKs. Although the non-catalytic regulatory domain of Dm_snf1a contains a number of features held in common with the two mammalian Ampk-α isoforms, it also contains features held in common with
yeast Snf1 and which are missing in the Ampk-α isoforms. Some of these features may be the basis for known functional differences between the yeast and mammalian kinases. Given the conservation between the yeast and Drosophila glucose repression systems the DM_{SNF1A} may play a dual role in both glucose repression and the regulation of lipid synthesis in response to stress.

In addition to well-established SNF1 homologues, a growing number of “SNF1-related” kinase sequences exist in the various molecular sequence databases. Phylogenetic analysis of these sequences, along with those of the three novel kinases reported here, revealed that DM_{SNF1A} is found on a well-supported branch that includes well-known SNF1-homologues. $DM_{SNF1B-1}$ and $DM_{SNF1B-2}$ branch along with kinases related to the human $K\text{P}78$ kinase. These kinases, along with the bulk of other ‘SNF1-related’ kinases in the databases represent sequences that are too divergent from the main SNF1/AMPK homologues for the sequence similarity to have any functional significance. Thus functional inferences in the literature that have been made based on sequence similarity between these ‘SNF1-related’ kinases and the SNF1/AMPK kinases must be re-examined.

The identification of a Drosophila homologue of the yeast SNF1 kinase helps to extend the list of functional similarities between the Drosophila and yeast glucose repression systems. The cloning of the Drosophila DM_{SNF1A} presents us with the opportunity for future comparative studies to shed light on the evolution of both the SNF1/AMPK family of protein kinases and the signalling pathways that they mediate.
TABLE OF CONTENTS

AKNOWLEDGEMENTS ... i

ABSTRACT .. ii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS.. xii

GENE NAMING CONVENTIONS... xii

1. LITERATURE REVIEW.. 1

1.1 Introduction .. 1

1.2 Signal transduction .. 3

1.2.1- The role of signal transduction pathways........................... 3

1.2.2- The components of a signal transduction pathway.............. 3

1.3 An overview of protein phosphorylation 7

1.3.1- The “eukaryotic” protein kinase superfamily...................... 8

1.3.2- Protein kinases in Bacteria, Archaea. 10

1.3.3- Homologous kinase domains in the ePK superfamily 13

1.3.4- Protein kinase cascades and their role in signal transduction 15

1.3.5- The phosphoprotein phosphatases 16

1.4 The SNF1/AMPK family of protein kinases. A historical overview. .. 19

1.4.1- The role of SNF1 in the yeast glucose repression 20

1.4.1.1- Glucose repression in yeast metabolism 20
TABLE OF CONTENTS (cont)

1.4.1.2- The glucose repression pathway: generation of the glucose signal...22
1.4.1.3- The glucose repression pathway: the downstream effectors23
1.4.1.4- The glucose repression pathway: the role of SNF1 in derepression ..24
1.4.1.5- The SNF1 kinase is a heterotrimeric complex26
1.4.1.6- Glucose repression: targets of the SNF1 kinase complex.......29
1.4.1.7- The role of protein phosphatases in glucose repression.........33

1.4.2- The role of the AMPK in mammalian lipid metabolism33
1.4.3- Molecular characterization of the mammalian AMPKs35
1.4.4- Regulation of the mammalian AMPKs38
1.4.5- The physiological role of mammalian AMPKs40
1.4.6- Similarities between SNF1 and AMPK protein kinases44
1.4.7- Phylogenetic distribution of the SNF1/AMPK protein kinases46

1.5- The glucose repression system in *Drosophila*49

1.6- Thesis project: description and goals ..51

2. MATERIALS AND METHODS ...52

2.1- Degenerate PCR primer design ..52

2.1.1- SNF1/AMPK biased primers ..52
TABLE OF CONTENTS (cont)

2.1.2- Primers biased towards SNF1 and its plant homologues ..52
2.2- PCR cloning of SNF1-like sequences ..53
2.3- Probe construction and *Drosophila* library screening ...55
2.4- Subcloning and DNA sequencing of genomic clones ...56
2.5- Northern and genomic Southern analysis ...57
2.6- Cloning of full length cDNA of *DM_SNF1A* ...58
2.7- Sequence analysis and sequence comparisons ..60
2.8- Molecular sequence accession numbers ..61

3. RESULTS

3.1- PCR identification of novel kinase domains ...62
 3.1.1- Identification of novel *Drosophila* SNF1-like kinase domains62
 3.1.2- Identification of novel human SNF1-like kinase domains64
 3.1.2.1- Expression studies on novel human SNF1-like kinase domains68
3.2- Cloning of novel protein kinases from *Drosophila* ...69
 3.2.1- Restriction mapping and Southern analysis of clones69
 3.2.2- Characterization of *DM_SNF1B-1* and *DM_SNF1B-2*69
 3.2.2.1- Restriction mapping and sequencing of the *DM_SNF1B-1/DM_SNF1B-2* gene cluster72
TABLE OF CONTENTS (cont)

3.2.3 Characterization of DM_SNFI

3.2.3.1- Restriction mapping and sequencing of the

 DM_SNFI gene...76

3.2.3.2- Cloning of a cDNA copy of DM_SNFI......................................80

3.2.3.3- Analysis of the sequence divergence between

 DM_SNFI and its human counterparts......................................83

3.2.3.4- The DM_SNFI gene appears to be in single copy

 in the Drosophila genome..83

3.2.4- Expression studies on the novel Drosophila kinases.....................86

3.3 Phylogenetic survey of the SNFI/AMPK protein kinase family..................88

3.3.1- DM_SNFI:

 3.3.1.1- Protein sequence alignments...88

 3.3.1.2- Phylogenetic analysis of sequences closely related to

 DM_SNFI-1 and DM_SNFI-2...90

3.3.2- DM_SNFI:

 3.3.2.1- Protein sequence alignments..92

 3.3.2.2- Phylogenetic analysis of closely-related

 SNFI/AMPK sequences..93

3.3.3- Relationship between SNFI, AMPK and other SnRKs.......................96
TABLE OF CONTENTS (cont)

3.3.3.1- Protein sequence alignments...96

3.3.3.2- Phylogenetic analysis of the SNF1/AMPK and SNF1-related kinases...97

4. DISCUSSION AND CONCLUSIONS

4.1 Homology-based PCR cloning of members of a protein kinase subfamily.........101

4.2 Evolutionary conservation of DM_SNF1B_1 and DM_SNF1B_2.........................105

4.3 Drosophila $SNF1A$: a putative homologue of the mammalian AMPKs..............108

4.4 Molecular evolution of the SNF1/AMPK protein kinase family........................114

4.5 Molecular conservation of the glucose repression cascade in Drosophila.............119

4.6 Evolution of SNF1/AMPK-mediated cascades...123

4.7 Conclusions...126

5. REFERENCES...129

APPENDIX-I SNF1/AMPK and SNF1-related kinases used in phylogenetic analysis...........150
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An overview of the yeast glucose repression system.</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>Structure of the SNF1 kinase complex and glucose-regulated interactions.</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>Identification of SNF1/AMPK-like sequences from Drosophila melanogaster.</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>PCR amplification of SNF1/AMPK-like sequences from Drosophila melanogaster.</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>PCR identification of a novel human AMPK isoform.</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>Restriction mapping and subcloning of the Drosophila DM_SNF1B gene cluster</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>Sequencing strategy used on subclone pET193-2</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Sequence of a 6.5 Kb region bearing the DM_SNF1B-1/DM_SNF1B-2 gene cluster</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>Protein sequence alignment of the proteins encoded by DM_SNF1B-1 and DM_SNF1B-2 and the human kinase KP78.</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Restriction mapping and subcloning of the region containing the DM_SNF1A gene.</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>Sequencing strategy used to obtain the DM_SNF1A gene.</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>Sequence of a 3.8 Kb region bearing the complete DM_SNF1A gene.</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>Protein sequence alignments featuring Drosophila DM_Snf1a and the human and yeast homologues.</td>
<td>82</td>
</tr>
<tr>
<td>12</td>
<td>Protein sequence alignment of a group of kinases similar to DM_SNF1B-1 and SNF1B-2.</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>Protein parsimony tree derived from an alignment of kinases sharing similarity with DM_SNF1B-1 and DM_SNF1B-2.</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (cont)

14 Protein sequence alignment of a group of sixteen highly related SNF1/AMPK-like protein kinases 94

15 Protein parsimony tree derived from an alignment of SNF1/AMPK-like protein kinases. 95

16 Protein sequence alignment of the catalytic domains of thirty-one SNF1/AMPK-related protein kinases. 99

17 Protein parsimony tree derived from an alignment of kinases sharing similarity with DM_SNF1B-1 and DM_SNF1B-2. 100
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Percentage of sequence identity and sequence similarity between DM_SNFI and the human AMPK isoforms α-1 and α-2</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Distance matrix for the catalytic and non-catalytic domains of seven protein kinases</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>SNF1/AMPK and SNF1-related kinases used in phylogenetic analysis</td>
<td>150</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

aa: amino acid
ACC: acetyl-CoA carboxylase
ACCK: acetyl-CoA carboxylase kinase
AMPK: AMP-activated protein kinase
AMPKK: AMP-activated protein kinase-kinase
AMP/ADP/ATP: adenosine mono/di-/tri-phosphate
bp: base pair(s)
°C: degree Celsius
cAMP: cyclic adenosine monophosphate
cDNA: complementary DNA
cGMP: cyclic guanosine monophosphate
CK: creatine kinase
CoA: coenzyme A
Cr: creatine
C-terminus(al): carboxy-terminus(al)
DNA: deoxyribonucleic acid
dNTP: deoxy nucleotide triphosphate
DTT: dithiothreitol
EDTA: ethylenediaminetetraacetic acid
ePKs: eukaryotic protein kinases
g: gram(s)
GPAT: sn-glycerol-3-phosphate acetyltransferase
GTP: guanosine triphosphate
HMGR: hydroxymethylglutaryl-CoA reductase
HSL: hormone sensitive lipase
Indels: insertions/deletions
Kb: kilobase pair(s)
kDa: kilo Dalton
MAP: mitogen activated protein (kinase)
M/mM: molar/millimolar
mCi: milli-Curie
min: minute
mg/ml: milligram/millilitre
mRNA: messenger RNA
ng: nanogram
nt: nucleotide
PCR: phosphocreatine
PCR: polymerase chain reaction
PFU: plaque forming units
PKA: cAMP activated protein kinase
pmol: picomole
PP1: protein phosphatase 1
RNA: ribonucleic acid
RT-PCR: reverse transcriptase PCR
SAMS: peptide substrate for measuring AMPK activity
SDS: sodium dodecyl sulfate
Snf1-RD: SNF1 kinase regulatory domain
Snf1-CD: SNF1 kinase catalytic domain
U: unit
μg/μl: microgram/microliter
UV: ultraviolet
vs: versus

GENE NAMING CONVENTIONS

I have tried to adhere to the following naming conventions for genes and their proteins:

For example, for \textit{SNF1} vs. \textit{Snf1} vs. \textit{snf1} vs. \textit{SNF1}:

- The gene name is given in upper case italics (eg. \textit{SNF1})
- The encoded protein is given in lower case with the first letter capitalized (eg. \textit{Snf1})
- The mutant of the gene is given in lower case italics (eg. \textit{snf1})
- The multi-protein kinase complex is given in upper case (eg. \textit{SNF1})
1. **LITERATURE REVIEW**

1.1 **Introduction.**

Adaptation is one of the most important principles in biology and the evolutionary process is fuelled by the pressure on organisms to adapt to ever changing conditions. In order for organisms to survive and thrive, they must be able to sense changes in their environment and to be able to respond accordingly. The process of adaptive evolution has forced organisms to devote a great deal of resources towards sensing and processing biological information and towards utilizing this information to make changes. These changes may range from biochemical changes at the cellular level to behavioural changes at the level of an individual organism or even a population.

Signal transduction, the transfer of biological information within or between cells, plays a crucial role in the regulation of cellular functions, including cell differentiation, and cell proliferation. Since different signal transduction pathways interact with one another to orchestrate every cellular response, the elucidation of signal transduction pathways has become one of the most important areas of research in recent years. In section 1.2, I will give an overview of basic concepts in signal transduction as well as discuss significant findings in signal transduction research. Although signal transduction pathways can underlie events at the level of the cell, the organism, or a population, I shall restrict my discussion to events at the cellular level since my research has dealt with components of a eukaryotic signal transduction pathway which effects intracellular metabolic changes in response to changes in nutritional status.
Protein kinases and the phosphorylation cascades for which they are responsible, relay a majority of the biological information processed by the eukaryotic cell and can be thought of as the major currency of signal transduction pathways. This is reflected by the number of protein kinase genes encoded by eukaryotic genomes and by the different number of biological processes that are regulated by protein phosphorylation. I will devote section 1.3 to an overview of protein kinases and their role as signal transducers in the cell and to the discussion of the evolutionary conservation that is observed within the protein kinase superfamily.

One of the areas of interest in our lab has been the study of gene expression as well as the regulation of gene expression in response to different signals. The presence of a possible evolutionary link between our model system and signalling systems involved in yeast glucose repression and mammalian lipid metabolism has led my research towards the study of the family of protein kinases that act as the major signal transducers in each of these signalling pathways. In section 1.4, I will give some background on this protein kinase family, the AMP-activated/SNF1 family, and discuss current knowledge on the role played by these protein kinases in different organisms. In particular, I will discuss both the work that uncovered a role for SNF1 in yeast glucose repression as well as the work that has established the AMP-activated protein kinases (AMPK) as major players in regulating mammalian fatty acid and cholesterol metabolism in response to a compromised energy status.

Finally, in section 1.5, I will provide background on *Drosophila* glucose repression and how the emerging similarities it shares with the yeast glucose repression pathway led us to the study of SNF1/AMPK kinases in *Drosophila*. I will then describe how my thesis project fits in with current developments in research on the SNF1/AMPK family of protein kinases.
1.2 Signal Transduction.

1.2.1 The role of signal transduction pathways.

The concept of signal transduction pathways is crucial towards understanding how organisms sense, relay and interpret biological information. All cells, in general, can be regarded as signal transduction machines whereby extracellular signals are translated into cellular responses via intracellular communication. The nature of extracellular stimuli is most often a change in concentration of a signalling molecule that ultimately induces a number of responses such as cell growth, differentiation, division, secretion, movement toward or away from a stimulus and altered metabolism.

In order for a stimulus to elicit an appropriate cellular response, a signal must be able to pass across the membrane and reach the appropriate cellular compartment that will act on the signal and effect a response. Some signals, hydrophobic molecules such as steroid hormones, can cross the plasma membrane and interact with intracellular components directly. The majority of external signalling molecules, or first messengers, require interaction with a cell surface receptor, a membrane protein that can transduce the signal to a membrane-bound effector enzyme that then produces a second messenger. The second messenger, a small diffusible molecule or ion, carries the signal to the appropriate intracellular destination: the cytosol, an organelle, or the nucleus. Although details are still being elucidated in many cases, one universal theme in signal transduction is that generation of the second messenger will almost invariably lead to the activation of protein kinases that can then phosphorylate, and modulate the activity of, different protein targets.

1.2.2 The components of a signal transduction pathway.

There are three main types of signal reception mechanisms in eukaryotic cells: sequence-
specific DNA-binding receptor proteins that are found in the cytoplasm; enzymes in intermediary metabolic pathways; and finally, receptors located on the external surface of the plasma membrane (Barrit, 1992). Sequence-specific DNA-binding receptor proteins bind to and form a complex with hormones or morphogens in the cytoplasm, such as thyroid hormones and retinoic acid, respectively (Giguere et al., 1987). The hormone- or morphogen- DNA-binding receptor complex translocates to the nucleus and, ultimately, induces an increased transcription rate in a specific set of genes (reviewed by Ribeiro et al., 1995; Katzenellenbogen and Katzenellenbogen, 1996). The ecdysterone DNA-binding receptor in Drosophila, for example, when complexed with its ligand, binds to a hormone-response element (an enhancer sequence) on target DNA and activates transcription of genes essential for adult development (Gronemeyer et al., 1980).

Similar to hormone induced signal transduction, extracellular metabolites may also act as external stimuli although in most cases their main role is to regulate cell metabolism. A cytoplasmic enzyme initially receives the external signal and catalyzes a reaction that produces other intermediary metabolic products. Some intermediary metabolites alter the concentration of second messengers and thus, induce specific cellular responses in response to the extracellular signal (Barrit, 1992). The metabolism of glucose and other metabolites in the pancreas, for instance, stimulates insulin secretion from β-cells. Although the exact mechanism by which the induction of insulin secretion occurs has yet to be determined, the metabolism of nutrients that stimulate this pathway ultimately causes activation of a voltage-gated Ca^{2+} channels, leading to an increase in free Ca^{2+} concentration in the cytoplasm of β-cells, which then leads to the migration of insulin secretory granules to the plasma membrane (Streb et al., 1983; Ashcroft et al., 1994).

The most common mechanism by which signals are received by cells, however, is via plasma membrane receptors. Because a response to a specific signal (a hormone, growth factor or a metabolite) is dependent on a cell bearing the appropriate cell surface receptors on its plasma
membrane, each cell is able to respond to only a select number of stimuli at a given point in time. Specificity of signal reception is dependent on the vast diversity and stereospecificity of receptors, ligands and transducers at the surface of the cell. In addition, there are several mechanisms through which plasma membrane receptors are coupled to effector molecules. For instance, receptors may either be coupled with enzymes or ion channels through GTP-binding proteins, they may be ion channels themselves or the cytoplasmic domain of the receptor may have protein-tyrosine kinase activity (Barrit, 1992). Transduction of external signals to the intracellular space, however, is carried out by common pathways that use only a few known effector enzymes and second messengers.

The main components of intracellular communication are: GTP-binding regulatory proteins in the plasma membrane, mobile intracellular messengers and metabolites, the network of protein kinases, sequence-specific DNA binding proteins and the proteins synthesized in response to extracellular signals (Barrit, 1992). GTP-binding proteins, or G-proteins, are peripheral membrane protein transducers that link extracellular signals to intracellular machinery (Lefkowitz, 1993). In particular, G-proteins directly couple plasma membrane receptors to effector enzymes or ion channels (Lefkowitz, 1993). Mobile intracellular messengers are mostly water-soluble molecules or ions, such as cyclic-AMP (cAMP) and Ca$^{2+}$, respectively. The mobility of water-soluble intracellular messengers is limited to the cytoplasm of a cell whereas the lipid soluble intracellular messengers, such as diacylglycerol, are confined to the plasma membrane (Barrit, 1992). As mentioned earlier, the role of intracellular messengers is to activate protein kinases that, in turn exert effects on target proteins. The protein kinase network includes the cyclic nucleotide-activated kinases (cAMP and cGMP), the Ca$^{2+}$-activated kinases, the diacylglycerol activated-protein kinase C, the various cell-division control kinases and the vast number of receptor protein-tyrosine kinases in the plasma membrane, among others (reviewed by Hunter and Cooper, 1985; Barrit, 1992;
Graves and Krebs, 1999). Sequence-specific DNA binding proteins are then involved in conveying information from the cytoplasm to particular genes within the nucleus (Mitchell and Tjian, 1989). Since the localization and DNA-binding activity of transcription factors can be affected by phosphorylation, they can act as the downstream effectors of kinase signalling pathways (Karin, 1994). The main purpose of signal transduction pathways is the production of a cellular response to the initial stimulus; in many cases this involves the synthesis of proteins. The type, final destination and concentration of the newly synthesized protein will determine the specific response elicited by the cell.

Most signal transduction pathways are not only in charge of detecting and passing down extracellular signals but are also involved in amplifying the signal. For example, a signal originating from one single hormone-receptor complex can activate more than one transducer G-protein by the lateral diffusion of both G-proteins and receptors in the plasma membrane (Lefkowitz, 1993). In addition, each membrane-bound effector enzyme can produce many second messenger molecules upon its activation. Similarly, protein kinases further down the signalling pathway may phosphorylate numerous target proteins. Each component of the pathway has the potential to amplify the effect of the initial signal and thus the term “cascade” is used to describe this series of events (Barrit, 1992).
1.3 **An overview of protein phosphorylation**

Phosphate has been known to be associated with protein for over 100 years. The first phospho-amino acid was isolated from protein in 1933 and since then, it has become common knowledge that a vast number of proteins are covalently modified by the addition of phosphate (reviewed by Hunter, 1991; Hunter and Hanks, 1995). Most of these phosphate modifications are known to occur on serine and threonine residues with smaller amounts being added to tyrosine, histidine, lysine, arginine, aspartic acid, glutamic acid, and cysteine residues (Hunter and Cooper, 1985). The reaction is catalyzed by protein kinases and occurs through the addition of a phosphate moiety to the side-chains of amino acid residues in target proteins. Addition of the highly negatively charged phosphate group can modify the conformation of the target protein and this may either alter its activity or its interaction with other proteins (Barrit, 1992). The reverse reaction can also occur and removal of the phosphate moiety is catalyzed by phosphoprotein phosphatases. Removal of the phosphate group restores the conformation and properties of the native protein (Barrit, 1992).

It was in the 1950s that a number of investigators involved in studying the regulation of glycogen degradation and biosynthesis first recognized that proteins were reversibly phosphorylated and dephosphorylated as part of normal cell regulation processes. Results obtained by Krebs and collaborators provided evidence that the active and inactive forms of glycogen phosphorylase (phosphorylase a and phosphorylase b, respectively), previously discovered by Cori and Cori in 1943, differed only in that the active form was phosphorylated. Soon after, they provided evidence that the enzyme responsible for the activation of glycogen phosphorylase, phosphorylase kinase, is itself regulated through reversible phosphorylation. By the late 1960s, pathways other than those
involved in glycogen metabolism had also been shown to be regulated by reversible phosphorylation (Linn et al., 1966) and the protein kinase which mediates the multiple actions of the second messenger cAMP, the cAMP-dependent protein kinase (PKA), was isolated (Walsh et al., 1969). In the 1970s, numerous reports cited the discovery of novel protein kinases and of different metabolic pathways displaying enzyme regulation through reversible phosphorylation, further establishing the important role played by protein kinases and their antagonists, the protein phosphatases, in regulating cellular processes.

1.3.1 The “eukaryotic” protein kinase superfamily.

Eukaryotic protein kinases catalyze the transfer of orthophosphate to amino acid residues in target proteins. They use the γ-phosphate from ATP or GTP and catalyze an esterification reaction by utilizing the hydroxyl groups found in the alcohol sidechains of serine and threonine, or the phenolic group of tyrosine, as phosphate group acceptors (Hunter, 1991). As a result, the protein is covalently modified and becomes a monophosphate ester while the donor nucleotide triphosphate loses a single phosphate to become a nucleotide diphosphate (Barrit, 1992). With few exceptions, all of the serine/threonine and tyrosine protein kinases found in eukaryotes are evolutionarily related and form the largest known superfamily of proteins (Hanks et al., 1988; Hanks and Quinn, 1991; Hanks and Hunter, 1995). The region which is conserved in all superfamily protein kinases, the core catalytic domain, is responsible for catalyzing the phosphorylation reaction and deletion studies on different protein kinases have shown that it is the only element required for constitutive catalysis (Hanks and Hunter, 1995). I will use the terms “superfamily kinases” or “eukaryotic protein kinases” (ePKs) to describe protein kinases which bear the conserved core catalytic domain
which defines this large group of related kinases. Protein kinases that are unrelated to the superfamily kinases do exist in eukaryotes although, as I will discuss later, these are few in number and most show similarity to the bacterial protein histidine kinases, which are unrelated to the eukaryotic superfamily kinases (Hunter, 1991). Predictions that about 1 to 2 percent of all eukaryotic genes would turn out to be protein kinases (Hunter, 1988; Hunter, 1994) have been confirmed with the completion of the *Saccharomyces cerevisiae* genome sequencing project (reviewed by Zagulski et al., 1998). It has been established that in *S. cerevisiae* there are 113 protein kinase genes, roughly 2% of the known and putative genes in the entire genome (Hunter and Plowman, 1997). Although this total is a little lower than had initially been predicted, by extrapolating from these results, as well as from data from the *Caenorhabditis elegans* sequencing project, it is still expected that mammalian genomes will contain well over 1000 protein kinase genes (Hunter and Plowman, 1997).

Protein kinases have been found in every eukaryotic lineage and, thus, the ancestral protein kinase gene can be traced back to a time early in eukaryotic evolution before the evolutionary split of the major eukaryotic kingdoms (Hanks and Quinn, 1991; Hanks and Hunter, 1995). This view is supported by the fact that protein phosphorylation pathways play crucial roles in the regulation of basic cellular processes shared by all eukaryotes and by the fact that many phosphorylation cascades have been conserved between the unicellular eukaryotes, plants, animals and fungi. This would suggest that protein phosphorylation pathways became an integral part of early eukaryotic evolution (Hanks and Hunter, 1995). In addition, phosphorylation pathways are also involved in processes that are specific to higher eukaryotes. For instance, many morphogenetic and cellular differentiation processes unique to multicellular eukaryotes require protein phosphorylation
pathways. Many protein tyrosine kinases act as hormone and growth factor receptors in multicellular differentiated organisms. In contrast, there are no superfamily protein tyrosine kinases present in the *S. cerevisiae* genome and protein tyrosine phosphorylation occurs only in low levels in Bacteria and Archaea (Hunter and Plowman, 1997). Given the necessity for cell-cell signalling in any multicellular organism, a strong case has been made for the co-evolution of protein tyrosine kinases and multicellularity in higher eukaryotes (Hunter and Cooper, 1985). Interestingly, most protein tyrosine kinases are plasma membrane associated, which enables them to act in the sensing and transducing of extracellular signals (Hunter and Cooper, 1985).

1.3.2 Protein kinases in Bacteria, Archaea.

Just as in eukaryotes, protein phosphorylation is equally important to the regulation of cellular processes in Bacteria and Archaea. The protein kinases that were first found in bacterial species can be divided into three general classes (reviewed by Saier, 1993). The first, and largest, is formed by the protein-histidine kinases of two-component regulatory systems. The protein-histidine kinases auto-phosphorylate at the 1- or 3- position of a histidine residue (autophosphorylation can also occur, though less commonly, at the guanido group of arginine or at the ε-NH$_2$ group of lysine) before transferring the phosphate group to an aspartate residue on a sensor protein or sensor domain fused with the kinase, termed the response-regulator protein (Falke *et al.*, 1997). The two other main groups of bacterial kinases are smaller and less well characterized and are composed of the phosphoenol-pyruvate-dependent phosphotransferases and serine/threonine kinases such as the isocitrate dehydrogenase kinase/phosphatase (Hunter, 1985). Neither of these families is related to each other nor to the ePK superfamily based on protein sequence analysis.
For many years the prevailing view was that although all three domains of life make use of protein phosphorylation, phosphorylation was mediated by families of kinases specific to each lineage. As a logical extension of this view the ePKs, and especially protein-tyrosine kinases, were thought to occur only in eukaryotes, while protein-histidine kinases were restricted to Bacteria, with Archaea having an unknown protein phosphorylation system status (Kennelly and Potts, 1996). This exclusivity has been slowly eroded by emerging reports outlining the discovery of small numbers of superfamily-like protein kinases in Bacteria and Archaea, the discovery of protein-histidine-like kinases in Archaea and eukaryotes, and the detection of phospho-tyrosine in Bacteria and Archaea (reviewed by Kennelly and Potts, 1996). In one of the most provocative findings at the time, Munoz-Dorado et al. (1992) first described several ePK-like kinases in the myxobacterium Myxococcus xanthus, a soil bacterium which is able to undergo cellular differentiation leading to the formation of fruiting bodies similar to those of the eukaryotic slime mold Dictyostelium discoideum. Northern blot analysis revealed that one of these ePK-like kinases, Pkn1, was developmentally regulated and its deletion results in premature differentiation and spore formation, thus implying a role in the regulation of developmental cycle in M. xanthus (Munoz-Dorado et al., 1992). These results fuelled the speculation that ePK based protein phosphorylation had evolved with the emergence of multicellularity and cellular differentiation. However, Leonard et al. (1998) have recently surveyed the sequences of a number of completed genomes (including bacterial, archaeal and S. cerevisiae genomes, and partial data from the then-incomplete C. elegans sequencing project) and have detected the presence of 5 novel ePK-like gene families with bacterial and archaeal representatives and which bear similarity to the eukaryotic superfamily kinases
(Leonard et al., 1998). One of these families represents sequences which are most similar to the ePK-like kinases of *M. xanthus* discovered by Munoz-Dorado et al. (1992), while the other four represent novel families of putative kinases. In addition to eukaryotic-like protein kinases, there have also been reports of eukaryotic-like protein phosphatases and tyrosine-phosphorylated proteins in several bacterial and archaeal species (Kennelly and Potts, 1998).

