NOTICE
The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS
La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHÈQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-315-95987-8
Dedicated to my teachers * * *
ABSTRACT

General Organization

This thesis contains a brief introduction to the area of β-lactam antibiotics and four other Chapters dealing with the syntheses of various 6-methoxy β-lactams. Due to the tremendous level of activity in this area the introductory literature material is presented in an illustrative approach rather than a comprehensive approach. Literature surveys were carried out using chemical abstracts from 1982 to February 1992. Experimental details are given at the end of each Chapter. Compounds in the schemes which did not lead to desired conclusion were not completely characterized; 1H NMR and other spectral data whenever available are given in the Experimental section. IR was not recorded in most of these cases. Elemental analyses were not performed at all, since the data from such experiments do not always represent the purity of product.

CHAPTER 1

This section describes the development of various β-lactam antibiotics, major representative structures, mode of action and overall objectives of the research undertaken.

CHAPTER 2

7-Methoxy-7-ethyl and 7-methoxy-7-hydroxyethylisocephem analogs were prepared from 4-cinnamyl-3-methoxyazetidinone which was prepared in a multigram scale. This precursor can be purified simply by trituration with ether. The transformation of this monocyclic
starting material to the cyclization precursor involved introduction of an additional side-chain at C-3 via generation of anion using lithium diisopropylamide and quenching of the anion with either ethyl iodide or acetaldehyde. In the case of the hydroxyethyl side-chain oxidation with pyridinium chlorochromate, reduction with L-Selectride and silylation with tert-butyldimethylsilyl triflate was required before carrying out further manipulations. The cinnamyl group was converted to a methylene bearing a leaving group and the p-methoxyphenyl moiety on nitrogen was cleaved and a suitable acetate side-chain was introduced. The anionic annulation with CS₂ gave the desired bicyclic compounds. An optically active isocephem having a thienamycin type side-chain at C-7 and a racemic isocephem having a methoxy group at C-7 were prepared by similar method.

CHAPTER 3

7-Ethyl-7-methoxycarbacephem was prepared using a rhodium carbenoid reaction starting from 4-cinnamyl-3-methoxyazetidinone. A similar method was applied to prepare an advanced intermediate for 7-hydroxyethyl-7-methoxycarbacephem.

CHAPTER 4

6-Methoxy-PS 5 synthesis was attempted which was found to be unstable. The cyclization was carried out applying the rhodium carbenoid methodology. The cyclization precursor was obtained using nitroaldol condensation starting from an aldehyde which was prepared from 4-cinnamyl-3-methoxyazetidinone.
CHAPTER 5

Syntheses of 6-methoxy-1-methyl-PS 5 analogs were attempted starting from 3-ethyl-3-methoxy-4-methylcinnamylazetidinone. The introduction of 1-methyl group involved the reduction of a suitable α,β-unsaturated ester obtained via palladium catalyzed carbonylation reaction.
ACKNOWLEDGEMENTS

I would like to thank all people who helped in completing this thesis.

First, I would like to express my sincere gratitude to my "guru", Professor T. Durst. It goes without saying that without his discerning vision this thesis would not be compiled. I really appreciated his confidence in my judgements, decisions and ideas relating to this piece of research which created ample opportunities to work independently. His continuous support and patience during rough days of this project helped me to continuously work toward the goal. Moreover, the relaxed and informal atmosphere helped me to learn both curricular and extra-curricular activities.

Dr. Madan K. Sharma is another key figure in this research. He had a great influence on me regarding chemistry in laboratory as well as my studies. He helped in laying the foundations of this project since most of the starting materials were prepared adapting his work. The many discussions I had during the two and half years of friendship were invaluable as it helped me to face criticism, think critically and plan actively.

I would like to thank all friends in my group who have directly or indirectly contributed in shaping this thesis: especially Rob Ben, who helped me by proof-reading this thesis; Livain Breau, who helped in conducting NMR experiments involving chiral shift reagents and Terry Connelly for general discussions in chemistry. Thanks are also due to two gifted summer colleagues: Majid Moghdam and Ramin Hamedani for their help in certain sections of this project. Mention should also be
given to Shawna MacKinnon who is a friend with exceptional PR skills and excels of organizing social activities.

Many thanks to Dr. Howard Alper and Dr. Davit Zargarin for their discussions on carbonylation reactions and letting me use the equipment related to these experiments.

Thanks to Dr. Heather Dettman, Dr. Tony Williams, Mr. Raj Capoor for NMR spectra; Dr. Corrine Bensimon for X-ray crystal structures; and Dr. Klem Kazakoff for mass spectra.

Dr. Harold Mastalerz, Bristol-Myers and Squibb, Candiac, Canada offered important support in this research through discussions regarding reverse-phase purifications and arrangement of in vitro antibacterial activity studies.

I would like to take this opportunity to thank Dr. Mohan B. Gewali (Tribhuvan University) for teaching me fundamentals of organic synthesis and guiding me in my pursuit of further studies; Dr. Krishna Ram Amatya (Royal Drug Research Laboratory) for providing an opportunity to learn experimental techniques of organic synthesis and guiding me in my pursuit of further studies; Mr. Nagendra M. Khadka (Tribhuvan University) for stimulating my interest in chemistry and Mr. Keshab L. Shrestha for excellent instruction in mathematics and science at my high school.

