NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Ottawa, Canada
K1A 0N4
ON CONSTRUCTIONS OF TITS AND FAULKNER

A thesis submitted
by
Sudhir Ranjan Nath
to
The School of Graduate Studies of
the University of Ottawa

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of
Mathematics

August, 1980

© Sudhir Ranjan Nath; Ottawa, Canada, 1980
Acknowledgment

I am grateful to Dr. Michel L. Racine, Associate Professor of the Department of Mathematics, University of Ottawa, who gave me inspiration and guidance in the preparation of this thesis. I am also grateful to all the other members of the Department who advised me in the project. I wish to express my gratitude to this Department for financial assistance, which enabled me to continue my studies here and to complete the Master's Programme. I would also like to express my appreciation to Mrs. Madeleine Latour for her invaluable aid in the typing of this thesis.
Introduction

J. Tits gave a construction of Lie algebras (for example [1], Page 122) from composition algebras and Jordan algebras of degree 3 over a field of characteristic $\neq 2, 3$. By this construction some exceptional algebras of type G_2, F_4, E_6, E_7, and E_8 are obtained.

John R. Faulkner in [7] gave a construction of Lie algebras from a ternary algebra with a skew bilinear form satisfying certain axioms. Some ternary algebras were obtained from Jordan algebras of degree three over a field of arbitrary characteristic. In particular in characteristic 0 exceptional Jordan algebras give rise to Lie algebras of type E_8.

Classification theory guarantees the existence of an isomorphism between any two E_8's, at least over an algebraically closed field of characteristic 0. Our purpose in this thesis is to construct for any Jordan algebra J of degree 3 over a field ϕ of characteristic $\neq 2, 3$ an explicit isomorphism between the algebra obtained from J by Faulkner's construction and the algebra obtained by
from the split octonions and J by Tits' Construction.

In Chapter I results from the theory of composition algebras and Jordan algebras are recalled.

In Chapter II the constructions of Tits and Faulkner are described.

In Chapter III the isomorphism mentioned above is given.
Chapter I

Preliminaries

1. Composition Algebras

1.1 Definition: Let \(\mathbb{F} \) be a field and \(V \) be a \(\mathbb{F} \)-vector space. A map \(q: V \to \mathbb{F} \) is called a quadratic form if the following are satisfied:

1. \(q(\alpha v) = \alpha^2 q(v) \), for all \(\alpha \in \mathbb{F} \), \(v \in V \)
2. \(q(v,w) = q(v+w) - q(v) - q(w) \) is a symmetric bilinear form on \(V \).

A quadratic form \(q \) is called non-degenerate if \(q(v) = 0 \) and \(q(v,w) = 0 \) for all \(w \) in \(V \) imply \(v = 0 \).

We note that \(q(v,v) = q(v+v) - q(v) - q(v) = 4q(v) - 2q(v) = 2q(v) \)

1.2 Definition: An algebra \(A \) over a field \(\mathbb{F} \) is a \(\mathbb{F} \)-vector space satisfying the following conditions:

1. A multiplication in \(A \) is defined such that \((a+b)c = ac + bc \), \(a(b+c) = ab + ac \) for all \(a, b, c \) in \(A \);
(2) \(a(ab) = (aa)b = a(ab) \) for all \(a \in \phi \), \(a, b \in A \).

An algebra \(A \) is said to be \textbf{associative} if it satisfies the associative law

(3) \((ab)c = a(bc) \) for all \(a, b, c \in A \).

An algebra \(A \) is said to be \textbf{alternative} if it satisfies the left and right alternative laws

(4) \(a^2b = a(ab) \) for all \(a, b \in A \),

(5) \(ba^2 = (ba)a \) for all \(a, b \in A \).

An \textbf{involution} of an algebra \(A \) is a linear operator \(a \mapsto \bar{a} \) on \(A \) satisfying

(6) \(\bar{ab} = \bar{b}\bar{a}, \bar{a} = a \) for all \(a, b \in A \).

We are concerned with an involution satisfying

(7) \(a + \bar{a} \in \phi l, \ a\bar{a} = (\bar{a}a) \in \phi l \) for all \(a \in A \).

Clearly this implies

(8) \(\bar{a}^2 - t(a)a + n(a)1 = 0, \ t(a), n(a) \in \phi \),

with (9) \(a + \bar{a}' = t(a)l, \ a\bar{a}' = n(a)l \) for all \(a \in A \).

\(t(a) \) and \(n(a) \) are respectively called the \textbf{trace} and \textbf{norm} of \(a \). Since \(\bar{1} = 1 \), we have \(t(\alpha l) = 2\alpha, n(\alpha l) = \bar{\alpha}^2 \) for all \(\alpha \in \phi \).
Let a be any element of an algebra \(A \) over \(\phi \). The right multiplication \(R_a \) of \(A \) determined by \(a \) is defined by

\[
(10) \quad R_a : x \mapsto xa \quad \text{for all } x \in A
\]

Clearly \(R_a \) is a linear operator on \(A \). Similarly, the left multiplication \(L_a \), defined by

\[
(11) \quad L_a : x \mapsto ax \quad \text{for all } x \in A,
\]

is a linear operator on \(A \).

Let \(A \) be any algebra over \(\phi \). By a derivation of \(A \) is meant a linear operator \(D \) on \(A \) satisfying

\[
(12) \quad (ab)D = (aD)b + a(bD) \quad \text{for all } a, b \in A.
\]

This may be expressed in terms of right or left multiplication of \(A \): A linear operator \(D \) on \(A \) is a derivation of \(A \) if and only if

\[
(13) \quad [R_y, D] = R_yD \quad \text{for all } y \in A;
\]
equivalently, a linear operator \(D \) on \(A \) is a derivation of \(A \) if and only if

\[
(14) \quad [L_x, D] = L_xD \quad \text{for all } x \in A.
\]

Let \(A \) be an alternative algebra over an arbitrary field \(\phi \). For any \(x, z \in A \), define
\[(15) \, D_{x,z} = [R_x, R_z] + [L_x, R_z] + [L_x, L_z].\]

It can be shown that \([R_y, D_{x,z}] = R_y D_{x,z}\) for all \(y\) in \(A\) (see [1], Page-77), so that \(D_{x,z}\) is a derivation of \(A\).

1.3 Definition: A \textbf{composition algebra} \(C\) over a field \(\phi\) is an algebra with unit 1 and a non-degenerate quadratic form \(n\) satisfying

1. \(n(ab) = n(a)n(b)\) for all \(a, b\) in \(C\),

2. \(n(1) = 1\).

It has been shown in [2], Theorem 7.5 that "Any composition algebra \(C\) is alternative and has an involution \(\bar{a} : a \mapsto \bar{a}\) such that \(\bar{aa} = n(a)1\)."

By the Cayley-Dickson process ([1], Page-45) one can find a complete list of the composition algebras over a field \(\phi\) of characteristic \(= 2\), namely: \(A\) \(\phi 1\) of dimension one;

- \(B\) \textbf{quadratic algebras} \(Z\), of dimension two;
- \(C\) \textbf{quaternion algebras} \(\mathcal{O}\), of dimension four;
- \(D\) \textbf{octonion} or \textbf{Cayley algebras} \(C\), of dimension eight. It can also be shown that \(\mathcal{O}\) is associative, but not commutative, and \(C\) is not associative ([1], Page-47).
Let C be a composition algebra and n be the non-degenerate quadratic form on C. Then in [3], page-169, theorem 7 states: "The following conditions on a composition algebra C are equivalent: (a) n(x) = 0, for some x ≠ 0 in C; (b) C has zero divisors ≠ 0 (xy = 0, x ≠ 0, y ≠ 0); (c) C is not a division algebra; (d) n has maximum Witt index which is positive. Moreover, any two composition algebras of the same dimensionality (over ϕ) satisfying the conditions are isomorphic".

The composition algebras satisfying the conditions of the above theorem are called split composition algebras. For dimension 2 such an algebra is a direct sum of two copies of ϕ with the involution which exchanges the two components. For dimension 4 such an algebra is isomorphic to ϕ_2, the algebra of 2×2 matrices with entries in ϕ, with the symplectic involution

$$X \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} X^t \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ in } \phi_2$$

For dimension 8 such an algebra is isomorphic to the algebra of zero vector-matrices $\begin{pmatrix} a & \hat{a} \\ \hat{b} & b \end{pmatrix}$, $a, \hat{a} \in \phi$, $a, b \in \phi^3$, with
involution

\[(\begin{array}{cc} a & a \\ b & b \end{array}) + (\begin{array}{cc} b & -a \\ -b & a \end{array})\]

The product in this algebra is given by

\[
(\begin{array}{cc} a & a \\ b & b \end{array}) (\begin{array}{cc} c & c \\ d & d \end{array}) = (\begin{array}{cc} ay + (a,d) & ac + (b,c) \\ yb + 3d + (a,c) & 3b + (b,c) \end{array})
\]

where \((a \cdot c)\) and \((a, c)\) denote, respectively, the customary vector and scalar products in \(\mathbb{R}^3\).

So, we have discussed all possible split composition algebras, namely, split quadratic algebra, split quaternion algebra, split Cayley algebra with their respective involutions.

1.4 Derivation algebra of \(C\), the algebra of split octonions. In this section we shall review some properties of \(\text{Der} C\) and express the results in a table.

There exists a basis \(\{e_1, e_2, f_1, f_2, f_3, g_1, g_2, g_3\}\) for \(C\) whose multiplication table is given in table 6, ([6], Page-105).
<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>e_1</td>
<td>0</td>
<td>f_1</td>
<td>f_2</td>
<td>f_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e_2</td>
<td>0</td>
<td>e_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>s_1</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>f_1</td>
<td>0</td>
<td>f_1</td>
<td>0</td>
<td>s_3</td>
<td>$-s_2$</td>
<td>$-e_1$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>0</td>
<td>f_2</td>
<td>$-s_3$</td>
<td>0</td>
<td>s_1</td>
<td>0</td>
<td>$-e_1$</td>
<td>0</td>
</tr>
<tr>
<td>f_3</td>
<td>0</td>
<td>f_3</td>
<td>s_2</td>
<td>$-s_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-e_1$</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>0</td>
<td>$-e_2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>f_3</td>
</tr>
<tr>
<td>s_2</td>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>$-e_2$</td>
<td>0</td>
<td>$-f_3$</td>
<td>0</td>
<td>f_1</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-e_2$</td>
<td>f_2</td>
<td>$-f_1$</td>
<td>0</td>
</tr>
</tbody>
</table>
Using this table we shall find the action of \(\text{DerC} \) on \(C \) and give the results in table \(2 \). We have from 1.2(15) that for \(c_1, c_2 \in C \)

\[
D_{c_1, c_2} = [R_{c_1}, R_{c_2}] + [L_{c_1}, R_{c_2}] + [L_{c_1}, L_{c_2}]
\]

is a derivation of \(C \). Using this we find:

Table 2

<table>
<thead>
<tr>
<th></th>
<th>(D_{e_1, f_1})</th>
<th>(D_{e_2, g_1})</th>
<th>(D_{f_1, s_1})</th>
<th>(D_{f_1, s_1+1})</th>
<th>(D_{f_1, s_1+2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>(f_1)</td>
<td>(-s_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(-f_1)</td>
<td>(s_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f_1)</td>
<td>0</td>
<td>(e_2 - e_1)</td>
<td>(2f_1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f_{1+1})</td>
<td>(g_{1+2})</td>
<td>0</td>
<td>(-f_{1+1})</td>
<td>(3f_1)</td>
<td>0</td>
</tr>
<tr>
<td>(f_{1+2})</td>
<td>(-g_{1+1})</td>
<td>0</td>
<td>(-f_{1+2})</td>
<td>0</td>
<td>(3f_1)</td>
</tr>
<tr>
<td>(g_1)</td>
<td>(e_1 - e_2)</td>
<td>0</td>
<td>(-2g_1)</td>
<td>(-3g_{1+1})</td>
<td>(-3g_{1+2})</td>
</tr>
<tr>
<td>(g_{1+1})</td>
<td>0</td>
<td>(f_{1+2})</td>
<td>(g_{1+1})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(g_{1+2})</td>
<td>0</td>
<td>(-f_{1+1})</td>
<td>(s_{1+2})</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The indices are computed modulo 3.

Moreover, $D_{f_1}f_2 = -D_{e_2}g_3$, $D_{f_1}f_3 = D_{e_2}g_2$,

$D_{f_2}f_3 = -D_{e_2}g_1$, $D_{e_1}g_2 = -D_{e_1}f_3$, $D_{e_1}g_3 = D_{e_1}f_2$,

$D_{e_2}g_3 = D_{e_1}g_1$, $D_{e_1}g_1 = -D_{e_2}g_1$, $D_{e_2}f_1 = -D_{e_1}f_1$.

Also, $D_{f_1}g_1 + D_{f_2}g_2 + D_{f_3}g_3 = 0$. Thus, $\text{Der} C$ is 14-dimensional. Let C_0 be the space of all elements in C having trace 0. C_0 is spanned by $\{e_2-e_1, f_1, f_2, f_3, g_1, g_2, g_3\}$.

Proposition 3 of [4] tells that the derivations of C which annihilate (e_2-e_1) form a 8-dimensional Lie subalgebra of $\text{Der} C$ of type A_2. Thus, from table 2 this subalgebra is spanned by $\{D_{f_1}g_1, D_{f_2}g_2, D_{f_3}g_3, D_{f_1}g_2, D_{f_2}g_3, D_{f_3}g_1, D_{f_1}g_3, D_{f_2}g_1, D_{f_3}g_2\}$.
2. Jordan Matrix Algebras

2.1 Definition: A Jordan algebra J is an algebra over a field ϕ of characteristic $\neq 2$ with a product composition, denoted by $a \cdot b$, satisfying

(1) $a \cdot b = b \cdot a$,

(2) $(a^2 \cdot b) \cdot a = a^2 \cdot (b \cdot a)$

where $a^2 = a \cdot a$ for a, b in J.

Let U be an associative algebra over a field ϕ of characteristic $\neq 2$ with product composition denoted by ab.

Set $a \cdot b = \frac{1}{2}(ab + ba)$. Then it is easy to verify that if we replace the given product in U by the product $a \cdot b$ then we obtain a Jordan algebra U^+. U^+ and its subalgebras are called special Jordan algebras. Jordan algebras which are not special will be called exceptional.

2.2 Let U be an arbitrary algebra with identity element 1 and let U_n denote the algebra of $n \times n$ matrices with entries in U. If U has an involution $a \rightarrow \bar{a}$ it is easy to check that $A = (a_{ij}) \rightarrow \bar{A}^t = (\bar{a}_{ij})^t$, where t denotes the transpose.
matrix, is an involution in U_n. We call this the standard involution in U_n associated with the given involution in U.

Let $H(U_n)$ denote the set of symmetric elements ($A^t = A$) under the standard involution in U_n. Then it is clear that $H(U_n)$ is a subalgebra of U_n^+.

In [3], Page-127, Theorem 1 states "Let U be an algebra over a field of characteristic not two with an identity element and an involution j, and let J_α be a canonical involution* in U_n. Then $H(U_n, J_\alpha)$ for $n \geq 3$ is Jordan if and only if either U is associative or $n = 3$ and U is alternative with symmetric elements in the nucleus $N(U)$." Here

$N(U) = \{ n \in U \mid [n,x,y] = [x,n,y] = [x,y,n] = 0, x, y \in U\}$, where $[n,x,y] = (nx)y - n(xy)$.

We shall call the algebras $H(U_n, J_\alpha)$ which are Jordan, Jordan matrix algebras.

For example, let us take K, the algebraic closure of \mathbb{F}; \mathbb{Z}, the split quadratic algebra; D, the split $

* Let x^α be the standard involution in U_n. We consider involutions $J_\alpha: x^\alpha = a^{-1}_1 x^\alpha a$ where $a = \text{diag}(a_1, a_2, \ldots, a_n)$ and the a_i satisfy: $\bar{a}_i = a_i$, $a_i \in N(U)$, the nucleus of U where a_j^{-1} exists in the associative algebra $N(U)$. We call such involutions canonical and we let $H(U_n, J_\alpha)$ denote the subalgebra of U_n^+ of elements symmetric relative to J_α.

algebra and C, the split Cayley algebra. K, L and D are associative. Thus, by the above theorem $H(K_3)$, $H(L_3)$, $H(D_3)$, with respect to their standard involutions, are Jordan algebras, and these Jordan algebras are special. The Cayley algebra C is not associative, but it is alternative and its symmetric elements with respect to its involution are in its nucleus.

For, if $\begin{pmatrix} a & a \\ b & \beta \end{pmatrix} \in C$, and if

$\begin{pmatrix} a & a \\ b & \beta \end{pmatrix} = \begin{pmatrix} \beta & -a \\ -b & \alpha \end{pmatrix} = \begin{pmatrix} a & a \\ b & \beta \end{pmatrix}$; then

$\alpha = \beta$, $a = b = 0$

Hence the symmetric elements in C are the scalar matrices $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, which associate with every pair of elements in C and hence lie in the nucleus of C.

Thus, $H(C_3)$, with respect to its standard involution, is a Jordan algebra. This Jordan algebra is exceptional.

The dimensions of $H(K_3)$, $H(L_3)$, $H(D_3)$ and $H(C_3)$ are
respectively 6, 9, 15 and 27.