Just as eukaryotic superfamily-like protein kinases have been found in Bacteria and Archaea, protein-histidine kinase-like genes have been detected in eukaryotes and Archaea. Popov and co-workers cloned the rat mitochondrial branched-chain α-ketoacid dehydrogenase kinase gene (Popov et al., 1992) and the rat pyruvate dehydrogenase kinase gene (Popov et al., 1993) and showed that their closest homologues were not the ePKs but rather the bacterial protein-histidine kinases, with which they share weak similarity. Since then, genes with greater sequence and functional similarity to the bacterial protein-histidine kinases have been found: the *SLN1* gene of *S. cerevisiae* encoding the upstream two-component regulator involved in an osmosensing MAP kinase cascade (Hughes, 1994); the *DokA* gene of *D. discoideum*, which is also involved in osmosensing (Schuster and Simon, 1996); the *ETR-1* gene of *Arabidopsis thaliana* which is involved in the ethylene response (Chang et al., 1993); and finally, the *CheA* gene in the archaeon *Halobacterium salinarium*, which is involved in chemotactic and phototactic sensory-response pathways (Rudolph and Oesterhelt, 1995).

These different lines of evidence have led to an unresolved conflict of views on the evolutionary history of protein kinases (Kennelly and Potts, 1996; Leonard et al., 1998). In one scenario, some of these families were present in the common ancestor of the three domains of life.
In the other scenario the acquisition of kinase genes in different lineages within each domain has occurred through horizontal gene transfer.

1.3.3 Homologous kinase domains in the ePK superfamily

A comparison of sequences from multiple ePK family members first uncovered the conserved features in primary structure that are required for kinase activity (Hanks et al., 1988). These comparisons uncovered that sequence similarity among ePKs is essentially restricted to the core catalytic domain, a stretch of ~ 270 amino acid residues with a high degree of conservation even among the more distantly related superfamily members (Hanks and Hunter, 1995). While they may share similarity that extends beyond the core domain, even the closest relatives often have widely divergent sequences outside their core catalytic domain. [The significance of differences lying outside the catalytic domain will be discussed further on in this thesis]. Hanks et al. (1988) also performed phylogenetic analysis on the ePK catalytic domain sequences and found that protein kinases with known related function cluster together on phylogenetic trees. Since their 1988 study, Hanks and his collaborators have carried out more comprehensive studies and have further refined their analysis to include the widest possible cross-section of ePK superfamily members (Hanks and Quinn, 1991; Hanks and Hunter, 1995). Not only did their results confirm earlier findings but similar phylogenetic analyses have allowed the prediction of the properties of novel kinases and have become the basis for classifying the members of the ePK superfamily into distinct families (Hanks and Quinn, 1991; Hanks and Hunter, 1995). Similarity in kinase domain sequences has, therefore, proved to be an excellent indicator of structural and functional similarities shared by closely related kinases.
By performing a multiple sequence alignment of the core catalytic domains of known representative ePKs, Hanks and collaborators have found that the catalytic domain is split into twelve conserved subdomains (Hanks et al., 1988; Hanks and Quinn, 1991; Hanks and Hunter, 1995). These blocks of uninterrupted sequence represent localized regions of high conservation and gaps in the sequence alignment define the boundaries of the subdomains. Eight of the subdomains contain positions with residues that are invariant or nearly invariant across all the different members of the ePK superfamily. Additionally, all twelve subdomains contain a characteristic pattern of positions where biochemically similar amino acids are conserved throughout the superfamily (Hanks and Quinn, 1991; Hanks and Hunter, 1995). In addition to the positions that are conserved in all ePKs, sequence conservation within subdomains is highest among close relatives and, thus, ePKs which are more closely related to one another share conserved positions which are not conserved among other ePK superfamily members. The differing levels of sequence conservation found at different positions along the catalytic domain have facilitated the use of the polymerase chain reaction (PCR) and other homology-based molecular techniques for finding novel superfamily members while at the same time allowing for some specificity when searching for members of distinct kinase families or subfamilies.

The presence of twelve invariant residues within the different members of the ePK superfamily immediately suggests their possible involvement in catalysis. Taking into account the conservation of the twelve invariant residues and the overall conservation of the twelve subdomains, it was predicted that the kinase catalytic domains would fold into a similar threedimensional conformation (Hanks et al., 1988; Hanks and Quinn, 1991). Having deduced, through X-ray crystallography, the three-dimensional structure of the cAMP-activated protein kinase-Cα subunit in a binary complex with a pseudosubstrate peptide inhibitor (Knighton et al., 1991) and in
a ternary complex which also included MgATP (Bossmeyer et al., 1993; and Zheng et al., 1993), it has been possible to elucidate how the catalytic domain folds into a three-dimensional conformation which allows it to carry out the three separate roles which are necessary for phosphate transfer (Hanks and Hunter, 1995): binding and orientation of the protein substrate, binding and orientation of the nucleotide triphosphate donor (ATP of GTP) as a complex with a divalent cation (usually Mg$^{2+}$ or Mn$^{2+}$), and transfer of the γ-phosphate from the nucleotide triphosphate donor to the acceptor hydroxyl residue (serine, threonine, or tyrosine) on the protein substrate. The catalytic domain forms a two-lobed structure with a deep cleft running between the two lobes (Knighton et al., 1991): the smaller lobe comprises the N-terminal half of the catalytic domain and is mostly involved in binding and orienting the nucleotide; the larger C-terminal lobe is involved in binding the substrate and transferring the phosphate; and finally, the cleft is the site of catalysis. The invariant residues come together in three-dimensional space and it has been possible to assign a putative functional role to each (Knighton et al., 1991; Bossmeyer et al., 1993; and Zheng et al., 1993). Another notable result obtained from the X-ray crystallography data has been that the conserved subdomains determined from the multiple sequence alignments correspond quite well to secondary and tertiary structure motifs of the catalytic domain (Reviewed in Wei et al., 1994; Hanks and Hunter, 1995). The crystal structures of additional ePKs have been reported (reviewed by Goldsmith and Cobb, 1994) and their kinase domains have been found to fold into a two-lobed structure similar to that of the cAMP-activated protein kinase-C\(\alpha\) subunit.

1.3.4 Protein kinase cascades and their role in signal transduction.

Every signal transduction pathway studied so far has had, as its central component, a phosphorylation cascade mediated by protein kinases. Thus, in many respects, protein kinase
pathways are synonymous with signal transduction. Three paradigms for mammalian cellular signalling, the transduction pathways which involve adenylate cyclase, inositol phospholipids, and the receptor tyrosine kinases, serve to illustrate this concept very well and have provided a framework with which novel pathways have been studied (Barrit, 1992).

The adenylate cyclase signalling pathway provides an excellent example of the interplay between the various components involved in extracellular and intracellular communication. Intracellular metabolism is regulated by many hormones that modulate their effects on target cells by activating the adenylate cyclase signalling pathway. Epinephrine, a hormone implicated in many pathways including glycogen metabolism, binds to the β-adrenergic receptor of cells after it is released from the adrenal gland. Conformational changes subsequently occur in the receptor, allowing the receptor to interact with the transducer (the G-protein). The G-protein becomes activated following the formation of the receptor-ligand complex and then binds to the effector enzyme, adenylate cyclase. Adenylate cyclase, a transmembrane enzyme, catalyzes the formation of the second messenger cAMP from ATP. cAMP then leaves the membrane surface (on the cytosolic side) and travels into the cytosol where it activates the cAMP-dependent protein kinase A (PKA), a member of the serine-threonine family of kinases. As intracellular levels of cAMP increase due to continued adenylate cyclase activity, activation of protein PKA causes the alteration of cellular metabolism as it catalyzes the phosphorylation of a number of target enzymes (Barrit, 1992).

1.3.5 The phosphoprotein phosphatases.

Protein phosphorylation and its role in cellular signalling have been very well established. However, in order for protein phosphorylation to play a role in signal transduction, phosphorylation must be reversible in nature such that phosphorylation events can act as a molecular switch (Krebs,
1994). Reversible phosphorylation not only requires the action of protein kinases that phosphorylate target proteins at specific sites, but also requires the action of protein phosphatases that remove these phosphates (Hunter, 1995). Thus changes in the phosphorylation state of a particular protein are not the result of static, singular events, but rather the results of shifts in the equilibrium between phosphorylation by the cognate protein kinases and dephosphorylation by protein phosphatases (Hunter, 1995). These shifts in equilibrium can be regulated by changing the activity of the protein kinase, the protein phosphatase, or both (Hunter, 1995).

There are three structurally distinct families of protein phosphatases: the PPP and PPM families, which are both serine/threonine phosphatases, and the protein tyrosine phosphatase family, PTP. (Only the serine/threonine families will be discussed in this review). The PPP family consists of PP1, PP2A and PP2B that all share a common catalytic domain of 280 residues (Barford et al., 1998). PP1 is involved in the regulation of many cell functions, among which are: glycogen metabolism, muscle contraction, neuronal activities, cell cycle progression and RNA-splicing (Barford et al., 1998). PP2A is similar to PP1, although it is known to regulate pathways that include metabolism, cell signalling, the cell cycle and telomerase activity (Wera and Hemmings, 1995). Mayer Jaekel et al. (1993) confirmed the role of PP2A in Drosophila cell division by mutating the 55-kDa regulatory β-subunit of PP2A, which resulted in a defective anaphase stage in meiosis. PP2B is characterized by its dependence on Ca^{2+} for its activity and it plays a crucial role in the Ca^{2+} signalling cascade of activated T-cells. Antigen presentation to the T-cell receptor causes an increase in T-cell Ca^{2+} concentrations, thereby stimulating PP2B to dephosphorylate the cytosolic subunit of the transcription factor NFAT1 (Jain et al., 1993). The PPM family of serine/threonine phosphatases is found in both eukaryotes and prokaryotes. PP2C, the archetypal PPM phosphatase, is involved in the reversal of stress-induced protein kinase cascades. In the
fission yeast, for example, the negative regulation of the PBS2/HOG1-MAP kinase pathway, which is activated by osmotic and heat shock, is performed by PP2C (Maeda, 1994).

One example very relevant to this thesis serves to illustrate the interplay between kinases and phosphatases. Increases in the activity of the cAMP-dependent protein kinase (PKA) by raised intracellular levels of the allosteric effector cAMP have been associated with increased phosphorylation and concomitant decrease in the activity of the enzyme Acetyl-CoA carboxylase (ACC). The inactivation of ACC was originally thought to be the result of direct phosphorylation by the PKA. It has now been shown that the sites phosphorylated by PKA have no appreciable effect on ACC activity and that the phosphorylation site which affects ACC activity is phosphorylated by the AMP-activated protein kinase and not PKA (Sim and Hardie, 1988). Nevertheless, PKA can indirectly affect the phosphorylation level of this site by phosphorylating and inactivating the protein phosphatase that normally keeps this site dephosphorylated (Reviewed by Cohen and Hardie, 1991).
1.4 The SNF1/AMPK family of protein kinases. A historical overview.

The yeast SNF1 (for Sucrose Non-Fermenting 1) kinase was initially identified by several groups in a screen for mutants defective in various aspects of carbon metabolism (reviewed by Hardie et al., 1998). The SNF1 locus was mapped by Celenza and Carlson (1984a) and subsequent cloning and characterization of the SNF1 gene (Celenza and Carlson, 1984b; 1986) revealed that the Snf1 protein is a serine-threonine protein kinase, the first in what was to become a family of related protein kinases.

In 1991, Alderson et al. reported the cloning of RKIN1, a putative SNF1 homologue isolated from a rye endosperm cDNA library. In addition to showing high sequence similarity to SNF1, expression of the RKIN1 sequence in yeast snf1 mutants restored their ability to grow on glycerol- and ethanol-containing medium, indicating a possible conservation in function. This report was later followed by a series of papers published between late 1993 and 1995, which reported the cloning and molecular characterization of different mammalian AMPK catalytic and non-catalytic subunits (reviewed by Hardie et al., 1998). The high levels of sequence similarity made it apparent that the different components of the AMPK complex were mammalian homologues of components of the yeast SNF1 protein kinase complex. Similarities at the biochemical level were also reported, and these findings have served to define a new subfamily of protein kinases: the AMP-activated/SNF1 kinase subfamily. These protein kinases are the main components of a phosphorylation cascade conserved in all eukaryotic organisms and whose main physiological role appears to be a response in cellular stresses which compromise the energy status in the cell (Hardie et al., 1998). As I will discuss later, the mostly biochemical nature of studies on AMPK combined with the mostly genetic characterization of SNF1 has allowed the development of models and
hypotheses which would have been difficult to develop otherwise. I will discuss the roles of yeast SNF1 and mammalian AMPKs in more detail in the following sections, and I will follow that by discussing their characteristics held in common, along with a discussion of homologues in other organisms.

1.4.1 The role of SNF1 in the yeast glucose repression.

The yeast SNF1 gene was originally identified from yeast cells unable to grow on fermentable sugars such as sucrose. Celenza et al. (1986, 1989) characterized these mutations at the molecular level and revealed them to be mutations in a protein kinase gene. The role of this protein kinase in the glucose repression pathway is discussed below.

1.4.1.1 Glucose repression in yeast metabolism. Glucose repression, a regulatory system which is common in unicellular organisms, allows for the concerted regulation of a large number of genes following exposure to glucose or other rapidly fermentable sugars such as fructose and mannose (Entian, 1986; Ronne, 1995; Gancedo, 1998). *S. cerevisiae* cells which are in stationary phase or which are growing on non-fermentable carbon sources need to make a number of metabolic changes when presented with glucose or other rapidly-fermentable sugars. Much in the way mitogens, hormones, or other primary messengers affect mammalian cells, exposure to glucose leads to a number of wide and drastic effects on yeast cell metabolism (Thevelein, 1994). A number of enzymes and transport proteins are activated or inactivated by post-translational modification and the transcriptional induction or repression of many genes also takes place (Thevelein, 1994; Ronne, 1995). The glucose repression pathway down-regulates genes encoding enzymes that are unique to the glyoxylate shunt and gluconeogenesis, enzymes that are involved in the tricarboxylic acid cycle
(TCA cycle) and oxidative phosphorylation, and the proteins that take up and metabolize carbon sources which are utilized less efficiently than glucose (Thevelein, 1994). Even in the presence of oxygen, *S. cerevisiae* cells rapidly ferment glucose to ethanol while generating a modest amount of ATP through glycolysis. The ethanol generated during fermentative growth is extruded into the extracellular medium; once the glucose supply is exhausted, the ethanol can be transported back into the cell where it undergoes complete oxidation by being channelled back into the TCA cycle and respiration. Yeast cells thus benefit by being able to transform glucose into ethanol, effectively "sequestering" the reduced carbon in a compound that can be both toxic and non-metabolizable to other competing organisms (Ronne, 1995).

Yeast glucose repression has been extensively characterized, revealing the deceptive complexity of the pathway. Many details, such as the nature of the transduced signal, as well as some intermediate steps along the pathway, are still unknown (Gancedo, 1998). Much of the early characterization of the glucose repression pathway has been centered on the isolation and analysis of mutants with defects in glucose repression (for examples see Zimmermann and Scheel, 1977; Neigeborn and Carlson, 1984). This approach, along with the mapping, identification, and molecular characterization of the genes affected in such mutants has proved extremely powerful in helping determine the *in vivo* role of some of the major players in the pathway (Gancedo, 1998). These approaches have uncovered a bewildering number of genes that are involved, at least to some extent, in glucose repression. Despite the fact that a role for a vast majority of these genes is still elusive, it has been possible to establish a working model for glucose repression (Thevelein, 1994; Ronne, 1995; Gancedo, 1998).
1.4.1.2. **The glucose repression pathway: generation of the glucose signal.** Glucose repression signalling requires the detection of glucose and the generation of a signal that can be transduced to downstream elements of the pathway. Yeast has a number of different hexose transporter (HXT) genes that are necessary for glucose uptake (reviewed in Boles and Hollenberg, 1997). Two of these, encoded by the genes *SNF3* and *RGT2*, have been strongly implicated in generating an intracellular glucose-sensing signal that induces repression (Ozcan *et al.*, 1996; 1998). Snf3 and Rgt2 are necessary for the low glucose- and high glucose-induced expression of the high-capacity glucose transporter genes, respectively (Ozcan *et al.*, 1996). Unlike the other yeast hexose transporters, Snf3 and Rgt2 have long carboxy-terminal tails that extend into the cytoplasm. Ozcan *et al.* (1996) have hypothesized that such an intracellular extension may be involved in interacting with the next component of the signalling pathway in response to glucose binding. In subsequent work they have established that the cytoplasmic tails are essential for transducing the glucose signal (Ozcan *et al.*, 1998), although the downstream events are still poorly understood. One possible target of this interaction is the hexokinase PII (Hxk2) which, in the first step of glycolysis, catalyzes glucose phosphorylation. It is known that *hxl2* mutants in which the Hxk2 still bears considerable catalytic activity are defective in glucose repression despite the presence of two other glucose-phosphorylating enzymes in yeast, hexokinase PI and glucokinase (Entian, 1980). Rose *et al.* (1991) have also found that mutants with minimal glycolytic flux (by reason of phosphoglucoisomerase mutations) are still able to carry out glucose repression. It would thus appear that glucose repression signalling does not involve any metabolic step beyond the initial phosphorylation reaction catalyzed by the hexokinase PII (Gancedo, 1998).
1.4.1.3 The glucose repression pathway: the downstream effectors. The downstream effector of the glucose repression signal is encoded by the *MIG1* gene (Multicopy Inhibitor of *GAL* gene expression), which was identified because of its ability to turn off transcription from the *GAL1* promoter when present in a multicopy plasmid (Nehlin and Ronne, 1990; Nehlin et al., 1991). The Mig1 protein is a C2-H2 zinc-finger transcription factor related to the mammalian Wilms' tumour (Call et al., 1990) and Egr (early growth response) transcription factors (Joseph et al., 1988) and also has counterparts in *Aspergillus nidulans* (Dowzer and Kelly, 1991) and *Kluyveromyces lactis* (Cassart et al., 1995). Mig1 binds to the promoters of a number of glucose-regulated genes and leads to their repression by forming a complex with the proteins encoded by *TUP1* and *SSN6* (*CYC8*) [refer to Fig 1.A], which are also necessary for glucose repression (Vallier and Carlson, 1994; Treitel and Carlson, 1995). Tup1 and Ssn6 carry out the actual repression by coming together to form high-molecular-weight complexes with a stoichiometric ratio of 4:1 (Varanasi et al., 1996). Ssn6/Tup1 are thought to act as general corepressor complexes involved in regulating distinct sets of genes (Keleher, 1992) and their disruption not only abolishes glucose repression but it causes pleiotropic defects in cellular functions which are unrelated to glucose repression, including abnormal cell morphology, flocculence, altered mini-chromosome maintenance, mating and sporulation defects (Johnston and Carlson, 1992). In addition, expression of glucose-repressible genes in *snf1* mutants, which are unable to carry out glucose derepression, is restored by an additional mutation in *SSN6* (Carlson et al., 1984; Wright and Poyton, 1990). Although neither one of these two factors has apparent DNA binding domains, the Tup1/Ssn6 complex is recruited to different promoters by pathway-specific DNA-binding proteins, where two mechanisms are thought to provide repression: the assembly of nucleosome arrays which lead to a repressive chromatin structure (Cooper et al., 1994) and interactions with the general transcription machinery (Redd et
Figure 1. An overview of the yeast glucose repression mechanism.

(A) High extracellular and intracellular levels of glucose are detected by a sensing mechanism that may involve the glucose transporters Snf3 and Rgt2 (Tr) and Hexokinase PII. Under high glucose conditions (repressing conditions) a repression complex prevents transcription from glucose repressible promoters: Ssn6 and Tup1 form a general repressor complex that is recruited to glucose repressible genes by the transcription factor Mig1, leading to transcriptional shut-down of these genes. (B) When glucose becomes limiting (derepressing conditions) the SNF1 kinase complex is activated through phosphorylation by an upstream kinase-kinase. The active SNF1 kinase complex phosphorylates Mig1, thereby inactivating the repressor complex and restoring gene expression of glucose repressed genes. In addition, SNF1 is thought to also inactivate some biosynthetic pathways thus conserving ATP and it may also be involved in the cell-cycle arrest that occurs under low-glucose conditions. [Figure based on Thevelein (1994) and Ronne (1995)].
Tup1 is sufficient for establishing repression and Edmonson et al. (1996) have provided evidence that it interacts with histones H3 and H4. The role of Ssn6 appears to be that of a coupler between Tup1 and the various targeting proteins, including Mig1 (Tzamarias and Struhl, 1995). Two-hybrid studies carried out by Treitel and Carlson (1995) and Tzamarias and Struhl (1995) have confirmed an interaction between Ssn6 and Mig1 that is necessary for glucose repression. Mig1-mediated repression of a reporter gene occurs only in glucose-grown cells and repression is Ssn6- and Tup1-dependent (Treitel and Carlson, 1995). Analysis of various Mig1 deletion-derivatives (Ostling et al., 1996) has shown that as little as 24 residues from the Mig1 carboxy-terminal domain are sufficient to mediate repression and thus, this is all that is required to interact with the corepressor complex.

1.4.1.4 The glucose repression pathway: the role of SNF1 in derepression. When glucose becomes limiting, glucose repressed genes must be derepressed. A signal is generated which leads to the phosphorylation and activation of the SNF1 protein kinase complex [refer to Fig I.B], which is necessary for the derepression of most glucose-repressed genes (Celenza and Carlson, 1986; 1989). The kinase activity of the SNF1 complex is responsible for the derepression of glucose-repressible genes and this is thought to occur through the phosphorylation of Mig1 and inactivation of its ability to recruit the Ssn6/Tup1 corepressor complex (Treitel and Carlson, 1995) [refer to Fig I.B].

Mutants deficient in SNF1 activity are unable to grow efficiently on most carbon sources other than glucose and are generally unhealthy even when grown on glucose (Carlson et al., 1984; Johnston and Carlson, 1992). Mutants at another locus, snf4, have defects in glucose repression similar to those of snf1 mutants (Neigeborn and Carlson, 1984). Snf4 is a necessary activator of the catalytic activity of the full length Snf1 (Celenza and Carlson, 1989; Woods et al., 1994), although deletion of the Snf1 regulatory domain still retains glucose regulation while obviating the need for
Snf4 (Celenza and Carlson, 1989; Jiang and Carlson, 1997). Jiang and Carlson (1996) used two-hybrid analysis to investigate the Snf1/Snf4 interactions in response to the glucose signal and found that this interaction was regulated by glucose and detected only under low glucose conditions. Snf1 and Snf4 could only interact in high glucose if the two-hybrid experiments were carried out in mutant backgrounds with known glucose repression defects upstream of SNF1 (such as hxk2, glc7-T152K, reg1). Finally, the Snf1/Snf4 two-hybrid interaction was unaffected in mutants with repression defects downstream of SNF1 (such as ssn6). The Snf1/Snf4 interactions observed are consistent not only with the proposed role of Snf4 in activating kinase activity, but also with the interaction of the SNF1 complex with other components of the glucose-signalling pathway.

1.4.1.5 The Snf1 kinase forms part of a heterotrimeric complex. Although early biochemical evidence suggested that Snf1 is associated with Snf4 regardless of glucose availability (Celenza et al., 1989; Woods et al., 1994; Wilson et al., 1996) two-hybrid analysis has established that direct Snf1/Snf4 interaction occurs only in low glucose conditions (Jiang and Carlson, 1994; 1997). Snf1 and Snf4 are thought to remain associated in high-molecular-weight complexes during high glucose conditions through their separate interactions with a family of related proteins encoded by the SIP1, SIP2, and GAL83 genes (Yang et al., 1994; Jiang and Carlson, 1997) [refer to Fig II..A]. Genetic evidence suggests that each of the members of this family is an alternate component of SNF1 complexes. Since they individually affect distinct subsets of glucose-repressed genes normally reactivated by the SNF1 complex, their possible role is as targeting subunits that direct the complex to specific downstream targets (Yang et al., 1992; Erickson and Johnston, 1993). The members of this family share two conserved domains each of which is responsible for separate interactions with the Snf1-RD and Snf4, respectively (Jiang and Carlson, 1997), as shown by two-hybrid analysis and in vitro binding assays. The functions mediated by the SNF1 complex are largely unaffected in a
The *sip1*/*sip2*/gal83 triple mutant (Yang et al., 1994) and the SNF1 complex retains full catalytic activity. Jiang and Carlson (1997), however, have shown that the level of detectable Snf1 and Snf4 that copurify together in the triple mutant is only half of that found in wild-type cells. This further supports the idea that one of the roles of the Sip1/Sip2/Gal83 family is in helping stabilize the Snf1-Snf4p interaction (Jiang and Carlson, 1997). As I will discuss later, the different components of the SNF1 complex (Snf1, Snf4, and Sip1/Sip2/Gal83) each have mammalian counterparts.

A number of ePKs have a regulatory, or auto-inhibitory, C-terminal domain (RD) which is responsible for interacting with the conserved N-terminal catalytic domain (CD) thereby inhibiting kinase activity (Hunter and Hanks, 1995) [refer to Fig II.B]. The inhibition is the result of an interaction between the catalytic site and a pseudo-substrate motif in the RD domain that resembles the substrate recognition sequence for the kinase (Hunter and Hanks, 1995). In order to map the region of interaction between Snf1 and Snf4, Jiang and Carlson (1997) expressed the Snf1 catalytic domain (Snf1-CD) and Snf1 regulatory domain (Snf1-RD) separately and tested for two-hybrid interactions. Snf4 did not interact with the Snf1-CD, whereas the Snf4/Snf1-RD interaction was readily detected under both low and high glucose conditions, suggesting that Snf4 interacts with Snf1 through its Snf1-CD domain. Under high glucose conditions an Snf4-independent interaction between the Snf1-CD and the Snf1-RD occurs. Mapping of the region of interactions showed that the Snf1-CD and Snf4 each interact with the Snf1-RD by binding to distinct yet overlapping sites with opposite regulation by the glucose signal. The high glucose Snf1-CD/Snf1-RD interaction prevents the Snf1-RD from interacting with Snf4 and, more importantly, it leads to inhibition of kinase activity [refer to Fig II.B]. Under low glucose conditions, the situation is reversed and, by interacting with the Snf1-RD and preventing auto-inhibition, Snf4 activates catalytic activity of the Snf1-CD (Jiang and Carlson, 1997) [refer to Fig II.C]. Since Snf1 catalytic activity increases under
Figure II. Structure of the SNF1 kinase complex and glucose-regulated interactions.

(A) The SNF1 kinase is a ternary complex composed of: Snf1, the kinase subunit; Snf4, the kinase activating domain; a bridging protein which tethers the two together (three different bridging proteins exist in yeast: Sip1, Sip2, and Gal83). The SNF1 kinase complex subunits undergo differential interactions in response to glucose availability and this has an effect on kinase activity.