Finally, I would like to thank my parents for everything they have given and especially for their emphasis on the pursuit of excellence and adopting a pragmatic approach in every aspect of life, my grand-father for providing primary education in almost every subject and boosting my self-confidence, and my brother and sister for their affection.
TABLE OF CONTENTS

ABSTRACT..i

ACKNOWLEDGEMENTS...iv

TABLE OF CONTENTS..vi

LIST OF FIGURES..xi

LIST OF TABLES...xii

LIST OF ABBREVIATIONS...xiii

Chapter 1: Introduction..1

 History...1
 Mode of action and reaction...7
 Objectives and nature of studies...11

Chapter 2: Anionic 4+2 cyclization route to 3-sulfur substituted isocephem analogs...13

 Structural diversity..13
 Synthetic methods leading to isocephems...15
 Methodology development...19
 Target isocephems...23
 Synthesis of isocephems 36 and 37...24
 Synthesis of optically active isocephem (+)-38...41
 Synthesis of isocephem 39...44
 Related synthetic attempts..51

Experimental Section..60

 General techniques..60
 29..78
 30..99
 31..81
 34..100
 36...89
 37...90
Chapter 3: Carbacephems .. 101

Structure activity studies ... 101
Synthetic strategies

Carbacephem analogs 61 and 62

Preparation of β-ketoesters 81 and 85

Annulation

Conclusion

Experimental Section

General techniques

61

74

75

76

77

80

81

83

84

85

86

87

88

89

90

91

Chapter 4: Synthesis of 6-methoxy-PS-5 and attempted approaches to related carbapenems

Thienamycin and related natural carbapenems

Structural modifications of carbapenems

Annulation methodologies

Attempted approaches to 6-methoxycarbapenems

Nitromethane as one carbon synthon

Synthesis of 6-methoxy-PS-5

Nitro-olefin 121 as an intermediate for 1-substituted carbapenems

Conclusion

Experimental Section
Chapter 5: 1-Methyl-6,6-disubstituted carbapenems

1-Substituted carbapenems

Methods for stereoselective introduction

of 1-β-methyl group

1-methyl-6-methoxycarbapenems
LISTS OF FIGURES

Numbers in parentheses represent the number of Chapter in which the compounds in bold numbers are described.

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>1H NMR spectrum of (2)29</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>1H NMR spectrum of (2)63</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>1H NMR spectrum of (2)36</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>1H NMR spectrum of (2)37</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>1H NMR spectrum of (2)38</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>1H NMR spectrum of (2)39</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>1H NMR spectrum of (3)61</td>
<td>128</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>1H NMR spectrum of (4)64 from 68</td>
<td>163</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>1H NMR spectrum of (4)64 from 69</td>
<td>164</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>1H NMR spectrum of (4)139</td>
<td>189</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>ORTEP diagram of (4)139</td>
<td>192</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>1H NMR spectrum of (5)100</td>
<td>256</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>1H NMR spectrum of (4)104 obtained as a minor diastereomer during L-Selectride reduction</td>
<td>257</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>ORTEP diagram of (5)101</td>
<td>259</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>1H NMR spectrum of (4)104</td>
<td>263</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Antibacterial data for
 compounds (2)36, 37, 38 and 39
 ..50

Table 2 13C NMR data of compound (3)61
 ..127

Table 3 Stereoselective addition of enolates to (5)30
 239
LIST OF ABBREVIATIONS

[α] --- specific rotation
Ac --- acetyl
AIBN --- azodiisobutyronitrile
anhyd -- anhydrous
APA -- aminopenicillanic acid
aq --- aqueous
Bn --- benzyl
BOC --- butyloxy carbonyl
calcd -- calculated
CAN --- ceric ammonium nitrate
CBz --- carbobenzyloxy
CDI --- carbonyldiimidazole
Cl -- chemical ionization
DA -- diisopropylamine
DCC --- dicyclohexylcarbodiimide
DEPT -- distortionless enhancement by
polarization transfer
DHP --- renal dehydropeptidase
DIPEA --- di-isopropylethylamine
DMAP -- dimethylaminopyridine
DMF -- dimethyl formamide
DMS -- dimethyl sulfide
DPPA --- diphenylphosphoryl azide
EPC -- enantiomerically pure compound
eq, -- equivalent
EWG-----------------------------electron withdrawing group
HLE-----------------------------human leukocyte elastase
HMDS-----------------------------hexamethyldisilazane
HMG Co A synthase-----------------2-hydroxy-3-methylglutaryl coenzyme A synthase
HRMS-----------------------------high resolution mass spectrum
imid.-----------------------------imidazole
IR-------------------------------infrared
LDA-------------------------------lithium diisopropylamide
LHMDS-------------------------------lithium hexamethyldisilazane
MCPBA-------------------------------meta-chloroperbenzoic acid
MIC-------------------------------minimum inhibitory concentration
MMPT-------------------------------magnesium monoperphthalate
MS-------------------------------mass spectrum
Ms-----------------------------methanesulfonyle
NBS-----------------------------N-bromosuccinimide
NMR-------------------------------nuclear magnetic resonance
PCC-------------------------------pyridinium chlorochromate
PhtN-------------------------------pthalimido
PMP-------------------------------p-methoxyphenyl
PNB-------------------------------p-nitrobenzyl
ppm-------------------------------parts per million
ppt-------------------------------precipitate
TBAF-------------------------------tetrabutylammonium fluoride
TBDMS-------------------------------t-Butyldimethylsilyl
TEA-------------------------------triethylamine
Tf-------------------------------trifluoromethanesulfonyl
THF-------------------tetrahydrofuran
TLC-------------------thin layer chromatography
TMEDA-------------------tetramethylethylenediamine
TMS-------------------trimethylsilyl
Tol-------------------toluene
Ts-------------------toluenesulfonyl
CHAPTER 1: INTRODUCTION

This chapter covers only highlights of the β-lactam antibiotic story since its beginning in 1929. Each subsequent chapter has its own more extensive introduction relevant to the specific topic discussed. The biosynthesis of these antibiotics will not be discussed in any detail for the sake of brevity.\(^1\)

History

The inception of β-lactam antibiotic era commenced with the discovery of penicillin by Fleming in 1929 at St. Mary's Hospital, London, England. He reported the local antiseptic activity of *Penicillium notatum*, but did not pursue further studies in this area because of the difficulty in isolating it in large quantities. Florey's group was successful in isolating penicillins (such as 1) in sufficiently large quantities to conduct preliminary clinical studies in 1941.\(^2\)

The chemistry of these compounds was extensively explored during the World War II due to the exceptional antibiotic properties of penicillin. The structure of penicillin remained a controversial issue until the three dimensional X-ray crystallographic study of benzylpenicillin was completed in 1945 by Dorothy Hodgkin and Barbara Low.\(^3\)

Most of the early research on penicillins was aimed at introducing various amide side chains at C-6. Some variations in the amide side chain were accomplished biochemically by adding appropriate acids (largely derivatives of acetic acid) to the fermentation media. A major milestone in this area was achieved when 6-aminopenicillanic acid (6-APA) 2 was isolated by Batchelor and coworkers in 1959. Soon after, it became available in large amounts. This opened the area of semisynthetic penicillins.

\[
\text{H} \quad \text{Ph} \quad \text{N} \quad \text{O} \\
\text{\begin{array}{c} \text{6} \\ \text{5} \\ \text{2} \\ \text{S} \\ \text{COOH} \end{array}} \\
\text{\begin{array}{c} \text{1 penicillin G} \\ \text{2 6-APA} \end{array}}
\]

The first total synthesis of penicillin G was achieved by Sheehan in 1959. Due to the efficiency of the fermentation process this and all other total syntheses of penicillins are mainly of academic interest.