2.3 Let \(\mathbb{U} \) be a finite dimensional Jordan algebra over a field \(\mathfrak{F} \) and let \(\{u_1, u_2, \ldots, u_n\} \) be a basis for \(\mathbb{U}/\mathfrak{F} \). Let \(P = \phi(\xi_1, \xi_2, \ldots, \xi_n) \) where \(\xi_i \) are algebraically independent over \(\phi \) and consider the algebra \(\mathbb{U} \mathfrak{F}^P = \mathbb{U}_P \). We shall call the element

\[
x = \sum_{i=1}^{n} \xi_i u_i \text{ of } \mathbb{U}_P \text{ a generic element of } \mathbb{U}.
\]

Let \(m_x(\lambda) \) be the minimum polynomial of \(x \text{ in } \mathbb{U}_P \). So, \(m_x(\lambda) \in \mathfrak{F}[\lambda] \) and has leading co-efficient \(1 \).

\(m_x(\lambda) \) has the form

\[
m_x(\lambda) = \lambda^m - \sigma_1(\xi) \lambda^{m-1} + \sigma_2(\xi) \lambda^{m-2} - \cdots + (-1)^m \sigma_m(\xi)
\]

where \(\sigma_i(\xi) = \sigma_i(\xi_1, \ldots, \xi_n) \in \mathfrak{F}[\xi_1, \ldots, \xi_n] \). It has been shown in [3], Page 222, that for \(a = \sum_{i=1}^{n} \sigma_i u_i \in \mathbb{U} \)

\[
m_a(\lambda) = \lambda^m - \sigma_1(a) \lambda^{m-1} + \cdots + (-1)^m \sigma_m(a), \text{ and } m_a(a) = 0
\]

in \(\mathbb{U} \), where \(\sigma_i(a) = \sigma_i(\xi) \) for, \(\xi_i = a_i \).

We shall call the polynomial \(m_a(\lambda) \in \mathfrak{F}[\lambda] \) the generic
polynomial of \(a \) and the element \(\sigma_1(a) \) the \textbf{generic trace} of \(a \). Also, we shall call the degree of \(m \) of the \(m_\lambda(a) \) the \textbf{generic degree} of the algebra \(\mathcal{U} \).

In [3], §6.4, the generic minimum polynomials of all finite dimensional simple Jordan algebras over algebraically closed fields have been derived. Also, it has been shown that each of the algebras \(H(K_3) \), \(H(\mathbb{Z}_3) \), \(H(D_3) \) and \(H(C_3) \) has generic degree 3.

We note here that if the base field is algebraically closed then any composition algebra \((C,j) \) with \(\dim C > 1 \) is split, since any quadratic form on a finite-dimensional vector space of dimensionality > 1 over an algebraically closed field has maximal \textit{Witt} index. Also, according to Corollary 2, Page-204 in [3], the above Jordan algebras are simple.
3. Quadratic Jordan algebras

3.1 Let ϕ be a commutative associative ring with unit 1. A left ϕ-module is an abelian group M together with a map $(a, x) \mapsto ax$ of $\phi \times M$ into M satisfying the following conditions:

(1) $a(x+y) = ax + ay$,
(2) $(a+b)x = ax + bx$,
(3) $(ab)x = a(bx),$

for x, y in M, a, b in ϕ.

A left ϕ-module M is said to be unital if

(4) $1_x = x$ for all x in M.

Let M be a unital ϕ-module. A quadratic representation on M is a quadratic mapping $U: x \mapsto U_x$ of M into $\text{Hom}_\phi(M, M)$; that is,

(5) $U_{ax} = a^2 U_x$ and

(6) $U_{x, y} = U_{x+y} - U_x - U_y$ is bilinear, a in ϕ, x, y in M.\(\Box\)
If U is a quadratic representation on M, then we have a cubic representation $yU_{x,z}$ and a trilinear form

\[(7) \{xyz\} = yU_{x,z},\] which is symmetric in x and z. We also introduce the operator $V_{y,z}$ defined by

\[(8) \ xV_{y,z} = \{xyz\} = yU_{x,z} \]

A quadratic Jordan algebra with identity over ϕ is a triple $(J, U, \mathbb{1})$ where J is a unital left-ϕ-module, $\mathbb{1}$ a distinguished element of J, and U a quadratic representation on J which satisfy:

\[(9) \ U_\mathbb{1} = \mathbb{1} \]

\[(10) \ U_a U_b U_a = U_b U_a \]

\[(11) \ U_b V_{a,b} = V_{b,a} U_b = U_a U_b, \]

\[(12) \] Under any extension of ϕ, (9)-(11) remain valid.

Examples: (a) The Jordan algebra U^+ defined in §2.1 of this chapter is a quadratic Jordan algebra.

(b) $H(U_n, \ast)$ as defined in §2.2 of this chapter is a quadratic Jordan algebra.
3.2 Quadratic Jordan algebras obtained from cubic forms:

Let J be a nilpotent left ϕ-module, ϕ as in §3.1. A map $N:J\to \phi$ is a cubic form on J if N is homogeneous of degree 3 and $N(x+\lambda y) = N(x) + \lambda \Delta^y N + \lambda^2 \Delta^x + \lambda^3 N(y)$, where $\Delta^y N$, the differential of N in the direction of y evaluated at x (see [3], Chapter VI), is linear in y and quadratic in x. Let N be a cubic form on J, T a symmetric bilinear form on J, $x \to x^\#$, a quadratic mapping on J, and a distinguished element $l \in J$ satisfying

1. $x^{\#\#} = N(x)x$,
2. $N(l) = l$,
3. $T(x^\#/y) = \Delta^y N$, where $T(x,y) = -\Delta^x \Delta^y \log N$,
4. $l^\# = l$,
5. $l \times y = T(y)l - y$, where $T(y) = T(y,l)$ and $x \times y = (x+y)^\# - x^\# - y^\#$.

Assume that these hold under all scalar extension of ϕ. Introduce a U-operator by

6. $yu_x = T(x,y)x - x^\# y$.

McCrimmon has shown in [5] that (J, U, l) is a quadratic Jordan algebra, which we denote by $J(N, #, l)$.

* $\Delta^x \Delta^y \log N = \Delta^y \Delta^x N - (\Delta^x N)(\Delta^y N)$.
A number of important identities valid in $J(N, \# , 1)$ for a field can be found in [5] or [8].

For $x, y, z \in J_n$,

(7) $\hat{T}(l) = 3,$

(8) $T(x \times y) = T(x)T(y) - T(x, y),$

(9) $T(x \times y, z) = T(x, y \times z),$

(10) $x^3 - T(x)x^2 + S(x)x - N(x)l = 0,$ where

(11) $S(x) = T(x^\#),$

(12) $x^\# = x^2 - T(x)x + S(x)l.$

$J(N, \# , 1)$ is called the quadratic Jordan algebra with unity obtained from the cubic form N.
4. Lie Algebras

4.1 Definition: A Lie algebra \(L \) over a field \(\phi \) is an algebra over \(\phi \) in which the multiplication is anticommutative, that is,

\[
(1) \quad x^2 = 0 \text{ (implying } xy = -yx),
\]
and the Jacobi identity

\[
(2) \quad (xy)z + (yz)x + (zx)y = 0 \text{ for all } x, y, z \text{ in } L \text{ is satisfied.}
\]

If \(U \) is any associative algebra over \(\phi \) then the commutator

\[
(3) \quad [x, y] = xy - yx
\]
satisfies

\[
(4) \quad [x, x] = 0
\]
and

\[
(5) \quad [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
\]
Thus the algebra \(U^- \) obtained by defining a new multiplication (3) in the same vector space as \(U \) is a Lie algebra over \(\phi \).

Also any subspace of \(U \) which is closed under commutation (3) gives a subalgebra of \(U^- \), hence a Lie algebra over \(\phi \).
The set $\mathcal{D}(U)$ of all derivations of U into U is a subspace of the associative algebra $C = C(U)$ of all linear operators on U. Since the commutator $[D, D']$ of two derivations D, D' is a derivation of U, $\mathcal{D}(U)$ is a Lie subalgebra of C; that is, $\mathcal{D}(U)$ is a Lie algebra, called the derivation algebra of U.

In the literature the notation $[x, y]$, without regard to (3), is frequently used instead of xy to denote the product in an arbitrary Lie algebra.

4.2 Classical Lie Algebras

Let V be a finite dimensional vector space over the field \mathbb{F} and $\text{End} V$ be the set of all linear transformations $V \rightarrow V$. $(\text{End} V)^-$ is a Lie algebra and denoted by $\mathfrak{gl}(V)$. $\mathfrak{gl}(V)$ is known as the general linear algebra.

We sometimes find it convenient to use matrices in place of linear transformations. In the present case we can identify $\mathfrak{gl}(V)$ with the set of $n \times n$ matrices, fixing a basis for V ($\dim V = n$). We now denote $\mathfrak{gl}(V)$ by $\mathfrak{gl}(n, \mathbb{F})$.
There are four families A_ℓ, B_ℓ, C_ℓ, D_ℓ of Lie algebras called the classical algebras. Each of these algebras is a subalgebra of $\mathfrak{gl}(n, \phi)$.

A_ℓ: Let $\dim V = \ell + 1$. We denote by $\mathfrak{sl}(\ell+1, \phi)$, the set of endomorphisms of V having trace zero. Then $\mathfrak{sl}(\ell+1, \phi)$ is a subalgebra of $\mathfrak{gl}(n, \phi)$ and it is called the special linear algebra.

C_ℓ: Let $\dim V = 2\ell$. Define a non-degenerate skew symmetric form f on V by the matrix $S = \begin{pmatrix} 0 & \ell \\ -\ell & 0 \end{pmatrix}$. Let us denote by $\mathfrak{sp}(2\ell, \phi)$, the symplectic algebra, which by definition consists of all endomorphisms x of V satisfying $f(x(v), w) = -f(v, x(w))$. It can be easily verified that $\mathfrak{sp}(2\ell, \phi)$ is closed under the commutator operation.

B_ℓ: Let $\dim V = 2\ell + 1$ be odd and take f to be the non-degenerate symmetric bilinear form on V whose matrix is

$$ S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \ell \\ 0 & \ell & 0 \end{pmatrix} $$

Let us denote by $\mathfrak{o}(2\ell+1, \phi)$ the collection of all endomorphisms
of V satisfying $f(x(v), w) = -f(v, x(w))$. These form a Lie algebra called the **orthogonal algebra**.

D_2: Here we obtain another orthogonal algebra. The construction is identical to that of B_2, except that $\dim V = 2\ell$ is even and S has the simpler form $\begin{pmatrix} 0 & \ell \\ \ell & 0 \end{pmatrix}$. This Lie algebra is denoted by $O(2\ell, \phi)$.

In [6], Page 2 and 3, it has been shown that $\dim sl(\ell+1, \phi) = \ell(\ell+2)$, $\dim sp(2\ell, \phi) = 2\ell^2 + \ell$, $\dim O(2\ell+1, \phi) = 2\ell^2 + \ell$, and $\dim O(2\ell, \phi) = 2\ell^2 - \ell$.

4.3 Exceptional Lie algebras

Over an algebraically closed field ϕ of characteristic 0 there are five exceptional simple Lie algebras: the 14-dimensional algebra G_2, the 52-dimensional algebra F_4 and three others (E_6, E_7, E_8) of dimensions 78, 133 and 248 respectively.

Let C be a Cayley algebra over a field ϕ of characteristic 2, 3. Then in [1], Theorem 3.28 states that the derivation algebra $D(C)$ of C is a 14-dimensional central simple Lie algebra (of type G_2).
Let J be an exceptional central simple Jordan algebra over ϕ of characteristic $\neq 2, 3$. Then in [1], Theorem 4.9 states that the derivation algebra $D(J)$ of J is a 52-dimensional central simple Lie algebra (of type F_4).

In [1], theorem 4.12 states: "Let J be any finite-dimensional, exceptional, central, simple Jordan algebra over ϕ of characteristic $\neq 2, 3$, and $L = L(J)$ be the Lie multiplication algebra of J. Then

$$L = \phi l_J \oplus L'$$

where the derived algebra

$$L' = D(J) + \{R_x | \text{trace } R_x = 0\} \text{ (direct sum) is a 78-dimensional central simple Lie algebra (of type } E_6) \text{ over } \phi."

Constructions of E_7 and E_8, due to Tits, will be given in Chapter II."
Chapter II

Constructions yielding exceptional Lie algebras

1. Tits' Construction

1. Let \(U \) be a composition algebra over a field \(\phi \) of characteristic \(\neq 2, 3 \). Then there exists a linear function \(t \) and quadratic form \(n \) on \(U \) such that

\[
(1) \quad a^2 - t(a)a + n(a)1 = 0, \quad a \in U.
\]

\(t \) and \(n \) are respectively the generic trace and norm on \(U \).

Let \(U_0 = \{a | t(a) = 0\} \). So \(U_0 \) is a subspace and \(U = U_0 \oplus 1 \). In fact, if \(a \in U \), then \(a = \frac{1}{2} t(a)1 + a_0 \), where

\[a_0 = a - \frac{1}{2} t(a)1 \in U_0, \] since \(t(1) = 2 \) by 1.2(9) of chapter I.

Hence we can define a bilinear product \(*\) in \(U_0 \) by

\[
(2) \quad a*b = ab - \frac{1}{2} t(a,b)1, \quad a, b \in U_0,
\]

where \((3) \quad t(a,b) = t(ab), \quad a, b \in U, \) is a symmetric bilinear form on \(U \), which is associative in the sense that

\[
(4) \quad t(ab,c) = t(a,bc), \quad a, b, c \in U.
\]
It has been shown in ([4]; page 90–91) that
\[a \cdot b = -b \cdot a, \quad D_{a,b} = -D_{b,a}, \text{ for } a, b \in U_0, \]
where \(D_{a,b} \) is defined by 1.2(15) of chapter I.

1.2 Let \(J \) be a central simple Jordan algebra of degree 3 over \(\Phi \). Then we have a linear function \(T(x) \), a quadratic form \(S(x) \) and a cubic form \(N(x) \) such that
\[
(1) \quad x^3 - T(x)x^2 + S(x)x - N(x)1 = 0, \quad x \in J.
\]
Let \(J_0 = \{ x | T(x) = 0 \} \). If \(x \in J \) we have \(x = \frac{1}{3} T(x)1 + x_0 \),
where \(x_0 = x - \frac{1}{3} T(x)1 \in J_0 \). Since \(T(1) = 3 \), by 3.2(7) of chapter I, \(J = J_0 + \Phi 1 \) and we can
\[
(2) \quad x \cdot y = x \cdot y - \frac{1}{3} T(x \cdot y)1, \quad x, y \in J_0,
\]
where \(T(x,y) = T(x \cdot y) \) is a symmetric bilinear form on \(J \).
Then \(x \cdot y \in J_0 \).

1.3 Let (1) \(L = \mathcal{D}(U) \otimes (U_0 \otimes J_0) \otimes \mathcal{D}(J) \), \(U, J, U_0 \) and \(J_0 \)
as defined in §1.1 and §1.2 of this chapter. \(\mathcal{D}(U) \) and \(\mathcal{D}(J) \)
denote the derivation algebras as defined in §4, Chapter I, and \(U_0 \otimes J_0 \) the tensor product between \(U_0 \) and \(J_0 \). Then \(L \) is made into a Lie algebra over \(\mathbb{F} \) by defining a multiplication \([\cdot, \cdot]\) in \(L \) which is bilinear and anti-commutative, which agrees with the ordinary commutator in \(D(U) \) and \(D(J) \), and which satisfies (2) \([D(U), D(J)] = 0\),

(3) \([a \otimes x, D] = aD \otimes x\)
for all \(D \) in \(D(U) \), \(a \) in \(U_0 \), \(x \) in \(J_0 \),

(4) \([a \otimes x, E] = a \otimes xE\)
for all \(E \) in \(D(J) \), \(a \) in \(U_0 \), \(x \) in \(J_0 \),

and (5) \([a \otimes x, b \otimes y] = \frac{1}{12} T(x, y) D_{a,b} + (a \otimes b) \otimes (x \otimes y) - \frac{1}{2} t(\bar{a}, \bar{b}) [R_x, R_y]\)
for all \(a, b \) in \(U_0 \), \(x, y \) in \(J_0 \).

Theorem (Tits): The algebra \(L \) in (1) is a Lie algebra. If \(K \) is the algebraic closure of \(\mathbb{F} \), then corresponding to the four (alternative) composition algebras \(U \) over \(K \) and the five indicated Jordan algebras \(J \) over \(K \) (that is, \(K_1 \) and the four central simple algebras \(H(K_3) \), \(H(I_3) \), \(H(D_3) \) and \(H(C_3) \)), the Lie algebras \(L_K \) are given in the table:
Table 3

<table>
<thead>
<tr>
<th>U/J, Kl</th>
<th>H(K₃)</th>
<th>H(ℙ₃)</th>
<th>H[Q₃]</th>
<th>H(C₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kl</td>
<td>0</td>
<td>ℓ(2)</td>
<td>ℓ(3)</td>
<td>ℓ(6)</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>ℓ(3)</td>
<td>ℓ(3) ⊕ ℓ(3)</td>
<td>ℓ(6)</td>
</tr>
<tr>
<td>U</td>
<td>ℓ(2)</td>
<td>Sp(6)</td>
<td>ℓ(6)</td>
<td>0(12)</td>
</tr>
<tr>
<td>C</td>
<td>G₂</td>
<td>F₄</td>
<td>E₆</td>
<td>E₇</td>
</tr>
</tbody>
</table>

\(\ell(n) \) denotes the special linear Lie algebra \(\ell(V) \),
\(\dim V = n \). Hence \(L \) is central simple except for three cases:
\(\dim U = \dim J = 1 \); \(\dim U = 2, \dim J = 1 \); \(\dim U = 2, \dim J = 9 \).