(B) In high glucose, the Reg1/Glc7 protein phosphatase complex keeps Snf1 dephosphorylated and the Snf1 kinase catalytic domain [Snf1-CD] interacts with the Snf1 (auto) regulatory domain [Snf1-RD], which keeps the SNF1 kinase complex in an inactive state. (C) In low glucose, kinase-kinase [Snf1-K] phosphorylates Snf1, changing its conformation such that the Snf1-CD no longer interacts with the Snf1-RD, which activates the SNF1 kinase complex. The Snf4 subunit is responsible for maintaining the activated state by blocking the Snf1-CD/Snf1-RD region of interaction. [Adapted from Hardie et al., 1998]
glucose-limited conditions and since the Snf1-CD is sufficient for glucose-regulated catalytic activity, the catalytic domain is presumably one of the targets of the glucose signal (Jiang and Carlson, 1997). Therefore while Snf4 is required to disrupt the auto-inhibitory effect that the Snf1 regulatory domain has on the kinase catalytic domain the glucose signal can regulate Snf1 activity independently of Snf4.

1.4.1.6 Glucose repression: targets of the SNF1 kinase complex. The kinase activity of the SNF1 complex is greatly increased after the switch from high to low glucose conditions (Woods et al., 1994; Wilson et al., 1996). Most in vivo targets remain unidentified and the SNF1 complex may phosphorylate proteins other than those directly related to glucose repression. Genetic evidence, however, suggests that MIG1 and SNF1 act in antagonistic fashion and recent studies suggest that Mig1 is under the negative control of Snf1 (Treitel and Carlson, 1995; Ostling et al., 1996; Treitel et al., 1998).

Mig1 is differentially phosphorylated in response to glucose levels (Treitel and Carlson, 1995; DeVit et al., 1997). DeVit et al. found that glucose removal leads to Mig1 translocation from the nucleus to the cytoplasm and that snf1 mutants have constitutive nuclear localization of Mig1. In a pivotal paper published last year, Treitel et al. (1998) describe a series of experiments designed to cement the roles of MIG1 and SNF1 in glucose repression and derepression, respectively, and also designed to test the involvement of other genes implicated in the pathway through previous genetic studies. Treitel et al. (1998) created Mig1 and Ssn6 fusion proteins with the heterologous DNA-binding domain LexA and monitored the expression from a non-glucose-repressible promoter bearing lexA operators in a number of different mutants. While a LexA-Ssn6 fusion confers TUP1-dependent and MIG1-independent repression on the lexA-containing promoter regardless of glucose status, the TUP1/SSN6-dependent repression conferred by a LexA-Mig1 fusion is glucose-
dependent. Repression mediated by the latter is no longer alleviated by a shift to glucose-limiting conditions in an snf1 mutant, indicating a direct effect of Snf1 on Mig1 function. Treitel and Carlson (1995) had previously shown that Mig1 undergoes phosphorylation under low glucose conditions. Treitel et al. (1998) determined that Snf1 is required for this phosphorylation by showing that it is abolished in snf1 mutants. Conversely since, as discussed previously, reg1 and hxx2 mutations both function upstream of SNFL and result in an inability to carry out glucose repression, Snf1 remains active under high glucose conditions in reg1 and hxx2 mutants. Consistent with this, Treitel et al. (1998) found that Mig1 remained phosphorylated under high glucose conditions in reg1 and hxx2 mutants. To further establish the Snf1-dependent phosphorylation of Mig1. Treitel et al. (1998) also verified direct Mig1/Snf1 interaction in two-hybrid and co-immunoprecipitation studies, and showed that Mig1 is phosphorylated in vitro in an Snf1-dependent reaction that can be reduced if potential Snf1 phosphorylation sites on Mig1 are removed by serine to alanine mutations.

1.4.1.7 The role of protein phosphatases in glucose repression. Two other mutations have also been shown to affect glucose repression by relieving glucose-repressed genes in snf1 mutants that would be otherwise unable to derepress them. Molecular characterization of these two mutants, GLC7 and REG1, has shown that they encode a multisubstrate type-1 protein phosphatase (PP1) (Ohkura et al., 1989; Feng et al., 1991) and one of its regulatory subunits (Niederacher and Entian, 1991), respectively. PP1 regulates a number of cellular processes and several mutations that do not impair its catalytic function nonetheless affect some of its regulatory processes while leaving others unaffected. Tu and Carlson (1994) established that one known mutation, glc7-T152K, partially relieves glucose repression of invertase without affecting glycogen synthesis, whereas another
mutation, glc7-1, impairs glycogen synthesis without affecting glucose repression of invertase. Tu and Carlson (1994) suggested that these mutations might affect Glc7 function by impairing its interaction with regulatory subunits that direct it to distinct subsets of targets. Although previously cloned by Niederacher and Entian (1991), the actual role of Reg1 remained elusive because its deduced amino acid sequence did not hint at potential functional features. On the basis of similar phenotypes shown by reg1 and glc7-T152K (i.e. partial relief of invertase glucose repression and suppression by snf1), Tu and Carlson (1995) searched for a possible Reg1/Glc7 interaction.

Genetic evidence for the interaction was obtained when overexpression of REG1 was found to counteract the glucose repression defects of the glc7-T152K mutant (Tu and Carlson, 1995). Two-hybrid analysis and co-immunoprecipitation studies confirmed the actual physical interaction and, as expected, Tu and Carlson also found that the glc7-T152K mutation markedly decreased the Reg1/Glc7 two-hybrid interaction. Genetic evidence suggests that the SNF1 and Glc7 complexes play antagonistic roles in glucose repression. It is still unknown whether the Glc7 complex acts by dephosphorylating Snf1 [as proposed by Tu and Carlson, (1995)], by dephosphorylating regulators of Snf1, and/or dephosphorylating targets of Snf1 [perhaps Mig1, as proposed by DeVit et al. (1997)]. There is evidence that the Reg1 targeting subunit prevents the interaction between the Snf1-RD and Snf4 in low glucose, which "frees up" the catalytic domain thereby activating the kinase. REG1 mutations relieve the inhibitory effect of high glucose on Snf1/Snf4 two-hybrid interactions (Jiang and Carlson, 1996) and lead to constitutive Snf4-dependent Snf1 kinase activity (Ludin et al., 1998). Ludin et al. (1998) have also reported that Reg1 interacts with the Snf1-CD in two-hybrid assays under low glucose conditions, when the SNF1 complex is expected to be active. This interaction is prevented by a mutation in the putative phosphorylation site of the kinase.
activation loop [the T-loop, as described by Hunter and Hanks (1995)], a mutation that abolishes Snf1 function in vivo and in vitro (Estruch et al., 1992). This mutation also weakens the Snf1/Snf4 interaction (Ludin et al., 1998), which would suggest that phosphorylation in the Snf1 T-loop is required for both the Snf1-CD/Reg1 and Snf1-RD/Snf4 interactions. In combination, these two effects would be expected to activate the kinase by preventing auto-inhibition resulting from the Snf1-CD/Snf1-RD interaction.

In the current model of SNF1 complex regulation by Reg1/Glc7 proposed by Ludin et al (1998), after SNF1 is activated by the glucose signal through phosphorylation by an SNF1 kinase-kinase [refer to Fig II.C], Reg1 binds to the Snf1-CD and recruits the Glc7 phosphatase to the kinase complex. The phosphatase can then return the kinase complex to the inactive form by dephosphorylating Snf1 or other components of the complex [Refer to Fig II.B]. One interesting result obtained by Ludin et al. (1998) was that reg1Δsnf1Δ double mutants transformed with a plasmid encoding the Snf1 catalytic domain showed glucose-repressible expression of SUC2 and GAL1-lacZ while the same mutant transformed with full-length Snf1 expressed these genes constitutively. These results would imply that the Snf1-CD receives the glucose signal independently of Reg1 and Snf4.

As a result of the amenability of yeast genetic studies, the bulk of the characterization of the glucose repression pathway has been in the form of in vivo genetic studies seeking to establish the relationship between different members of the pathway (Gancedo, 1998). Although many details remain to be elucidated, the observations from the various studies cited here provide compelling evidence for the in vivo interaction between the different signalling, repression, and derepression components involved in glucose repression. In particular, they have established the importance of the Mig1/Snf1 interplay in repression and derepression, respectively.
1.4.2 The role of the AMPK in mammalian lipid metabolism.

Biochemical characterization of the AMP-activated protein kinase (AMPK) can be traced back to observations made by Carlson et al. (1973) and Beg et al. (1973; 1978) and which can now be ascribed to the activity of AMPK. Carlson et al. (1973) had observed that their crude preparations of Acetyl-CoA carboxylase (ACC) were inactivated by a protein kinase contaminant, the ACC kinase, in a process which was later found to be stimulated by 5'-adenosine monophosphate (AMP) (Yeh et al., 1980). Meanwhile, Beg et al. (1973) had also observed that a crude protein fraction inactivated their microsomal preparations of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase or HMGR) in a time-dependent process that required ATP. Later studies showed that this inactivation was brought about by phosphorylation, presumably through the actions of a protein kinase that was dubbed the HMGR kinase (Beg et al., 1978; Keith et al., 1979). It soon became apparent that the HMGR kinase was itself regulated through phosphorylation (Ingebritsen et al., 1978) by an upstream kinase kinase (Beg et al., 1979; Ingebritsen et al., 1981) in what, at the time, represented only the second protein kinase cascade to be reported. It was later found that the rat liver HMGR kinase was also stimulated by AMP (Ferrer et al., 1985).

Although a number of groups continued the biochemical characterization of the ACC kinase and HMGR kinase by using partially purified preparations, the two kinases were to remain uncharacterized at the molecular level for more than a decade after their initial discovery. At the time Hardie and co-workers had been studying ACC regulation and characterizing several different potential ACC kinase activities. One of their kinases, ACCK 3, was found to be a cAMP-independent/AMP-dependent kinase purified from rat liver (Carling et al., 1987). Munday et al. (1988) discovered that ACCK 3 was the only kinase activity that could inactivate ACC at saturating
concentrations of citrate, an allosteric activator of ACC. This partially purified kinase was later found to also phosphorylate and inactivate HMGR. Both activities were stimulated by AMP and regulated by phosphorylation and thus, based on these shared characteristics, Carling et al. (1987) first proposed that ACC and HMGR were inactivated by the same kinase. This hypothesis was later confirmed when the two protein kinase activities were copurified to near-homogeneity from rat liver (Carling et al., 1989). The two kinase activities were found in the same fraction after a 6 step/4800-fold purification. The preparation contained polypeptides of apparent molecular masses of 63-, 38-, and 35-kDa but only the 63-kDa band was detected by affinity labelling using the reactive ATP analogue $[^{14}C]$fluorosulphonylbenzoyladenosine (Carling et al., 1989). Incubation with the reactive analogue also inactivated both ACC and HMGR kinase activities with identical kinetic parameters (Carling et al., 1989). Because this new kinase appeared to have two physiological substrates, Hardie et al. (1989) proposed the name of 5'-AMP-activated protein kinase (AMPK), in keeping with the naming of other multi-substrate protein kinases by their allosteric activator (e.g. cAMP and cGMP activated kinases). Two different groups subsequently purified the AMPK to homogeneity by using affinity column chromatography. Davies et al. (1994) purified porcine AMPK by performing binding in an ATP-γ-Sepharose column followed by elution with AMP, while Mitchellhill et al. (1994) purified rat AMPK by using a peptide-substrate affinity column. As had been reported previously by Carling et al. (1989), both groups detected the presence of nearly equimolar amounts of two polypeptides of apparent molecular mass of 38- and 35-kDa that copurified along with the 63-kDa catalytic polypeptide. Based on the co-migration of all three polypeptides on native gel electrophoresis and on gel filtration data, Davies et al. (1994) suggested that the three proteins represented subunits in a 1:1:1 heterotrimeric complex.

A significant development in the study of the AMPK was the development of a new and
specific assay for its activity that could overcome the significant shortcomings of previous assays. Assays based on the inactivation of HMGR in crude rat liver microsomes or after partial purification (Beg et al., 1979; Ingebritsen et al., 1978; Ferrer et al., 1984) were insensitive, time-consuming and subject to interference by HMG-CoA lyase and mevalonate kinase (Ness et al., 1980). Carling et al. (1987; 1989) assayed AMPK activity by measuring the incorporation of radioactivity from [γ-32P]ATP into purified ACC and, although more convenient and accurate, it required large amounts of purified ACC and was still subject to interference by the other endogenous ACC kinase activities (Hardie et al., 1989). Hardie and co-workers developed a new assay involving the phosphorylation the SAMS peptide, a synthetic peptide with the sequence HMRSAMSGGLHLVKRR-amide (Davies et al., 1989). This peptide is based on the sequence from His-73 to Lys-85 in rat ACC and which surrounds the AMPK phosphorylation site known to inactivate ACC activity [Ser-79] (Munday et al., 1988). By changing the serine (Ser-77) in the original sequence to an alanine, they eliminated the site phosphorylated by the cAMP-dependent protein kinase (Munday et al., 1988); adding the two extra arginines facilitated purification of the peptide (Davies et al., 1989). Incorporation of radioactivity into the SAMS peptide has provided a rapid, highly sensitive, and very specific assay for AMPK activity (Davies et al., 1989) which, as I will discuss in section 1.4.6, has been exploited for detecting AMPK-like activities from a number of different sources, including plants.

1.4.3 Molecular characterization of the mammalian AMPKs

The first report of molecular characterization of AMPK was in the form of preliminary amino acid sequence data obtained for the porcine AMPK 63-kDa catalytic subunit by Mitchelhill et al. (1994) who sequenced different peptides obtained from a highly purified porcine AMPK
preparation. Concurrently, Carling et al. (1994) independently obtained partial amino acid sequence data from the rat AMPK catalytic subunit and subsequently isolated clones from a rat liver cDNA library by screening with probe amplified by PCR using degenerate primers. The rat Ampk shares 59% identity with the yeast Snf1 and rye Rkin1 within the catalytic domain and, although the extent of the conservation beyond the catalytic domain is less extensive, conservation extends across the entire protein sequence (46% identity) (Carling et al., 1994).

In view of the emergent similarities between the mammalian AMPKs and the yeast SNF1, Stapleton et al. (1994) investigated whether the two polypeptides which copurified with the AMPK catalytic subunit were related to proteins known to interact with Snf1. Using a combination of peptide sequencing and degenerate-primed PCR they obtained partial peptide and cDNA sequence data for both proteins from porcine and rat AMPK preparations and found that the porcine and rat 38-kDa polypeptides were homologous to Snf4 while the 35-kDa polypeptides were homologous to the Sip1/Sip2/Gal83 family of proteins. Stapleton et al. (1994) also performed cross-linking experiments and their results suggested that the 63-, 38-, and 35-kDa polypeptides form complexes, most likely as heterotrimeric, which is in agreement with previous data by Davies et al. (1994). Stapleton et al. also proposed naming them α-, β-, and γ-subunits of the 5'-AMP-activated protein kinase, respectively. Subsequent cloning of the full-length cDNAs for the rat AMPK-β and human AMPK-γ non-catalytic subunits confirmed the homology to Sip1/Sip2/Gal83 and Snf4, respectively (Gao et al., 1996). Woods et al. (1996) independently cloned and characterized cDNAs for the rat AMPK-β and AMPK-γ subunits and investigated interactions between the three subunits in vitro. Their two-hybrid assay results suggest that although the α- and γ-subunits do not interact with each other, the β-subunit is able to form a stable interaction with each of them. In vitro binding data confirmed the β/α and β/γ interactions and also showed that when all three subunits are co-
translated, an \(\alpha/\beta/\gamma \) ternary complex is formed (Woods et al., 1996). Dyck et al. (1996) investigated the role of the catalytic subunits by performing co-transfection studies in COS7 cells and monitoring the resulting AMPK activity. When compared to expression of catalytic AMPK-\(\alpha \) subunit alone, co-expression of the \(\alpha \)- with either \(\beta \)- or \(\gamma \)- subunits leads to modest increases in kinase activity, 1.5- and 2.5-fold respectively. Co-expression of all three subunits leads to a synergistic 50- to 110-fold activation in kinase activity, suggesting that full activation of AMPK-\(\alpha \) requires all three subunits to come together in a ternary complex (Dyck et al., 1996).

Based on subtle differences between the published cDNA sequence for the rat AMPK-\(\alpha \) (Carling et al., 1994; Gao et al., 1994) and the sequence of various peptides obtained during a more thorough protein sequencing of the purified rat AMPK-\(\alpha \) polypeptide, Stapleton et al. (1996) sought out and cloned the cDNA for a second \(\alpha \)-subunit isoform. They called this isoform AMPK-\(\alpha \)1 to reflect the fact that its deduced ORF was identical in sequence to the various peptides derived from the original purified AMPK preparations. AMPK-\(\alpha \)1 and (the previously characterized) AMPK-\(\alpha \)2 are 90% identical within their catalytic domains while sharing 61% identity elsewhere. Although they show different expression patterns (Stapleton et al., 1996) and small differences in peptide substrate specificity (Woods et al., 1996), both isoforms contribute significantly to liver AMPK activity (Woods et al., 1996) and have similar specific activity (Dyck et al., 1996). Multiple isoforms of the \(\beta \)- and \(\gamma \)-subunits are also known to exist. Gao et al. (1996) have reported the presence of several distinct human cDNA sequences at GenBank’s database of expressed sequence tags that are homologous to the AMPK-\(\beta \) and AMPK-\(\gamma \) sequences. These sequences have been isolated from a variety of tissues including heart, breast, placenta, and brain and are different from the published full-length \(\beta \)- and \(\gamma \)-subunit sequences isolated from liver by Gao et al. The full length
cDNA for a second β isoform, termed β2, has recently been reported and shown to be highly expressed in skeletal muscle and lowly expressed in liver, the opposite pattern than is observed for β1 (Thornton et al., 1998). The presence of multiple α-, β-, and γ-subunit genes provides a pool of different isoforms which appear to assemble in heterogeneous ternary complexes (Thornton et al., 1998) and functional differences between any of the components may thus provide an assortment of different in vivo roles (Hardie et al., 1998). Stapleton et al. (1997) have used protein sequencing to show that α2 associates with β1 and γ1 in liver, whereas complexes purified from skeletal muscle contain α2, β2, and γ1. Vavvas et al. (1997) have reported that AMPK-α2, and not AMPK-α1, is activated in response to increased contraction in rat skeletal muscle. In addition to showing differences in the level of allosteric and AMPKK-mediated activation in response to AMP, and differences in their resistance to protein phosphatase PP2A treatment. Salt et al. (1998) have also recently shown that the two isoforms appear to show differences in subcellular localization.

1.4.4 Regulation of the mammalian AMPKs

Two mechanisms involved in regulating AMPK activity were first noted in the early studies of the (then known) ACC and HMGR kinases. Yeh et al. (1980) and Ferrer et al. (1985) first noted the stimulatory effects of AMP on the kinase-dependent inactivation of ACC and HMGR, respectively. Likewise, the involvement of an upstream activating kinase, the AMPKK, was first noted in some of the early studies of the HMGR kinase (Ingebritsen et al., 1978; 1981; Beg et al., 1979). Hawley et al. (1996) have subsequently shown that the AMPK is activated 50- to 100-fold by phosphorylation by the AMPKK and that the major site phosphorylated by AMPKK, Thr-172, is located within the activation segment where many protein kinases require phosphorylation for their activation (Hanks and Hunter, 1995). Although the allosteric stimulation of AMP on AMPK
activity is modest, the stimulatory effect of AMP on the activity of AMPK occurs through a more complex mechanism than had originally been thought. As it turns out, AMP activates the AMPK through four distinct effects (Carling et al., 1989; Corton et al., 1995; Davies et al., 1995; Hawley et al., 1995): (1) direct allosteric activation of the AMPK; (2) direct allosteric activation of the upstream AMPKK; (3) binding to AMPK thus making it a better substrate for the AMPKK; (4) binding to AMPK thus making it a worse substrate for the inactivating protein phosphatase 2C. High ATP levels inhibit at least three, if not all four, of the activating effects of AMP such that the system is activated by conditions of high AMP and low ATP (Corton et al., 1995; Davies et al., 1995; Hawley et al., 1996). The involvement of AMP at several levels makes the system exceedingly sensitive to small changes in AMP concentration and recent modelling of the system by Hardie et al. (1999) has shown that the system displays an ultrasensitive response: only a 6-fold increase in activating nucleotide levels is required in order to increase AMPK activity from 10% to 90% of the maximal activity.

Under optimal conditions, eukaryotic cells maintain a high ATP:ADP ratio (10:1) owing to high levels of oxidative phosphorylation. In turn, high ATP levels lead to low AMP levels because the enzyme adenylate kinase catalyzes the reaction: \(2\text{ADP} \leftrightarrow \text{ATP} + \text{AMP} \) and the reaction is maintained at near equilibrium with an equilibrium constant that is close to unity \((K_{eq} \approx 1 \approx [\text{ATP}][\text{AMP}]/[\text{ADP}]^2) \). The latter equation can be reworked into the following equality: \(([\text{AMP}]/[\text{ATP}] \approx ([\text{ADP}]/[\text{ATP}])^2 \) and thus, the AMP:ATP ratio changes roughly as the square of ADP:ATP ratio, making it a sensitive indicator of changes in ATP levels (Hardie et al., 1994; 1998). If cells suffer conditions which interfere with ATP production, the ADP:ATP increase leads to an even larger increase in AMP:ATP ultimately activating the AMPK (Hardie et al., 1994; 1998). Hardie and co-workers have hypothesized that the pathway acts as a cellular fuel gauge that enacts ATP conserving steps when cellular stresses deplete ATP. The active AMPK protects the cell by
inactivating rate-limiting enzymes in ATP-consuming anabolic pathways such as fatty acid synthesis (acetyl-CoA carboxylase) and sterol synthesis (HMG-CoA reductase) (Corton et al., 1994; Henin et al., 1995). At the same time, AMPK may have a role in activating alternative pathways for ATP generation (Hardie and Carling, 1997; Velasco et al., 1997; Makinde et al., 1997; Kemp et al., 1999).

1.4.5 The physiological role of mammalian AMPKs

Studies on the possible physiological role of the AMPK have been prompted by observations of the in vitro phosphorylation of potential target proteins. Nevertheless, a protein that is phosphorylated in vitro may not be a substrate for a protein kinase in vivo; similarly, not every site phosphorylated on a protein will necessarily affect its activity. Therefore, as studies detailing possible new substrates and regulatory roles for the AMPK continue to surface, it has become of crucial importance to assess the true in vivo relevance of the AMPK in various metabolic pathways. The in vitro phosphorylation and inactivation of the two best known AMPK targets, acetyl-CoA carboxylase and HMG-CoA reductase, was well established through the early years of AMPK biochemical characterization (reviewed by Hardie, 1992). The in vivo role of the AMPK in regulating fatty acid and sterol synthesis has been established through several lines of evidence: (1) treatments which deplete cellular ATP levels [heat shock (Corton et al., 1994), high fructose (Moore et al., 1991), 2-deoxyglucose (Sato et al., 1992), uncouplers of oxidative phosphorylation such as antimycin A, azide, or dinitrophenol (Witters et al., 1991), and the TCA cycle inhibitor arsenite (Corton et al., 1994)] have been shown to lead to increased AMPK levels, increased phosphorylation and inactivation of ACC and/or HMGR, and inhibition of fatty acid and/or sterol synthesis in cultured cells; (2) Epinephrine treatment leads to AMPK activation and increased ACC phosphorylation (Haystead et al., 1990); (3) addition of insulin, a known activator of ACC and fatty
acid synthesis, to Fao hepatoma cells leads to inhibition of AMPK activity prior to the onset of ACC activation (Witters et al., 1992); (4) incubation with AICAR (5-amino-4-imidazole-carboxamide ribonucleoside), a cell-permeable compound that is metabolized into the AMP analogue ZMP (5-amino-4-imidazole-carboxamide ribotide), activates AMPK and leads to phosphorylation and inhibition of ACC in primary rat adipocytes (Sullivan et al., 1994; Corton et al., 1995) and HMGR in rat hepatocytes (Corton et al., 1995; Henin et al., 1995).

The inactivation of ACC counteracts decreases in cellular ATP levels through a secondary effect distinct from that of preventing fatty acid biosynthesis. The product of ACC is malonyl-CoA, which inhibits β-oxidation of long-chain fatty acids through its potent allosteric inhibition of carnitine palmitoyltransferase I, the enzyme responsible for fatty acid uptake into the mitochondrial matrix (McGarry et al., 1978; 1983). Decreases in malonyl-CoA levels due to inactivation of ACC can ultimately lead to a concomitant stimulation of fatty acid oxidation and ATP generation. In muscle tissue, which does not perform de novo fatty acid synthesis, the primary role of ACC inactivation could be activation of fatty acid oxidation (Hardie et al., 1997). High rates of fatty acid oxidation are observed in ischemic hearts following reperfusion, and Kudo et al. (1995; 1996) have shown that these are the result of depressed malonyl-CoA levels resulting from the AMPK-dependent inactivation of ACC following a rise in AMP:ATP ratio. Similarly, Makinde et al. (1997) have shown that the increased fatty acid oxidation observed in the heart tissue of newborn rabbits is associated with increases in AMPK activity. Decreases in circulating insulin levels are observed after birth and lead to AMPK activation and inactivation of ACC, ultimately resulting in reduced malonyl-CoA levels and stimulation of fatty acid oxidation (Makinde et al., 1997). A similar chain of events is observed in quadriceps muscle isolated from rats after prolonged running on a treadmill (Winder and Hardie, 1996). In situ electrical stimulation of rat skeletal muscle tissue has also been shown to lead to increases in the AMP:ATP ratio that are concomitant with increased AMPK levels.
(Hutber et al., 1997). Cells undergoing increased β-oxidation of fatty acids in response to decreased ATP levels are likely to decrease incorporation of fatty acids into complex lipids such as triacylglycerol. Consistent with this prediction, incubation of hepatocyte and myocyte cultures with AICAR leads to decreased [14C]oleate and [3H]glycerol incorporation into diacylglycerol, triacylglycerol, and phospholipid (Muolio et al., 1999). It also leads to an AMPK-dependent inactivation of the mitochondrial isoform of sn-glycerol-3-phosphate acyltransferase (GPAT), the enzyme that catalyzes the first committed step in glycerolipid biosynthesis. Muolio et al. (1999) have proposed that by inhibiting the mitochondrial form of GPAT and alleviating the malonyl-CoA inhibition of carnitine palmitoyltransferase I, AMPK activation channels fatty acids towards mitochondrial β-oxidation and away from glycerolipid biosynthesis.

AMPK has recently been reported to phosphorylate and inhibit creatine kinase (CK) in vitro (Ponticos et al., 1998). CK catalyses the conversion of creatine (Cr) into phosphocreatine (PCr) in the following reaction: Cr + ATP ↔ PCr + ADP. In skeletal muscle, PCr represents a temporary energy reserve that serves as a buffer providing immediate fuel to meet the rapid burst in ATP demand during muscle contraction (Walliman, 1994). In addition to showing that AICAR treatment of differentiated muscle cells leads to a reduction in CK activity, Ponticos et al. (1998) have shown that the AMPK is itself inhibited by PCr, but that this inhibition is relieved by Cr. In resting muscle, PCr:Cr and ATP:AMP are high and the AMPK is kept in an inactive form. During muscle contraction, the PCr:Cr ratio drops and the AMPK is activated. The subsequent inhibition of CK is thought to prevent a further depletion of cellular ATP levels in “charging” Cr into PCr, at least in the initial stages of muscle contraction. Phosphorylation and regulation of CK still remains to be established in vivo.