In 1960s the discovery of cephalosporins (e.g. 3) added a new class of β-lactam antibiotics. The clinical importance of these antibiotics lies in the fact that they are effective against penicillin resistant bacteria. Further studies on new cephalosporins and analogs focused mainly on the variations in the substituents at C-3 and C-7. The bicyclic ring systems of the penicillins and cephalosporins including the \textit{cis}

arrangement of the amide side chain with respect to the sulfur containing ring are considered as the "classical" β-lactam antibiotics structures.

![Chemical structure of cephalosporin C](image)

3 cephalosporin C

A new dimension was added when naturally occurring β-lactams having non-classical structures were discovered in 1976. One of these was clavulanic acid 4.\(^7\) This compound is itself not an antibiotic but is a potent β-lactamase inhibitor. This suggested the possibility of combination drugs made up of a broad spectrum but β-lactamase susceptible penicillin and a β-lactamase inhibitor to prevent the degradation of the antibiotic. A formulation of potassium clavulanate and amoxicillin trihydrate, called "Augmentin" which is effective against the β-lactamase producing or penicillin resistant bacteria, is marketed in several countries.\(^8\) The discovery of clavulanic acid instigated considerable work in the development of other semisynthetic β-lactamase inhibitors such as 5.\(^9\)

Another revolutionary event in the β-lactam saga was the discovery of thienamycin 6, a compound having both a broad spectrum of antibiotic activity and β-lactamase stability. However, thienamycin is chemically, thermally and metabolically unstable. A more stable analog, called imipenem 7, has been developed and is being coadministered with cilastatin, an enzyme inhibitor. Imipenem arguably represents one of the most complicated pharmaceuticals presently sold which is manufactured by total synthesis. The discovery of thienamycin and its outstanding biological properties was followed shortly by the isolation of many other non-classical carbapenems such as PS-5, carbapenems and asparenomycins. The structures of these representative examples are given in Chapter 4.

The antibiotic activity of the norcardicins \(^{12}\) showed that the conventional bicyclic structure is not required and that monocyclic \(\beta\)-lactams can have antibiotic activity when suitable functional groups are present. Monobactams \(^{10}\) are another class of monocyclic \(\beta\)-lactam antibiotics.\(^{13}\)

These findings ushered in an unprecedented level of research in this area. To date, a large number of \(\beta\)-lactam antibiotics with different structural variations have been prepared.\(^{14}\) In order to illustrate the structural diversity among these antibiotics, a few generalized

structures of several common classes of synthetic β-lactam antibiotics are given below.

![Chemical structures](image)

11 penems 12 oxapenems 13 carbapenems

14 carbacephems 15 oxacephems 16 isocephems

Recently the last sacred requirement for the antibiotic activity in these compounds, the β-lactam ring itself, has been questioned. Replacement of the β-lactam carbonyl by a sulfone yielded a β-sultam analog 17 and replacement of the β-lactam nitrogen by a methine (CH) carbon giving a keto analog 18. Both of these compounds were inactive. The expansion of β-lactam ring to larger rings gave inactive or weakly active compounds such as 19. The pyrazolidinones 20 were weakly active. Lacticidin 21 has β-lactam like antibiotic activity, but no β-

lactam ring.17 Therefore, a \(\beta\)-lactam ring is not always necessary for \(\beta\)-lactam like antibacterial activity.

\begin{align*}
&\text{17} \\
&\text{18} \\
&\text{19} \\
&\text{20} \\
&\text{21}
\end{align*}

\textbf{Mode of action and reaction}

At this stage it is appropriate to consider briefly the mode of action of \(\beta\)-lactams. This is a very complex issue and detailed treatment of this aspect of \(\beta\)-lactam antibiotics will not be attempted.18 The

17 Nakao, Y. In \textit{Recent Advances in the Chemistry of \(\beta\)-Lactam Antibiotics}; P. H. Bently and R. Southgate, Ed.; The Royal Society of Chemistry: London (England), 1989; p 119.

antibiotic must cross the external barrier of the bacterial cell *i.e.* the thick peptidoglycan layer of Gram-positive bacteria or the outer lipid layer and the peptidoglycan layer of Gram-negative bacteria in order to reach the binding sites of the β-lactam binding proteins in the bacterial cell wall. Over the years, several bacterial strains resistant to certain type of β-lactam antibiotics have been identified. The resistance is largely attributed to β-lactamases, peptides analogous to the β-lactam binding proteins in the cell wall. These β-lactamases effectively bind with the antibiotics and cleave the crucial β-lactam ring, making them ineffective before they reach their target proteins.

It has been shown that these antibiotics inhibit the bacterial cell wall synthesis by interfering with the peptidoglycan crosslinking. As a consequence, the cell wall becomes less rigid and fails to maintain osmotic balance. This leads to lysis or stasis of the bacterial population.

The antibiotics which reach the active site must have suitable stereoelectronic features in order to be recognized as a substrate. Attempts to correlate the antibiotic activities with structural parameters have been carried out by many chemists. One of the earliest ideas was the Tipper-Strominger hypothesis, which postulated that the antibacterial activity or the ability to inhibit the transpeptidation is best effected by compounds having a conformation close to that of the of D-ala-D-ala unit of transpeptidases. Since many β-lactams with widely differing structures show high antibiotic activities, the significance of this is questionable. The β-lactam should

be reactive enough to bind covalently with the serine moiety at the active site of β-lactam binding proteins. The half life of the acylated enzymes should be long enough to stop peptidoglycan cross linking.