In [1], page-122 the above theorem has been proved.

2. Faulkner's Construction

2.1 A class of ternary algebras.

We shall be interested in a module \(M \) over an arbitrary commutative ring \(\phi \) with 1 which possesses an alternating bilinear form \(\langle , \rangle \) and a ternary product \(\langle , , \rangle \) which satisfy:

\[(1) \quad \langle x, y, z \rangle = \langle y, x, z \rangle + \langle x, y \rangle z \quad \text{for} \quad x, y, z \in M; \]
(2) \(<x, y, z> = <x, z, y> + <y, z, x> \) for \(x, y, z \in M \);

(3) \(<x, y, z, w> = <x, y, z, w> + <x, y, z, w> \) for \(x, y, z, w \in M \);

(4) \(<x, y, z, v, w> = <x, y, z, v, w> + \)
\(<x, y, z, v, w> \) for \(x, y, z, v, w \in M \).

The \(\phi \)-module \(M \) is known as a ternary algebra.

Example: Let \(J = J(N, 1) \) be a quadratic Jordan algebra with \(1 \) over a field \(\phi \) constructed as in [5] from an admissible non-degenerate cubic form \(N \) with base point \(1 \). Recall \(yU_x = T(x, y)x - x^\# \times y \) where \(T(,) \) and \(x \mapsto x^\# \) are respectively the associated non-degenerate bilinear form and quadratic mapping and \(x \times y = (x+y)^\# - x^\# - y^\# \) (§3.2 of Chapter I).

Let \(M = \{ (\begin{array}{cc} \alpha & a \\ b & \beta \end{array}) | \alpha, \beta \in \phi ; a, b \in J \} \).

For \(x_1 = (\begin{array}{c} a_1 \\ b_1 \end{array}) \in M \),

we define:
\((5) \ <x_1, x_2> = \alpha_1 \beta_2 - \alpha_2 \beta_1 - T(a_1, b_2) + T(a_2, b_1) \),

\((6) \ <x_1, x_2, x_3> = (\begin{array}{cc} \gamma & c \\ d & \delta \end{array}) \),
where \(\gamma = \alpha_1 \beta_2 \alpha_3 + 2\alpha_1 \alpha_2 \beta_3 - \alpha_3 T(a_1, b_2) - d_2 T(a_1, b_3) - \alpha_1 T(a_2, b_3) + T(a_1, a_2 \times a_3) \),

\[c = (\alpha_2 \beta_3 + T(b_2, a_3))a_1 + (\alpha_1 \beta_3 + T(b_1, a_3))a_2 + (\alpha_1 \beta_2 + T(b_1, a_2))a_3 - \alpha_1 b_2 \times b_3 - \alpha_2 b_1 \times b_3 - \alpha_3 b_1 \times b_2 - \{a_1 b_2 a_3\} - \{a_1 b_3 a_2\} - \{a_2 b_1 a_3\}, \]

\(\delta = -\gamma^\sigma \), \(d = -c^\sigma \), where \(\sigma = (a\beta)(ab) \).

(Note \(\gamma^\sigma \) is the term obtained from \(\gamma \) by interchanging \(\alpha \) and \(\beta \) as well as \(a \) and \(b \).)

It has been shown in [7], §1 that \(M \) is a ternary algebra.

2.2 Construction of Lie algebras

Starting with a module \(M \) over a commutative associative ring \(\Phi \) with 1 which possesses an alternating bilinear form \(\langle, \rangle \) and a ternary product \(\langle,,\rangle \) which is a ternary algebra, we shall construct some Lie algebras.

First, we construct \(R = M \oplus \Phi \) and the associative...
subalgebra \(U(M) \) of \(\text{Hom}_\phi(R,R) \) consisting of \(A \in \text{Hom}_\phi(R,R) \) such that \(uA \in \Phi u \) and \(MA \in M \). We let \(U(M)^- \) denote the Lie algebra structure on \(U(M) \) where \([AB] = AB - BA\).

If we define \(U \in U(M)^- \) by \(uU' = 2u \) and \(xU = x \) for \(x \in M \), then it is clear that \(U \) is in the centre of \(U(M)^- \). We may also define \(\rho(A) \in \Phi \) for \(A \in U(M)^- \) by

\[
(1) \quad uA = \rho(A)u
\]

If \(A \in U(M)^- \), we set

\[
(2) \quad A' = A - \rho(A)U.
\]

We next define \(R(x,y) \in U(M)^- \) for \(x, y \in M \) by

\[
(3) \quad uR(x,y) = \langle x,y \rangle u, \\
\quad zR(x,y) = \langle z,x,y \rangle \text{ for } z \in M.
\]

Let \(R^*(M) \) consists of those \(R \in U(M)^- \) such that

\[
(4) \quad [R(x,y)R] = R(xR,y) + R(x,yR') \text{ for } x, y \in M.
\]

One checks immediately that \(R^*(M) \) is a Lie subalgebra of \(U(M)^- \) containing \(U \).

Using equations (1.1),(1.3) in [7], §1 and 2.1(4) of
This chapter we can write

\[(5) \quad [R(x_1, x_2)R(x_3, x_4)] = R(x_1R(x_3, x_4), x_2) +
\]

\[+ R(x_1, x_2R(x_4, x_3)) \text{ for } x_i \in M, \quad i = 1, 2, 3, 4.\]

Hence, \(R(x, y) \in R^*(M)\) for \(x, y \in M\).

It is clear from 2.1(1) of this chapter that

\[(6) \quad R(x, y) - R(y, x) = \langle x, y \rangle \cdot U.\]

Hence \(R'(x, y) = R(y, x)\). \(\{R(x, y) \mid x, y \in M\} \cup \{U\}\) spans an ideal \(R(M)\) of \(R^*(M)\). We note that if \(\langle, \rangle\) represents 1, then \(R(M)\) is spanned by

\[\{R(x, y) \mid x, y \in M\}\]

Now let \(\tilde{R}'\) be any Lie subalgebra of \(R^*(M)\) containing \(R(M)\) and let \(\tilde{\tilde{R}}\) denote a second copy of \(R\). Form

\[S(M, \tilde{R}') = R \circ \tilde{\tilde{R}} \circ \tilde{R}'\]

\[= M \circ \tilde{M} \circ \phi_U \circ \phi\circ \tilde{\tilde{R}} \circ \tilde{R}'\]

We define a Lie product on \(S = S(M, \tilde{R}')\) by
(7) \[x_1 + y_1 + \alpha_1 u + \beta_1 \bar{u} + R_1, \quad x_2 + y_2 + \alpha_2 u + \beta_2 \bar{u} + R_2 \]
\[= (x_1 R_2 - x_2 R_1 + \alpha_1 y_2 - \alpha_2 y_1) + (y R_1 - y_2 R_1 + \beta_2 x_1 - \beta_1 x_2) \]
\[+ (\langle x_1, x_2 \rangle + \alpha_1 \rho(R_2) - \alpha_2 \rho(R_1)) u \]
\[+ (\langle y_1, y_2 \rangle - \beta_1 \rho(R_2) + \beta_2 \rho(R_1)) \bar{u} \]
\[+ (R(x_1, y_2) - R(x_2, y_1) + (\alpha_1 \beta_2 - \alpha_2 \beta_1) u + [R_1, R_2]) \]

For \(x_1, y_1 \in M, \alpha_1, \beta_1 \in \Phi, \alpha_2 \in R' \).

Then it has been shown in [7], §2 that

\(S = S(M, R') \) is a Lie algebra. It has also been shown in [7], §2, Theorem 1 that \(S \), constructed as above, is a simple Lie algebra if and only if \(\langle \cdot, \cdot \rangle \) on \(M \) is non-degenerate.

2.3 Identification of Lie algebras

We wish to identify the simple Lie algebra \(S(M, R(M)) \) constructed as in §2.2 from the ternary algebra of the example illustrated in §2.1 of this chapter with \(J \) an exceptional simple Jordan algebra of dimension 27. We shall do this for
a field of characteristic 0. Since \(\langle,\rangle\) remains non-degenerate upon extension of the base field, we may assume that \(\phi\) is algebraically closed.

We first consider the derivation algebra of \(M\), which we identified with \(\mathcal{D} = \{D \in R^*(M) | \rho(D) = 0\}\) (see [7], §3). It has been shown in [9] that \(\mathcal{D}\) is a simple Lie algebra of type \(F_7\), and \(\dim \mathcal{D} = 133\). It has been shown in [7], §3 that \(R^*(M) = \phi_U + \mathcal{D}\). Since \(\mathcal{D}\) is simple, \(R^*(M) = R(M) = R\) (§7, §4). Therefore, \(S(M,R(M)) = M \oplus \mathfrak{m} \oplus \phi_U \oplus \mathfrak{u} \oplus \phi \mathfrak{u} \oplus \mathcal{D}\).

Hence \(\dim S(M,R(M)) = 256 + 3 + 133 = 248\). Then by the classification of simple Lie algebras, we see that \(S(M,R(M))\) is of type \(E_8\). Thus this algebra must be isomorphic to the algebra \(E_8\) in Tits' construction. In the next chapter we construct such an isomorphism.
Chapter III

An Isomorphism Theorem

1. Construction of G_2 using Faulkner's method

1.1 Faulkner in [7] gave a construction of Lie algebras from a ternary algebra. We have discussed this construction in section 2 of chapter II. The example of a ternary algebra given in §2.1, chapter II, plays an important part in the whole process. Using $J = \phi 1$ in this example and following Faulkner's process we shall construct a 14-dimensional algebra and afterwards, in a subsequent section, we shall show this is isomorphic with $\text{Der } C$, where C is the algebra of split octonions. $\text{Der } C$ is a Lie algebra of type G_2.

Let M_1 be the ternary algebra obtained by using $J = \phi 1$. Then

$$M_1 = \{ (\alpha, \beta, \gamma) | \alpha, \beta, \gamma, a \in \phi \}$$

For $x_1 = (\alpha_1, \beta_1, \gamma_1) \in M_1$

We have from 2.1(5) and 2.1(6) of chapter II that
\((1) \ <x_1, x_2> = \alpha_1 \beta_2 - \alpha_2 \beta_1 - 3a_1b_2 + 3a_2b_1 \quad \text{and} \quad \)

\((2) \ <x_1, x_2, x_3> = \begin{pmatrix} \gamma \\ \delta \\ \epsilon \end{pmatrix} \) where

\[\gamma = \alpha_1 \beta_2 a_3 + 2\alpha_1 \alpha_2 \beta_3 - 3a_1 a_2 b_2 - 3a_2 a_1 b_3 - 3a_1 a_2 b_3 + 6a_1 a_2 a_3. \]

\[c = (\alpha_2 \beta_3 + 3b_2 a_3)\alpha_1 + (\alpha_1 \beta_2 + 3b_1 a_3)\alpha_2 + (\alpha_1 \beta_2 + 3b_1 a_2)\alpha_3 \]

\[- 2a_1 b_2 b_3 - 2a_2 b_1 b_3 - 2a_3 b_1 b_2 - 2a_1 b_2 a_3 - 2a_2 b_3 a_2 - \]

\[- 2a_2 b_1 a_3, \quad \delta = -\gamma^\sigma, \quad \epsilon = -\delta^\sigma, \quad \text{where } \sigma \text{ denotes } (\alpha \beta)(ab) \]

the map interchanging \(\alpha \) and \(\beta \), \(a \) and \(b \).

From §2.3 of Chapter II,

\[S_1 = S_1(M_1, R(M_1)) = M_1 \otimes M_1 \otimes \phi U \otimes \phi U \otimes \phi U \otimes D_1, \]

where \(D_1 \) is the algebra of derivations of \(M_1 \). We have that

\[R^*(M_1) = R(M_1) = \phi U \otimes D_1 \quad \text{and} \quad R(M_1), \]

the span of

\[\{R(x_1, x_2) \mid x_1, x_2 \in M_1\} \cup \{U\}. \]

In order to study \(R(M_1) \) we use the table 4 below. This table gives the image of an
element \(z = \begin{pmatrix} a \\ b \\ \beta \end{pmatrix} \) of \(M_1 \) mapped by \(R(l_{ij}, l_{kl}) \) in the
position corresponding to \(l_{ij} \) and \(l_{kl} \). \(l_{ij} \) is the \(2 \times 2 \)
matrix with \(1 \) in the \((i,j)\)th position and \(0 \) elsewhere. We
note that \(zR(l_{ij}, l_{kl}) = \langle z, l_{ij}, l_{kl} \rangle \), by 2.2(3), Chapter II.
The table 5 gives values of \(\rho(l_{ij}, l_{kl}) = \langle l_{ij}, l_{kl} \rangle \). We
know that \(R(l_{ij}, l_{kl}) \) is a derivation of \(M_1 \) iff \(\rho(l_{ij}, l_{kl}) = 0 \).
Using these tables we ultimately obtain \(zR(x_1, x_2) \) and
\(\rho(x_1, x_2), x_1, x_2 \in M_1 \).

It can be checked by the equation (1) above—\(l = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), \(R(l, l) \) is a derivation of \(M_1 \). It can also be
computed that \(zR(l, l) = \begin{pmatrix} a \\ -b \\ \beta \end{pmatrix} \). From table 4, we see
that \(R(l_{11}, l_{21}), R(l_{22}, l_{12}) \) and
Table 4

<table>
<thead>
<tr>
<th>$z\tilde{R}(l_{ij}, l_{k\ell})$</th>
<th>l_{11}</th>
<th>l_{12}</th>
<th>l_{21}</th>
<th>l_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_{11}</td>
<td>(0\ 0)</td>
<td>(0\ 0)</td>
<td>((-3a -2b)</td>
<td>(2a -8)</td>
</tr>
<tr>
<td>l_{12}</td>
<td>(0\ 0)</td>
<td>(6a 4b)</td>
<td>((-3a -2a)</td>
<td>(0\ a)</td>
</tr>
<tr>
<td>l_{21}</td>
<td>((-3a -2b)</td>
<td>(0\ c)</td>
<td>(0 -2a)</td>
<td>(0\ 0)</td>
</tr>
<tr>
<td>l_{22}</td>
<td>((-b -28)</td>
<td>(2a 3b)</td>
<td>(0\ 0)</td>
<td>(0\ 0)</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>$\rho(l_{ij}, l_{k\ell})$</th>
<th>l_{11}</th>
<th>l_{12}</th>
<th>l_{21}</th>
<th>l_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_{11}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>l_{12}</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>l_{21}</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>l_{22}</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
R(1,1) are linearly independent and each of those
R(1_{ij}, 1_{kl}) which are derivations is a linear combination of these three. Hence the algebra \(\mathcal{D}_1 \) of derivations of \(M_1 \) is spanned by \(R(1_{11}, 1_{21}), R(1_{22}, 1_{12}) \) and \(R(1,1) \) and the
\(\dim \mathcal{D}_1 = 3 \). Thus, we find \(R(M_1) = \mathfrak{U} + \mathcal{D}_1 \). Now clearly,
\(\dim S_1 = \dim S_1(M_1 + R(M_1)) = 4 + 4 + 1 + 1 + 1 + 3 = 14 \).

1.2 Let \(J \) be an arbitrary quadratic Jordan algebra with \(l \) of degree 3 over a field \(\mathbb{F} \) constructed as in [5]. \(\mathfrak{U} \) is contained in \(J \). For

\[
M = \{(\begin{pmatrix} a & \alpha \\ b & \beta \end{pmatrix} | \alpha, \beta \in \mathbb{F}; \ a, b \in J\}
\]

let \(S(M, R(M)) \) denotes the Lie algebra constructed by Faulkner's process. Then

\[
S = S(M, R(M)) = M \oplus M + \mathfrak{U} + \mathfrak{U} + R(M)
\]

where \(R(M) = \mathfrak{U} \oplus D = \{ \sum R(x_i, x_j) | x_i, x_j \in M \} \cup \{ U \} \)

To find out \(\mathfrak{U} + D \) we see that \(R(x_1, x_2), x_1, x_2 \in M \), act on an arbitrary element \(z = (\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}) \) of \(M \) and compute...
\(\rho(x_1, x_2) \) giving the results in tables 6 and 7. In these
tables \(q_{12} \) stands for \(\begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix} \), where \(q \in J \) and so on. As in the preceding section, \(U = R(l_{11}, l_{22}) - R(l_{22}, l_{11}) \) and the members in \(D \) can be obtained from table 7.

