INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeib Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
Table of Contents

List of Schemes iv
List of Figures ix
List of Tables x
List of Abbreviations xi
Abstract xiii
Acknowledgements xv

Chapter 1
Free Radical Cyclizations 1
1.1 Introduction 1
1.2 Methods for Radical Reactions 2
1.3 Principles of Radical Cyclizations 5
1.4 Cyclizations onto Carbon-Nitrogen Unsaturated Systems 7
1.4.1 Oxime Ethers Acceptors 7
1.4.2 Hydrazone Acceptors 21
1.4.3 Imine Acceptors 29
1.4.4 Nitrile Acceptors 37
1.4.5 Azide Acceptors 41
1.4.6 Azo Acceptors 42

Chapter 1 References 43

Chapter 2
Tandem Alkyl and Aminyl Radical Carbonylation - Radical Cyclization onto N,N-Diphenylhydrazones 48
2.1 Introduction 48
2.2 Free Radical Carbonylation 49
2.3 Research Objectives 50
2.4 Kinetic Considerations 52
2.5 Substrate Synthesis 54
2.6 Tandem Alkyl Radical Carbonylation-Cyclization onto N,N-Diphenylhydrazones 58
2.7 Carbonyl Reduction 63
Chapter 2 References
81

Chapter 3 References
121

Chapter 4
126

4.1 General Considerations
126
4.1.1 Stereoselectivity In Radical Reactions
127
4.1.2 Research Objectives
128

4.2 Results and Discussion
129
4.2.1 SAMP Hydrazones
129
4.2.2 Chiral Induction Investigation
132
4.2.3 C2 Chiral Hydrazone
138
4.3 Conclusion

Chapter 4 References 144
Chapter 5 Experimental 146
General Considerations 146
Claim to Original Research 220
Appendix: Selected Spectra 221
List of Schemes

1.1 Mechanism of Tin Hydride Mediated Reaction 3
1.2 Barton Method Chain Process 4
1.3 5-Hexenyl Radical Cyclization 5
1.4 Stereochemical Outcome in a 5-exo Cyclization 5
1.5 Relative Energies of the SOMO and the π and π^* Orbitals of the Alkene 6
1.6 Oxime Ether as Radical Acceptor 8
1.7 Alkyl Radical Cyclization onto Oxime Ethers 8
1.8 Conversion of a Carbohydrate to a Carbocycle 9
1.9 Intramolecular Cyclization of Aldehydes or Ketones with Oxime Ethers 9
1.10 Synthesis of Aminocyclopentitols and 1-Deoxynojiririmycin 10
1.11 Synthesis of a Carbocyclic Compound Commencing with D-Allofuranose 11
1.12 Synthesis of Carbocycles from Acyclic Carbohydrate Intermediates 12
1.13 Stereoselective Synthesis of Carbocycles 12
1.14 Stereoselective Synthesis of Trehazolamine Precursor 13
1.15 Reaction between Oxime Ethers and Alkynes 13
1.16 Intramolecular Tandem Enediyne-Radical Cyclization 14
1.17 Free Radical Reactions of Terminal Acetylenes With Cycloalkanone Oxime Ethers 15
1.18 Double Ring Expansion-Cyclization Process 15
1.19 Cascade Radical Reactions 16
1.20 Free Radical Hydrostannylation-Cyclization 17
1.21 3,6-Dihydropyridine from 6-endo Cyclization 17
1.22 Tetracyclic Morphine Model Synthesis 18
1.23 Synthesis of (+)-7-Deoxypancratistatin Intermediate

1.24 Key Step in the Total Synthesis of (-)-lycoricidine and (+)-narciclase

1.25 Retrosynthetic Analysis of (-) Balanol

1.26 Ketyl Radicals Cyclizing onto Oxime Ether Systems

1.27 Mechanism for Cyclization onto Phenyl-N-Aziridinyl Imines

1.28 Cyclization onto Mesitylhydrazones

1.29 Cyclization-Intermolecular Addition Sequence

1.30 Competition between Alkenyl Group Vs. N-Aziridinyl Imine As Radical Acceptors

1.31 Competition between a Formyl and an Imino Group

1.32 Competition between a Keto and an N-Aziridinyl Imino Group

1.33 Cyclization onto N,N-Diphenylhydrazones

1.34 Competitive "Radical Clock"-Type Cyclizations of Hydrazones and Alkenes

1.35 Tandem Radical Cyclization onto N-Aziridinyl Imines

1.36 Tricyclic Systems via Tandem Radical Cyclization onto N-Aziridinyl Imines

1.37 Radical-Based Synthesis of (+)-7-Deoxypancratistatin Intermediate

1.38 5-exo Cyclization onto Hydrazones

1.39 β-Allenic Hydrazones Cyclization

1.40 Radical Cyclizations of Acylgermane Oxime Ethers and Hydrazones

1.41 Synthesis of Cryptostyline I, II, and III

1.42 Aryl Radical Cyclization onto an Aldimine

1.43 Aryl Radical Cyclization of the Ketimines

1.44 Induction of Asymmetry in Radical Cyclization

1.45 Radical Cyclization onto Aldimines

1.46 Radical Cyclization onto Imines
1.47 5-Exo Cyclization of Imines
1.48 Alkyl Radicals Cyclization Onto Imines
1.49 Spiroamines Synthesis via Tandem Reactions
1.50 Bicyclic Nitrogen Heterocycles Synthesis
1.51 Synthesis of Indolizidines and Pyrolizidines
1.52 Cyclization onto Iminium Salts
1.53 Kinetic Considerations for Cyclization of Alkyl Radicals
 onto Imines
1.54 Nitriles as Radical Acceptors in an Intramolecular
 Cyclization
1.55 Radical Cyclization as a Key Step Towards the
 Synthesis of (+)-Phenylantocin
1.56 Tandem Cyclization with Nitrile Participation
1.57 Stereospecific Synthesis of (-) Pipizitol
1.58 Radical Ring Closure onto a Nitrile in the Synthesis
 of the Tetrodotoxin
1.59 Synthesis of the Skeletons of Aphidicolin and
 Stemonin Diterpenoids
1.60 Electroreductive Intramolecular Coupling
1.61 Tandem Enediyne-Nitrile Radical Cyclizations
1.62 Cyclization onto Azide Acceptor
1.63 Aspidospermine Ring System Synthesis
1.64 Cyclization onto an Azo Acceptor
2.1 Free Radical Carbonylation of Alkyl Halides
2.2 Carbon Monoxide Trapping And Cyclization
 Onto Hydrazones
2.3 Retrosynthetic Analysis of β-Amino Alcohols
2.4 Kinetic Considerations for the Tandem Carbonylation-
 Cyclization Reaction
2.5 Preparation of the Carbonylation Substrates
 vi
2.6 General Route to Halo-Hydrazones
2.7 Bromination of the Hydroxy-Hydrazone Substrates
2.8 Mechanism for the Tandem Carbonylation-Cyclization Reaction
2.9 Chair Transition State Diagram
2.10 Reductive Cleavage of the N-N bond
2.11 Stereoselective Synthesis of β-Amino Alcohols
2.12 Synthesis of the Chiral Free Radical Precursor
2.13 Lewis Acid Reduction Conditions
2.14 Lewis Acid Catalyzed Rearrangement
2.15 Thermal Rearrangement of α-Amino Ketones
2.16 Chirality Transfer in the Thermal Rearrangement of α-Hydroxy Imines
2.17 Synthesis of the Aminyl Carbonylation Precursor
2.18 Attempted Tandem Aminyl Radical Carbonylation – Cyclization
2.19 α-Amino Acids as Precursors for Aminyl Carbonylation
2.20 Synthesis of The Precursor for the Tandem Aminyl Carbonylation-Cyclization onto N,N-Diphenylhydrazone
3.1 Hirsutene Synthesis via Tandem Radical Reaction
3.2 Kinetics of the Aminyl Radical Cyclizations
3.3 Aminyl Radical Cyclizations
3.4 Synthesis of the Tropane Skeleton
3.5 Tandem Cyclizations with Nitrogen Radicals
3.6 Synthesis of Polycyclic Systems via Tandem Reactions
3.7 Synthesis of Aspidospermine Ring System
3.8 Proposed Synthesis of a Bicyclic 5,5 System
3.9 Tropane System Disconnection
3.10 Previous Attempt for the Tropane Nucleus Synthesis
3.11 Second Attempt for the Tropane Nucleus Synthesis
3.12 Proposed Tropane System Synthesis
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.13. Synthetic Route to the Substrate for the 5,5 Bicyclic Ring System</td>
<td>98</td>
</tr>
<tr>
<td>3.14. Possible Products from the Tandem Reaction</td>
<td>100</td>
</tr>
<tr>
<td>3.15. Radical Reaction of Bromo-Hydrazone</td>
<td>103</td>
</tr>
<tr>
<td>3.16. Samarium Diiodide Cyclization</td>
<td>103</td>
</tr>
<tr>
<td>3.17. Proposed Mechanism for the Sml₂ Mediated Hydrazone Cyclization</td>
<td>104</td>
</tr>
<tr>
<td>3.18. Rethrosynthetic Analysis of the Tropane Ring System</td>
<td>110</td>
</tr>
<tr>
<td>3.19. Ring Opening of α-Cyclopropyl Radicals</td>
<td>111</td>
</tr>
<tr>
<td>3.20. Proposed Synthesis of the Free Radical Precursor</td>
<td>112</td>
</tr>
<tr>
<td>3.21. Synthetic Routes to the Aldehyde</td>
<td>112</td>
</tr>
<tr>
<td>3.22. Preparation of the BHT Cyclopropanecarboxylate</td>
<td>114</td>
</tr>
<tr>
<td>3.23. Substrate Synthesis for the Tropane Ring System</td>
<td>114</td>
</tr>
<tr>
<td>3.24. Pathways for the Bromination of the Secondary Alcohol</td>
<td>115</td>
</tr>
<tr>
<td>3.25. Synthesis of the Thionocarbonate Precursor</td>
<td>116</td>
</tr>
<tr>
<td>3.26. Radical Reaction of Thionocarbonate</td>
<td>117</td>
</tr>
<tr>
<td>3.27. Synthesis of the Phenyl Substituted Radical Precursor</td>
<td>119</td>
</tr>
<tr>
<td>4.1. Free Radical Macrocyclization of the Alkene</td>
<td>128</td>
</tr>
<tr>
<td>4.2. Chiral Amines via Radical Cyclization</td>
<td>129</td>
</tr>
<tr>
<td>4.3. Synthesis of hydrazone</td>
<td>130</td>
</tr>
<tr>
<td>4.4. Proposed Mechanism for the Sml₂ Mediated Hydrazone Cyclization</td>
<td>131</td>
</tr>
<tr>
<td>4.5. Possible Stereoisomers from the Radical Cyclization</td>
<td>132</td>
</tr>
<tr>
<td>4.6. Synthesis of Hydrazone</td>
<td>137</td>
</tr>
<tr>
<td>4.7. Synthesis of the Dimesylate</td>
<td>139</td>
</tr>
<tr>
<td>4.8. Synthesis of the N-Amino Pyrrolidine</td>
<td>140</td>
</tr>
<tr>
<td>4.9. Synthesis of the Hydrazone</td>
<td>141</td>
</tr>
</tbody>
</table>
List of Figures

2.1. Assignment of Stereochemistry 62
2.2. Spectral Data for The Alkyl Substituted Hydroxy Hydrazines 282a and 282b 66
2.3. Spectral Data for The Alkyl Substituted Hydroxy Hydrazines 283a and 283b 67
2.4. β-Hydroxy Hydrazine 68
2.5. Spectral Data for the α-Hydroxy Hydrazine 292 72
2.6. Transition State for the Thermal Rearrangement of α-Keto Hydrazine 74
2.7. Polarization in the Aminyl Carbonylation System 76
2.8. N,N-diphenylhydrazone As Amidyl Acceptor 78
3.1 Transition States Leading to the Trans Isomer 101
3.2 Proposed Transition State for the Tandem Cyclization 102
3.3 Transition States for Radical Cyclization 104
3.4 Assignment of Stereochemistry in the Monocyclized Products 105
3.5 Structure of Cocaine 108
3.6 Optimized Structure of 406 118
4.1 Chiral Auxiliaries Containing Hydrazones Employed in Diastereoselectivities in Radical Cyclizations Studies 128
4.2 Structure of [tris(3-trifluoromethylhydroxymethylene- (+)-camphorato]-europium (III) (Eu[(+)(tfc)]3) 134
4.3 1H NMR Spectra of Enantiomers 424 and 425 in the Presence of Chiral Shift Reagent Eu(Tfc)3 135
4.4 Proposed Transition State Structures 136
4.5 Spectral Data of N-amino Pyrrolidine 435 141
4.6 Assignment of Stereochemistry 142
List of Tables

2.1. Chemoselective Grignard Addition to Aldehyde 265
2.2. Bromination of the Primary and Secondary Alcohols 58
2.3. Tandem Radical Carboxylation-Cyclization Results 60
2.4. Reduction of the Carbonyl Group 64
2.5. Reduction of the Carbonyl Group 66
3.1. Bicyclic Ring Systems Synthesis 107
3.2. Attempts to Hydrolyze or Transesterify the BHT Ester 118
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>AlBN</td>
<td>azobis(isobutyro)nitrile</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>BHT</td>
<td>2,6-di-tert-butyl-4-methylphenyl</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxycarbonyl</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>CAN</td>
<td>cerium ammonium nitrate</td>
</tr>
<tr>
<td>CSA</td>
<td>(S)-(+)10-camphorsulfonic acid</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutyl aluminium hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>N,N - dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N - dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>eq</td>
<td>equivalent</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethyl phosphorous triamide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>iPr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropyl amide</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>PTOC</td>
<td>N-hydroxypyridine-2-(1H)-thione acyl</td>
</tr>
<tr>
<td>py</td>
<td>pyridine</td>
</tr>
<tr>
<td>SAMP</td>
<td>(S)-amino-2-(methoxymethyl)pyrrolidine</td>
</tr>
<tr>
<td>RAMP</td>
<td>(R)-amino-2-(methoxymethyl)pyrrolidine</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Ts</td>
<td>tosylate</td>
</tr>
<tr>
<td>TTMSS</td>
<td>tris(trimethylsilyl)silane</td>
</tr>
</tbody>
</table>
Abstract

Alkyl radicals, generated with tributyltin hydride from their haloprecursors, are trapped efficiently by carbon monoxide under pressure, and the resulting acyl radicals undergo rapid cyclization onto N,N-diphenylhydrazones to yield α-hydrazinocyclopentanones.

Selective reduction of the resulting ketones provided the corresponding cis- or trans-β-hydrazinoalcohols, such as 282a-283b. A novel rearrangement was uncovered when the corresponding α-carbonyl hydrazone was treated with Lewis acids to afford product 292. Attempted carbonylation of aminyl radicals failed to provide the expected products.

Tandem radical reactions were employed for the synthesis of the bicyclic ring system 359. The monocyclized products 362 and 363 were also formed. Attempted synthesis of tropane analogs via tandem radical reactions resulted only in the formation of the 7-membered ring products, such as 406.

The level of asymmetric induction in radical carbocyclizations mediated by the presence of hydrazone chiral auxiliaries, such as 417 and 418 was examined.
Acknowledgements

First and foremost, I would like to express my sincere gratitude to Professor Alex Fallis for giving me the chance to join his group. I enjoyed working under his supervision and appreciate his understanding and constant guidance and encouragement.

I would also like to thank the faculty members and the staff of the Department of Chemistry, University of Ottawa, in particular Professor Tony Durst, Professor Keith Ingold and Professor René Roy for their help and insightful discussions over the course of my studies.

I would like to thank Dr. Simon Woo for being a friend I could always rely upon and for his valuable advice on the preparation of this document. I am very grateful to Bogdan for helping me in the beginning of this journey, and for his friendship and support during all these years, and to Raluca for her encouragement during the more difficult times.

In Ottawa, a number of friends made life easier for me: Steph, Poonam, Pete, Claudio, Mike T., Martin, Curt, Stephanie L., Sandrine, Helene, Shawn, Tanya, Pat, Nicole, Kristian, Tham, Jodi, Mike B. I thank them for their help and inspiring discussions. and – most importantly – for creating a wonderful atmosphere. I feel very fortunate to have had the chance to meet and work with so many talented people.

Daniel, my husband, has been a constant source of love and support, and I am convinced that none of this work would have been finished without his help. Finally, I would not be where I am today without my parents: my Mom, who taught me to have patience and compassion for others, and my late Dad, who taught me to never stop learning and to have the courage to follow my own path in life. More than anyone, my Dad influenced and supported all the decisions I have made that ultimately led here.
In Loving Memory of My Dad
Chapter 1

Free Radical Cyclizations

1.1 Introduction

Free-radical reactions have received attention for nearly a century,\(^1\) however, only recently have they been applied to a number of synthetic targets. This culminated in many elegant and novel approaches to natural products and other interesting compounds.\(^2\) Some previous misconceptions that highly reactive radicals show low chemo-, regio-, and stereoselectivity were quickly dispelled by information on various kinds of radicals, their properties, chemistry and synthetic applications that appeared in numerous publications in the past two decades. Radical chemistry continues to be an important topic of research. The factors that control radical reactions, the characteristics of radical acceptors that determine regio- and chemoselectivities, and the features that direct the stereochemistry of products are still imperfectly understood. In many cases the ultimate goal is the application of radical chemistry to the synthesis of increasingly complex molecules.

Radicals are odd electron species without charge. Radical-radical reactions occur at the diffusion controlled limit (\(k = 10^9\text{-}10^{10} \text{ M}^{-1}\text{s}^{-1}\)). Radical-molecule reactions occur with a large range of rate constants and may be both chemo- and regioselective. Radical concentrations control the rates of radical-radical reactions versus the rates of radical-molecule reactions, which can be further adjusted by the choice of reactive partners, concentration and temperature.
Radical reactions offer certain advantages over their ionic counterparts. They can be used for transformations that are quite often hard to accomplish by other means. Radicals themselves are very reactive species, but the reaction conditions are mild and tolerate various functional groups. Hence, hydroxyl and amino functional groups do not require the protection that is often essential for synthetic sequences using ionic reactions.

Most radical reactions show small solvent effects and inert solvents, like benzene or tert-butyl alcohol, are preferred.

Temperature has an important effect on the level of stereoselectivity of the reaction. Usually, radical reactions display increased stereoselectivity at lower temperatures. A drawback is the fact that radical chains are shorter at lower temperatures; hence, an increased amount of initiator is required.

1.2 Methods for Radical Reactions

Radical reactions are chain reactions that consist of three stages: initiation, propagation and termination. Radical concentrations are limited by the rate of initiation, which is typically slow; therefore radical-radical reactions are uncommon.

The most popular synthetic method for carrying out radical reactions is the "tin hydride method." The mechanism for this reaction involves a chain process, as shown in Scheme 1.1.

The reaction is initiated by the thermal decomposition of AIBN (azobisisobutylnitrile) which generates the tributyltin radical 2. Abstraction of a suitable radical precursor X from the substrate A-X 5 generates the initial radical A· 3, which then suffers a transformation or a series of transformations to provide
a new radical B• 4. Hydrogen atom transfer then forms the final product B-H 8 and regenerates the tributyltin radical 2 to continue the chain.

\[
\begin{align*}
\text{Bu}_3\text{SnH} & \quad \text{AIBN} \\
\text{Initiation} & \\
\text{B-H} & \quad \text{Bu}_3\text{Sn•} \\
\text{8} & \quad \text{2} \\
\text{Bu}_3\text{SnH} & \quad \text{Reactions(s)} \\
\text{7} & \quad \text{B•} \quad \text{A•} \\
\text{Bu}_3\text{SnX} & \quad \text{A-X} \\
\text{6} & \quad \text{5}
\end{align*}
\]

Overall Reaction:

\[
\text{A-X} + \text{Bu}_3\text{SnH} \xrightarrow{\text{AIBN} \quad \text{C}_6\text{H}_6, \text{reflux}} \text{B-H} + \text{Bu}_3\text{SnX}
\]

5 1 8 6

Scheme 1.1. Mechanism of Tin Hydride Mediated Reaction

An analogous chain can be written for tris(trimethylsilyl)disilane (TMS)$_3$SiH. The thermodynamic force that drives this process is the conversion of a C-X bond to a stronger C-H bond. In the Scheme 1.1 above, X can be a bromine, iodine, SePh, OC(S)SMe, SPh, etc.

One common problem in tin and silicon hydride reactions is the premature reduction of the radical A• 3 (or other intermediate radical) by the reagent. Tris(trimethylsilyl)silicon hydride is advantageous to use because it is a poorer
hydrogen donor than tributyltin hydride. The maintenance of low concentrations of the hydride reagent necessary to reduce the rate of the competing reduction is often facilitated by the use of a syringe pump.

The "thiohydroxamate method" (also called the "Barton method") uses the esters of N-hydroxypyridine-2-thione as a versatile source of radicals. This method involves a thiopyridyl group transfer reaction, and it differs from the tin hydride method in that the group is transferred by an addition-elimination mechanism rather than a homolytic substitution. The generalized chain sequence is shown in Scheme 1.2.

![Scheme 1.2](image)

Scheme 1.2. Barton Method Chain Process

A decarboxylation occurs during the course of the reaction. The competing reaction of the initial radical $R^\ast \ 12$ with the thiohydroxamate can be minimized by keeping a low concentration of the thiohydroxamate.

There are also non-chain methods for conducting radical reactions and these can involve radical-radical coupling, oxidation or reduction. Among these, reductive generation of radicals is usually followed by reductive trapping to form organometallic reagents. Samarium diiodide is a powerful one-electron reducing agent that generates alkyl radicals from halides and ketyl radicals from carbonyl substrates.
1.3 Principles of Radical Cyclization

The 5-hexenyl radical cyclization is one of the most studied radical reactions. The reaction follows Baldwin's empirical rules of cyclization\(^7\) with the 5-exo mode of ring closure favoured over the 6-endo mode of ring closure by a factor of 50 at 60 °C, as shown in Scheme 1.3.

\[
\begin{align*}
17 & \quad \overset{k_{1,6}}{\underset{\text{endo-}}{\rightleftharpoons}} & 16 & \quad \overset{k_{1,5}}{\underset{\text{exo-}}{\rightarrow}} & 18 \\
\text{at } 60 °C & \quad k_{1,6} / k_{1,5} = 50
\end{align*}
\]

Scheme 1.3. 5-Hexenyl Radical Cyclization

Various studies\(^8\) suggest a "chair-like" transition state. The stereochemical outcome of the products can be predicted based on this "chair-like" transition state, as demonstrated in Scheme 1.4. The presence of the substituents A, B or C can direct the reaction to yield products 20, 21 or 22, respectively.

\[
\begin{align*}
20 & \quad \overset{A}{\underset{B}{\longrightarrow}} & 19 & \quad \overset{B}{\underset{C}{\rightarrow}} & 21 \\
\quad & \downarrow & \quad & \quad & \quad & \downarrow \\
22
\end{align*}
\]

Scheme 1.4. Stereochemical Outcome in a 5-exo trig Cyclization
In terms of Frontier Molecular Orbital (FMO) Theory, the frontier orbital of a free radical is the single occupied molecular orbital (SOMO). The FMO theory states that the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the reacting species largely determines the rate of the reaction (Scheme 1.5).\(^9\)

![Scheme 1.5. Relative Energies of the SOMO and the \(\pi\) and \(\pi^*\) Orbitals of the Alkene](image)

Radicals with high lying SOMO’s, such as alkyl, alkoxyalkyl and aminoalkyl radicals, interact preferentially with the LUMO of the alkene. The rate of addition is further enhanced by placing electron-withdrawing substituents on the alkene, which lowers the energy of its LUMO. For example, the nucleophilic tert-butyl radical adds some 8500 times faster to 2-propanal than to 1-hexene.\(^{10}\) However, in radicals with electron withdrawing groups the SOMO energy is lowered, and the SOMO-HOMO gap is reduced.

A variety of radical centers, from carbon radicals (i.e. alkyl, vinyl, aryl, allyl, acyl, imidoyl, etc.) to heteroatom radicals (i.e. aminyl, iminyl, alkoxy, sulfide) can be efficiently generated. They participate readily in radical cyclizations to yield
molecular structures of increased complexity. Also, heteroatom acceptors such as carbonyl groups, imines, nitriles and related systems are increasingly utilized in organic synthesis.

The participation of the nitrogen, both as a radical source and as an acceptor component, was reviewed. The following section highlights examples from the recent literature of the use of carbon-nitrogen unsaturated systems in radical cyclizations.

1.4 Cyclization onto Carbon – Nitrogen Unsaturated Systems

Oxime ethers, hydrazones and imines have been employed as radical acceptors in organic synthesis, and the study and application of these systems have expanded greatly in recent years. Nitriles also have been recognized and exploited as useful, but capricious radical acceptors. Additionally, a number of reports of azides and azo groups as radical acceptors have appeared.

1.4.1 Oxime Ethers Acceptors

Historically, oxime ethers were the first C=N π systems to be investigated as radical acceptors for either inter- or intramolecular reactions.

An early example reported by Corey and Pyne in 1983 is the generation of the ketyl radical 24 from ketone 23 in the presence of trimethylsilyl chloride to afford the diquinane 25 in 84% yield as a single diastereomer (Scheme 1.6).
Scheme 1.6. Oxime Ether as Radical Acceptor

In 1988 Bartlett13 reported the first example of an alkyl radical cyclization onto an oxime ether. The general reaction, which explored variations in substitution at the radical center and at the oxime carbon, is illustrated in Scheme 1.7.

Scheme 1.7. Alkyl Radical Cyclization onto Oxime Ethers

Thirteen different substrates were employed for this reaction and it was found that, while the stereoselectivity varied (cis/trans = 27a:27b ratios between 51/49 and >98/2), the yields were good.

Bartlett also demonstrated the utility of this cyclization for the conversion of a carbohydrate 29 to a carbocycle (Scheme 1.8).
Scheme 1.8. Conversion of a Carbohydrate to a Carbocycle

The intramolecular cyclization of oxime ethers 34 with aldehydes or ketones was reported14 by Naito and coworkers (Scheme 1.9).

Scheme 1.9. Intramolecular Cyclization of Aldehydes or Ketones with Oxime Ethers

This method provides an interesting entry to cyclic amino alcohols 35 and 36 that are formed in 44-70% combined yield with ratios varying between 20:80 and 39:61.

In a related study, Fu and coworkers15 also explored the Bu$_3$SnH-mediated reductive cyclization of carbonyl-oxime ethers to generate trans-amino alcohols with moderate to excellent levels of stereoselectivity.
Potent glycosidase inhibitors, such as aminocyclopentitols were found to have powerful and specific inhibitory activity against glycosidases.

Naito and his coworkers\(^\text{16}\) reported the synthesis of the inhibitors aminocyclopentitols \(42\) and \(43\) and 1-deoxynojirimycin \(44\) via a route involving radical cyclization onto an oxime ether (Scheme 1.10).

\[
\begin{align*}
\text{MeONH}_3\text{Cl} & \rightarrow \text{BnO} - \text{OMe} - \text{BnO} - \text{BnO} - \text{BnO} - \text{BnO} \\
\text{Bu}_3\text{SnH/AlBN} & \rightarrow \text{BnO} - \text{OMe} - \text{BnO} - \text{BnO} - \text{BnO} \\
\text{1. LiAlH}_4 & \rightarrow \text{BnO} - \text{OH} - \text{BnO} - \text{BnO} - \text{BnO} \\
\text{2. Ac}_2\text{O-pyr} & \rightarrow \text{BnO} - \text{OH} - \text{BnO} - \text{BnO} - \text{BnO} \\
\text{3. } \text{H}_2, \text{Pd/C} & \rightarrow \text{BnO} - \text{OH} - \text{BnO} - \text{BnO} - \text{BnO} \\
\text{4. Ac}_2\text{O-pyr} & \rightarrow \text{BnO} - \text{OMe} - \text{BnO} - \text{BnO} - \text{BnO} \\
\end{align*}
\]

\(R^1 = \text{H, } R^2 = \text{Bn}\)
\(R^1 = \text{Ac, } R^2 = \text{Bn}\)
\(R^1 = R^2 = \text{Ac}\)

\(R^1 = \text{H, } R^2 = \text{Bn}\)
\(R^1 = \text{Ac, } R^2 = \text{Bn}\)
\(R^1 = R^2 = \text{Ac}\)

\[\text{Scheme 1.10. Synthesis of Aminocyclopentitols and 1-Deoxynojirimycin}\]

The tributyltin hydride-induced radical cyclization of the oxime ether \(39\) in the presence of AIBN afforded a 1.4:1 mixture of aminoalcohols \(40\) and \(41\) in 68% combined yield.
Naito and coworkers17 also explored the radical addition-cyclization of oxime ethers tethered to an alkene group for the synthesis of functionalized cyclic compounds.

The synthesis of a carbocyclic compound related to the sugar hydrolase inhibitors mannostatin A and mannostatin B was accomplished by Moore et al.18 commencing with D-allofuranose 45 (Scheme 1.11).

Scheme 1.11. Synthesis of a Carbocyclic Compound Commencing with D-Allofuranose

The key carbon-carbon bond forming reaction was an intramolecular free radical cyclization of a radical derived from dithioacetal19 50 onto an oxime ether. The cyclized products 51 and 52 were formed in a ratio of 3:1, respectively, in 80% combined yield.
In 1991 Marco-Coneteles and coworkers20 used the 6-exo free radical cyclization of acyclic carbohydrate intermediates for the synthesis of carbocycles (Scheme 1.12).

\[
\begin{align*}
\text{Scheme 1.12. Synthesis of Carbocycles from Acyclic Carbohydrate Intermediates}
\end{align*}
\]

This cyclization gave compounds 54 and 55 in reasonable yields (40-55%) and good diastereoselectivity (75:25-83:17).

The same group have applied a similar method for the synthesis of enantiomerically pure carbocycles via a 5-exo radical cyclization21 and demonstrated22 that the intramolecular reductive coupling of carbonyl-tethered oxime ethers can be promoted by samarium diiodide. One example is shown in Scheme 1.13. It will be noted that compounds 57a-c can be easily converted into epimers of trehazolamine, the aminocyclopentitol aglycon of the trehalose inhibitor trehazoline23.

\[
\begin{align*}
\text{Scheme 1.13. Stereoselective Synthesis of Carbocycles}
\end{align*}
\]
The synthesis of trehazolin and trehazolamine from D-glucose was recently described.24 The presence of a six-membered cyclic acetal connecting C-4 and C-6 determined the exclusive formation of the desired diastereomer 60 during the intramolecular radical cyclization of a keto oxime ether 59 derived from D-glucose 58, as shown in Scheme 1.14.

Scheme 1.14. Stereoselective Synthesis of Trehazolamine Precursor

Enholm25 published the first report on the reaction between oxime ethers and alkynes in 1990 (Scheme 1.15). The reaction, which involves the intramolecular coupling of a terminal alkyne tethered to an oxime ether 61, was promoted by tributyltin hydride to produce the cyclized product 62. Subsequent protodestannylation afforded the desired cyclopentane ring bearing an exomethylene unit and a benzyl-ether substituted amine in 56-90% yield.

Scheme 1.15. Reaction between Oxime Ethers and Alkynes
In 1993 Grissom published a full report on the possible use of the oxime ethers as traps for aryl radicals in an interesting intramolecular tandem enediyne-radical cyclization process. The aryl radicals were generated from a Bergman type cyclization of enediyne substrates. The oxime ethers 64, 65 were heated to 190 °C in chlorobenzene in the presence of 1,4-cyclohexadiene as a hydrogen atom source (Scheme 1.16). Thermolysis of oxime ether 64 (E/Z = 1:1) under these conditions formed only the products from tandem enediyne-radical cyclization. These were the hydrocarbons 66a,b (50%) and O-benzylhydroxyl amine 67 (25%). Hydrocarbons 66a,b were isolated as a mixture of double bond isomers in 1:1 ratio. Employing oxime ether 65 (E/Z = 3:2) as a substrate resulted in the formation of four products. In addition to the tricyclic products 68 and 69, which were formed in 72% yield as a 1:1 mixture, the enediyne cyclization product oxime ether 70 was isolated in 12% yield as a 1:1 mixture of E/Z isomers.

Scheme 1.16. Intramolecular Tandem Enediyne-Radical Cyclization

As part of his study of angular triquinane construction via consecutive ring forming reactions, Pattenden examined the intramolecular free radical reactions of terminal acetylenes with cycloalkanone oxime ethers (Scheme 1.17).
Scheme 1.17. Free Radical Reactions Of Terminal Acetylenes With Cycloalkanone Oxime Ethers

The product of this interesting "one pot" transformation arises via a novel double ring expansion-cyclization process\(^{28}\) involving aminyl radical intermediates (Scheme 1.18). The oxime 72 could be separated as Z- and E-isomers (93:7) in 70% yield. Hydrolysis of the oxime led to the bicyclic enone 79.

\[\text{71} \rightarrow \text{72} \]

Scheme 1.18. Double Ring Expansion-Cyclization Process

\[R = \text{OCH}_2\text{Ph} \quad R' = \text{SiMe}_3 \]
An extension of this study involved irradiation of the vinyl bromide cyclobutane oxime 80 (Scheme 1.19) in the presence of TTMSS. The main isolated product was the triquinane 85 as a 1:1 mixture of α- and β-methyl diastereoisomers in 38% yield. The product resulted from a cascade radical 6-exo-trig cyclization, aminyl radical fragmentation and 5-exo-trig radical transannulation. Interestingly, the initial functional group was not transformed into an O-alkylhydroxylamine, as was the case with other cyclizations. The oxime ether functionality was in fact regenerated in the process and was present in the final product.

Scheme 1.19. Cascade Radical Reactions

Hatem et. al.29 have shown that β-allenic O-methyl oximes underwent a free radical hydrostannylation to afford cyclopentenes bearing a protected amine
group and a vinyl stannyl functionality in 37-91% yield. These compounds were
destannylated to yield the corresponding cyclopentenes (Scheme 1.20).

\[
\begin{align*}
\text{Bu}_3\text{SnH} / \text{AlBN} \quad \text{PhH reflux} & \quad \text{Bu}_3\text{Sn} \\
\text{89} & \quad \text{90} & \quad \text{HCl} / \text{Et}_2\text{O} \\
\text{NHOMe} & \quad \text{NHOMe} & \quad \text{NHOMe}
\end{align*}
\]

Scheme 1.20. Free Radical Hydrostannylation-Cyclization

In a related study, the addition of tosyl bromide to \(\beta \)-allenyl-1-
phenylketoximebenzoate 92 was explored (Scheme 1.21).\(^30\) Under free radical
conditions, the carbon-centered radical resulting from the addition of the tosyl
radical on the sp carbon was formed. This carbon-centered radical underwent a
6-endo cyclization onto the nitrogen atom leading to the 3,6-dihydropyridine 93 in
94% yield.

\[
\begin{align*}
\text{TsBr} / \text{AlBN} \quad \text{PhH reflux} & \quad \text{Ts} \\
\text{92} & \quad \text{93}
\end{align*}
\]

Scheme 1.21. 3,6-Dihydropyridine from 6-Endo Cyclization

In 1988 Parker and coworkers\(^31\) used an oxime ether as radical trap in a
tandem radical cyclization to generate a tetracyclic morphine model 95 in 31% yield, accompanied by its epimer 96 in 40% yield (Scheme 1.22).
Scheme 1.22. Tetracyclic Morphine Model Synthesis

The alkaloid Pancratistatin 99 isolated from Amaryllidaceous plants displays promising antineoplastic and antiviral activity. The 7-Deoxy compound 100 exhibits both better therapeutic properties and decreased toxicity. The total synthesis of (+)-7-Deoxypancratistatin involved a key 6-exo cyclization between a benzyl radical generated through a Barton deoxygenation of 97 to construct the highly functionalized cyclohexane nucleus found in the natural product (Scheme 1.23). The cyclization yielded the corresponding product in 70% isolated yield as a single stereoisomer.
Scheme 1.23. Synthesis of (+)-7-Deoxypancreatistatin Intermediate

The total synthesis of the pancretistatin-related alkaloids (-)-lycoricidine, its natural (+) enantiomer, and (+)-narciasine via a stereoselective 6-exo radical cyclization of a vinyl radical to an O-benzyloxime radical acceptor group has been reported recently.\(^\text{35}\) As seen in Scheme 1.24 below, the vinyl radical was itself generated by regioselective addition of phenylthiyl radical to a disubstituted alkyne 101. The cyclization proceeded in 90% yield for the (+)-lycoricidine and 75% yield for the (+)-narciasine to afford only the desired stereoisomer.
Scheme 1.24. Key Step in the Total Synthesis of (-)-lycoricidine and (+)-narcicasine

Both enantiomers of the hexahydroazepine 106 are key intermediates for the synthesis of (-)balanol 105 and its enantiomer, shown to be a potent inhibitor of protein kinase C enzymes (Scheme 1.25).