Several empirical parameters which represent the stereo-electronic factors or reactivity have been used as indices of antibacterial activities. One of them is the β-lactam carbonyl stretching frequency. A higher frequency signifies a greater chemical reactivity. Very often, but by no means always, a higher frequency does correlate with the higher activity. The pyramidality of the β-lactam nitrogen is another factor. It is commonly described in terms of h value which represents the distance of the β-lactam nitrogen from the plane described by three atoms bonded to it. Normally a higher h value indicates more reactive β-lactams. But this pyramidality is not a key factor when the electron withdrawing groups on the nitrogen increase the reactivity. The relative rate of hydrolysis of β-lactam is another commonly considered parameter. A very reactive β-lactam may react with nucleophiles before it reaches the target binding site.

Based on the above discussion, the rational design of target molecules using stereochemical information derived from X-ray crystallography and conformational evaluation of target molecules by

21 Herzberg, O.; Moult, J. Science 1987, 236, 694.
computational methods26 could be a useful tool in the future, but at present the predictions from these methods are not very reliable. Moreover, these methods do not address the various stages of the mechanism of the antibiotic activity mentioned above. Hence, the trial and error approach is still a worthwhile and commonly used approach in \(\beta\)-lactam antibiotic research.

Finally, it should be pointed out that work has begun investigating the inhibition of other enzymes by \(\beta\)-lactams. Azetidinones 22 and 23 are typical \(\beta\)-lactams which inhibit human leukocyte elastase27 (HLE), an enzyme related to the pathogenesis of degenerative diseases such as emphysema, chronic bronchitis, cystic fibrosis, respiratory disease syndrome and rheumatoid arthritis.

\begin{center}
\begin{tikzpicture}
\t\node [below left] {22};
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
\t\node [below left] {23};
\end{tikzpicture}
\end{center}

The \(\beta\)-lactam 24 is found to inhibit 2-hydroxy-3-methylglutaryl-coenzyme A synthase28 (HMG co A synthase) which is involved in cholesterol biosynthesis. The applications of \(\beta\)-lactams thus far confined to the field of antibiotics may be extended to other fields involving the

chemotherapy of diseases such as chronic bronchial maladies, cystic fibrosis etc.

![Chemical structure](image)

Objectives and nature of studies

One key goal in the β-lactam research is the search for compounds more stable towards these β-lactamases thus making them useful antibiotics for the resistant bacteria.

The introduction of a methoxy group at the α to the β-lactam carbonyl group in penicillins and cephalosporins has been known to increase stability.\(^\text{29}\) Compared to other substituents, the methoxy group was found to impart optimum effects in enhancing stability without significantly diminishing the biological activity. A similar increase in stability has been reported for 6-methoxy-epiPS-5.\(^\text{30}\)

Based on these results, we undertook syntheses leading to α,α-disubstituted bicyclic β-lactams such as isocephems, carbacephems and carbapenems. Most of these compounds were prepared from a few common monocyclic precursors. This strategy of synthesizing various

targets from a common precursor is particularly important in pharmaceutical research since it allows one to synthesize many examples quickly. Our interest in these compounds is based not only on the potential antibacterial activity but also on the fact that they offer a unique opportunity to develop and explore new synthetic methodologies.
CHAPTER 2: ANIONIC 4+2 CYCLIZATION ROUTE TO 3-SULFUR SUBSTITUTED ISOCEPHEM ANALOGS

Structural diversity

Despite nearly twenty years of research, the synthesis of the nuclear analogs of cephems is still being actively pursued. Early interests in the isocephem area were largely synthetic, yielding isocephems with substituents such as phenylacetamido 1a or a combination of phenylacetamido and methyl 1b or isopropyl 2 or no substituents 3 at C-7. These compounds were inactive.

![Chemical structures](image)

1a R=H, 1b R=Me

Gleason and colleagues synthesized isocephems 4-7 which carried the more typical amide side chain at C-7 and found that most of these compounds had good activity against B. subtilis and Staphylococcus aureus. Compound 4 is more active than the natural cephem analogs against Gram-negative bacteria but somewhat less active against S.

aureus and *S. faecalis.* The isocephem analog bearing an additional 7-methoxy substituent in 6 was found to be inactive.\(^5\)

\[
\begin{align*}
4 & \text{ } X=H, \text{ } 5 & \text{ } X=\text{Me} \\
\text{COOH} & & \text{COOH}
\end{align*}
\]

\[
\begin{align*}
\text{PhO} & \text{NH} & \text{NH} & \text{Et} \\
\text{OH} & \text{CO} & \text{CO} \\
\text{COOH} & & \text{COOH}
\end{align*}
\]

\[
\begin{align*}
6 & \text{ } X=\text{CH}_3, \text{ } 7 & \text{ } X=\text{CH}_2\text{OAc}
\end{align*}
\]

McCombie and collaborators reported several 7-N-amido-3-S-ethylisocephems. Compound 8 was found to have about half the antibacterial potency of D-phenylglycyldesacetoxyaminocephalosporanic acid (keflex), the cephem analog of 8.\(^6\) Since the product shown was a mixture of diastereomers the activity of the pure compound may be comparable to keflex. Most of the other derivatives reported were also more potent than their cephem counterparts.

\[
\begin{align*}
\text{NH}_2 & \\
\text{Ph} & \text{NH}
\end{align*}
\]

\[
\begin{align*}
\text{CO} & \text{CO} \\
\text{COOH} & \text{Et}
\end{align*}
\]