Table 6

<table>
<thead>
<tr>
<th>(zR(x_1, x_2))</th>
<th>(l_{11})</th>
<th>(s_{12})</th>
<th>(t_{21})</th>
<th>(l_{22})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_{11})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>-T(a,t)</td>
<td>2a, a</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>-st</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>-\beta</td>
</tr>
<tr>
<td>(q_{12})</td>
<td></td>
<td></td>
<td>T(a,q×s)</td>
<td>-\alphaT(q,t) -{aat} 0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>(aq)</td>
</tr>
<tr>
<td>-q</td>
<td></td>
<td></td>
<td>{bqt} -\betaT(q,t) 0</td>
<td>(ax \times sT(b,q))</td>
</tr>
<tr>
<td>(r_{21})</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-T(a,r)</td>
<td></td>
<td></td>
<td>{arat} -T(a,t) -T(b,rxt) 0</td>
<td>0</td>
</tr>
<tr>
<td>-\beta r</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(l_{22})</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>{ats} -T(r,s) 0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>-arxt</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-b</td>
<td></td>
<td></td>
<td>axs</td>
<td>0</td>
</tr>
<tr>
<td>-2\beta</td>
<td></td>
<td></td>
<td>T(b,s)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Let us now consider J_0, the subspace of trace zero elements of J_0. In $S = S(M, R(M))$ we single out seven copies of J_0. Clearly, M contains two copies of J_0 namely

$$(J_0)_{12} = \begin{pmatrix} 0 & J_0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad (J_0)_{21} = \begin{pmatrix} J_0 & 0 \\ 0 & 0 \end{pmatrix}. \quad \text{Similarly,} \quad \tilde{M} \quad \text{contains two copies of} \quad J_0 \quad \text{namely} \quad (\tilde{J}_0)_{12} \quad \text{and} \quad (\tilde{J}_0)_{21}.

When we work with J_0, we see from Table 7 that $R(\langle J_0 \rangle_{ij}, 1_{k\ell})$, $1, j, k, \ell = 1, 2$, are derivations of M and clearly they yield copies of J_0. For $x \in J_0$, we get eight non-zero derivations of M, namely

$R(x_{12}, l_{22}) = R(x_{21}, l_{21}) = R(l_{22}, x_{12})$, $R(x_{21}, l_{11}) = R(x_{12}, l_{12}) = R(l_{11}, x_{21})$ and $R(x_{12}, l_{21}) = R(x_{21}, l_{12})$ and each of these
is an element in a copy of \(J_0 \) of above type. We use table 6 to obtain the above equalities. These eight derivations of \(M \) and in fact three classify the copies of \(J_0 \) in \(P \). These are clearly \(R((J_0)_1, 1_{22}), R((J_0)_2, 1_{11}) \) and \(R((J_0)_1, 1_{21}) \).

Thus, we have only three copies of \(J_0 \) in \(P \). For \(x \in J_0 \), we can give names to these copies as \(x_{12}, x_{21}, \tilde{x}_{12}, \tilde{x}_{21}, R(x_{12}, 1_{22}), R(x_{21}, 1_{11}), R(x_{12}, 1_{21}) \).

1.3 Lie product of the copies of \(J_0 \) with elements in \(S_1 \).

We shall find out the Lie product of the copies of \(J_0 \) with the each of the generators of \(S_1 \). We use 2.2(6) of Chapter 2. \(1_{11}, 1_{12}, 1_{21}, 1_{22}, \tilde{1}_{11}, \tilde{1}_{12}, \tilde{1}_{21}, \tilde{1}_{22}, u, \tilde{u} \)

\(U, R(1_{11}, 1_{21}), R(1_{22}, 1_{12}), R(1, 1) \) form a basis of \(S_1 \).

(a) \([x_{12}, 1_{11}] = [x_{12}, 1_{12}] = [x_{12}, 1_{21}] = [x_{12}, 1_{22}] = 0 \);

\([x_{12}, \tilde{1}_{11}] = 0, [x_{12}, \tilde{1}_{12}] = R(x_{21}, 1_{11}), [x_{12}, \tilde{1}_{21}] = R(x_{12}, 1_{21}) \);

\([x_{12}, \tilde{1}_{22}] = R(x_{12}, 1_{22}) ; \)

\([x_{12}, u] = 0, [x_{12}, \tilde{u}] = \tilde{x}_{12}, [x_{12}, u] = x_{12} ; \)
\[[x_{12}, R(1_{11}, 1_{21})] = 0, \quad [x_{12}, R(1_{22}, 1_{12})] = -x_{21} \]
\[[x_{12}, R(1, 1)] = x_{12} \]

(b) \[[x_{21}, 1_{11}] = [x_{21}, 1_{12}] = [x_{21}, 1_{21}] = [x_{21}, 1_{22}] = 0 \]
\[[x_{21}, \bar{1}_{11}] = R(x_{21}, 1_{11}), \quad [x_{21}, \bar{1}_{12}] = R(x_{21}, 1_{12}) \]
\[[x_{21}, 1_{21}] = R(x_{12}, 1_{22}), \quad [x_{21}, \bar{1}_{22}] = 0 \]
\[[x_{21}, u] = 0, \quad [x_{21}, \bar{u}] = \bar{x}_{21}, \quad [x_{21}, U] = x_{21} \]
\[[x_{21}, R(1_{11}, 1_{21})] = x_{12}, \quad [x_{21}, R(1_{22}, 1_{12})] = 0 \]
\[[x_{21}, R(1, 1)] = -x_{21} \]

(e) \[[\bar{x}_{12}, 1_{11}] = 0, \quad [\bar{x}_{12}, 1_{12}] = -R(x_{21}, 1_{11}), \quad [\bar{x}_{12}, 1_{21}] = \]
\[= -R(x_{12}, 1_{21}) \]
\[[\bar{x}_{12}, 1_{22}] = -R(x_{12}, 1_{22}) \]
\[[\bar{x}_{12}, \bar{1}_{11}] = [\bar{x}_{12}, \bar{1}_{12}] = [\bar{x}_{12}, \bar{1}_{21}] = [\bar{x}_{12}, \bar{1}_{22}] = 0 \]
\[[\bar{x}_{12}, u] = -x_{12}, \quad [\bar{x}_{12}, \bar{u}] = 0, \quad [\bar{x}_{12}, U] = -\bar{x}_{12} \]
\[[\bar{x}_{12}, R(1_{11}, 1_{21})] = 0, \quad [\bar{x}_{12}, R(1_{22}, 1_{12})] = -\bar{x}_{21} \]
\[[\bar{x}_{12}, R(1, 1)] = \bar{x}_{12} \]
(d) $[\bar{x}_{21}, l_{11}] = -R(x_{21}, l_{11})$, $[\bar{x}_{21}, l_{12}] = -R(x_{12}, l_{21})$,
$[\bar{x}_{21}, l_{21}] = -R(x_{12}, l_{22})$, $[\bar{x}_{21}, l_{22}] = 0$;
$[\bar{x}_{21}, \tilde{l}_{11}] = [\bar{x}_{21}, \tilde{l}_{12}] = [\bar{x}_{21}, \tilde{l}_{21}] = [\bar{x}_{21}, \tilde{l}_{22}] = 0$;
$[\bar{x}_{21}, u] = -x_{21}$, $[\bar{x}_{21}, \bar{u}] = 0$, $[\bar{x}_{21}, u] = -\bar{x}_{21}$;
$[\bar{x}_{21}, R(l_{11}, l_{21})] = \bar{x}_{12}$, $[\bar{x}_{21}, R(l_{22}, l_{12})] = 0$,
$[\bar{x}_{21}, R(1, 1)] = -\bar{x}_{21}$.

(e) $[R(x_{12}, l_{22}), l_{11}] = -x_{12}$, $[R(x_{12}, l_{22}), l_{12}] = x_{21}$;
$[R(x_{12}, l_{22}), l_{21}] = [R(x_{12}, l_{22}), l_{22}] = 0$;
$[R(x_{12}, l_{22}), \tilde{l}_{11}] = -\bar{x}_{12}$, $[R(x_{12}, l_{22}), \tilde{l}_{12}] = \bar{x}_{21}$.
$[R(x_{12}, l_{22}), \tilde{l}_{21}] = [R(x_{12}, l_{22}), \tilde{l}_{22}] = 0$;
$[R(x_{12}, l_{22}), u] = [R(x_{12}, l_{22}), \bar{u}] = [R(x_{12}, l_{22}), u] = 0$;
$[R(x_{12}, l_{22}), R(l_{11}, l_{21})] = -R(x_{12}, l_{21})$,
$[R(x_{12}, l_{22}), R(l_{22}, l_{12})] = 0$
$[R(x_{12}, l_{22}), R(1, 1)] = -2R(x_{12}, l_{22})$.

(f) $[R(x_{21}, l_{11}), l_{11}] = [R(x_{21}, l_{11}), l_{12}] = 0$,
$[R(x_{21}, l_{11}), l_{21}] = -x_{12}$, $[R(x_{21}, l_{11}), l_{22}] = x_{21}$;
\[[R(x_{21}, \tilde{l}_{11}), \tilde{l}_{11}] = [R(x_{21}, \tilde{l}_{11}), \tilde{l}_{12}] = 0 , \]
\[[R(x_{21}, \tilde{l}_{11}), \tilde{l}_{21}] = -\tilde{x}_{12}, \ [R(x_{21}, \tilde{l}_{11}), \tilde{l}_{22}] = \tilde{x}_{21} , \]
\[[R(x_{21}, \tilde{l}_{11}), u] = [R(x_{21}, \tilde{l}_{11}), \tilde{u}] = [R(x_{21}, \tilde{l}_{11}), U] = 0 ; \]
\[[R(x_{21}, \tilde{l}_{11}), R(1_{11}, 1_{21})] = 0 . \]
\[[R(x_{21}, \tilde{l}_{11}), R(1_{22}, 1_{12})] = R(x_{12}, 1_{21}) . \]
\[[R(x_{21}, \tilde{l}_{11}), R(1, 1)] = 2R(x_{21}, \tilde{l}_{11}) . \]

\[(g) \ [R(x_{12}, 1_{21}), 1_{11}] = [R(x_{12}, 1_{21}), 1_{22}] = 0 , \]
\[[R(x_{12}, 1_{21}), 1_{12}] = 2x_{12}, \ [R(x_{12}, 1_{21}), 1_{21}] = 2\tilde{x}_{21} ; \]
\[[R(x_{12}, 1_{21}), \tilde{l}_{11}] = [R(x_{12}, 1_{21}), \tilde{l}_{22}] = 0 , \]
\[[R(x_{12}, 1_{21}), \tilde{l}_{12}] = 2\tilde{x}_{12}, \ [R(x_{12}, 1_{21}), \tilde{l}_{21}] = 2\tilde{x}_{21} ; \]
\[[R(x_{12}, 1_{21}), u] = [R(x_{12}, 1_{21}), \tilde{u}] = [R(x_{12}, 1_{21}), U] = 0 ; \]
\[[R(x_{12}, 1_{21}), R(1_{11}, 1_{21})] = -2R(x_{21}, \tilde{l}_{11}) , \]
\[[R(x_{12}, 1_{21}), R(1_{22}, 1_{12})] = 2R(x_{12}, 1_{22}) , \]
\[[R(x_{12}, 1_{21}), R(1, 1)] = 0 . \]

We note that if \(x \in J_0 \) then the \(\Phi \)-vector space spanned by the seven copies of \(x \) is a \(S_1 \)-module.
2. Tits and Faulkner's constructions

2.1 Isomorphism between Der C and S_1

Let C be the algebra of split octonions and J be an arbitrary Jordan algebra of degree 3. Then according to Tits

$$L = \text{Der}(C) \oplus C_0 \oplus J_0 \oplus \text{Der}(J)$$

is a Lie algebra, where

$$[a \circ x, D] = aD \circ x, \text{ for all } D \in \text{Der}C, a \in C_0, x \in J_0.$$

We have that a derivation of C leaves C_0 invariant. Thus, $aD \circ x \in C_0 \circ J_0$, that is, the action of Der C on J_0 is an element on $C_0 \circ J_0$.

C_0 is seven dimensional and this tells us that L contains seven copies of J_0, namely $e_2 \circ e_1 \circ x$, $f_1 \circ x$, $f_2 \circ x$, $f_3 \circ x$, $g_1 \circ x$, $g_2 \circ x$, $g_3 \circ x$, $x \in J_0$. From 1.3(5) of Chapter 2 we have

$$[a \circ x, b \circ y] = \frac{1}{12} T(xy)D_{a,b} + a^*b \circ x^*y - \frac{1}{2} T(ab)[R_x, R_y],$$

for all $a, b \in C_0$; $x, y \in J_0$. Using this we obtain
\[(e_2-e_1) \circ x, (e_2-e_1) \circ y] = [R_x, R_y] \in \text{Der} \ J,
\]
\[[f_1 \circ x, f_1 \circ y] = [f_2 \circ x, f_2 \circ y] = [f_3 \circ x, f_3 \circ y] =
\]
\[= [g_1 \circ x, g_1 \circ y] = [g_2 \circ x, g_2 \circ y] = [g_3 \circ x, g_3 \circ y] =
\]
\[= 0, x, y \in J_0. \] According to Faulkner we have for an arbitrary Jordan algebra \(J \) of degree 3 the Lie algebra
\[S = S(M, R(M)) = M + \tilde{M} + \phi u + \phi \tilde{u} + R(M). \]
Since \(\phi 1 \in J \), we see that the Lie algebra \(S_1 \) constructed in \S 1.1 of this chapter is contained in \(S \).

\(S \) contains seven copies of \(J_0 \) namely \(x_{12}, x_{21}, \bar{x}_{12}, \bar{x}_{21}, R(x_{12},1_{22}), R(x_{21},1_{11}), R(x_{12},1_{21}) \) as obtained in \S 1.2 of this chapter. Using the Lie product rule in Faulkner's construction we have
\[[x_{12}, y_{12}] = <x_{12}, y_{12}> u = 0 \text{ using } 2.1(5), \text{ chapter II}. \]
Similarly, \[[x_{21}, y_{21}] = <x_{21}, y_{21}> u = 0, [\bar{x}_{12}, \bar{y}_{12}] =
\]
\[= <x_{12}, y_{12}> \bar{u} = 0, [\bar{x}_{21}, \bar{y}_{21}] = <x_{21}, y_{21}> \bar{u} = 0; \text{ for}
\]
\[Z = \begin{pmatrix} a & a \\ b & 0 \end{pmatrix} \in M, \quad Z[R(x_{12}, 1_{22}), R(y_{12}, 1_{22})] = \]
\[ZR(x_{12}, 1_{22})R(y_{12}, 1_{22}) - ZR(y_{12}, 1_{22})R(x_{12}, 1_{22}) = \]
\[= \begin{pmatrix} 0 & 0 \\ axy & T(a \times x, y) \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ ay \times x & T(a \times y, x) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \text{ for} \]

\[x \times y = y \times x \text{ and } T(a \times x, y) = T(a, x \times y). \text{ Thus,} \]
\[[R(x_{12}, 1_{22}), R(y_{12}, 1_{22})] \text{ is a zero map. Similarly,} \]
\[[R(x_{21}, 1_{11}), R(y_{21}, 1_{11})] \text{ is a zero map, for} \]
\[Z[R(x_{21}, 1_{11}), R(y_{21}, 1_{11})] = \begin{pmatrix} T(b \times x, y) & 0 \\ 0 & T(b \times y, x) \end{pmatrix} - \begin{pmatrix} T(b \times x, y) & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \text{ Finally,} \]
\[Z[R(x_{12}, 1_{21}), R(y_{12}, 1_{21})] = \]
\[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \{\{a_{l}x\}_{l}y\} - \{\{a_{l}y\}_{l}x\} = \]
\[\{\{b_{l}x\}_{l}y\} - \{\{b_{l}y\}_{l}x\} \]
\[= \begin{pmatrix} 0 & 4a[R_{x}, R_{y}] \\ 4b[R_{x}, R_{y}] & 0 \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} [R_{x}, R_{y}] \text{ which is not equal to zero, we use above } \{\{a_{l}x\} = \{a_{l}x\} = 2aR_{x}. \]

Thus, we obtain a similar behaviour between \((e_{2} - e_{1})\times x\)

and \(R(x_{12}, 1_{21})\).
The annihilator of \((e_2-e_1) \circ x\) is also the annihilator of \((e_2-e_1) \circ x\). From §1.3(g) of this chapter the annihilator of \(R(x_{12}, l_{21})\) is \(\{\tilde{l}_{11}, \tilde{l}_{22}, \tilde{l}_{11}, \tilde{l}_{22}, u, \tilde{u}, U, R(1,1)\}\).

Again from §1.4 of chapter 1 the annihilator of \(\langle e_2-e_1 \rangle \circ x\) is \(\{D_{f_1}, g_1, D_{f_2}, g_2 - D_{f_3}, g_3, D_{f_1}, g_2, D_{f_2}, g_3, D_{f_3}, g_1, D_{f_1}, g_3 - D_{f_2}, g_1 - D_{f_3}, g_2\}\).

The annihilator of \(R(x_{12}, l_{21})\) act on the rest six copies of \(J_0\) contained in \(S\) as in §1.3(a) to §1.3(f) of this chapter.

The annihilator of \(\langle e_2-e_1 \rangle \circ x\) act on the rest six copies of \(J_0\) contained in \(L\) as in table 2 where we replace \(f_1, g_1\) by \(f_1 \circ x, g_1 \circ x\) and apply the product \([a \circ x, D] = aD \circ x\), \(a \in C_0, x \in J_0, D \in \text{Der } C\).