Scheme 1.25. Retrosynthetic Analysis of (-) Balanol

Both the cis and trans isomers of the hexahydroazepine were synthesized36 in 58% yield as 2:3 mixture via stannyl radical cyclization of the
aldehyde 108 onto an oxime ether (Scheme 1.26). A more recent report suggested that changing the reaction conditions to samarium diiodide/HMPA led to the formation of the trans isomer in 48% yield, accompanied by the minor cis isomer formed in 7% yield.

\[
\begin{align*}
\text{109} & \quad \begin{array}{c}
\text{NOBn} \\
\text{Boc}
\end{array} \quad \text{Bu}_3\text{SnH} \quad \text{AlBN} \\
\rightarrow & \\
\text{106} & \quad \begin{array}{c}
\text{NCO}\text{Ar} \\
\text{Boc}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{110} & \quad \begin{array}{c}
\text{OH} \\
\text{Boc}
\end{array} \\
\text{111} & \quad \begin{array}{c}
\text{OH} \\
\text{Boc}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{Ar} & = \quad \begin{array}{c}
\text{OBN}
\end{array}
\end{align*}
\]

Scheme 1.26. Ketyl Radicals Cyclizing onto Oxime Ether Systems

1.4.2 Hydrazone Acceptors

The first example of a radical hydrazone cyclization was published in 1991 by Kim and coworkers. 2-Phenyl-N-aziridinyl imines were used as substrates and the proposed mechanism for this specialized case is shown in Scheme 1.27.
Scheme 1.27. Mechanism for Cyclization onto Phenyl-N-Aziridinyl Imines

From substrate 112 generation of radical 113 was followed by cyclization to give the nitrogen centered radical 114. This radical then underwent ring opening of the aziridine to form the benzylic radical 116 which extruded styrene and nitrogen to ultimately yield carbocycle 115 as the final product. The liberation of these neutral, stable molecules was clearly a driving force for this cyclization.

A conceptually similar approach40 is the use of mesitylhydrazones (Scheme 1.28). The final product was formed by the decomposition of the diazene 118.

\[
\begin{align*}
\text{N=NHSO}_2\text{Ar} & \quad \rightarrow \quad \text{N=NHSO}_2\text{Ar} \\
116 & \quad \rightarrow \quad 117 \\
\text{N=NHSO}_2\text{Ar} & \quad \rightarrow \quad \text{N=NHSO}_2\text{Ar} \\
\text{N=NH} & \quad \rightarrow \quad \text{N=NH} \\
115 & \quad \rightarrow \quad 118
\end{align*}
\]

\[\text{Ar} = 2,4,6-\text{Me}_3\text{C}_6\text{H}_2\]

Scheme 1.28. Cyclization onto Mesitylhydrazones
The feasibility of the cyclization-intermolecular addition sequence was also examined (Scheme 1.29).

Scheme 1.29. Cyclization-Intermolecular Addition Sequence

The same group41 examined the competition between carbonyl and alkenyl group vs. N-aziridinyl imine as radical acceptors and concluded that the vinyl radical cyclizes onto the alkenyl group rather than onto N-aziridinyl imino group (Scheme 1.30). In this case 124 was derived from 123 by further tributyltin radical addition and there was no indication of the presence of 125.

Scheme 1.30. Competition between Alkenyl Group Vs. N-Aziridinyl Imin as Radical Acceptors

The competition between a formyl and an imino group afforded a 16:62 mixture of 128 and 127 (Scheme 1.31) where 128 resulted from attack of the alkyl radical to the formyl group, whereas 127 was produced from initial attack of the alkyl radical to the imino group.
Scheme 1.31. Competition between a Formyl and an Imino Group

Furthermore, the competition between a keto and an N-aziridinyl imino group in 129 showed preferential attack of a vinyl radical to the imino group to afford 130 in 85% yield (Scheme 1.32).

Scheme 1.32. Competition between a Keto and an N-Aziridinyl Imino Group

In our laboratory, it was established that both halo and carbonylhydrazones cyclize directly to hydrazines under either n-Bu₃SnH or SnI₂ mediated conditions (Scheme 1.33). These reactions displayed a high level of diastereoselectivity. The carbonylhydrazones provided rapid access to β-
aminoalcohols after samarium diiodide mediated hydrazine reduction of the cyclic products.

\[
\begin{align*}
\text{Me} & \quad \text{Br} \quad \text{N-NPh}_2 \\
131 \\
\downarrow \text{Sml}_2 \quad \text{at} -42^\circ \text{C} \\
\text{Me} \quad \text{H} \quad \text{NHNPh}_2 \\
132 \quad 133 \\
n = 1 & & \frac{132}{133} = 98:2 \quad (88\%) \\
n = 2 & & \frac{132}{133} = 75:25 \quad (63\%)
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{O} \quad \text{N-NPh}_2 \\
134 \\
\downarrow \text{Sml}_2 \quad \text{at} 21^\circ \text{C} \\
\text{Me} \quad \text{H} \quad \text{NHNPh}_2 \\
135 \quad 136 \\
n = 1 & & \frac{135}{136} = 99:1 \quad (63\%) \\
n = 2 & & \frac{135}{136} = 99:1 \quad (62\%)
\end{align*}
\]

Scheme 1.33. Cyclization onto N,N-Diphenylhydrazones

Kinetic studies, based on an intramolecular competition between alkene and hydrazone, revealed the hydrazone cyclization rates were quite rapid (Scheme 1.34).43

\[
\text{Ph}_2\text{N} \quad \text{N} \quad \text{O} \\
\text{H} \quad \text{C} \quad \text{N} \\
137 \quad 138 \quad n=1 \quad n=2 \\
\text{Sml}_2 / \text{HMPA} \quad \text{THF, 21}^\circ \text{C} \\
\begin{align*}
\text{Me} & \quad \text{OH} \\
139 \quad 140 \quad n=1 \quad n=2 \\
\text{CH}_3 \quad \text{N} \quad \text{NPh}_2 \\
141 \quad 142 \quad n=1 \quad n=2 \\
> 25:1 & & 4.2:1
\end{align*}
\]

Scheme 1.34. Competitive "Radical Clock"-Type Cyclizations of Hydrazones and Alkenes
The 5-exo cyclization onto a \(N,N \)-diphenylhydrazone \((k = 1.1 \times 10^{-8} \text{ s}^{-1})\) was determined by running the cyclization in concentrated \(\text{Bu}_3\text{SnH} \) and measuring the amounts of cyclized vs. reduced products. The cyclization is approximately 200 times faster than the intramolecular capture by an olefin. These studies have also established that with samarium diiodide these reactions were radical cyclizations and did not involve anionic organosamarium intermediates.

Kinetic and competition studies\(^{44}\) have established that the rate constant for the 6-exo cyclizations of alkyl radicals to \(N \)-aziridinyl imines was approximately \(4.7 \times 10^6 \text{ s}^{-1}\) at 80 °C. Further competition experiments indicated that the rate constant for the corresponding 5-exo cyclization onto the \(N \)-aziridinyl imines would be more than \(2.5 \times 10^8 \text{ s}^{-1}\) at 20 °C.

\(N \)-aziridinyl imines were used in tandem radical cyclization to produce [3.3.3] propellanes (Scheme 1.35).\(^{45}\) This strategy was applied to the synthesis of intermediates 146 and 147 that were further manipulated to give \(dl\)-modhephene.

\[\text{Ph} \]
\[\text{N} \]
\[\text{N} \]
\[\text{Ph} \]
\[\text{Br} \]
\[\text{143} \]
\[\rightarrow \]
\[\text{144 a,b} \]
\[3.5:1 \]
\[\text{modhephene} \]
\[\text{144} \]
\[\text{145} \]
\[\rightarrow \]
\[\text{146} \]
\[> 9:1 \]
\[\text{147} \]

Scheme 1.35. Tandem Radical Cyclization onto \(N \)-Aziridinyl Imines

In a similar manner, \(N \)-aziridinyl imines were used in a tandem radical cyclization to produce the tricyclo[5.3.1.0\(_{2,7}\)]undecane skeleton 150 in 45% yield; this was further manipulated to give \(\alpha \)-cedrene (Scheme 1.36).\(^{46}\)
Scheme 1.36. Tricyclic Systems via Tandem Radical Cyclization onto N-Aziridinyl Imines

Keck and coworkers47 employed a 6-exo cyclization of an aryl radical onto an N-aziridinylimine and, following the loss of nitrogen and styrene, the resulting radical cyclized to form the highly functionalized nucleus 153 in 78% yield (Scheme 1.37), which was further transformed to 7-deoxypancratistatin 100.

Scheme 1.37. Radical-Based Synthesis of (±)-7-Deoxypancratistatin Intermediate

Clearly, the radical cyclization of N-aziridinyl imines is a fundamentally new and important approach for the formation of five or six-membered rings.
This strategy is limited by the fact that it does not retain the nitrogen functionality as this group present in the starting hydrazone is lost as nitrogen gas. In contrast, diphenylhydrazones are also good acceptors and can be converted easily to amines.

Bowman48 has shown that 5-exo cyclization products were formed when several different hydrazones were used as substrates and no endo-cyclized or uncyclized products were detected (Scheme 1.38). The best yields were obtained for 155c and 155d in which the α-position of the hydrazone is more electropositive encouraging faster intramolecular addition by the nucleophilic alkyl radicals (Scheme 1.38).

![Scheme 1.38. 5-exo Cyclization onto Hydrazones](image)

Hatem showed that β-allenic hydrazones undergo hydrostannylation49 to afford cyclopentene derivatives 157 or linear rearrangement products 158 (Scheme 1.39) depending on the substitution of the allenic and hydrazone moieties.

![Scheme 1.39. β-Allenic Hydrazones Cyclization](image)
Curran and Iserloh50 have studied the radical cyclizations of halo-, phenylseleno-, and vinylacylgermane hydrazones and oxime ethers (Scheme 1.40). They have also shown that acylgermane hydrazone and oxime ether radicals have cyclization rate constants of about 107 s-1.

\[\text{N}^Z \text{GePh}_3 \xrightarrow{\text{hv (254 nm)}} \text{NZ} \]

\[^159 \xrightarrow{-\text{Ph}_3\text{GeX}} ^160 \]

\(Z = \text{OBn} \quad \text{NMe}_2 \)

\textit{Scheme 1.40. Radical Cyclizations of Acylgermane Oxime Ethers and Hydrazones}

For the radical cyclizations of acylgermane oxime ethers and hydrazones, a synthetically attractive feature is that cyclization products retain the C = N bond.

\textbf{1.4.3 Imine Acceptors}

Radical cyclization onto an imine bond was reported51 by Takano in 1990. The racemic cryptostylines I, II, and III \textit{163 a-c}, found in a family of Orchidaceae plants, were synthesized (Scheme 1.41) in 56\%, 51.4\% and 36.2\% yields respectively. Products \textit{164a-c} were formed in minor amounts demonstrating that the 6-\textit{endo} cyclization mode onto the carbon atom of the imine bond was preferred.
Scheme 1.41. Synthesis of Cryptostylines I, II, and III

In 1992 Tomaszewski and Warkentin52 found that there was a large 6-endo preference for an aryl radical to cyclize onto an aldime (Scheme 1.42). The aryl radical can cyclize in either a 6-endo or 5-exo fashion to give 166 or 167 or can be reduced to 168.

Scheme 1.42. Aryl Radical Cyclization onto an Aldimine

An exception to this general preference53 involved aryl radical-initiated cyclization of the ketimines derived from acetophenone and benzophenone. These cyclized at the nitrogen end of the azomethine bond via an 5-exo mode to

30
yield the corresponding indolone derivatives in 10.5% and 58.7% yield respectively (Scheme 1.43). This is presumably due to the extra substituent on the azomethine bond.

Scheme 1.43. Aryl Radical Cyclization of the Ketimines

Tomaszewski and Warkentin investigated the induction of asymmetry54 in radical cyclization onto aldimines 172 bearing a chiral center close to the site of the attack (Scheme 1.44). These cyclizations provide four products 173:174:175:176 in the ratios 37:9:8:1:5.7 with 47:1 regioselectivity for 6-endo closure over 5-exo closure. The diastereomeric isoquinolines 173 and 174 were obtained in the ratio (S, S) / (R, S) = 3.8:1 and in 69% isolated yield.

Scheme 1.44. Induction of Asymmetry in Radical Cyclization
The isomeric aldimes 177 cyclized exclusively55 in a 5-exo sense (Scheme 1.45) forming the 1-indanamines 178 in good yields. The rate constant for this process was measured (k = 3.9x108 s-1 at 80 °C).

\[
\begin{align*}
\text{Br} & \quad \text{R} \quad \text{N-R} & \quad \text{Bu}_3\text{SnH} / \text{AIBN} & \quad \text{PhH, } \Delta & \quad \text{NHR} & \quad + & \quad \text{N-R} \\
177 & & & & 178 & & 179
\end{align*}
\]

\textbf{Scheme 1.45. Radical Cyclization onto Aldimines}

A similar result was obtained by Leardini and his coworkers56 when imines 180 were allowed to react with tributyltin hydride in boiling benzene (Scheme 1.46).

\[
\begin{align*}
\text{Br} & \quad \text{N-R} & \quad \text{Bu}_3\text{SnH} & \quad \text{AIBN} & \quad \text{H} & \quad \text{NHR} & \quad + & \quad \text{Cl} & \quad \text{CN} \\
180a: \ R = 4-\text{Cl-C}_6\text{H}_4 & \quad & \text{b: } R = \text{tert-Bu} & \quad 181a: 54\% & \quad 182a: 4\% & \quad 183 & \quad b: 70\%
\end{align*}
\]

\textbf{Scheme 1.46. Radical Cyclization onto Imines}

Imine 180a yielded the 5-exo cyclization product predominantly, but under the same reaction conditions imine 180b formed 183 and only a minor amount of the corresponding cyclization product. The presence of this product was explained by the β-fragmentation of the imidoyl radical resulting from a 1,5-H shift with loss of tert-butyl radical. This kind of process is a peculiarity of N-alkyl substituted imidoyl radicals.57

In contrast with the results published by Warkentin et. al., a large 5-exo preference was observed for the cyclization of imines 184 (Scheme 1.47).
Scheme 1.47. 5-Exo Cyclization of Imines

In 1994 Bowman et. al. showed that alkyl radicals can also cyclize onto various imines. Two types of isomeric imines 188 and 192 were used as substrates (Scheme 1.48). Depending on the ring size, stereoelectronic effects, polarization of the imine bond, stability of the resulting radical, varying amounts of exo, endo and simple reduction products were isolated.

Scheme 1.48. Alkyl Radicals Cyclization onto Imines
Bowman synthesized three types of bicyclic nitrogen heterocycles using this strategy59 (Scheme 1.49) and several imines were investigated as substrates for this process. However, intermediate radicals gave mainly monocyclic amines 197 with only traces of the tandem products, which reflects the reluctance of aminyls to undergo cyclization when the double bond is not activated. When \(R_1 = \text{Ph} \) the tandem products are formed in moderate yields, with only traces of the monocyclized products. In this case, the use of \(\text{MgBr}_2\cdot\text{Et}_2\text{O} \)60 gave dramatically improved tandem yields as spiroamines 198 were isolated without any traces of monocyclic products.

Scheme 1.49. Spiroamines Synthesis via Tandem Reactions

Similar results were obtained when this method was applied to the synthesis of the nitrogen bicycles 201 (Scheme 1.50). The formation of the tandem products is favored when the intermediate aminyl radicals is stabilized (\(R_2 = \text{Ph} \)) and when Lewis acid (\(\text{MgBr}_2\cdot\text{Et}_2\text{O} \)) is added to the reaction mixture.
Scheme 1.50. Bicyclic Nitrogen Heterocycle Synthesis

The synthesis of indolizidines and pyrrolizidines was also studied (Scheme 1.51). Imine 202a (n=1) gave a moderate yield (26%) of the indolizidine 204. Attempted tandem cyclization of the imine 202b (n=0) which required an initial 5-endo cyclization was unsuccessful and only the reduced product was isolated.

Scheme 1.51. Synthesis of Indolizidines and Pyrrolizidines

Cyclization onto iminium salts\(^{61}\) (Scheme 1.52) was investigated as the intermediate aminium cation radical\(^{62}\) could cyclize rapidly with alkenes for use in synthetic tandem reactions. Reaction between tributyltin hydride and the iminium
salt 205 gave the uncyclized N-pentylpyrrolidine 207 (75%) indicating that hydride addition to the iminium ion is faster than radical abstraction of the benzeneselenyl moiety.

\[
\begin{align*}
\text{SePh} & \quad \text{BF}_4^- \\
\text{BF}_4^- & \quad \text{Bu}_3\text{SnH} \\
\text{PhSe(H}_2\text{C})_4\text{CH}_2-\text{N} & \quad \text{Bu}_3\text{SnH} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3(\text{CH}_2)_4-\text{N} & \\
\end{align*}
\]

Scheme 1.52. Cyclization onto Iminium Salts

The approximate rate constants for 5-exo and 6-exo cyclizations of alkyl radicals onto imines were determined to be \(6.0 \times 10^6 \) s\(^{-1} \) and \(6.7 \times 10^5 \) s\(^{-1} \), respectively (Scheme 1.53).\(^{63} \) Alkyl radical additions to imines were essentially irreversible and considerably slower than alkyl radical additions to hydrazones (see Section 1.4.3).

\[
\begin{align*}
\text{N} & \quad \text{Bn} \\
\text{SePh} & \quad \text{SnBu}_3 & \quad \text{N} & \quad \text{Bn} \\
\text{Bu}_3\text{SnH} & \quad \text{k}_c & \quad \text{k}_c \\
\text{N} & \quad \text{Bn} & \quad \text{N} & \quad \text{Bn} \\
\text{HN} & \quad \text{Bn} & \quad \text{HN} & \quad \text{Bn} \\
\end{align*}
\]

Scheme 1.53. Kinetic Considerations for Cyclization of Alkyl Radicals onto Imines

36
1.4.4 Nitrile Acceptors

The chemical versatility of the carbonyl group makes cyclic ketones a very common motif in organic synthesis. Radical cyclization onto a nitrile is interesting because it allows the initial formation of a cyclic imine that is subsequently hydrolyzed to a cyclic ketone.

A number of intramolecular free radical additions to nitriles had been reported64, although it wasn't until 197965 that the rate constant for the irreversible cyclization of the 4 cyanobutyl radical to the cyclopentyiiminyl radical was determined (k=4.0x103 s-1 at 25 °C and k=4.0x104 s-1 at 80 °C). For comparison the rate constant for the 5-hexenyl cyclization is k=1.1x105 at 25 °C and k=5.5x105 s-1 at 80 °C.

In 1983 Corey66 reported the use of nitriles (as well as other functionalities) as radical acceptors in an intramolecular cyclization where the ketyl radical is generated from ketones by Zn-TMSI (Scheme 1.54).

![Scheme 1.54. Nitriles as Radical Acceptors in an Intramolecular Cyclization](image)

The major problem associated with the radical cyclization onto a nitrile functionality is the simple reduction of the radical by tributyltin hydride to give the corresponding alkynitrile. For example, when the radical cyclization of the ω-iodonitrile 215 was attempted67 by Fraser-Reid \textit{et al.}, during the synthesis of (+)-Phenyllantocin, the desired product 217 was formed in only 2% yield and the major product was the reduced material 216 (66%).
Scheme 1.55. Radical Cyclization as a Key Step Towards the Synthesis of (+)-Phenylantocin

A much better result was achieved with a different carbohydrate framework in a tandem cyclization involving consecutive 5-exo additions\(^{68}\) (Scheme 1.56).

Scheme 1.56. Tandem Cyclization with Nitrile Participation

A related cyclization was employed\(^{69}\) to achieve the stereospecific synthesis of (-) pipizitol. In this synthesis a key step was the formation of the core (5,5) bicyclic system 221 that became the B and C rings in the natural product 222 (Scheme 1.57).

Scheme 1.57. Stereospecific Synthesis of (-) Pipizitol
Another interesting example70 by Fraser-Reid of a radical cyclization onto CN was applied in the total synthesis of the densely functionalized carbocyclic core of tetrodotoxin 226 (Scheme 1.58). The disconnection envisaged the annulated pyranose 225 as an interesting retron for the natural product. This precursor is synthesized over several steps from D-mannosan 223; the last step in its synthesis is a radical ring closure onto a nitrile 224 in 77% yield.

![Scheme 1.58. Radical Ring Closure onto a Nitrile in the Synthesis of the Tetrodotoxin](image)

The formation of a six-membered ring is facilitated by the rigidity of the 1,6-anhydro template that presents the nitrile to the radical in a highly ordered boatlike transition state.

A very interesting approach was taken71 by Hegarty and Mann for the synthesis of the skeletons of both Aphidicolin and Stemodin diterpenoids. Corey’s procedure for ketyl cyclization onto a nitrile was modified to generate the B-C ring system 228 with the appropriate substitution and stereochemistry (Scheme 1.59).

![Scheme 1.59. Synthesis of the Skeletons of Aphidicolin and Stemodin Diterpenoids](image)
The electroreductive intramolecular coupling by Shono and Kise72 of δ and γ-cyanoketones affords cyclized α-hydroxyketones and the corresponding dehydroxylated ketones (Scheme 1.60).

![Scheme 1.60. Electroreductive Intramolecular Coupling](image)

Molander and Wolfe73 have reported the intramolecular ketone-nitrile reductive coupling reactions promoted by samarium(II) iodide. Monocyclic, fused bicyclic, and bridged bicyclic α-hydroxy ketones have been synthesized in moderate to excellent yield via this method.

Tandem enediyne-radical cyclizations were carried out by Grissom and coworkers74 on substrates that contain nitrile radical acceptors (Scheme 1.61).

![Scheme 1.61. Tandem Enediyne-Nitrile Radical Cyclizations](image)
1.4.5 Azide Acceptors

A limited number of reports of azides as radical acceptors have appeared. For example, Kilburn and Santagostino75 converted the methylene cyclopropane system \textbf{240} into a spiro-heterocycle \textbf{241} in 53\% yield after tosylation, as shown in Scheme 1.62.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {240};
\node at (1,0) {\(\text{(Me}_3\text{Si})_3\text{SiH}\)};
\node at (2,0) {AIBN};
\node at (3,0) {241};
\end{tikzpicture}
\end{center}

\textit{Scheme 1.62. Cyclization onto Azide Acceptor}

An interesting tandem approach to the pentacyclic ring system of aspidospermine was accomplished by Murphy and coworkers76 (Scheme 1.63).

\begin{center}
\begin{tikzpicture}
\node at (0,0) {242};
\node at (1,0) {\(\text{(Me}_3\text{Si})_3\text{SiH}\)};
\node at (2,0) {AIBN};
\node at (3,0) {243};
\end{tikzpicture}
\end{center}

\textit{Scheme 1.63. Aspidospermine Ring System Synthesis.}

The aryl radical generated from iodide \textbf{242} in the presence of tris(trimethylsilyl)silane and AIBN afforded \textbf{243} in 95\% yield as a single stereoisomer.
1.4.6 Azo Acceptors

An interesting example of a cyclization of an aryl radical onto an azo acceptor was examined by Zanardi, Leardini and coworkers. The phenolic product 245 was generated in 50% yield.

![Chemical structure](image)

Scheme 1.64. Cyclization onto an Azo Acceptor

Warkentin and coworkers have determined that the rate constants for the 5-exo and 6-endo cyclizations of aryl radicals onto azo acceptors are 1.5×10^9 s$^{-1}$ and 2.3×10^9 s$^{-1}$ respectively at 82 °C.
Chapter 1 References

1992, 33, 1057.

Callaghan, O.; Lampard, C.; Kennedy, A. R.; Murphy J. A. Tetrahedron

5289.
Chapter 2

Tandem Alkyl and Aminyl Radical Carbonylation - Radical Cyclization onto N,N-Diphenylhydrazones

2.1 Introduction

Free radical-mediated cyclizations have become a preeminent method for preparing diverse cyclic compounds. Most radical cyclizations employ methods utilizing conventional radical acceptors such as alkenes with typical radical precursors such as halides, selenides, and xanthates. One drawback in the traditional procedures using such radical acceptors and precursors is the loss of two inherent functional groups.

Solutions for this problem include α-heteroatom radical intermediates\(^1\) and atom transfer reactions that place functional groups in predetermined positions.\(^2\)

Alternatively, it is possible to have a heteroatom present in the addition terminus. As shown in Chapter 1, this usually leads to improved efficiency and retains useful functionality in the product.

Tandem radical reactions provide an elegant way to produce complex molecules in a radical process.\(^3\) Indeed, radical reactions are ideally suited for sequencing since the product of every radical molecule with itself or with another closed shell molecule is a radical. This product radical then becomes the precursor for the subsequent step in a sequence of reactions. The major challenge in designing tandem radical reactions is one of selectivity.\(^4\) The fate of individual radicals in a sequence must be strictly controlled. The short life time of radicals makes this especially challenging since the sequential addition of reagents to a reaction is generally not possible.
2.2 Free-Radical Carbonylation

The first free-radical carbonylation was reported almost half a century ago when Coffman et al. suggested the intermediacy of acyl radicals in the formation of polyketones by peroxide-initiated copolymerization.\(^5\) Four years later, Foster et al. reported that the peroxide-initiated reaction of mercaptans with ethylene and carbon monoxide under 3000 atm at 130 °C gave 3-(alkythio)propanal in 11-18% yields.\(^6\) This reaction is noteworthy as a pioneering effort to effect trapping of acyl radicals by hydrogen abstraction, but the results were of limited utility because of the extremely high pressures of carbon monoxide required and the low yields of carbonylated products. Alternative ways for the generation of acyl radicals were developed in the following years, and these include hydrogen abstraction from aldehydes,\(^7\) photochemical degradation with Norrish type I cleavage,\(^8\) decomposition of acylmetals,\(^9\) reaction of acyl chlorides with trialkyl tin hydrides,\(^10\) radical addition to \(\alpha\)-diketones and degradation,\(^11\) and reaction of acyl selenides with trialkyl tin hydrides.\(^12\)

In 1990, the efficient trapping of carbon monoxide by a variety of carbon radicals in a radical chain was demonstrated by Ryu et al.\(^13\) Free-radical carbonylation was used for the introduction of a carbonyl group into organic molecules as shown in Scheme 2.1.

```
RX + CO → M-H
246
M•
-MX
R• + CO → R=O
247
```

Scheme 2.1. Free Radical Carbonylation of Alkyl Halides
In this AIBN-induced radical reaction mediated by tributytin hydride, an alkyl radical 247, generated from an alkyl bromide or iodide 246 via abstraction of halogen by a tin radical, adds efficiently to carbon monoxide to form an acyl radical 248. Subsequent hydrogen abstraction by the acyl radical from tin hydride produces an aldehyde 249 and at the same time regenerates the tin radical. Primary, secondary and tertiary alkyl radicals can be efficiently carbonylated by the tin hydride/carbon monoxide system to furnish one-carbon homologated aldehydes. These radical formylations are generally performed at substrate concentrations of 0.01-0.05 M with 70-90 atm of carbon monoxide at 80 °C for 2-4 hours. The reaction apparatus is an autoclave and AIBN is used as a radical initiator.

Aromatic or vinyl iodides can also be formylated to give the corresponding aldehydes14 Tris(trimethylsilyl)silane15 (TTMSS) and triorganogermanes16 can be used in place of tin hydride in the formylation reactions. These reagents are poorer hydrogen donors, so the formylation reaction proceeds at lower carbon monoxide pressures.

The inter- and intramolecular addition behavior of acyl radicals has been largely elucidated in the past decade.17 In addition, the rate of decarbonylation can be obtained from the data reported by Chatgilialoglu and co-workers.18

2.3 Research Objectives

Stimulated by our own interest in understanding and expanding the scope of the radical cyclization onto hydrazones, coupled with the knowledge that free radical carboxylation is possible when the competing reaction of the alkyl radical is sluggish, a study was initiated to determine the feasibility of the tandem carbyonylation – cyclization onto N,N-diphenylhydrazones. The proposed tandem process is outlined below in Scheme 2.2.
The alkyl radical generated from suitable alkyl halides 250 should be trapped by carbon monoxide. The resulting acyl radical 251 would then undergo a 5-exo radical cyclization onto the N,N-diphenylhydrazone bond. Subsequent cleavage of the hydrazine bond should provide cyclic α-amino ketones.

![Chemical Reaction Diagram]

Scheme 2.2. Carbon Monoxide Trapping And Cyclization Onto Hydrazones

The utility of this method would be further expanded by the selective reduction of the ketone, leading to β-amino alcohols. Many of these are known as potential glycosidase and chitinase inhibitors. Scheme 2.3 below depicts a potential route to a stereoselective synthesis of β-amino alcohols, which takes advantage of the tandem carbonylation-cyclization sequence followed by selective reduction.

![Chemical Reaction Diagram]

Scheme 2.3. Retrosynthetic Analysis of β-Amino Alcohols
2.4 Kinetic Considerations

Kinetic information accumulated during the tin hydride mediated free radical formylation studies is useful to help design tandem radical reactions involving carbon monoxide. It has been demonstrated that high carbon monoxide pressures (concentrations) are necessary for efficient carboxylation. Otherwise, premature reduction of carbon radicals by tin hydride prior to carbon monoxide trapping, accompanied by decarboxylation (back reaction) of acyl radicals occurs. Kinetic data establish the relative efficiency of carbon radicals toward carboxylation. This efficiency depends largely on the structure of the starting radicals. For example, compared to primary and secondary alkyl radicals, higher carbon monoxide pressures are required for the carboxylation of \textit{sp}^2 radicals such as phenyl and vinyl radicals. This is true even though the back reaction from the resulting acyl radicals is expected to be slow, judging from the strength of the newly formed \textit{sp}^2 C-C bond and the instability of \textit{sp}^2 radicals. The need for higher carbon monoxide pressures can be ascribed to the very rapid rate of hydrogen abstraction by \textit{sp}^2 radicals. The decarboxylation rate is in the order of primary acyl < secondary acyl < tertiary acyl < phenylacetyl. This order explains why a primary radical can be carboxylated efficiently even at relatively low carbon monoxide pressures, but carboxylation of benzyl radicals is difficult to achieve. In addition to benzyl radicals, carbon radicals substituted by other radical stabilizing groups (for example, cyano, carbonyl, vinyl, and alkoxy groups) do not add to carbon monoxide to a synthetically meaningful extent. Although the absolute rate constants for decarboxylation reactions of acyl radicals to give these stable radicals are not always available, rapid decarboxylation is probably the dominant factor causing these unsuccessful carbonylations. Some useful guidelines can be established to aid the design of efficient tandem radical reactions of carbon monoxide:
(i) The key radicals capable of adding to carbon monoxide should be alkyl, aryl, and vinyl.

(ii) Alkyl radicals should not have a radical-stabilizing substituent.

(iii) The product acyl radicals should be trapped rapidly by a subsequent C-C bond-forming reaction to lead to more stable radicals that are not prone to carbonylation.

(iv) The resulting radicals can be terminated by hydrogen atom abstraction or participate in additional C-C bond-forming reactions.

In principle, as shown in Scheme 2.4, if an alkyl radical 253 is generated from a corresponding alkyl bromide 250, it should be possible to trap the radical with carbon monoxide prior to the 4-exo cyclization. The acyl radical 251 can then add to the hydrazone functionality in a very fast 5-exo cyclization to form the cyclic ketone 252.

Scheme 2.4. Kinetic Considerations for the Tandem Carbonylation-Cyclization Reaction
It should be noted that the actual value for the rate constant for the carbonylation step was not available at the inception of this project. It has now been measured ($k_{co} = \sim 1.2 \times 10^{5} \text{ M}^{-1}\text{s}^{-1}$).22a

2.5 Substrate Synthesis

We devised two different approaches for the synthesis of the carbonylation reaction substrates.

Initially, in order to test the feasibility of the proposal, a couple of bromohydrazones were prepared in a very straightforward manner starting with dithiane 257 (Scheme 2.5).

![Scheme 2.5. Preparation of the Carbonylation Substrates](image)

Dithiane 257 was subjected to deprotonation by n-buthyllithium at -10°C. Displacement of the primary bromide of 1,3-dibromopropane or 1,4-dibromopentane by the resulting anion provided compound 258 in 77% and 259 in 81% yield. Hydrolysis of dithianes 258 and 259 was effected initially by treatment with NBS/H$_2$O/CH$_3$CN,23 and the resulting aldehydes were condensed in situ with N,N-diphenylhydrazine to afford bromo-hydrazones 260 and 261 in 63% and 67% yields respectively. Higher yields of bromo-hydrazones 260 (72%)
and 261 (79%) were obtained when cerium ammonium nitrate (CAN)24 was employed for the dithiane hydrolysis.

As previously observed25, a key spectral feature of \(N,N\)-diphenylhydrazones is represented by the \(^1\)H NMR signal the vinylic hydrogen (\(R_2N-N=CHCH_2R\)). This signal appears as a clean triplet at \(\delta 6.59\) \((J = 4.7\) Hz\) in the \(^1\)H NMR spectrum for the 4-bromobutenal-\(N,N\)-diphenylhydrazone 260 and at \(\delta 6.55\) \((J = 4.7\) Hz\) for the 4-bromopentanal-\(N,N\)-diphenylhydrazone 261. It can be deduced from the spectral data that a single geometric isomer resulted from the condensation of the intermediate aldehyde with \(N,N\)-diphenylhydrazine. Hydrazones are formed predominantly as the \(E\) geometric isomer.26 Thus compound 260 was assigned as the \(E\) hydrazone (with the \(\text{Ph}_2\text{N}\) substituent \textit{syn} to the hydrogen).