Potential useful isocephems were not discovered until the isocephem analog of ceftizoxime was prepared. This compound 9 was

synthesized independently by chemists at the Sumitomo\(^7\) and the Roussel Uclaf\(^8\) companies. It was found to possess good activity against enterobacteriaceae and streptococci, which was comparable to ceftizoxime; but poor activity against staphylococci. Several 3-substituted analogs have been reported. The 3-sulfur substituted compounds 10 showed increased anti-staphylococcal activity but diminished Gram-negative activity. Compounds of type 11 were also found to have good antimicrobial activity; the pyridinium methyl (i.e. \(Q=+\text{NC}_5\text{H}_5\)) derivative was found to have better Gram-positive and Gram-negative activity than cefotaxime.\(^9\)

\[\text{Diagram}
\]

\(9 \, X=\text{H}; \quad 10 \, X=\text{SR}; \quad 11 \, X=\text{CH}_2Q, \quad Q=\text{quaternary ammonium nitrogen}
\]

Synthetic methods leading to isocephems

Not surprisingly, the pharmaceutical industry has been heavily involved in synthetic methodology development in this area. All general routes thus far described, with the exception of the diazo

insertion route developed by Lowe, have had their origin in industry and are referred to by the company name in this section.

1) Roussel-Uclaf Method

This method involves generation of an enolate α to the β-lactam nitrogen and reaction with carbon disulfide or carbon oxysulfide.10 The subsequent nucleophilic displacement of a suitably positioned leaving group by the resultant sulfur nucleophile gives the isocephem nucleus. This method is particularly useful for the preparation of isocephemns having an oxygen or sulfur substituent at C-3. This route was reported after we had completed our preliminary results which are described in this chapter.

![Diagram](image)

2) Smith Kline and French (SKF) Method

An azetidinone bearing a 4-mercaptomethyl group is reacted with bromo or chloropyruvates in the presence of a base such as triethylamine. The alklylation of the thiolate is followed by aminal formation giving the bicyclic compound. Dehydration is conventionally carried out using thionyl chloride or trifluoroacetic anhydride.11

yielding structures such as 17 (R' = H). When Aszodi and collaborators applied this approach to the preparation of 3-sulfur substituted analogs 17 (R' = SR*), the dehydration method failed. However, the use of diphosphorous tetraiodide gave modest yields of dehydration products.\(^\text{12}\)

![Chemical Structure](image)

3) **Lowe's diazo insertion Method**

Irradiation of the diazocompound 18 gave the bicyclic isocephem 19 via C-H insertion of the resulting carbene.\(^\text{13}\) The sulfur atom did not intercept the carbene. The C-7 ester function was exploited as a control group for introducing additional 7-methyl group or as a synthon for the introduction of 7-amido function.

![Chemical Structure](image)

3) **Bristol Method**

17
This method exploits the bivalency of sulfur and its soft nucleophilicity to obtain bicyclic isocephems starting with a suitable azetidinone such as 20.14 This annulation presumably involves a 1,4-addition-elimination sequence to generate an intermediate ene-thiolate and concomitant intramolecular nucleophilic displacement of the suitably located mesylate function by the thiolate intermediate. This method avoids the problematic dehydration of a tertiary alcohol required by the SKF method.

\begin{center}
\begin{tikzpicture}
\node (20) at (0,0) {20};
\node (21) at (2,0) {21 \text{ R=H, R=Me}};
\draw[->] (20) -- (21);
\draw (20) to [bend left] node[anchor=south] {H$_2$S/TEA} (21);
\end{tikzpicture}
\end{center}

The preparation of cyclization precursor 20 involves the use of a suitably substituted imine in a 2+2 ketene imine cycloaddition and standard functional group transformations.

\begin{center}
\begin{tikzpicture}
\node (22) at (0,0) {22};
\node (20) at (2,0) {20};
\draw[->] (22) -- (20);
\draw (22) to [bend left] node[anchor=south] {\text{Ph}} (20);
\end{tikzpicture}
\end{center}

4) Schering method

McCombie and colleagues reported good yields of 3-sulfur substituted isocephems when the oxalimide 23 derived from an azetidinone carrying a suitable trithiocarbonate at C-4 was heated with triethyl phosphite.15 This reaction has been proposed to proceed through a carbene generated adjacent to the nitrogen. Attack of such a carbene on the thione group could lead to an episulfide which is subsequently desulfurized by the excess triethyl phosphite.16

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{RCONH}};
\node at (1,0) {\text{S}};
\node at (2,0) {\text{S}};
\node at (3,0) {\text{SR''}};
\node at (0,1) {\text{S}};
\node at (1,1) {\text{N}};
\node at (2,1) {\text{O}};
\node at (3,1) {\text{O}};
\node at (4,1) {\text{COOR'}};
\node at (0,-1) {\text{COOR'}};
\node at (1,-1) {\text{RCONH}};
\node at (2,-1) {\text{S}};
\node at (3,-1) {\text{SR''}};
\node at (4,-1) {\text{COOR'}};
\node at (2,2) {\text{(EtO)}_3P};
\end{tikzpicture}
\end{center}

\textbf{Methodology development}

The above discussion clearly indicates that the studies on 7,7-disubstituted isocephems are rare and only very few examples having a combination of either nitrogen and oxygen or nitrogen and methyl substituents at C-7 are known. As mentioned earlier, we have been attempting to synthesize 6,6-disubstituted carbapenems via a 4+1 cyclization. Since the addition of the unstabilized carbanions to isocyanides and the alkylation of the resultant carbanion has been

15 McCombie, S. W.; Metz, W. A.; Afonso, A. Tetrahedron Lett. \textbf{1986}, \textit{27}, 305.
reported17, we hoped a similar intramolecular version might be feasible with the stabilized carbanions. If the addition and intramolecular displacement proceeds as planned, it should lead to a convenient and novel method for preparing a key carbapenem intermediate. The bicyclic imine 27 or its tautomer enamine should be hydrolyzed readily to the ketone 28. Bicyclic ketones with only one substituent at C-6 have already been shown to be important intermediates in carbapenem syntheses. When the substituent at C-6 is hydroxyethyl the bicyclic ketone intermediate is known as the "Merck ketone".

\[\text{25} \]

\[\text{26} \]

\[\text{27} \]

\[\text{28} \]