The similarity between these actions appears and we see that \(\approx\) means corresponds to.)
(1) \(f_1 \otimes x \cong R(x_{21}, l_{11}) \quad g_1 \otimes x \cong R(x_{12}, l_{22}) \)

\(f_2 \otimes x \cong \bar{x}_{21} \quad g_2 \otimes x \cong -x_{12} \)

\(f_3 \otimes x \cong x_{21} \quad g_3 \otimes x \cong \bar{x}_{12} \)

Also, \(D_{f_1, g_2} \cong -3l_{11} \), \(D_{f_1, g_1} \cong 3l_{22} \), \(D_{f_2, g_3} \cong 3u \).

(2) \(D_{f_1, g_3} \cong 3l_{11} \), \(D_{f_2, g_1} \cong 3l_{22} \), \(D_{f_2, g_2} \cong -3u \).

\(D_{f_1, g_1} \cong R(l, l) \) and \(D_{f_2, g_2} \cong -D_{f_3, g_3} \) \(\cong -3U \).

Next, we also see from §1.3(a) to 1.3(f) of this chapter and table 2 that

\(D(e_2, g_1) \cong R(l_{12}, l_{12}) \quad D(e_1, f_1) \cong R(l_{11}, l_{21}) \)

\(D(e_2, g_2) \cong -l_{12} \quad D(e_1, f_2) \cong l_{21} \)

\(D(e_2, g_3) \cong -l_{12} \quad D(e_1, f_3) \cong l_{21} \).

Thus, we have found a correspondence between the generators of \(Der \ C \) and those of \(S_1 \) and a correspondence between
the copies of \(J_0 \) in \(L \) and those of \(J_0 \) in \(S \).

In \(L \) we know that \(\text{Der} \ C \) act on the copies of \(J_0 \) giving an element in the copies of \(J_0 \). §1.3(a) to §1.3(g) of this chapter show that \(S_1 \) act on the copies of \(J_0 \) in \(S \) giving an element in the copies of \(J_0 \).

Hence we conclude that the behaviour of \(S_1 \) in \(S \) is exactly same as that of \(\text{Der} \ C \) in \(L \).

We shall end this section by defining a map

\[\phi_1: \text{Der} \ C \rightarrow S_1 \text{ and } \phi_2: \text{Der} \ C \text{ module } \rightarrow S_1 \text{ module we discussed before.} \]

To define \(\phi_1 \) and \(\phi_2 \) we use the correspondences we found above between the generators of \(\text{Der} \ C \) and those of \(S_1 \) and the generators of \(\text{Der} \ C \) module in \(L \) and those of \(S_1 \)-module in \(S \) for a fixed \(x \in J_0 \) respectively. Therefore, we define
\[D_{f_1}, g_2 \phi_1 = -3^{11}, D_{f_3}, g_1 \phi_1 = 3^{122} \text{ and so on and} \]

\[(f_1 \circ x) \phi_2 = R(\frac{1}{2} x_{21}, 1_{11}), (f_2 \circ x) \phi_2 = \frac{1}{2} x_{21} \text{ and so on.} \]

\(\phi_1 \)

is injective: Let \(D_1 \phi_1 = D_2 \phi_2 \) for \(D_1, D_2 \in \text{Der C} \) and

\(D_1 = D_2. \)

We can write \(D_1 \phi_1 = (\alpha_1 D_{f_1}, g_2 \phi_1) + \alpha_2 D_{f_3}, g_1 \phi_1 + \ldots + \alpha_4 D_{e_1, f_3} \phi_1 = \alpha_1^{D_{f_1}, g_2} \phi_1 + \alpha_2^{D_{f_3}, g_1} \phi_1 + \ldots + \alpha_4^{D_{e_1, f_3}} \phi_1 = \alpha_1 (-3^{11}) + \alpha_2 (3^{122}) + \ldots \)

\[\ldots + \alpha_4^{1-21} = S_1 \text{ (say), where } \alpha_4 \in \phi \text{ and } \phi_1 \text{ is clearly linear. Similarly, we shall obtain } D_2 \phi_2 = \beta_1 (-3^{11}) + \beta_2 (3^{122}) + \ldots + \beta_4^{1-21} = S_2 \text{ (say), } \beta_4 \in \phi. \]

\(D_1 \phi_1 = D_2 \phi_1 \) implies \(S_1 = S_2 \). Thus, \(\alpha_4 = \beta_4 \) which shows that \(D_1 = D_2 \).

\(\phi_1 \) is surjective; Let \(S \in S_1 \) and
\[S = \alpha_1 (3_{11}) + \alpha_2 (3_{22}) + \ldots + \alpha_{14} \cdot 21 \]
\[= \alpha_1 D_{f_1}, g_2 \phi_1 + \alpha_2 D_{f_3}, g_1 \phi_1 + \ldots + \alpha_{14} D_{e_1}, f_3 \phi_1 \]
\[= (\alpha_1 D_{f_1}, g_2 + \alpha_2 D_{f_3}, g_1 + \ldots + \alpha_{14} D_{e_1}, f_3) \phi_1 \]
\[= D\phi_1 \text{(say). But } D \in \text{Der } C. \quad \phi_1 \text{ preserves Lie product:} \]

We are to show that for \(D_1, D_2 \in \text{Der } C \), \([D_1 \phi_1, D_2 \phi_1] = \]
\[= [D_1, D_2] \phi_1. \quad \text{First of all we note that for } a \circ x \in C_0 \circ J_0 \]
and \(D \in \text{Der } C \),

(3) \[[(a \circ x) \phi_2, D \phi_1] = [a \circ x, D] \phi_2 = (aD \circ x) \phi_2. \quad \text{This is the}\]
similarity we talk about between the table 2 and §1.3(a) to 1.3(g) of this chapter, where we find correspondences
between the generators of Der C and those of \(S_1 \) and
at the same time between the generators of Der C-module \(L \) and those of \(S_1 \)-module in \(S \) for a fixed \(x \in J_0 \)
defining \(\phi_1 \) and \(\phi_2 \).
\(a \circ x, D_1, D_2 \) as elements in \(L \) and \((a \circ x) \phi_2, D_1 \phi_1\),

\(D_2 \phi_1 \) as elements in \(S \) satisfy the Jacobi identity. Thus,

\[
[[a \circ x, D_1], D_2] + [[D_1, D_2], a \circ x] + [D_2, a \circ x], D_1] = 0
\]
i.e. \([a \circ x, [D_1, D_2]] = [[a \circ x, D_1], D_2] - [[a \circ x, D_2], D_1]\)
i.e. \(a[D_1, D_2] \circ x = [aD_1 \circ x, D_2] - [aD_2 \circ x, D_1]\)
i.e. \(a[D_1, D_2] \circ x = aD_1D_2 \circ x - aD_2D_1 \circ x\).

Also, \([[(a \circ x) \phi_2, [D_1 \phi_1, D_2 \phi_1]] = [[[a \circ x) \phi_2, D_1 \phi_1], D_2 \phi_1]] - [[[a \circ x) \phi_2, D_2 \phi_1], D_1 \phi_1].\]

To show \([D_1 \phi_1, D_2 \phi_1] = [D_1, D_2] \phi_1\), it is necessary that
\n\([[(a \circ x) \phi_2, [D_1 \phi_1, D_2 \phi_1]] = [(a \circ x) \phi_2, [D_1, D_2] \phi_1]\) for arbitrary \(a \circ x \in C_0 \circ J_0\).

The right hand side is \([a \circ x, [D_1, D_2]] \phi_2\) by (3) above, and again by (3) the left side is.
\[(a \otimes x) \phi_2, [D_1 \phi_1, D_2 \phi_1] = \left[\left[(a \otimes x) \phi_2, D_1 \phi_1\right], D_2 \phi_1\right] - \left[\left[(a \otimes x) \phi_2, D_2 \phi_1\right], D_1 \phi_1\right] - \left[\left[a \otimes x, D_1 \phi_1\right], D_2 \phi_1\right] - \left[\left[a \otimes x, D_2 \phi_1\right], D_1 \phi_1\right]\]

\[\left[\left[a \otimes x, D_2 \phi_1\right], D_1 \phi_1\right] = [a D_1 \otimes x, D_2] \phi_2 - [a D_2 \otimes x, D_1] \phi_2\]

\[= (a D_1 D_2 \otimes x) \phi_2 - (a D_2 D_1 \otimes x) \phi_2 = (a D_1 D_2 \otimes x - a D_2 D_1 \otimes x) \phi_2\]

\[= (a \otimes [D_1, D_2] \otimes x) \phi_2 = [a \otimes x, [D_1, D_2]] \phi_2.\]

\(\phi_2\) is bijective: \(C_0 \otimes J_0\) is a Der C module of \(\phi\)-dimension \(\text{dim} \ C_0 \times \text{dim} \ J_0\) with basis \(\{a \otimes x\} a \text{ and } x \text{ are fixed bases of } C_0 \text{ and } J_0 \text{ respectively}\). Similarly, \(\text{Im} \phi_2\) is a \(S_1\)-module in \(S\) which has the same dimension because it is the direct sum of \(7(=\text{dim} \ C_0) \times \text{dim} \ J_0\) dimensional vector spaces. Therefore, in the same way \(\phi_1, \phi_2\) is bijective.

Therefore, we have proved that \(\phi_1\) is an isomorphism and \(\phi_2\) is a bijective mapping.
2.2 The centralizer of S_1

The centralizer of S_1 in S is

$\text{cent } S_1 = \{ S \in S \mid [SS_1] = 0 \}$. Let $S = y + \bar{z} + \alpha u + \beta \bar{u} + R \in S$

and $S_1 = y_1 + \bar{z}_1 + \alpha_1 u + \beta_1 \bar{u} + R_1 \in S_1$. We shall find some conditions when $[S, S_1] = 0$. $[S, S_1] = 0$ implies

(1) $[y + \bar{z} + \alpha u + \beta \bar{u} + R, y_1] = 0$

i.e. $\langle y, y_1 \rangle u - R(y_1, z) - \beta \bar{y}_1 - y_1 R = 0$

i.e. $\langle y, y_1 \rangle = 0, y_1 R = -R(y_1, z), \beta = 0$

(2) $[y + \bar{z} + \alpha u + \beta \bar{u} + R, \bar{z}_1] = 0$

i.e. $R(y, z_1) + \langle z, z_1 \rangle \bar{u} + az_1 - (z_1 R')^* = 0$

i.e. $\langle z, z_1 \rangle = 0, a = 0, (z_1 R')^* = R(y, z_1)$

(3) $[y + \bar{z} + \alpha u + \beta \bar{u} + R, u] = 0$

i.e. $-z - \beta \bar{u} - \rho(R) u = 0$

i.e. $z = 0, \beta = 0, \rho(R) = 0$
(4) \([y+z+au+8u+R, \bar{u}] = 0\)

i.e. \(\bar{y} + a\bar{u} + \rho(R)\bar{u} = 0\)

i.e. \(\bar{y} = 0, \alpha = 0, \rho(R) = 0\).

(5) \([y+z+au+8u+R, R_1] = 0\)

i.e. \(yR_1 + (zR_1')^* + \alpha p(R_1) - \beta p(R_1) + [R,R_1] = 0\)

i.e. \(yR_1 = 0, zR_1 = 0, \alpha - \beta = 0, [R,R_1] = 0\)

We have that \(\bar{y} = 0 \Rightarrow y = 0\) and \(z = 0 \Rightarrow z = 0\). From
(1) to (5) above we get \(y_1R = 0, (z_1R')^* = 0 \Rightarrow z_1R' = 0\),
\(\rho(R) = 0 \Rightarrow R\) is a derivation and hence \(R = R'\) and
\([R,R_1] = 0\). Thus, we have \(S = R\) where \(R\) is a derivation of
\(M, M_1R = 0\) and \([R,R_1(M)] = 0\) in order to satisfy \([S,S] = 0\)
because \(y = z = \alpha = \beta = 0\). In other words,

\[\text{cent } S_1 = \{R \epsilon \text{ Der } M | M_1R = 0 \text{ and } [R,R_1] = 0\}.\]

Again if \(R_1 = R_1(x_1,y_1)\) where \(x_1, y_1 \epsilon M_1\) then

\([R,R_1(x_1,y_1)] = -[R_1(x_1,y_1),R] = R_1(x_1R, y_1) +\]

\(+ R_1(x_1,y_1R) = R_1(0,y_1) + R_1(x_1,0) = 0\) for \(M_1R = 0\).
Thus, $M_1 R = 0$ implies $[R, R_1] = 0$. Hence, the centralizer of S_1 becomes

$$\text{cent } S_1 = \{ R \in \text{Der } M | M_1 R = 0 \}$$

For example we shall show that $[R(x_{12}, 1_{21}), R(y_{12}, 1_{21})]$ lies in cent S_1, $x, y \in J_0$. Since $R(x_{12}, 1_{21})$, $R(y_{12}, 1_{21}) \in \text{Der } M$, $[R(x_{12}, 1_{21}), R(y_{12}, 1_{21})] \in \text{Der } M$.

Again, for $z = (\begin{smallmatrix} a & \alpha \\ b & \beta \end{smallmatrix}) \in M$,

$$z[R(x_{12}, 1_{21}), R(y_{12}, 1_{21})] = \begin{pmatrix} 0 & \{alx\}l y - \{aly\}l x \\ \{bx\}y_1 - \{by\}x_1 & 0 \end{pmatrix} = 4(\begin{smallmatrix} 0 & a \\ b & 0 \end{smallmatrix}) [R_x, R_y]$$

as in section 2.1. Since multiplication in Jordan algebras is commutative, it is easily verified that $M_1 [R(x_{12}, 1_{21}), R(y_{12}, 1_{21})] = 0$. Thus,

$$[R(x_{12}, 1_{21}), R(y_{12}, 1_{21})] = z(R(x_{12}, y_{21}) - R((xy)_{12}, 1_{21}))$$

using 2.2(5) of chapter 2, is in cent S_1.
\[[R_x, R_y] = D_{x,y} \text{ is a derivation of } J, \text{ for} \]

\[x, y \in J_0. \] We have that for \(x \in J, \)

\[(8) \ x = \frac{1}{3} T(\mathbb{L})_1 + x_0, \ x_0 \notin J_0. \] Therefore, for \(x, y \in J \)

\[[R_x, R_y] = [R_{1/3} \ T(x)_1 + x_0 \cdot R_{1/3} \ T(y)_1] = [R_{1/3} \ T(x)_1 \cdot R_{1/3} \ T(y)_1] + \]

\[+ [R_{x_0}, R_{y_0}] = \]

\[= [R_{x_0}, R_{y_0}] = [R_{x_0}, R_{1/3} \ T(y)_1 + y_0] = [R_{x_0}, R_{y_0}], \]

\[y_0 \in J_0. \] Hence by the theorem 13, page-258 in [3]

\[[R_x, R_y] \text{ and thus } [R_{x_0}, R_{y_0}] \text{ span } \text{Der } J. \] We have, for

\[z = \left(\begin{array}{c} a \\ b \\ c \end{array} \right) \in M, \ z[R(\frac{1}{2} x_{12}, 1_{21}), R(\frac{1}{2} y_{12}, 1_{21})] = \]

\[= \left(\begin{array}{c} 0 \\ a \end{array} \right) D_{x,y}. \] From this we can define a mapping

\[\phi_3: \text{Der } J + \text{ cent } S_1 \text{ such that } (D_{x,y})\phi_3 = \]

\[= [R(\frac{1}{2} x_{12}, 1_{21}), R(\frac{1}{2} y_{12}, 1_{21})]. \]

\[\phi_3 \text{ is injective: Let } (D_{x,y})\phi_3 = 0. \text{ Then} \]
[R(\frac{1}{2} x_{12}, 1_{21}), R(\frac{1}{2} y_{12}, 1_{21})] is a zero map. That is

z[R(\frac{1}{2} x_{12}, 1_{21}), R(\frac{1}{2} y_{12}, 1_{21})] = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} D_{x,y} = 0. This implies D_{x,y} = 0 for a and b are not equal to zero.

We have that \(S = \mathcal{M} \circ \mathcal{M} \circ \phi_u \circ \phi_u \circ \phi_u \circ \mathcal{D} \) where

\(\mathcal{D} = \{ \Sigma R(x_i, y_1) | i \leq 1, \Sigma x_i y_i = 0 \} \), (§4 in [7]).

\(S_1 = \mathcal{M}_1 \circ \mathcal{M}_1 \circ \phi_u \circ \phi_u \circ \phi_u \circ \mathcal{D}_1 \). This shows that we can split \(S \) into three parts and we can write \(S \) as the direct sum of these. These three parts are \(S_1 \), the vector space generated by the copies of \(J_0 \) in \(S \) and the rest derivations in \(\mathcal{D} \). We shall show that an element in \(\mathcal{D} \) can be written as the direct sum of derivations of \(\mathcal{M} \) in these three parts.

For some \(i \), let

\(R(x_i, y_i) = R(\begin{pmatrix} 1 & x_i \\ x_i & 1 \end{pmatrix}, \begin{pmatrix} 1 & y_i \\ y_i & 1 \end{pmatrix}) \), \(x_i, x_i', y_i, x_i' \in J \).