A fourth known physiological target for the AMPK is the hormone-sensitive lipase (HSL), an enzyme that catalyzes the hydrolysis of triacylglycerols and cholesterol esters (Garton et al.,
1988; Yeaman, 1990). The HSL is phosphorylated and activated by the cAMP-dependent protein kinase (PKA) (Garton et al., 1988). *In vitro*, the AMPK phosphorylates the HSL at Ser-565 but this does not directly affect its activity. It does, however, prevent the phosphorylation by the PKA (at Ser-563) and thus the AMPK has been hypothesized to play an anti-lipolytic role (Garton et al., 1989). Consistent with this, incubation of isolated hepatocytes with AICAR not only activates the AMPK but it prevents activation of lipolysis in response to agents known to raise intracellular cAMP levels (Sullivan et al., 1994; Corton et al., 1995). Hardie and Carling (1997) have argued that the antilipolytic role of the AMPK represents a mechanism through which the rate of hydrolysis of triglycerides and cholesterol esters does not outstrip the capacity of the cell to utilize the free fatty acids. The release of excessive free fatty acids can lead to an ATP-consuming futile cycle in which free fatty acids are recycled into glycerolipids and cholesterol esters through re-esterification.

AMPK has been shown to phosphorylate two further proteins *in vitro*: glycogen synthase (Carling and Hardie, 1989) and the Raf-1 kinase (Sprenkle et al., 1997; Hardie et al., 1998). Glycogen synthase is the key regulatory enzyme in glycogen synthesis whereas Raf-1 forms part of the mitogen-activated protein (MAP) kinase pathway. Hardie et al. (1998) have argued that both of these activities are consistent with the role of AMPK during stress [i.e. if energy status becomes compromised, AMPK could inhibit glycogen synthesis (which consumes UTP) and cell proliferation (which is energetically expensive)]. So far there is no evidence to suggest that either of these two proteins are phosphorylated and regulated by the AMPK *in vivo*, although studies are currently addressing this issue. It is important to recognize that the AMPK need not be the only regulatory mechanism acting on any individual enzyme. For example, in addition to AMPK-dependent regulation HMGCR is also regulated at the transcriptional and translational levels (Goldstein and Brown, 1990) and by turnover rates (Correll and Edwards, 1994).
1.4.6 **Similarities between SNF1 and AMPK protein kinases.**

In addition to reporting on the high level of similarity with yeast Snf1 and rye Rkin1 primary sequences, Mitchelhill *et al.* (1994) showed that SNF1 and AMPK have similar substrate specificities because SNF1 can phosphorylate the SAMS peptide and, more importantly, because both the porcine AMPK and yeast SNF1 inactivate purified yeast ACC *in vitro*. In a subsequent paper, Carling and co-workers studied possible functional homology between SNF1 and AMPK by testing whether, like its mammalian counterpart, SNF1 could regulate ACC activity *in vivo*. By using the SAMS peptide phosphorylation assay, they found that SNF1 activity increases in a time-dependent manner in response to low glucose conditions and that ACC activity changes inversely with SNF1 activity (Woods *et al.*, 1994). The decreased ACC activity in low glucose could not be detected in *snf1Δ* mutants, indicating that SNF1 is responsible for regulating ACC activity *in vivo*. Taken together, the results of Mitchelhill *et al.* and Woods *et al.* suggested a novel function for SNF1: the regulation of *de novo* fatty acid synthesis, at least during glucose derepressing conditions. Conversely, as speculated by the authors of both studies, the finding also raised the possibility that AMPK may be involved in regulating cellular processes that are known to be regulated by SNF1 in yeast cells. For example, Salt *et al.* (1998) have observed that AMPK-α2 can localize to the nucleus raising the possibility that, like the yeast SNF1 complex, AMPK-α2 complexes may be involved in regulating gene expression (Salt *et al.*, 1998). AICAR, used to increase AMPK activity, has been recently shown to inhibit glucose-dependent expression of fatty acid synthase in cultured rat hepatocytes through a transcriptional mechanism (Foretz *et al.*, 1998).

Cloning and characterization of the AMPK non-catalytic subunits have revealed them to be homologous to the SNF1 non-catalytic subunits (Gao *et al.*, 1996): Sip1/Sip2/Gal83 are homologous to the β-subunit and Snf4 is homologous to the γ-subunit. Unlike AMPK, where full activation of AMPK requires all three subunits to come together in a ternary complex (Dyck *et al.*, 1998),
(Celenza et al., 1989; Celenza and Carlson, 1989; Woods et al., 1994). Nonetheless, Sip1/Sip2/Gal83 help stabilize the Snf1/Snf4 interaction (Yang et al., 1994). In high-glucose conditions Snf1 and Snf4 do not interact directly with each other yet remain associated in high molecular mass complexes. Sip1/Sip2/Gal83 interact with both Snf1 and Snf4 (Jiang and Carlson, 1996; 1997) and this mirrors the interactions observed between the AMPK subunits: although the α- and γ-subunits do not interact with each other, the β-subunit is able to form a stable interaction with each of them (Woods et al., 1996).

Interestingly, despite the obvious conservation in function between the SNF1 complex and the AMPK complex, some differences exist (Hardie et al., 1998). Unlike some plant SNF1 homologues, mammalian AMPKs have failed to rescue SNF1 function in snf1Δ mutants (Carling et al., 1994). Also, despite many attempts to directly implicate it in the activation of the SNF1 complex, AMP does not activate SNF1 in vitro (Wilson et al., 1996). Neither other nucleotides nor numerous sugar phosphates tested have an allosteric effect on SNF1 (Wilson et al., 1996) and thus the mechanism through which changes in glucose levels trigger SNF1 activation is still unknown (Hardie et al., 1998). Wilson et al. (1996) have demonstrated that a significant correlation exists between glucose levels, the yeast intracellular AMP:ATP ratio, and SNF1 activity. Specifically, although SNF1 is not allosterically affected by AMP, conditions which activate the SNF1 complex are accompanied by increases in the in vivo AMP:ATP ratio. Interestingly, Wilson et al. (1996) have also shown that, like the AMPK, SNF1 is inactivated in vitro by protein phosphatase 2A treatment and can be reactivated by using a partially purified preparation of the AMPK-kinase (AMPKK) (Woods et al., 1994; Wilson et al., 1996). They have also found an endogenous activity similar to the AMPKK in yeast extracts.

Unlike yeast cells, the majority of mammalian cells do not encounter extreme fluctuations in extracellular glucose levels owing to both the many homeostatic mechanisms which ensure stable
plasma glucose levels and to the glycogen stores present in many cell types. The AMPK should not be expected to be affected by changes in extracellular glucose because most mammalian cells do not respond to changes in glucose supply. The pancreatic β-cells that are responsible for insulin secretion are an exception to this rule and are thus extremely sensitive to changes in extracellular glucose levels. In these cells the AMPK, like SNF1, has been shown to respond to changes in extracellular glucose (Salt et al., 1998). In pancreatic β-cells, changes in extracellular glucose levels lead to concomitant changes in the AMP:ATP ratio and to changes in the phosphorylation state and activity of AMPK (Salt et al., 1998).

1.4.7 Phylogenetic distribution of the SNF1/AMPK protein kinases.

The SNF1/AMPK family of protein kinases is widely distributed among the different eukaryotic lineages, pointing to an ancient origin for both the family and the cascade they mediate. Genomic clones, cDNAs, and PCR products sharing high levels of sequence identity with yeast SNF1 have been obtained from a number of different mammalian species (reviewed by Hardie et al., 1998), plants (reviewed by Halford, 1994; Halford and Hardie, 1998), Xenopus laevis (Rhogi et al., unpublished) and C. elegans (Wilson, R., unpublished). Genes representing the mammalian AMP-activated protein kinases have been cloned from several species including human, rat, and pig (Beri et al., 1994; Carling et al., 1994; Woods et al., 1994; Gao et al., 1995). Many different plant SNF1-like protein kinases, the SnRK1 subfamily (for Snf1-Related protein Kinases), have been cloned and these include rye RKN1 (Alderson et al., 1991), Arabidopsis thaliana AKIN10 (LeGuen et al., 1992), barley BKN12 (Halford et al., 1992), tobacco NPK5 (Muranaka et al., 1994), potato PKIN1 (Man et al., 1997), and sugar beet SBKIN154 (Monger et al., 1997), among others. In addition, kinase activities that are able to phosphorylate the SAMS peptide and/or mammalian HMG-CoA reductase have been partially purified from cauliflower, barley, and potato (Ball et al.,
1994; Barker et al., 1996; MacKintosh et al., 1992). Although not activated by AMP, these kinase activities share other biochemical characteristics with AMPK including inactivation by phosphatase 2A and reactivation by the AMPKK (MacKintosh et al., 1992; Ball et al., 1994; Dale et al., 1995). The plant kinases encoded by the rye RKIN1 and tobacco NPK5 genes have been shown to complement yeast snf1Δ mutants (Alderson et al., 1991; Muranaka et al., 1994) and appear to represent functional SNF1 homologues. In fact NPK5 has been shown to interact with Snf4 in two-hybrid assays (Jiang and Carlson, 1996). Although the other plant kinases mentioned have not been well characterized, they are thought to represent RKIN1 and NPK5 homologues based on sequence similarity and clustering on phylogenetic trees (Halford and Hardie, 1998).

The mammalian and plant kinases mentioned above represent the closest relatives of yeast SNF1. A number of protein kinases showing slightly lower levels of similarity to SNF1 have also been described although none have been characterized in any detail. These include kinases from the plant SnRK2 and SnRK3 families (Halford and Hardie, 1998), and kinases such as the human KP78 (Maheshwari et al., unpublished), human SNRK (Becker et al., 1996), mouse EMK (Inglis et al., 1993), mouse MSK (Ruiz et al., 1994), and PARI from C. elegans (Guo and Kemphues, 1995). Although to date no phylogenetic analysis has been carried out which includes all plant and animal SNF1/AMPK kinases and their close relatives, different subsets of SNF1/AMPK-related kinases have been analyzed (Hanks and Hunter, 1995, Becker et al., 1996; Halford and Hardie, 1998). The SNF1/AMPK kinases and close relatives form a separate branch within the larger group of animal calmodulin-dependent protein kinases and plant calmodulin domain protein kinases defined by Hanks and Hunter (1995). Yeast SNF1 and its closest relatives [the mammalian AMPKs, C. elegans PAR2.3, and the SnRK1 group of plant kinases (which includes rye RKIN1 and tobacco NPK5)] all cluster together as a single group in phylogenetic trees (Becker et al., 1996). The plant SnRK2 and SnRK3 groups are closely related to the plant SnRK1 group, though less so than SNF1 and AMPK.
(Halford and Hardie, 1998). The group of animal kinases that includes KP78, SNRK, EMK, MSK, and PARI also shares some sequence conservation with the SNF1/AMPK kinases (Becker et al., 1996; Halford and Hardie, 1998). Little is known about these last three groups of kinases.

Based on similarities between AMPK, SNF1, and their closest relatives, Hardie et al. (1998) have proposed a unifying hypothesis for the role of this family of protein kinases. They propose that the kinase cascades mediated by the SNF1/AMPK kinases are involved in detecting changes in cellular energy status and enacting changes in metabolism, gene expression, and perhaps cell proliferation in response to stresses that compromise the energy status of the cell.
1.5 The glucose repression system in *Drosophila*

In addition to temporal, spatial, and developmental regulation, the \(\alpha\)-amylase gene of *Drosophila melanogaster* is repressed by dietary glucose (Benkel and Hickey, 1986a,b). We have been studying the *Drosophila* \(\alpha\)-amylase gene-enzyme system as a model for gene regulation because it provides a rare example of glucose repression in a higher eukaryote (Hickey *et al.*, 1989). *Drosophila* produces \(\alpha\)-amylase in order to utilize non-preferred carbohydrate sources (Haj-Ahmad and Hickey, 1982). Alpha-amylase is a digestive enzyme that catalyzes the hydrolysis of the internal glycosidic bonds of \(\alpha\)-(1,4)-linked glucose polymers such as starch or amyllose. The *Drosophila Amy* locus contains two closely linked genes (Gemmill *et al.*, 1986; Boer and Hickey, 1986; Benkel *et al.*, 1987) that are divergently transcribed. A number of different isozymes exist for each gene copy and many strains produce two different \(\alpha\)-amylase variants. Amylase activity is restricted to the larval and adult midgut and discrete patterns of activity are observed during the different developmental stages of *Drosophila* (Doane *et al.*, 1983; Thompson *et al.*, 1992). A trans-acting regulatory locus (*mapP*) has been shown to exert tissue-specific control of amylase activity, positively regulating amylase levels in the posterior region of the midgut (Doane *et al.*, 1983; Thompson *et al.*, 1992). Dietary glucose has been shown to depress the levels of \(\alpha\)-amylase activity in both larvae and adult flies (Hickey and Benkel, 1982) and most naturally occurring \(\alpha\)-amylase variants show glucose repression (Benkel and Hickey, 1986a; b). Repression occurs at the transcriptional level and results in large decreases in \(\alpha\)-amylase mRNA levels, along with concomitant decreases in protein levels, following exposure to glucose (Benkel and Hickey, 1987; Hickey *et al.*, 1989). It has been shown previously that elements within the \(\alpha\)-amylase promoter start site are responsible for mediating both overall transcriptional activity as well as glucose repression (Benkel and Hickey, 1987; Magoulas *et al.*, 1993). Deletion constructs with as little as
109 bp of the sequence immediately upstream of the α-amylase coding sequence show both an appropriate level of expression as well as an appropriate response to dietary glucose (Magoulas et al., 1993). Attempts to define the minimal cis-acting elements responsible for glucose regulation of expression within the *Drosophila* α-amylase promoter have shown that the mechanism of glucose repression likely involves several functionally redundant elements (Magoulas et al., 1992; Yoshida, 1998).

Previous work in our lab has provided evidence that the mechanism of glucose repression acting on the *Drosophila* α-amylase gene is similar to that found in *S. cerevisiae* (Hickey et al., 1994). Yeast cells transformed with shuttle vectors bearing the wild-type *D. melanogaster* α-amylase gene, including both coding and non-coding regions, produced and secreted enzymatically active fly amylase in a glucose repressible fashion (Hickey et al., 1994). Constructs in which the promoter region of *Drosophila* α-amylase gene was fused to the firefly luciferase coding region also expressed this reporter gene in a glucose responsive manner and thus the fly α-amylase promoter is fully glucose repressible when introduced into yeast cells. That this *Drosophila* promoter is recognized by the transcriptional machinery involved in effecting glucose repression in yeast is highly suggestive of evolutionary conservation between the *Drosophila* and *S. cerevisiae* glucose repression pathways (Hickey et al., 1994).
1.6 Thesis project: description and goals.

Molecular evidence mentioned in the previous section suggests evolutionary conservation between the yeast and Drosophila glucose repression pathways. The working hypothesis underlying this thesis is that the glucose repression pathways of D. melanogaster and S. cerevisiae evolved from the same original cascade and that, as such, important components of the yeast glucose repression pathway have been conserved in Drosophila. In yeast, the SNF1 protein kinase complex mediates derepression. SNF1 forms a part of a larger family of kinases involved in regulating metabolism in response to nutritional stress and we reasoned that similar protein kinases would also exist in Drosophila.

The family of SNF1 related protein kinases have retained a conservation in function across widely divergent taxa and this predicts that putative Drosophila SNF1 homologues will also have similar roles. In Section 2, I describe the methodology used in both the search for putative Drosophila SNF1 homologues and in exploring the molecular evolution of the SNF1/AMPK protein kinase family. Section 3 is devoted to describing the results obtained in the various experiments and analyses.

In the first series of experiments (Section 3.1), human and Drosophila protein kinases were identified by using the polymerase chain reaction (PCR) along with degenerate oligonucleotides based on conserved motifs of the SNF1/AMPK protein kinases. In the second set of experiments (Section 3.2), I describe the subsequent cloning and characterization of the novel protein kinases and also describe results obtained from the analysis of the molecular data. Lastly, in Section 3.3, I describe the sequences and phylogenetic analysis of the SNF1/AMPK protein kinase family.
2. MATERIALS AND METHODS

2.1 Degenerate PCR primer design.

2.1.1 SNF1/AMPK biased primers.

Degenerate oligonucleotide primers were designed based on general conserved features of the eukaryotic protein kinase catalytic domain and were biased towards the amplification of SNF1- and AMPK-like sequences by taking into account residues conserved between yeast SNF1 and rat AMPK-α2 catalytic domain. The following three peptide sequences were selected for oligonucleotide design (See Fig 1.A for location along the catalytic domain): as sense primers: a) K929: G(S/T)FGKVK and b) K932: VHRDLKPN, and as the antisense primer: c) K930: Y(A/V)GPEVD(I/L/V)W. Degenerate primers corresponding to these peptides are as follows:

K929 5’-GGI-ICI-TT(TC)-GGI-AA(GA)-GT(IG)-AA-3’
K930 5’-CCA-IAI-(AG)TC-IAC-(TC)TC-IGG-ICC-I(AG)C-(AG)TA-3’
K932 5’-GTI-CA(CT)-(AC)GI-GA(CT)-(TC)TI-AA(GA)-CCN-GA(GA)-AA-3’.

2.1.2 Primers biased towards SNF1 and its plant homologues

In order to bias amplification of kinases sharing higher similarity with SNF1 and functional plant homologues, sets of degenerate primers were also designed based on sequences shared between Snf1, rye Rkin1 (Alderson et al., 1991) and tobacco Npk5 (Muranaka et al., 1994). Several primer pairs were initially designed although only one primer pair yielded consistent results. The
sense/antisense primer pair K1184 and K1187 was based on peptide sequences T(R/G)(H/Q)KVA and HPHII(R/K) respectively. The fully degenerate primers corresponding to those peptides are as follows:

K1184: 5’-(CT)(TG)(TGA)-AT(TGA)-AT(GA)-TG(ATGC)-GG(GA)-TG-3’
K1187: 5’-ACN-(ACG)G(ATGC)-CA(ATGC)-AA(AG)-GT(ATGC)-GC-3’.

The K1184/K1187 primer pair was successfully used to amplify sequences from Drosophila genomic DNA and from yeast genomic DNA. Additionally, the sense primer K929 was also successfully used with K1187. All primers were synthesized in an ABI381A oligonucleotide synthesizer according to manufacturer instructions. Inosine (I) residues were incorporated at some sites to minimize degeneracy.

2.2 PCR cloning of SNF1-like sequences.

Products were amplified using both K929-K930 and K932-K930 primer combinations. 100 pmol of each primer were used along with 100 to 400 ng of Drosophila melanogaster (Ore-R) genomic DNA template in 50 μl reaction volumes [1 to 2.5 mM MgCl₂; 50 mM KCl; 10 mM Tris-HCl (pH 9.0); 0.01% Triton X-100; 100 pmol of each primer; 0.2 U Taq polymerase]. Amplification was performed for a total of 35 cycles with a 30 s denaturation at 95°C, 45 s of annealing (as described below) and a 45 s extension at 72°C. Annealing temperatures were based on a 10 cycle touchdown-PCR profile (initial annealing temperature of 50°C, and a 1°C decrease in each subsequent cycle down to a final annealing temperature of 40°C), followed by 25 cycles with
annealing at 40°C and a final extension of 6 minutes. Amplification products were visualized by ethidium bromide staining after agarose gel electrophoresis and processed according to the scheme shown in Appendix I. Products of the expected sizes were excised and purified using the Qiaex II gel purification kit (Qiagen), followed by cloning into the pCR™II vector (TA cloning kit, Invitrogen). Individual clones were picked and insert sizes were ascertained directly by PCR on colonies using vector primers flanking the cloning site. Plasmid DNA was prepared from positive clones selected at random (plasmid purification kit, Qiagen), and sequenced using dye-deoxide chemistry (Applied Biosystems) in an ABI373A automated sequencer. Sequences obtained were then searched against the GenBank database.

The K930-K932 and K929-K932 primer combinations were also used for PCR using a number of different templates including: human intestinal, skeletal muscle and liver cDNA; mouse genomic DNA; yeast genomic DNA. Human cDNAs were synthesized by reverse transcription of 1 μg of poly A⁺ RNA (Clontech) using 200 U of Superscript II (Gibco BRL) using the following conditions: 500 μM of each dNTP; 50 mM Tris-HCl (pH 8.3); 75 mM KCl; 3 mM MgCl₂; 10 mM DTT; 50 μg/ml oligo (dT)₁₂₋₁₈; 50 U/ml RNasin. Reaction times are as follows: 10 min denaturation at 70°C, annealing and extension at 42°C for 55 min, heat inactivation at 70°C for 15 min, followed by a 20 min treatment with RNaseH. Approximately 50 ng of cDNA were used per PCR in a 50 μl reaction as described above. Yeast genomic DNA (strain AH22) was prepared from spheroplasts (cells were harvested from liquid culture by centrifugation and were incubated for 1 hour at 37°C in zymolyase solution [0.9 M Sorbitol, 0.1 M Tris-HCl (pH 8.0), 0.1 M EDTA (pH 8.0), 0.03 g/ml zymolyase, 30 mM β-mercaptoethanol]). Spheroplasts were lysed in 50 mM Tris (pH 8.0), 20 mM EDTA (pH 8.0), 1% SDS. The lysate was then applied to an anion exchange chromatography column (Genomic tip, Qiagen) and DNA was purified according to the manufacturer's instructions.
Mouse genomic DNA was courtesy of Dr. B. Benkel. 100 ng of yeast genomic DNA and 500 ng of mouse genomic DNA were used per PCR reaction as described above.

2.3 Probe construction and Drosophila library screening.

Approximately 2.5 x 10^5 pfu of a Drosophila \(\lambda \)-Fix II genomic library (Stratagene) were screened using each of the two distinct 192 bp insert bearing clones that were obtained using the K932/K930 primer pair. Phages were plated at a density of 5 x 10^4 pfu/plate and plaques were double-lifted onto Hybond-N membranes (Amersham) according to manufacturer’s instructions. Following 4 min denaturation in 0.2 M NaOH/1.5 M NaCl and 2 min neutralization in 3 M sodium acetate, membranes were air dried and DNA was UV cross-linked.

Probe templates were prepared by excising the 192 bp inserts from pCRTMII using EcoRI followed by gel purification. Approximately 50 ng were then labelled to high specific activity with \([\alpha^{-32}P]dCTP\) (3000 mCi/mmol, Amersham) by random priming (Oligolabelling Kit, Pharmacia) and unincorporated label was removed by filtration in Sephadex G-50 columns (Boehringer Mannheim). Hybridizations were carried out in 50% Formamide, 10 X Denhardt’s solution [100 X Denhardt’s: 2% Ficoll 400, 2% polyvinylpyrrolidone, 2% bovine serum albumin (Fraction V)], 1M NaCl, 50 mM Tris-HCl (pH 8.0), and 100 mg/ml of sheared salmon sperm DNA at 42 °C for 12-16 h. The membranes were then briefly washed at room temperature in 2 X SSC/0.1% SDS (2 X 5 min), followed by two 20 min room temperature washes in 0.2 X SSC/0.1% SDS [20 X SSC: 3 M NaCl, 0.3 M sodium citrate, pH 7.0]. Autoradiography was then performed for 1-2 days at -80°C. Positive plaques were identified, resuspended in SM buffer [100 mM NaCl, 8 mM MgSO_4, 50 mM Tris-HCl]
(pH 7.5), 0.01% gelatin] and re-plated at lower densities for each subsequent round of re-screening.

Single well-isolated positive plaques were isolated and resuspended in SM buffer. Resuspended plaques were used to prepare confluent plates that were then used to obtain a high titer supernatant. The latter was used to infect liquid cultures at low multiplicity. Phage DNA was then purified from the resulting liquid lysates (λ DNA purification kit, Qiagen).

2.4 Subcloning and DNA sequencing of genomic clones.

Southern hybridizations (Southern, 1975) were performed in order to determine subfragments of the λ clones hybridizing to the PCR probes. DM_SNF1A and DM_SNF1B λ genomic clones were restricted in single and double digests using NotI and EcoRI. The restriction digests were visualized by ethidium bromide staining following agarose gel electrophoresis. DNA was then transferred to Hybond-N membranes by alkaline capillary transfer as described by the manufacturer and UV crosslinked to the membrane. Probe preparation and hybridizations were carried out as described in section 2.3.

The NotI, NotI/EcoRI and EcoRI subfragments hybridizing to the probes were gel-purified and then cloned into the pBluescript (SK+). Resulting plasmid clones were sequenced using dye-deoxy chemistry (Applied Biosystems) in an ABI373A sequencer through a combination of subcloning and primer walking. A 6.5 Kb NotI/EcoRI subclone bearing two DM_SNF1B gene copies was completely sequenced by using a combination of unidirectional nested Exonuclease III deletions (Erase-a-base system, Promega) [See Fig 5] and primer walking. Sets of nested deletion clones were generated from both ends of insert in order to generate sequence from both strands.
2.5 Northern and genomic Southern analysis.

Total whole-body RNA was isolated from 0.5-1.0 g of Ore-R adult flies or larvae grown in either glucose supplemented or glucose deficient medium by the method of Chomczynski and Sacchi (1987). Flies or larvae (0.5 to 1.0 g) were homogenized in 5 ml of denaturing solution [4 M guanidium thiocyanate, 25 mM sodium citrate (pH 7.0), 100 mM β-mercaptoethanol, 0.5% sarcosyl]. To the resulting homogenate was added 0.5 ml of 2 M sodium acetate (pH 4.0) and 5 ml of water-saturated phenol, followed by thorough mixing. One ml of 49:1 chloroform/isoamyl alcohol was then added to the mixture, followed by a 15 min incubation on ice. Following a 20 min centrifugation (10000 x g) at 4°C, the aqueous phase was removed and an equal volume of 100% isopropanol was added and the mixture was incubated for 30 min at -20°C to precipitate the RNA. Following a 10 min centrifugation (10000 x g), the RNA pellet was dissolved in 1.5 ml of denaturing solution and the RNA was re-precipitated with 1 volume of 100% isopropanol for 30 min at -20°C. Following a 20 min centrifugation (10000 x g) at 4°C, the RNA pellet was resuspended in 75% ethanol with vortexing at room temperature to remove residual traces of guanidium. The mixture was then centrifuged for 5 minutes at 10000 x g. The RNA pellet was dried and re-suspended in DEPC-treated water. RNA yield and quality were ascertained by gel fractionation in denaturing gels [1.0 % agarose, 2 M formaldehyde] and by spectrophotometric quantitation. For Northern blotting experiments, 10 μg of each total RNA sample were run on a denaturing gel followed by capillary transfer in 20 X SSC to a Hybond-N membrane (Amersham) according to the manufacturer’s instructions. Poly-A⁺ RNA was also isolated from the total RNAs obtained above using poly-A⁺ isolation kits (Qiagen and Invitrogen) according to the manufacturer’s instructions. Approximately 1 μg of each poly-A⁺ RNA were then run on denaturing gels and transferred as described above.
Genomic DNA was isolated by homogenizing 1-2 g of Ore-R adult flies in lysis buffer [100 mM Tris-HCl (pH 8.0), 50 mM NaCl, 50 mM EDTA, 1% SDS, 0.15 mM spermine, 0.5 mM spermidine] on ice, followed by proteinase K digestion (100 μg/ml, 40°C, overnight incubation) with simultaneous RNase A (300 μg/ml) treatment. Supernatants were cleared by centrifugation and DNA was purified by anion exchange chromatography (Genomic-tip 500, Qiagen). Yield and quality were ascertained by gel fractionation and by spectrophotometric quantitation. For Southern blots, 5 μg of genomic DNA was used per restriction digest, run on a 0.9% agarose gel, followed by alkaline capillary transfer to a Hybond-N membrane as described by the manufacturer’s instructions. DNA probes were labelled by random priming and hybridization was carried out in 5 X Denhardt’s, 50% formamide, 0.2 M Tris-HCl (pH 7.5), 0.86 M NaCl and 0.1 mg/ml salmon sperm DNA at 42 °C for 12-16 h. Membranes were briefly washed in 2 X SSC/0.1% SDS at room temperature (2 X 5 min), followed by two ten minute washes in 0.2 X SSC/0.1% SDS at 65°C. Some hybridizations were carried out under more relaxed stringency conditions, Medium stringency hybridizations were carried out exactly as described above but membranes were briefly washed at room temperature in 2 X SSC/0.1% SDS (2 X 5 min), followed two 10 min washes in 0.2 X SSC/0.1% SDS at 50°C followed by autoradiography.