The synthetic pathway to substrates for the carbonylation experiments outlined above is simple and straightforward, but is limited by the commercial availability of the necessary dibromides. A more general method for the synthesis of hydrazones with various \(R\) groups was developed as follows (Scheme 2.6).

\begin{align*}
\text{O} & \quad \text{OH} & \quad \text{NNPh}_2 \quad \text{Ph}_2\text{NNH}_2, \text{MeOH, 78\%} \\
\begin{array}{c}
262 \\
-78^\circ\text{C, 78\%}
\end{array} & \quad \begin{array}{c}
263 \\
\text{OH}
\end{array} & \quad \begin{array}{c}
264 \\
\text{H}
\end{array} & \quad \begin{array}{c}
\text{SO}_3\text{py, DMSO} \\
\text{Et}_3\text{N, 60-80\%}
\end{array} \\
\text{HNPh}_2 & \quad \text{H} & \quad \text{NNPh}_2 & \quad \text{HNPh}_2 \\
\begin{array}{c}
261 \text{ R = Me} \\
269 \text{ R = iPr} \\
270 \text{ R = Cy}
\end{array} & \quad \begin{array}{c}
266 \text{ R = Me} \\
267 \text{ R = iPr} \\
268 \text{ R = Cy}
\end{array} & \quad \begin{array}{c}
265 \\
\text{H}
\end{array} & \quad \begin{array}{c}
\text{RMgBr} \\
\text{THF, 0^\circ\text{C}} \\
70-100\%
\end{array}
\end{align*}

\textit{Scheme 2.6. General Route to Halo-Hydrazones}
The synthesis of hydrazones 269 and 270 commenced with reduction of the commercially available \(\gamma \)-butyrolactone 262 in toluene at \(-78 \, ^\circ\text{C}\) to give the corresponding lactol 263 in 78\% yield. Treatment of the \(\gamma \)-butyrolactol 263 with one equivalent of \(N,N \)-diphenylhydrazine in methanol at room temperature provided the \(N,N \)-diphenylhydrazone 264 in 78\% yield. In this case, as with the other two hydrazones reported above, only a single geometric isomer was isolated from the reaction. The alcohol was oxidized to aldehyde 265. Addition of Grignard reagents to aldehyde 265 generates the corresponding secondary alcohols.

The addition of various Grignard reagents to the aldehyde functionality proceeded cleanly without any observed competitive addition to the hydrazone functionality, provided the reaction was conducted in THF. The chemospecificity of this reaction can be discerned by analysis of the \(^1\text{H}\) NMR spectrum, as the signal for the vinyl hydrogen of the hydrazone remained in the spectrum of the product, while the aldehyde signal disappeared. The reactions were conducted THF (enough to make a 0.1–0.3 M solution) in a flame dried, round bottom flask maintained at 0 \(^\circ\text{C}\) under argon. The required Grignard reagent (1-1.1 eq.) was added and the reaction was stirred at 0 \(^\circ\text{C}\) until the starting material was consumed (typically 30 minutes, by TLC). The reaction was quenched with saturated ammonium chloride. Purification and spectral analysis of the reaction mixture confirmed the formation of the desired secondary alcohols. These results are summarized in Table 2.1.
Table 2.1. Chemoselective Grignard Addition to Aldehyde 265

<table>
<thead>
<tr>
<th>Entry</th>
<th>Grignard</th>
<th>Alcohol</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeMgCl</td>
<td>266</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>iPrMgCl</td>
<td>267</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>CyMgCl</td>
<td>268</td>
<td>87</td>
</tr>
</tbody>
</table>

The last step required for the preparation of starting materials was the conversion of the secondary alcohols to bromides. The bromination was effected by Ph₃P•Br₂, as illustrated in Scheme 2.7 below.

Scheme 2.7. Bromination of the Hydroxy-Hydrazone Substrates

The use of triethylamine was found to be absolutely necessary for the formation of the desired bromohydrzones in high yields. Presumably, its role is to protect the hydrazone functionality from the hydrobromic acid released during the course of the bromination.

The yields for the conversion of the alcohols into the corresponding bromides are generally good, as summarized in Table 2.2 below.
Table 2.2. Bromination of the Primary and Secondary Alcohols

As can be observed from the above table, the yield decreases as the steric bulk of the substituent increases. Bromination of secondary alcohols containing a larger isopropyl or cyclohexyl substituent resulted in alkene formation. Attempts to alter the reaction conditions or use of alternative reagents did not change the relative yields.

2.6 Tandem Alkyl Radical Carbonylation-Cyclization onto N,N-diphenylhydrazones

With the bromo-hydrazones in hand, the tandem carbonylation-cyclization reactions under radical conditions were investigated.

In these experiments, the starting hydrazone (0.5-0.6 mmol) dissolved in benzene (enough to make a 0.05 M solution, with respect to the hydrazone), AIBN (5-10 mol %) and tributyltin hydride (1.2 eq.) were added to a dry glass
tube inserted into a stainless steel autoclave (50 mL). The system was flushed three times, then pressurized with carbon monoxide. The reaction mixture was stirred under carbon monoxide pressure (usually 800-1100 psi) at 80 °C for five hours. The autoclave was cooled to room temperature and, after the release of excess carbon monoxide, benzene was removed under reduced pressure.

The ratio of stereoisomers was determined from the crude NMR data, thus it was necessary to separate the organostannane residue from the reaction mixture efficiently. There are several methods to address this problem, including partitioning between polar solvents such as acetonitrile or wet methanol and pentane\(^{28}\) or treatment with 1,5-diazabicycloundecene followed by titration with iodine.\(^{29}\) We discovered that dissolving the reaction mixture in diethyl ether and stirring it vigorously at room temperature for half an hour with a saturated aqueous solution of potassium fluoride\(^{30}\) removes most of the organostannane residue.

Following this step, filtration, extraction with diethyl ether, drying on magnesium sulphate and concentration gave a crude mixture which was analyzed by \(^1\text{H}\) NMR spectroscopy to determine the \textit{cis}/\textit{trans} ratios. This was followed by flash chromatography to separate the \textit{cis}/\textit{trans} isomers.

The results of the carbon monoxide trapping-cyclization studies are summarized in Table 2.3 below.
Table 2.3. Tandem Radical Carbonylation-Cyclization Results

As seen from the above table, the desired α-hydrazino ketones were produced in reasonable yields but with a disappointing level of stereoselectivity. Increasing the bulk of the R substituent favoured slightly the formation of the trans isomer. The cis/trans isomers can be separated readily by flash chromatography on silica gel.

In addition to the ketone products, 10-12% of reduced alkylhydrazone substrates were also isolated. Similar products were observed previously during carbon monoxide-trapping studies of cyclizations onto alkenes.31 However, there was no evidence of any aldehyde that would have arisen from direct quenching of the intermediate acyl radical.

The products arise, presumably, from the pathway illustrated in Scheme 2.8. Abstraction of the bromide by the tributyltin radical (Bu3Sn•) generates the initial radical 253, which adds to the carbon monoxide to provide the acyl radical 254. This undergoes a 5-exo cyclization onto either face of the C=N double bond of the hydrazone to generate the radicals 280a, where the R and the hydrazine substituents can be cis or trans to each other. Hydrogen transfer then forms the final products and regenerates the tributyltin radical to continue the chain.
Alternatively, the initial radical 253 can be reduced by tributyltin hydride to form reduced alkylhydrazone 279.

Scheme 2.8. Mechanism for the Tandem Carbonylation-Cyclization Reaction

As would be expected, the alkylhydrazones 279 are formed in higher amounts at lower carbon monoxide pressure. The stereoselectivity of the formation of cyclic ketones was not altered significantly upon varying the pressure from 800-1100 psi.

The diastereoselectivity could be determined by examination of the 1H NMR spectra, although the relative stereochemistries (i.e. cis or trans) were established by analyzing the 13C NMR of the products.
As has been observed previously, the 13C NMR resonances for both methine carbons in the cis isomer appeared at higher field than those for the trans isomer. In order to be able to use this technique for the assignment of the relative stereochemistry, it is essential to have both isomers for comparison of the chemical shifts. Tandem carbonylation-cyclization gave an equimolar mixture of readily separable diastereomers, thus we were able to measure the 13C NMR spectra of both. Figure 2.1 lists the key 13C NMR signals that were used to assign the relative stereochemistry of the methyl substituted isomers.

![Figure 2.1. Assignment of Stereochemistry](image)

The relative stereochemistry of the other products were determined in a similar fashion and for the cyclohexyl and isopropyl substituted isomers the major product from the cyclization was assigned as the trans isomer.

The formation of the major trans isomer could be predicted based on the Beckwith-Houk model (Scheme 2.9). For 2-substituted hexenyl radical-type systems it has been known that smaller substituents exhibit almost no selectivity, whereas large alkyl or aryl substituents give increased selectivities.
Scheme 2.9. Chair Transition State Diagram

The selectivity was increased at lower temperatures, depending on the type of the system studied.

2.7 Carbonyl Reduction

In view of the current interest in the synthesis of β-amino alcohols as potential glycosidase and chitinase inhibitors, a series of carbonyl reductions to prepare the corresponding hydrazino-alcohols were performed.

As tabulated (Table 2.4), a series of common reduction reagents were employed for the reduction of the carbonyl group in ketone 275. The reduction reactions proceeded generally in good to very good yields.
\[
\text{NHNPh}_2 \quad \text{K} \quad \text{NHNPh}_2
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent</th>
<th>Product</th>
<th>Yield, (\text{a}) %</th>
<th>Ratio cis/trans,(\text{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((i\text{-Bu})_2\text{AlH})</td>
<td>281a/281b</td>
<td>87%</td>
<td>3:1</td>
</tr>
<tr>
<td>2</td>
<td>Zn(BH(_4))_2</td>
<td>281a/281b</td>
<td>75%</td>
<td>2:1</td>
</tr>
<tr>
<td>3</td>
<td>LiAlH(_4)</td>
<td>281a/281b</td>
<td>72%</td>
<td>2.5:1</td>
</tr>
<tr>
<td>4</td>
<td>LiB(s-Bu(_3))H</td>
<td>281a/281b</td>
<td>93%</td>
<td>1:0</td>
</tr>
<tr>
<td>5</td>
<td>H(_2)/PtO(_2)</td>
<td>281a/281b</td>
<td>82%</td>
<td>1:3</td>
</tr>
<tr>
<td>6</td>
<td>H(_2)/(Ph(_3)P(_3))RuCl(_2)</td>
<td>281a/281b</td>
<td>72%</td>
<td>0:1</td>
</tr>
</tbody>
</table>

\(\text{a}\) Yields are for isolated chromatographically homogeneous material.

\(\text{b}\) Ratios were determined from \(^1\text{H}\) NMR analysis of total product mixture.

Table 2.4. Reduction of the Carbonyl Group

Most reductions of carbonyl compounds are done with reagents that transfer a hydride from boron or aluminum and the numerous reagents of this type that are available provide a considerable degree of selectivity and stereochemical control.\(^\text{36}\) As can be seen from Table 2.4, alkylated aluminium and borohydrides give the highest level of diastereoccontrol in this reaction (compare entries 1 and 3 and 2 and 4). These reagents are more bulky than the parent hydrides and therefore are more stereoselective in situations where steric factors are important.\(^\text{37}\) In these cases, the nucleophilic transfer of hydride to the carbonyl group takes place under steric approach control from the least hindered face of the C=O \(\pi\) bond to generate the cis hydrazino-alcohol as the major product of the reaction. The best result in this series was obtained with L-Selectride (entry 4), in which case the cis isomer was generated exclusively.
Another widely used method of reducing C=O double bonds is catalytic hydrogenation. The stereochemistry of hydrogenation is affected by the presence of polar functional groups that can govern the mode of adsorption to the catalyst surface (the haptophilic effect). As can be seen from Table 2.4, when catalytic hydrogenations are employed (entries 5 and 6), the hydrogen is introduced from the side of the molecule occupied by the hydrazine substituent resulting in the predominant formation of the trans isomer. The trans isomer 281b was generated exclusively (entry 6) upon hydrogenation of 275 in the presence of tris(triphenylphosphine)ruthenium(II) chloride catalyst.39

The selectivity of the reductions varied with the substitution pattern of the parent ketone. Thus the use of L-Selectride® also gave the cis isomer 282a upon reduction of the ketone 276a (Table 2.5). Mixtures were obtained in the other methyl substituted cyclopentanone examples, however, the alcohol products were separated cleanly by flash chromatography. Thus, all the possible diastereomers could be prepared depending upon the method selected.
Table 2.5. Reduction of the Carbonyl Group

As in the other cases, the compound with the higher field methine carbon signals in the 13C NMR spectrum was assigned as the cis isomer 74. The key spectral features used to assign the stereochemistry of the alkyl substituted hydroxy hydrazines 282a and 282b are shown below in Figure 2.2.

\[\delta = 63.7 \text{ ppm} \]

\[\delta = 64.5 \text{ ppm} \]

\[\delta = 73.8 \text{ ppm} \]

\[\delta = 84.5 \text{ ppm} \]
In a similar manner, the stereochemistries of the hydrazines 283a and 283b were determined based on nOe data shown in Figure 2.3.

![Diagram of 283a and 283b with nOe values]

Figure 2.3. Spectral Data for The Alkyl Substituted Hydroxy Hydrazines 283a and 283b

2.8 Reductive Cleavage of the N-N bond

As mentioned before, one of the original goals of this project was to employ the tandem carbonylation-cyclization as a way to synthesize β-amino alcohols. To obtain β-amino alcohols from β-hydrazino alcohols an efficient method for the cleavage of the hydrazine N-N bond was required.

The N-N bond of the alcohol diphenylhydrazine product is doubly benzylic (Figure 2.4). It was shown previously in our laboratory,\(^{25}\) based on the method of Burke,\(^{40}\) that it is possible to cleave the N-N bond in diphenylhydrazine by hydrogenolysis with standard metal supported catalysts.
Figure 2.4. β-Hydroxy Hydrazine

Cleavage of the N-N bond in the β-hydroxy hydrazine was accomplished under typical hydrogenation conditions (10% Pd/C) with 500 psi of hydrogen in methanol (Scheme 2.10). Two equivalents of (S)-(−)-10-camphorsulphonic acid (CSA) were added to the reaction mixture. The reaction was heated to 50 °C and allowed to react overnight.

Scheme 2.10. Reductive Cleavage of the N-N bond

After hydrogenolysis, the resulting amine was not isolated as such, but benzoylated with benzoic anhydride in methylene chloride in the presence of triethylamine. Several DMAP crystals were added to the reaction mixture and this was allowed to stir at room temperature for ten hours. Purification by flash chromatography afforded the cis isomer 284 in 73% yield and the trans 285 isomer in 69% yield over two steps.
2.9 Chiral Substrates

The tandem carbonylation-cyclization onto \(N,N \)-diphenylhydrazones is now a feasible and reliable synthetic procedure. In addition, the reduction of the ketone functionality was accomplished in a selective manner, thus the development of a stereoselective synthesis of \(\beta \)-hydrazine alcohols, which could be converted to \(\beta \)-amino alcohols, was investigated.

One of the simplest ways to improve the diastereoselectivity of the cyclization reaction would be to use a chiral functionality positioned close to the site of radical attack. This stereodirecting group should also insure the proximity between the radical and the radical acceptor group.

A chiral isopropylidene acetal “tether control” group derived from tartaric acid seemed to be an appropriate choice, which could be easily incorporated into the appropriate starting material (Scheme 2.11).

![Chemical reaction diagram]

\[
\begin{align*}
\text{NPh}_2 & \quad \text{N} \\
\text{O} & \quad \text{X} \\
286 & \quad \text{O} \\
\text{HO} & \quad \text{NH}_2 \\
\text{HO} & \quad \text{OH} \\
253 & \quad \beta\text{-Amino Alcohols}
\end{align*}
\]

Scheme 2.11. Stereoselective Synthesis of \(\beta \)-Amino Alcohols

The synthesis of the free radical precursor 286 is outlined below in Scheme 2.12.
Scheme 2.12. Synthesis of the Chiral Free Radical Precursor

D-Isoascorbic acid 287 was transformed into 2,2-O-isopropylidene-D-erythro-lactone 288 in 71% yield by following Carozza’s procedure. Reduction of the erythro-lactone 288 was accomplished with diisobutyl aluminium hydride in toluene at -78 °C to give the corresponding lactol 289 in 71% yield. Treatment of the erythro-lactol 289 with one equivalent of \(N,N \)-diphenylhydrazine in methanol at room temperature provided the \(N,N \)-diphenylhydrazone 290 in 73% yield. As usual, only a single geometric isomer was isolated from the reaction. Extensive decomposition of this product was observed if the hydrazone was left at room temperature. The product was stored in the freezer.

The bromination of alcohol 290 proved to be a challenging step. Various experimental conditions were employed without success.

We decided to employ a radical deoxygenation procedure to generate a free radical from a substrate containing a primary hydroxyl group at the desired site. In order to accomplish this, alcohol 290 was transformed into phenoxythionocarbonate 291 in 67% yield upon treatment with phenyl chlorothionoformate and pyridine in methylene chloride.
With the substrate 291 in hand, the tandem carbonylation-cyclization reaction under radical conditions was attempted.

Using the standard procedure, a 0.05 M solution in benzene of the starting material, AIBN (5-10 mol %) and tributyltin hydride (1.2 eq.) were added to a dry glass tube inserted into a stainless steel autoclave (50 mL). The system was flushed three times, then pressurized with carbon monoxide. The reaction mixture was stirred under carbon monoxide pressure (1100 psi) at 80 °C for five hours. The autoclave was cooled to room temperature and, after the release of excess carbon monoxide, benzene was removed under reduced pressure. The reaction mixture was dissolved in diethyl ether and stirred vigorously at room temperature for half an hour with a saturated aqueous solution of potassium to remove most of the organostannane residue. Following this step, filtration, extraction with diethyl ether, drying over magnesium sulphate and concentration gave a crude mixture, which was analyzed by IR, 13C NMR and 1H NMR spectroscopy. The corresponding signals for the expected carbonyl stretch were visible in the IR and 13C NMR spectra. Unfortunately, we were unable to obtain a clean sample of the desired product despite various attempts at purifying the reaction mixture (including flash chromatography with and without triethylamine present in the eluent, chromatography on neutral and basic alumina, preparative HPLC).

2.10 A Novel Rearrangement

As revealed in Section 2.8, in our quest to find selective reduction conditions for α-keto hydrazones, we explored a variety of reaction conditions. In one of the first experiments we employed L-Selectride as the main reduction agent along with two equivalents of magnesium dibromide etherate (Scheme 2.13).42
Scheme 2.13. Lewis Acid Reduction Conditions

We observed the formation of the expected cis hydroxy-hydrazine compound. At the same time, we were intrigued by the presence of an unknown compound, which was the major product in this reaction. A GCMS analysis of the reaction mixture indicated a 40:60 ratio between the two compounds.

Careful analysis of the IR, 1H NMR and 13C NMR spectra obtained, as well as the HRMS indicated the unexpected formation of the α-hydroxy hydrazone 292. The key 1H NMR and 13C NMR spectral data are shown in Figure 2.5, below.

Figure 2.5. Spectral Data for the α-Hydroxy Hydrazone 292

We speculated that the formation of the α-hydroxy hydrazone 292 is the result of a rearrangement catalyzed by the presence of the magnesium dibromide etherate. In order to test this hypothesis, α-keto hydrazine 275 was treated with one equivalent of the Lewis acid in methylene chloride and the reaction stirred for two hours (Scheme 2.14). The reaction mixture was then
treated with methanol and extracted with diethyl ether to afford the α-hydroxy hydrazone 292 as the only product, formed in 97% yield.

![Chemical structure](image)

Scheme 2.14. Lewis Acid Catalyzed Rearrangement

There are few literature precedents for this type of rearrangement. The rearrangement of α-hydroxy hydrazones may be related to the thermal rearrangement of α-hydroxy imines. Stevens et. al. have studied the thermal rearrangement α-amino ketones and to a lesser extent of α-hydroxy imines, essentially from a mechanistic point of view.\(^{43}\) When heated, ketones containing an α secondary amino group undergo a rearrangement in which two R groups "change places", as shown in Scheme 2.15.

![Chemical structure](image)

Scheme 2.15. Thermal Rearrangement of α-Amino Ketones

The benzilic-type mechanism of the thermal rearrangement of α-hydroxy imines involves a 1,2-carbon migration accompanied simultaneously by a 1,4-hydrogen migration to the termini of the double bond of the imine. A more recent study of this rearrangement shows that it occurs with complete 1,2 transfer of chirality.\(^{44}\) as seen in Scheme 2.16.
Scheme 2.16. **Chirality Transfer in the Thermal Rearrangement of α-Hydroxy Imines**

No mechanistic studies of the rearrangement of α-keto hydrazine that we accidentally discovered have been conducted. We speculate that it proceeds through a transition state similar to the one represented in Figure 2.6.

![Figure 2.6. Transition State for the Thermal Rearrangement of α-Keto Hydrazine](image)

74
2.11 Attempted Tandem Aminyl Radical Carbonylation – Cyclization onto N,N-diphenylhydrazones

Radical cyclization reactions have become part of the repertoire of the synthetic organic chemist, for the synthesis of both carbocyclic and nitrogen-containing heterocycles such as alkaloids. In addition, recent contributions from the laboratories of Newcomb, Suginome, Kim, and Bowman on the cyclization reactions of alkenyl-aminyl radicals have focused considerable attention on the mechanistic features of these processes.

Aminyl radicals have been produced from a variety of sources: thermolysis and photolysis of symmetrical tetrazenes, radical chain reactions of N-chloroamines, PTOC carbamates and other thiohydroxamate precursors, and benzenesulfonylamides and related arenesulfonylamides, chemical or electrochemical oxidation of lithium amides; and ring openings of aziridines.

Encouraged by the results obtained in our carbonylation experiments, we anticipated that the introduction of another polar component into this radical reaction would create a new selective cyclization. The use of an aminyl radical which is δ^- polarized should increase the selectivity by matching with the δ^+/δ^- character of the carbon monoxide (Figure 2.7). With this working hypothesis in mind, we set out to examine the tandem aminyl radical carbonylation - 5-exo cyclization reaction.

\[\text{Bu} \]

\[\text{N} \]

\[\delta^+ \]

\[\text{C} \]

\[\delta^- \]

\[\text{Figure 2.7. Polarization in the Aminyl Carbonylation System} \]
The synthesis of the free radical precursor 302 for the aminyl carbonylation experiments is outlined below in Scheme 2.17.

\[
\begin{align*}
\text{299} & \xrightarrow{\text{TsCl, Et}_3\text{N, 95\%}} \text{300} \\
\text{302} & \xrightarrow{\text{ArSCl, Et}_3\text{N, 60\%}} \text{301} \\
\end{align*}
\]

Scheme 2.17. Synthesis of the Aminyl Carbonylation Precursor

Butenyl alcohol 299 was tosylated following the standard procedure with \(p \)-toluenesulfonyl chloride and pyridine in methylene chloride to provide product 300 in 95% yield. Tosylate 300 was refluxed with butyl amine for two days to afford secondary amine 301 in 77% yield after distillation.

The precursor for the free radical reaction was prepared by a method described by Maxwell and Tsanaktsidis.\(^5\) In this case, the benzothiazolesulfenyl chloride was prepared from the corresponding 2,2'-dithiobis(benzothiazole), upon treatment with sulfonyl chloride in dichloromethane. The sulfenamide 302 was prepared from 301 upon treatment with the freshly prepared arenesulfenyl chloride in dry diethyl ether under nitrogen in the presence of triethylamine.\(^6\) The formation of the desired compound was confirmed by \(^1\)H NMR and \(^{13}\)C NMR, as well as HRMS.

The major advantage offered by preparing benzothiazolesulfenamide over other arenesulfenamide is the fact that the product can be purified by flash chromatography. Our previous attempts involving the preparation and study of benzenesulfenamide\(^6\) failed as purification of the benzenesulfenamide by
chromatography on either silica or neutral alumina was complicated by competitive hydrolysis.

With the substrate 302 in hand, the tandem aminyl carbonylation-cyclization reaction under radical conditions was attempted (Scheme 2.18).

Scheme 2.18. Attempted Tandem Aminyl Radical Carbonylation – Cyclization

For the carbonylation experiment, we followed the same procedure as before: a 0.05 M solution in benzene of the starting material, AIBN (5-10 mol %) and tributyltin hydride (1.2 eq.) were added to a dry glass tube inserted into a stainless steel autoclave (50 mL) pressurized with carbon monoxide. The reaction mixture was stirred under carbon monoxide pressure (1100 psi) at 80 °C for five hours. The autoclave was cooled to room temperature and, after the release of excess carbon monoxide, benzene was removed under reduced pressure. The reaction mixture was worked-up as usual and concentration gave a crude mixture, which was analyzed by 1H NMR and 13C NMR spectroscopy. Unfortunately, the only product clearly formed in this reaction was the secondary amine 301.

Several possible reasons can account for this result: (a) CO trapping is reversible; (b) the rate of the reduction is faster than the trapping rate; or (c) the rate of the amidyl cyclization onto the unactivated alkene is too slow.

It is well known that acyl radicals are considered to be nucleophilic in the context of additions to C-C double bonds having electron-withdrawing groups. Taking this consideration into account, as well as the results obtained with N,N-
diphenylhydrazones, we decided to take a different approach to the synthesis of precursor for the aminyl carbonylation-cyclization. It was reasoned that a precursor with a hydrazone functionality as a radical acceptor might be a better choice (Figure 2.8).

![Chemical Structure](image)

Figure 2.8. N,N-Diphenylhydrazone as Amidyl Acceptor

Cyclization of aminyl radicals derived from α-amino acids have been documented.\(^{63}\) In our case, as shown in Scheme 2.19, employing α-amino acids 305 as starting materials would enable us to generate interesting β- and γ-lactones 307 and 308.

![Chemical Structures](image)

Scheme 2.19. α-Amino Acids as Precursors for Aminyl Carbonylation

The attempted synthesis of the free radical precursor 309 for the tandem aminyl carbonylation-cyclization onto N,N-diphenylhydrazone reaction from commercially available L-proline is outlined below in Scheme 2.20.
Scheme 2.20. Synthesis of the Precursor for the Tandem Aminyl Carbonylation-Cyclization onto N,N-Diphenylhydrazone

The amine functionality in commercially available L-proline 310 is protected by tert-butoxycarbonyl group. The protecting group is introduced by reaction with di-tert-butyl dicarbonate in the presence of sodium hydroxide to yield Boc-proline 311 in 56% yield. In the next step, the acid functionality was reduced with borane-methyl sulfide complex to yield alcohol 312 in 85% yield. A Swern oxidation afforded the aldehyde 314 in 94% yield. Aldehyde 314 exists as a 3:2 mixture of isomers due to restricted rotation about the carbamate C-N bond.

An alternate way was also employed to arrive at the same aldehyde. In this case, the methyl ester of the Boc-proline 313 was obtained quantitatively upon treatment with methyl iodide and sodium bicarbonate in DMF. Reduction of the ester was accomplished with DIBAL to afford aldehyde 314 in 76% yield.

Treatment of the aldehyde 314 with one equivalent of N,N-diphenylhydrazine in methanol at room temperature provided the N,N-diphenylhydrazone 315 in 75% yield. The compound was isolated as a faint
yellow oil, which later solidified in the freezer. As usual, only a single geometric isomer was isolated from the reaction. Some of the 1H NMR signals are broadened presumably due to the restricted rotation around the C-N carbamate bond. Deprotection of the Boc group was effected with trifluoroacetic acid to afford amine 316 in 87% yield.

The synthesis of the precursor for the free radical reaction 309 proved to be especially frustrating. Several attempts to prepare the substrate 309 by the method described by Maxwell and Tsanaktsidis65 were done under slightly different conditions. Various experimental conditions were employed for the synthesis of a different aminyl precursor without success.
Chapter 2 References

(b) Kupchik, E. J.; Kiesel, R. J. J. Org. Chem. 1964, 29,

17. For recent reviews on acyl radicals, see: (a) Brown, C. E.; Neville, A. G.;

22. Actually, there is no significant difference between the CO trapping rates of a primary alkyl radical (6 × 10⁵ M⁻¹s⁻¹ at 80 °C in benzene)⁹ and a secondary alkyl radical (1.2 × 10⁵ M⁻¹ s⁻¹ at 50 °C in cyclohexane)ᵇ.

38. Rylander, P. N. Hydrogenation Methods, Academic Press, Orlando,

63. Bowman, W. R.; Broadhurst, M. J.; Coghlan, D. R.; Lewis, K. A.

Chapter 3

Bicyclic Ring Systems Synthesis via Tandem Radical Reactions

3.1 Tandem Radical Reactions

The radical generated after an initial cyclization may react with a suitably positioned π system to create an additional ring. This may lead to the formation of bicyclic or polycyclic products. The stereochemistry at the ring junction in the case of hydrindanes or decalins is predominantly or exclusively cis. This guideline holds independent of whether it is the radical or the alkene that is contained in the ring. An interesting example of a tandem cyclization that illustrates both possibilities was published by Curran and is shown in Scheme 3.1.1
Scheme 3.1. Hirsutene Synthesis via Tandem Radical Reaction

In the first cyclization, the acceptor is in the ring and the radical is on the chain, and in the second cyclization, the radical is in the ring and the alkyne is on the chain. Two new 5,5-cis ring fusions are formed in this process. The reason for the observed stereoselectivity is the presence of a short connecting chain between the cyclic alkenes or radical and its partner. This permits the favoured geometry in the transition states for the cis isomers and avoids the ring strain for transition states leading to trans isomers.

3.2 Cyclizations of the Aminyl Radical

Cyclization of aminyl radicals is one of the most useful methods for the construction of pyrrolidine rings. These are important skeletons of some alkaloids and nitrogen heterocycles, particularly those with medicinal potential.
Neutral aminyl radicals are nucleophilic, in contrast to amidyl radicals, complexed aminyl, and aminium cation radicals, which are electrophilic in nature.

The rate of cyclization of nitrogen radicals\(^2\) is slower than the cyclization of the corresponding carbon analog,\(^3\) as shown in Scheme 3.2. An additional factor in the aminyl radical cyclization is the competing fragmentation process.

\[
\begin{align*}
\text{Bu}_3\text{N}^\cdot & \xrightleftharpoons[\text{Pr}^\cdot]{k_{60} = 5 \times 10^4 \text{ s}^{-1}} \text{Pr}^\cdot \text{N}^\cdot \text{Bu}_3 \\
319 & \quad 320 \\
\end{align*}
\]

\[
\begin{align*}
\cdot \text{cyclohexane} & \xrightarrow[k_{60} = 2.5 \times 10^5 \text{ s}^{-1}]{321} \cdot \\
321 & \quad 322 \\
\end{align*}
\]

Scheme 3.2. Kinetics of the Aminyl Radical Cyclizations

Early investigations in the area of aminyl cyclizations were performed by Michejda;\(^4\) it was shown that 323 cyclizes predominantly in a 5-exo manner under both photolytic and thermolytic conditions to afford 324 and 325 in 41% and 16% yield respectively (Scheme 3.3). Several other examples were published subsequently.\(^5\)

\[
\begin{align*}
\text{Pr}^\cdot \text{N}^\cdot \text{cyclohexane} & \rightarrow \text{Pr}^\cdot \text{N}^\cdot \text{Pr}^\cdot \\
323 & \quad 324 + 325 \\
\end{align*}
\]

Scheme 3.3. Aminyl Radical Cyclizations
Neutral aminyl radicals from most nitrogen radical precursors are relatively unreactive. However, protonation of aminyl radicals gives aminium cation radicals that are much more reactive. Recent direct kinetic studies of analogous dialkylaminyl radicals and dialkylaminium cation radicals indicated that intramolecular reactions of the protonated species are several orders of magnitude faster than those of the neutral counterparts.6

Lewis acid catalysis of dialkylaminyl radical cyclization reactions has been known qualitatively for more than two decades.7 More recently, Lewis acid activation and catalysis of dialkylaminyl radical reactions was demonstrated both qualitatively and quantitatively.8 Cyclization of the N-butyl-4-pentenaminyl radical 319 in the presence of a wide range of Lewis acids such as LiBF\(_4\), MgBr\(_2\), and BF\(_3\) gave good to excellent yields of cyclic products. Lewis acid or metal complexed aminyl radicals render the nitrogen center more electrophilic. Similar to the aminium cation radicals, these intermediates usually participate more readily in additions to unsaturated centers.

The use of PTOC carbamates for the generation and cyclization of aminium cation radicals in the presence of acid is a very efficient process. An interesting example is the synthesis of the tropane system 327 from 326, as shown in Scheme 3.4 below.

![Scheme 3.4. Synthesis of the Tropane Skeleton](image)

\textit{Scheme 3.4. Synthesis of the Tropane Skeleton}
3.3 Tandem Cyclizations Involving Nitrogen Participation

Bowman and coworkers9 examined a series of tandem reactions in which the second step involved the addition of an aminyl radical to an alkene to provide various bicyclic systems, as demonstrated in Scheme 3.5. The addition of a Lewis acid, as well as the presence of the styryl group, was found necessary to insure a good yield of the desired product.

\begin{center}
\begin{align*}
\text{PhSe} & \quad \text{Ph} & \quad \text{Bu}_3\text{SnH} & \quad \text{MgBr}_2\text{Et}_2\text{O} & \quad \begin{array}{c}
\text{Ph} \\
\text{N} \\
\text{328}
\end{array} \\
\text{PhSe} & \quad \text{Ph} & \quad \text{Bu}_3\text{SnH} & \quad \text{MgBr}_2\text{Et}_2\text{O} & \quad \begin{array}{c}
\text{Ph} \\
\text{N} \\
\text{330}
\end{array} \\
\text{SePh} & \quad \text{Ph} & \quad \text{Bu}_3\text{SnH} & \quad \text{MgBr}_2\text{Et}_2\text{O} & \quad \text{332}
\end{align*}
\end{center}

\begin{center}
\begin{align*}
\text{Ph} & \quad \text{Ph} & \quad \begin{array}{c}
\text{Ph} \\
\text{N} \\
\text{329} (40 \%) \\
\end{array} \\
\text{Ph} & \quad \text{Ph} & \quad \begin{array}{c}
\text{Ph} \\
\text{331} (33 \%) \\
\end{array} \\
\text{Ph} & \quad \text{Ph} & \quad \begin{array}{c}
\text{Ph} \\
\text{333} (18 \%) \\
\end{array}
\end{align*}
\end{center}

\textit{Scheme 3.5. Tandem Cyclizations with Nitrogen Radicals}

Nitrogen centered radical generated directly from arylsulfenamides (as opposed to resulting from an initial cyclization onto a C=N bond) can also be
used for the synthesis of interesting polycyclic systems, as shown below in Scheme 3.6.

\[\text{Scheme 3.6. Synthesis of Polycyclic Systems via Tandem Reactions} \]

An aminyl radical is also involved in the interesting tandem approach to the pentacyclic ring system of aspidospermine 337 (Scheme 3.7).

\[\text{Scheme 3.7. Synthesis of Aspidospermine Ring System} \]
3.4 Research Objectives

Modern synthetic design aims to incorporate high efficiency of synthetic steps together with maximization of complexity. The disconnection approach to synthesis design is used to analyze complex structures. The result of breaking one or more bonds assist in defining the shortest synthetic route.

As demonstrated in the previous section, the aminyl radical generated after one cyclization could participate in a second cyclization step onto a suitable π system to create more complex ring systems.

As a continuation of previous studies done in our laboratory, we set out to explore the synthesis of a bicyclic aza quinane ring system through a tandem reaction under free radical conditions. The study of the influence of Lewis acids on this process (Scheme 3.8, n = 1) was also planned.