\(= R(1_{11}, \begin{pmatrix} 1 & y_i \\ y_i & 1 \end{pmatrix}) + R(x_{12}, \begin{pmatrix} 1 & y_i \\ y_i & 1 \end{pmatrix}) + R(x_{21}, \begin{pmatrix} 1 & y_i \\ y_i & 1 \end{pmatrix}) +

+ R(1_{22}, \begin{pmatrix} 1 & y_i \\ y_i & 1 \end{pmatrix}) \)
\[\alpha = R(l_{11}, l_{11}) + R(l_{11}, y_{12}) + R(l_{11}, y'_{21}) + R(l_{11}, l_{22}) + R(x_{12}, l_{11}) + R(x_{12}, y_{12}) + R(x_{12}, y'_{21}) + R(x_{12}, l_{22}) + R(x'_{21}, l_{11}) + R(x'_{21}, y_{12}) + R(x'_{21}, y'_{21}) + R(x'_{21}, l_{22}) + R(l_{22}, l_{11}) + R(l_{22}, y_{12}) + R(l_{22}, y'_{21}) + R(l_{22}, l_{22}) \]

we have from (8) above that

\[y = \frac{1}{3} T(y) l + y_0 \quad y_0 \in J_0 \]

Therefore, \(R(l_{11}, y_{12}) = R(l_{11}, (\frac{1}{3} T(y) l + y_0)_{l_{12}}) \)

\[= \frac{1}{3} T(y) R(l_{11}, l_{12}) + R(l_{11}, (y_0)_{l_{12}}) \]. Similarly,

\(R(l_{11}, y'_{21}) = \frac{1}{3} T(y') R(l_{11}, l_{21}) + R(l_{11}, (y')_{21}) \), a sum of two elements one in \(S_1 \) and the other in the copies of \(J_0 \) in \(S \). From the table 6,

\[zR(x_{12}, y_{12}) = (T(a, xxy), (xxy)_x b) \]

\[\beta xxy \quad 0 \]
\[
T(a, (x+y)\#) = (x+y)\# \times b = (T(a, x\#) \times b - (\beta x\# \times 0) - (\beta (x+y)\# \times 0)
\]

Thus, \(R(x_{12}, y_{12}) \) can be written as a sum of elements in \(S_1 \) and copies of \(J_0 \) in \(S \). Similarly, \(R(x'_{21}, y'_{21}) \). We have the equation (7) above that

\[
[R(\frac{1}{2} (x_0)_{12}, l_{12}), R(\frac{1}{2} (y_0)_{12}, l_{12})] = \frac{1}{2} (R((x_0)_{12}, (y_0)_{21}) - R((x_0y_0)_{12}, l_{21}))
\]

That is, \(R((x_0)_{12}, (y_0)_{21}) =

= 2[R(\frac{1}{2} (x_0)_{12}, l_{12}), R(\frac{1}{2} (y_0)_{12}, l_{21})] + R((x_0y_0)_{12}, l_{21})\]

By (8) above, \(R(x_{12}, y_{21}) = R((\frac{1}{3} T(x)l + x_0)_{12}, (\frac{1}{3} T(y')l + y_0)_{21})
\]

= \(\frac{1}{3} T(x) R(1_{12}, (\frac{1}{3} T(y')l + y_0)_{21}) + R((x_0)_{12}, (\frac{1}{3} T(y')l + y_0)_{21})\).
\[= \frac{1}{3} T(x)T(y')R(1_{12}, 1_{21}) + \frac{1}{3} T(x)R(1_{12}, (y'_0)_{21}) + \]
\[+ \frac{1}{3} T(y')R((x_0)_{12}, 1_{21}) + R((x_0)_{12}, (y'_0)_{21}) \]
This shows that \(R(x_{12}, y'_{21}) \) can be written as a sum of elements in \(S_1 \), copies of \(J_0 \) in \(S \) and \(\text{Im } \phi_3 \). Since \(R(x_{12}, y'_{12}) = \)
\[= R(y_{12}, x_{12}) + <x'_{12}, y_{12}>_U \]
by 2.2(6) of Chapter II, we have the same conclusion for \(R(x_{21}, y'_{12}) \) as for \(R(x_{12}, y'_{21}) \). Thus we see that for each \(i \), \(R(x_i, y_i) \) can be written as the direct sum of \(S_1 \), the vector space generated by the copies of \(J_0 \) in \(S \), i.e. \(\text{Im } \phi_2 \) and \(\text{Im } \phi_3 \) and hence \(\sum_{i} R(x_i, y_i) \in D \). It is a direct sum because \(S_1 \cap \text{Im } \phi_2 \cap \text{Im } \phi_3 = \{0\} \).

\[S_1 \cap \text{Im } \phi_2 \cap \text{Im } \phi_3 \]
A similar argument shows that
\[S_1 \oplus \text{Im } \phi_2 \oplus \text{cent } S_1 = S, \text{ because} \]
\[[R(\frac{1}{2}(x_0)'_{12},1_{21}), R(\frac{1}{2}(y_0)'_{12},1_{21})] \in \text{cent } S_1. \text{ Thus} \]
\[\text{Im } \phi_3 = \text{cent } S_1. \text{ That is, } \phi_3 \text{ is surjective.} \]
\[\phi_3 \text{ preserves Lie products:} \]

Let \(A = [R(\frac{1}{2}x'_{12},1_{21}), R(\frac{1}{2}y_{12},1_{21})], x, y \in J_0 \)

and \(B = [R(\frac{1}{2}x'_{12},1_{21}), R(\frac{1}{2}y'_{12},1_{21})], x', y' \in J_0 \).

For \(z = (a \ a) \in M, \)

\[z[AB] = zAB - zBA \]

\[= (b 0)_{[x,y]}B - (0 a)_D x', y', A \]

\[= (b 0)_{[x,y]}D x', y', y' - (0 a)_D x', y'D x, y \]

\[= (0 a)_{[D x, y', D x', y'']} \]

Then by definition, \([D x, y', D x', y',] \phi_3 = [A, B] = \)
= \left[[R(\frac{1}{2} x_{12}', l_{21}), R(\frac{1}{2} y_{12}', l_{21})], [R(\frac{1}{2} x_{12}', l_{21}), R(\frac{1}{2} y_{12}', l_{21})] \right]

= \left[(D_x, y)\phi_3, (D_{x'} , y')\phi_3 \right]

This proves that \(\phi_3 \) is an isomorphism.

Before ending this section we shall see how the cent \(S_1 \) acts on the copies of \(J_0 \) in \(S \). The copies of \(J_0 \) are given in \1.2 of this chapter. Using equation (6) of this section

\[
z[R(x_{12}', l_{21}), R(y_{12}', l_{21})] = \begin{pmatrix}
T(a,x)y - T(a,y)x + (ax)x
-(ax)y \times x & 0 \\
T(b,x)y - T(b,y)x + (bx)x & 0
\end{pmatrix}
\]

\[
z_{12}[R(x_{12}, l_{21}), R(y_{12}, l_{21})] = \begin{pmatrix}
T(z,x)y - T(z,y)x + (zx)x
-(zx)y \times x & 0 \\
0 & 0
\end{pmatrix}
\]

\[x, y \in J_0, z = \begin{pmatrix} a & 0 \\ b & \delta \end{pmatrix} \in \hat{M}.
\]

\[z_{12}[R(x_{12}, l_{21}), R(y_{12}, l_{21})] = \begin{pmatrix}
T(z,x)y - T(z,y)x + (zx)x
-(zx)y \times x & 0 \\
0 & 0
\end{pmatrix}
\]

lies in \((J_0)'_{12} \).
\[T(T(z,x)y - T(z,y)x + (z\times x)y - (z\times y)x) = T(z,x)T(y) \]

\[- T(z,y)T(x) + T(z\times x,y) + T(z\times y,x) = 0 \]

\[\therefore T(z\times x,y) = T(z,xy) = T(z,y\times x). \]

\[z_{21}[R(x_{12},l_{21}),R(y_{12},l_{21})] = \begin{pmatrix} 0 & 0 \\ T(z,x)y - T(z,y)x + (z\times x)y - (z\times y)x & 0 \end{pmatrix} \]

Similarly lies in \((J_0)_{21}\).

In the same way, \(\tilde{z}_{12}[R(x_{12},l_{21}),R(y_{12},l_{21})]\) and \(\tilde{z}_{12}[R(x_{12},l_{21}),R(y_{12},l_{21})]\) lie in \((\tilde{J}_0)_{12}\) and \((J_0)_{21}\) respectively.

Using the equation (7) of this section,

\[[R(z_{12},l_{22}), [R(x_{12},l_{21}), R(y_{12},l_{21})]] \]

\[= 2([R(z_{12},l_{22}), R(x_{12},y_{21})] - [R(z_{12},l_{22}), R((xy)_{12},l_{21})]) \]

\[= 2(R(z_{12},R(x_{12},y_{21}),l_{22}) + R(z_{12},l_{22},R(x_{12},y_{21}))- \]
\[- \mathcal{R}(z_{12} \mathcal{R}((xy)_{12}, l_{21}), l_{22}) - \mathcal{R}(z_{12}, l_{22} \mathcal{R}((xy)_{12}, l_{21})) \]

\[= 2(\mathcal{R}(-\{zyx\}_{12}, l_{22}) - \mathcal{R}(-\{zy\}_{12}, l_{22})) \]

\[= 2\mathcal{R}((\{z_{1}(xy)\} - \{zy\})_{12}, l_{22}) \text{ lies in } \mathcal{R}((J_0)_{12}, l_{22}). \]

For, \(T((\{z_{1}(xy)\} - \{zy\})_{12}, l_{22}) = T(2z(xy) - T(z, xy) y - T(z, y)x + \]

\[+ (z \times x) y) = 2T(z(xy)) - T(z \times x, y) = 2T(z, xy) - T(z, xx y) \]

\[= 2T(z, xy) - T(z, 2xy - T(xy)) = 0. \]

We use, \(T(x, y) = T(xy), x \times y = 2xy - T(xy). \)

\[[\mathcal{R}(z_{21}, l_{11}), [\mathcal{R}(x_{12}, l_{21}), \mathcal{R}(y_{12}, l_{21})]] \]

\[= 2([\mathcal{R}(z_{21}, l_{11}), \mathcal{R}(x_{12}, y_{21})] - [\mathcal{R}(z_{21}, l_{11}), \mathcal{R}((xy)_{12}, l_{21})]) \]

\[= 2(R(z_{21} \mathcal{R}(x_{12}, y_{21}), l_{11}) + R(z_{21}, l_{11} \mathcal{R}(x_{12}, y_{21})) \]

\[- R(z_{21} \mathcal{R}((xy)_{12}, l_{21}), l_{11}) - R(z_{21}, l_{11} \mathcal{R}((xy)_{12}, l_{21}))) \]
= 2(R((zxy)-zT(x,y))_{21,1_{11}} + R(z_{21,-T(x,y)}_{1_{11}})
- R((z(xy)_{11})_{21,1_{11}} - R(z_{21,-T(xy)}_{1_{11}}))

= 2(R((zxy)-zT(x,y))_{21,1_{11}}) \text{ lies in } R((J_0)_{21,1_{11}}),
\text{ because, } T((zxy)-zT(x,y))_{21,1_{11}} = 0 \text{ as in the preceding case.}

[R(z_{12,1_{21}}), [R(x_{12,1_{21}}), R(y_{12,1_{21}})]]

= 2([R(z_{12,1_{21}}), R(x_{12,1_{21}})] - [R(z_{12,1_{21}}), R((xy)_{12,1_{21}})])

= 2(R(z_{12}R(x_{12},y_{21}),1_{21}) + R(z_{12,1_{21}}R(x_{12},y_{21}))
- R(z_{12}R((xy)_{12,1_{21}},1_{21}) - R(z_{12,1_{21}}R((xy)_{12,1_{21}}))))

= 2(R(-z_{12}(xy)_{12,1_{21}} + R(z_{12},(1xy)-T(x,y)_{21})
- R(-z_{12}(xy)_{12,1_{21}} - R(z_{12},(1xy)-T(x,y)_{21}))

= 2(R((z1(xy)-zxy)_{12,1_{21}}) \text{ (i.e. } 1xy = 2xy)

lies in } R((J_0)_{12,1_{21}}), \text{ for } T((z1(xy))_{12,1_{21}}) = 0.

Thus, the Lie product of cent } S_1 \text{ with the copies of } J_0 \text{ in}
S is an element in the copies of \(J_0 \). (We use \(z_{12}, z_{21}, \bar{z}_{12}, \bar{z}_{21}, R(z_{12}, l_{22}), R(z_{21}, l_{11}) \) and \(R(z_{12}, l_{21}) \) as copies of \(J_0 \)). That is, the behavior of cent \(S_1 \) in \(S \) is same as that of Der \(J \) in \(L \).

2.3 Isomorphism between \(L \) and \(S \).

Let us define a map \(\phi: L \rightarrow S \) such that

\[
\phi = \begin{cases}
\phi_1, & \text{when } \phi \text{ acts on Der } C, \\
\phi_2, & \text{when } \phi \text{ acts on } C_0 \oplus J_0, \\
\phi_3, & \text{when } \phi \text{ acts on Der } J.
\end{cases}
\]

Der \(C \) and Der \(J \) are Lie algebras.

Therefore, \(\phi \) is an isomorphism if the restrictions of \(\phi \) on Der \(C \) and Der \(J \) are isomorphisms and the restriction of \(\phi \) on \(C_0 \oplus J_0 \) is bijective and preserves Lie products.

\(\phi_1 \) and \(\phi_3 \), the restrictions of \(\phi \) on Der \(C \) and Der \(J \), respectively, are isomorphisms as we have already proved. \(\phi_2 \) is injective and surjective implies that the restriction of
\(\phi \) on \(C_0 \oplus J_0 \) is injective and surjective. Therefore, the only thing left to prove \(\phi \) is an isomorphism is that the restriction of \(\phi \) on \(C_0 \oplus J_0 \) preserves Lie products. To do this we shall write \(\phi \) for the restrictions of \(\phi \) to \(C_0 \oplus J_0 \), \(\text{Der} C \), or \(\text{Der} J \).

To show that \(\phi \) preserves Lie products we shall compute every possible Lie product in \(\text{Der} C \)-module in \(\mathbb{L} \) and \(S_1 \)-module in \(\mathbb{S} \) and check that \(\phi \) preserves the products.

From [1], page 22,

\[
[f_1 \circ x, g_2 \circ y] = \frac{1}{12} \langle x, y \rangle D_{f_1, g_2} + f_1 \circ g_2 \circ x \circ y
\]

\[- (f_1, g_2) [R_x, R_y], \ x, y \in J_0\]

\[
= \frac{1}{12} T(xy)D_{f_1, g_2} + (f_1 g_2 - \frac{1}{2} T(f_1 g_2)) \circ x \circ y
\]

\[
+ \frac{1}{2} T(f_1 g_2) [R_x, R_y]
\]
\begin{align*}
\frac{1}{12} T(xy) D_{f_1, g_2} \quad (\therefore f_1 g_2 = 0, \quad f_1, g_2 = \frac{1}{2} T(f_1, g_2)) \\
\frac{1}{2} T(f_1, -g_2) \\
-\frac{1}{2} T(f_1, g_2) \\
\lfloor f_1 \times x, g_2 \times y \rfloor \phi = (\frac{1}{12} T(xy) D_{f_1, g_2}) \phi = \frac{1}{12} T(xy)(-3111) \\
\lfloor (f_1 \times x) \phi, (g_2 \times y) \phi \rfloor = [R(\frac{1}{2} x_{12}, 1_{11}), -\frac{1}{2} y_{12}] \\
\frac{1}{2} y_{12} R(\frac{1}{2} x_{12}, 1_{11}) \quad \text{(from 2.2(7) of chapter 2)} \\
\begin{pmatrix}
-\frac{1}{4} T(y, x) & 0 \\
0 & 0
\end{pmatrix} \\
= \frac{1}{12} T(xy)(-3111). \end{align*}

We use \(T(x, y) = T(xy) \). For,

\[x^# = x^2 - T(x)x + s(x)l \quad \text{(Eq. 3.2(12) of chapter 1)} \]
Linearizing this we get

\[xy = 2xy - T(x)y - T(y)x + T(xyx) \]

\[= 2xy + T(xyx) \]

\[T(xyx) = 2T(xy) + 3T(xyx) \]

i.e. \(2T(xy,y) = 2T(xy) \) (\(\therefore T(xyx) = -T(xy,y) \)
for \(x, y \in J_0 \))

i.e. \(T(xy) = T(xy) \)

Thus, \([f_1 \circ x, g_2 \circ y] = [(f_1 \circ x) \phi, (g_2 \circ y) \phi]\) .