2.6 Cloning of a cDNA clone of DM_SNFLA.

A Drosophila adult λ-Dash II cDNA library (Stratagene) was screened in order to obtain either full length cDNA clones for DM_SNFLA or clones bearing the region that includes the translational start site and the exon 1-exon 2 junction. Screenings were carried out exactly as described for the genomic library. Once single plaques were isolated in tertiary screening,
phagemids were rescued by *in vivo* excision (Stratagene), inserts were sized and then characterized by PCR using a combination of vector-derived primers and primers designed based on previously obtained genomic sequence. Twelve positive clones were brought to third screening although none of the clones obtained included the putative start of the coding sequence as ascertained by PCR using vector primers flanking the cloning site. The cDNA was therefore obtained by a RT-PCR. Two μg of total larval RNA (isolated as described above) were reverse transcribed using 400 U of Superscript II (Gibco BRL) [500 μM of each dNTP; 50 mM Tris-HCl (pH 8.3); 75 mM KCl; 3 mM MgCl$_2$; 10 mM DTT; 50 μg/ml oligo (dT)$_{12-18}$; 50 U/ml RNAsin]. Reaction times are as follows: 10 min denaturation at 70°C, annealing and extension at 42°C for 55 min, heat inactivation at 70°C for 15 minutes, followed by a 20 min treatment with RNase H. One tenth of the resulting cDNA was then used for PCR using the forward primer (K1162: 5’-GGA GCT CCA TGG TCG AGA TGC CCC AGA TGA G - 3’) and the reverse primer (K1163: 5’-CAC CTC AAG CTT AGC GAG CCA GTT GAA TG-3’). K1162 is expected to anneal in the region of the ATG start codon of *DM_SNF1A*. K1163 is expected to anneal in the region of the UGA stop codon of *DM_SNF1A* (ie. TCA represents the reverse complement of the UGA stop codon). The K1162-K1163 primer pair thus generates a PCR product that extends from the putative start codon to the putative stop codon of *DM_SNF1A*. The following PCR conditions were used: 2.0 mM MgCl$_2$; 50 mM KCl; 10 mM Tris-HCl (pH 9.0); 0.01% Triton X-100; 100 pmol of each primer; 0.2 U Taq polymerase. Cycling conditions were as follows: 30 cycles of 30 s denaturation at 94°C, 45 s annealing at 55°C, 150 s extension at 72°C, using a high fidelity Taq polymerase (TAKARA Biomedicals). The resulting ~ 1.7 Kb amplicon was cloned into pCRTMII (TA cloning kit, Invitrogen) and the identity of individual clones was then ascertained by dye-deoxy sequencing (Applied biosystems).
2.7 **Sequence analysis and sequence comparisons.**

DNA and deduced amino acid sequences were analyzed and manipulated using the Unix-based program GDE 2.2 (Smith *et al.*, 1994) and the Windows NT/95 program SequEdit 0.5 (Drouin *et al.*, 1999). Database searches were conducted on ENTREZ and BLAST WWW servers at ncbi.nlm.nih.gov. Sequence alignments were performed using CLUSTALW 1.74 (Thompson *et al.*, 1994) using the program defaults; minor adjustments were then made to resulting alignments. Sequence shading was performed using BOXSHADE 2.7 (Kay Hoffman, unpublished) and CLUSTALX 1.8 (Thompson *et al.*, 1997) [a Windows 95-based graphical interface which uses the CLUSTALW alignment algorithm]. Phylogenetic analysis was carried out with the PHYLIP 3.52c suite of programs (Felsenstein, 1993): trees were inferred using maximum parsimony and protein distance (Dayhoff model) methods using PROTPARS and PROTDIST, respectively. When using PROTPARS, sequences were jumbled 10 times in order to avoid bias resulting from input order of the sequences; global rearrangements were also allowed. The Neighbour-joining algorithm was used to derive trees from the distance matrix data generated by PROTDIST by using the program NEIGHBOR. In order to obtain statistical support for different branches, bootstrapping was used to resample the alignment 1000 times using SEQBOOT; the input order of sequences was randomized. In order to derive consensus trees from the multiple data sets generated by bootstrapping the program CONSENSE was used. In order to generate distance trees with bootstrap values assigned to individual branches, a Dayhoff distance matrix was generated from the original data set using PROTDIST, and a Neighbour-Joining tree was then inferred from the resulting matrix. Bootstrap values were then added to this tree when both consensus bootstrapped trees and distance trees had identical topologies. To avoid biases resulting from input order of sequences, ten separate distance
trees were generated by jumbling the sequences using different seed numbers and topologies were compared. Trees shown in the results section are unaffected by sequence input unless otherwise stated.

A third inference method was used in addition to distance and parsimony methods: PUZZLE 4.0.2 (Strimmer and von Haeseler, 1996 and 1997) was used to infer phylogenetic trees based on the quartet puzzling and maximum-likelihood algorithms. The parameters used included 10000 puzzling steps, exact parameter estimates, quartet sampling, neighbour-joining tree-fitting, the computation of non-clock like branch lengths and use of a mixed model of substitution rate heterogeneity which includes an invariable rate and eight gamma rates. The JTT (Jones et al., 1992) model of amino acid substitution was used. The percentage of puzzling steps supporting individual branches was then added to maximum-likelihood distance trees.

2.8 Molecular sequence accession numbers.

GenBank accession numbers for the sequences reported here are shown in Appendix I. Also included are accession numbers for all of the sequences used in the phylogenetic analyses.
3. RESULTS

3.1 PCR identification of novel kinase domains

Degenerate oligonucleotides were designed based on general conserved features of the kinase core catalytic domain that is common to all eukaryotic protein kinases. The consensus peptide sequences were chosen to reflect both consensus sequences common to all serine/threonine protein kinases and residues conserved only in the yeast SNF1 and human AMPK sequences (in order to favour the amplification of SNF1-like sequences) (Fig 1.A). Two sense and one antisense primers were initially designed (Fig 1.A and 1.B): the sense primer K929 (G-S/T-F-G-K-V-K) is based on the consensus motif GXGXXGXV found in Subdomain 1 of the majority of ePKs, including SNF1. The sense primer K932 (V-H-R-D-L-K-P-E-N) is based on the consensus sequence HRDLKXXN of subdomain VIb. The antisense primer K930 (Y-A/V-G-P-E-V-D-I/L/V-W) is based on the sequence around an invariant aspartic acid residue in subdomain IX (D220 in PKA-Cα). Excluding possible introns, partially overlapping PCR products of 192 bp and 523 bp are expected from reactions with K930-K932 and K929-K932, respectively (Fig 1.A). Because each sense primer was used with the same antisense primer, the shorter PCR product is fully contained within the larger amplicon.

3.1.1 Identification of novel Drosophila SNF1-like kinase domains.

Although both primer pairs were used, only the K930-K932 primer pair generated appropriately sized PCR products from Drosophila genomic DNA (Fig 2A). These products were cloned and twenty-five clones were then selected at random for sequencing.
Figure 1. Identification of SNF1/AMPK-like sequences from *Drosophila melanogaster*.

(A) Position of the three different SNF1/AMPK-biased primers relative to the conserved ePK catalytic domain. The different subdomains are shown with roman numerals, invariant residues (red) are numbered with respect to human cAMP-activated protein kinase-Cα subunit. (B) Design of degenerate PCR primers biased towards the amplification of SNF1- and AMPK-like sequences (the residues in red are invariant in the majority of ePKs; residues in blue are conserved between the protein kinases encoded by yeast SNF1 and human *AMPK*-α2 genes but not in most other ePKs).
1. A

```
<table>
<thead>
<tr>
<th></th>
<th>G50</th>
<th>G52</th>
<th>K72</th>
<th>E91</th>
<th>D166</th>
<th>N171</th>
<th>D184</th>
<th>G186</th>
<th>E208</th>
<th>D220</th>
<th>G225</th>
<th>R280</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Va</td>
<td></td>
</tr>
<tr>
<td>Vb</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td></td>
</tr>
</tbody>
</table>
```

(K929) → (K932) → (K930)

63-aa / 192-bp

174-aa / 523-bp

1. B

Forward Primer (K929)
```
GSFGKVK
```

Forward Primer (K932)
```
VHRDLKPE
```

Reverse Primer (K930)
```
YAVGPEVDLW
```
Sequencing results revealed that the cloned PCR product represents a mixture of two different amplified sequences, which we named DM_SNF1A and DM_SNF1B (Fig 2.B). BLAST searches performed on DM_SNF1A yielded as top-scoring hits the mammalian AMPK-α2 subunit (alignment shown in Fig 2.B), yeast SNF1, and the putative mouse kinase ink76. Similar analysis performed on DM_SNF1B revealed it to be most similar to the putative human kinase p78 (KP78) (alignment shown in Fig 2.B), a relative of the mammalian AMPKs.

3.1.2 Identification of novel human SNF1-like kinase domains.

The mouse ink76 kinase was previously identified as a small PCR product amplified from cDNA from the cells of the intestinal lining during an RT-PCR based survey of kinases expressed in the murine intestine (Siyanova et al., 1994). A close inspection of the conceptual translation of the ink76 sequence revealed differences at amino acid sites that are identical between the two mammalian AMPK-α sequences that had been cloned at the time [rat AMPK-α2 (Carling et al., 1994) and human AMPK-α2 (Gao et al., 1995)]. These differences raised the possibility that ink76 represented a novel mammalian AMPK-α isoform. We thus tested the K930-K932 and K929-K932 primer pairs on cDNA from human intestinal tissue. Both primer pairs yielded products of appropriate sizes, ~190 and ~520 bp respectively (see Fig 3A), which were then cloned. Analysis of multiple clones revealed that each PCR product represented a single homogeneous amplified sequence. Comparison of the two types of cDNA sequences obtained also revealed that both products are identical within the region of overlap, suggesting a common type of template molecule. The longer K929-K932 RT-PCR product was compared to the sequences of rat and human α-subunits reported by Carling et al. (1994) and Gao et al. (1995).
Figure 2. PCR amplification of SNF1/AMPK-like sequences from *Drosophila melanogaster.*

(A) Primers K932-K930 (Fig 1.B) were used on *Drosophila* genomic DNA template. A PCR product of \(\approx 190\) bp was obtained and cloned. (B) Sequence alignment of the conceptual translation of DM_SNF1A and DM_SNF1B PCR products to high scoring hits obtained on GenBank searches. HUM_AMPK: human AMPK-\(\alpha 1\) (Yano, K., unpublished; accession # BAA36547.1). HUM_KP78: human kinase p78 (Maheshwari *et al.*, unpublished; accession # S27966). Similar and identical residues are boxed in red.
2.A

226
123
~190 bp

2.B

DM_SNF1A 1 VHRDLKPENLLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI 63
VHRDLKPENLLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI 198
HUM_AMPK 36 VHRDLKPENVLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI

DM_SNF1B 1 VHRDLKAENLLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI 63
VHRDLKAENLLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI 175
HUM_KP78 175 VHRDLKAENLLLDDMEIKISDFGFEKTSDFPAOLETCGSPPYAAPELIEMGRNYAGPEVDWI 237
Figure 3. PCR identification of a novel human AMPK isoform.

(A) Primers K929/K930 and K932/K930 (Fig 1.B) were used on human intestinal cDNA template. PCR products of \(\approx 510 \) and \(\approx 190 \) bp were obtained and cloned. (B) The nucleotide sequence of the novel human AMPK sequence (accession # HSU22456) in an alignment to the human AMPK-\(\alpha 2 \) cDNA sequence (accession # U06454) to highlight differences at the DNA level. (C) Also shown is the conceptual translation of the novel sequence and alignment to the AMPK-\(\alpha 2 \) amino acid sequence.
This comparison revealed that the sequence we amplified from human intestinal cDNA was different from the previously characterized mammalian AMPK-α2 sequences (including rat, pig and human). Our RT-PCR fragment was distinct enough at the DNA level (~80% identity) from the published human AMPK-α2 sequence of Gao et al. (1995) to represent a novel gene copy rather than a variant allele (Fig 3.B). The sequence we obtained from human intestinal cDNA shows only 91% identity to the human AMPK-α2 sequence at the amino acid level (Fig 3.C). In contrast, a second rat AMPK-α isoform subsequently reported by Carling et al. in 1996 is 100% identical to our sequence at the amino acid level over the 175 residues spanned by our PCR product. Stapleton et al. (1996) subsequently reported cloning of the full-length gene for this second rat AMPK-α isoform (now known as the AMPK-α1 isoform). The rat AMPK-α1 sequence reported by Stapleton et al. (1996) is identical to the conceptual translation of our partial human cDNA sequence (small differences are noted over the region coded by the primers, although these are likely the result of the inosines included at selected third codon positions). Cloning of the full-length copy of the human counterpart was beyond the scope of this thesis and it was therefore not pursued, however, the full-length cDNA for the human AMPK-α1 isoform was recently obtained from mammary gland tissue by Yano, K. (1999; unpublished; Accession # AB022017) and also agrees with the sequence reported here.

The region from which the murine ink76 sequence is derived is very conserved among mammalian AMPK isoforms: rat and human α1 and α2 pairs are 100% identical over the stretch of 66 amino acids represented by ink76. Comparing α1 to α2 isoforms reveals that 64/66 amino acids are identical. Interestingly, ink76 is distinct from both mammalian α1 and α2 isoforms at the amino acid level (61/66 and 62/66 similar residues, respectively). If ink76 were to represent the murine homologue of either mammalian α1 or α2 isoforms, it might be expected to be 100% identical to either of these sequences at the amino acid level. Instead, similarity levels are in the range of what
might be expected for a separate mammalian isoform and it thus appears distinct enough from the other cloned mammalian AMPK-α genes to be ruled out as the murine homologue of either α1 or α2 isoforms. When searching the GenBank database with ink76 using the BLAST algorithm, a number of fungal and plant SNF1 homologues are returned as the highest scoring hits, followed closely by the mammalian AMPK-α1 and AMPK-α2 sequences. Thus, although its full-length gene remains uncharacterized, the mouse ink76 gene may either represent a third mammalian AMPK-α isoform or it may represent another type of SNF1-related kinase. Confirmation of this hypothesis would require either the cloning of a longer PCR product or of the full-length murine ink76 gene, the determination of its presence in the mouse genome through Southern hybridization, and determining if a similar isoform is present in other mammalian species. Attempts to obtain a longer ink76 fragment through inverse PCR on mouse genomic DNA proved unfruitful (B. Benkel, personal communication).

3.1.2.1 Expression studies on novel Human SNF1-like kinase domains. Northern blots of liver, intestinal and skeletal muscle poly-A⁺ RNA probed with the human AMPK-α1 PCR product did not reveal any transcripts in any of the tissues tested (not shown). When RT-PCR using nested α1-specific primers was used to detect possible transcripts in each of the different tissues tested by Northern blotting, we were unable to amplify the α1 kinase from either liver or skeletal muscle cDNA despite using conditions that could be used to re-amplify AMPK-α1 from intestinal cDNA (not shown). Stapleton et al. (1996) have since shown that the human α1 isoform is expressed at very low levels over a wide range of tissues. However, in their experiments Stapleton et al. (1996) use 4 times more poly-A⁺ RNA than was used in the Northern blot experiments described here.
3.2 Cloning of novel protein kinases from *Drosophila*.

Both unique 192 bp SNF1-related sequences obtained from *Drosophila* were used separately to screen a genomic λ-Fix II library. Approximately 2.5 x 10^5 pfu's were initially screened with each the DM_SNF1A and DM_SNF1B probe, yielding a large number of primary positive signals. Eight clones hybridizing to the DM_SNF1A probe and four clones hybridizing to the DM_SNF1B probe were carried to third screening. Lambda DNA was prepared from these clones for further characterization through subcloning and sequencing.

3.2.1 Restriction mapping and Southern analysis of λ clones.

As a first step in their characterization, positive λ genomic clones were first restricted in single and double digests with *NotI* and *EcoRI*. These digests were used to construct a basic restriction map (Fig 4.A) and were subsequently blotted onto nylon membranes for Southern hybridization analysis using the same probes that were used during library screening. This allowed us to determine smaller restriction fragments hybridizing to the probes that could be subcloned into plasmids for further restriction mapping and sequencing (not shown).

3.2.2 Characterization of *DM_SNF1B-1* and *DM_SNF1B-2*.

The lambda clones λ179-A4 and λ179-D1 yielded *EcoRI/NotI* fragments (of 6.5 and 0.7 Kb, respectively) that hybridized to the DM_SNF1B probe and were thus subcloned. Sequencing of the small 0.7 Kb *EcoRI/NotI* subclone (pET191-2, seen in Fig 4.A) allowed us to confirm identity with the DM_SNF1B probe. We then sequenced the larger 6.5 Kb *EcoRI/NotI* subclone [pET193-2, seen in Fig 4.A] and were able to determine that pET191-2 is fully contained within pET193-2. We thus set out to sequence the longer subclone in order to obtain sequence that spanned the complete gene.
Figure 4. Restriction mapping and subcloning of the Drosophila DM_SNF1B gene cluster.

(A) Lambda clones obtained from genomic screening using the DM_SNF1B probe were digested with EcoRI and NotI and Southern blotted onto nylon membranes and subjected to Southern hybridization with the DM_SNF1B probe. The plasmid subclones pET193-2 and pET191-2 were identified as EcoRI/NotI restriction fragments hybridizing to the DM_SNF1B probe [the region of overlap between the probe and the two fragments is shown in grey. The NotI sites highlighted in red represent artificial sites resulting from the library construction process]. Shown below is the organization of the 6.5 Kb insert of the pET193-2 subclone as determined by restriction mapping and sequencing of both strands. (B) Southern blot of Drosophila genomic DNA probed with DM_SNF1B (from l. to r., HindIII, HindIII/BamHI, BamHI, HindIII/KpnI, KpnI, HindIII/EcoRV, EcoRV).
Figure 5. Sequencing strategy used on subclone pET193-2.

Two sets of nested deletion clones were generated by Exonuclease III digestion. Sequencing was performed on a panel of representative clones representing progressive deletions of the 6.5 Kb insert. Shown in (A) is the linearized plasmid and the direction of deletions performed in (B). (B) fragments resulting from a progressive digestion of the EcoRI end. (C) A set of representative clones with unidirectional deletions spanning the entire insert. Both strands were sequenced by reversing the direction of Exonuclease III deletions and sequencing of a second panel of clones.
3.2.2.1 Restriction mapping and sequencing of the *DM_SNF1B-1/DM_SNF1B-2* gene cluster. We first sequenced subclone pET191-2 because of its small size. Since it overlaps with the DM_SNF1B probe we could expect to find relevant sequences immediately. This enabled us to quickly confirm identity with the probe. The sequence surrounding the *EcoRI* site of pET191-2 is homologous to the amino-terminal region of the human KP78 catalytic domain and partially overlaps with the DM_SNF1B probe (Fig 4). The 0.7 Kb region contained within subclone pET191-2 bears sequences corresponding from -45 bp to +647 bp with respect to the putative start ATG codon of Dm_snf1b. The *NotI* site of pET191-2 truncates the sequence at position G217 along the Dm_snf1b ORF.

Because of the larger size of pET193-2 (6.5 Kb), we first had to establish the location of *DM_SNF1B* within the insert. We initially took advantage of naturally occurring *HindIII*, *EcoRV*, and *BamHI* sites (refer to Fig 4) to subdivide and further subclone the 6.5 Kb insert in order to determine the regions of interest by quickly obtaining sequences upstream and downstream of all three restriction sites using standard vector primers. The sequence surrounding the *EcoRI* site of pET193-2 is homologous to the amino-terminal region of the human KP78 catalytic domain, just as is found in the case of pET191-2. The sequence obtained also revealed that pET191-2 and pET193-2 share the *EcoRI* site in common (Fig 4). This implied that pET191-2 is fully contained within pET193-2 and that the *NotI* site of pET191-2 is an artificial site resulting from the library construction process (Fig 4). These results also implied that pET193-2 had ~ 5.8 Kb of sequence downstream of the pET191-2 *NotI* site and that it should be possible to obtain the complete gene sequence by extending the sequence through primer walking.

Unexpectedly, the sequence surrounding the *EcoRV* site of pET193-2 was also found to share homology to the amino-terminal region of human KP78. This is despite the fact that the two
restriction sites are separated by approximately 2 Kb (refer to Fig 4). Close inspection of the sequence surrounding the EcoRI and EcoRV sites revealed sequences that are similar but not identical to each other. Further sequencing obtained by primer walking revealed what appeared to be two tandem copies of the Drosophila SNF1B gene.

We used unidirectional Exonuclease III deletions in order to fully sequence both strands of the complete pET193-2 insert (Fig 5 A, B, C). The resulting sequence data (Fig 6) reveals two tandem copies of the DM_SNF1B gene separated by a short 189 bp spacer found between the TAG stop codon of DM_SNF1B-1 and the ATG start codon of DM_SNF1B-2. DM_SNF1B-1 and DM_SNF1B-2 are expected to code for polypeptides of 662 and 559 amino acids respectively (Fig 7). Although highly conserved in the core catalytic domain region, the two gene copies are quite divergent at their carboxy-terminal ends. Both gene copies share high similarity (approximately 83% within the catalytic domain) with the putative human protein kinase gene KP78, a kinase that appears to form part of a distinct sub-branch within the SNF1 protein kinase family.

The presence of two or more gene copies in close proximity to each other is not unknown in Drosophila. As mentioned in section 1.5, two α-amylase genes are present in the Drosophila genome and are separated by a 4 Kb spacer region (Gemmill et al., 1986; Boer and Hickey, 1986; Benkel et al., 1987). An even more interesting example is observed with genes encoding the serine protease trypsin. Davis et al. (1985) and Wang (1995) have uncovered a total of eight trypsin genes clustered within a 12 Kb region of the Drosophila genome. With this precedent, it was important to investigate the possibility of other DM_SNF1B genes in the Drosophila genome. Two lines of evidence seem to suggest that, other than the two-gene cluster, there are no additional DM_SNF1B
Figure 6. Sequence of a 6.5 Kb region bearing the DM_SNF1B-1/DM_SNF1B-2 gene cluster.

Complete sequence of this genomic region is shown for one strand (EcoRI to NotI direction). Restriction sites included in are highlighted in green. The coding regions for the genes DM_SNF1B-1 and DM_SNF1B-2 are shown along with their conceptual translations. Putative start (ATG) and stop (TAG) codons are boxed in blue and red respectively. Note the small spacer between the TAA codon of DM_SNF1B-1 and the ATG codon of DM_SNF1B-2. The GenBank accession # for this sequence is AF023484
Figure 7. Protein sequence alignment of the proteins encoded by *DM_SNF1B-1* and *DM_SNF1B-2* and the human kinase Kp78.

Sequences were aligned with CLUSTALW 1.74 (Thompson et al., 1994) and formatted to highlight similarities and identities using BOXSHADE 2.7 (Kay Hoffman, unpublished) [biochemically similar residues are shaded in grey; identical residues are shaded in black]. The invariant residues of the core catalytic domain are boxed in red. Both *Drosophila* kinases have approximately %83 similarity to the human Kp78 within the catalytic domain. High conservation extends roughly 55 residues past the C-terminal boundary of the catalytic domain. The rest of the non-catalytic domain has much lower similarity values (yielding an overall similarity level of %39) and is characterized by several insertions/deletions between the sequences. Note the region boxed in blue, which represents an alignable loop that is shared between Kp78 and Snf1b-1, but is missing in Snf1b-2. The *Drosophila* sequences are based on conceptual translations from the nucleotide data shown in Figure 6. The human Kp78 sequence has the GenBank accession # S27966.
genes in the *Drosophila* genome. Genomic Southern blots fail to reveal the extra signals that might be expected from additional gene copies hybridizing to the *DM_SNF1B* probe (Fig 4.B). Additionally, *DM_SNF1B-1* and *DM_SNF1B-2* specific PCR primers derived from the pET193-2 sequence were used to re-screen by PCR the three remaining positive λ clones which had been obtained during the initial library screening. In each case, we were able to obtain amplification products of the expected size from either one or both of the gene-specific primer pairs (results not shown). Thus all four lambda clones appear to be related as judged by our PCR results.

3.2.3 Characterization of *DM_SNF1A*.

Lambda genomic clones λ178-J1 and λ178-J2 yielded overlapping *NotI* fragments of 2.3 and 8.2 Kb, respectively hybridizing to the *DM_SNF1A* probe and which were subcloned into pBluescript (SK+) for sequencing of the full length *DM_SNF1A* gene (Fig 8.A).

3.2.3.1 Restriction mapping and sequencing of the *DM_SNF1A* gene. Initial sequencing of the 2.3 Kb *NotI* insert of subclone pET190-2 immediately revealed a sequence which was homologous to the mammalian AMPK-α genes and we proceeded to sequence the full clone by primer walking (refer to Fig 9). Subclone pET190-2 contains sequence that includes the amino-terminal end of the kinase catalytic domain and a 500-bp intron that interrupts the putative ORF. It also extends to 44 bp downstream of the TAA stop codon. Although the clone pET190-2 codes for an ORF that includes 27 residues lying upstream of the amino-terminus of the kinase catalytic domain, the *DM_SNF1A* sequence is 5’-truncated at one of the *NotI* sites and lacks an in-frame start codon (Fig 8.A).

Sequencing of the subclone pET190-7 revealed that it contains the same naturally occurring *NotI* site that truncates the 5’ end of the *DM_SNF1A* gene in clone pET190-2. This implied that
pET190-2 is fully contained within pET190-7 (Fig 8.A). These results also implied that pET190-7 has ~ 6 Kb of extra sequence downstream of the DM_{SNF1A} stop codon compared to pET190-2. We obtained sequence up to 0.85 Kb downstream of the putative TAA stop codon by primer walking (refer to Fig 9) and also obtained sequence surrounding naturally occurring restriction sites (EcoRV, BamHI and HindIII) within the pET190-7 insert through further subcloning. Due to the lack of other exceptional features downstream of the DM_{SNF1A} gene, full sequencing of the 6 Kb downstream of DM_{SNF1A} was not pursued.

In order to obtain the 5' end of the DM_{SNF1A} gene, the 5' NotI/HindIII fragment (300 bp) on pET190-7 was used as a probe on a HindIII digest of the λ178-J1 genomic clone. An overlapping 1.2 Kb HindIII fragment was obtained which enabled us to obtain sequence for approximately 0.85 Kb upstream of the NotI site. The various sequences obtained represent a 3.8 Kb contig containing the entire DM_{SNF1A} coding region (including an 0.5 Kb intron), 0.85 Kb upstream of the putative ATG start codon and 0.85 Kb downstream of the stop codon (Fig 10). Two in-frame ATG codons are found a mere 21 bp upstream of the NotI site shared by pET190-2 and pET190-7 (Fig 10). The presence of several in-frame termination codons upstream of these potential start codons suggests that either of the ATGs may represent the functional start codon. Kozak (1987) has described a consensus sequence for efficient initiation of translation in vertebrate nuclear genes. A similar analysis has been performed for Drosophila nuclear genes (Cavener, 1987), enabling the prediction of the likely translational start site of a gene based on sequence surrounding putative in-frame ATG codons. In the case of DM_{SNF1A} the sequence CACTTCATG, surrounding the first of the two in-frame start sites, comes closest to the Drosophila consensus sequence of CAAAACATG described by Cavener (1987). The putative DM_{SNF1A} promoter contains a TATA-box 201 bp upstream of the putative start codon, which places the_
Figure 8. Restriction mapping and subcloning of the region containing the DM_SNF1A gene.