The question whether these reactions could be done without significant fragmentation of β-lactam ring due to the competing Grob type 1,4-elimination was examined. To probe this situation in our

examples we decided to perform an experiment with acetaldehyde. When the anion 25, obtained by treatment of 29 with LDA, was quenched with acetaldehyde at -78 °C and warmed to room tempera-

\[\text{OMe}\]
\[\text{OSO}_2\text{Ph} \]
\[\text{N} \]
\[\text{CO} \]
\[\text{O} \]
\[\text{O} \]
\[\text{TMS} \]
\[\text{Me} \]
\[\text{a} \]
\[\text{OMe}\]
\[\text{OSO}_2\text{Ph} \]
\[\text{N} \]
\[\text{CO} \]
\[\text{O} \]
\[\text{O} \]
\[\text{TMS} \]
\[\text{Me} \]

a) LDA, CH₃CHO, -78 °C to 25 °C, 18 h

ture the addition-elimination product 30 was isolated in 55% yield, thus removing the fear expressed above. The key peaks in the \(^1\text{H}\) NMR spectrum at δ: 1.72 (3H, d, J=7.1 Hz, CH₃CH), 6.79 (1H, q, J=7.2 Hz, CHCH₃), 7.48-7.64 (3H, m, Ph), 7.81-7.85 (2H, m, Ph) and in mass spectrum (CI) at 456 (M⁺-CO) are consistent with the structure shown. Perhaps, stereo-electronic factors play a key role in preventing the 1,4-elimination at low temperatures. One can expect the lone-pair on nitrogen and that on the carbanion to be \textit{anti} to each other which makes the anion electron pair and the C-N bond orthogonal \textit{e.g.} 25a. Since elimination reactions are best effected when a \textit{syn} or preferably an \textit{anti} relationship exists between leaving group and anion 1,4-elimination in 25 is expected to be slow. In addition, the chelation of metal enolate with the oxygen atom of β-lactam carbonyl may lock the anion into a rigid and stable conformation 25b, thus stabilizing the anion.
When the anion 25 was generated by treatment of 29 in THF with 1.1 equivalent of LDA at -78 °C and exposed to the t-butyl isocyanide (-78 °C to 25 °C) condensation did not occur and only unreacted starting material was recovered. It appears that the anion 25 is not reactive enough towards t-butyl isocyanide.

We also attempted to apply the reaction of the anion 25 in a 4+2 cyclization involving an electrophilic C=C bond to prepare carbacephem. The receptor chosen was bisphenylsulfonylethene 32. If such reaction were successful, the carbacephem 35 would be obtained as shown in the following scheme.
When the anion, generated as described above, was reacted with a solution of bisphenylsulfonylethene 32 in THF (-78 °C to 25 °C), the initial addition of the carbanion derived from 31 to 32 did occur but the subsequent cyclization failed. The 1H NMR spectrum of the major product obtained is consistent with the structure 34 [δ: 2.42 (3H, s, CH$_3$Ph), 3.88-4.27 (6H, m, CH$_2$O, CH$_2$OTs, CH$_2$SO$_2$Ph), 6.42 (1H, t, J=7.2 Hz, CHCH$_2$SO$_2$Ph), 7.32 (2H, d, J=8.0 Hz, Tol), 7.48-7.63 (3H, m, Ph), 7.71 (2H, d, J=8.4 Hz, Ph), 7.86 (2H, d, J=8.3 Hz, Tol)].

![Chemical structures 31 and 34](image)

a) LDA, PhSO$_2$CH=CHSO$_2$Ph, THF, -78 °C to 25 °C

Target Isocephems

We decided to synthesize 3-sulfur substituted isocephems having substituents other than a conventional nitrogen at position 7 in order to capitalize on the precursors at hand. These precursors were prepared from the monocyclic β-lactam which, in most cases, was obtained by a ketene-imine 2+2 cycloaddition. The following discussion deals with the successful completion of the total syntheses of 3-sulfur substituted isocephems 36-39. Some of these isocephems such as 36 and 37 have either thienamycin (hydroxyethyl) or PS-5 (ethyl) type substituents at C-7 in addition to the methoxy group.
36: \(R_1 = \text{OMe}, \ R_2 = \text{Et}, \ R = \text{Bn}; \) 37: \(R_1 = \text{OMe}, \ R_2 = (S)-\text{hydroxyethyl}, \ R = \text{Bn}; \) 38: \(R_1 = \text{H}, \ R_2 = (R)-\text{hydroxyethyl}, \ R = \text{Bn}; \) 39: \(R_1 = \text{OMe}, \ R_2 = \text{H}, \ R = \text{Et} \)

The overall strategy was to assemble the isocephem nucleus using an anionic 4+2 cyclization methodology as shown in the following retrosynthetic scheme.

![Retrosynthetic Scheme](image)

Synthesis of Isocephems 36 and 37

The compounds 45 and 48 were chosen as starting materials for the synthesis of the target bicyclic compounds 36 and 37, respectively. Considerable time was spent in scaling up the preparation of the azetidinone 44 to 84-147 millimolar scale. The precursor to these starting materials, 4-cinnamyl-3-methoxy-1-p-methoxyphenyl azetidinone 44, can be prepared from methoxyacetyl chloride or its equivalent (i.e. methoxyacetic acid activated with DMF/oxalyl chloride)
or from acetoxyacetyl chloride. The later method is somewhat longer as it requires further deacetylation by the Zemplen method and methylation of the resultant hydroxy compound 43. However, this longer route is more reliable and reproducible on a large scale.

\[\begin{align*}
\text{AcO} & \quad \text{Ph} \\
\text{Cl} & \quad \text{PMP} \\
\text{40} & \quad \text{a} \\
\text{AcO} & \quad \text{Ph} \\
\text{Cl} & \quad \text{PMP} \\
\text{41} & \quad \text{42} \\
\text{MeO} & \quad \text{Ph} \\
\text{PMP} & \quad \text{44} \\
\text{HO} & \quad \text{Ph} \\
\text{PMP} & \quad \text{43} \\
\end{align*} \]

\(a) \) TEA, CH\(_2\)Cl\(_2\), 0 °C to 25 °C; \(b) \) NaOMe, MeOH:THF (1:1), 25 °C; \(c) \) NaH, MeI, THF, 0 °C to 25 °C