![Chemical Diagram]

Scheme 3.8. Proposed Synthesis of a Bicyclic 5,5 System

In principle, tandem radical reactions with \(N,N\)-diphenylhydrazone acceptors can be employed for the synthesis of medicinally interesting products. Scheme 3.9 below shows a possible disconnection for the tropane system present in cocaine and cocaine analogs.
Scheme 3.9. *Tropane System Disconnection*

Previous attempts done in our laboratory to prepare the tropane nucleus using a tandem free radical cyclization strategy did not prove successful.11 Subjecting the free radical precursors 342 and 343 to a number of free radical conditions only resulted in the formation of monocyclization 344 and reduction 345 products, as shown in Scheme 3.10.

Scheme 3.10. *Previous Attempt for the Tropane Nucleus Synthesis*

In this case, X-ray data of the monocyclized product, obtained at \(-110^\circ\text{C}\), shows that the cycloheptene ring exists in a chair like conformation; NMR data collected at room temperature suggests that this ring system fluctuates between chair like and boat like conformations. These findings are important because, if the second cyclization is to occur, the first cyclization intermediate must adopt a boat like conformation.
An alternative attempted way for the tropane nucleus synthesis included the presence of a chiral isopropylidene acetal group to ensure the proximity of the aminyl radical to the radical acceptor and an activating ester group on the double bond (Scheme 3.11). Unfortunately, the desired precursor for this experiment proved difficult to obtain.

Scheme 3.11. Second Attempt for the Tropane Nucleus Synthesis

In view of the results obtained previously in our laboratory in the attempted generation of the tropane ring system, we decided to try and improve the possibility of the tandem reaction. The presence of a benzene ring in the precursor 349 should ensure the proximity between the radical and the radical acceptor (Scheme 3.12). In addition, an electron withdrawing group placed as a substituent on the alkene should encourage the second stage of the tandem process.

Scheme 3.12. Proposed Tropane System Synthesis
3.5 Substrates for the Synthesis of the 5,5 Bicyclic Ring System

The synthetic pathway to the substrate for the [3.3.0] octane ring system experiment is outlined in Scheme 3.13 below.

Scheme 3.13. Synthetic Route to the Substrate for the 5,5 Bicyclic Ring System

The synthesis of the substrate 357 commenced with reduction of the commercially available δ-valerolactone 350 in toluene at -78 °C to give the corresponding lactol 351 in 78% yield. Treatment of the δ-valerolactol 351 with one equivalent of N,N-diphenylhydrazine in methanol at room temperature provided the N,N-diphenylhydrazone 352 in 78% yield. The product was clearly
identified by the presence of the hydrazone proton at δ 6.52 ppm in the ¹H NMR. The oxidation of the resulting primary alcohol 352 with sulfur trioxide pyridinium complex in DMSO in the presence of triethylamine¹² afforded the aldehyde 353 in 75% isolated yield. The presence of a peak at δ 9.77 ppm in the ¹H NMR clearly indicated the formation of the aldehyde 353.

As expected, treatment of aldehyde 353 with dimethylsulfoxonium methyldie derived from trimethylsulfoxonium iodide¹³ afforded the epoxide 354, without any observed competitive reaction at the hydrazone functionality. The chemospecificity of this reaction was discerned by analysis of the H¹ NMR spectrum, as the vinyl hydrogen of the hydrazone remained in the product, while the aldehyde signal disappeared. This demonstrated, once again, the chemoselectivity of various nucleophiles for the aldehyde functionality versus the hydrazone. However, some problems were encountered during the course of the reaction. After approximately two hours of stirring at room temperature, TLC analysis revealed the consumption of the starting material, plus the formation of a new, more polar compound. A new TLC, taken after 30 more minutes of stirring, indicated the formation of a second, less polar product. The reaction was stopped at this stage. The major product was isolated and identified as epoxide 354 and starting material was recovered. The other, less polar product was not. Overall, the epoxide 354 was isolated in 30%, or 63% based on the recovered starting material. Attempts to modify the reaction time or alter the reaction conditions resulted in a lower overall yield for the desired product. The best results were therefore obtained at a conversion of 48% for the starting aldehyde.

The cuprate addition to the epoxide, using a higher order cuprate such as lithium-2-thienylcyano cuprate¹⁴ with β-bromostyrene, occurred readily to afford alcohol 356. Purification and spectral analysis of the reaction mixture confirmed the formation of the desired secondary alcohol.

The last step required for the preparation of the starting material was the conversion of the secondary alcohol to bromide. The alcohol was converted to
the bromide using $\text{Ph}_3\text{P} \cdot \text{Br}_2^{15}$ in the presence of triethylamine and afforded the desired radical precursor 357 in 97% yield.

3.6 Tandem Radical Cyclization

Our first attempt at generating the bicyclic ring system followed the general procedure for the syringe pump radical reactions. Bromide 357 was dissolved in benzene, then treated with tributyltin hydride and AIBN. The reaction mixture was refluxed for two hours. TLC analysis of the reaction mixture revealed the presence of two new spots, both of them less polar than the starting material.

The ^1H NMR of the crude reaction mixture showed that the signal for the hydrazone proton had disappeared. In theory, there is a possibility of isolating four products from the tandem reaction and the two products from monocyclization. The four tandem products are shown in Scheme 3.14 below.

Scheme 3.14. Possible Products from the Tandem Reaction
In practice, however, we knew from previous studies done on our laboratory\(^6\) that the 5-exo cyclization on \(N,N\)-diphenylhydrazones proceeds with the predominant formation of the cis isomer. Hence, the cis ring fusion is to be expected in the tandem product, along with the cis geometry of the monocyclized product. Moreover, any of the trans product formed in the first cyclization of the tandem process would likely fail to provide the tandem product. The formation of a tandem product with a trans ring junction would involve significant amount of strain present in the transition state leading to the trans isomer (Figure 3.1).

\[
\begin{align*}
\text{trans Chair} & \quad \xrightarrow{\text{x}} \quad \text{trans Boat} \\
\text{360} & \quad \text{361}
\end{align*}
\]

Figure 3.1. Transition States Leading to the trans Isomer

In addition, it can be safely assumed that the second cyclization proceeds via a boat conformation as opposed to a chair conformation. The boat conformation is favoured since in the chair conformation, the phenyl rings on the nitrogen interact with the phenyl ring on the double bond. The bulky nitrogen with the diphenyl substituents will prefer to lie in the pseudo equatorial position.
thus pushing the double bond in the pseudo axial position leading to the more favored boat conformation, as shown in the Figure 3.2.

Figure 3.2. Proposed Transition State for the Tandem Cyclization

After subsequent purification of the reaction mixture and separation by flash chromatography, the two new products were isolated as clear oils in 55% and 12% yields, respectively (Scheme 3.15).
Scheme 3.15. Radical Reaction of Bromo-Hydrazone 357

Experiments conducted earlier in our laboratory demonstrated an increase in the amount of the cis isomer formed as a result of the radical cyclization process onto N,N-diphenylhydrazones at lower temperature. These reactions were conducted in the presence of samarium diiodide in THF at various temperatures.

In our case, the attempt to conduct the tandem radical reaction under samarium diiodide in THF conditions at room temperature failed to provide the expected 5,5 bicyclic system. The only product formed in this process was the monocyclized cis isomer 363 (Scheme 3.16).

Scheme 3.16. Samarium Diiodide Cyclization

A likely mechanism is shown below in Scheme 3.17.
Scheme 3.17. Proposed Mechanism for the Sml₂ Mediated Hydrazone Cyclization

One equivalent of samarium diiodide generates the alkyl radical 364, which subsequently cyclizes to generate the hydrazyl radical 365. In the next step, a second electron transfer occurs to generate an N-Sml₂ species; this transfer likely occurs faster than the hydrazyl cyclization onto the substituted alkene bond. The N-Sml₂ bond is hydrolyzed on work-up to give the cis hydrazine 363.

In order to explain the stereochemical outcome, a transition state based on Beckwith model is proposed (Figure 3.3).

Figure 3.3. Transition States for Radical Cyclization
The first cyclization of the tandem system proceeds through a chair conformation. The transition state that leads to the cis isomer is preferred because it minimizes the 1,3 diaxial interactions. It was observed previously that as the size of the R group increases, the steric interactions increase, which results in greater cis/trans selectivity.

As mentioned earlier, another factor that affects the cis/trans selectivity is temperature. The higher the reaction temperature, the higher the amount of the trans isomer obtained. Indeed, this seems to be the case as well in our system.

The cis and trans monocyclized products 363 and 362 were identified based on key spectral data. As has been observed previously, the 13C NMR resonances for both methine carbons in the cis isomer appeared at higher field than those for the trans isomer. In order to be able to use this technique for the assignment of the relative stereochemistry, it is essential to have both isomers in order to compare the chemical shifts. The attempted tandem experiments provided different isomers, thus we were able to measure the 13C NMR spectra of both. Figure 3.4 lists the key 13C NMR signals that were used to assign the relative stereochemistry of the methyl substituted isomers. In addition, NOESY spectra enabled us to unequivocally assign the stereochemistries of the two isomers.

\[\delta \text{ 58.4 ppm} \quad \delta \text{ 63.1 ppm} \]

![Diagram](image)

\[\delta \text{ 44.0 ppm} \quad \delta \text{ 44.0 ppm} \]

Figure 3.4. Assignment of Stereochemistry in the Monocyclized Products
Subsequent attempts of improving the yield of the tandem product by adding Lewis acids (MgBr\textsubscript{2} and BF\textsubscript{3}) to the tributyltin hydride reaction system failed to provide the expected result. As a matter of fact, in these cases, addition of one equivalent of hydride did not affect the starting material. Adding more of the tin hydride and refluxing the reaction mixture for longer period of times caused extensive decomposition. We suspected that the quality of a recently purchased bottle of tributyltin hydride might be responsible for these undesired results. Consequently, we prepared a fresh batch of tributyltin hydride by reducing dibutyltin oxide with sodium borohydride in ethanol.18 However, in spite of our efforts of employing freshly prepared tributyltin hydride along with Lewis acids, we did not isolate any of the tandem product in these experiments. Another unsuccessful attempt was conducted under tris(trimethylsilyl) hydride conditions.

As it was mentioned at the beginning of this chapter, our studies related to the synthesis of the bicyclic ring system are part of a larger set of experiments conducted in our laboratory to explore the feasibility of tandem reactions for the formation of various ring systems. Table 3.1 below illustrates all the results obtained so far.
Table 3.1. Bicyclic Ring Systems Synthesis

Several conclusions can be drawn:

(a) The presence of an activating group on the double bond is necessary to ensure good yields of the tandem product.

(b) [4.3.0] Bicyclic ring systems are formed in reasonable yields.

(c) Best results are obtained in the synthesis of the [3.3.0] bicyclic ring system.

(d) [3.4.0] and [4.4.0] bicyclic ring systems cannot be obtained via this method.
3.7 Attempted Tropane Systems Synthesis

3.7.1 Introduction

In his work, “On Coca”, published in 1884, Sigmund Freud warmly recommended cocaine as an antifatigue or aphrodisiac formula, and as potential treatment for alcohol and morphine addiction. On the other side of the Atlantic, his contemporary, John Pemberton, was marketing his new drink Coca Cola® made from extract of coca leaves, as “intellectual beverage and temperance drink”!

Over the years, as use of the drug increased, the number of cocaine-related problems also increased. The need for the treatment of individuals who have become addicted to this powerful reinforcing drug has prompted a large amount of research aimed at the complete elucidation of its mode of action and development of new therapies.19 It is believed that molecules that act as cocaine antagonists or partial agonists could help to identify drugs for addicted individuals, hence a great deal of research has focused on the preparation of cocaine related molecules.20 For example, it was shown that replacement of the C-3 benzoate by phenyl leads to compounds of higher potency (these phenyl-bearing structures are often referred to as the WIN series compounds).21

\begin{center}
\includegraphics[width=0.3\textwidth]{cocaine_structure.png}
\end{center}

\textit{Figure 3.5. Structure of Cocaine}
In addition, major efforts are being expended to develop antibodies and vaccines.22 For these purposes, a prodigious number of cocaine-related tropane analogues have been synthesized,23 leading to high affinity and selective cocaine receptor ligands and providing information about the structure/activity relationship of cocaine-related tropane derivatives.

Cocaine contains an 8-azabicyclo[3.2.1]octane framework and is one of the eight possible stereoisomers of methyl 3-(benzoyoxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate.24 In addition to construction of this azabicyclo ring system, the major hurdle to its synthesis has been control of stereochemistry, both of enantiomeric integrity and of the thermodynamically unstable axial carboxylate function. Most of the nonracemic cocaine analogues were synthesized by the derivatization of natural cocaine, while others were obtained by resolution or separation of racemic or diastereomeric reaction mixtures. The original and classical Mannich-type construct for the tropane skeleton was developed over half a century ago by Willstätter, Robinson, and Schöpf.25 This first biomimetic synthesis, is still employed. Recent examples are the syntheses of 6- and 7-hydroxylated cocaine26 and unnatural (+)-cocaine, via a chemical resolution.27

Several methods employ cycloaddition reactions, including the reaction of rhodium(II)-stabilized vinylcarbenoids with pyrroles,28 [3 + 4] cycloaddition of iron oxyallyl cations to pyrrole,29 nitron cycloaddition,30 nitroso cycloaddition,31 and pyridinium betaine-based dipolar cycloaddition.32 Recently, a number of methods for the enantiospecific synthesis of aza apical azabicyclo33 related to the tropane framework were developed.

While previous synthetic methods have been directed primarily to alteration of substituents about the three-carbon bridge, no general strategy has allowed the introduction of diverse functionality into the 6- and 7-positions of the tropane skeleton. Interestingly, it was found that racemic two-carbon bridge methoxylated cocaines possessed interesting pharmacological properties; in
particular, some of these methoxylated derivatives were found to antagonize,
albeit weakly, cocaine's ability to inhibit dopamine reuptake.

3.7.2 Retrosynthetic Analysis

Based on the previous unsuccessful route, a benzene substituent at
positions 7 and 8 of the tropane ring system was deemed necessary to ensure
the proximity between the radical and the radical acceptor during the tandem
process. In view of the results obtained during the study of the bicyclic ring
systems synthesis via tandem radical reactions, we decided to introduce an
activating substituent on the double bond to encourage the second cyclization
step.

The tropane nucleus 383 could be generated from a cyclopropane
bromide 387 through a series of steps. The retrosynthetic analysis is presented
in Scheme 3.18.

\[\text{Scheme 3.18. Retrosynthetic Analysis of the Tropane Ring System} \]
The ring opening of \(\alpha \)-cyclopropyl radicals is a very fast process\(^{36}\) (Scheme 3.19).

\[
\begin{array}{c}
\text{388} \to \text{389} \\
\cdot \quad \text{k}_{25} = 1.0 \times 10^8 \text{ s}^{-1}
\end{array}
\]

Scheme 3.19. Ring Opening of \(\alpha \)-Cyclopropyl Radicals

The rate constants\(^{36}\) for this type of system are known and some of the stereoelectronic\(^{37}\) and conformational\(^{38}\) characteristics have been established. Moreover, it is known that the rate of ring opening is faster than the rate of ring formation in systems of this type.\(^{39}\)

3.7.3 Substrate Synthesis

The proposed synthesis of the free radical precursor 387 is outlined in Scheme 3.20 below.
Scheme 3.20. Proposed Synthesis of the Free Radical Precursor

We devised two different route to arrive at the aldehyde 393, as shown in Scheme 3.21.
The most straightforward pathway is the condensation of the phthalic dicarboxaldehyde 397 with one equivalent of \(N,N\)-diphenylhydrazine. For this reaction, the choice of solvent is critical. In methanol, the only product isolated is the dihydrazone 398; this product is insoluble in methanol and precipitates quickly, shifting the equilibrium of the system towards its formation. A much better solvent choice is diethyl ether; in this case, the desired aldehyde was isolated in 23% yield, along with significant amounts of the dihydrazone 398.

An alternative way for the synthesis of aldehyde 393 commences with reduction of the commercially available phtalide 390 in toluene at \(-78\) °C to give the corresponding lactol 396 in 78% yield. This was isolated as an inseparable mixture of isomers 395 and 396 (38:62 by GCMS and \(^1\)H NMR). Treatment of the lactol 396 with one equivalent of \(N,N\)-diphenylhydrazine in methanol at room temperature provided the \(N,N\)-diphenylhydrazone 392 in 78% yield as a single geometric isomer. The oxidation of the resulting primary alcohol 392 with sulfur trioxide pyridinium complex in DMSO in the presence of triethylamine afforded the aldehyde 393 in 73% isolated yield.

The proposed synthesis of the free radical precursor 387 features the addition of a lithium cyclopropanyl anion to an aldehyde 393. An electron withdrawing substituent was required on the cyclopropane ring to facilitate its deprotonation and serve as an activating group on the resulting double bond. The presence of a bulky group on the ester functionality is absolutely necessary to prevent self condensation, which generates the trimerized product.\(^{40}\) Seebach and coworkers determined the BHT ester does not undergo self condensation, presumably because of the steric hindrance of the carbonyl group.\(^{41}\)

Due to its ease of use and high yields, Seebach’s procedure was applied to our synthesis. Scheme 3.22 outlines the preparation of the BHT cyclopropanecarboxylate 402.
Scheme 3.22. Preparation of the BHT Cyclopropanecarboxylate 402

Generation of the cyclopropanecarboxylic acid 400 from its methyl ester proceeds quantitatively under mild hydrolysis conditions. Formation of the acid chloride 401 using oxalyl chloride / DMF method proceeded in 65% yield. 2,6-Di(tert-butyl)-4-methylphenol was converted to the corresponding lithium phenoxyde using tert-butyl lithium. Addition of the acid chloride to a cold solution of the lithium phenoxyde resulted in the formation of the desired product.

The final sequence required for the preparation of starting material 387 is shown in Scheme 3.23 below.

Scheme 3.23. Substrate Synthesis for the Tropane Ring System

The addition of the lithium cyclopropanyl anion to the aldehyde functionality proceeded cleanly without any observed competitive addition to the hydrazone functionality, to yield the corresponding β-hydroxy ester 394. The chemospecificity of this reaction can be discerned by analysis of the H1 NMR
spectrum, as the vinyl hydrogen of the hydrazone remained in the product, while the aldehyde signal disappeared.

The next step was the conversion of the secondary alcohol to a bromide. The bromination was effected with Ph₃P•Br₂. The desired bromide was difficult to isolate. The ¹H NMR of the crude reaction mixture was very complex; interestingly, it indicated the presence of a vinyl proton. As we discovered previously (see Chapter 2), when bromination was effected on secondary alcohols containing a larger isopropyl or cyclohexyl substituent, a second compound was isolated and determined to be the corresponding alkene. Scheme 3.24 shows possible pathways for the generation of the bromide 387 along with the product 404 resulting via a SN2' nucleophilic attack on the cyclopropane carbon. Unfortunately, we were unable to isolate a clean sample of the alkene product 404 to confirm our hypothesis. A small sample of the bromide 387 was isolated and characterized.

![Scheme 3.24. Pathways for the Bromination of the Secondary Alcohol](image)

According to literature reports, phenylselenides are good precursors for radical generation followed by cyclopropane ring opening. However, attempted preparation of the corresponding starting material using several different
experimental conditions (Bu₃P, Ph₃P, various solvents etc.) did not provide the desired product.

An alternative substrate⁴² for the corresponding free radical cyclization is the thionocarbonate 405 which was synthesized in 65% yield as shown in Scheme 3.25 below.

![Scheme 3.25. Synthesis of the Thionocarbonate Precursor](image)

3.7.4 Results and Discussion

We used the general procedure for the syringe pump radical reactions. Bromide 387 was dissolved in benzene, then treated with tributyltin hydride and AIBN. The reaction mixture was refluxed for two hours. TLC analysis of the reaction revealed the formation of a complex mixture of products. The ¹H NMR of the crude product showed that the signal for the hydrazone proton had disappeared. Attempts to purify the reaction mixture failed to provide any identifiable product.

Next, we subjected the thionocarbonate 405 to the same reaction conditions. In this case, TLC analysis of the reaction seemed promising, revealing the formation of one major, less polar spot.
Subsequent purification and characterization of the new product showed that the monocyclized product 406 was formed cleanly in 85% yield, as shown in Scheme 3.26.

\[
\begin{align*}
\text{405} & \quad \xrightarrow{\text{radical conditions}} \quad \text{406}
\end{align*}
\]

Scheme 3.26. Radical Reaction of Thionocarbonate 405

We believe that the second cyclization of the aminyl radical onto the activated alkene bond to generate the tropane ring was prevented by both steric factors and the slow rate of the second cyclization. Geometry optimization calculations were carried out on the monocyclized product 406 using both molecular mechanics (MM2) and semi-empirical quantum mechanics (MOPAC). The MM2-optimized structure is shown below.
Figure 3.6. Optimized Structure of 406

It is likely that major steric interaction between one of the phenyl rings of the hydrazone and the tert-butyl group of the BHT ester prevented the formation of the desired bicyclic product.

Several attempts to hydrolyze or transesterify the ester functionality did not provide the expected products. The results are summarized in Table 3.2 below.

<table>
<thead>
<tr>
<th>Ester Hydrolysis</th>
<th>Transesterification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Conditions</td>
<td>Results</td>
</tr>
<tr>
<td>tBuOK, THF, H₂O, reflux</td>
<td>Extensive decomposition</td>
</tr>
<tr>
<td>tBuOK, THF, H₂O</td>
<td>No desired product</td>
</tr>
<tr>
<td>BBr₃, CH₂Cl₂</td>
<td>No reaction</td>
</tr>
<tr>
<td>H₂O₂, H₂O, DMF</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

Table 3.2. Attempts to Hydrolyze or Transesterify the BHT Ester
3.7.5 Modified Approach

In view of the results obtained up to this point, a modified approach was
designed. We decided to replace the activating BHT ester substituent of the
alkene bond with a much smaller phenyl substituent.

Scheme 3.27 below outlines the synthesis of the free radical precursor

Scheme 3.27. Synthesis of the Phenyl Substituted Radical Precursor

The synthesis commenced with the hydrolysis of the nitrile 407 to afford
phenylcyclopropanecarboxylic acid 408 in 98% yield upon refluxing with
concentrated HCl for three days. Phenylcyclopropanecarboxylic acid 408 was
chlorodecarboxylated with lead tetraacetate to yield phenylcyclopropylchloride
409 in 59% yield. This reaction must be thoroughly degassed, otherwise the
major product formed is 1-phenylcyclopropyl acetate.

The Grignard reagent of the phenylcyclopropylchloride 409 was prepared
and allowed to react with aldehyde 393. The corresponding secondary alcohol
410 was formed in 68% yield. Following this step, thionocarbonate 411 was
prepared in 31% yield. This material was difficult to isolate and attempted purification by flash chromatography led to some decomposition.

The thionocarbonate was subjected to our standard syringe pump radical reaction conditions. TLC analysis revealed a complex reaction mixture. In spite of repeated attempts, we failed to isolate any of the desired product.
Chapter 3 References

14. (a) Lipshutz, B. H.; Kozlowski, J.; Wilhelm, R.S. J. Am. Chem. Soc. 1982,

Chapter 4

Chiral Hydrazones

4.1 General Considerations

The difference in biological activity of most enantiomers requires the synthesis of pharmaceuticals, pesticides, food additives, pheromones, etc., in high enantiomeric purity. The last few decades have seen a tremendous surge of interest in asymmetric synthesis, as organic chemists struggle to develop more efficient synthetic pathways to enantiomerically pure compounds.

There are four general approaches that are commonly used to obtain enantiomerically pure material by synthesis. One approach involves incorporating a resolution into the synthetic plan.\(^1\) A second general approach is to use a starting material that is enantiomerically pure.\(^2\) A third way is to use a chiral catalyst in a reaction that creates one or more chiral centres. Finally, a fourth method for enantioselective synthesis involves the use of a chiral auxiliary. This is an enantiomerically pure material that can control the stereochemistry of one or more reaction steps in order to give a product with the desired configuration. Once the chiral auxiliary has achieved its purpose, it can be removed from the molecule and recycled.

Chiral auxiliaries have been extensively used in enolate alkylation and aldol chemistry.\(^3\) The requirements for control of configuration of new stereogenic centers are based on concepts developed initially in carbanion and enamine chemistry.\(^4\)
It should also be noted that a basic requirement for a practicable asymmetric synthesis using stoichiometric amounts of a chiral auxiliary is that this reagent be inexpensive and easily available in large amounts.

Among the many examples of chiral auxiliaries used in stereoselective synthesis, chiral hydrazones have played an important role. In the course of the development of modern synthetic methods in the field of asymmetric synthesis the SAMP-/RAMP-hydrazone method opened a highly diastereo- and enantioselective route to a great variety of carbonyl compounds, alcohols, amines and heterocycles.\(^5\)

4.1.1 Stereoselectivity In Radical Reactions

In a radical cyclization process, the configuration of the resulting stereogenic centers can be controlled by chiral auxiliaries attached to the radical acceptor. For this, the chiral group must differentially shield the diastereotopic faces of the radical trap.

For example, as shown in Scheme 4.1, free radical macrocyclization of the alkene 412 bearing the dimethyl-pyrrolidine amide gave rise to four diastereomeric products in 65-70% yield.\(^6\) Two diastereomeric products, 413 and 414, result from an endo cyclization, addition of the primary radical to the end of the alkene nearest to the amide. At 80 °C, these two fifteen-membered ring products are formed with a selectivity of approximately 14/1, 413 being the major product formed. Two diastereomeric exo cyclization products, 415 and 416, are formed as a 1/1 mixture. The ratio of regioisomers is also 1/1 on this macrocyclization.
Scheme 4.1. Free Radical Macrocyclization of the Alkene 412

4.1.2 Research Objectives

As part of our continuing interest in the use of hydrazones as radicals acceptors, the following chapter describes the preparation and use in radical cyclizations of aldehyde hydrazones such as 417 and 418 that contain chiral auxiliaries adjacent to the C=N double bond (Figure 4.1).

Figure 4.1. Chiral Auxiliaries Containing Hydrazones Employed in Diastereoselectivities in Radical Cyclizations Studies
Ideally, the presence of the chiral auxiliary will influence the diastereoselectivity level of the radical cyclization reaction onto this special class of hydrazones. This level could be dependent on the reaction conditions such as temperature or reagents employed.

The employment of chiral hydrazones could lead to cyclic chiral amines in the radical cyclization process followed by subsequent cleavage of the N-N bond of chiral trisubstituted hydrazines 420, as shown in Scheme 4.2. The reductive cleavage could be effected by hydrogenolysis or by employing samarium diiodide.\(^7\)

![Scheme 4.2. Chiral Amines via Radical Cyclization](image)

In addition, a recent report describes the mild, racemization free cleavage of ketone SAMP-hydrazones with oxalic acid; it is possible for the chiral auxiliary to be isolated and reused.\(^3\)

4.2 Results and Discussion

4.2.1 SAMP Hydrazones

The commercially available SAMP hydrazine was considered to be a suitable starting material. This not only contains the requisite chiral element, but
a straightforward synthetic sequence would allow for its conversion to a suitable hydrazone. It was also hoped that any cyclization products would lend themselves to analysis by NMR. The synthesis of hydrazone 417 is outlined below (Scheme 4.3).

Scheme 4.3. Synthesis of hydrazone 417

Dithiane 257 was subjected to deprotonation by n-butyllithium at -10 °C. Displacement of the primary bromide of the 1,4-dibromopentane by the resulting anion provided compound 419 in 72% yield. Hydrolysis of dithiane 419 to the corresponding aldehyde was effected by treatment with cerium ammonium nitrate (CAN). The resulting aldehyde was not purified, but treated directly with the commercially available SAMP to yield bromo-hydrazone 417 in 35% total yield over these two steps.

As it was found to be the case with N,N-diphenylhydrazones, a key spectral feature of this hydrazone is also represented by the vinylic hydrogen (R₂N-N=CHCH₂R). This appears as a clean triplet at δ 6.51 (J = 5.5 Hz) in the ¹H NMR spectrum. It can be deduced from the spectral data that a single geometric isomer resulted from the condensation of the intermediate aldehyde with SAMP hydrazine. Based on our previous experience and on literature precedence showing that hydrazones are formed predominantly as the E geometric isomer, compound 417 was assigned as the E hydrazone (with the pyrrolidine substituent syn to the hydrogen).
The next step in our investigation was the free-radical cyclization which was conducted under samarium diiodide conditions. The bromo-hydrazono 417 was dissolved in THF containing HMPA in a Schlenk flask. The system was degassed using three freeze pump thaw cycles, introducing argon after the last cycle. The solution was then warmed to the desired temperature and samarium diiodide was added dropwise.

A likely mechanism for this reaction is shown in Scheme 4.4.

![Scheme 4.4. Proposed Mechanism for the Sml$_2$ Mediated Hydrazone Cyclization](image)

In this process, one equivalent of samarium diiodide is consumed in generating the alkyl radical 420. This subsequently cyclizes to generate the hydrazine radical 421. A second electron transfer then occurs from samarium to the nitrogen radical generating an N-Sml$_2$ species 422 and consuming the second equivalent of samarium diiodide. The N-Sml$_2$ bond is hydrolyzed on work-up to give the observed hydrazine 423.
4.2.2. Chiral Induction Investigation

In theory, there are three different stereogenic centers in the product, thus \(2^3 = 8\) possible stereoisomers could be formed as a result of the cyclization process; however, only four different stereoisomers could be produced in practice, as one of the stereogenic centers has a fixed configuration. As shown in Scheme 4.5, two cis and two trans stereoisomers could be expected.

![Chemical structures](image)

Scheme 4.5. Possible Stereoisomers from the Radical Cyclization

When the radical cyclization reaction was conducted at room temperature under samarium diiodide conditions, it appears by TLC and crude NMR analysis that a mixture of cis and trans geometric isomers were formed, cis being the major one. The \(^1\)H NMR spectrum of the mixture of the diastereomers obtained is so complex that we did not succeed in analyzing it completely. Furthermore, the reaction mixture proved to be difficult to purify, so no conclusive data were obtained from this first experiment.
We decided to conduct the reaction at a lower temperature, to minimize the potential side reactions. A radical cyclization reaction under samarium diiodide conditions was conducted at −78 °C. In this case, TLC analysis indicates the formation of one geometric isomer only. Upon purification of the reaction mixture and separation by flash chromatography, we were able to isolate the two cis diastereoisomers 424 and 425 in 31% yield. Unfortunately, we were unable to determine the diastereomeric ratio directly from the 1H NMR spectrum of the mixture, as there was a great deal of overlapping.

In theory, it is possible to resolve enantiomers on analytical scale high-performance liquid chromatography. In this case the preferential interaction between one enantiomer and the chiral stationary phase is of fundamental importance. We tried to determine the diastereomeric excess using Chiralscel-OJ chiral column without success.

The common NMR methods used to determine $\%$ ee involve chiral derivatizing reagents,¹⁰ chiral solvating agents,¹¹ or chiral lanthanide shift reagents.¹²

There are certain advantages in employing a chiral solvating agent: this approach is very direct requiring only the mixing of the solute, the chiral solvating agent and an achiral cosolvent (such as benzene d^6 or deuterochloroform), and recording the NMR spectrum. The chiral solvating agent employed was (R)-(−)-2,2,2-Trifluoro-1-(9-anthryl)ethanol¹³, available from Aldrich. For this method it is, however, important to keep in mind that a prerequisite for peak separation to occur is the existence of an enantioselective interaction with the chiral solvent. Unfortunately, in our case this effect was too small to be of practical use. We were able to recover the solute from the chiral solvating agent by flash chromatography.

The common shift reagents are β-diketones complexes with metal ions of the lanthanide series, such as europium, praseodymium or ytterbium. Such paramagnetic complexes can combine or interact with compounds containing electron-donating groups, such as amines, amino-acids, alcohols, ketones and
esters, resulting in a considerable downfield shift for nuclei which are not too far from the site of interaction. The example given in Figure 4.2 is based on (+)-camphor.

![Structure of tris(3-trifluoromethylhydroxymethylene-(+)-camphorato)-europium (III) (Eu[(+)(tfc)]₃)](image)

Figure 4.2. Structure of tris(3-trifluoromethylhydroxymethylene-(+)-camphorato)-europium (III) (Eu[(+)(tfc)]₃)

The reagents are readily soluble in typical NMR solvents such as carbon tetrachloride or deuterated chloroform and the spectral shifts produced are often studied as a function of the amount added. A substantial increase in spectral resolution may be achieved when chiral lanthanide-shift reagents are used and consequently resonance lines corresponding to two enantiomers are better separated and the enantiomer composition can be accurately determined by integration. Results obtained from NMR methods by peak integration give the concentration ratio (r) of the enantiomers, and the enantiomeric purity or enantiomeric excess (e.e.) is calculated as:

\[
\text{e.e.} = \frac{(1-r)}{(1+r)} \times 100\%
\]

The diastereomeric ratio was determined by \(^1\text{H}\) NMR analysis with chiral shift reagent Eu(tfc)₃ in which the methyl ether group that appears at 3.30 was split into two peaks: one enantiomer at 3.59 and the other at 3.53 when 0.8 equivalents of the shift reagent was added (Figure 4.3). The absolute configuration of the major diastereomer has not been assigned.
From the ratio of the peak heights in the 1H NMR the diastereomeric ratio is ca. 0.28, therefore the diastereomeric excess (%de) is 56%.

At this point, a rationale based on transition state models is proposed to account for the stereochemical outcome of the radical cyclization. The cyclization proceeds through a chair conformation following Beckwith's model and the transition state that leads to the cis isomer is preferred because it minimizes the 1,3 diaxial interactions (Figure 4.4). It is difficult to explain the level of enantiocontrol achieved, unless a more elaborate transition state that involves the chelation of the SmI$_2$•HMPA complex to effectively shield one of the faces of the hydrazone π bond is taken into consideration.
Figure 4.4. Proposed Transition State Structures

The diastereomeric ratio is a function of temperature. Higher temperature leads to lower cis/trans ratio (more trans formed). As the bromide substrate was found to be unsuitable for higher temperature experiments, we decided to take an alternate approach whereby the thionocarbonate would be used as substrate.

The synthesis of the 430 is shown in Scheme 4.6 below.
Scheme 4.6. Synthesis of Hydrazone 430

Valerolactol 351, obtained by the reduction of the commercially available lactone, was treated with one equivalent of SAMP in methanol at room temperature to provide the desired hydrazone 432 in 98% isolated yield. As with the other hydrazones reported above, only the E geometric isomer was isolated from the reaction. The primary alcohol 432 was oxidized by a SO$_3$·py/DMSO/ Et$_3$N system14 to provide the aldehyde 433 in 73% yield. The chemoselective addition of the methylmagnesium bromide to the aldehyde functionality provided the secondary alcohol 434 in 56% yield. Finally, the last step required for the preparation of the starting material was the conversion of the secondary alcohol to the corresponding thionocarbonate ester. Treatment of the alcohol with phenyl chlorothionoformate provided hydrazone 430 in 31% yield.

Having prepared the desired hydrazone, the time came to carry out a free-radical cyclization. Thus, hydrazone 430 was treated with a 0.02M tributyltin hydride solution in benzene with AIBN and heated to reflux. TLC analysis of the
resulting mixture indicated the complete consumption of the starting material with the formation of two new less polar compounds.

The analysis of the 1H NMR spectra of the crude reaction mixture revealed that the cis isomer is formed predominantly. Although some of the trans isomer was also obtained, this proved too difficult to purify for a complete characterization.

The diastereomeric ratio for the cis geometric isomer was determined by 1H NMR analysis with chiral shift reagent Eu(tfc)$_3$. From the ratio of the peak heights in the 1H NMR diastereomeric excess (%de) was determined to be about 30%, lower than in the previous experiment.