Similarly, we compute

\[[f_1 \circ x, g_3 \circ y] = \frac{1}{12} T(xy)D_{f_1, g_3} \]

\[[f_1 \circ x, g_3 \circ y] \phi = \left(\frac{1}{12} T(xy)D_{f_1, g_3} \right) \phi = \frac{1}{12} \left(3T(xy) \right) 1_{111} \]

\[[(f_1 \circ x) \phi, (g_3 \circ y) \phi] = [R\left(\frac{1}{2}x_{21}, 1_{111} \right), \frac{1}{2}y_{12}] \]

\[= \left(-\frac{1}{2}y_{12} R\left(\frac{1}{2}x_{21}, 1_{111} \right) \right) \]

\[= \left(\frac{1}{4} T(y, x) 0 \right) \sim \left(\frac{1}{4} T(x, y) 1_{11} \right) = \frac{1}{4} T(x, y) 1_{11} \]
\[[f_2 \circ \phi, g_1 \circ \phi] = \left(\frac{1}{12} T(xy) D_{f_2, g_1} \right) \phi = \frac{1}{12} T(xy)31_{22} \]

\[[f_2 \circ \phi] = [\frac{1}{2} x_{21}, R(\frac{1}{2} y_{12}, 1_{22})] \]

\[= (\frac{1}{2} x_{21} \quad R(\frac{1}{2} y_{12}, 1_{22}))^{-1} \]

\[= \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{4} T(x, y) \end{pmatrix} = \frac{1}{4} T(xy)1_{22} \]

\[= \frac{1}{12} T(xy)(31_{22}) \]

\[[f_2 \circ \phi, g_3 \circ \phi] = \left(\frac{1}{12} T(xy) D_{f_2, g_3} \right) \phi = \frac{1}{12} T(xy)(3\check{u}) \]

\[[f_2 \circ \phi] = [\frac{1}{2} x_{21}, \frac{1}{2} y_{12}] = \left< \frac{1}{2} x_{21}, \frac{1}{2} y_{12} \right> \check{u} \]

\[= \frac{1}{4} T(y, x)\check{u} = \frac{1}{12} T(xy)(3\check{u}) \]
\[[f_3 \otimes x, g_1 \otimes y] \phi = (\frac{1}{12} T(xy) D_{f_3, g_1}) \phi = \frac{1}{12} T(xy)(31_{22}) \]

\[[(f_3 \otimes x) \phi, (g_1 \otimes y) \phi] = [\frac{1}{2} x_{21}, R(\frac{1}{2} y_{12}, 1_{22})] \]

\[= \frac{1}{2} x_{21} R(\frac{1}{2} y_{12}, 1_{22}) \]

\[= \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{4} T(x,y) \end{pmatrix} = \frac{1}{4} T(x,y) l_{22} \]

\[= \frac{1}{12} T(xy)(31_{22}) \]

\[[f_3 \otimes x, g_2 \otimes y] \phi = (\frac{1}{2} T(xy) D_{f_3, g_2}) \phi = \frac{1}{12} T(xy)(-3u) \]

\[[(f_3 \otimes x) \phi, (g_2 \otimes y) \phi] = [\frac{1}{12} x_{21}, -\frac{1}{2} y_{12}] \]

\[= \langle \frac{1}{2} x_{21}, -\frac{1}{2} y_{12} \rangle u = -\frac{1}{4} T(y,x) u \]

\[= \frac{1}{12} T(xy)(-3u) \].
We also have

\[[f_1 \circ x, f_2 \circ y] = \frac{1}{12} \langle x, y \rangle^D_{f_1, f_2} + f_1 \circ f_2 \ast x \circ y \]

\[= - (f_1, f_2)[R_{x}, R_{y}] \]

\[= \frac{1}{12} T(xy)D_{f_1, f_2} + (g_3 - \frac{1}{2} T(g_3)) \circ x \circ y + \frac{1}{2} T(g_3)[R_{x}, R_{y}] \]

\[= - \frac{1}{12} T(xy)D_{e_2, g_3} + g_3 \circ x \circ y \]

\[[f_1 \circ x, f_2 \circ y] \phi = (- \frac{1}{12} T(xy)D_{e_2, g_3}) \phi + (g_3 \circ x \circ y) \phi \]

\[= - \frac{1}{12} T(xy) \tilde{l}_{12} + \frac{1}{2} (x \circ y) \tilde{l}_{12} \]

\[= (- \frac{1}{12} T(xy) + \frac{1}{2} (x \circ y)) \tilde{l}_{12} \]

\[= \frac{1}{2} (xy - \frac{1}{2} T(xy)) \tilde{l}_{12} \]

\[= \frac{1}{4} xy \tilde{l}_{12} \quad (\because xy = 2xy - T(xy)) \]

\[[(f_1 \circ x) \phi, (f_2 \circ y) \phi] = [R(\frac{1}{2} x_{21}, l_{11}), \frac{1}{2} y_{21}] \]

\[= (- \frac{1}{2} y_{21} R'(\frac{1}{2} x_{21}, l_{11}))^{-} \]
\[
\begin{align*}
= (- \frac{1}{2} y_{12} R(\frac{1}{2} x_{21}, 1_{11})^T \\
= \begin{pmatrix} 0 & \frac{1}{4} y \times x \\ 0 & 0 \end{pmatrix} = \frac{1}{4} x \times y, 1_{12}
\end{align*}
\]

We use \(D_{f_1, f_2} = -D_{e_2, g_3} \) (from table 2).

\[T(f_1, f_2) = T(g_3) = 0 \]

Similarly,

\[
[f_1 \otimes x, f'_3 \otimes y] \phi = \left(\frac{1}{12} T(xy) D_{f_1, f'_3} \right) \phi - (g_2 \otimes x \times y) \phi
\]

\[
= \left(\frac{1}{12} T(xy) D_{e_2, g_2} \right) \phi - (g_2 \otimes x \times y) \phi
\]

\[
= \frac{1}{12} T(xy)(-1_{12}) + \frac{1}{2}(x \times y)_{12}
\]

\[
= (- \frac{1}{12} T(xy) + \frac{1}{2}(x \times y))_{12}
\]

\[
= \frac{1}{2}(xy - \frac{1}{2} T(xy))_{12} = \frac{1}{4} x \times y_{12}
\]
\[(f_1\otimes x)\phi, (f_3\otimes y)\phi\] = \[R(\frac{1}{2}x_{21}, 1_{11}), \frac{1}{2}y_{21}\]

\[= -\frac{1}{2}y_{21}R(\frac{1}{2}x_{21}, 1_{11})\]

\[= \begin{pmatrix} 0 & yxx \\ 0 & 0 \end{pmatrix} = \frac{1}{4}xxyl_{12} \]

\[[f_2\otimes x, f_3\otimes y]\phi = (\frac{1}{12}T(xy)D_{f_2, f_3})\phi + (g_1\otimes x^*y)\phi\]

\[= (-\frac{1}{12}T(xy)D_{e_2, S_1})\phi + (g_1\otimes x^*y)\phi\]

\[= -\frac{1}{12}T(xy)R(1_{22}, 1_{12}) + R(\frac{1}{2}(x^*y)_{12}, 1_{22})\]

Now for \(z = (a \ b \ c) \in M,\)

\[z[[f_2\otimes x, f_3\otimes y]\phi] = -\frac{1}{12}T(xy)\begin{pmatrix} 0 & a \\ T(a) - a & T(b) \end{pmatrix}\]

\[= \begin{pmatrix} 0 & ax^*y \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} ax^*y & T(b, x^*y) \end{pmatrix}\]

\[= \frac{1}{2} \begin{pmatrix} 0 & ax^*y - \frac{1}{2}T(xy) \\ ax^*y - \frac{1}{2}T(a)T(xy) - \frac{1}{2}aT(xy) & T(b, xy) - \frac{1}{2}T(b)T(xy) \end{pmatrix}\]
But \(z[(f_2 \otimes x)\phi, (f_3 \otimes y)\phi] = z[\frac{1}{2}x_{21}, \frac{1}{2}y_{21}] \)

\[
= -z\mathcal{R}(\frac{1}{2}y_{21}, \frac{1}{2}x_{21}) \left(\begin{array}{ccc}
0 & \frac{1}{4}z_{xxy} \\
\frac{1}{4}z_{yxy} & 0 \\
\frac{1}{4}z_{yxy} & -\frac{1}{4}z_{yxy} \\
-\frac{1}{4}z_{yxy} & \frac{1}{4}z_{xxy} \\
\end{array} \right) \]

\[
= \frac{1}{4} \left(\begin{array}{ccc}
0 & axxy \\
axxy & T(b, xxy) \\
\end{array} \right) \]

\[
a \times (xxy) = 2a \times xy - axT(xy) = 2a \times xy - T(a)T(xy) \\
+ aT(xy), T(b, xxy) = T(b, 2xy - T(xy)).
\]

\[
= 2T(b, xy) - T(b)T(xy).
\]

Thus, \([f_2 \otimes x, f_3 \otimes y]\phi = [(f_2 \otimes x)\phi, (f_3 \otimes y)\phi] \).
\begin{align*}
[g_1 \circ x, g_2 \circ y] \phi &= \left(\frac{1}{12} T(xy) D_{g_1, g_2} \right) \phi + (f_3 \circ x \circ y) \phi \\
\quad &= \left(- \frac{1}{12} T(xy) e_1, f_3 \right) \phi + (f_3 \circ x \circ y) \phi \\
\quad &= - \frac{1}{12} T(xy) l_{21} + \frac{1}{2} (x \circ y)_{21} \\
\quad &= \left(\frac{1}{2} (x \circ y) - \frac{1}{12} T(xy) \right) l_{21} \\
\quad &= \frac{1}{2} (xy - \frac{1}{2} T(xy)) l_{21} = \frac{1}{4} x \times y l_{21}
\end{align*}

\begin{align*}
[(g_1 \circ x) \phi, (g_2 \circ y) \phi] &= [R(\frac{1}{2} x_{12}, l_{22}), - \frac{1}{2} y_{12}] \\
\quad &= \frac{1}{2} y_{12} R(\frac{1}{2} x_{12}, l_{22}) \\
\quad &= \frac{1}{4} \begin{pmatrix} 0 & 0 \\ y \times x & 0 \end{pmatrix} = \frac{1}{4} x \times y l_{21}
\end{align*}

\begin{align*}
[g_1 \circ x, g_3 \circ y] \phi &= \left(\frac{1}{12} T(xy) D_{g_1, g_3} \right) \phi - (f_2 \circ x \circ y) \phi \\
\quad &= \left(\frac{1}{12} T(xy) e_1, f_2 \right) \phi - (f_2 \circ x \circ y) \phi \\
\quad &= \frac{1}{12} T(xy) l_{21} - \frac{1}{2} (x \circ y)_{21}
\end{align*}
\[
\begin{align*}
&= (\frac{1}{12} T(xy) - \frac{1}{2} x^* y) l_{21} \\
&= \frac{1}{2} (\frac{1}{2} T(xy) - xy) l_{21} \\
&= - \frac{1}{4} x^* y l_{21} \\
\end{align*}
\]

\[
[(g_1 \otimes x) \phi, (g_3 \otimes x) \phi] = [R(\frac{1}{2} x_{12}, l_{22}), \frac{1}{2} y_{12}]
\]

\[
= \left(- \frac{1}{2} y_{12} R(\frac{1}{2} x_{12}, l_{22}) \right)^{\sim}
\]

\[
= - \frac{1}{4} [y_{12}, 0]^{\sim} = - \frac{1}{4} x^* y l_{21}
\]

\[
[g_2 \otimes x, g_3 \otimes y] \phi = (\frac{1}{12} T(xy) D_{g_2, g_3}) \phi + (f_1 \otimes x^* y) \phi
\]

\[
= \left(- \frac{1}{12} T(xy) D_{e_1, f_1} \right) \phi + (f_1 \otimes x^* y) \phi
\]

\[
= - \frac{1}{12} T(xy) R(l_{11}, l_{21}) + R(\frac{1}{2} c, x^* y)_{21, l_{11}}
\]

\[
z([g_2 \otimes x, g_3 \otimes y] \phi) = - \frac{1}{12} T(xy) (zR(l_{11}, l_{21}))
\]

\[
+ zR(\frac{1}{2} c, x^* y)_{21, l_{11}}
\]
\[-80-\]

\[\begin{align*}
\mathbf{z} &= -\frac{1}{12} T(xy) \begin{pmatrix} -T(a) & -T(b) + b \\ \beta & 0 \end{pmatrix} \\
& \quad + \frac{1}{2} \begin{pmatrix} -T(a, xy) & -b \times (xy) \\ \beta \times xy & 0 \end{pmatrix}
\end{align*}\]

\[\mathbf{z} = \begin{pmatrix} \frac{1}{2} T(a) T(xy) - T(a, xy) & -b \times xy + \frac{1}{2} T(b) T(xy) \\ -\frac{1}{2} b T(xy) & \frac{1}{2} T(xy) \end{pmatrix}
\begin{pmatrix} \frac{1}{2} \beta \times xy \\ 0 \end{pmatrix}\]

\[z[(g_2 \circ x)\phi, (g_3 \circ y)\phi] = z[-\frac{1}{2}^x_{12}, \frac{1}{2}^y_{12}]\]

\[= zR(-\frac{1}{2}^x_{12}, \frac{1}{2}^y_{12})\]

\[= \begin{pmatrix}
-\frac{1}{4} T(a, xy) & -\frac{1}{4} T(b, y) x - \frac{1}{4} T(b, x) y \\
\frac{1}{2} \beta \times b \frac{1}{2} y \\
\frac{1}{2} \beta \times xy \\
0
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} \beta \times xy \\
0
\end{pmatrix}\]

\[= \begin{pmatrix}
-\frac{1}{4} T(a, xy) & -b \times (xy) \\
\frac{1}{2} \beta \times xy \\
0
\end{pmatrix}\]
This is similar to \([f_2 \circ x, f_3 \circ y] \phi = [(f_2 \circ x) \phi, (f_3 \circ y) \phi]\)

In order to compute \([f_1 \circ x, g_1 \circ y], [f_2 \circ x, g_2 \circ y]\) and \([f_3 \circ x, g_3 \circ y]\) we need to know \((D_{f_1} g_1) \phi, (D_{f_2} g_2) \phi\) and \((D_{f_3} g_3) \phi\). But we already know that \((D_{f_1} g_1) \phi = R(1,1)\).

We shall show below that \((D_{f_2} g_2) \phi = R(1_{12},-1_{12})\) and \((D_{f_3} g_3) \phi = R(1_{21},1_{12})\).

It can be easily verified from table 2 that

\[
[D_{e_2} f_1, D_{e_2} g_2] = D_{f_2} g_2 \quad \text{and} \quad [D_{e_2} f_3, D_{e_2} g_3] = D_{f_3} g_3
\]

Therefore, \((D_{f_2} g_2) \phi = [D_{e_2} f_2, D_{e_2} g_2] \phi = \]

\[
= [(D_{e_1} f_2) \phi, (D_{e_2} g_2) \phi
\]

\[
= [1_{21}, -1_{12}] = -R(-1_{12},1_{21}) = R(1_{12}, -1_{21}) \quad \text{(by 2.2(7) of chapter 2)}
\]

\[
(D_{f_3} g_3) \phi = [D_{e_1} f_3, D_{e_2} g_3] \phi = [(D_{e_1} f_3) \phi, D_{e_2} g_3 \phi]
\]

\[
= [1_{21}, 1_{12}] = R(1_{21}, 1_{12})
\]
The restriction of ϕ to Der C is ϕ_1, which has already been shown to preserve Lie products.

$$[f_1 \circ x, g_1 \circ y] = \frac{1}{12} T(xy)D_{f_1,g_1} x y + \frac{1}{12} T(f_1 g_1)[R_x,R_y]$$

$$= \frac{1}{12} T(xy)D_{f_1,g_1} + \frac{1}{2}(e_2 - e_1) \circ x y + \frac{1}{2}[R_x,R_y]$$

$$= \frac{1}{12} T(xy)D_{f_1,g_1} + \frac{1}{2}(e_2 - e_1) \circ x y + \frac{1}{2}[R_y,R_x]$$

$$[f_1 \circ x, g_1 \circ y]_\phi = \frac{1}{12} T(xy)D_{f_1,g_1} \phi + \frac{1}{2}(e_2 - e_1) \circ x y \phi + \frac{1}{2}(D_y, x) \phi$$

$$= \frac{1}{12} T(xy)R(1,1) + \frac{1}{2}R(\frac{1}{2}(x y)_{12,121}) +$$

$$\frac{1}{2}[R(\frac{1}{2}y_{12,121}, R(\frac{1}{2}x_{12,121}))$$

$$= \frac{1}{12} T(xy)R(1,1) + \frac{1}{4}R((x y)^{\frac{1}{2}}_{12,121}) + \frac{1}{8}[R(y_{12,121}, R(x_{12,121}))$$

$$= \frac{1}{12} T(xy)R(1,1) + \frac{1}{4}R((x y)^{\frac{1}{3}}T(xy)_{12,121}) + \frac{1}{4}(R(y_{12,121}, R(x_{12,121})$$

$$- R((x y)_{12,121}))$$

(by 2.2(7) of this chapter)
\[
= \frac{1}{12} T(xy) R(1,1) + \frac{1}{4} R((xy)_{12},1_{21}) - \frac{1}{12} T(xy) R(1_{12},1_{21}) \\
+ \frac{1}{4} (R(y_{12},x_{21}) - R((xy)_{12},1_{21})) \\
= -\frac{1}{12} T(xy) R(1,1) - \frac{1}{12} T(xy) R(1_{12},1_{21}) + \frac{1}{4} R(y_{12},x_{21}).
\]