(A) The plasmid subclones pET190-7 and pET190-2 were identified as *Not*I restriction fragments hybridizing to the DM_SNF1A probe. The region of overlap between the probe and the two fragments is shown in grey; the *Not*I sites (highlighted in red) represent artificial sites resulting from the library construction process. Shown below pET190-7 and pET-190-2 is the organization of a contiguous 3.8 Kb sequence which includes the full-length coding region, a 500 bp intron, approximately 0.85 Kb sequence upstream of the start codon and 0.85 Kb downstream of the stop codon. The cDNA clone shown was independently obtained through RT-PCR (Refer to Sections 2.6 and 3.2.3.2). (B) Southern blot of Drosophila genomic DNA probed with DM_SNF1A (from l. to r., HindIII, HindIII/BamHI, BamHI, HindIII/KpnI, KpnI, HindIII/EcoRV, EcoRV).
Figure 9. Sequencing strategy used to obtain the *DM_SNF1A* gene.

The region containing the full length *DM_SNF1A* gene was obtained by a combination of subcloning, which allowed for sequence to be quickly obtained around naturally occurring restriction sites, and primer walking. The sequence was obtained by sequencing overlapping *Hind*III and a *Not*I fragments (only one *Not*I site is shown). Arrows represent individual sequencing runs obtained with either primers designed on previously obtained sequence (e.g. K1188) or vector primers used on the initial sequencing of subclones. Sequence representing the majority of both strands was obtained by organizing the various sequencing runs into a single contig.
putative transcription start site for *DM_SNF1A* at 172 bp upstream of translational start site. The open reading frame contained within *DM_SNF1A* is predicted to code for a 559 amino acid polypeptide. Although the protein encoded by *DM_SNF1A* shares high similarity with the yeast *SNF1* kinase (61% identical and 77% similar within the catalytic domain; 40% identical and 60% similar overall), it shares an even higher level of sequence conservation with the mammalian *AMPKs*. The deduced Dm_Snf1a and human Ampk-α1 and Ampk-α2 amino acid sequences share high levels of sequence conservation within the core catalytic domain (identity: 81% [α1] and 82.5% [α2]; similarity: 92% [α1] and 92% [α2]) although the similarity extends beyond the core catalytic domain and near co-linearity is maintained which extends to the carboxy-terminal region (overall identities are 57% [α1] and 60% [α2]; overall similarities are 69% [α1] and 70% [α2]) (refer to Fig 11A).

3.2.3.2 Cloning of a cDNA copy of *DM_SNF1A*. The genomic copy of *DM_SNF1A* is interrupted by a 0.5 Kb intron (Fig 10). In view of plans to use *DM_SNF1A* in complementation assays on yeast *snf1* mutants, we wanted to obtain a full-length cDNA sequence to subsequently insert into an expression vector. Although initial attempts to get the full length gene by RT-PCR and screening of a cDNA library failed to yield the 5' end of the coding sequence, RT-PCR with a high fidelity Taq polymerase finally allowed us to obtain a cDNA clone representing the uninterrupted *DM_SNF1A* coding sequence from putative start codon to putative stop codon. The predicted intron position (see Fig 10) based on the well-known eukaryotic splice consensus sequences of Shapiro and Senapathy (1987) fits with the observed AG/GT sequence in the putative splice junction of the cDNA clone.
Figure 10. Sequence of a 3.8 Kb region bearing the complete *DM_SNF1A* gene.

Complete sequence of this genomic region is shown for one strand (*Hind*III to *Bgl*III direction). Restriction sites included in Figure 5 are shown in green. The coding region for the genes *DM_SNF1A* is shown along with the translated protein sequence. The putative start (ATG) and stop (TAG) codons are boxed in blue and red, respectively. Highlighted in yellow is an intron that splits the coding sequence (consensus splice sites are shown in bold underlined). The position of the intron was verified by sequencing of a cDNA clone. The GenBank accession number for the genomic sequence is AF020309; the accession number for the cDNA sequence is AF020310.
ACCCAGCCGATGAGGACCTCAGCTACGAGTGGAAGATCATCAATTCCGGTACCCACGCTTTGCGCCAGGGAGACAGCTGAGGACCAGGCAGT 2880
RAMKALSYEWKIZINFYHVVRVRQRNVKKTGF 509

TCCTGAGAGTCTACGTGCCGCTATCAAGGCTGACTCATCTGCTGCTGACTCTCGTGGACCCAAGCAGTGCTGAGGACCAGGTCGAGGACGG 2970
SKMSLQLYQVDAKSYLLDFKSLTNDENVQG 539

GGGACGAGCTCACTAGGAGCTGACCTTTACCTCCGCGGCTTTAGGTTCCGGGCTGATGCCAGCCCGCACCACCACCATGG 3060
DDVIMESLTLPPPLSVSGVMPLQPTGHTME 569

AGTTTTTCGAAATGTCGGCGCCGCTTGATCACATCAACTGAGCTCGCTCCGATGAGGTGGCGACCGCGCCTGCCGACCGGATGAGGATC 3150
FFEMCAALILLIQLAR* 584

TTCTGAGCTGACCGATCCTCCGACTGAGGGAGTGGAGATTGACATTACCCGGAAGAAACAGTCCCAAGAAAGGAGAACCTGCGGGAGGT 3240

CCTGTCGCCGTTATCCCAGGATCCTGGGCTTTAACCACTAGAACAGTGTCCTTCTGACGTGGCCAAAAACCCTTTTTTTCTTATACCAACGGCA 3330

ATGTGCAAATTACGCTGACGATTGGAGTAAATTAGATTAAAAATTGGCGCTCTAATGACGACGACGACGACGCTGCGAATCCGGACTCCA 3420

GCTTTTTTCTGCGCCCTGTTTAAATCCACATAAAAATATTTATTGAGCTCAGCCGACACCAGCGCGTGGCCTGCTACCTGCTTTACCG 3510

CTTTGGCTATGGAAATTTTCTGCTTTTACGCTGAATCCTGCTCTCCCGGCTGGGAGCGGGCTCGGTCCGTTTCCTGCTGCTGCTGCTG 3600

TGAATTCTGAAATATTAAATAGCCTGCTAATATAGTTGGTTTTACGCTTAACAAAATTCTGTAAGGCTATTTTTTTTTTTTT 3690

EgII

ATGAGAATCGGGCTGGGACTTTTGCCAGACACACAAAATGGAACACTTTTAATTTTTCTGAGACCACCACATAGAAAGACCTTATTTCAACATTPGG 3780

AATTTTAAACCCATTTTTTTT 1870
Figure 11. Protein sequence alignments featuring *Drosophila* DM_Snfl1a and the human and yeast homologues.

Sequences were aligned with CLUSTALW 1.74 (Thompson *et al.*, 1994) and formatted to highlight similarities and identities using BOXSHADE 2.7 (Kay Hoffman, unpublished) [similar residues are shaded in grey; identical residues are shaded in black, the invariant residues of the kinase catalytic domain are boxed in red]. The *Drosophila* sequence is based on a conceptual translation of the cDNA (GenBank accession # AF020310), the sequences of the α-1 and α-2 human AMPK isoforms correspond to GenBank accession # BAA36547.1 and P54645, respectively, and the yeast SNF1 sequence corresponds to GenBank accession # P06782. (A) Three-way alignment between DM_Snfl1a and both human Ampk-α isoforms. DM_Snfl1a shares extensive similarity to both human isoforms within the catalytic domain (identity: 81% [α1] and 82% [α2]; similarity: 92.2% [α1] and 92.2% [α2]). It also shows significant levels of conservation in the non-catalytic domain (identity: 38.8% [α1] and 42.3% [α2]; similarity: 50.9% [α1] and 53.47% [α2]) such that it is possible to align all three sequences with the addition of a few indels [boxed in blue].

(B) Four-way alignment between DM_Snfl1a, human Ampk α-1, human Ampk-α2, and yeast Snf1. Regions of the alignment that show indels held in common between *Drosophila* and human sequences are boxed in green. Regions of the alignment that show an indel held in common between *Drosophila* and yeast sequences are boxed in blue.
3.2.3.3. Analysis of the sequence divergence between DM_SNFIA and its human counterparts. In comparing the protein encoded by DM_SNFIA to the two human isoforms, one notable observation can be made. DM_Snf1a has a subtle yet noticeably higher level of sequence identity to the α-2 isoform (Table 1). The effect is seen in the catalytic domain, where although sequence similarity with the two isoforms is identical, there are four extra identities with α-2. The effect is more pronounced within the non-catalytic domain, where another eleven extra identities are observed. Thus the DM_Snf1a shares a slightly higher level of overall sequence identity with the human α-2 isoform and this may have important functional implications. In order to investigate the divergence rates between these sequences, protein distances were calculated using the Dayhoff model of amino-acid substitution. Because the kinase catalytic domain is evolving at a slower rate than the rest of the sequence, distances were calculated separately for the catalytic and non-catalytic domains. Results are shown in Table 2. The protein distances calculated corroborate the observations made based on sequence similarity levels alone. The distances observed between DM_Snf1a and Ampk-α2 are smaller than those observed against Ampk-α1, although the effect is more pronounced when the analysis is restricted to the non-catalytic domains. Similar results are obtained when the analysis is repeated by doing pairwise comparisons between DM_Snf1a and the rat Ampk-α isoforms.

3.2.3.4 The DM_SNFIA gene appears to be in single copy in the Drosophila genome. The two copies of DM_SNFIB raised the possibility that there may be other copies of DM_SNFIA in the Drosophila genome. We addressed this possibility through medium-stringency hybridization on genomic Southern blots and through the use of new PCR primers to attempt amplification of novel DM_SNFIA-like sequences. Medium-stringency hybridizations using the DM_SNFIA PCR-derived probe failed to reveal novel hybridization signals even on prolonged exposure (Fig. 8.B).
Table 1. Percentage of sequence identity and sequence similarity between *DM_SNF1A* and the human AMPK isoforms α-1 and α-2

<table>
<thead>
<tr>
<th></th>
<th>IDENTITY<sup>A</sup></th>
<th>SIMILARITY<sup>B</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed identities</td>
<td>total<sup>C</sup> sites</td>
</tr>
<tr>
<td>Overall:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α1</td>
<td>338</td>
<td>590</td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α2</td>
<td>353</td>
<td>589</td>
</tr>
<tr>
<td>Catalytic Domain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α1</td>
<td>209</td>
<td>258</td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α2</td>
<td>213</td>
<td>258</td>
</tr>
<tr>
<td>Non-Catalytic Domain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α1</td>
<td>129</td>
<td>332</td>
</tr>
<tr>
<td>DM_SNF1A vs AMPK-α2</td>
<td>140</td>
<td>331</td>
</tr>
</tbody>
</table>

Legend:

- **A** - number of identical residues
- **B** - sum of (identical residues) + (biochemically similar residues)
- **C** - number of sites considered in the sequence alignment, including gaps.
Table 2. Dayhoff distance matrix for the catalytic and non-catalytic domains of seven different protein kinases.

Kinases were aligned and Dayhoff distances were calculated for the catalytic domain (top half) and the non-catalytic domain (bottom half). HUM_BARK1 and HUM_BARK2 represent the sequences of human β-adrenergic receptor kinases, which were used to calculate the divergence levels of an unrelated pair of kinases. Pairwise distances between DM_Snfla and each of the human Ampk isoforms are coded in yellow. Pairwise distances between Dm_Snfla and rat Ampk isoforms are coded in green. As reference points, distances were also calculated between human β-adrenergic receptor 1 and the human Ampk-α isoforms (coded in pink) and between human β-adrenergic receptor 2 and the human Ampk-α isoforms (coded in light blue).

<table>
<thead>
<tr>
<th></th>
<th>RAT_AMPK1</th>
<th>HUM_AMPK1</th>
<th>RAT_AMPK2</th>
<th>HUM_AMPK2</th>
<th>DM_SNFLA</th>
<th>HUM_BARK2</th>
<th>HUM_BARK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAT_AMPK1</td>
<td>-</td>
<td>0.00388</td>
<td>0.11471</td>
<td>0.10970</td>
<td>0.23990</td>
<td>1.74409</td>
<td>1.85638</td>
</tr>
<tr>
<td>HUM_AMPK1</td>
<td>0.01688</td>
<td>-</td>
<td>0.11908</td>
<td>0.11404</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RAT_AMPK2</td>
<td>0.46815</td>
<td>0.45634</td>
<td>-</td>
<td>0.01625</td>
<td>0.21825</td>
<td>1.84952</td>
<td>1.88249</td>
</tr>
<tr>
<td>HUM_AMPK2</td>
<td>0.47927</td>
<td>0.47196</td>
<td>0.03424</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DM_SNFLA</td>
<td>-</td>
<td>0.77354</td>
<td>-</td>
<td>0.643950</td>
<td>-</td>
<td>1.82661</td>
<td>1.85623</td>
</tr>
<tr>
<td>HUM_BARK2</td>
<td>4.06677</td>
<td>-</td>
<td>4.17843</td>
<td>-</td>
<td>4.38323</td>
<td>-</td>
<td>0.08605</td>
</tr>
<tr>
<td>HUM_BARK1</td>
<td>4.33212</td>
<td>4.44877</td>
<td>-</td>
<td>4.55868</td>
<td>0.26689</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
New PCR primers (K1184 and K1187, Section 2.1.2) were designed based on conserved features between yeast SNF1 and two plant kinases that have been shown to complement the snf1 mutation (RKN1 and NPK5). The original primers K930 and K932 (Fig 1.B) that were used to obtain DM_SNF1A and DM_SNF1B probes were not entirely specific to AMPK-α and SNF1, since they could amplify a lesser SNF1 relatives such as DM_SNF1B-1. K1184 and K1187 are based on peptides that are conserved only among the closest SNF1 relatives and would thus be expected to be more discriminating than the original K930-K932 primer pair. When these primers were used on Drosophila genomic DNA, we could only amplify DM_SNF1A. This primer pair is expected to amplify each of the sixteen close relatives of the SNF1/AMPK kinases included in the sequence alignment shown in Figure 14. Any extra DM_SNF1A gene copies in the Drosophila genome should therefore represent amplifiable targets, especially given the full degeneracy of the primers.

3.2.4 Expression studies on the novel Drosophila kinases.

Expression of the DM_SNF1A and DM_SNF1B genes was studied by generating gene-specific probes by PCR and using the resulting probes in Northern hybridization experiments. Northern blots of whole-body total RNA from larvae and adults grown in glucose-supplemented and glucose-deficient medium were hybridized to PCR-derived gene specific probes. None of the probes yielded hybridization signals despite the fact that genomic Southern blots performed in parallel yielded strong hybridization signals. Integrity of the RNA or problems during the nucleic acid transfer would not appear to have been a problem as hybridization to a control α-amylase probe yielded a strong signal of expected size ≈ 1.5 Kb (results not shown). The experiments were repeated using poly-A + enriched RNA preparations although once again hybridization signals could not be detected despite a working α-amylase control. It is worth noting that α-amylase is a highly
expressed gene in *Drosophila*. The lack of other hybridization signals could result from either very low levels of expression, expression in a small subset of cells or a combination of both. These problems are compounded by the fact that RNA was prepared from whole body tissue, which would have a diluting effect on potential hybridization signals.
3.3 Phylogenetic survey of the SNF1/AMPK protein kinase family

3.3.1 DM_SNF1B: relationship to other related kinases.

Based on sequence similarity, the proteins encoded by the Drosophila DM_SNF1B-1 and DM_SNF1B-2 genes are most closely related to the putative human kinase KP78 and sequences related to KP78. Although KP78 has been considered a member of the SNF1/AMPK family of kinases (see for example Becker et al., 1996), it has lower similarity levels to SNF1 and its closest relatives. Several KP78-related protein kinase sequences have been submitted to GenBank over the last few years, although their physiological role remains obscure.

3.3.1.1 Protein sequence alignments. As can be seen in Figure 12, the region aligns very well in all of the sequences analyzed. All of the invariant residues of the catalytic domain are fully conserved in all the sequences. This is not unexpected since the catalytic domain is responsible for the phosphate transfer (Hanks and Hunter, 1995) and, as such, there are many constraints on primary, secondary and tertiary catalytic domain structure. Becker et al. (1996) have previously defined a small region flanking the C-terminus of the catalytic domain, the SNH domain (for SNF1 Homology Domain), which appears to define a subfamily of kinases that includes SNF1, AMPK and KP78, among others. An interesting observation is the conservation of the threonine residue within the kinase “activation loop” (T173 in human Ampk-α1), across all of the kinases included in Figure 12. Phosphorylation at this site is required for many kinases and allows for an open conformation that allows the peptide substrate to enter the catalytic cleft (Goldsmith and Cobb, 1994). This would predict the requirement of phosphorylation for kinase activity, and more importantly, predicts the presence of an upstream kinase-kinase activity in each of the organisms included in the alignment.
Figure 12. Protein sequence alignment of a group of kinases similar to DM_SNF1B-1 and SNF1B-2.

Sequences were aligned with the program CLUSTALW 1.74 (Thompson et al., 1994) and shaded to highlight amino acid similarities using BOXSHADE 2.7 (Kay Hoffman, unpublished). Identities are boxed in red while similarities are boxed in blue. Names of the sequences include the descriptive name of the protein (when available, the accession number is used otherwise) and the organism (HUM: human, MUS: mouse, RAT: rat, DM: D. melanogaster, CEL: C. elegans, YSC: yeast; Xen: Xenopus laevis). HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit. HUM_CAMKI represents the human calcium/calmodulin-independent protein kinase. These two sequences were used to provide an outgroup for phylogenetic trees (Fig 13). Information regarding each sequence analyzed is shown in Appendix I.
In fact, in the case of AMPK, Hawley et al. (1996) have shown that this residue is phosphorylated by the AMPKK. The corresponding site in SNF1 is also necessary for activity (Estruch et al., 1992).

3.3.1.2 Phylogenetic analysis of sequences closely related to DM_SNF1B-1 and DM_SNF1B-2.

Previous analyses have shown that human KP78 (Maheshwari et al., unpublished) and a handful of other sequences [human SNRK (Becker et al., 1996); mouse EMK (Inglis et al., 1993); mouse MSK (Ruiz et al., 1994); PARI from C. elegans (Guo and Kemphues, 1995)] show moderately significant similarity levels to SNF1 and its closest relatives [I will use the term “KP78-related kinases” when discussing these sequences]. Becker et al. (1996) have suggested that the KP78-related kinases share conservation of a small region flanking the C-terminus of the catalytic domain that is only found among “SNF1 related kinases” (the SNH domain, defined in the previous section). Becker et al. (1996) have also suggested that the SNH domain may represent a new type of regulatory domain of protein kinases.

DM_SNF1B-1 and DM_SNF1B-2, by virtue of their similarity to KP78, form part of the group of KP78-related kinases. We were thus interested in investigating the phylogenetic relationship between the different members of this group of kinases. As can be seen from Figure 13, not all of the different KP78-related kinases form part of a well-supported group. They also fail to group with the three AMPK/SNF1 kinases analysis (Fig 13, highlighted in green). The two DM_SNF1B genes cluster into a well-supported branch along with human KP78, mouse EMK, and C. elegans PARI (Fig 13, highlighted in purple). Although the mouse MSK gene forms a sister branch to the KP78 branch (Fig 13, also in purple), the support for this relationship depends on the phylogenetic inference method used. The maximum-likelihood approach yields a moderate branch support of 89% (Fig 13), a protein distance method gives 99.8% support and maximum-parsimony gives 84.5% support [results not shown]. Interestingly, the rat SNRK (Fig 13, branch highlighted in
Figure 13. Maximum-likelihood distance tree derived from an alignment of kinases sharing similarity with DM_SNF1B-1 and DM_SNF1B-2.

The protein sequence alignment shown in Figure 12 was used to generate a maximum-likelihood tree with branch lengths using the program PUZZLE 4.0.2 (Strimmer and von Haeseler, 1996 and 1997). Branch support is based on 10000 quartet-puzzling steps. Names of the sequences include the name of the protein kinase (when available, otherwise the GenBank accession number is given) and organism (HUM: human, MUS: mouse, RAT: rat, DM: D. melanogaster, CEL: C. elegans, YSC: yeast, Xen: Xenopus laevis). The HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit. HUM_CAMKI represents the human calcium/calmodulin-dependent protein kinase. These two sequences were used to provide an outgroup for the phylogenetic trees. Information regarding each sequence analyzed is shown in Appendix I, Table 3. Well-supported branches (KP78-related and SNF1/AMPK groups) and single taxa not belonging to well-supported branches (rat SNRK and Xenopus P69EG3) have been highlighted.
black), on the basis of which Becker et al. (1996) have defined the SNH domain, does not form part of the main KP78 branch since support for the grouping is poor [63% using maximum-likelihood (Fig 13); 76.4% using protein distance (not shown); 23.3% using maximum-parsimony (not shown)]. *Xenopus P69EG3*, another “SNF1-related kinase” as defined by Becker et al. (1996), also fails to group with either the main KP78 branch and although it branches with the SNF1/AMPK kinases, it does so with weak support [72% using maximum-likelihood (Fig 13); 48.6% using protein distance (not shown); 17.8% using maximum-parsimony (not shown)].

3.3.2 *DM_SNF1A*: relationship to *SNF1* and other close relatives.

DM_SNF1A shows extensive similarity to yeast *SNF1* and to the mammalian *AMPK*-α subunits. The approximately 92% similarity it shares with the *AMPK*s within the catalytic domain makes it a very likely homologue of the mammalian *AMPK*s. We wanted to gauge the conservation of other close *SNF1* relatives and, in particular, the two plant kinases that have been shown to be functional homologues of *SNF1*.

3.3.2.1 Protein sequence alignments. The sequence alignment shown in Figure 14 includes *SNF1*, *AMPK* and all their closest relatives as judged by overall sequence similarity. One kinase, the human cAMP-activated PKA-Cα, was used as an outgroup for all others. Four other sequences (human, rat, *Drosophila* and *S. cerevisiae* Calcium/Calmodulin-dependent protein kinase I) were used to provide an example of a group of kinases for which conserved cellular role and regulation has been shown. Additionally, previous kinase phylogenies (Hanks and Hunter, 1995) have shown that the Calcium/Calmodulin-dependent protein kinases form a deeply branched sister group to the branch that leads to *SNF1* and related kinases.

As can be seen in Figure 14, exceptional levels of sequence similarity are observed among *SNF1*, *AMPK*, and closely related kinases included in the alignment, particularly within the
catalytic domain (position R258 in human Ampk-α1). All of the sequences show conservation of the invariant catalytic domain residues and also share the conserved T residue in the activation loop (T173 in human Ampk-α1). The bulk of differences among kinases occur beyond the catalytic domain and this is very evident from Figure 14. Nonetheless, it is still possible to see that despite the many insertions and deletions in their carboxy-terminal halves, there are many "islands" of conservation between the different kinases in the alignment and this makes it possible to align the sequences reasonably well across their entire length.

3.3.2.2 Phylogenetic analysis of closely related SNF1/AMPK sequences. An inspection of the sequence alignment shown in Figure 14 points to a great deal of sequence conservation among SNF1, AMPK, and closely related kinases. It is possible to align the sequences beyond the catalytic domain despite the fact that the non-catalytic domain of protein kinases is least conserved feature. Using the exact same data set, phylogenetic analysis was performed to elucidate the relationship between these different kinases.

As can be seen from the maximum-likelihood tree in Figure 15, the sixteen close relatives of SNF1 kinases can be grouped into three major groups that cluster together with strong branch support (Fig 15). The yeast SNF1 kinases from S. cerevisiae and Candida albicans, the animal kinases (D. melanogaster, C. elegans, rat and human) and the plant kinases each form well-supported groups (99%, 95%, and 95% branch support respectively). Although the clustering of all three major groups within this branch of kinases (Fig 15, shaded green) is well supported [85% by maximum likelihood (Fig 15), 100% by maximum-parsimony (not shown), and 99.9% by protein distance (not shown)], the relationship between the individual groups is less clear. Whereas maximum parsimony gives strong support to the yeast/animal grouping (94.1%, not shown), both distance and maximum-likelihood methods show a trifurcating node.
Figure 14. Protein sequence alignment of a group of sixteen highly related SNF1/AMPK-like protein kinases

All sixteen sequences were aligned along their full length in order to display sequence conservation beyond the core catalytic domain (R258 on human Ampk-α1, green arrowhead). Sequences were aligned with the program CLUSTALW 1.74 (Thompson et al., 1994) and formatted using BOXSHADE 2.7 (Kay Hoffman, unpublished). Identities are boxed in red and similarities are boxed in blue. The location of primers K1184 and K1187, which were used to search for additional copies of DM_SNFI (Section 3.2.3.4), have been boxed in green and yellow, respectively. Sequence names include the descriptive name of the protein (when available, the accession number is used otherwise) and the organism (HUM: human, RAT: rat, DM: D. melanogaster, CEL: C. elegans, ATH: A. thaliana, TOB: tobacco, POT: potato, HOR: barley, RYE: rye, YSC: S. cerevisiae, CAN: C. albicans.) HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit and which is included to provide an outgroup for phylogenetic trees. Information regarding each sequence analyzed is shown in Appendix I.
Figure 15. Maximum-likelihood distance tree derived from an alignment of SNF1/AMPK-like protein kinases.

The protein sequence alignment shown in Figure 14 was used to generate a maximum-likelihood tree with branch lengths using the program PUZZLE 4.0.2 (Strimmer and von Haeseler, 1996 and 1997). Branch support is based on 10000 quartet-puzzling steps. Names of the sequences include the name of the protein kinase (when available, otherwise the GenBank accession number is given) and organism (ATH: *A. thaliana*, CAN: *C. albicans*, CEL: *C. elegans*, DM: *D. melanogaster*, HOR: barley, HUM: human, MUS: mouse, POT: potato, RAT: rat, RYE: rye, TOB: tobacco, YSC: *S. cerevisiae*). The HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit and which was included as an outgroup. Information regarding sequences analyzed is shown in Appendix II. The well-supported branch of SNF1/AMPK kinases has been highlighted in green. The bars indicate three distinct sub-groups corresponding to the SNF1/AMPK kinases of yeasts, animals, and plants, as well as the group of Calcium/Calmodulin kinases. The arrows point to two plant kinases that have been shown to complement *snf1* mutants.
3.3.3 Relationship between SNF1, AMPK and other SnRKs.

The human KP78 kinase has often been considered a sister group to the group composed of \textit{SNF1} and its closest relatives because of its lower overall similarity to this group of kinases. Similarly, a number of plant "SNF1-related kinases" or SnRKs of unknown role have been cloned, submitted to GenBank and annotated as such despite having lower similarity values to \textit{SNF1} than well-established plant homologues such as tobacco \textit{NPK5} and rye \textit{RKin1}. In order to establish the relationship between some of the different protein kinase sequences that have been annotated as "SNF1-related kinases" in the various molecular sequence databases, these sequences were subjected to phylogenetic analysis along with \textit{SNF1}, AMPK and their closest relatives.

3.3.3.1 Protein sequence alignments. The alignment of the thirty-six sequences included in this survey is shown in Figure 16. Thirty-one kinases either represent well known \textit{SNF1}/\textit{AMPK} homologues, sequences sharing high levels of similarity with human \textit{AMPK}s and \textit{SNF1}, or sequences sharing a lower level of similarity and which have been annotated in database entries as "similar to SNF1", "SNF1-related", or "similar to SNF1-related sequences". One kinase, the human cAMP-activated PKA-Cα, was used as an outgroup for all the other kinases. As in the analysis discussed in section 3.3.2, four other kinases (human, rat, \textit{Drosophila} and \textit{S. cerevisiae} Calcium/Calmodulin-dependent protein kinase I) were used to provide an example of a group of kinases for which conserved cellular role and regulation has been shown.