4.2.3 C$_2$ Chiral Hydrazone

The results obtained with hydrazones that bear SAMP as a chiral auxiliary, were encouraging. It was decided that, in order to have the best chance of success, a more carefully considered chiral auxiliary should be developed. The compound to be prepared should be capable of inducing high levels of enantioselectivity and should be convenient to use. It was implied that, in order to avoid the need for a resolution, the auxiliary should be prepared from inexpensive materials that are already chiral. Ideally, the auxiliary would be a solid.

Some of the more successful reagents developed for asymmetric transformations have used C$_2$ symmetry as a control element.15 In a molecule with C$_2$ symmetry the two chiral centers reinforce each other; the molecule can in effect present identical faces to the incoming reactant (or radical) no matter which way they approach each other. This mode of addition is also valid when the π bond has a C$_2$ chiral auxiliary present; however, in this case, both sides of
the bond are identical, so the incoming radical "sees" only one face. This should facilitate the prediction of the reaction outcome and simplify mechanistic investigations and calculations.

An interesting class of chiral auxiliaries is represented by 1,3:4,6-diacetals of D-mannitol, which proved their potential in asymmetric synthesis.16 Mannitol 431 is an inexpensive sugar alcohol which is readily available in large quantities. Because of its ease of preparation,17 the dibenzylidene acetal 432 was chosen. This compound was prepared in 42\% yield by treatment of D-mannitol with benzaldehyde in N,N-dimethylformamide (Scheme 4.7).

\[\begin{array}{c}
\text{CH}_2\text{OH} \\
\text{HO}--\text{H} \\
\text{HO}--\text{H} \\
\text{H}--\text{OH} \\
\text{H}--\text{OH} \\
\text{CH}_2\text{OH}
\end{array} \xrightarrow{\text{PhCHO, HCONMe}_2, \text{H}_2\text{SO}_4} \xrightarrow{42\%} \begin{array}{c}
\text{O}--\text{O}--\text{OH} \\
\text{OH}--\text{O}--\text{O}--\text{OH} \\
\text{Ph}
\end{array} \xrightarrow{\text{CH}_3\text{SO}_2\text{Cl}, \text{Et}_3\text{NH}, \text{CH}_2\text{Cl}_2, 0^\circ\text{C}} \xrightarrow{87\%} \begin{array}{c}
\text{O}--\text{O}--\text{O}--\text{O}--\text{OMs} \\
\text{OMs}--\text{O}--\text{OMs} \\
\text{OMs}--\text{O}--\text{OMs}
\end{array} \]

431 \hspace{1cm} 432 \hspace{1cm} 433

\textit{Scheme 4.7. Synthesis of the Dimesylate 433}

The resulting diol 432 was converted to dimesylate18 433 upon treatment with methanesulfonyl chloride and triethylamine in methylene chloride. Several attempts to convert dimesylate 433 into the corresponding N-amino pyrrolidine 435 (Scheme 4.8) were not successful. These included boiling dimesylate 433 with hydrazine, neat or in various solvents, as well as control experiments with benzylamine.19
Scheme 4.8. Synthesis of the N-Amino Pyrrolidine 435

The unsuccessful attempts to convert the dimesylate 433 to the desired product dictated that an alternate route involving ditriflate 434 would have been preferable.\(^{20}\) Consequently, diol 432 was converted to ditriflate 434 in 69% yield in the presence of triflic anhydride and pyridine in methylene chloride at 0 °C. This compound proved to be quite unstable. Attempts to purify it by column chromatography failed, regardless of the packing material used (silica gel neutralized with triethylamine, neutral or basic alumina). We attempted to recrystallize the ditriflate 434 from several different solvent systems and were successful when a mixture of diethylether / petroleum ether was used, but only a relatively small yield of the pure ditriflate was isolated (ca. 35%). When \(^1\)H NMR spectra were compared, it was found that the crude material was almost identical to the recrystallized product. Consequently, ditriflate 434 was prepared and used immediately in the next step, without further purification.

In order to obtain the amino-pyrrolidine 435, a solution of the ditriflate 434 in dry THF containing anhydrous hydrazine was stirred at room temperature for 20 hours. Nucleophilic substitution of the ditriflate 434 with hydrazine afforded the pyrrolidine framework in 78% yield. Formation of the alternative six-membered heterocycle was not observed since the rate of ring closure is faster for five-membered rings.\(^{21}\) As evidenced by both \(^1\)H and \(^{13}\)C NMR, the product retained \(C_2\) symmetry (Figure 4.5). The \(^{13}\)C NMR spectrum was most informative showing an acetal carbon resonance at \(\delta\ 99.7\), a methylene at \(\delta\ 66.4\) and two methines at \(\delta\ 78.4\) and \(\delta\ 61.8\), in addition to four aromatic signals.
The synthesis of the desired hydrazone 418 posed no problems (Scheme 4.9). Dithiane 257 was subjected to deprotonation by n-butyllithium at -10 °C. Displacement of the primary bromide of the 1,4-dibromopentane by the resulting anion provided compound 419 in 80% yield. Hydrolysis of dithiane 419 was effected by treatment with cerium ammonium nitrate to afford aldehyde 436 in 75% yield. Aldehyde 436 was condensed with hydrazine 435 in methanol to produce bromo-hydrazone 418 in 71% yield. The 1H NMR displays the typical vinylic signal at δ 6.67 ppm for the hydrazone proton.
The next step in our investigation was the free-radical cyclization which was conducted under samarium diiodide conditions. The bromo-hydrazone 418 was dissolved in THF containing HMPA in a Schlenk flask. The system was degassed using three freeze pump thaw cycles, introducing argon after the last cycle. The solution was then warmed to –78 °C and samarium diiodide was added dropwise.

Similarly to the SAMP hydrazone cyclization, it appears by TLC and crude NMR analysis that a mixture of cis and trans geometric isomers were formed, cis being the major one.

Flash chromatography was used to separate the cis/trans isomers. The diastereoselectivity and the relative stereochemistries (i.e., cis or trans) were established by analyzing both the 1H NMR and 13C NMR spectra of the products. Figure 4.6 lists the key spectral data that were used to assign the relative stereochemistry of the two diastereoisomers.

![Diagrams of 437a and 437b with NMR peaks](image)

Figure 4.6. Assignment of Stereochemistry

For the cis geometric isomer, the diastereomeric ratio was determined by 1H NMR analysis with chiral shift reagent Eu(tfc)$_3$ in which the methylene proton that appears at 3.23 was split into two peaks: one enantiomer at 3.59 and the
other at 3.53 when one equivalent of the shift reagent was added. The absolute configuration of the major diastereomer has not been assigned.

From the ratio of the peak heights in the 1H NMR the diastereomeric ratio is ca. 0.14, therefore the diastereomeric excess (%de) is 75%.

Unfortunately, the amount of the trans isomer obtained was too small, with the 1H NMR spectra complicated by the presence of impurities, to enable us to determine the diastereomeric ratio between the other two diastereoisomers.

4.3 Conclusion

In conclusion, we have examined the level of asymmetric induction in radical carbocyclizations mediated by the presence of a hydrazone chiral auxiliary.

We have investigated two chiral auxiliaries. In both systems studied, we observed high levels of diastereoselectivity, the cis isomer being formed predominantly.

The level of asymmetric induction was modest under thermal conditions. Better results were obtained at lower temperatures, under samarium diiodide conditions.

Of the two systems studied, the C$_2$ symmetric chiral auxiliary displayed a higher level of asymmetric induction. In both cases, transition states probably involve some chelation of the SmI$_2$·HMPA complex to effectively shield one of the faces of the hydrazone π bond.

The diastereomeric excess is less than desired but at a useful level and comparable to current literature methods.

The results should be improved by choosing auxiliaries that have chiral centres located as close as possible to the reaction centre to avoid attenuation of the chiral information.
Chapter 4 References

CHAPTER 5

Experimental

Maistryefull merveylous and Archimastrye
Is theincture of holy Alkimy;
A wonderful Science, secrete Philosophie,
A singular grace and gift of th'Almitgie:
Which never was found by labour of Mann,
But it by teaching, or by Revalacion began.

(THOMAS NORTON, The Ordinall of Alchemy, c. 1477)

General Considerations

Melting points were determined in capillary tubes with a Thomas-Hoover Unit Melt apparatus and are uncorrected. Infrared (IR) spectra were obtained either as neat films on sodium chloride discs, carbon tetrachloride solutions in potassium bromide cells or as potassium bromide pellets. All IR spectra were recorded on a Bomem Michelson 100 Fourier transform infrared spectrometer (FTIR) and the data are reported in reciprocal centimeters (cm\(^{-1}\)). Proton magnetic resonance spectra (\(^1\)H NMR) were measured at 200 MHz with a Varian Gemini spectrometer, at 300 MHz with a Varian XL-300 spectrometer or at 500 MHz with a Bruker AMX 500 in deuterochloroform unless otherwise stated. Carbon magnetic resonance spectra (\(^13\)C NMR) were measured at 50 MHz (Varian Gemini), at 75 MHz (Varian XL-300) or at 125 MHz (Bruker AMX 500). The residual signal was used as an internal lock; CDCl\(_3\), \(^1\)H: \(\delta\) 7.24 ppm; \(^13\)C: \(\delta\) 77.0 ppm. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (\(\delta\) scale). The multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad), coupling constants (\(J\)) and number of protons are indicated in parentheses. Mass spectra (MS) were determined on a V.G. micromass 7070 HS instrument using an ionization energy of 70 eV. Gas chromatography-mass spectrometry (GC-MS) was performed with a Hewlett Packard 5890 Series II gas chromatograph using a Hewlett Packard HP-1
(crosslinked methyl silicon gum, 12 μm x 0.2 mm x 0.33 μm film thickness) capillary column connected to a Hewlett Packard 5971A mass selective detector. Low resolution mass spectroscopy (LRMS) was performed on a V.G. Micromass 7070 HS mass spectrometer with an electron beam energy of 70 eV (electron impact ionization). High resolution mass spectroscopy (HRMS) was performed on a Kratos Concept-IIA mass spectrometer with an electron beam energy of 70 eV. Elemental analyses were conducted by M-H-W Laboratories, Phoenix, AZ, USA or were performed in house. The purity of all title compounds was judged to be >95% as determined by a combination of GC-MS, 1H NMR and 13C NMR analyses.

All commercially available starting materials were purchased from Aldrich Chemical Company unless otherwise stated. All reactions were carried out under an atmosphere of dry nitrogen or argon, unless otherwise stated, in oven-dried or flame-dried glassware equipped with a magnetic stirring bar and rubber septa. Standard inert atmosphere techniques were used in handling all air and/or moisture-sensitive reagents. Reactions were monitored by analytical thin layer chromatography (TLC). TLC was performed on commercial aluminium sheets precoated (0.2 mm layer thickness) with silica gel 60 F254 (E. Merck). Visualisation of the TLC spots was accomplished with ultraviolet light, iodine vapour, treatment with 2.5% ethanolic solution of p-anisaldehyde containing 3% aqueous H2SO4 (w/v) or a 5% solution of ammonium molybdate in 10% aqueous H2SO4 (w/v) and subsequent heating. Flash column chromatography using E. Merck silica gel 60 (70-230 or 230-400 mesh) or E. Merck neutral alumina was employed for all column chromatography. ‘Concentration’ during the work-up refers to concentration in vacuo using a Buchi R110 Rotovapour connected to a water or air aspirator, unless otherwise stated. Trace solvents were removed on a vacuum pump. All compounds were stored at −15 °C.

Petroleum ether refers to the hydrocarbon fraction with boiling point range 30-60 °C. Anhydrous tetrahydrofuran (THF) and diethyl ether (ether) were obtained by distillation under an atmosphere of dry nitrogen from
sodium/benzophenone. Benzene, toluene, dichloromethane (CH₂Cl₂), dimethylformamide (DMF), triethylamine, diisopropylamine were dried over calcium hydride and distilled under an atmosphere of dry nitrogen. Anhydrous hexamethylphosphoramide (HMPA) was obtained by distillation under an atmosphere of dry nitrogen from calcium hydride and stored over 4 Å molecular sieves.

\(N,N\text{-diphenylhydrazine}\) was obtained by treating the commercially available \(N,N\text{-diphenylhydrazine hydrochloride}\) with 1.0 equivalents of sodium methoxide in methanol. The resulting solution was concentrated and filtered through a sintered glass funnel with a pad of silica gel eluting with 100% ether. The resulting \(N,N\text{-diphenylhydrazine}\) was used without further purification.

\(n\text{-, sec- and tert-Buthyllithium}\) were used as received from Aldrich after titration with diphenylacetic acid at 0 °C. Lithium diisopropylamide (LDA) was prepared by adding a solution of \(n\text{-butyllithium}\) in hexanes to a cooled solution (-78 °C) of dry diisopropylamine (1.05 eq.) in freshly distilled THF. The resulting colourless or slightly yellow solution was stirred at 0 °C for 15 minutes before use. Dess-Martin periodinane was prepared according to the reported literature procedure.⁵

2-(3-Bromopropyl)-1,3-dithiane

![Chemical Structure]

Dithiane (1.76 g, 14.7 mmol) was placed in a round bottom flask (250 mL) and dissolved in THF (20.0 mL). The resulting solution was cooled to -10 °C, treated with n-BuLi (7.0 mL of a 2.5 M solution in hexanes, 17.7 mmol), then stirred at -10 °C for 45 minutes. 1, 3-Dibromopropane (1.48 mL, 14.7 mmol) was added to this solution and stirred at -10 °C for an additional 2 hours. The reaction was quenched with brine (10 mL) and the resulting mixture was poured into a separatory funnel containing ethyl acetate (30 mL) and brine (10 mL). The aqueous layer was extracted with ethyl acetate (3x10 mL), dried and concentrated. The resulting oil was purified by flash chromatography (2:98, diethyl ether / petroleum ether) to give 2.71 g (77%) of the title compound as a light yellow oil; IR (neat, cm⁻¹) 2914, 1429, 1275, 908, 779; ¹H NMR (200 MHz, CDCl₃) δ 4.00 (t, J = 6.6 Hz, 1H), 3.41-3.32 (m, 2H), 2.84-2.73 (m, 4H), 2.12-1.78 (m, 6H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 46.3, 33.6, 32.8, 30.1, 29.4, 25.6 ppm; HRMS m/z calcd. for C₇H₁₃S₂Br (M⁺): 239.9642, found: 239.9656.
2-(4-Bromobutyl)-1,3-dithiane

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{CH}_3 \\
\text{Br}
\end{array}
\]

Dithiane (5.00 g, 41.6 mmol) was placed in a round bottom flask (500 mL) and dissolved in THF (200 mL). The resulting solution was cooled to -10 °C, treated with \(n\)-BuLi (18.3 mL of a 2.5 M solution, 45.7 mmol) and stirred at -10 °C for 45 minutes. 1, 3-Dibromobutane (5.5 mL, 45.7 mmol) was added and stirring continued at -10 °C for 2 hours. The reaction was quenched with brine (10 mL) and poured into a separatory funnel containing ethyl acetate (100 mL) and brine (50 mL). The aqueous layer was extracted with ethyl acetate (3x150 mL), dried, concentrated and purified by flash chromatography (2:98, diethyl ether / petroleum ether) to yield 8.55 g (81%) of the title compound as a light yellow oil; IR (neat, cm\(^{-1}\)) 2919, 1431, 1378, 1275; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 4.13-3.98 (m, 2H), 2.84-2.76 (m, 4H), 2.14-1.74 (m, 6H), 1.71 (d, \(J = 6.6\) Hz, 3H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 50.6, 46.6, 37.7, 33.5, 30.2, 26.4, 25.8 ppm; HRMS \(m/z\) calcd. for C\(_9\)H\(_{15}\)S\(_2\)Br (M\(^+\)) : 253.9798, found: 253.9805.
4-Bromobutenal-\(N,N\)-diphenylhydrazone

\[
\begin{array}{c}
\text{Ph}_2\text{N} \\
\text{H} \\
\text{Br}
\end{array}
\]

2-(3-Bromopropyl)-1,3-dithiane 258 (0.686 g, 2.8 mmol) was added to a round bottom flask (50 mL) containing CAN (6.24g, 11.4 mmol) dissolved in an aqueous solution of 75% acetonitrile (8 mL). The solution was stirred at room temperature for 5 minutes and poured into a separatory funnel containing water (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (3X 10 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was further purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, ethyl acetate / petroleum ether) under aspirator vacuum, then concentrated. The resulting aldehyde was then mixed with \(N,N\)-diphenylhydrazine (0.515 g, 2.8 mmol) in MeOH (50 mL). The reaction mixture was stirred at room temperature for 2 hours. The resulting solution was filtered through a sintered glass funnel with a pad of silica gel and washed with EtOAc, concentrated and chromatographed (2:98, diethyl ether / petroleum ether) to afford 0.668 g (75%) of the title compound as a yellowish oil; IR (neat, cm\(^{-1}\)) 3047, 2942, 1592, 1492, 1300, 1210; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.48-7.38 (m, 4H), 7.23-7.12 (m, 6H), 6.59 (t, \(J = 4.7\) Hz, 1H), 3.53 (t, \(J = 6.6\) Hz, 2H), 2.53-2.44 (m, 2H), 2.25-2.15 (m, 2H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 143.7, 136.7, 129.4, 123.7, 121.9, 32.9, 30.7, 29.5 ppm; HRMS m / z calcd. for C\(_{16}\)H\(_{17}\)N\(_2\)Br (M\(^+\)): 318.0556, found: 318.0563. Anal. Calcd. for C\(_{16}\)H\(_{17}\)N\(_2\)Br: C, 60.58, H, 5.40; N, 8.83. Found: C, 60.56, H, 5.37; N, 9.23.
4-Bromopentanal-N,N-diphenylhydrazone

\[
\text{Ph}_2\text{N} \quad \text{N} \\
\quad \quad \text{H} \quad \quad \text{Br} \\
\text{261}
\]

2-(4-Bromobutyl)-1,3-dithiane 259 (5.08 g, 20 mmol) was added to a round bottom flask (250 mL) containing CAN (44.57 g, 81.3 mmol) dissolved in an aqueous solution of 75% acetonitrile (60 mL). Following the same procedure as above, 5.24 g (79%) of the title compound was isolated as a faint yellow oil; IR (neat, cm\(^{-1}\)) 3060, 2963, 1592, 1491, 1210, 748, 697; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.43-7.35 (m, 4H), 7.18-7.07 (m, 6H), 6.55 (t, \(J = 4.7\) Hz, 1H), 4.28-4.18 (m, 1H), 2.51-2.41 (m, 2H), 2.13-2.12 (m, 2H), 1.72 (d, \(J = 6.4\) Hz, 3 H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 144.0, 137.4, 129.6, 123.9, 122.5, 50.9, 37.9, 30.8, 26.4 ppm; HRMS \(m/z\) calcd. for C\(_{17}\)H\(_{19}\)N\(_2\)Br (M\(^+\)) : 332.0712, found: 332.0698.

4-Hydroxy Butanal

\[
\begin{align*}
\text{263a} & \quad \text{263b}
\end{align*}
\]

\(\gamma\)-Butyrolactone (4.96 mL, 5.56 g, 64.6 mmol) was added to a flame dried flask (500 mL) containing freshly distilled toluene (100 mL) under argon. The solution was cooled to -34°C and DIBALH (64.6 mL, 1 M solution in toluene) was added and the reaction mixture stirred at this temperature for 4 hours. The
reaction was quenched with methanol at -34 °C until gas evolution ceased. The solution was warmed to room temperature (21 °C) and saturated aqueous sodium potassium tartrate solution (100 mL) was added. This mixture was poured into a separatory funnel containing water and ethyl acetate (100 mL). The aqueous layer was extracted with ethyl acetate (3 X 100 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, ethyl acetate / petroleum ether) under aspirator vacuum to afford 4.12 g (76%) of the corresponding lactol as a colourless oil which was used in the next step without further purification; for the lactol form: IR (neat, cm⁻¹) 3360, 2933, 1441, 1215, 747, 697; ¹H NMR (200 MHz, CDCl₃) δ 5.09-5.07 (m, 1H), 4.65 (br s. 1H), 3.88-3.83 (t, J = 6.0 Hz, 1H), 3.73-3.65 (m, 2H), 2.01-1.80 (m, 1H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 97.7, 66.7, 32.7, 23.1 ppm; HRMS m / z calcd. for C₄H₈O₂ (M⁺) : 88.0524, found: 88.0254; for the aldehyde form: ¹H NMR (200 MHz, CDCl₃) δ 9.77 (s, 1H), 3.46-3.38 (m, 2H), 2.52-2.46 (m, 2H), 2.01-1.80 (m, 1H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 210.1, 61.5, 40.1, 28.5 ppm.

4-Hydroxybutanal-N,N-diphenylhydrazone

4-Hydroxy butanal 263 (4.12 g, 49.0 mmol) in methanol (200 mL) was added to a round bottom flask (500 mL). A solution of Ph₂NNH₂ (10.32 g, 56.0 mmol) in methanol (150 mL) was added dropwise to this solution and the reaction was stirred at 21 °C overnight. Concentration gave a purple oil which
was purified by chromatography (50:50, diethyl ether / petroleum ether) to yield 8.3 g (53% over 2 steps) of the title alcohol as a faint yellow oil; IR (neat, cm⁻¹) 3352, 3048, 2917, 1592, 1491, 1298, 1056, 745, 698; ¹H NMR (200 MHz, CDCl₃) δ 7.39-7.31 (m, 4H), 7.14-7.06 (m, 6H), 6.57 (t, J = 6.7 Hz, 1H), 3.63 (t, J = 6.4 Hz, 2H), 2.98 (br s, 1H), 2.40-2.30 (m, 2H), 1.83-1.73 (m, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 144.7, 140.0, 130.3, 124.6, 122.9, 62.8, 30.2, 28.9 ppm; HRMS m / z calcd. for C₁₆H₁₈N₂O (M⁺): 254.1412, found: 254.1407.

Propanal-(N,N-diphenylhydrazone)-3carboxaldehyde

![Chemical structure](Image)

Propanal-(N,N-diphenylhydrazone)-3carboxaldehyde

4-Hydroxybutanal-N,N-diphenylhydrazone 264 (486 mg, 1.9 mmol) was added to a round bottom flask (250 mL), along with methylene chloride (20 mL) and Dess-Martin reagent (1.05 g, 2.47 mmol). The mixture was stirred for 5 minutes at 21 °C, then ether (50 mL), saturated aqueous sodium bicarbonate solution (20 mL) and aqueous sodium thiosulphate solution (25 mL) were added to the flask. The resulting mixture was stirred until two clear layers were formed (ca. 30 minutes) then poured into a separatory funnel containing water (30 mL) and diethyl ether (100 mL). The aqueous layer was extracted with diethyl ether (3X 20 mL), and the combined organic layers were washed with brine, dried and concentrated in vacuo. Flash chromatography (25:75, diethyl ether / petroleum ether) afforded 407 mg (85%) of the title compound as a faint yellow oil; IR (neat, cm⁻¹) 3048, 2904, 2828, 1723, 1592, 1491, 1300, 1211, 1068; ¹H NMR (200 MHz, CDCl₃) δ 9.87 (br s, 1H), 7.39-7.32 (m, 4H), 7.15-7.01 (m, 6H), 6.56 (t, J = 85°
4.0 Hz, 1H), 2.80-2.73 (m, 2H), 2.63-2.49 (m, 2H) ppm; 13C NMR (50 MHz, CDCl$_3$) δ 201.5, 143.7, 136.0, 129.5, 123.8, 122.0, 39.7, 25.2 ppm; HRMS m/z calcd. for C$_{16}$H$_{16}$N$_2$O (M$^+$): 252.1263, found: 252.1277.

General Procedure for Grignard Additions:

The appropriate aldehyde plus enough THF to make a 0.1-0.3 M solution was added to a flame dried, round bottom flask maintained at 0 °C under argon. The required Grignard reagent (1-1.1 eq.) was added at 0 °C and the reaction was stirred at 0 °C until the starting material was consumed (typically 30 minutes, by TLC). The reaction was quenched with saturated ammonium chloride and poured into a separatory funnel containing water and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3X) and the combined organic layers were washed with brine, dried, concentrated and chromatographed.

4-Methyl-4-Hydroxybutanal-N,N-diphenylhydrazone

![Chemical structure](image)

Following the general procedure, propanal-(N,N-diphenylhydrazone)-3carboxaldehyde 265 (0.46 g, 1.84 mmol) was treated with MeMgCl (0.70 mL, 3.0 M solution in THF, 2.11 mmol) to afford 0.45 g (93%) of the title compound as
4-Hydroxy-5-methylhexanal-\(N,N\)-diphenylhydrazone

Following the general procedure, propanal-(\(N,N\)-diphenylhydrazone)-3carboxaldehyde 265 (0.56 g, 2.21 mmol) was treated with \(\text{i-PrMgCl}\) (1.22 mL, 2.0 M solution in THF, 2.44 mmol) to afford 0.65 g (100%) of the title compound as a faint yellow oil; IR (neat, cm\(^{-1}\)) 3393, 3061, 2928, 1592, 1483, 1302, 1210, 741, 698; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.33 (m, 4H), 7.23-7.07 (m, 8H), 6.60 (t, \(J = 5.1\) Hz, 1H), 3.41-3.35 (m, 1H), 2.46-2.36 (m, 2H), 2.11 (br s, 1H), 1.74-1.65 (m, 2H), 0.95 (d, \(J = 6.8\) Hz, 3H), 0.91 (d, \(J = 6.8\) Hz, 3H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 144.1, 139.7, 129.6, 123.8, 122.2, 76.0, 33.5, 30.8, 29.3, 18.6, 17.3 ppm; HRMS m/z calcd. for C\(_{19}\)H\(_{24}\)N\(_2\)O (M\(^+\)): 296.1890, found: 296.1895.
4-Cyclohexyl-4-Hydroxybutanal-\(N, N\)-diphenylhydrazone

Following the general procedure, propanal-\((N, N\)-diphenylhydrazone\)-3-carboxaldehyde 265 (0.17 g, 0.67 mmol) was treated with \(\text{CyMgCl}\) (0.4 mL as a 2.0 M solution in THF, 0.8 mmol) at 0 °C to yield 0.195 g (87%) of the title compound; IR (neat, \(\text{cm}^{-1}\)) 3392, 2923, 2852, 1592, 1493, 1450, 1301, 1210; \(\text{\(^1\text{H}\)}\) NMR (200 MHz, CDCl3) \(\delta\) 7.39-7.24 (m, 4H), 7.14-7.04 (m, 6H), 6.57 (t, \(\text{J} = 5.0\) Hz, 1H), 3.42-3.31 (m, 1H), 2.47-2.32 (m, 2H), 1.85-1.45 (m, 6H), 1.37-0.65 (m, 8H) ppm; \(\text{\(^{13}\text{C}\)}\) NMR (50 MHz, CDCl3) \(\delta\) 144.2, 139.8, 129.6, 123.9, 122.3, 75.6, 43.7, 30.9, 29.3, 29.1, 27.9, 26.5, 26.3, 26.1 ppm; HRMS \(\text{m} / \text{z}\) calcd. for \(\text{C}_{22}\text{H}_{28}\text{N}_2\text{O}\) (M\(^+\)): 336.2203, found: 336.2202.

General Procedure for the Bromination of Alcohols:

Triphenylphosphine (1.2 eq.) and \(\text{Et}_3\text{N}\) (1.2 eq.) in dichloromethane (generally enough to prepare a 0.1–0.3 M solution) was added to a flame dried, round bottom flask maintained at 0 °C under argon. Bromine (1.2 eq.) was added dropwise as a 3 M solution in dichloromethane until the reaction mixture turned a faint yellow colour. This mixture was cooled to 0 °C and the alcohol was added dropwise as a dichloromethane solution. The solution was allowed to stirr
at 0 °C for 30 minutes and at 21 °C for 30 minutes. After this time, the reaction mixture was poured into a separatory funnel containing saturated sodium bicarbonate solution and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3X), and the combined organic layers were washed with brine, dried and concentrated and further purified by flash chromatography.

4-Bromobutenal-N,N-diphenylhydrazone

Following the general procedure, 4-hydroxybutanal-N,N-diphenylhydrazone 264 (332 mg, 1.31 mmol) was dissolved in dichloromethane (15 mL) and treated with triphenylphosphine (413 mg, 1.57 mmol), Et₃N (0.21 mL, 1.57 mmol) and titrated with bromine solution as described above. After purification, 304 mg (73%) of the title compound was obtained of the title compound as a yellowish oil; IR (neat, cm⁻¹) 3047, 2942, 1592, 1492, 1300, 1210; ¹H NMR (200 MHz, CDCl₃) δ 7.48-7.38 (m, 4H), 7.23-7.12 (m, 6H), 6.59 (t, J = 4.7 Hz, 1H), 3.53 (t, J = 6.6 Hz, 2H), 2.53-2.44 (m, 2H), 2.25-2.15 (m, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 143.7, 136.7, 129.4, 123.7, 121.9, 32.9, 30.7, 29.5 ppm; HRMS m/z calcd. for C₁₆H₁₇N₂Br (M⁺): 318.0556, found: 318.0563. Anal. Calcd. for C₁₆H₁₇N₂Br: C, 60.58, H, 5.40; N, 8.83. Found: C, 60.56, H, 5.37; N, 9.23.
4-Bromopentanal-N,N-diphenylhydrazone

Following the general procedure, 4-methyl-4-hydroxybutanal-N,N-diphenylhydrazone 266 (351 mg, 1.31 mmol) was dissolved in dichloromethane (15 mL) and treated with triphenylphosphine (413 mg, 1.57 mmol), Et$_3$N (0.21 mL, 1.57 mmol) and titrated with bromine solution as described above. After purification, 323 mg (71%) of the title compound was obtained as a clear colourless oil; IR (neat, cm$^{-1}$) 3060, 2963, 1592, 1491, 1210, 748, 697; 1H NMR (200 MHz, CDCl$_3$) δ 7.43-7.35 (m, 4H), 7.18-7.07 (m, 6H), 6.55 (t, $J = 4.7$ Hz, 1H), 4.28-4.18 (m, 1H), 2.51-2.41 (m, 2H), 2.13-2.12 (m, 2H), 1.72 (d, $J = 6.4$ Hz, 3 H) ppm; 13C NMR (50 MHz, CDCl$_3$) δ 144.0, 137.4 129.6, 123.9, 122.5, 50.9, 37.9, 30.8, 26.4 ppm; HRMS m/z calcd. for C$_{17}$H$_{19}$N$_2$Br (M$^+$) : 332.0712, found: 332.0698.
4-Bromo-5-methylhexanal-\(N,N\)-diphenylhydrazone

Following the general procedure, 4-hydroxy-5-methylhexanal-\(N,N\)-diphenylhydrazone 267 (700 mg, 2 mmol) was treated with triphenylphosphine (630 mg, 2.4 mmol), \(\text{Et}_3\text{N}\) (0.33 mL, 2.4 mmol) and titrated with bromine solution as described above. After purification, 337 mg (47%) of the title compound was obtained as a clear colourless oil; IR (neat, cm\(^{-1}\)) 2953 1592, 1492, 1302, 1211, 748, 697; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.35 (m, 4H), 7.15-7.08 (m, 6H), 6.56 (t, \(J = 4.8\) Hz, 1H), 4.12-4.09 (m, 1H), 2.60-2.53 (m, 1H), 2.46-2.39 (m, 1H), 2.20-1.95 (m, 1H), 1.94-1.89 (m, 1H), 1.07 (d, \(J = 6.7\) Hz, 3H), 1.02 (d, \(J = 6.6\) Hz, 3H) ppm; \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 144.1, 137.7, 129.6, 124.0, 122.3, 66.1, 34.6, 33.7, 31.2, 21.0, 18.2 ppm; HRMS \(m / z\) calcd. for \(\text{C}_{19}\text{H}_{23}\text{N}_2\text{O} (\text{M}^+)\): 358.1598, found: 358.1059.

4-Bromo-4-cyclohexylbutanal-\(N,N\)-diphenylhydrazone
Following the general procedure, 4-cyclohexyl-4-Hydroxybutanal-N,N-
diphenylhydrazone 268 (444 mg, 1.31 mmol) was dissolved in dichloromethane
(15 mL) and treated with triphenylphosphine (413 mg, 1.57 mmol), Et₃N (0.21
mL, 1.57 mmol) and titrated with bromine solution as described above. After
purification, 349 mg (67%) of the title compound was obtained as a clear
colourless oil; IR (neat, cm⁻¹) 2927, 2852, 1591, 1490, 1301, 1211; ¹H NMR (200
MHz, CDCl₃) δ 7.41-7.32 (m, 4H), 7.17-7.04 (m, 6H), 6.54 (t, J = 4.8 Hz, 1H),
4.09-4.01 (m, 1H), 2.57-2.39 (m, 2H), 2.12-2.03 (m, 3H), 2.00-1.54 (m, 6H), 1.33-
1.16 (m, 4H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 144.1, 137.8, 129.6, 123.9,
122.2, 64.8, 44.5, 33.2, 31.1, 30.9, 29.2, 26.2, 26.1, 26.0 ppm; HRMS m/z
C₂₂H₂₇N₂Br: C, 66.16; H, 6.81; N, 7.01. Found: C, 66.15; H, 6.96; N, 7.02.

General Procedure for the Carbonylation/Cyclization Reactions:

The starting hydrazone (0.5-0.6 mmol) plus benzene (enough to make a
0.05 M solution, with respect to the hydrazone), AIBN (5-10 mol %) and tributyltin
hydride (1.2 eq.) were added to a dry glass tube inserted into a stainless steel
autoclave (50 mL). The reaction mixture was stirred under carbon monoxide
pressure (usually 800-1100 psi) at 80 °C for 5 hours. The autoclave was cooled
to 21 °C and, after the release of excess carbon monoxide, benzene was
removed under reduced pressure. The residue was dissolved in diethyl ether (4
mL) and stirred at 21 °C with saturated aqueous potassium fluoride solution (4
mL). Filtration, extraction with diethyl ether, drying over magnesium sulfate and
concentration gave a crude mixture which was analyzed by ¹H NMR
spectroscopy to determine the cis/trans ratios. This was followed by chromatography to separate the cis/trans isomers.

2-(N,N-diphenylhydrazino) cyclopentanone

Following the general carbonylation/cyclization procedure, 4-bromobutenal-N,N-diphenylhydrazone 260 (190 mg, 0.57 mmol) was dissolved in benzene (15 mL) and treated with AIBN (22 mg), Bu$_3$SnH (0.2 mL, 0.68 mmol) and stirred under CO atmosphere. After workup and purification, 104 mg (69%) of the cyclized product was obtained; IR (neat, cm$^{-1}$) 2964, 1739, 1591, 1483, 1291; 1H NMR (200 MHz, CDCl$_3$) δ 7.31-7.12 (m, 6H), 7.01-6.94 (m, 4H), 4.71 (br s, 1H), 3.42 (t, $J = 6.2$ Hz, 1H), 2.37-1.57 (m, 6H) ppm; 13C NMR (125 MHz, CDCl$_3$) δ 216.5, 147.0, 129.1, 122.4, 120.2, 63.9, 36.7, 30.3, 18.4 ppm; HRMS m/z calcd. for C$_{17}$H$_{18}$N$_2$O(M$^+$): 266.1415, found: 266.1404.
2-Methyl-5-(N,N-diphenylhydrazino)-cyclopentanones

Following the general carbonylation/cyclization procedure, 4-bromopentanal-N,N-diphenylhydrazone 261 (214 mg, 0.59 mmol) was dissolved in benzene (13 mL) and treated with AlBN (19 mg), n-Bu$_3$SnH (0.21 mL, 0.70 mmol) and stirred under CO atmosphere. After workup and purification, 117 mg (71%) of the cyclized product as a 1/1.1 = cis/trans mixture was obtained;

Cis isomer 276a: IR (neat, cm$^{-1}$) 2952, 2872, 1735, 1590, 1494, 1285; 1H NMR (500 MHz, CDCl$_3$) δ 7.28-7.25 (m, 4H), 7.16-7.12 (m, 4H), 6.99-6.96 (m, 2H), 4.46 (br s, 1H), 3.49-3.45 (m, 1H), 2.34-2.29 (m, 1H), 2.10-1.98 (m, 2H), 1.77-1.17 (m, 2H), 1.13 (d, J = 7.3 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl$_3$) δ 218.3, 146.6, 128.8, 122.0, 119.8, 62.0, 41.7, 27.3, 26.6, 14.6 ppm; HRMS m/z calcd. for C$_{18}$H$_{20}$N$_2$O(M$^+$): 280.15764, found: 280.15697.