The compounds, 45 and 48, were initially prepared by Sharma on 2 and 0.33 millimolar scales by reaction of the anion derived from azetidinone 44 with excess iodoethane or acetaldehyde respectively. Since multistep syntheses require large amounts of starting materials, these compounds were later prepared on 40-50 and 20-30 millimolar scales respectively. A surprising result was the formation of a minor isomer in LDA/acetaldehyde sequence which had cis relationship

between the hydroxyethyl group and the cinnamyl group. This compound was not observed in the small scale reactions. Although the amount of this material represented less than 5% of the total product, it caused significant separation problems. Finally, it was found this impurity could be removed by first converting the mixture to the TBDMS derivatives via oxidation, reduction and silylation sequences and then carefully separating two diastereomers by column chromatography. It was also learnt that the anion reaction with acetaldehyde or iodoethane could be scaled only up to about 20 g scale, because beyond this the yields decreased significantly. This may be due to certain physical factors such as rate of mixing during stirring, localized heating in reaction vessels, etc.

\[
\begin{align*}
\text{MeO} & \quad \text{Ph} \\
\text{O} & \quad \text{PMP} \\
44 & \quad \text{a} \\
\text{OMe} & \quad \text{Ph} \\
\text{O} & \quad \text{PMP} \\
45 &
\end{align*}
\]

\(44\) \(\xrightarrow{\text{a}}\) \(45\)

\(a)\) LDA, EtI, THF, -78 °C to -30 °C

\[
\begin{align*}
\text{OMe} & \quad \text{Ph} \\
\text{O} & \quad \text{PMP} \\
44 & \quad \text{a} \\
\text{OMe} & \quad \text{Ph} \\
\text{O} & \quad \text{PMP} \\
46 & \quad \text{b} \\
\text{RO} & \quad \text{Ph} \\
\text{OMe} & \quad \text{PMP} \\
47 & \quad \text{R=H, 48 R=TBDMS}
\end{align*}
\]

\(44\) \(\xrightarrow{\text{a}}\) \(46\) \(\xrightarrow{\text{b}}\) \(47\) \(\text{R=H, 48 R=TBDMS}\)

\(a)\) LDA, CH\(_3\)CHO, THF, -78 °C; PCC, NaOAc, 4Å mol. sieves, CH\(_2\)Cl\(_2\); \(b)\) L-Selectride, TMEDA, THF, -78 °C; 47 to 48: TBDMSOTf, 2,6-lutidine, CH\(_2\)Cl\(_2\), 0 °C

26
The compounds 45 and 48 were ozonolyzed and reduced with sodium borohydride in a one pot sequence. Occasionally the separation of the alcohol 51 or 52 from benzyl alcohol, the byproduct, proved to be difficult. Ozonolysis when carried out in methylene chloride gave several products. However use of anhydrous dichloromethane and traces of methanol in the presence of 4Å mol. sieves gave a clean reaction. The product aldehydes were purified easily and isolated in excellent yields. The aldehydes 49 and 50 showed the expected low field proton peak at δ=9.70 ppm (d, J=3.3 Hz, CHO) and 9.79 ppm (d, J=2.2 Hz, CHO) respectively in 1H NMR. They were further characterized by IR, 1H NMR, MS and HRMS. These data are recorded in the Experimental section. These reasonably stable aldehydes were reduced with sodium borohydride to afford the alcohols 51 and 52 in 51% and 70% overall yield from 45 and 48. These alcohols also gave spectral data consistent with the assigned structures.

\[
\begin{align*}
45 & \quad R=\text{Et} \\
48 & \quad R=(S)-\text{CH(CH}_3\text{)OTBDMS} \\
50 & \quad R=(S)-\text{CH(CH}_3\text{)OTBDMS} \\
52 & \quad R=(S)-\text{CH(CH}_3\text{)OTBDMS}
\end{align*}
\]

\[\text{a) O}_3, \text{CH}_2\text{Cl}_2, \text{MeOH, -78 °C, DMS, -78 °C to 25 °C; b) NaBH}_4, \text{EtOH}\]

The hydroxyl group of 51 was protected as a TBDMS ether, using TBDMSOTf and 2,6-lutidine, during the initial experiments designed to prepare the free NH azetidinones. Subsequent cleavage of the PMP group with CAN in acetonitrile at -5 °C to 0 °C occurred in poor yield. None of the fractions isolated by column chromatography of the crude

27
product obtained during the N-alkylation of 54 (NaH, DMF, ICH₂COOBn) gave a ¹H NMR spectrum corresponding to the desired product. Hence,

\[
\begin{align*}
\text{51} & \quad \text{a) TBDMSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; b) CAN, MeCN, H₂O, -5 °C to 0 °C} \\
51 & \quad \text{we chose a benzyl protective group. For this purpose, the hydroxyl} \\
53 & \quad \text{group in 51 or 52 was converted to corresponding alkoxide using NaH} \\
54 & \quad \text{and then quenched with benzyl bromide to give benzyl ethers 55 and} \\
56 & \quad \text{56. Oxidative removal of the PMP group using CAN now occurred} \\
57 & \quad \text{satisfactorily affording the NH compounds 57 and 58.²⁰} \text{ The byproduct,}
\end{align*}
\]

\[
\begin{align*}
\text{51 R=Et} & \quad \text{55 R=Et} \\
\text{52 R=(S)-CH(CH₃)OTBDMS} & \quad \text{56 R=(S)-CH(CH₃)OTBDMS} \\
57 & \quad \text{58 R=(S)-CH(CH₃)OTBDMS} \\
\end{align*}
\]

\[\text{a) NaH, BnBr, DMF, 0 °C to 25 °C; b) CAN, MeCN, H₂O, -5 °C to 0 °C} \]

benzoquinone, and residual starting material were removed by passing the crude reaction mixture through a silica gel column and the product, thus obtained, was reacted with β-trimethylsilylethyl bromoacetate and NaH in DMF at 0 °C to introduce the required acetate side chain at nitrogen. The ¹H NMR of 59 verified the introduction of the β-trimethylsilylethyl acetate unit (δ=0.00, s, 9H; 0.88-1.00, CH₂TMS; 4.12-