For \(z = (a, b) \in \tilde{M} \),

\[
z([f_1 \otimes x, g_1 \otimes y]_\phi) = \frac{1}{12} T(xy) \begin{pmatrix}
3a & a \\
-b & -3b
\end{pmatrix} - \frac{1}{12} T(xy) \begin{pmatrix}
-3a & -2a \\
-b & 0
\end{pmatrix}
\]

\[
-\phi T(x, y) - \{axy\} + \frac{1}{4} \begin{pmatrix}
(byx) & -bT(x, y) & 0
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\frac{1}{4} \phi T(xy) & \frac{1}{4} \phi T(xy) - \frac{1}{4} \{axy\} \\
- \frac{1}{4} \phi T(xy) + \frac{1}{4} \{byx\} & - \frac{1}{4} \phi T(xy)
\end{pmatrix}
\]

\[
[(f_1 \otimes x)_\phi, (g_1 \otimes y)_\phi] = [R(\frac{1}{2} x_{21}, 1_{11}), R(\frac{1}{2} y_{12}, 1_{22})]
\]

\[
\frac{1}{4}(R(x_{21}R(y_{12},1_{22}),1_{11}) + R(x_{21},1_{11}R(y_{12},1_{22})))
\]

\[
= \frac{1}{4}(R((T(x,y)1_{22},1_{11}) + R(x_{21},y_{12}))
\]

\[
= \frac{1}{4}T(xy)R(1_{22},1_{11}) + \frac{1}{4}R(x_{21},y_{12})
\]

\[
z[(f_1 \otimes x) \phi, (g_1 \otimes y) \phi] = \frac{1}{4}T(xy)\begin{pmatrix} a & 0 \\ b & 2b \end{pmatrix} + \frac{1}{4}(\begin{pmatrix} 0 & aT(x,y) - \{axy\} \\ b & \{byx\} \end{pmatrix} \phi(x,y)
\]

\[
= \begin{pmatrix}
\frac{1}{4}aT(xy) & \frac{1}{4}aT(xy) - \frac{1}{4}\{axy\} \\
-\frac{1}{4}bT(xy) + \frac{1}{4}\{byx\} & -\frac{1}{4}T(xy)
\end{pmatrix}
\]

Thus, \([f_1 \otimes x, g_1 \otimes y] \phi = [(f_1 \otimes x) \phi, (g_1 \otimes y) \phi]
\]

\[
[f_2 \otimes x, g_2 \otimes y] = \frac{1}{12}T(xy)D_{f_2, g_2} + f_2 \circ g_2 \otimes x \otimes y + \frac{1}{2}T(f_2g_2)[R_x, R_y]
\]

\[
= \frac{1}{12}T(xy)D_{f_2, g_2} + \frac{1}{2}(e_2 - e_1) \otimes x \otimes y + \frac{1}{2}[R_y, R_x]
\]
\[
[f_2 \otimes x, g_2 \otimes y]_\phi = \frac{1}{12} T(xy) R(1_{12}, 1_{21}) + \frac{1}{2} R(\frac{1}{2}(x^*y)_{12}, 1_{21})
\]
\[
+ \frac{1}{6} [R(y_{12}, 1_{21}), R(x_{12}, 1_{21})]
\]
\[
= \frac{1}{12} T(xy) R(1_{12}, 1_{21}) + \frac{1}{4} R((xy)_{12}, 1_{21}) - \frac{1}{2} T(xy) R(1_{12}, 1_{21})
\]
\[
+ \frac{1}{4} (R(y_{12}, x_{21}) - R((xy)_{12}, 1_{21}))
\]
\[
= \frac{1}{4} R(y_{12}, x_{21})
\]
\[
[(f_2 \otimes x)_\phi, (g_2 \otimes y)_\phi] = [\frac{1}{2} x_{21}, -\frac{1}{2} y_{12}] = -R(\frac{1}{2} y_{12}, \frac{1}{2} x_{21})
\]
\[
= \frac{1}{4} R(y_{12}, x_{21})
\]
\[
[f_3 \otimes x, g_3 \otimes y] = \frac{1}{12} T(xy) D_{f_3, g_3} + \frac{1}{2} (e_2 - e_1) \circ x^*y
\]
\[
+ \frac{1}{2} [R_y, R_x]
\]
\[
[f_3 \otimes x, g_3 \otimes y]_\phi = \frac{1}{12} T(xy) R(1_{21}, 1_{12}) + \frac{1}{2} R(\frac{1}{2}(x^*y)_{12}, 1_{21})
\]
\[
+ \frac{1}{6} [R(y_{12}, 1_{21}), R(x_{12}, 1_{21})]
\]
\[
\begin{align*}
&= \frac{1}{12} T(xy)R(1_{21},1_{12}) + \frac{1}{4} R((xy)_{12},1_{21}) - \frac{1}{12} T(xy)R(1_{12},1_{21}) \\
&+ \frac{1}{4} (R(y_{12},x_{21}) - R((xy)_{12},1_{21})) \\
&= \frac{1}{12} T(xy)(R(1_{21},1_{12}) - R(1_{12},1_{21})) + \frac{1}{4} R(y_{12},x_{21}) \\
\end{align*}
\]

\[
z([f_{3}\phi x, g_{3}\phi y]) = \frac{1}{12} T(xy)\begin{pmatrix} 0 & a \\ 2b & 3b \end{pmatrix} = \begin{pmatrix} -3a \\ -2a \end{pmatrix}
\]

\[
+ \frac{1}{4} \begin{pmatrix} -qT(x,y) & -\{axy\} \\
\{byx\} - bT(x,y) & 0 \end{pmatrix}
\]

\[
z([f_{3}\phi x] \phi, (g_{3}\phi y) \phi] = z[\frac{1}{2}x_{21}, \frac{1}{2}y_{12}] = \frac{1}{4} R(x_{21}, y_{12})
\]

\[
= \frac{1}{4} \begin{pmatrix} 0 & aT(xy) - \{axy\} \\
\{byx\} & bT(xy) \end{pmatrix}
\]
\[
[(e_2-e_1)\otimes x, f_1\otimes y] = \frac{1}{12}T(xy)D_{e_2-e_1}f_1 + (e_2-e_1)^*f_1\otimes x*y
\]
\[
+ \frac{1}{2}T((e_2-e_1)f_1)[R_x,R_y]
\]
\[
= -\frac{1}{6}T(xy)D_{e_2-e_1}f_1 - f_1\otimes x*y - \frac{1}{2}D_{e_2-e_1}f_1 = -2D_{e_2-e_1}f_1
\]
\[
[(e_2-e_1)\otimes x, f_1\otimes y] \phi = -\frac{1}{6}T(xy)R(l_{11},l_{21}) - R(\frac{1}{2}(x*y)_{21},l_{11})
\]
\[
= -\frac{1}{6}T(xy)R(l_{11},l_{21}) - \frac{1}{2}R((xy)_{21},l_{11}) + \frac{1}{6}T(xy)R(l_{21},l_{11})
\]
\[
= -\frac{1}{2}R((xy)_{21},l_{11}) \quad (\because R(l_{11},l_{21}) = R(l_{21},l_{11}))
\]
\[
z([e_2-e_1]\otimes x, f_1\otimes y)\phi = \frac{1}{2}T(a,xy) b\times xy
\]
\[
= \frac{1}{2}(T(a,xy) b\times xy)
\]
\[
[[((e_2-e_1)\otimes x)\phi, (f_1\otimes y)\phi] = [R(\frac{1}{2}x_{12},l_{21}),R(\frac{1}{2}y_{21},l_{11})]
\]
\[
\phi = \frac{1}{4}(R(x_{12}R(y_{21},l_{11}),l_{21}) + R(x_{12},l_{21}R(y_{21},l_{11}))
\]
\[
\frac{1}{4} (R((-T(xy)1)_{11}, 1_{21}) + R(x_{12}, y_{12})) = \frac{1}{4} (-T(xy)R(1_{11}, 1_{21}) + R(x_{12}, y_{12}))
\]

\[
z[((e_2 - e_1) \otimes x), (f_1 \otimes y) \phi] = \frac{1}{4} (-T(xy)(-T(a) b - T(b)))
\]

\[
T(a, xxy) \bigwedge (xxy) b \bigwedge (xy) 0
\]

\[
= \frac{1}{4} T(xy) T(a) T(b) - b + \frac{1}{4} T(a, 2xy - T(xy)) b x(2xy) - T(xy)
\]

\[
= \frac{1}{2} T(a, xxy) b xxy
\]

\[
= \frac{1}{2} T(a, xxy) b xxy
\]

\[
[(e_2 - e_1) \otimes x, g_1 \otimes y] = \frac{1}{12} T(xy) D_{e_2 - e_1, g_1} + (e_2 - e_1) \phi g_1 \otimes x \otimes y
\]

\[
+ \frac{1}{2} T((e_2 - e_1) g_1) [R_x, R_y] = \frac{1}{6} T(xy) D_{e_2, g_1} + g_1 \otimes x \otimes y
\]

\[
\therefore D_{e_2 - e_1, g_1} = 2 D_{e_2, g_1}
\]
\[
[(e_2-e_1)\circ x, \ g_1 \circ y]_\phi = \frac{1}{6}T(xy)R(l_{22}, l_{12}) + R(\frac{1}{2}(x \circ y)_{12}, l_{12})
\]

\[
= \frac{1}{6}T(xy)R(l_{22}, l_{12}) + \frac{1}{2}R((xy)_{12}, l_{22}) - \frac{1}{6}T(xy)R(l_{12}, l_{22})
\]

\[
= \frac{1}{2}R((xy)_{12}, l_{22}) \quad (\therefore R(l_{12}, l_{22}) = R(l_{22}, l_{12}))
\]

\[
z([(e_2-e_1)\circ x, \ g_1 \circ y]_\phi) = \frac{1}{2} \begin{pmatrix} 0 & axy \\ a \circ xy & T(b, xy) \end{pmatrix}
\]

\[
[((e_2-e_1)\circ x)\phi, \ (g_1 \circ y)\phi] = [R(\frac{1}{2}x_{12}, l_{21}), R(\frac{1}{2}y_{12}, l_{22})]
\]

\[
= \frac{1}{4}(R(x_{12}R(y_{12}, l_{22}), l_{21}) + R(x_{12}, l_{21}R(y_{12}, l_{22})))
\]

\[
= \frac{1}{4}(R((xy)_{21}, l_{21}) + R(x_{12}, (T(y)l_{22}))
\]

\[
= \frac{1}{4}(R(2xy-T(xy)l_{21}, l_{21})
\]

\[
= \frac{1}{4}(2R((xy)_{21}, l_{21}) - T(xy)R(l_{21}, l_{21})
\]

\[
z[((e_2-e_1)\circ x)\phi, \ (g_1 \circ y)\phi] = \frac{1}{2} \begin{pmatrix} 0 & -\alpha(T(xy)-xy) \\ -a \circ (T(xy)-xy) & -T(b, T(xy)-xy) \end{pmatrix}
\]
\[-\frac{1}{4}T(xy) \begin{pmatrix} 0 & -2\alpha \\ -2(T(a)-a) & -2T(b) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & axy \\ axy & T(b,xy) \end{pmatrix}\]

\[[e_2-e_1]x, f_2y] = \frac{1}{12}T(xy)D_{e_2-e_1}f_2 \cdot (e_2-e_1)f_2 \cdot \text{sy}x^y + \frac{1}{2}T((e_2-e_1)f_2) [R_xR_y] \]

\[= -\frac{1}{6}T(xy)D_{e_2}f_2 \cdot f_2 \cdot \text{sy}x^y \]

\[[e_2-e_1]x, f_2y]_\phi = -\frac{1}{6}T(xy)l_{21} - \frac{1}{2}(x^y)_21 \]

\[= (-\frac{1}{6}T(xy) - \frac{1}{2}(x^y))l_{21} \]

\[= (-\frac{1}{6}T(xy) - \frac{1}{2}xy + \frac{1}{6}T(xy))l_{21} \]

\[= \frac{1}{2}xy l_{21} \]

\[[e_2-e_1]x, (f_2y)\phi] = [R(\frac{1}{2}x_{12}, l_{21}), \frac{1}{2}y_{21}] \]

\[= \frac{1}{4} (-y_{21}R(x_{12}, l_{21}))^- \]
\[
-\frac{1}{4} \begin{pmatrix}
0 & 0 \\
\{yx\} & 0
\end{pmatrix}^{-1}
\]

\[
= -\frac{1}{4} \{yx\} \tilde{1}_{21}
\]

\[
= -\frac{1}{2} y \tilde{1}_{21}
\]

\[
[(e_2-e_1) \otimes x, f_3 \otimes y] = \frac{1}{12} T(xy) D_{e_2-e_1, f_3} + (e_2-e_1)^* f_3 \otimes x^* y
\]

\[
+ \frac{1}{2} T((e_2-e_1) f_3) [R_x, R_y]
\]

\[
= -\frac{1}{6} T(xy) D_{e_1, f_3} - f_3 \otimes x^* y
\]

\[
[(e_2-e_1) \otimes x, f_3 \otimes y] \phi = -\frac{1}{6} T(xy) \tilde{1}_{21} - \frac{1}{2} (x^* y) \tilde{1}_{21}
\]

\[
= (-\frac{1}{6} T(xy) - \frac{1}{2} (x^* y)) \tilde{1}_{21}
\]

\[
= -\frac{1}{2} y \tilde{1}_{21}
\]

\[
[[((e_2-e_1) \otimes x), (f_3 \otimes y) \phi] = [R(\frac{1}{2} x_{12}, \tilde{1}_{21}), \frac{1}{2} y \tilde{1}_{21}]
\]

\[
= \frac{1}{4} (-y \tilde{1}_{21} R(x_{12}, \tilde{1}_{21}))
\]
\[= -\frac{1}{4}(xyl)_{21} = -\frac{1}{4}(yxl)_{12} \]

\[= -\frac{1}{2}xyl_{12} \]

\[[(e_2 - e_1) \otimes x, g_2 \otimes y] = \frac{1}{12}T(xy) \epsilon_{e_2, e_1, g_2} + (e_2 - e_1) * g_2 \otimes x * y \]

\[+ \frac{1}{2}T((e_2 - e_1)g_2) [R_x, R_y] \]

\[= \frac{1}{6}T(xy) \epsilon_{e_2, g_2} + g_2 \otimes x \otimes y \]

\[[(e_2 - e_1) \otimes x), g_2 \otimes y] \phi = \frac{1}{6}T(xy)(-1)_{12} - \frac{1}{2}(x * y)_{12} \]

\[= (-\frac{1}{6}T(xy) - \frac{1}{2}(x * y))1_{12} \]

\[= -\frac{1}{2}xyl_{12} \]

\[[[[e_2 - e_1] \otimes x), (g_2 \otimes y)] \phi = [R(\frac{1}{2}(x_{12}, l_{21}), -\frac{1}{2}y_{12}) \]

\[= \frac{1}{4}y_{12}R(x_{12}, l_{21}) = \frac{1}{4}(-y_{lx})_{12} \]

\[= -\frac{1}{2}xyl_{12} \]
\[
[(e_2 - e_1) \otimes x, g_3 \otimes y] = \frac{1}{12} T(xy) D_{e_2 - e_1, g_3} + (e_2 - e_1) \otimes g_3 \otimes x \otimes y
+ \frac{1}{2} T((e_2 - e_1) \otimes g_3) [R_x, R_y]
\]

\[
= \frac{1}{6} T(xy) D_{e_2, g_3} + g_3 \otimes x \otimes y
\]

\[
[(e_2 - e_1) \otimes x, g_3 \otimes y] \phi = \frac{1}{6} T(xy) \tilde{l}_{12} + \frac{1}{2} (x \otimes y) \tilde{l}_{12}
\]

\[
= \left(\frac{1}{6} T(xy) + \frac{1}{2} (x \otimes y) \tilde{l}_{12} \right) = \frac{1}{2} xy \tilde{l}_{12}
\]

\[
[[(e_2 - e_1) \otimes x] \phi, (g_3 \otimes y) \phi] = [R(\frac{1}{2} x_{12}, \tilde{l}_{21}), \frac{1}{2} \tilde{y}_{12}]
\]

\[
= \frac{1}{4} (-y_{12} R(x_{12}, \tilde{l}_{21}))
\]

\[
= \frac{1}{4} ([y_{12} x]_{12} = \frac{1}{2} xy \tilde{l}_{12}
\]

Thus, \(\phi \) preserves Lie products when it is restricted in \(C_0 \otimes J_0 \). So, we have proved that the restrictions of \(\phi \) to \(\text{Der} C \) and \(\text{Der} J \) are isomorphisms and that the restriction of \(\phi \) to \(C_0 \otimes J_0 \) is bijective and preserves Lie products.
Thus, ϕ is an isomorphism.

2.4 Conclusion:

Both Tits and Faulkner have given constructions of exceptional Lie algebras from an arbitrary Jordan algebra of degree 3 (in the case of Tits' construction an arbitrary octonion algebra enters into the construction). We have provided an explicit isomorphism between $L(C, J)$ of Tits (C the split octonions) and $S(J, R(J))$ of Faulkner, which depends only on J.
Bibliography

[9] Seligman, Cr.B.; On the Split Exceptional Lie algebra E_7, Yale University, New Haven, Conn.