Trans isomer 276b: IR (neat, cm$^{-1}$) 2961, 2872, 2361, 1738, 1589, 1495, 1280; 1H NMR (200 MHz, CDCl$_3$) δ 7.31-7.14 (m, 8H), 7.02-6.94 (m, 2H), 4.75 (br s, 1H), 3.46-3.37 (m, 1H), 2.34-2.17 (m, 2H), 1.85-1.60 (m, 1H), 1.44-1.16 (m, 2H), 1.11 (d, J = 6.4 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl$_3$) δ 218.4, 146.8, 129.1, 122.3, 120.1, 63.8, 43.2, 28.9, 27.3, 14.6 ppm; HRMS m/z calcd. for C$_{18}$H$_{20}$N$_2$O(M$^+$): 280.1576, found: 280.1576. Anal. Calcd for C$_{18}$H$_{20}$N$_2$O: C, 77.11; H, 7.19; N, 9.99. Found: C, 77.22; H, 6.98; N, 9.74.
2-Isopropyl-5-\((N,N\text{-diphenylhydrazino})\)cyclopentanone

Following the general carbonylation/cyclization procedure, 4-bromo-5-methylhexanal-\(N,N\text{-diphenylhydrazone} \) 269 (152 mg (0.42 mmol) was dissolved in benzene (13 mL) and treated with AIBN (14 mg), \(\text{Bu}_3\text{SnH} \) (0.14 mL, 0.50 mmol) and stirred under CO atmosphere. After workup and purification, 92 mg (71%) of the cyclized product as a 1/1.1 = cis/trans mixture was obtained:

Cis isomer 277a: IR (neat, cm\(^{-1}\)) 2925, 1731, 1591, 1481, 1300; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.31-7.22 (m, 4H), 7.15-7.11 (m, 4H), 7.08-6.94 (m, 2H), 4.39 (br s, 1H), 3.43-3.39 (m, 1H), 2.21-2.12 (m, 2H), 2.04-1.89 (m, 3H), 1.24-1.21 (m, 1H), 1.00 (d, \(J = 6.6\) Hz, 3H), 0.89 (d, \(J = 6.6\) Hz, 3H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 217.8, 147.0, 129.1, 122.3, 120.2, 62.5, 53.5, 28.3, 27.5, 21.3, 21.1, 18.8 ppm; HRMS m / z calcd. for C\(_{20}\)H\(_{24}\)N\(_2\)O(M\(^+\)): 308.1890, found: 308.1895.

Trans isomer 277b: IR (neat, cm\(^{-1}\)) 2951, 2872, 1736, 1591, 1495, 1287; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.31-7.10 (m, 8H), 7.01-6.94 (m, 2H), 4.80 (br s, 1H), 3.36-3.27 (m, 1H), 2.38-2.28 (m, 2H), 2.18-1.92 (m, 2H), 1.78-1.70 (m, 1H), 1.66-1.40 (m, 1H), 1.24-1.15 (m, 1H), 0.96 (d, \(J = 6.4\) Hz, 3H), 0.78 (d, \(J = 6.4\) Hz, 3H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 217.6, 146.8, 129.1, 122.2, 120.0, 65.2, 54.2, 28.4, 28.0, 20.6, 20.3, 18.7 ppm; HRMS m / z calcd. for C\(_{20}\)H\(_{24}\)N\(_2\)O(M\(^+\)): 308.1890, found: 308.1866.
2-Cyclohexyl-5-(N,N-diphenylhydrazino)-cyclopentanones

Following the general carbonylation/cyclization procedure, 4-bromo-4-cyclohexylbutanal-N,N-diphenylhydrazone 270 (210 mg (0.52 mmol) was dissolved in benzene (12 mL) and treated with AlBN (12 mg), n-Bu₃SnH (0.18 mL, 0.62 mmol) and stirred under CO atmosphere. After workup and purification 121.2 mg (67%) of the cyclized product as a 1/1.2 = cis/trans mixture was obtained;

Cis isomer 278a: IR (neat, cm⁻¹) 2923, 2851, 1735, 1591, 1494; ¹H NMR (200 MHz, CDCl₃) δ 7.38-7.31 (m, 4H), 7.27-7.09 (m, 4H), 7.05-6.94 (m, 2H), 4.41 (br s, 1H), 3.45-3.35 (m, 1H), 2.25-0.88 (m, 16H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 218.0, 147.0, 129.1, 122.3, 120.2, 62.7, 53.0, 38.6, 31.6, 29.1, 27.8, 26.5, 26.3, 26.2, 21.9 ppm; HRMS m/z calcd. for C₂₃H₂₈N₂O(M⁺): 348.2203, found: 348.2211.

Trans isomer 278b: IR (neat, cm⁻¹) 2925, 2853, 1735, 1591, 1495, 1450; ¹H NMR (200 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.26-7.11 (m, 4H), 7.09-6.93 (m, 2H), 4.80 (br s, 1H), 3.35-3.26 (m, 1H), 2.36-2.27 (m, 1H), 2.18-1.92 (m, 2H), 1.83-1.00 (m, 13H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 217.7, 146.9, 129.1, 122.2, 120.0, 65.3, 53.7, 38.1, 31.1, 29.0, 28.6, 26.5, 26.3, 26.1, 21.0 ppm; HRMS m/z calcd. for C₂₃H₂₈N₂O(M⁺): 348.2203, found: 348.2224. Anal. Calcd for C₂₃H₂₈N₂O: C, 79.27; H, 8.09; N, 8.04. Found: C, 79.94; H, 8.39; N, 8.39.
General Procedure for L-Selectride® Reductions:

The ketone was dissolved in methylene chloride to make a 0.1 M solution and added to a flame dried, round bottom flask maintained at -78 °C under argon. The L-Selectride® (2 eq.) was added to the stirred solution at -78 °C and the reaction continued until the starting material was consumed (typically 30 minutes, by TLC). The reaction was warmed to 21 °C, methanol, aqueous sodium hydroxide (25%) and hydrogen peroxide were added and the mixture stirred for 45 minutes. Water and diethyl ether were added and the aqueous layer extracted with diethyl ether (3X). The combined organic layers were washed with saturated ammonium chloride, brine, dried, concentrated and chromatographed.

General Procedure for Catalytic Hydrogenations:

The ketone was dissolved in methanol to make a 0.1 M solution, mixed with tris(triphenylphosphine)ruthenium(II) chloride (10%) and added to a dry glass tube which was inserted into a stainless steel autoclave (50 mL). The reaction mixture was stirred under hydrogen pressure (500 psi) at 21 °C overnight. After the release of excess hydrogen, the solid residue was filtered and methanol was removed under reduced pressure. The crude mixture was analyzed by 1H NMR spectroscopy to determine the cis/trans ratios. This was followed by chromatography to separate the cis/trans isomers.
1-Hydroxy-2-(N,N-diphenylhydrazino)cyclopentane

Cis isomer 281a: IR (neat, cm⁻¹) 3472, 2936, 1590, 1494, 909; ¹H NMR (200 MHz, CDCl₃) δ 7.34-7.23 (m, 4H), 7.12-6.99 (m, 6H), 4.35-4.20 (m, 1H), 4.19-4.05 (m, 1H), 3.38-3.30 (m, 1H), 2.77-2.74 (m, 1H), 1.94-1.52 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 148.0, 129.3, 122.7, 120.2, 71.8, 63.2, 31.7, 26.4, 20.3 ppm; HRMS m/z calculated for C₁₇H₂₀N₂O (M⁺): 268.1571, found: 268.1600.

Trans isomer 281b: IR (neat, cm⁻¹) 3395, 2930, 1591, 1489, 1373, 1057; ¹H NMR (200 MHz, CDCl₃) δ 7.35-7.24 (m, 4H), 7.18-7.05 (m, 4H), 7.02-6.98 (m, 2H), 4.18-4.11 (m, 1H), 4.05-3.80 (br s, 1H), 3.35-3.22 (m, 1H), 2.17-2.04 (m, 1H), 1.97-1.43 (m, 5H) ppm (either OH or NH not observed); ¹³C NMR (75 MHz, CDCl₃) δ 148.1, 129.2, 122.5, 120.5, 77.4, 65.6, 33.4, 28.6, 21.6 ppm HRMS m/z calcd. for C₁₇H₂₀N₂O (M⁺): 268.1571, found: 268.1592. Anal. Calcd for C₁₇H₂₀N₂O: C, 76.09; H, 7.51; N, 10.44. Found: C, 76.09; H, 7.51; N, 10.38.
2-Hydroxy-3-Methyl-1-(N,N-diphenylhydrazino) cyclopentane

282a: IR (neat, cm⁻¹) 3375, 2920, 1590, 1494, 1279, 1058; ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.23 (m, 4H), 7.16-7.10 (m, 4H), 7.06-6.97 (m, 2H), 3.57-3.54 (m, 1H), 3.38-3.25 (m, 1H), 1.84-1.75 (m, 2H), 1.53-1.47 (m, 1H), 1.40-1.32 (m, 2H), 1.06 (d, J = 7.1 Hz, 3H) ppm (OH and NH not observed); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 129.2, 122.6, 120.6, 84.5, 64.5, 40.9, 29.3, 26.9, 17.9 ppm; nOe of the two methine hydrogens (H₁, H₂) = 0.1%; HRMS m/z calcd. for C₁₈H₂₂N₂O (M⁺): 282.1733, found: 282.1756;

282b: IR (neat, cm⁻¹) 3451, 3060, 2921, 1591, 1494, 1291, 1073; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.28 (m, 4H), 7.27-7.06 (m, 4H), 7.02-6.99 (m, 2H), 4.15 (br s, 1H). 3.81-3.79 (m, 1H), 2.70 (br.s, 1H), 1.90-1.83 (m, 2H), 1.73-1.67 (m, 1H), 1.58-1.49 (m, 2H), 1.05 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 148.0, 129.3, 122.7, 120.2, 73.8, 63.7, 38.0, 28.8, 26.5, 14.2 ppm; nOe of the two methine hydrogens (H₁, H₂) = 4.0%; HRMS m/z calculated for C₁₈H₂₂N₂O (M⁺): 282.1733, found: 282.1728.
2-Hydroxy-3-methyl-1-(N,N-diphenylhydrazino)cyclopentane

283a: IR (neat, cm⁻¹) 3406, 3051, 2948, 2870, 1591, 1494, 1276, 1069;
¹H NMR (500 MHz, CDCl₃) δ 7.30-7.23 (m, 4H), 7.11-7.07 (m, 4H), 7.02-6.99 (m, 2H), 4.15 (br s, 1H), 3.62-3.60 (m, 1H), 3.49-3.40 (m, 1H), 2.67 (br s, 1H), 2.20-2.15 (m, 1H), 2.09-2.02 (m, 1H), 1.81-1.75 (m, 1H), 1.66-1.58 (m, 1H), 1.21-1.10 (m, 1H), 0.96 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 148.0, 129.3, 122.7, 120.2, 73.8, 63.7, 38.0, 28.8, 26.5, 14.2 ppm; nOe of the two methine hydrogens (H₁, H₂) = 0.9%; HRMS m/z calculated for C₁₈H₂₂N₂O (M⁺): 282.1733, found: 282.1736.

283b: IR (neat, cm⁻¹) 3451, 2916, 1591, 1494, 1286, 1140, 1027; ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.23 (m, 4H), 7.08-7.04 (m, 4H), 7.02-6.99 (m, 2H), 4.07 (br s, 1H), 3.80-3.79 (m, 1H), 3.48-3.41 (m, 1H), 2.69 (br s, 1H), 1.90-1.83 (m, 2H), 1.75-1.67 (m, 1H), 1.57-1.48 (m, 2H), 1.04 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 148.0, 129.3, 122.7, 120.2, 73.8, 63.7, 38.1, 28.8, 26.5, 14.3 ppm; nOe of the two methine hydrogens (H₁, H₂) = 3.0%; HRMS m/z calculated for C₁₈H₂₂N₂O (M⁺): 282.1733, found: 282.1756.
trans (2-Benzoyloxy)-N-cyclopentyl benzamide

\[
\begin{array}{c}
\text{NHCOPh} \\
\text{OCOPh} \\
\text{285}
\end{array}
\]

Trans 1-hydroxy-2-(N,N-diphenylhydrazino)cyclopentane 281b (67 mg, 0.25 mmol) was placed in the glass liner of a stainless steel autoclave along with methanol (5.0 mL), (S)-(+)10-camphor sulfonic acid (116.3 mg, 0.50 mmol) and 10% Pd/C (7.0 mg). The glass liner was then placed in the autoclave and the gauge block assembly attached. The hydrogen line and the system was flushed three times before pressurizing to 500 psi. The autoclave was heated to 50 °C and the reaction mixture was stirred overnight. After this time the excess gas was discharged and the reaction mixture filtered through a sintered glass funnel to remove the Pd/C. The solid residue of Pd/C was then rinsed with ethyl acetate and the volatiles removed \textit{in vacuo}. To the resulting yellow foam was added dichloromethane (10.0 mL), triethylamine (0.2 mL, 1.30 mmol), and benzoic anhydride (120.1 mg, 3.00 mmol) along with several crystals of DMAP and allowed to stir at 21 °C overnight. The resulting oil was purified by flash chromatography (40:60, ethyl acetate / petroleum ether) to afford 57 mg (74%) of the title compound as a white solid; m.p. 175-178 °C; IR (neat, cm\(^{-1}\)) 1705, 1635, 1544, 1456, 1027; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 8.02-7.98 (m, 2H), 7.65-7.60 (m, 2H). 7.52-7.25 (m, 8H), 6.67 (br s, 1H), 5.63 (m, 1H), 4.84 (m, 1H), 2.31 (m, 1H). 2.17-1.62 (m, 5H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 167.8, 167.1, 134.2, 133.1, 131.3, 129.9, 129.6, 128.4, 128.3, 126.5, 78.4, 57.7, 31.9, 30.5, 21.5 ppm; nOe of the two methine hydrogens = 4.3%; HRMS m /z calculated for C\(_{19}\)H\(_{19}\)NO\(_3\) (M\(^+\)): 309.1365, found: 309.1355.
cis (2-Benzoyloxyl)-N-cyclopentyl benzamide

Following the procedure for the hydrogenolysis of hydrazine 281a, cis 1-hydroxy-2-(N,N-diphenylhydrazino)cyclopentane aa1 (222.4 mg, 0.83 mmol) was placed in the glass liner of a steel autoclave along with methanol (10 mL), (S)-(+)-10-camphor sulfonic acid (385.2 mg, 1.67 mmol) and 10% Pd/C (25.0 mg) and pressurized to 500 psi. The crude reaction mixture was then treated with methylene chloride (20 mL), triethylamine (0.58 mL), benzoic anhydride (393.1 mg) and several crystals of DMAP and allowed to stir overnight. Work-up and purification by flash chromatography (40:60, ethyl acetate / petroleum ether) yielded 210.1 mg (82%) of the title compound as a white solid; m.p. 169-172 °C; IR (neat, cm⁻¹) 1705, 1624, 1544, 1426, 1027; ¹H NMR (200 MHz, CDCl₃) δ 8.01-7.97 (m, 2H), 7.60-7.27 (m, 10H), 6.71 (br s, 1H), 5.72 (m, 1H), 4.89 (m, 1H), 2.90 (m, 1H), 2.14-1.72 (m, 5H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 167.7, 167.2, 134.3, 132.9, 131.2, 129.9, 129.7, 128.4, 128.3, 126.3, 72.8, 55.5, 30.2, 28.3, 20.2 ppm; nOe of the two methine hydrogens = 6.8%; HRMS m/z calculated for C₁₉H₁₉NO₃ (M⁺): 309.1365, found: 309.1367.
2,3-O-Isopropylidene-D-Erythronolactol

2,3-O-Isopropylidene-D-Erythronolactone 288 (9.56 g, 60.5 mmol) was added to a flame dried flask (500 mL) along with freshly distilled toluene (100 mL) under argon. The solution was cooled to -78 °C and DIBALH (60.5 mL, 1 M solution in toluene) was added and the reaction mixture stirred at this temperature for 4 hours. The reaction was quenched with methanol at -78 °C until gas evolution ceased. The solution was warmed to room temperature (21 °C) and saturated aqueous sodium potassium tartrate solution (100 mL) was added. This mixture was poured into a separatory funnel containing water and ethyl acetate (100 mL). The aqueous layer was extracted with ethyl acetate (3 X 100 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was purified by flash chromatography (50:50, diethyl ether / petroleum ether) to afford 6.87 g (71%) of the title compound as a white solid; IR (neat, cm⁻¹) 3356, 2950, 1590, 1498, 1284; ¹H NMR (200 MHz, CDCl₃) δ 5.39 (d, J = 1.6 Hz, 1H), 4.80 (dd, J = 1.6 Hz, J = 2.9 Hz, 1H), 4.54 (dt, J = 2.9 Hz, J = 4.9 Hz, 1H), 4.01 (br s, 2H), 2.25 (br s, 1H), 1.44 (s, 3H), 1.29 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 112.3, 101.8, 85.1, 79.9, 71.9, 26.1, 24.7 ppm; HRMS m/z calcd. for C₇H₁₂O₄ (M⁺): 160.0735, found: 160.0738.
2,3-O-Isopropylidene-4-N,N-di phenylhydrazone-1-butanol

2,3-O-Isopropylidene-D-Erythronolactol 289 (4.57 g, 28.5 mmol) in methanol (200 mL) was added to a round bottom flask (500 mL). A solution of Ph2NNH2 (5.26 g, 28.5 mmol) in methanol (100 mL) was added dropwise to this solution and the reaction was stirred at 21 °C for 4 hours. Concentration gave a slightly purple coloured oil which was purified by flash chromatography (5:95, diethyl ether / methylene chloride) to yield 6.78 g (73%) of the title alcohol as a faint yellow oil; IR (neat, cm⁻¹) 3349, 3048, 2917, 1592, 1491, 1298, 1056, 745, 698; ¹H NMR (200 MHz, CDCl₃) δ 7.41-7.32 (m, 4H), 7.18-7.06 (m, 6H), 6.41 (d, J = 7.3 Hz, 1H), 4.91 (dd, J = 7.3 Hz, J = 6.4 Hz, 1H), 4.37 (m, 1H), 3.53-3.39 (m, 2H), 2.09 (br s, 1H), 1.41 (s, 3H), 1.36 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 143.2, 133.8, 129.8, 124.6, 122.2, 78.6, 77.6, 61.5, 27.3, 24.9 ppm; HRMS m / z calcd. for C₁₉H₂₂N₂O₃ (M⁺): 326.1631, found: 326.1611.
Preparation of 2,3-O-Isopropyliden-4-N,N-diphenylhydrazone-1-butanol-thionocarbonate phenyl ester

![Chemical Structure](image)

2,3-O-Isopropyliden-4-carboxaldehyde-N,N-diphenylhydrazone-1-butanol 290 (2.22 g, 6.8 mmol) was added to a round bottom flask (25 mL) along with CH₂Cl₂ (40 mL) and pyridine (2.0 g, 2.03 mL, 25.2 mmol) the solution was cooled to -78 °C. Phenyl chlorothionoformate (1.29 g, 1.03 mL, 7.5 mmol) was added and the solution was stirred at room temperature (ca. 22 °C) for four hours. The resulting mixture was poured into a separatory funnel containing dilute aqueous HCl (50 mL) and ethyl acetate (100 mL). The aqueous layer was extracted with ethyl acetate (2x100 mL) and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. The product was purified by flash chromatography (silica gel, 20:80, diethyl ether / petroleum ether) to afford the title compound (67%) as a yellow oil; IR (neat, cm⁻¹) 3367, 3053, 2871, 1703, 1592, 1491, 1275, 1056, 743, 698; ¹H NMR (200 MHz, CDCl₃) δ 7.45-7.27 (m, 7H), 7.11-7.01 (m, 8H), 6.45 (d, J = 7.2 Hz, 1H), 4.87 (dd, J = 7.3 Hz, J = 6.2 Hz, 1H). 4.39 (m, 1H), 3.69-3.51 (m, 2H), 1.41 (s, 3H), 1.37 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 194.4, 153.3, 144.0, 133.7, 129.8, 129.4, 126.6, 124.5, 122.1, 121.7, 88.7, 78.9, 63.8, 28.1, 24.3 ppm; HRMS m/z calcd. for C₂₅H₂₆N₂O₄S (M⁺): 462.1990, found: 462.1990.
2-Hydroxy-Cyclopentanone-(N,N-diphenylhydrazone)

2-(N,N-diphenylhydrazino) cyclopentanone 275 (57 mg, 0.21 mmol) was added to a round bottom flask (10 mL) and dissolved in methylene chloride (4 mL). Magnesium dibromide etherate (56 g, 0.21 mmol) was added and the reaction mixture was stirred at 21 °C for 2 hours. The resulting cloudy yellow solution became clear when methanol (5 mL) was added over. The resulting mixture was poured into a separatory funnel containing water (5 mL) and diethyl ether (10 mL). The aqueous layer was extracted with diethyl ether (3X 5 mL), and the combined organic layers were washed with brine, dried and concentrated in vacuo to afford 54 mg (97%) of the title compound as a yellow oil; IR (neat, cm⁻¹) 3366, 2950, 1590, 1498, 1284; ¹H NMR (200 MHz, CDCl₃) δ 7.34-7.25 (m, 4H), 7.09-7.03 (m, 6H), 4.47 (t, J = 7.1 Hz, 1H), 3.11 (br s, 1H), 2.13-2.11 (m, 1H), 1.86-1.66 (m, 3H), 1.57-1.46 (m, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 168.7, 147.5, 129.1, 123.5, 121.9, 74.5, 32.6, 29.1, 19.8 ppm; HRMS m/z calcd. for C₁₇H₁₈N₂O (M⁺): 266.1419, found: 266.1390.

3-Butenyl-1-Tosylate

3-Buten-1-ol 299 (1.47 g, 20.4 mmol) was added to a flame dried flask (100 mL) along with freshly distilled methylene chloride (50 mL) and pyridine
(1.74 g, 22.0 mmol). The solution was cooled to 0 °C and p-toluenesulfonyl chloride (4.19 g, 22.1 mmol) was added and the reaction mixture stirred at room temperature for 12 hours. The reaction was quenched with aqueous HCl (30 mL). This mixture was poured into a separatory funnel containing water and methylene chloride (100 mL). The aqueous layer was extracted with methylene chloride (2 X 100 mL), dried over anhydrous magnesium sulfate and concentrated. The resulting oil was purified by flash chromatography (50:50, diethyl ether / petroleum ether) to afford 4.38 g (95%) of the title compound as a colourless oil; IR (neat, cm⁻¹) 3033, 2850, 1845, 1644, 1478, 1420, 1355, 1188, 910, 723; ¹H NMR (200 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 5.69-5.63 (m, 1H), 5.11-5.04 (m, 1H), 4.06 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H), 2.38 (dt, J = 6.8 Hz, J = 2.9 Hz, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 148.9, 144.8, 134.6, 130.1, 128.1, 117.5, 58.3, 33.0, 21.7 ppm; HRMS m / z calcd. for C₁₁H₁₄O₂S (M⁺): 226.0664, found: 226.0659.

But-3-enyl-butyl-amine

3-Butenyl-1-tosylate 300 (3.61 g, 16 mmol) was added to a round bottom flask (100 mL) equipped with a reflux condenser along with butylamine (20 mL). The mixture was heated to reflux for ca. 2 days. The excess butylamine was removed by rotary evaporation and the residue diluted with 10% NaOH (400 mL) and extracted with diethyl ether (3X20 mL). The combined organic layers were then washed with brine (2X 20 mL), dried over anhydrous magnesium sulfate.
and to yield a yellow oil. Distillation (Kugelrohr, 76-80 °C, 10 mmHg) afforded 1.56 g (77%) of the title compound as a colourless liquid; IR (CHCl₃, cm⁻¹) 3325, 2544, 1645, 1515, 1418, 1156, 1078, 911, 890, 688; ¹H NMR (200 MHz, CDCl₃) δ 5.82-5.59 (m, 1H), 5.10-4.91 (m, 2H), 2.67-2.49 (m, 4H), 2.25-2.15 (m, 2H), 1.80 (br s, 1H), 1.49-1.20 (m, 4H), 0.87 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 149.5, 116.0, 49.3, 48.6, 34.0, 31.9, 20.2, 13.7 ppm; HRMS m/z calcd. for C₈H₁₇N (M⁺): 127.1362, found: 127.1355.

N-Butyl-N-3-butenyl-2-benzothiazolesulfenamide

![Chemical Structure](image)

2,2'-Dithiobis(benzothiazole) (2.09 g, 6.3 mmol) was added to a pear-shaped bottom flask (100 mL) along with freshly distilled methylene chloride (15 mL) and one drop of pyridine. The solution was heated to reflux, sulfuryl chloride (864 mg, 514 µL, 6.4 mmol) was added and the reaction mixture stirred for ca. 10 min. The resultant sulfinyl chloride solution was added dropwise by syringe to a round bottom flask (250 mL) containing but-3-enyl-butyl-amine 301 (2.91g, 12.9 mmol) and triethylamine (1.5 equiv) in diethyl ether (40 mL) maintained at 0 °C. The mixture was allowed to warm to room temperature and left to stir for an additional 1-2 h, at which time the mixture was diluted with diethyl ether (50 mL). This mixture was poured into a separatory funnel the layers were separated. The aqueous layer was extracted with diethyl ether(2 X 50 mL), and the organic layers were combined and washed with brine (50 mL), dried over anhydrous...
magnesium sulfate and concentrated. The resulting oil was purified by flash chromatography (20:80, ethyl acetate / petroleum ether) to afford 2.26 g (60%) of the title compound as a pale yellow oil; IR (CHCl₃, cm⁻¹) 3423, 2749, 2247, 1218, 1167, 1091, 913, 732; ¹H NMR (200 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 5.59-5.81 (m, 1H), 4.93-5.08 (m, 2H), 3.03-3.12 (m, 4H), 2.04-2.20 (m, 2H), 1.20-1.44 (m, 4H), 0.93 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 177.9, 154.9, 137.9, 136.0, 125.7, 123.5, 121.5, 120.8, 116.0, 58.5, 57.9, 32.0, 31.5, 20.3, 13.9 ppm; HRMS m / z calcd. for C₁₅H₂₀N₂S₂ (M⁺): 292.1068, found: 292.1074.

N-(tert-Butoxycarbonyl)-L-proline

![Structural formula of N-(tert-Butoxycarbonyl)-L-proline](image)

L-proline 310 (1.15 g, 10.0 mmol) was added to a flame dried flask (50 mL) along with tert-butanol (8 mL), water (10 mL) and sodium hydroxide (0.44 g, 10.1 mmol). Di-tert-butyl dicarbonate (2.29 mL, 10 mmol) was added and the reaction mixture stirred at room temperature for 12 hours. This mixture was poured into a separatory funnel containing water (10 mL) and ethyl acetate (30 mL). The aqueous layer was extracted with ethyl acetate (3 X 25 mL), dried over anhydrous magnesium sulfate and concentrated. The product was recrystallized from diethyl ether to afford 1.20 g (56%) of the title compound as a white powder, mp = 132-134 °C; IR (CHCl₃, cm⁻¹) 3423, 2949, 2247, 1644, 1418, 1167, 1091, 913, 732; ¹H NMR (200 MHz, CDCl₃) δ 10.3 (br s, 1H), 4.38-4.18 (m, 1H), 3.52-3.29 (m, 2H), 2.39-2.20 (m, 1H), 2.06-1.82 (m, 3H), 1.48 (s, 9H) ppm; ¹³C NMR
\[
(50 \text{ MHz, CDCl}_3) \delta 180.01, 155.3, 79.9, 60.9, 46.9, 29.5, 28.4, 24.4 \text{ ppm; HRMS } m / z \text{ calcld. for } C_{10}H_{17}NO_4 (M^+) \text{: } 215.1158, \text{ found: } 215.1164. \text{ Anal. Calcld for } C_{10}H_{17}NO_4: \text{ C, 55.80; H, 7.96; N, 6.51. Found: C, 55.91; H, 8.02; N, 6.62.}
\]

\[\text{(S)-N-\text{(tert-Butoxycarbonyl)-2-(hydroxymethyl)-pyrrolidine}}\]

Boc-L-proline 311 (10.1 g, 47.1 mmol) was added to a round bottom flask (500 mL) along with freshly distilled THF (250 mL). Borane-methyl sulfide complex (26 mL of a 2M THF solution, 52 mmol) was added dropwise to this solution over the course of 45 minutes with stirring. The reaction mixture was heated to reflux for 45 minutes, then cooled to room temperature. The reaction concentrated, then dissolved in a mixture of methylene chloride (300 mL) and water (100 mL). This mixture was poured into a separatory funnel. The organic layer was isolated, washed with aqueous saturated sodium bicarbonate (50 mL), then brine (50 mL), dried over anhydrous magnesium sulfate and concentrated to afford 8.04 g (85%) of the title compound as a white solid, mp 56-58 °C; IR (CHCl\textsubscript{3}, cm-1) 3373, 2979, 1667, 1369, 1206, 1167, 1045; 1H NMR (200 MHz, CDCl\textsubscript{3}) \delta 3.98-3.93 (m, 1H), 3.62-3.57 (m, 2H), 3.48-3.44 (m, 1H), 3.37-3.33 (m, 1H), 2.04-2.01 (m, 1H), 1.85-1.81 (m, 2H), 1.59-1.56 (m, 1H) 1.47 (s, 9H) ppm; 13C NMR (50 MHz, CDCl\textsubscript{3}) \delta 156.6, 80.0, 67.1, 60.0, 47.4, 28.5, 28.4, 23.9 ppm; HRMS m / z calcld. for C\textsubscript{10}H\textsubscript{19}NO\textsubscript{3} (M+): 201.1365, found: 201.1369. Anal. Calcld for C\textsubscript{10}H\textsubscript{19}NO\textsubscript{3}: C, 59.68; H, 9.52; N, 6.96. Found: C, 59.48; H, 9.34; N, 6.95.
N-(tert-Butoxycarbonyl)-L-proline methyl ester

![Chemical Structure](image)

Boc-L-proline **311** (0.72 g, 3.38 mmol) was added to a round bottom flask (50 mL) along with freshly distilled DMF (15 mL) and sodium bicarbonate (0.85g, 10 mmol). Methyl iodide (0.23 mL, 3.72 mmol) was injected into the flask and the reaction mixture was stirred at room temperature for five days. This mixture was poured into a separatory funnel containing water (10 mL) and ethyl acetate (30 mL). The aqueous layer was extracted with ethyl acetate (3 × 25 mL), dried over anhydrous magnesium sulfate and concentrated. The product was recrystallized from diethyl ether to afford 0.77 g (100%) of the title compound as a white solid, mp = 78-79 °C; IR (CHCl₃, cm⁻¹) 3422, 2934, 2233, 1697, 1427, 1165, 1123, 1091, 911, 722; ¹H NMR (200 MHz, CDCl₃) δ 4.15 and 4.08 (m, 1H), 3.57 (s, 3H), 3.48-3.25 (m, 2H), 2.15-1.97 (m, 1H), 1.87-1.71 (m, 3H), 1.29 and 1.25 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 174.0, 154.3, 80.1, 59.9, 46.1, 43.2, 31.5, 29.5, 22.0 ppm; HRMS m / z calcd. for C₁₁H₁₉NO₄ (M⁺): 229.1314, found: 229.1323.
(2S)-N-(tert-Butoxycarbonyl)pyrrolidine-2-carboxaldehyde

Method A. N-Boc-proline methyl ester 313 (4.3 g, 18.8 mmol) was added to a round bottom flask (100 mL) along with toluene (10 mL). The solution was cooled to -78 °C, DIBALH (25 mL, 1.5 M solution in toluene, 37.6 mmol) was added and the reaction mixture stirred at this temperature for 1 hour. An additional 15 mL of DIBAL was added and reaction mixture was stirred for another 2 hours. The reaction was quenched with methanol (15 mL) at -78 °C until gas evolution ceased. The solution was warmed to room temperature (21 °C) and saturated aqueous sodium potassium tartrate solution (20 mL) was added. This mixture was poured into a separatory funnel containing water and ethyl acetate (50 mL). The aqueous layer was extracted with ethyl acetate (3 X 20 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, ethyl acetate / petroleum ether) under aspirator vacuum to afford 2.84 g (76%) of the corresponding aldehyde as a colourless oil which was used in the next step without further purification. Distillation (165 °C (0.6 Torr)) of a small portion provided analytically pure product; IR (CHCl₃, cm⁻¹) 2982, 2870, 2805, 2710, 1734, 1686, 1402, 1369, 1165; ¹H NMR (200 MHz, CDCl₃) δ 9.54 and 9.45 (d, J = 1.2 and 8 Hz, 1H), 4.20 and 4.04 (m, 1H), 3.50 (m, 1H), 2.11 and 1.97 (m, 2H), 1.83 (m, 2H), 1.46 and 1.42 (s, 9H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 203.5, 155.5, 80.1, 58.4, 46.4, 29.7, 28.4, 23.6 ppm; HRMS m/z calcd. for C₁₅H₁₇NO₃ (M⁺): 199.1208, found: 199.1215. Anal. Calcd for C₁₀H₁₇NO₃: C, 60.28; H, 8.60; N, 7.03. Found: C, 60.27; H, 8.69; N, 6.99.
Method B. Oxalyl chloride (5.3 mL, 61 mmol) was added to a round bottom flask (500 mL) along with methylene chloride (125 mL). The solution was cooled to –63 °C and DMSO (7.9 mL, 111 mmol) dissolved in methylene chloride (25 mL) was added dropwise over a 10 minutes period. After 10 minutes, a solution of (S)-N-((tert-butoxycarbonyl)-2-(hydroxymethyl)-pyrrolidine 312 (10.16 g, 50.5 mmol) dissolved in methylene chloride (50 mL) was added dropwise over a 15 minutes period. The reaction mixture was stirred for 30 minutes. Diisopropylethylamine (35 mL, 202 mmol) was added and the mixture was allowed to warm to room temperature over a 30-minutes period. This mixture was poured into a separatory funnel and washed with aqueous 5% HCl (3x50 mL), water (3x 50 mL), then brine (50 mL), dried over anhydrous magnesium sulfate and concentrated to afford 9.45 g (94%) of the title compound as an oil that was stored in a freezer and used without further purification. The product coeluted on TLC and was spectroscopically identical with a product sample prepared by method A.