The divergence observed in the non-catalytic domain of some of the kinases included in the alignment precludes any meaningful alignment beyond the carboxy-termini of the respective catalytic domains. Nevertheless the catalytic-domain alignment shows great conservation and is easily alignable.
3.3.3.2 **Phylogenetic analysis of the SNF1/AMPK and SNF1-related kinases.** We used the alignment on Figure 16 to perform phylogenetic analysis on a group of kinases that includes the well-known SNF1/AMPK kinases and also includes sequences that are less similar to SNF1 but which have been termed "SNF1-related" in the various databases. Although the early branches are poorly resolved, it is possible to see that all of the kinases that were originally included in the previous analysis (Fig 14 and 15), the family of close SNF1/AMPK relatives, form a single monophyletic group (Fig 17, highlighted in green) with excellent support. The overall branching pattern and bootstrap values observed within the SNF1/AMPK group are consistent with those observed previously (Fig 15).

Notably, all of the other SNF1-related protein kinases included in this survey fall outside of the major SNF1/AMPK branch. Nonetheless, groupings seen in earlier analyses can still be seen in the tree shown in Figure 17. These include the SnRK2 group of plant kinases (Fig 17, highlighted in red) and the SnRK3 group of plant kinases (Fig 17, highlighted in yellow). Thus the tree based on the larger data set is consistent with the trees obtained with the smaller data sets. One notable difference is observed for the KP78-related kinases (Fig 17, highlighted in purple). In this maximum-likelihood tree, the group is poorly resolved and collapses into a multiforked node that includes rat SNRK (highlighted in black) and P69EG3 (highlighted in blue) [however the support for this branching is only 51% so this node could itself be collapsed]. The topology of this region of the tree is different than what was seen in the maximum-likelihood tree of Figure 13. Similarly, protein distance and maximum-parsimony methods yield topologies that are consistent with the topology of the tree shown in Figure 13. In these trees there is good support for the KP78-related group of kinases as a separate group from rat SNRK and Xenopus P69EG3. These trees also show that Rat SNRK and Xenopus P69EG3 fail to group with any other well-supported branches. Since
the number of taxa analyzed for Figure 17 is larger and involves a shorter sequence alignment., it is likely that the ambiguity observed is the result of an insufficient number of informative sites.

The deep branches of the tree shown in Figure 17 lack statistical support, indicating that the relationship between any of the groups of kinase cannot be reliably inferred. The various kinase groups come together in a multiforked node, as was observed in the tree shown in Figure 13. It is very apparent that none of the groups of SNF1-related kinases included in this analysis actually shares a close relationship with the SNF1/AMPK group of kinases. Grouping the KP78-related kinases, the SnRK2 kinases, the SnRK3 kinases, rat SNRK, and Xenopus P69EG3 with the SNF1/AMPK group of kinases appears to be artificial because the deep node is not only multiforked, but because the support for the branch as a whole is only 54%.
Figure 16. Protein sequence alignment of the catalytic domains of thirty-one SNF1/AMPK-related protein kinases.

All sequences were aligned to the amino terminus of the kinase catalytic domain (R258 on human Ampk-α1) for subsequent phylogenetic analysis. Sequences were aligned with the program CLUSTALW 1.74 (Thompson et al., 1994) and formatted using BOXSHADE 2.7 (Kay Hoffman, unpublished). Identities are boxed in red and similarities are boxed in blue. The sequences are named to include the descriptive name of the protein kinase (when available, the GenBank accession number is used otherwise) and the organism (ATH: A. thaliana, CAN: C. albicans, CEL: C. elegans, DM: D. melanogaster, HOR: barley, HUM: human, MUS: mouse, POT: potato, RAT: rat, RYE: rye, TOB: tobacco, WHT: wheat, XEN: Xenopus laevis, YSC: S. cerevisiae). HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit and which is included to provide an outgroup for phylogenetic trees. The CAMKI protein kinases represent Calcium/Calmodulin-dependent protein kinases. Information regarding sequences analyzed is shown in Appendix I.
Figure 17. Maximum-likelihood distance tree derived from an alignment of thirty-one SNF1/AMPK-related protein kinases.

The protein sequence alignment shown in Figure 16 was used to generate a maximum-likelihood tree with branch lengths using the program PUZZLE 4.0.2 (Strimmer and von Haeseler, 1996 and 1997). Branch support is based on 10000 quartet-puzzling steps. Names of the sequences include the name of the protein kinase (when available, the GenBank accession number is given as name otherwise) and organism (ATH: A. thaliana, CAN: C. albicans, CEL: C. elegans, DM: D. melanogaster, HOR: barley, HUM: human, MUS: mouse, POT: potato, RAT: rat, RYE: rye, TOB: tobacco, YSC: S. cerevisiae). The HUM_PKA-CA represents the sequence for the human cAMP-activated protein kinase C-α subunit. HUM_CAMKI represents the human calcium/calmodulin-dependent protein kinase. These two sequences were used to provide an outgroup for the phylogenetic trees. Information regarding each sequence analyzed is shown in Appendix I. Well-supported branches (SNF1/AMPK, SnRK2, SnRK3, KP78-related groups) and single taxa not belonging to well-supported branches (rat SNRK and Xenopus P69EG3) have been highlighted in colour. The arrows point to two plant kinases that have been shown to complement snf1 mutants.
4. DISCUSSION AND CONCLUSIONS

4.1 Homology-based PCR cloning of members of a protein kinase subfamily.

We originally set out to identify and clone Drosophila genes encoding proteins related to the SNF1/AMPK family of protein kinases by using a homology-based PCR method. The high level of sequence conservation shared by all ePK catalytic domains can be both an advantage and a disadvantage due to the large number of potential amplifiable targets. With hundreds of potential target sequences in the Drosophila genome, we biased our PCR primers towards the subfamily of protein kinases of interest. Primers were designed based on regions encompassing both invariant catalytic domain residues as well as sites conserved between yeast SNF1 and rat AMPK.

Two sense and one antisense primers were initially designed (Fig 1.A and 1.B). The sense primer K929 (G-S/T-F-G-K-V-K) is based on the consensus motif GXGXXGXXV found in subdomain 1. In the crystal structure of PKA-Cα, subdomain 1 folds into a β-strand/turn/β-strand structure that acts as a flap that covers and anchors the non-transferrable phosphates of ATP and the four invariant residues on the consensus motif stabilize the β-strands (Knighton et al., 1991a, b; Bossmeyer et al., 1993). The sense primer K932 (V-H-R-D-L-K-P-E-N) was based on the consensus sequence HRDLKXXN of subdomain VIb. This consensus sequence is part of what has been termed the "catalytic loop" since the aspartate residue (corresponding to D166 in PKA-Cα) acts as the catalytic base that accepts the proton from the hydroxyl group on the substrate (Hanks and Hunter, 1995). The antisense primer K930 (Y-A/V-G-P-E-V-D-I/L/V-W) is based on the sequence around the invariant aspartic acid residue in subdomain IX (D220 in PKA-Cα) which is involved in stabilizing the catalytic loop (Hanks and Hunter, 1995). From our subsequent success
with these primers we showed that, by appropriately choosing PCR priming sites, it was possible to
target a small subset of sequences from a very large pool of related kinase sequences.

The presence of two copies of the *DM_SNF1B* gene prompted us to ask whether other
copies of the *DM_SNF1A* gene might exist in the *Drosophila* genome. This question is of practical
importance in our studies because of the possible evolutionary link between *Drosophila* and yeast
glucose repression pathways. We were interested in the possibility that there may yet be a
Drosophila kinase bearing higher similarity to the yeast *SNF1* and which would be more likely to
be involved in glucose repression. Especially considering the high similarity between *DM_SNF1A*
and the mammalian AMPKs and the fact that the role in glucose repression does not appear to have
been conserved in the mammalian AMPKs.

During the initial PCR cloning we had biased the primers by using sequence information
from both yeast *SNF1* and rat *AMPK-α1* because we were had no *a priori* knowledge of whether
the *Drosophila* kinase would be share higher similarity to either of these two kinases. From an
evolutionary point one might expect the two animal kinases to be more similar to each other. On the
other hand, possible functional similarities between the yeast and *Drosophila* kinases might lead to
a higher than expected level of similarity because of convergent evolution. The protein deduced
from *DM_SNF1A* was subsequently shown to bear higher similarity to the catalytic subunit of
mammalian AMPKs than to that of *SNF1*. In order to look for sequences that might be more similar
to yeast *SNF1*, we used amino sequence information from *SNF1* and from two plant kinases that
have been shown to complement the *snf1* mutation (*RKin1*: Alderson *et al.*, 1991; *NPK5*: Muranaka
et al., 1994). The new primers were fully degenerate so as to hybridize to any potential target
sequence (section 2.1). Although the new primers were designed without any regard towards
compatibility with the mammalian AMPK sequences, both primers were based on peptides that also
happen to be conserved in the AMPKs. The primers could, in theory, be used to amplify the majority of SNF1/AMPK kinases included in our phylogenetic survey of close AMPK relatives (Fig 14, green and yellow boxes). As a bona fide positive control for the new primers, amplification was attempted on human cDNA from intestine, skeletal muscle and liver. In liver we could amplify both α1 and α2 isoforms, whereas in intestine and muscle we could only find α1 and α2 respectively. When these same primers were used on Drosophila genomic DNA, the only sequences amplified corresponded to DM_SNF1A despite screening numerous clones obtained from several independent PCR amplifications. Ironically, DM_SNF1A is not fully conserved within one of the priming sites (having a Q residue instead of G/R residue) although the mismatch is not within the critical 3’ end of the primer.

When yeast genomic DNA was used as a template, we found that the products obtained represented SNF1 and the lesser related kinases KIN1 and KIN2 (Levin et al., 1987). The amplification of these two kinases was not entirely expected since Kin1 and Kin2 are only approximately 56% similar to Snf1 within the catalytic domain [in contrast, Dm_Snflα and Snfl are 77% similar within the catalytic domain]. The lack of any close relatives to these kinases has previously led to their inclusion at the base of the branch that leads to AMPK and SNF1 (Hanks and Hunter, 1995). An inspection of potential hybridization sites in those two sequences reveals that a combination of full primer sequence degeneracy and low annealing temperatures during PCR were contributing factors in amplifying the KIN1 and KIN2 fragments, despite the fact that neither were optimal targets for amplification. That KIN1 and KIN2 could be amplified despite sharing weak similarity to SNF1 would suggest that failure to amplify SNF1-like sequences other than DM_SNF1A from Drosophila genomic DNA is the result of their absence from the genome. Consistent with this hypothesis, hybridizations with the DM_SNF1A probe and performed under
relaxed-stringency conditions failed to pick up any secondary hybridization signals (Figure 4.B). Nonetheless, it is impossible to rule out non-conservation at potential primer binding sites, or sub-optimal PCR conditions for the amplification of other potential kinases. One fact worth noting, however, is that the failure to amplify any novel SNF1-like sequences from yeast genomic DNA is also consistent with the absence of any other such sequences in the yeast genome. Results from the kinase survey on the completed yeast genome sequence (Hunter and Plowman, 1997) corroborate these PCR results.
4.2 Evolutionary conservation of *DM_SNF1B-1* and *DM_SNF1B-2*

DM_SNF1B-1 and *DM_SNF1B-2* were found as tandem gene copies within 3.8 Kb of continuous *Drosophila* genomic sequence. The genes are separated by a small 189 bp. spacer which separates the respective stop and start codons. At the DNA level *DM_SNF1B-1* and *DM_SNF1B-2* have ~ 63% identity. Their respective G+C% contents are also quite different (56.1% and 50.5% respectively). At the amino acid level *DM_SNF1B-1* and *DM_SNF1B-2* share 83% identity and 90% similarity within the catalytic domain, although they are more diverged at the carboxy-terminal ends (34% identity and 44% similarity).

Both genes share approximately 86% similarity with human KP78 within the catalytic domain and 40% in the non-catalytic domain (overall: ≈ 43% identity, ≈ 57% similarity). The sequences can be easily aligned up to approximately 55 residues past the C-terminus of the catalytic domain. This region encompasses the SNH domain determined by Becker *et al.* (1996), and which they have hypothesized as defining the family of “SNF1-related kinases”. Based on sequence similarity alone, however, it is difficult to speculate on whether *DM_SNF1B-1* and *DM_SNF1B-2* represent *bona fide* *Drosophila* KP78 homologues. Although they are found within a well supported branch that leads to KP78 and the mouse kinase EMK (Inglis *et al*., 1993), members of this branch do not share the high levels of sequence similarity that are observed within other groups of mammalian kinases. Mouse EMK and human KP78 cluster together on our trees (Figures 13 and 17) but their sequence similarity levels appear to be lower than might be expected for human and mouse orthologous kinase genes. The same can be said about the mouse MSK kinase (Ruiz *et al*., 1995) because although it branches with the KP78-related group with good support, sequence similarity levels observed between these kinases are certainly much lower than the levels that are observed between the rat and human AMPK-α isoforms. Thus the grouping of KP78-related kinases may or may not reflect functional similarities.
It is interesting to note that although the two protein sequences encoded by \textit{DM_SNF1B-1} and \textit{DM_SNF1B-2} are nearly co-linear, a region (corresponding to amino acids 558 to 637 in DM_Snf1b-1) appears to have been lost in DM_Snf1b-2. This extra loop found in the sequence of DM_Snf1b-1 is easily aligned with a corresponding loop in human Kp78. The functional significance of these differences is not clear since very little is known about \textit{KP78} and other kinases that group close to it. Recently, the original GenBank entry for \textit{KP78} was amended and the provisional title of MAP/microtubule affinity-regulating kinase 3 was assigned. This was clearly the result of a paper in which Drewes \textit{et al.} (1997) report on the cloning of two rat protein kinase genes that encode products that phosphorylate microtubule-associated proteins, causing microtubule dissociation. Although the two rat protein kinases do share high sequence similarity to human \textit{KP78}, their non-catalytic domains are so different from that of \textit{KP78} that they can not represent orthologous genes. Rat and human orthologous kinase genes might be expected to be over 95% identical at the amino acid level and may be expected to share a large degree of sequence similarity within the non-catalytic domain. The differences observed between the rat MAP kinases and \textit{KP78} are of an equal order of magnitude to those observed when comparing \textit{KP78} to the AMPKs and the non-catalytic domains are also unrelated. It would therefore appear that, once again, the role of a kinase has been inferred based on considerable, yet insufficient, similarity levels to another kinase.

Recently, however, Peng \textit{et al.} (1998) have isolated a human cDNA which is identical to \textit{KP78}, and which they have dubbed \textit{C_TAK1}. They have subsequently shown that C-Tak1 can phosphorylate Cdc25c, a dual specificity kinase that regulates entry into mitosis. They have therefore hypothesized that a role for C-Tak1 (Kp78) may be to regulate the Cdc25c, thus regulating entry into mitosis. These results are certainly consistent with the initial observations of Maheshwari \textit{et al.} (1991, unpublished) that Kp78 is a protein that is lost in some types of transplantable pancreatic carcinoma cells.
Using a PCR based approach, we were able to identify fragments from genes which appear to correspond to previously characterized mammalian kinase genes: *AMPK-α* and *KP78*. Ample evidence has been accumulated about the conserved role of the mammalian *AMPK-α* isoforms and yeast *SNF1* and their status as species homologues. In the case of *KP78*, the relationship to *SNF1*, if any, is much less clear. Thus far the relationship between the two has been suggested solely on the basis of sequence similarity. Ultimately, the role of *KP78* and other similar kinases will have to be assessed *in vivo*. In this respect, the cloning of similar genes in *Drosophila* will hopefully represent a first step towards future functional studies on these novel kinases. Powerful genetic approaches in *Drosophila* may enable elucidation of the function of *DM_SNF1B-1* and *DM_SNF1B-2* by providing a more tractable system in which to carry out such future studies.
4.3 *Drosophila SNF1A: a putative homologue of the mammalian AMPKs.*

The *Drosophila DM_SNF1A* gene encodes a protein kinase which has 60% overall similarity to the yeast Snf1 kinase that is involved in glucose derepression. DM_Snf1a has an even higher level of sequence similarity with the mammalian Ampk α-subunits (69% overall). Although not entirely unexpected, the much higher level of similarity between the mammalian AMPKs and *DM_SNF1A* is a little surprising considering the conservation between the yeast and *Drosophila* glucose repression pathways and especially considering the expected role of a *Drosophila SNF1* homologue in glucose repression.

A comparison of the protein encoded by *DM_SNF1A* to the two human Ampk α-subunits reveals that with the addition of a small number of insertions/deletions (indels) within the non-catalytic domain, the sequences can be aligned across their entire lengths (Fig 11.A). The catalytic domain of DM_Snf1a shares 92% similarity at the amino acid level with each human isoform whereas its non-catalytic domain is ~51% and ~53% similar to α1 and α2 respectively. One basic aspect conserved in all three kinases is the threonine residue of the "activation loop" (T184 on DM_Snf1a) that needs to be phosphorylated for kinase activity in both Snf1 and the Ampk-α subunits. The presence of the same residue in DM_Snf1a would indicate the presence of an upstream kinase kinase that would be responsible for its activation. Similarly, the extremely high levels of sequence identity that are observed in the catalytic domain predict similar catalytic domain conformation and it is very likely that DM_Snf1a will share similar substrate recognition motifs with both kinases (Dale *et al.*, 1995).

The more distinctive nature of kinase non-catalytic domains allows a number of interesting observations to be made by comparing the primary sequences of all three kinase non-catalytic domains. As mentioned previously DM_Snf1a, Ampk-α1 and Ampk-α2 are fully alignable within
their non-catalytic domains. Similarly the non-catalytic domain of the yeast Snf1 can also be fully aligned to all three kinases with the inclusion of indels (Figure 11.B). Consistent with the higher levels of sequence similarity shared between Drosophila DM_Snf1a and the mammalian Ampk-α isoforms, these three sequences also share six different indels with respect to the yeast Snf1 primary sequence (Figure 11.B, boxed in green). Interestingly however, Drosophila DM_Snf1a and yeast Snf1 share five indels with respect to the two mammalian Ampk-α isoforms (Figure 11.B, boxed in blue). Thus the Drosophila DM_Snf1a non-catalytic domain has a mosaic structure with some features held in common with both Ampk-α and Snf1, whereas others are shared only with the Ampk-α isoforms, and others still are shared only with the yeast Snf1.

Considerable efforts have been made to characterize the non-catalytic domains of both yeast Snf1 (Jiang and Carlson, 1996) and Ampk-α1 (Dyck et al., 1996; Crute et al., 1998). Because of the high level of similarity shared between Drosophila DM_Snf1a and its yeast and mammalian counterparts, it is therefore possible to draw on the functional analysis of both homologues in order to determine features unique to the individual proteins as well as features shared by all. The region from L392 to V518 of Snf1 has been previously shown to correspond to the autoinhibitory domain of the Snf1 kinase (termed the Snf1-RD in section 1.4.1.4). The Snf1-RD binds to the kinase catalytic domain thus keeping it inactive (Jiang and Carlson, 1997). It is by interacting with the Snf1-RD that Snf4 is able to release the kinase catalytic domain from auto-inhibition. Except for a small insertion of five residues, DM_Snf1a has a similar region along its sequence that is co-linear with the Snf1 autoinhibitory region. Jiang and Carlson (1996; 1997) have also defined two functional regions of the Snf1 non-catalytic domain that are involved in interacting with Snf4 (the yeast Ampk-γ homologue) and Sip2 (the yeast Ampk-β homologue) respectively. The region from L392 to P495 of Snf1 is responsible for interacting with Snf4 and the corresponding region in both mammalian Ampk-α isoforms has three deletions with respect to Snf1. These deletions are likely to
have a large functional impact and may be at least partly responsible for the failure of experiments involving genetic complementation of Snf1-deficient yeast strains with heterologously expressed mammalian Ampk-α subunits. These deletions may abrogate possible interactions between yeast Snf4 and mammalian Ampk-α subunits. A similar situation has been described for the mammalian β-adrenergic receptor kinases (βARK-1 and βARK-2). Chuang et al. (1997) had previously characterized a critical domain within the C-terminal non-catalytic domain of βARK involved in binding the βγ subunits of the heterotrimeric guanine-nucleotide-binding regulatory G-protein. They observed that the core of this domain was poorly conserved between the two βARK isoforms and then proceeded to show that differences within this domain lead to functional differences between the isoforms with respect to affinity for the regulatory G-protein (Chuang et al., 1997).

Interestingly, despite having much higher similarity levels with the mammalian Ampk-α subunits than with yeast Snf1 an exceptional feature of the Drosophila DM_Snf1a protein is that it lacks these three deletions within the putative Snf4 interaction region and thus similar complementation assays may stand a better chance of success. Another interesting possibility regarding the sequence elements conserved between yeast and Drosophila Snf1 homologues may be that they are required for interaction with the glucose repression system, a function that appears to have been lost in the mammalian Ampk-α isoforms.

The region between P515 and N633 of yeast Snf1 has been shown to be necessary for Sip2 interactions (Jiang and Carlson, 1997). Within this region, both Drosophila DM_Snf1a and the mammalian Ampk-α subunits bear two deletions with respect to yeast Snf1. At the same time, DM_Snf1a and Snf1 also share a 24-residue deletion with respect to the mammalian Ampk-α subunits. At the functional level Dyck et al. (1996) have shown that the mammalian Ampk-α isoforms differ from Snf1 in that they require both β- and γ-subunits in order for full activation to take effect whereas Snf1 only requires Snf4 (the Ampk-γ homologue). It will be interesting to
explore whether the differences mentioned here contribute to the observed functional differences between the Ampk-α isoforms and Snf1. Similarly, it will be interesting to explore the nature of subunit interactions in Drosophila and whether only the Ampk-γ homologue is necessary for kinase activity or whether both γ- and β-subunits are required. It is worth noting that Erin Yoshida (1998) has cloned the putative Snf4 homologue from Drosophila, and thus with the cloning of two of the Snf1 kinase subunit homologues from Drosophila, it should be possible to start addressing these issues.

Crute et al. (1998) have recently performed a detailed analysis of non-catalytic domain function in Ampk-α subunits. Their findings have shown that despite some differences, the role of the non-catalytic domain of Ampk-α subunits is analogous to that of the Snf1 non-catalytic domain. Considering the many similarities between DM_Snf1a and its yeast and mammalian counterparts, it is therefore likely that the many aspects of its regulation will also be conserved. Crute et al. (1998) have defined the region from L313 to G392 in Ampk-α1 as a region involved in auto-inhibition and AMP binding. The corresponding region in yeast Snf1 and Drosophila DM_Snf1a contains 4 insertions/deletions and it is tempting to speculate that these differences in primary structure are at least partly responsible for the observed lack of allosteric activation of Snf1 by AMP. Similarly, it will be interesting to test whether DM_Snf1a is itself activated by AMP.

As previously alluded to in section 3.2.3.3 (also shown in Table 1), DM_Snf1a shares a slightly higher degree of sequence identity with Ampk-α2 than it does with Ampk-α1. Although the overall percentage similarities are very similar, the differences are more readily apparent if: (a) one calculates pairwise protein distances to determine the divergence between sequences [since pairwise protein distance estimates incorporate an evolutionary model, they are more accurate estimates of sequence divergence than pairwise percentage difference calculations], and (b) one looks at the catalytic and non-catalytic domains separately [Comparing divergence rates of catalytic and non-
catalytic domains separately is conceptually similar to comparing the rates of evolution of synonymous vs. non-synonymous codon positions]. As can be seen in Table 2, the pairwise Dayhoff distance estimates for the catalytic domains of the human Ampk-α1/DM_Snfla and human Ampk-α2/DM_Snfla pairs are 0.23929 and 0.21825 respectively, which represents a slight difference in sequence divergences. If a similar kind of analysis is performed on the non-catalytic domains, the difference becomes more obvious because of the increased rate of change of the non-catalytic domain. For the non-catalytic domains, the human Ampk-α1/DM_Snfla and human Ampk-α2/DM_Snfla pairwise Dayhoff distances are 0.77354 and 0.64395 respectively, which represents a more definite difference in sequence divergence. These distance estimates highlight what could be interpreted as a difference in the evolutionary rates of the human α1 and α2 isoforms with respect to DM_Snfla. When one looks at the rat α1 and α2 isoforms, the same type of analysis yields similar results. Since both Ampk-α gene copies should be diverging from DM_Snfla at an equal rate these differences are unexpected. Such patterns of molecular evolution are often evidence of gene duplication followed by functional divergence of one of the gene copies (Nadeau and Sankoff, 1997; also reviewed by Ohta, 1998; Wagner, 1998; and others). In order to determine whether the observed differences constitute a definite difference in evolutionary rates it is possible to perform a relative-rate test (Li and Tanimura, 1987). I used the program RRTree of Robinson et al. (1998) in order to calculate the statistical support for the observed differences in protein divergence. Analysis using RRTree revealed that the sequence divergence differences between α1 and α2 isoforms of both rat and human are not statistically significant. Nevertheless, differences that may be statistically insignificant may yet lead to real differences at the functional level. This possibility is supported by preliminary evidence provided by Vavvas et al. (1997) and Salt et al. (1998) that suggests possible functional differences between the α1 and α2 isoforms. Clearly, the difference in divergence rates observed within the non-catalytic domain of the AMPK-α isoforms is much more
pronounced than that which is observed within the catalytic domain, the highly functionally constrained half of the protein. It has been well established that the non-catalytic domain is involved in regulating kinase activity and in interacting with other subunits and/or cellular components (Jiang and Carlson, 1997; Crute et al., 1998). Differences within the non-catalytic domain might thus be expected if two protein kinases interact with different cellular components. An interesting possibility might then be that DM_Snfla and AMPK-α2 share conserved cellular roles while AMPK-α1 has evolved a novel cellular role by virtue of changes within its non-catalytic domain. In this scenario after the Drosophila/human divergence the original AMPK-α gene underwent duplication, yielding α1 and α2 isoforms. The fact that one gene copy (α2) is diverging from DM_Snfla at a slower rate might then be the result of shared functional constraints with the DM_Snfla resulting from a shared cellular role. Conversely, the α1 isoform would be diverging from DM_Snfla at a faster rate if it has acquired a novel cellular role, which would necessitate changes to the non-catalytic domain.
4.4 Molecular evolution of the SNF1/AMPK protein kinase family.

When Hanks and collaborators first took interest in performing sequence analysis of eukaryotic protein kinases (Hanks et al., 1988; Hanks and Quinn, 1991; Hanks and Hunter, 1995) they were able to show how the alignment and comparison of kinase sequences could allow the development of hypotheses concerning the conserved three-dimensional structure of the catalytic domain and the important role played by the twelve invariant residues. Their subsequent phylogenetic analysis of a data set encompassing all of the then-known kinase sequences, 65 sequences, showed that there is a link between kinase domain sequence similarity and gross-level functional similarities. This finding then made it possible to make preliminary functional predictions for novel kinases based on molecular sequence data. For example, based on molecular sequence alone it is possible to predict whether a putative kinase is a serine/threonine, tyrosine, or dual-specificity kinase (Hanks and Quinn, 1991; Hanks and Hunter, 1995). Similarly, early kinase phylogenies showed that their small data set would breakdown into well-defined groups of highly related kinases (Hanks et al., 1988; Hanks and Quinn, 1991). Among the clusters of like-kinases observed by Hanks et al. (1988) were: the protein tyrosine kinases, the cyclic nucleotide-dependent protein kinases, the calcium-phospholipid-dependent kinases, the calcium-calmodulin-activated kinases, the SNF1 kinases, the CDC2-like kinases, and the Raf-Mos proto-oncogene kinases, among others. The success of early kinase phylogenies in correlating function to phylogenetic grouping is due in large part to the fact that the data set was small and biased towards the inclusion of well-defined kinases, their multiple isoforms, and their homologues in various organisms (ie. unambiguously identifiable protein kinases that had been obtained through homology-based cloning
techniques). However, the pace of discovery of novel putative kinase sequences has continued unabated and the kinase gene-tree has become more and more densely populated. This is in large part due to the emergence of techniques that rely on less extensive levels of sequence similarity, such as PCR. As the kinase data set has become more expansive it has become apparent that there are many limitations in trying to correlate phylogenetic inference with the physiological role of an unknown protein kinase. Most of these novel kinases fall outside of the previously well-defined groups of functionally related kinases, making it exceedingly difficult, if not impossible, to make functional predictions based on molecular data alone. We have reached a point in kinase research where molecular cloning of novel sequences has far outstripped the functional studies required to make meaningful predictions on the physiological role.