(2S)-N-((tert-Butoxycarbonyl)pyrrolidine-2carboxaldehyde N,N-diphenylhydrazone

(2S)-N-((tert-Butoxycarbonyl)pyrrolidine-2carboxaldehyde 314 (3.98 g, 20.0 mmol) in methanol (200 mL) was added to a round bottom flask (500 mL). A solution of Ph₂N₂NH₂ (3.69 g, 20.0 mmol) in methanol (50 mL) was added dropwise to this solution and the reaction was stirred at 21 °C for 2 hours.
Concentration gave a slightly purple coloured oil which was purified by flash chromatography (10:90, diethyl ether / petroleum ether) to yield 5.47 g (75%) of the title alcohol as a faint yellow oil; IR (neat, cm⁻¹) 2963, 2877, 2245, 1689, 1592, 1488, 1356, 1155, 915; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.33 (m, 4H), 7.24-7.05 (m, 6H), 6.41 (br s, 1H), 4.39 (br s, 1H), 3.46-3.35 (m, 2H), 2.13-2.05 (m, 2H), 1.83-1.77 (m, 2H), 1.34 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 143.9, 138.7, 129.7, 124.1, 122.3, 79.3, 58.4, 46.4, 30.7, 28.4, 23.6; HRMS m / z calcd. for C₂₂H₂₇N₃O₂ (M⁺): 365.2104, found: 365.2092. Anal. Calcd for C₂₂H₂₇N₃O₂: C, 72.30; H, 7.44; N, 11.49. Found: C, 72.45; H, 7.42; N, 11.66.

(2S)- pyrrolidine-2carboxaldehyde N,N-diphenylhydrazone

![316](image)

(2S)-N-(tert-Butoxycarbonyl)pyrrolidine-2carboxaldehyde N,N-diphenylhydrazone 315 (1.61 g, 4.43 mmol) was added to a round bottom flask (100 mL) along methylene chloride (45 mL) and trifluoroacetic acid (3.42 mL, 44.3 mmol). The reaction mixture was heated was stirred at room temperature for ca. 30 minutes. The reaction mixture was concentrated, then dissolved in diethyl ether (30 mL). This mixture was poured into a separatory funnel containing 5% aqueous sodium hydroxide (10mL). The organic layer was isolated, washed with aqueous saturated sodium bicarbonate (5 mL), then brine (5 mL), dried over anhydrous magnesium sulfate and concentrated. The resulting oil was purified by
flash chromatography (30:70, diethyl ether / petroleum ether) to afford 1.02 g (87%) of the title compound as a yellow oil; IR (neat, cm\(^{-1}\)) 2919, 1715, 1591, 1491, 1296, 1155, 1019, 911; \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 9.11 (br s, 1H), 7.41-7.29 (m, 4H), 7.21-6.99 (m, 6H), 6.35 (d, \(J = 4.4\) Hz, 1H), 4.37-4.27 (m, 1H), 3.36-3.19 (m, 2H), 2.19-1.85 (m, 4H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 162.2, 142.7, 129.8, 124.9, 122.1, 59.7, 44.8, 29.0, 23.4; HRMS \(m/z\) calcd. for C\(_{17}\)H\(_{19}\)N\(_3\) (M\(^+\)): 265.1579, found: 265.1559. Anal. Calcd for C\(_{17}\)H\(_{19}\)N\(_3\): C, 76.95; H, 7.22; N, 15.83. Found: C, 76.65; H, 7.11; N, 16.01.

\(\delta\)-Valerolactol

\[\text{OH} \]
\[
\text{351}
\]

\(\delta\)-Valerolactone 350 (3 mL, 32.3 mmol) was added to a round bottom flask (250 mL) flame dried under argon, along with freshly distilled toluene (50 mL). The solution was cooled to -78 °C and DIBAL (23 mL, 1.5 M solution in toluene, 34.5 mmol) was added. After four hours of stirring at -78 °C the reaction was quenched with methanol until gas evolution ceased. The solution was warmed to room temperature and aqueous sodium potassium tartrate solution (50 mL) was added. The mixture was stirred vigorously at room temperature until two clear layers were formed (ca. 30 min.). The resulting mixture was poured into a separaratory funnel containing water (50 mL) and ethyl acetate (60 mL). The aqueous layer was extracted with ethyl acetate (2X 50 mL) and the combined organic layers were washed brine, dried over magnesium sulfate, filtered through a pad of silicagel and concentrated in vacuo to afford the title compound (2.59 g,
78%) as a faint yellow oil. IR (neat) 3374, 2911, 1449, 911, 736 cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 4.90-4.81 (m, 1H), 4.65 (br s, 1H), 3.95-3.88 (m, 1H), 3.50-3.40 (m, 1H), 1.85-1.62 (m, 2H), 1.56-1.32 (m, 4H); \(^1\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 94.2, 63.6, 31.7, 25.0, 20.1; HRMS \(m/z\) calcd. for C\(_5\)H\(_{10}\)O\(_2\) (M\(^+\)) 102.0681, found: 102.0683.

5-Hydroxypentanal-\(N,N\)-diphenylhydrazone

\[\text{Ph}_2\text{NN} \]
\[\text{________OH} \]
\[352 \]

\(\delta\)-Valerolactol 351 (2.58 g, 25.3 mmol) was added to a round bottom flask (100 mL) along with methanol (30 mL). A solution of diphenylhydrazine (4.65 g, 25.3 mmol) in methanol (15 mL) was added and the reaction mixture was stirred at room temperature (ca. 22 °C) overnight. Concentration \textit{in vacuo} gave a purple oil which was purified by flash cromatography (50:50, diethyl ether / petroleum ether) to afford 5.28 g of the title compound (78%) as a light yellow oil; IR (neat) 3380, 3044, 2917, 1592, 1492, 1303, 1090, 1066 cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.45-7.29 (m, 4H), 7.20-6.98 (m, 6H), 6.52 (t, \(J = 6.7\) Hz, 1H), 3.72-3.61 (m, 2H), 2.42-2.33 (m, 2H), 1.71-1.53 (m, 4H), 1.45 (br s, 1H); \(^1\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 144.2, 139.6, 129.6, 123.8, 122.2, 62.3, 32.2, 32.0, 23.0; HRMS \(m/z\) calcd. for C\(_{17}\)H\(_{20}\)N\(_2\)O (M\(^+\)) 268.1571, found: 268.1568.
Butanal-(N,N-diphenylhydrazone)-4-carboxaldehyde

5-Hydroxypentanal-N,N-diphenylhydrazone 352 (3.09 g, 11.5 mmol) was added to a round bottom flask (50 mL) flame dried under argon along with DMSO (20 mL) and Et₃N (12.9 mL, 92.8 mmol). A SO₃-pyridine/DMSO suspension (5.4 g of SO₃-pyridine, 34.5 mmol in 6 mL DMSO stirred separately until they form a homogenous mixture) was added dropwise to this mixture with stirring. After 15 min. at room temperature (ca. 22 °C), TLC analysis indicated the consumption of the alcohol. The resulting mixture was poured into a separatory funnel containing water (100 mL) and ethyl acetate (150 mL). The aqueous layer was extracted with ethyl acetate (2x100 mL) and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. The resulting oil was purified by flash chromatography (silica gel, 30:70, diethyl ether / petroleum ether) to afford the title compound (2.32 g, 75%) as a light yellow oil; IR (neat) 3046, 2896, 1723, 1595, 1491, 1303, 1209, 1069 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 9.77 (t, J = 1.5 Hz, 1H), 7.40-7.29 (m, 4H), 7.16-7.04 (m, 6H), 6.49 (t, J = 5.1 Hz, 1H), 2.51 (dt, J₁ = 7.3, J₂ = 1.5 Hz, 2H), 2.36-2.27 (m, 2H), 1.86 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 202.2, 144.0, 137.9, 129.6, 123.9, 122.2, 43.1, 31.8, 19.2; HRMS m / z calcd. for C₁₇H₁₈N₂O (M⁺) 266.1415, found: 266.1411.
5,6-Epoxyhexanal-\(N,N\) Diphenylhydrazone

\[
\begin{array}{c}
\text{Ph}_2\text{NN} \\
\text{O}
\end{array}
\]

DMSO (7 mL) was added to a three neck round bottom flask (100 mL) equipped with a magnetic stirring bar, flame dried and cooled under argon followed by sodium hydride (293 mg, as a 60\% dispersion in oil, 7.32 mmol). The mixture was stirred at room temperature (ca. 22 °C) until the gas evolution stopped (ca. 5-10 min.), heated (60 °C) for one hour then cooled to room temperature. Dry THF (17 mL) was added to the grey solution which was then cooled to -10 °C. Trimethylsulfonium iodide (1.59 g, 7.32 mmol) was added followed by aldehyde 353 (1.624 g, 6.10 mmol) dissolved in THF (2 mL). The cloudy orange solution was stirred at -10 °C for 30 min. The reaction was quenched with water (2 mL) and the mixture poured into a separatory funnel over water (100 mL) and diethyl ether (100 mL). The aqueous layer was extracted with diethyl ether (3x25 mL); the combined organic layers were washed with brine (20 mL), dried over MgSO\(_4\), then filtered and concentrated; the resulting oil was purified by flash chromatography (silica gel, 20:80, diethyl ether / petroleum ether) to afford 0.51 g (30\%) of the title compound as a light yellow oil, along with 0.85 g (52\%) recovered starting material. IR (neat) 3046, 2935, 1594, 1490, 1454, 1302, 1210, 1172, 1092, 911, 837, 742 cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.41-7.33 (m, 4H), 7.17-7.07 (m, 6H), 6.53 (t, 1H, \(J = 5.15\) Hz), 2.94-2.91 (m, 1H), 2.77-2.73 (m, 1H), 2.49-2.45 (m, 1H), 2.40-2.30 (m, 2H), 1.74-1.56 (m, 4H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 144.1, 138.8, 129.6, 123.8, 122.2, 51.9, 47.0, 32.2, 31.8, 23.2; HRMS \(m/z\) calcd. for C\(_{16}\)H\(_{20}\)N\(_2\)O (M\(^+\)) 280.1576, found: 280.1585.
trans 5-Hydroxy-8-phenyloct-7-eneal-\((N,N\) Diphenylhydrazone)

\[
\begin{align*}
\text{Ph}_2\text{NN} & \quad \text{OH} \\
\quad & \quad \text{Ph} \\
\text{356}
\end{align*}
\]

β-Bromostyrene (227 μL, 1.77 mmol) was added to a round bottom flask (50 mL) equipped with a magnetic stirring bar, flame dried and cooled under argon along with THF (8 mL). The mixture was cooled to -78 °C and sec-BuLi (2.6 mL of a 1.24 M solution in cyclohexane, 3.21 mmol) was added dropwise and the mixture was allowed to stir at -78 °C for 30 minutes. Lithium 2-thienylcyanocuprate (7.1 mL of a 0.25M solution in THF, 1.77 mmol) was added dropwise and the colour changed from yellow to dark purple. After 30 min. 5,6-epoxyhexanal-\(N,N\) diphenylhydrazone 354 (452 mg, 1.61 mmol) was added as a solution in THF (1 mL) with a subsequent wash of THF (2 mL). The mixture was allowed to warm to room temperature (ca. 22 °C) and the colour changed gradually to dark, cloudy green. After 2:30 min of stirring at room temperature the reaction was quenched with a solution of 90% NH₄Cl / 10% NH₄OH (10 mL). The mixture was stirred vigorously for ca. 30 min. and then transferred to a separatory funnel. Brine (10 mL) was added and the blue aqueous layer was extracted with diethyl ether (3x25 mL); the combined organic layers were washed with brine (20 mL), dried over MgSO₄, then filtered and concentrated in vacuo; the resulting oil was purified by flash chromatography (silica gel, 50:50, diethyl ether / petroleum ether) to afford 385 mg (63%) of product as a light yellow oil. IR (neat) 3395, 2932, 1593, 1493, 1301, 1210, 748, 697 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.49-7.18 (m, 9H), 7.15-7.02 (m, 6H), 6.55-6.40 (m, 2H), 6.28-6.12 (m, 1H), 3.79-3.67 (m, 1H), 2.48-2.18 (m, 4H), 1.79-1.41 (m, 4H), OH proton not observed; ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 139.5, 133.1, 129.6, 128.5, 127.3, 127.2, 126.2, 126.1, 123.8, 122.3, 70.8, 41.1, 36.2, 32.5, 23.1; HRMS m/
z calcd. for C\textsubscript{26}H\textsubscript{28}N\textsubscript{2}O (M+) 384.2203, found: 384.2221. Anal. Calcd for C\textsubscript{26}H\textsubscript{28}N\textsubscript{2}O: C, 81.21; H, 7.34; N, 7.28. Found: C, 81.32; H, 7.50; N, 7.06.

trans 5-Bromo-8-phenyloct-7-eneal-\(\textit{N},\textit{N}\) Diphenylhydrazone

\[\begin{array}{c}
\text{Ph}_2\text{NN} \\
\text{Br} \\
\text{Ph} \\
\end{array}\]

357

Triphenylphosphine (41 mg, 0.15 mmol) was added to a round bottom flask (25 mL) flame dried under argon along with methylenechloride (1.5 mL) and Et\textsubscript{3}N (60 \textmu L, 0.45 mmol). The solution was cooled to 0 °C and bromine (8 \textmu L 0.5 mL methylenechloride, 0.15 mmol) was added to this mixture with stirring. trans 5-hydroxy-8-phenyloct-7-eneal-\(\textit{N},\textit{N}\) diphenylhydrazone \textbf{356} (60 mg, 0.15 mmol) was added and the solution warmed to room temperature (ca. 22 °C). After 15 min. of stirring at this temperature, TLC analysis indicated the consumption of the alcohol. The resulting mixture was poured into a separatory funnel containing aqueous NaHCO\textsubscript{3} (10 mL) and methylenechloride (10 mL). The aqueous layer was extracted with methylenechloride (3x10 mL) and the combined organic layers were washed with brine, dried over MgSO\textsubscript{4} and concentrated \textit{in vacuo}. The resulting oil was purified by flash chromatography (silica gel, 3:97, diethyl ether / petroleum ether) to afford the title compound (68 mg, 97%) as a brown oil; IR (neat) 3046, 2896, 1723, 1595, 1491, 1303, 1209, 1069 cm-1; 1H NMR (200 MHz, CDCl\textsubscript{3}) \(\delta\) 9.77 (t, \(J = 1.5 \text{ Hz}, 1\text{H}\)), 7.40-7.29 (m, 4\text{H}), 7.16-7.04 (m, 6\text{H}), 6.49 (t, \(J = 5.1 \text{ Hz}, 1\text{H}\)), 2.51 (dt, \(J_1 = 7.3, J_2 = 1.5 \text{ Hz}, 2\text{H}\)), 2.36-2.27 (m, 2\text{H}), 1.86 (m, 2\text{H}); 13C NMR (50 MHz, CDCl\textsubscript{3}) \(\delta\) 202.2, 144.0, 137.9, 129.6, 123.9, 122.2, 43.1, 31.8, 19.2; HRMS \textit{m/z} calcd. for C\textsubscript{17}H\textsubscript{18}N\textsubscript{2}O (M+) 266.1415, found: 266.1411.
General Procedure - Radical Syringe Pump Reactions:

A round bottom flask, dried and cooled under argon, equipped with a reflux condenser, was charged with benzene (1-3 mL), Bu$_3$SnH (1 equiv.) and AIBN (0.25 equiv.). Argon was flushed through the solution for 30 minutes. After this time, the solution was taken up by syringe.

In a separate two-necked round bottom flask, dried and cooled under argon, equipped with a condenser and a rubber septum, was charged with the appropriate substrate followed by freshly distilled benzene (enough to make a 0.005 M solution). To this solution was added AIBN (0.10 equiv.), and argon was flushed through for 30 minutes. The needle of the syringe was then introduced into the system via the rubber septum. The reaction mixture was heated to reflux and the contents of the syringe were added at a setting of 1 mL / hour. After the addition was completed, the reaction mixture was refluxed for an additional hour. The mixture was cooled to room temperature and concentrated in vacuo before being purified by flash column chromatography.

General Procedure for SmI$_2$/HMPA Reactions:

A Schlenk flask, flame dried and cooled under argon, was charged with the appropriate substrate followed by THF (enough to make a 0.025M solution) and HMPA (1.0-2.0 mL per mmol of substrate). The system was degassed using three freeze pump thaw cycles, introducing argon after the last cycle. After this
time, Sml₂ (4.5 equiv. as a 0.1M solution in THF) was then added yielding a deep purple solution. The solution was stirred at room temperature for 2 hours. The reaction was quenched with aqueous saturated sodium bicarbonate. The mixture was transferred into a separatory funnel containing water and diethyl ether. The aqueous layer was extracted three times with diethyl ether. The combined organic extracts were washed with brine, dried and concentrated in vacuo. The resulting oils were purified by flash chromatography.

cis N-Diphenylamino-2-benzyl-hexahydro-cyclopenta[b]pyrrole 359 and trans 1-(trans 3-phenyl-2-propenyl)-2-(N,N-diphenylhydrazino)-cyclopentane 362

Following the general procedure for the syringe pump radical reactions, bromide 357 (72 mg, 0.17 mmol) was placed in a three neck round bottom flask (25 mL) equipped with a reflux condenser, followed by benzene (8 mL), and was treated with Bu₃SnH (55 µL, 0.18 mmol) and AIBN (7 mg). The reaction mixture was refluxed for two hours then concentrated under reduced pressure. The residue was dissolved in diethyl ether (4 mL) and stirred at 21 °C with saturated aqueous potassium fluoride solution (4 mL). Filtration, extraction with diethyl ether, drying over magnesium sulfate and concentration gave a crude mixture which was analyzed by ¹H NMR spectroscopy to determine the isomers ratios. Following this, the resulting oil was purified by flash chromatography (silica gel,
3:97, diethyl ether / petroleum ether) to afford the tandem (35 mg, 55%) and the cis monocyclized (8 mg, 12%) isomers as clear oils.

Isomer 359: IR (neat) 2952, 2862, 1593, 1492, 1117, 1072, 909, 763 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 7.49-7.19 (m, 8H), 7.17-6.96 (m, 7H), 3.29-3.22 (m, 2H), 2.98-2.92 (m, 1H), 2.53-2.48 (m, 2H), 2.15-2.09 (m, 1H), 1.95-1.85 (m, 3H), 1.61-1.49 (m, 3H), 1.25-1.19 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) 139.9, 129.0, 128.9, 128.8, 128.4, 128.2, 126.0, 125.8, 65.0, 64.9, 39.6, 37.5, 36.6, 33.9, 31.2, 24.1; HRMS m/z calcd. for C₂₆H₂₃N₂ (M⁺) 368.2254, found: 368.2263.

Isomer 362: IR (neat) 3024, 2952, 1588, 1495, 1272, 966, 748, 693 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 7.31-7.05 (m, 13 H), 6.93 (m, 2H), 6.27 (d, J = 15.8 Hz, 1H), 6.10 (dt, J = 15.8 Hz, J = 7.2 Hz, 1H), 3.92 (br s, 1H), 3.16-3.14 (m, 1H), 2.16-2.13 (dd, J = 7.3 Hz, J = 7.3 Hz, 2H), 2.04-1.95 (m, 2H), 1.81-1.75 (m, 1H), 1.68-1.59 (m, 2H), 1.35-1.28 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) 147.8, 137.5, 131.7, 129.2, 128.9, 128.4, 126.9, 125.9, 122.0, 120.3, 63.0, 44.0, 37.9, 31.6, 30.7, 23.6; nOe of the two hydrogens (H₁, H₂) = 0.8%; HRMS m/z calcd. for C₂₆H₂₃N₂ (M⁺) 368.2254, found: 368.2268.

1-(trans 3-phenyl-2-propenyl)-2-(N,N-diphenylhydrazino)-cyclopentane cis

![Chemical structure diagram]

363

Following the general procedure for Sml₂/HMPA, bromide 357 (72 mg, 0.17 mmol) was placed in a dry round bottom flask (25 mL) followed by THF (5
mL). The mixture was treated with HMPA (0.3 mL) and SmI₂ (3.5 mL as a 0.1 M solution in THF). After work-up and purification of the reaction mixture, compound T9 (47 mg, 75%) was isolated as a pale yellow oil: IR (neat) 3054, 2972, 1578, 1497, 1252, 988, 738, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 7.31-7.19 (m, 10 H), 7.12-7.05 (m, 3H), 6.93 (m, 2H), 6.43 (d, J = 15.8 Hz, 1H), 6.18 (dt, J = 15.8 Hz, J = 7.9 Hz, 1H), 4.09 (br s, 1H), 3.34-3.31 (m, 1H), 2.40-2.37 (dd, J = 7.9 Hz, J = 6.6 Hz, 2H), 2.04-1.97 (m, 1H), 1.96-1.68 (m, 4H), 1.66-1.60 (m, 1H), 1.59-1.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) 147.8, 137.5, 130.5, 129.8, 128.9, 128.4, 127.0, 125.9, 121.9, 120.2, 58.4, 44.0, 32.8, 30.2, 29.5, 22.3; nOe of the two hydrogens (H₁, H₂) = 0.8%; HRMS m / z calcd. for C₂₆H₂₈N₂(M⁺) 368.2254, found: 368.2262.

2-(Hydroxymethyl)benzaldehyde

![Diagram](image)

Phtalide 390 (2.68 g, 20 mmol) was added to a round bottom flask (250 mL) along with freshly distilled toluene (50 mL). The solution was cooled to -78 °C and DIBAL (21 mL of a 1.0 M solution in toluene, 21 mmol) was added. After two hours of stirring at -78 °C the reaction was quenched with methanol until gas evolution ceased. The solution was warmed to room temperature and aqueous sodium potassium tartrate solution (50 mL) was added. The mixture was stirred vigorously at room temperature until two clear layers were formed (ca. 30 min.). The resulting mixture was poured into a separartory funnel containing water (50 mL) and ethyl acetate (60 mL). The aqueous layer was extracted with ethyl
acetate (2x50 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtered through a pad of silicagel and concentrated in vacuo to afford an inseparable mixture (38:62 by GCMS and ¹H NMR) of isomers 395 and 396 (2.12 g, 78%) as a faint yellow oil. IR (neat) 3611, 3381, 2978, 1700, 1449, 1105, 911, 766 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 10.5 (s, 1H), 7.99-7.79 (m, 4H), 5.06 (s, 2H), OH not observed for isomer 395) δ 7.99-7.79 (m, 4H), 6.50 (d, J = 8.4 Hz, 1H), 5.33 (br s, 2H), 3.19 (d, J = 8.4 Hz, 1H) for isomer 396; ¹³C NMR (50 MHz, CDCl₃) δ 191.0, 141.8, 137.6, 134.7, 129.9, 129.8, 129.1, 127.7, 105.8, 65.1; HRMS m/z calcd. for C₈H₈O₂ (M⁺) 136.0524, found: 136.0519.

2-(Hydroxymethyl)benzaldehyde N,N-Diphenylhydrazone

2-(Hydroxymethyl)benzaldehyde 395 (2.00 g, 14.7 mmol) was added to a round bottom flask (100 mL) along with methanol (15 mL). A solution of diphenylhydrazone (2.70 g, 14.7 mmol) in methanol (10 mL) was added and the reaction mixture was stirred at room temperature (ca. 22 °C) for four hours. Concentration in vacuo gave a purple oil which was purified by flash chromatography (silica gel, 50:50, diethyl ether / petroleum ether) to afford the title compound (5.28 g, 78%) as a light yellow oil; IR (neat) 3397,3053, 2917, 2246, 1590, 1490, 1205, 1067, 910, 739 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.35 (m, 6H), 7.27-7.14 (m, 9H), 4.83 (s, 2H), OH not observed; ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 138.3, 138.2, 133.5, 130.4, 129.9, 129.7, 128.3, 127.8,
124.9, 122.7, 64.7; HRMS m/z calcd. for C_{25}H_{18}N_{2}O (M^+) 302.1420, found: 302.1410.

2-(N,N-Diphenyl-hydrazone)-methyl-benzaldehyde 393 and Phtalic dicarboxaldehyde bis(N,N-diphenylhydrazone) 398

Method A. Into a dry round bottom flask (100 mL) equipped with a magnetic stirring bar was added dicarboxaldehyde 397 (1.34 g, 10 mmol) followed by diethyl ether (60 mL) and N,N-diphenylhydrazine (1.84 g, 10 mmol). A yellow precipitate was formed quickly. The mixture was stirred at room temperature (ca. 22 °C) for approximately two hours.

Phtalic dicarboxaldehyde bis(N,N-diphenylhydrazone) 398 was obtained by filtration from the reaction mixture (3.47 g, 75% based on hydrazone consumption) as a fine yellow powder, mp 162-163 °C; IR (CCl₄) 3053, 1586, 1491, 1376, 1215, 1061, 951, 561; ^1H NMR (200 MHz, CDCl₃) δ 7.92-7.82 (m, 2H), 7.37-7.22 (m, 12H), 7.18-7.12 (m, 4H), 7.10-7.01 (m, 8H); ^13C NMR (50 MHz, CDCl₃) δ 143.5, 133.5, 129.7, 127.9, 126.6, 124.4, 122.4, 112.3; HRMS m/z calcd. for C_{32}H_{26}N_{4} (M^+) 466.2158, found: 466.2155. Anal. Calcd for C_{32}H_{26}N_{4}: C, 82.37; H, 5.62; N, 12.01. Found: C, 82.53; H, 5.69; N, 12.13.
2-(N,N-Diphenyl-hydrazone)methyl)-benzaldehyde 393 was recrystallized from diethylether (690 mg, 23%) as small orange needles, mp 118-120 °C; IR (CCl₄) 3051, 2836, 2734, 1697, 1586, 1550, 1489, 1228, 1197, 1069, 911, 736 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 10.20 (s, 1H), 8.00-7.92 (m, 2H), 7.77-7.73 (m, 1H), 7.55-7.38 (m, 6H), 7.26-7.18 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 192.2, 143.2, 133.3, 133.0, 132.4, 131.7, 129.9, 127.7, 127.2, 125.0, 122.4, 119.7; HRMS m/z calcd. for C₂₀H₁₈N₂O (M⁺) 300.1263, found: 300.1247. Anal. Calcd for C₂₀H₁₈N₂O: C, 79.96; H, 5.37; N, 9.33. Found: C, 80.05; H, 5.42; N, 9.50.

Method B. 2-(Hydroxymethyl)benzaldehyde N,N-Diphenylhydrazone 392 (350 mg, 1.16 mmol) was added to a round bottom flask (50 mL) flame dried under argon along with DMSO (2mL) and Et₃N (1.29 mL, 9.28 mmol). A SO₃-pyridine/DMSO suspension (0.54 g of SO₃·pyridine, 3.45 mmol in 1mL DMSO) was added dropwise to this mixture with stirring. After 15 min. at room temperature (ca. 22 °C), TLC analysis indicated the consumption of the alcohol. The resulting mixture was poured into a separatory funnel containing water (20 mL) and ethyl acetate (30 mL). The aqueous layer was extracted with ethyl acetate (2×20 mL) and the combined organic layers were washed brine, dried over MgSO₄, filtered through a pad of silicagel and concentrated in vacuo. 2-(N,N-Diphenyl-hydrazone)methyl)-benzaldehyde 393 was recrystallized from ether (254 mg, 73%) as small orange needles. The product coeluted on TLC and was spectroscopically identical with a product sample prepared by method A.
2,6-Bis(1,1-methylethyl)4-methylphenyl cyclopropanecarboxylate

2,6-Di-tert-butyl-4-methylphenol (11 g, 50 mmol) was added to a round bottom flask (500 mL) flame dried under argon along with THF (60 mL) and the solution was cooled to 0 °C. BuLi (20 mL of a 2.50 M solution in hexanes, 50 mmol) was added dropwise with stirring as the solution turned cloudy pale yellow. After 15 min. at 0 °C the cyclopropanecarbonyl chloride (6.4 g, 53 mmol) was added in one portion. The solution was warmed and stirred at room temperature (ca. 22 °C) overnight. The resulting mixture was poured into a separatory funnel containing aqueous NH₄Cl (70 mL) and diethyl ether (70 mL). The aqueous layer was extracted with diethyl ether (2×70 mL) and the combined organic layers were washed with aqueous NaHCO₃ (40 mL), brine (20 mL), dried over MgSO₄ and concentrated in vacuo to yield an yellow oil. The product was obtained by recrystallization from methanol (12.5 g, 87%) as a white solid, mp 66-67 °C. IR (CCl₄) 2945, 1748, 1598, 1379, 1211, 1144, 1107, 1032, 931, 668 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.10 (s, 2H), 2.31 (s, 3H), 1.96-1.88 (m, 1H), 1.34 (s, 18H), 1.19-1.11 (m, 2H), 1.07-0.99 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 175.9, 142.7, 134.9, 132.5, 127.5, 35.9, 32.1, 22.1, 14.7, 9.5; HRMS m/z calcd. for C₁₉H₂₉O₂ (M⁺) 288.2090, found: 288.2101. Anal. Calcd for C₁₉H₂₉O₂: C, 79.12; H, 9.78. Found: C, 79.31; H, 9.78.
2,6-Di(tert-butyl)4-methylphenyl 1-[α-hydroxy(2-carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate

2,6-Bis(1,1-methylethyl)4-methylphenyl cyclopropanecarboxylate 402 (1.5 g, 5.20 mmol) was added to a round bottom flask (50 mL) flame dried under argon along with THF (30 mL) and the solution was cooled to -78 °C. t-BuLi (3.60 mL of a 1.55 M solution in THF, 5.58 mmol) was added dropwise with stirring as the solution turned bright yellow. After 30 min. at -78 °C the aldehyde 393 (1.3g, 4.33mmol) was injected as a solution in THF (3 mL). The solution was stirred at -78 °C for another hour then warmed to room temperature (ca. 22 °C). The resulting mixture was poured into a separatory funnel containing aqueous NH₄Cl (30 mL) and diethyl ether (40 mL). The aqueous layer was extracted with diethyl ether (2x25 mL) and the combined organic layers were washed brine, dried over MgSO₄ and concentrated in vacuo. The product was purified by flash chromatography (silica gel, 15:85, diethyl ether / petroleum ether) to afford the title compound (1.66 g, 68%) as a yellow solid, mp 84-85 °C; IR (neat) 3497, 2950, 1730, 1591, 1492, 1364, 1108, 754 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.61-7.51 (m, 2H), 7.45-7.36 (m, 4H), 7.32-7.26 (m, 2H), 7.19-7.15 (m, 6H), 7.09 (s, 2H), 5.75 (s, 1H), 2.31 (s, 3H), 1.64-1.59 (m, 1H), 1.57-1.52 (m, 1H), 1.26 (s, 9H), 1.23 (s, 9H), 0.90-0.77 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 145.7, 143.7, 142.0, 141.9, 136.8, 134.6, 134.0, 129.8, 129.4, 128.0, 127.8, 126.9, 126.8, 124.6, 122.4, 68.7, 35.1, 35.0, 31.3, 31.2, 29.6, 21.4, 13.7, 11.4; HRMS m/z calcd. for C₃₉H₄₄N₂O₃ (M⁺) 588.3354, found: 588.3313. Anal.
Calcd for C\textsubscript{39}H\textsubscript{44}N\textsubscript{2}O\textsubscript{3}: C, 79.56; H, 7.53; N, 4.76. Found: C, 79.65; H, 7.47; N, 4.57.

2,6-Di(tert-butyl)4-methylphenyl 1-[\alpha-hydroxy-thionocarbonate phenyl ester (2-carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate

2,6-Di(tert-butyl)4-methylphenyl 1-[\alpha-hydroxy- (2-carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate 394 (382 mg, 0.68 mmol) was added to a round bottom flask (25 mL) flame dried under argon along with methylene chloride (4 mL) and pyridine (199 mg, 203 \(\mu \)L, 2.52 mmol). The solution was cooled to \(-78^\circ\text{C}\). Phenyl chlorothionoformate (129 mg, 103 \(\mu \)L, 0.75 mmol) was added and the solution was stirred at room temperature (ca. 22\(^\circ\text{C}\)) for four hours. The resulting mixture was poured into a separatory funnel containing dilute aqueous HCl (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (2×10 mL) and the combined organic layers were washed brine, dried over MgSO\(_4\) and concentrated in vacuo. The product was purified by flash chromatography (silica gel, 10:90, diethyl ether / petroleum ether) to afford the title compound (61% based on the recovered starting material) as a yellow solid, mp 96-97 \(^\circ\text{C}\); IR (neat) 2950, 2248, 1739, 1591, 1490, 1364, 1242, 1107, 1007, 909, 739, 696, 569 \text{ cm}^{-1}; ^1\text{H NMR (500 MHz, DMSO-d}_6\text{)}
MHz, CDCl₃) δ 8.05 (m, 1H), 7.73 (s, 1H), 7.42-7.28 (m, 9H), 7.25-7.18 (m, 5H), 7.15-7.12 (m, 3H), 7.09-7.06 (m, 1H), 6.97-6.93 (m, 2H), 2.33 (s, 3H), 1.76-1.74 (m, 1H), 1.52-1.50 (m, 1H), 1.36 (s, 9H), 1.24 (s, 9H), 0.92-0.84 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.8, 172.5, 153.5, 145.9, 143.5, 142.2, 141.9, 134.9, 134.6, 133.2, 132.4, 129.8, 129.3, 128.6, 127.7, 127.5, 127.2, 126.7, 126.5, 126.3, 124.6, 122.4, 121.9, 80.8, 35.1, 35.0, 31.6, 31.3, 27.9, 21.4, 13.3, 10.4; FAB HRMS m/z calcd. for C₄₆H₄₈N₂O₄S (M⁺) 724.3336, found: 724.3335. Anal. Calcd for C₄₆H₄₈N₂O₄S: C, 76.42; H, 6.41; N, 3.87. Found: C, 76.18; H, 6.51; N, 3.92.

1-N,N diphenylhydrazine-4-carboxylic acid [2,6-di(tert-butyl)4-methylphenyl ester] 6,7-benzocyclohept-4-ene

\[\text{Ph}_2\text{NHN} \]
\[\text{CO}_2\text{Ar} \]

2,6-Di(tert-butyl)4-methylphenyl 1-[α-hydroxy- thionocarbonate phenyl ester (2-carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate 405 (163 mg, 0.23 mmol) was added under argon to a dry round bottom flask (25 mL) equipped with a reflux condenser followed by freshly distilled benzene (11 mL). Argon was then bubbled through the solution for approximately 15 min. After this time the solution was heated at reflux and Bu₃SnH (75 μL, 0.28 mmol) and AIBN (10 mg, 0.05 mmol) were added as a solution in benzene (2 mL) via syringe pump technique over one hour. The solution was then refluxed for another two hours then cooled to room temperature. The solvent was removed and the resulting material was purified.
by flash chromatography (silica gel, 10:90, diethyl ether / petroleum ether) to afford the title compound (113 mg, 85%). An analytical sample was recrystallized from diethyl ether as a pale yellow solid, mp 210-211 °C; IR (neat) 2946, 2362, 1718, 1591, 1493, 1278, 1186, 1108, 909, 736, 696; 1H NMR (500 MHz, CDCl$_3$) δ 7.96-7.95 (m, 1H), 7.46-7.41 (m, 1H), 7.30-7.21 (m, 7H), 7.17-7.08 (m, 6H), 7.03-6.98 (m, 2H), 4.25-4.17 (m, 1H), 4.01 (br s, 1H), 2.95-2.91 (m, 1H), 2.86-2.78 (m, 1H), 2.34 (s, 3H), 2.37-2.33 (m, 1H), 2.23-2.15 (m, 1H), 1.35 (s, 9H), 1.31 (s, 9H); 13C NMR (75 MHz, CDCl$_3$) δ 168.4, 148.1, 146.2, 142.1 (d), 140.9, 134.3, 133.9, 133.7, 133.3, 129.1, 128.9, 127.4, 126.9 (d), 122.6, 120.6, 59.1, 35.2 (d), 31.6 (d), 29.7, 25.7, 21.5; HRMS m / z calcd. for C$_{39}$H$_{44}$N$_2$O$_2$ (M$^+$) 572.3405, found: 572.3370. Anal. Calcd for C$_{39}$H$_{44}$N$_2$O$_2$: C, 81.78; H, 7.74; N, 4.89. Found: C, 81.60; H, 7.85; N, 4.78.

2,6-Di(tert-butyl)4-methylphenyl 1-[α-bromo(2carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate

![Chemical structure](image)

Triphenylphosphine (41 mg, 0.15 mmol) was added to a round bottom flask (25 mL) flame dried under argon along with methylenechloride (1.5 mL) and Et$_3$N (60 μL, 0.45 mmol). The solution was cooled to -10 °C and bromine (8 μL in 0.5 mL methylenechloride, 0.15 mmol) was added to this mixture with stirring. 2,6-Di(tert-butyl)4-methylphenyl 1-[α-hydroxy(2carboxaldehyde N,N-diphenyl-hydrazone)phenyl] cyclopropanecarboxylate 394 (88 mg, 0.15 mmol) was added
and the solution warmed slowly to room temperature (ca. 22 °C). After 15 min. of stirring at this temperature, TLC analysis indicated the consumption of the alcohol. The resulting mixture was poured into a separatory funnel containing aqueous NaHCO₃ (10 mL) and methylenechloride (10 mL). The aqueous layer was extracted with methylenechloride (3x10 mL) and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. The resulting oil was purified by flash chromatography (silica gel, 3:97, diethyl ether / petroleum ether) to afford the title compound (68 mg, 97%) as a brown oil; IR (neat) 3497, 2950, 1730, 1591, 1492, 1364, 1108, 754 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.61-7.51 (m, 2H), 7.45-7.36 (m, 4H), 7.32-7.26 (m, 2H), 7.19-7.15 (m, 6H), 7.09 (s, 2H), 5.75 (s, 1H), 2.31 (s, 3H), 1.64-1.59 (m, 1H), 1.57-1.52 (m, 1H), 1.26 (s, 9H), 1.23 (s, 9H), 0.90-0.77 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 145.7, 143.7, 142.0, 141.9, 136.8, 134.6, 134.0, 129.8, 129.4, 128.0, 127.8, 126.9, 126.8, 124.6, 122.4, 68.7, 35.1, 35.0, 31.3, 31.2, 29.6, 21.4, 13.7, 11.4. Anal. Calcd for C₃₄H₄₃BrN₂O₂: C, 71.88; H, 6.65; N, 4.29. Found: C, 72.03; H, 6.31; N, 4.59.

1-Phenylcyclopropane carboxylic acid

\[
\begin{array}{c}
\text{Ph} \\
\text{COOH}
\end{array}
\]

1-phenyl-1-cyclopropanecarbonitrile 407 (5 mL, 29.8 mmol) was added to a round bottom flask (50 mL) equipped with a reflux condenser and magnetic stirring bar along with concentrated hydrochloric acid (20 mL). The colourless solution was refluxed for 3 days. The reaction mixture was extracted with ether.
(3x30mL) and the combined organic phase was poured into a separatory funnel and washed with saturated aqueous NaHCO₃ (30 mL), dried over MgSO₄ and concentrated in vacuo to afford the title compound (4.73 g, 98%) as a colourless liquid; IR (neat) 3479, 2833, 1682, 1308, 1204, 951, 702 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.35-7.23 (m, 5H), 1.65 (dd, J = 4.2 Hz, J = 7.3 Hz, 2H), 1.25 (dd, J = 4.2 Hz, J = 7.3 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 181.1, 138.7, 130.5, 128.2, 127.4, 28.8, 17.3; HRMS m/z calcd. for C₁₀H₁₀O₂ (M⁺) 161.9763, found: 162.0664. Anal. Calcd for C₁₀H₁₀O₂: C, 74.05; H, 6.21. Found: C, 74.06; H, 5.99.

1-Phenylchlorocyclopropane 409 and 1-Phenylcyclopropyl acetate 409a

![Structural formulas](image)

A three-neck round bottom flask (250 mL) flame dried under argon, equipped with a reflux condenser and magnetic stirring bar was charged with 1-phenylcyclopropanecarboxylic acid 408 (5 g, 30.9 mmol) along with dry benzene (100 mL) and lithium chloride (1.3 g, 30.6 mmol). The pale yellow solution was degassed with argon for 30 min. Lead tetraacetate (14 g, 31.6 mmol) was added as the solution turned bright yellow and the mixture was stirred until it became nearly homogenous. The flask was then placed in an oil bath at 100 °C and the mixture stirred until gas evolution ceased (ca. 1 hour). The reaction mixture was filtered, the solids were washed with ether and the combined organic phase was poured into a separatory funnel and washed with saturated aqueous NaHCO₃ (3x30 mL), dried over MgSO₄ and concentrated in vacuo.
The product 409 was purified by bulb-to-bulb distillation to afford the title compound (2.76 g, 59%) as a colourless liquid; an analytical sample was obtained by flash chromatography (silica gel, 10:90, diethyl ether / petroleum ether); IR (neat) 3047, 1448, 1180, 753, 617 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.55-7.49 (m, 2H), 7.43-7.31 (m, 3H), 1.53 (m, 2H), 1.34 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 141.9, 128.4, 127.7, 127.5, 43.2, 17.5; HRMS m / z calcd. for C₉H₅Cl (M⁺) 152.0394, found: 152.0392. Anal. Calcd for C₉H₅Cl: C, 70.83; H, 5.94. Found: C, 70.76; H, 5.98.

1-Phenylcyclopropyl acetate 409a was obtained from the reaction mixture by bulb-to-bulb distillation as a colourless liquid (1.68 g, 31%); IR (neat) 3047, 1710, 1454, 1125, 783, 690 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.35-7.17 (m, 5H), 2.10 (s, 3H), 1.29 (m, 2H), 1.22 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 170.4, 139.9, 128.2, 127.0, 125.9, 59.8, 21.2, 14.8; HRMS m / z calcd. for C₁₁H₁₂O₂ (M⁺) 176.0837, found: 176.0845.

1-[α-hydroxy(2-carboxaldehyde N,N-diphenyl-hydrazone)phenyl] phenylcyclopropane

Magnesium (68 mg, 2.80 mmol), a crystal of iodine and THF (4mL) were added to a three-neck round bottom flask (50 mL) flame dried under argon, equipped with a reflux condenser and magnetic stirring bar. 1-Phenylchlorocyclopropane 409 (426 mg, 2.80 mmol) in dry THF (1 mL) was
added dropwise with stirring. Upon completion of the addition, the mixture was heated at reflux for 1 hour under argon and the colour of the solution changed from yellow to grey. After cooling to room temperature, the Grignard reagent was taken up by syringe and added slowly to aldehyde 393 (841 mg, 2.80 mmol) in THF (4 mL) at -10 °C, as the colour changed from bright yellow to orange. The reaction mixture was stirred for 3 hours then warmed to room temperature (ca. 22 °C). The resulting mixture was poured into a separatory funnel containing aqueous NH₄Cl (5 mL) and diethyl ether (10 mL). The aqueous layer was extracted with diethyl ether (2x5 mL) and the combined organic layers were washed brine, dried over MgSO₄ and concentrated in vacuo. The product was purified by flash chromatography (silica gel, 20:80, diethyl ether / petroleum ether) to afford the title compound (795 mg, 68%) as a white solid, mp 60–61 °C; IR (neat) 3342, 2352, 1588, 1493, 1205, 751, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 1H), 7.57 (s, 1H), 7.50-7.47 (m, 4H), 7.38-7.20 (m, 12H), 6.96 (m, 2H), 5.12 (s, 1H), 2.06 (br s, 1H), 0.76-0.70 (m, 2H), 0.64-0.61 (m, 1H), 0.54-0.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 143.3, 137.9, 133.4, 133.3, 130.0, 129.8, 127.6, 127.4, 126.9, 126.5, 125.4, 124.6, 122.5, 73.8, 31.2, 11.4, 7.2; HRMS m/z calcd. for C₂₉H₂₆N₂O (M⁺) 418.2046, found: 418.2024.
2-(4-Bromopentyl)-1,3-dithiane

Dithiane (5.28 g, 43.9 mmol) was placed in a round bottom flask (500 mL) and dissolved in THF (50 mL). The resulting solution was cooled to −10 °C, treated with n-BuLi (21.1 mL of a 2.5 M solution, 53.0 mmol) and stirred at −10 °C for 45 minutes. 1, 3-Dibromopentane (6.0 mL, 44.0 mmol) was added and the stirring continued at −10 °C for 2 hours. The reaction was quenched with brine (10 mL) and poured into a separatory funnel containing ethyl acetate (100 mL) and brine (50 mL). The aqueous layer was extracted with ethyl acetate (3x150 mL), dried, concentrated and purified by flash chromatography (2:98, diethyl ether / petroleum ether) to yield 8.55 g (72%) of the title compound as a light yellow oil. IR (neat, cm⁻¹) 2914, 1435, 1378, 1275; ¹H NMR (200 MHz, CDCl₃) δ 4.11-3.97 (m, 2H), 2.84-2.76 (m, 4H), 2.10-2.03 (m, 1H), 1.90-1.64 (m, 7H), 1.71 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 50.8, 47.0, 40.2, 34.4, 30.1, 26.1, 25.7, 24.7 ppm; HRMS m/z calcd. for C₉H₁₇S₂Br (M⁺) : 267.9950, found: 267.9939.
5-Bromohexanal-(S)-(−)-Amino-2-(methoxymethyl)pyrrolidine -hydrazone

2-(4-Bromopentyl)-1,3-dithiane 419 (0.751 g, 2.8 mmol) was added to a round bottom flask (50 mL) containing CAN (6.24g, 11.4 mmol) dissolved in an aqueous solution of 75% acetonitrile (8 mL). The solution was stirred at room temperature for 5 minutes and poured into a separatory funnel containing water (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (3X 10 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was further purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, ethyl acetate / petroleum ether) under aspirator vacuum, then concentrated. The resulting aldehyde was then mixed with (S)-(−)-Amino-2-(methoxymethyl)pyrrolidine (0.375 mL, 2.8 mmol) in THF (50 mL). The reaction mixture was stirred at 0 °C for 5 hours. The resulting solution was filtered through a sintered glass funnel with a pad of silica gel and washed with diethyl ether, concentrated and chromatographed (30:70, diethyl ether / petroleum ether) to afford 284 mg (35%) of the title compound as a yellowish oil; IR (neat, cm⁻¹) 2931, 1604, 1455, 1342, 1031, 749, 698; ¹H NMR (200 MHz, CDCl₃) δ 6.51 (t, J = 5.5 Hz, 1H), 4.11-3.95 (m, 1H), 3.49-3.22 (m, 4H), 3.27 (s, 3H), 2.68-2.54 (m, 1H), 2.20-2.15 (m, 2H), 1.87-1.42 (m, 8H), 1.60 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 137.5, 74.6, 63.2, 58.9, 51.2, 50.1, 40.3, 32.0, 26.3, 26.2, 25.6, 21.9 ppm; HRMS m/z calcd. for C₁₂H₂₃N₂OBr (M⁺): 290.0994, found: 290.0982.
5-Hydroxypentanal-\((S)\)-(\-)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone

\[
\begin{align*}
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{HO}
\end{align*}
\]

432

\(\delta\)-Valerolactol 351 \((0.545 \text{ g, } 5.34 \text{ mmol})\) was added to a round bottom flask \((100 \text{ mL})\) along with methanol \((40 \text{ mL})\). A solution of \((S)-(\-)-\text{Amino-2-}
\text{(methoxymethyl)pyrrolidine (aa1)} \((0.715 \text{ mL, } 5.34 \text{ mmol})\) in methanol \((15 \text{ mL})\) was added and the reaction mixture was stirred at room temperature \((\text{ca. } 22 \degree \text{C})\) overnight. Concentration \textit{in vacuo} gave a brown oil which was purified by flash chromatography \((50:50, \text{diethyl ether/petroleum ether})\) to afford 1.05 g of the title compound \((92\%)\) as a light yellow oil; \textbf{IR (neat)} 3402, 2931, 1604, 1458, 1341, 1196, 1117, 972 cm\(^{-1}\); \textbf{\(^1\)H NMR} \((200 \text{ MHz, CDCl}_3)\) \(\delta 6.60 \text{ (t, } J = 5.3 \text{ Hz, 1H)}, 3.61-3.42 \text{ (m, 3H)}, 3.39-3.25 \text{ (m, 3H)}, 3.30 \text{ (s, 3H)}, 2.71-2.59 \text{ (m, 1H)}, 2.49 \text{ (br s, 1H)}, 2.25-2.12 \text{ (m, 2H), 1.95-1.65} \text{ (m, 4H)}, 1.60-1.43 \text{ (m, 4H) ppm; } \textbf{\(^{13}\)C NMR} \text{ (50 MHz, CDCl}_3)\) \(\delta 139.0, 74.7, 63.3, 62.1, 59.0, 50.4, 32.4, 31.9, 26.4, 23.6, 22.0; \textbf{HRMS m/z} \text{ calcd. for C}_{11}\text{H}_{22}\text{N}_2\text{O}_2 (\text{M}^+) 214.1682, \text{found: } 214.1679.\)
Butanal-[(S)-(-)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone]-4-carboxaldehyde

5-Hydroxpentanal-(S)-(−)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone \(432 \) (0.778 g, 3.64 mmol) was added to a round bottom flask (50 mL) flame dried under argon along with DMSO (15 mL) and \(\text{Et}_3\text{N} \) (4.0 mL, 29.4 mmol). A \(\text{SO}_3 \)-pyridine/DMSO suspension (1.71 g of \(\text{SO}_3 \)-pyridine, 10.9 mmol in 2 mL DMSO stirred separately until they form a homogenous mixture) was added dropwise to this mixture with stirring. After 15 min. at room temperature (ca. 22 °C), TLC analysis indicated the consumption of the alcohol. The resulting mixture was poured into a separatory funnel containing water (30 mL) and ethyl acetate (50 mL). The aqueous layer was extracted with ethyl acetate (2x30 mL) and the combined organic layers were washed with brine, dried over \(\text{MgSO}_4 \) and concentrated in vacuo. The resulting oil was purified by flash chromatography (silica gel, 40:60, diethyl ether / petroleum ether) to afford 0.502 g of the title compound (65%) as a light yellow oil; IR (neat) 2932, 1723, 1604, 1435, 1348, 1197, 1121, 972 cm\(^{-1}\); \(^1\)H NMR (200 MHz, \(\text{CDCl}_3 \)) \(\delta \) 9.78 (t, \(J = 1.4 \) Hz, 1H), 6.58 (t, \(J = 4.8 \) Hz, 1H), 3.50-3.25 (m, 4H), 3.31 (s, 3H), 2.69-2.57 (m, 1H), 2.50 (dt, \(J = 7.3 \) Hz, \(J = 1.4 \) Hz, 2H), 2.23-2.13 (m, 2H), 1.87-1.43 (m, 6H) ppm; \(^{13}\)C NMR (50 MHz, \(\text{CDCl}_3 \)) \(\delta \) 203.1, 138.0, 74.7, 63.2, 58.9, 50.2, 43.1, 32.2, 26.5, 23.5, 21.1; HRMS m/z calcd. for \(\text{C}_{11}\text{H}_{20}\text{N}_2\text{O}_2 \) (\(M^+ \)) 212.1525, found: 212.1538.
5-Hydroxyhexanal-(S)-(-)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone

Following the general procedure, butanal-[(S)-(-)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone]-4-carboxaldehyde 433 (0.411 g, 1.94 mmol) was treated with methylmagnesium chloride (724 µL, 3.0 M solution in THF, 2.17 mmol) to afford 0.398 g (90%) of the title compound as a faint yellow oil; IR (neat, cm⁻¹) 3381, 2931, 1604, 1435, 1347, 1121, 972; ¹H NMR (200 MHz, CDCl₃) δ 6.61 (t, J = 5.2 Hz, 1H), 3.81-3.78 (m, 1H), 3.51-3.25 (m, 4H), 3.30 (s, 3H), 2.70-2.55 (m, 1H), 2.19-2.09 (m, 2H), 1.92 (br s, 1H), 1.82-1.41 (m, 8H), 1.20 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 139.0, 74.7, 67.5, 63.3, 59.0, 50.3, 38.6, 32.4, 26.6, 23.5, 23.3, 23.0 ppm; HRMS m/z calcd. for C₁₂H₂₄N₂O₂ (M⁺): 228.1838, found: 228.1837.
5-Hydroxy-(thionocarbonate phenyl ester)-hexanal-(S)-(−)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone

5-Hydroxyhexanal-(S)-(−)-Amino-2-(methoxymethyl)pyrrolidine-hydrazone 434 (0.198 g, 0.87 mmol) was added to a round bottom flask (25 mL) flame dried under argon along with CH$_2$Cl$_2$ (5 mL) and pyridine (254 mg, 260 μL, 3.22 mmol) the solution was cooled to -78 °C. Phenyl chlorothionoformate (166 mg, 133 μL, 0.96 mmol) was added and the solution was stirred at room temperature (ca. 22°C) for four hours. The resulting mixture was poured into a separatory funnel containing dilute aqueous HCl (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (2×10 mL) and the combined organic layers were washed brine, dried over MgSO$_4$ and concentrated in vacuo. The product was purified by flash chromatography (silica gel, 20:80, diethyl ether / petroleum ether) to afford 98 mg of the title compound (31%) as a faint yellow oil;

IR (neat, cm$^{-1}$) 3393, 3061, 2928, 1592, 1483, 1302, 1210, 741, 698; 1H NMR (200 MHz, CDCl$_3$) δ 7.41-7.11 (m, 5H), 6.61 (t, $J = 5.1$ Hz, 1H), 5.39-5.36 (m, 1H), 3.50-3.23 (m, 4H), 3.31 (s, 3H), 2.71-2.57 (m, 1H), 2.15-2.03 (m, 2H), 1.82-1.22 (m, 8H), 1.19 (d, $J = 6.4$ Hz, 3H) ppm; 13C NMR (50 MHz, CDCl$_3$) δ 194.4, 153.2, 139.1, 132.4, 127.5, 121.9, 87.3, 67.1, 63.2, 59.1, 50.2, 38.7, 32.1, 26.9, 23.7, 23.4, 23.1 ppm; HRMS m/z calc. for C$_{19}$H$_{28}$N$_2$O$_3$S (M$^+$): 364.1821, found: 364.1835.
2 Methyl cyclopentyl \([N-(S)-2-(\text{methoxymethyl}) \text{pyrrolidine}] \text{amine}\)

Following the general procedure for the \(\text{S}mI_2/\text{HMPA}\) reactions 5-hydroxy-(thionocarbonate phenyl ester)-hexanal-(S)-(·)-amino-2-(methoxymethyl)pyrrolidine-hydrazone \(430\) (0.081 g, 0.22 mmol) was added, under argon, to a dry Schlenk flask (50 mL), followed by THF (10 mL) and HMPA (0.3 mL). The system was degassed using three freeze pump thaw cycles, introducing argon after the last cycle. The solution was then warmed to \(-78^\circ\text{C}\) and \(\text{S}mI_2\) was added (10.1 mL as a 0.1M solution in THF, 1.01 mmol) yielding a deep purple solution. The reaction mixture was stirred at room temperature for 2 hours, then quenched with aqueous sodium bicarbonate (3 mL). The resulting mixture was poured into a separatory funnel containing water (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (3X 5 mL). The combined organic layers were washed with brine (3 mL), dried over anhydrous magnesium sulfate and concentrated. Residual HMPA had to be removed from the crude reaction mixture since it interfered with the determination of the cis/trans ratios by \(^1\text{H} \text{NMR spectroscopy}. For this purpose, the resulting oil was further purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, dichloromethane / petroleum ether) under aspirator vacuum. The solvent was removed and the resulting material was purified by flash chromatography (silica gel, 10:90, diethyl ether / petroleum ether) to afford 15 mg (33%) of the cis isomer as a pale yellow oil and traces of the trans isomer as a pale yellow oil.
Cis isomer: IR (KBr, cm⁻¹) 2952, 2872, 1590, 1494, 1285, 690; ¹H NMR (200 MHz, CDCl₃) δ 3.92 (br s, 1H), 3.50-3.25 (m, 4H), 3.31 (s, 3H), 3.24-3.21 (m, 1H), 2.69-2.57 (m, 1H), 2.05-1.43 (m, 10H) 1.02 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 74.7, 65.2, 63.2, 58.9, 50.2, 38.3, 33.3, 30.5, 26.5, 23.5, 23.2, 19.3; HRMS m/z calcd. for C₁₂H₂₄N₂O (M⁺): 212.1985, found: 212.1988.

1,3:4,6-Di-O-benzylidene-D-mannitol

D-mannitol 431 (10 g, 54.9 mmol) was added to a round bottom flask (250 mL) containing N,N-dimethylformamide (30 mL) and benzaldehyde (12.1 mL, 109.8 mmol). Concentrated sulfuric acid (2 mL) was added and the mixture was stirred for three days at room temperature (ca. 22 °C). The mixture was poured into ice-water (300 mL) containing potassium carbonate (ca. 3g) and petroleum ether (50 mL). The mixture was stirred vigorously and a white precipitate was formed as the ice melted. The solid was filtered off and washed with petroleum ether, then recrystallized from methanol to afford 8.58 g (42%) of the title compound as a white solid, mp = 192 °C (lit.¹¹¹ mp = 192-193 °C); IR (neat, cm⁻¹) 3547, 3031, 1625, 1478, 1310, 1120, 690; ¹H NMR (200 MHz, (CD₃)₂SO) δ 7.48-7.40 (m, 4H), 7.38-7.23 (m, 6H), 5.60 (s, 2H), 5.34 (d, J = 5.4 Hz, 2H), 4.46 (dd, J = 5.4 Hz, J = 9.0 Hz, 2H), 4.18-3.90 (m, 4H) 3.85 (t, J = 10.5 Hz, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 136.9, 129.8, 128.5, 123.2, 100.1, 79.3, 76.7, 67.3
ppm; HRMS m/z calcd. for C_{20}H_{22}O_{6} (M^+): 313.7971, found: 313.7969. Anal.
Calcd. for C_{20}H_{22}O_{6}: C, 67.05, H, 6.20. Found: C, 67.02, H, 5.97.

1,3:4,6-Di-O-benzylidene-D-mannitol-2,5-di-O-methanesulfonate

1,3:4,6-Di-O-benzylidene-D-mannitol 432 (4 g, 11.2 mmol) was added to a
round bottom flask (50 mL) containing triethylamine (3.2 mL, 24.6 mmol) and dry
methylene chloride (15 mL) at 0 °C. A solution of methanesulfonyl chloride (1.72
mL, 24.6 mmol) dissolved in methylene chloride (5 mL) was added dropwise.
The solution was stirred at 0 °C for one hour, then poured into a separatory
funnel containing 10% chlorhydric acid (7 mL). The organic layer was
subsequently washed with 5% sodium bicarbonate (10 mL), dried over
anhydrous sodium sulfate and concentrated to afford 5.0 g (87%) of the title
compound as a white foam which was used without further purification, mp = 187
°C (lit. mp = 187-189 °C); IR (neat, cm⁻¹) 3047, 1615, 1473, 1347, 1187, 1120,
977, 750; \(^1\)H NMR (200 MHz, CDCl₃) δ 7.49-7.44 (m, 4H), 7.38-7.32 (m, 6H),
5.51 (s, 2H), 5.29 (ddd, J = 5.5 Hz, J = 9.2 Hz, J = 10.8 Hz, 2H), 4.55 (dd, J = 5.5
Hz, J = 10.8 Hz, 2H), 4.13 (d, J = 9.2 Hz, 2H), 3.85 (t, J = 10.8 Hz, 2H), 3.02 (s,
6H) ppm; \(^{13}\)C NMR (50 MHz, CDCl₃) δ 137.3, 129.5, 128.2, 126.2, 99.9, 88.3,
78.7, 66.8, 37.8 ppm; HRMS m/z calcd. for C_{22}H_{26}O_{10}S_{2} (M^+): 514.0967,
found: 514.0979.
1,3:4,6-Di-O-benzylidene-D-mannitol-2,5-di-O-trifluoromethanesulfonate

\[
\begin{align*}
\text{Ph} & \\
\text{O} & \\
\text{O} & \\
\text{OTf} & \\
\text{O} & \\
\text{Ph} & \\
\text{OTf} & \\
\text{O} & \\
\text{434} & \\
\end{align*}
\]

1,3:4,6-Di-O-benzylidene-D-mannitol 432 (1 g, 2.8 mmol) was added to a round bottom flask (25 mL) containing pyridine (0.50 mL, 5.80 mmol) and dry methylene chloride (10 mL) at 0 °C. A solution of triflic anhydride (1.0 mL, 5.6 mmol) dissolved in methylene chloride (5 mL) was added dropwise. The solution was stirred at 0 °C for 20 minutes, then poured into a separatory funnel containing ice cold water (7 mL). The organic layer was subsequently washed with cold 10% chlorhydric acid (3 mL), 5% sodium bicarbonate (10 mL), dried over anhydrous sodium sulfate and concentrated to afford 1.23 g (69%) of the title compound as a pale yellow foam which was used without further purification.

A small analytical sample was recrystallized from ether / petroleum ether, mp = 74 °C (lit. mp = 74-75 °C); IR (neat, cm⁻¹) 3032, 1627, 1475, 1332, 1225, 1189, 963, 761; \(^1\)H NMR (200 MHz, CDCl₃) δ 7.49-7.38 (m, 10H, Ph), 5.54 (s, 2H, PhCH₂), 5.31 (ddd, J = 5.5 Hz, J = 9.1 Hz, J = 10.5 Hz, 2H, 2- and 5-H), 4.56 (dd, J = 5.5 Hz, J = 10.5 Hz, 2H, 1- and 6-H), 4.18 (d, J = 9.1 Hz, 2H, 3- and 4-H) 3.97 (t, J = 10.5 Hz, 2H, 1'- and 6'-H) ppm.

\textit{N-Amino-1,3:4,6-Di-O-benzylidene-2,5-dideoxy-2,5-imino-L-iditol}
1,3:4,6-Di-O-benzylidene-D-mannitol-2,5-di-O-trifluoromethanesulfonate 434 (3.12 g, 5.0 mmol) was added to a round bottom flask (100 mL) containing anhydrous hydrazine (10.0 mL, 24.6 mmol) and dry THF (40 mL) at room temperature (ca. 22 °C) for 20 hours. The solvent was removed in vacuo and the resulting syrup was dissolved in ethyl acetate (200 mL), then poured into a separatory funnel containing cold aqueous sodium hydroxide (1M, 30 mL). The organic layer was washed again with cold aqueous sodium hydroxide (2 X 20 mL), dried over anhydrous sodium sulfate, filtered through a pad of silicagel and concentrated. The residue was recrystallized from diethyl ether to afford 1.38 g (78%) of the title compound as white plates, mp = 136 °C (lit. mp = 136-138 °C);

IR (neat, cm⁻¹) 3510, 3375, 3037, 1591, 1473, 1277, 1120, 875, 690; ¹H NMR (200 MHz, CDCl₃) δ 7.48-7.38 (m, 4H, Ph), 7.35-7.25 (m, 6H, Ph), 5.54 (s, 2H, PhCH₃), 4.63 (d, J = 12.6 Hz, 2H, 1- and 6-H), 4.43 (d, J = 2.3 Hz, 2H, 3- and 4-H), 4.17 (dd, J = 2.3 Hz, J = 12.6 Hz, 2H, 1'- and 6'-H), 3.51 (br s, 2H, NH), 3.42 (br s, 2H, 2- and 5-H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 137.7, 129.1, 128.3, 126.1, 99.7, 78.4, 66.4, 61.8 ppm; HRMS m/z calcd. for C₂₀H₂₂N₂O₄ (M⁺): 354.1580, found: 354.1584. Anal. Calcd. for C₂₀H₂₂N₂O₄: C, 67.78, H, 6.25; N, 7.90. Found: C, 67.97, H, 6.17; N, 8.01.
5-Bromohexanal-(N-Amino-1,3:4,6-Di-O-benzylidene-2,5-dideoxy-2,5-imino-L-iditol)-hydrazone

2-(4-Bromopentyl)-1,3-dithiane 419 (0.751 g, 2.8 mmol) was added to a round bottom flask (50 mL) containing CAN (6.24g, 11.4 mmol) dissolved in an aqueous solution of 75% acetonitrile (8 mL). The solution was stirred at room temperature for 5 minutes and poured into a separatory funnel containing water (5 mL) and ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (3X 10 mL), dried over anhydrous sodium sulfate and concentrated. The resulting oil was further purified by passage through a sintered glass funnel filled with silica gel and eluted (50:50, ethyl acetate / petroleum ether) under aspirator vacuum, then concentrated. The resulting aldehyde was then mixed with N-Amino-1,3:4,6-Di-O-benzylidene-2,5-dideoxy-2,5-imino-L-iditol 435 (0.991 g, 2.8 mmol) in MeOH (50 mL). The reaction mixture was stirred at room temperature for 4 hours. The resulting solution was filtered through a sintered glass funnel with a pad of silica gel and washed with EtOAc, concentrated and chromatographed (20:80, diethyl ether / petroleum ether) to afford 1.02 g (71%) of the title compound as a yellowish oil; IR (neat, cm⁻¹) 3061, 2968, 1592, 1491, 1210, 748, 697; ¹H NMR (200 MHz, CDCl₃) δ 7.48-7.29 (m, 10H, Ph), 6.67 (m, 1H), 5.49 (s, 2H, PhCH), 4.75 (d, J = 12.5 Hz, 2H), 4.45 (d, J = 2.5 Hz, 2H), 4.15-4.05 (m, 3H), 3.81 (br s, 2H), 2.32-2.25 (m, 2H), 1.85-1.55 (m, 7H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 139.5, 137.5, 128.9, 128.2, 126.0, 99.5, 77.4, 64.4, 60.8, 51.3, 40.7, 31.2, 26.4, 25.5 ppm; HRMS m/z calcd. for C₂₆H₃₁N₂O₄Br (M⁺): 514.1467, found: 514.1468.
(2-methyl-cyclopentyl)-(N-1,3:4,6-Di-O-benzylidene-2,5-dideoxy-2,5-imino-L-iditol) Amine

5-Bromohexanal-(N-Amino-1,3:4,6-Di-O-benzylidene-2,5-dideoxy-2,5-imino-L-iditol)-hydrazone 418 (0.576 g, 1.12 mmol) was added, under argon, to a dry Schlenk flask (250 mL), followed by THF (45 mL) and HMPA (1.6 mL). The system was degassed using three freeze pump thaw cycles, introducing argon after the last cycle. The solution was then warmed to the room temperature and Sml₂ was added (50.4 mL as a 0.1M solution in THF, 5.04 mmol) yielding a deep purple solution. The reaction mixture was stirred at room temperature for 2 hours, then quenched with aqueous sodium bicarbonate (15 mL). The resulting mixture was poured into a separatory funnel containing water (15 mL) and ethyl acetate (50 mL). The aqueous layer was extracted with ethyl acetate (3X 20 mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous magnesium sulfate and concentrated. Residual HMPA had to be removed from the crude reaction mixture since it interfered with the determination of the cis/trans ratios by 1H NMR spectroscopy. For this purpose, the resulting oil was further purified by passage through a sintered glass funnel filled with silica
gel and eluted (50:50, dichloromethane / petroleum ether) under aspirator vacuum. The solvent was removed and the resulting material was purified by flash chromatography (silica gel, 30:70, diethyl ether / petroleum ether) to afford 176 mg (36%) of the cis isomer as a white solid and 15 mg (3%) of the trans isomer as a pale yellow oil.

Cis isomer 437a: white solid, m.p. 89-91 °C; IR (KBr, cm⁻¹) 3497, 2951, 2873, 1590, 1494, 1285; ¹H NMR (200 MHz, CDCl₃) δ 7.39-7.19 (m, 10H, Ph), 5.53 (s, 2H, PhCH), 4.68 (d, J = 12.5 Hz, 2H), 4.42 (d, J = 2.5 Hz, 2H), 4.18 (dd, J = 2.3 Hz, J = 12.5 Hz, 2H), 3.93 (br s, 1H), 3.41 (br s, 2H), 3.24-3.19 (m, 1H), 2.03-1.58 (m, 6H), 1.34-1.25 (m, 1H), 1.02 (d, J = 7.0 Hz, 3H) ppm; nOe of the two hydrogens (H₁, H₂) = 5.5%; ¹³C NMR (50 MHz, CDCl₃) δ 137.6, 129.1, 128.2, 126.1, 99.7, 78.3, 63.7, 61.3, 60.8, 38.4, 32.4, 29.6, 22.3, 14.5 ppm; HRMS m/z calcd. for C₂₅H₃₂N₂O₄ (M⁺): 436.2363, found: 436.2383. Anal. Calcd for C₂₅H₃₂N₂O₄: C, 71.53; H, 7.39; N, 6.42. Found: C, 71.82; H, 7.28; N, 6.55.

Trans isomer 437b: IR (neat, cm⁻¹) 3486, 2966, 2876, 2359, 1589, 1495, 1280; ¹H NMR (200 MHz, CDCl₃) δ 7.40-7.21 (m, 10H, Ph), 5.53 (s, 2H, PhCH), 4.63 (d, J = 12.5 Hz, 2H), 4.42 (d, J = 2.5 Hz, 2H), 4.19 (dd, J = 2.3 Hz, J = 12.5 Hz, 2H), 3.83 (br s, 1H), 3.39 (br s, 2H), 2.90-2.83 (m, 1H), 2.03-1.48 (m, 6H), 1.24-1.15 (m, 1H), 0.91 (d, J = 6.9 Hz, 3H) ppm; nOe of the two hydrogens (H₁, H₂) = 1.3%; ¹³C NMR (50 MHz, CDCl₃) δ 137.6, 129.1, 128.2, 126.1, 99.7, 78.3, 65.8, 63.7, 61.3, 39.0, 33.6, 30.9, 23.7, 21.1 ppm; HRMS m/z calcd. for C₂₅H₃₂N₂O₄ (M⁺): 436.2363, found: 436.2367.
Claims to Original Research

1. Alkyl radicals, generated with tributyltin hydride from their haloprecursors, are trapped efficiently by carbon monoxide under pressure. The resulting acyl radicals undergo rapid cyclization onto \(N,N \)-diphenylhydrazones to yield \(\alpha \)-hydrazinocyclopentanones.

2. Selective reduction of the resulting ketones provided the corresponding \textit{cis}- or \textit{trans}-\(\beta \)-hydrazinoalcohols.

3. 7-Membered rings and a bicyclic ring systems were synthesized \textit{via} tandem radical reactions.

4. The level of asymmetric induction in radical carbocyclizations mediated by the presence of a hydrazone chiral auxiliary was examined.

5. A novel rearrangement was uncovered when \(\alpha \)-carbonyl hydrazine 275 was treated with Lewis acids to afford product 292.

Appendix: Selected Spectra