Because of the large number of sequences present in the various databases with possible ties to the yeast SNF1 kinase, we carried out a survey on some of these kinases and performed phylogenetic analyses in order to study the evolution of the group of SNF1/AMPK and SNF1-related kinases. During the early stages of the phylogenetic analyses shown here, it soon became apparent that although many sequences have been annotated in the various databases as "SNF1-related", their overall similarity levels to SNF1 are well below a hypothetical "threshold" necessary for inclusion into the family of bona fide SNF1 and AMPK homologues. Various phylogenetic analyses (Becker et al., 1996; Halford and Hardie, 1998), including the ones presented here, show that yeast SNF1 and its closest relatives [(the mammalian AMPKs, C. elegans PAR2.3, and the SnRK1 group of plant kinases (which includes rye RKN1 and tobacco NPK5)] all cluster together as a single monophyletic group in phylogenetic trees, to the exclusion of all other putative SNF1-related kinases. Many of these other SNF1-related sequences cluster into well-supported groups of
their own and the phylogenetic trees shown here reveal that although most of the recent nodes are well supported, the deeper nodes have weak support and are poorly resolved. Since the deeper nodes of the trees are multiforked, it is difficult to claim that any of these kinases represent SNF1 or AMPK relatives, or even that the level of sequence similarity they share with the SNF1/AMPK kinases has much functional significance. Any functional predictions for kinases which lie outside of well-supported nodes would require additional physical or biochemical evidence, something that is currently lacking since most of these kinases have been identified by molecular sequence data alone. Because a large number of the kinases studied in this thesis (including DM_SNF1B-1 and DM_SNF1B-2) fall outside the main group of kinases that could be considered SNF1/AMPK homologues, the following discussion cannot adequately address them. I will therefore focus on SNF1, AMPK, and the “true” SNF1/AMPK homologues.

Although a lot of the “SNF1-related” protein kinases share relatively high levels of sequence similarity to SNF1/AMPK within the catalytic domain, the level of conservation within the non-catalytic domain is minimal. It is therefore impossible to align these “SNF1-related” sequences to SNF1 beyond the SNH (SNF1 homology) domain of Becker et al. (1996), a small cluster of conservation approximately thirty-to-forty amino acids from the C-terminus of the catalytic domain. The significance of the SNH domain is itself subject to debate, since the region of similarity is ill defined and standard sequence alignment algorithms are often unable to align the motif with any reliability for the majority of more distant SNF1/AMPK “relatives”. In contrast, despite the fact that the C-terminal domain of kinases is subject to most divergence, the “true” SNF1/AMPK homologues are distinguished by reasonable levels of sequence conservation observed along the full length of the protein sequence (Fig 14). As I have previously discussed, the C-terminal domain
exerts regulatory control on kinase activity and is involved in interacting with other cellular components, including other kinase subunits, and large differences between different types of kinases is expected. Although the different SNF1/AMPK homologues do accumulate many differences in their non-catalytic domains, it is possible to still observe clusters of conservation across the entire length of the non-catalytic domain. These clusters of conserved residues suggest that the non-catalytic domain is not free to change within groups of related kinases. The kinases included in Figure 14 include kinases of yeast, plant, fruitfly, nematode, human and rat origin and yet it is possible to align all the sequences reasonably well across their entire length. This is in marked contrast with what is observed when comparing the non-catalytic domains of unrelated kinases since these are essentially unalignable.

The conserved regions observed along the alignment of Figure 14 are very reminiscent of the twelve conserved subdomains of the kinase catalytic domain, all of which have structural significance in the context of the three-dimensional folding of the kinase catalytic domain (Hanks et al., 1988). The “islands of conservation” in the non-catalytic domain may themselves have a role in structures involved in interacting with other conserved cellular components. For example, Snf4 is known to interact with the non-catalytic region of Snf1 and the fact that Npk5 (the tobacco Snf1 homologue) can interact with Snf4 in vivo (Jiang and Carlson, 1996) shows that at least some of the sequence conservation observed in the non-catalytic region of the kinase is reflected by conservation in protein-protein interactions. Paradoxically, a close examination of the proteins encoded by NPK5, RKIN1, and mammalian AMPK-α genes shows few differences that could account for the observed functional differences with regards to snf1 complementation. The result from complementation of yeast snf1 mutants with DM_SNF1A is likely to provide us with valuable
insight on sequence/functional conservation of these kinases. Similarly, experiments with chimaeric constructs in which the non-catalytic domains of various animal and plant homologues are fused to a given catalytic domain may also provide insight on the functional aspects of the non-catalytic domain.

As can be seen from the protein distance tree in Figure 15 (and to a lesser extent the protein distance tree seen in Figure 17), the sixteen AMPK/SNF1 kinases can be grouped into at least three major groups that cluster together with strong support and form a monophyletic group. The yeast SNF1s from S. cerevisiae and Candida albicans, the animal kinases (D. melanogaster, C. elegans, rat and human) and the plant kinases form well-supported branches. One interesting observation is that despite the fact that tobacco Npk5 and rye Rkin1 complement the snf1 mutation in yeast cells (Alderson et al., 1991; Muranaka et al., 1995) these kinases neither cluster together nor with the yeast Snf1 (Fig 15). It will be interesting to see if any other of the plant kinases included in here show the ability to complement the snf1 mutation. Conversely, since the human AMPKs have been unable to complement the snf1 mutation, it will be interesting to see if the other animal kinases are also unable to complement SNF1 function in vivo. In this respect, DM_SNF1A is unique because, although it clearly forms part of the group of animal AMPKs, the Drosophila and yeast glucose repression pathways appear to be uniquely conserved.
4.5 Molecular conservation of the glucose repression cascade in *Drosophila*.

The genesis of this project can be traced back to the fortuitous observation that the *Drosophila* α-amylase gene is glucose repressible when introduced into yeast cells (Hickey *et al.*, 1994). This phenomenon was found to be specific to the α-amylase gene since the *Adh* gene, which is not glucose repressible in *Drosophila*, fails to show any glucose regulation when heterologously expressed in yeast cells. At the purely mechanistic level, in order to elicit the appropriate glucose response when introduced into yeast cells, the *Drosophila* α-amylase promoter must interact with the specific regulatory elements responsible for yeast glucose repression. Specifically, if the α-amylase promoter is able to interact with the transcription factor Mig1 through the presence of Mig1-specific *cis* elements, then it should be able to recruit the remainder of the yeast repression machinery. With that in place, the *Drosophila* α-amylase gene can become a part of the yeast glucose regulatory circuit that would cause its repression in the presence of glucose and would cause its derepression when cells are shifted to low glucose conditions.

In the evolutionary context, one very important question that can be asked is if the *Drosophila* and yeast glucose repression pathways are functionally conserved. The larger question becomes if it is possible to imply the existence of a regulatory pathway from the conservation of DNA motifs which form the downstream end of a regulatory pathway? This question can only begin to be addressed through the systematic study and comparison of the components of each individual regulatory pathway. Nevertheless, there is precedent for the conservation of upstream and downstream components of a regulatory pathway. For example, transcriptional regulation of genes by cAMP depends on conserved *cis* elements (CRE) responsible for recruiting cAMP-responsive transcription factors (CREB) that ultimately couple gene expression to cAMP signalling (reviewed by Walton and Rehfuss, 1990; Sassone-Corsi, 1998).
With this in mind, the conservation of cis elements that interact with known trans acting factors involved in coupling glucose signalling to the regulation of gene expression is highly suggestive of an overall conservation of the regulatory pathway. We set out to examine the possible conservation of known components of the yeast glucose repression pathway in Drosophila and we first set our sight on elucidating the exact nature of Drosophila glucose repression at the transcriptional level. Efforts were first aimed at defining the minimal cis elements required for α-amylase glucose repression and towards the cloning of the putative transcription factor that, by analogy to the yeast glucose repression pathway, would play the role of the Mig1 protein.

I initially used PCR to try and amplify putative Drosophila homologues of the yeast Mig1 gene. From the results shown by Hickey et al. (1994), the yeast Mig1 zinc-finger protein is able to interact with the Drosophila α-amylase promoter. A Drosophila Mig1 homologue likely has a similar recognition sequence and its zinc-finger motif would be expected to show a great deal of conservation. I therefore designed degenerate primers from within a 180 bp region encompassing the Mig1 zinc-finger region. This finger region is extremely well conserved between Mig1 and its putative Aspergillus nidulans homologue CreA (Dowzer and Kelly, 1992) but represents the only well-conserved feature between these two homologous proteins. After a number of unsuccessful experiments, it became apparent that the high content of six-fold degenerate amino acids within the zinc-finger domains did not allow for the design of highly specific forward and reverse PCR primers specific for a Mig1-like sequence. I attempted to circumvent this problem by designing a primer based on the conserved His-Thr-Gly-Glu-Lys-Pro motif [HTGEKP] at the junction of the two adjacent zinc-fingers (Nehlin and Ronne, 1990), a motif that is not exclusive to Mig1; although the zinc-finger family of transcription factors is very large, the HTGEKP motif is found in a smaller
subset family members. This primer was used along with vector primers on a larval λ gt-11 cDNA library as template. This approach successfully yielded a fragment from a known zinc-finger sequence [the fat body specific factor AEF-1 (Falb and Maniatis, 1992)] as well as three other novel zinc-finger-like sequences. Since the Drosophila genome is likely to code for a large number of zinc-finger transcription factors and none of the sequences amplified appeared to match very closely with the Mig1 zinc-fingers, it thus appeared this approach would lack the specificity required to target the amplification of a Mig1-like zinc-finger transcription factor from Drosophila. A putative Drosophila Mig1 transcription factor thus appeared to be beyond the reach of homology-based cloning methods. Similarly, genetic approaches such as those that were used to originally clone MIG1 in yeast had also proved unsuccessful (H. Ronne, pers. comm.) and thus we decided to set sights on other possible conserved components of the glucose repression pathway. It was at this time that initial reports of the cloning of the mammalian AMPKs first started to surface outlining the conservation of SNF1 and AMPK at the molecular sequence level. Because of its role in the glucose repression pathway and the obvious evolutionary conservation with the mammalian AMPKs, we thus decided to pursue possible SNF1 homologues in Drosophila.

The work presented here outlines the cloning of three novel protein kinases, one of which is thought to represent a bona fide homologue of the SNF1/AMPK family of protein kinases. If our hypothesis is correct and the yeast and Drosophila glucose repression pathways have been functionally conserved in evolution, the role of DM_SNF1A in Drosophila physiology should be analogous to that played by SNF1 in yeast. Its role would thus be that of releasing genes from glucose repression during the shift from high to low glucose conditions. At the same time, the cellular roles of yeast Snf1 and the mammalian Ampk-α isoforms, while similar, are not completely
overlapping. In this respect the high degree of conservation between Snf1a and its mammalian
counterparts may also mean that the *Drosophila* Snf1a shares functional similarities with the two
Ampk-α isoforms that are not shared with Snf1.

Along with the cloning of the putative *DM_SNF1A* regulatory subunit (Yoshida, 1998), the
results here provide evidence for another conserved component of the glucose repression pathway
in *Drosophila* with a homologue in yeast, thus providing further support for the functional
conservation of *Drosophila* and yeast glucose repression pathways.
4.6 **Evolution of SNF1/AMPK-mediated cascades.**

A great deal of biochemical and genetic characterization has gone towards understanding the role of SNF1 and its mammalian counterpart, the AMPK. Aside from the molecular data that initially hinted at a possible conservation of biochemical and physiological characteristics, many resources have been devoted to understanding the many aspects of form and function of these individual kinases and the pathways they are involved in. It is the comparison of these characteristics that has ultimately allowed for the development of hypotheses regarding the evolutionary conservation in the role of the *SNF1, AMPK* and their homologues.

Although, at first glance, glucose repression and regulation of fatty acid and cholesterol biosynthesis appear to be unrelated tasks, subsequent characterization of the mammalian and yeast SNF1/AMPK mediated pathways has revealed an unexpected degree of convergence. The similarities shared by SNF1 and AMPK are many, and range from similarities in primary sequence (Mitchelhill *et al.*, 1994; Carling *et al.*, 1994), to similarities in substrate specificity (Mitchelhill *et al.*, 1994; Dale *et al.*, 1995), similarities at the level of the different kinase subunits and their interactions (Stapleton *et al.*, 1994; Gao *et al.*, 1996; Woods *et al.*, 1996), their shared phosphorylation and inactivation of acetyl-CoA carboxylase (Mitchelhill *et al.*, 1994; Woods *et al.*, 1994), their shared *in vitro* inactivation by the phosphatase PP2A and reactivation by partially purified Ampkk (Woods *et al.*, 1994; Wilson *et al.*, 1996). Although the other plant and animal SNF1/AMPK homologues have not been as well characterized, there is already ample evidence [as reviewed in section 1.4.7] that the conservation extends to these homologues as well. On the strength of these findings it has been proposed that these protein kinases have a common origin and furthermore, that the various homologues may have other as of yet unreported functions (Hardie, 1994a, b).
Hardie and MacIntosh (1992) have argued that the SNF1/AMPK mediated cascade has a very ancient origin and may represent one of the earliest signal transduction pathways because nutrient sensing is likely to have been one of the first roles for signal transduction pathways early in evolution. Hardie et al. (1998) have recently proposed that the cascades mediated by the SNF1/AMPK kinases are involved in detecting changes in cellular energy status and enacting changes in metabolism, gene expression, and perhaps cell proliferation in response to stresses which compromise the energy status of the cell. In doing so, SNF1/AMPK may protect cells against environmental stress by switching off biosynthesis to conserve ATP. Thus the novel function of providing protection against environmental stress may have evolved from a more ancient response to nutritional stress, as it is still seen in yeast, and as it may well be observed in *Drosophila*.

The evolutionary study of the regulatory pathway mediated by SNF1/AMPK protein kinases has so far centered on establishing the similarities between the mammalian and yeast systems, and trying to elucidate molecular details that are shared between the two. Now that the evolutionary conservation has been well established, I believe that it is time to also start studying the differences between the various systems, as it will undoubtedly yield rich insight into the evolution of gene regulation and signal transduction systems. The study of different aspects of the pathway as it exists in present day organisms should provide us with evidence for the evolution and adaptation of a signalling pathway as organisms have changed over time.

Drosophila thus provides a unique opportunity to study the evolution of SNF1/AMPK kinases because of the proposed conservation between yeast and *Drosophila* glucose repression pathways. In many ways, glucose repression is a "relic" of a time in the evolution of eukaryotes when, because of unicellularity, cells did not have a buffer against drops in extracellular glucose
levels. *Drosophila* provides an "in-between" reference point through which the evolution of the pathway can be studied from both the perspective of a metazoan as well as from the perspective of an organism that still carries out glucose repression.

The differences observed between the mammalian Ampk-α and Snf1 are likely a reflection of differences in physiological role as the original signal transduction pathway evolved from a role in sensing nutrient starvation in unicellular organisms to sensing other cellular stresses which are associated with ATP depletion (Hardie and MacIntosh, 1992). The fact that the lone *Drosophila* SNF1 homologue is much more similar to the mammalian AMPKs despite a putative role in glucose repression raises the question of whether the mammalian AMPK has role in glucose signalling. At present time, the list of possible physiological responses associated with activation of these kinases is much larger than may have been predicted based on the extensive yeast and mammalian data that had been accumulated up until the time this thesis work started.

In many respects, the greater contribution of the work presented here is that it raises questions about the evolution of SNF1/AMPK kinases, and about the evolution of signalling pathways they mediate. The cloning of a *Drosophila* SNF1 homologue should represent a first step towards the functional characterization of SNF1/AMPK mediated signalling in *Drosophila*. This in turn should provide with the basis for comparative studies on the evolution of the pathway.
4.7 Conclusions

The main goal behind the work described in this thesis was to extend the functional similarities between the yeast and *Drosophila* glucose repression systems in an effort to shed light into the evolution of this regulatory pathway. Whereas previous work sought to determine similarities at the level of transcriptional regulation [ie. the *cis* elements and *trans*-acting factors involved in glucose repression], the cloning of the putative *Drosophila* homologue of the yeast SNF1 kinase, along with the cloning of the putative homologue of the SNF4 regulatory subunit (Yoshida, 1998), establishes that conservation has been maintained in the upstream components of the pathway.

I used a PCR-based approach to identify putative SNF1 kinases from *Drosophila melanogaster*. Three genes showing similarity to SNF1 were subsequently cloned and sequenced. Two of these genes, *DM_SNF1B-1* and *DM_SNF1B-2* share high similarity (approximately 83% within the catalytic domain) with the putative human protein kinase gene KP78 (Maheshwari *et al.*, unpublished; accession # 279966), a kinase whose loss of expression has been associated with the transformation of pancreatic cells into carcinoma cells. KP78 is also a member of an increasing number of protein kinases showing similarity to yeast SNF1. *DM_SNF1B-1* and *DM_SNF1B-2* are clustered in tandem within a 4 Kb region of the *Drosophila* genome. Although the gene-pair shows high conservation in the core catalytic domain, the two copies are quite divergent at their carboxy-terminal ends, indicating perhaps a difference in cellular roles.

The third gene that was cloned and sequenced, *DM_SNF1A*, not only shows high similarity to yeast SNF1, but it shows even greater similarity to the mammalian AMP-activated protein kinases (AMPKs) [~92% similarity in the catalytic domain]. The AMPKs are well-established
homologues of SNF1 and plant SNF1-related kinases (Hardie and Carlson, 1998) and this group of kinases is thought to play a role in enacting ATP-conservation measures and activating alternate pathways of ATP generation in response to cellular ATP depletion.

I performed phylogenetic analysis of SNF1, some of its known homologues, and a number of other kinases exhibiting various levels of sequence similarity to SNF1 in order to study the evolution of this family of proteins. The analyses revealed that SNF1 and well known homologues [including the mammalian AMPKs and plant kinases known to complement snf1 mutants] all group together with very strong support, to the exclusion of any of the other lesser-related kinases. This group, the SNF1/AMPK kinases, includes the Drosophila DM_SNF1A, which therefore likely represents a bona fide SNF1 homologue in Drosophila, and should play a role in the Drosophila glucose repression pathway. The other protein kinases showing similarity to SNF1 break up into groups of their own, including: the plant SnRK2 and SnRK3 groups, and the KP78-related group. The latter includes DM_SNF1B-1 and DM_SNF1B-2, the two other Drosophila protein kinase genes reported here. The relationship between these groups of kinases and the SNF1/AMPK kinases is not clear, although phylogenetic trees show very weak support at the base of the tree such that the node connecting the SNF1/AMPK kinases to the SnRK2, SnRK3, and KP78-related kinases is multiforked. There is little similarity between these groups within the non-catalytic domain, which is the ultimate determinant of the functional role of a kinase due to its function in interacting with regulatory subunits and other cellular components. It thus appears that the similarity between SnRK2, SnRK3, and KP78-related kinases and SNF1 has no functional significance.

The primary sequence encoded by the DM_SNF1A exhibits a mosaic structure within its non-catalytic regulatory domain. It is extremely well conserved with the two mammalian AMPK-α isoforms, much more so than with yeast SNF1, however it also includes several features held in
common with SNF1 and which are not found in the mammalian AMPKs. These features may be associated with functional differences that are observed between yeast SNF1 and the AMPKs: the lack of an allosteric AMP effect on yeast SNF1, the inability of AMPK-α isoforms to complement snf1 mutants, the apparent absence of a role in glucose repression for AMPK-α. These issues should become clearer once it has been determined whether DM_SNF1A can complement snf1 mutants, once biochemical characterization of the encoded protein takes place and once it has been determined whether, as expected, DM_SNF1A has retained a role in glucose repression. Considering the depth of the biochemical characterization of yeast and mammalian homologues, similar studies on the Drosophila kinase should provide valuable insight on the functional evolution of this family of kinases.
5. REFERENCES

Tu, J. and Carlson, M. 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J 14: 5939-5946.

Appendix I

Table 3. SNF1/AMPK and SNF1-related kinases used in the different phylogenetic analyses.

<table>
<thead>
<tr>
<th>Name</th>
<th>Species</th>
<th># of residues</th>
<th>Database^</th>
<th>Accession #</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAT_AMPK1</td>
<td>Rat</td>
<td>548</td>
<td>SP</td>
<td>P54645</td>
<td>Stapleton et al. (1996)</td>
</tr>
<tr>
<td>RAT_AMPK2</td>
<td>Rat</td>
<td>552</td>
<td>GB</td>
<td>AAA85033.1</td>
<td>Gao et al. (1995)</td>
</tr>
<tr>
<td>HUM_AMPK1</td>
<td>Human</td>
<td>550</td>
<td>DBJ</td>
<td>BAA36547.1</td>
<td>Yano, K. (unpublished)</td>
</tr>
<tr>
<td>HUM_AMPK2</td>
<td>Human</td>
<td>552</td>
<td>SP</td>
<td>P54646</td>
<td>Aguan et al. (1994)</td>
</tr>
<tr>
<td>CEL_PAR2.3</td>
<td>C. elegans</td>
<td>622</td>
<td>SP</td>
<td>P45894</td>
<td>Wilson, R. (unpublished)</td>
</tr>
<tr>
<td>DM_SNF1A</td>
<td>Drosophila</td>
<td>582</td>
<td>GB</td>
<td>AAB71397.1</td>
<td>Taboada and Hickey (this work)</td>
</tr>
<tr>
<td>YSC_SNF1</td>
<td>S. cerevisiae</td>
<td>633</td>
<td>SP</td>
<td>P06782</td>
<td>Celenza and Carlson (1986)</td>
</tr>
<tr>
<td>RAT_SNRK</td>
<td>Rat</td>
<td>746</td>
<td>EMB</td>
<td>CAA61563.1</td>
<td>Becker et al. (1996)</td>
</tr>
<tr>
<td>MUS_MSK</td>
<td>Mouse</td>
<td>481</td>
<td>GB</td>
<td>AAA67926.1</td>
<td>Ruiz et al. (1994)</td>
</tr>
<tr>
<td>HUM_KP78</td>
<td>Human</td>
<td>713</td>
<td>PIR</td>
<td>S27966</td>
<td>Maheshwari et al. (unpublished)</td>
</tr>
<tr>
<td>MUS_EMK</td>
<td>Mouse</td>
<td>775</td>
<td>PIR</td>
<td>S31333</td>
<td>Ingles et al. (unpublished)</td>
</tr>
<tr>
<td>DM_SNF1B-1</td>
<td>Drosophila</td>
<td>684</td>
<td>GB</td>
<td>AAB81836</td>
<td>Taboada and Hickey (this work)</td>
</tr>
<tr>
<td>DM_SNF1B-2</td>
<td>Drosophila</td>
<td>604</td>
<td>GB</td>
<td>AAB81836</td>
<td>Taboada and Hickey (this work)</td>
</tr>
<tr>
<td>CEL_PAR1</td>
<td>C. elegans</td>
<td>1192</td>
<td>GB</td>
<td>AAA97437.1</td>
<td>Guo and Kemphues (1995)</td>
</tr>
<tr>
<td>XEN_P69EG3</td>
<td>X. laevis</td>
<td>651</td>
<td>PIR</td>
<td>S52244</td>
<td>Roghi et al. (unpublished)</td>
</tr>
<tr>
<td>ATH_AKin10</td>
<td>A. thaliana</td>
<td>512</td>
<td>GB</td>
<td>AAA32736.1</td>
<td>Le Guen et al. (1992)</td>
</tr>
<tr>
<td>ATH_ATSKIN1</td>
<td>A. thaliana</td>
<td>512</td>
<td>EMB</td>
<td>CAA64382.1</td>
<td>Lessard et al. (unpublished)</td>
</tr>
<tr>
<td>HOR_BKin2</td>
<td>Barley</td>
<td>484</td>
<td>EMB</td>
<td>CAA57898.1</td>
<td>Hannappel et al. (1995)</td>
</tr>
<tr>
<td>TOB_NPK5</td>
<td>Tobacco</td>
<td>511</td>
<td>DBJ</td>
<td>BAA05649.1</td>
<td>Muranaka et al. (1994)</td>
</tr>
<tr>
<td>POT_SNF1</td>
<td>Potato</td>
<td>512</td>
<td>EMB</td>
<td>CAA65243.1</td>
<td>Man et al. (1997)</td>
</tr>
<tr>
<td>BKN12</td>
<td>Barley</td>
<td>513</td>
<td>EMB</td>
<td>CAA46556.1</td>
<td>Halford et al. (1992)</td>
</tr>
<tr>
<td>RKN1</td>
<td>Rye</td>
<td>502</td>
<td>GB</td>
<td>AAA33921.1</td>
<td>Alderson et al. (1991)</td>
</tr>
<tr>
<td>PKABA1</td>
<td>Wheat</td>
<td>332</td>
<td>GB</td>
<td>AAA9325.1</td>
<td>Anderberg and Walker-Simmons (1992)</td>
</tr>
<tr>
<td>ATH_S6718</td>
<td>A. thaliana</td>
<td>362</td>
<td>PIR</td>
<td>S56718</td>
<td>Gallois, P. (unpublished)</td>
</tr>
<tr>
<td>ATH_S71172</td>
<td>A. thaliana</td>
<td>361</td>
<td>PIR</td>
<td>S71172</td>
<td>Gallois, P. (unpublished)</td>
</tr>
<tr>
<td>ATHASK1</td>
<td>A. thaliana</td>
<td>363</td>
<td>GB</td>
<td>AAA02840.1</td>
<td>Park et al. (1993)</td>
</tr>
<tr>
<td>ATHASK2</td>
<td>A. thaliana</td>
<td>353</td>
<td>EMB</td>
<td>CAA78106.1</td>
<td>Park et al. (1993)</td>
</tr>
<tr>
<td>WHT_WPK4</td>
<td>Wheat</td>
<td>526</td>
<td>DBJ</td>
<td>BAA34675.1</td>
<td>Sano and Youssefian (1994)</td>
</tr>
<tr>
<td>ATH10237.1</td>
<td>A. thaliana</td>
<td>426</td>
<td>EMB</td>
<td>CAB10237.1</td>
<td>Bevan et al. (unpublished)</td>
</tr>
<tr>
<td>HUM_CAMKI</td>
<td>Human</td>
<td>370</td>
<td>SP</td>
<td>Q14012</td>
<td>Haribabao et al. (1995)</td>
</tr>
<tr>
<td>RAT_CAMKI</td>
<td>Rat</td>
<td>374</td>
<td>SP</td>
<td>Q63450</td>
<td>Picciotto et al. (1992)</td>
</tr>
<tr>
<td>DM_CAMKI</td>
<td>Drosophila</td>
<td>405</td>
<td>EMB</td>
<td>CAA76937</td>
<td>Xu et al. (1998)</td>
</tr>
<tr>
<td>YSC_CAMKI</td>
<td>S. cerevisiae</td>
<td>446</td>
<td>SP</td>
<td>P27466</td>
<td>Ohya et al. (1991)</td>
</tr>
<tr>
<td>HUM_PKA-Ca</td>
<td>Human</td>
<td>351</td>
<td>EMB</td>
<td>CAA30597.1</td>
<td>Maldonado and Hanks (1988)</td>
</tr>
</tbody>
</table>

A - Database symbols: SP - SWISS-PROT; GB - GenBank; EMB - European Molecular Biology Laboratory; PIR - Protein Identification Resource; DBJ – DNA data bank of Japan