4.47, OCH₂), and the infrared showed that the β-lactam ring had been retained (IR 1754 cm⁻¹). Similar spectral evidence for the presence of β-trimethylsilylethethyl moiety [¹H NMR (δ=0.01, 9H, s; 0.84-0.96, 2H, m; and 2 OCH₂ hydrogens overlapping with multiplet at 3.92-4.20)] and the intact β-lactam ring (IR 1756 cm⁻¹) was obtained in case of 60. The β-trimethylsilylethyl protective group for the acid function rather than more commonly used PNB, was chosen since the benzyl group used to protect the alcohol can be selectively cleaved by hydrogenolysis without affecting the ester function. The debenzylation of the N-alkylated compounds 59 and 60 was achieved in near quantitative yield with hydrogen and 10% palladium on carbon. The ¹H NMR, IR (3441 cm⁻¹, broad, OH) and M⁺-43 peak in MS of the alcohol 61 was as expected.

![Chemical Structures](image)

57 R=Et
58 R=(S)-CH(CH₃)OTBDMS
60 R=(S)-CH(CH₃)OTBDMS
62 R=(S)-CH(CH₃)OTBDMS

a) BrCH₂COOCH₂CH₂SiMe₃, NaH, DMF; b) H₂, Pd-C (10%), EtOH, 40 psi, 25 °C

The resultant free hydroxyl function in 61 and 62 was activated as its benzenesulfonate by adding a mixture of alcohol and benzenesulfonyl imidazole²¹ in a dry DMF:THF mixture to a suspension of sodium hydride in DMF:THF (1:1). The usual method of preparing the

²¹ Prepared by a similar method reported. Fraser-Ried, B.; Hicks, D. R. *Synthesis* 1974, 203.
alkoxides by stirring the alcohol with NaH for several minutes and subsequent trapping with benzenesulfonyl imidazole was avoided, since the alkoxide 64 may react in an undesirable way to give lactones 65 or 66 if allowed to stir in the absence of an electrophile. Following this protocol, the compounds 29 and 63 were obtained in 80% and 63% yields respectively (Fig. 1 and 2). The compound 29 gave the expected peaks in IR at 1770 and 1740 (C=O), 1370, 1190 (SO₂) cm⁻¹; in its ¹H NMR at δ: 0.00 (9H, s, TMS), 0.87-1.02 (5H, m, CH₃, CH₂TMS), 3.72 (1H, d, J=18.1 Hz, NCH₄H₅COOR), 4.15 (5H, m, 2 x OCH₂, NCH₄H₅COOR), 7.51-7.66 (3H, m, Ph), 7.85-7.897 (2H, m, Ph) ppm and in MS at 414 (M⁺-43, 2). Compound 63 also showed the key IR absorption at 1757 (C=O) cm⁻¹. ¹H NMR peaks were found at δ=0.01 (15H, s, TMS, (CH₃)₂Si), 0.93-0.99 (2H, m, CH₂Si), 3.85 (1H, d, J=17.9 Hz, NCH₄H₅COOR), 4.00-4.31 (7H, m, HCO, H₂CO, HCN, NCH₄H₅COOR), 7.49-7.89 (5H, m, Ph) ppm. The expected protonated molecular ion peak in chemical ionization mass spectrum was found at m/e=588.

![Chemical structures](image-url)

61 R=Et
62 R=(S)-CH(CH₃)OTBDMS

29 R=Et
63 R=(S)-CH(CH₃)OTBDMS

a) PhSO₂imid, NaH, THF:DMF (1:1), 0 °C to 25 °C
At this stage we evaluated the preceding synthetic schemes involving the conversion of 45 and 48 to 29 and 63 respectively. Protection of alcohols 51 and 52 as their benzyl ethers and subsequent deprotection represent two extra steps. A shorter sequence could be realized either if the PMP group could be cleaved prior to the ozonolysis of the cinnamyl group (e.g. preparation of 67) or if the alkylation of the azetidinone 69 could be achieved without disturbing the benzenesulfonate group. Unfortunately CAN cleavage of PMP group in the compound 48 failed.

In the second approach, the benzenesulfonate 69 was prepared in 55% yield by simply using the sequence of reactions shown below. When the alkylation was carried out by first treatment with NaH and subsequent addition of benzyl iodoacetate to the alkoxide at 0 °C, the reaction mixture contained numerous spots from which the desired alkylation product 70 could not be isolated. Thus we completed
synthesis of 29 and 63 via. the protection-deprotection sequences mentioned above.

\[
\begin{align*}
&\text{52} \quad \xrightarrow{a} \quad \text{68} \\
&\text{70} \quad \xrightarrow{b} \quad \text{69}
\end{align*}
\]

a) NaH, PhSO2imid, DMF, 0 °C; b) CAN, MeCN, H2O, -5 °C to 0 °C; c) NaH, ICH2COOBn, DMF, 0 °C

After the completion of the syntheses of isocephems 36 and 37, we decided to re-examine the CAN reaction in the compound 45. At the usually recommended temperature for this reaction \textit{i.e.} -5 °C to 0 °C, the cleavage product was isolated only in low yield. The NH compound 71 was obtained in a much superior yield of 52% when the reaction temperature was lowered to -25 °C to -30 °C. Our initial experiment with 48 might have failed due to poor mixing techniques, temperature control and monitoring the completion of reaction. Since compounds such as 45 and 48 behaved poorly during this reaction, one may speculate concerning the participation of the cinnamyl group with the cleavage of the C-N bond of \(\beta\)-lactam.
The N-alkylation of 71 and ozonolysis of cinnamyl group of 72 was carried out using the methods described above. When the reduction of the aldehyde 73 was attempted first with sodium borohydride the yield was low. This could be due to the side reaction of the resultant alkoxide 64 suggested on page 31. Sodium cyanoboro-
ydride reduction under acidic condition (pH 3-4) afforded the desired alcohol 61 in 15% overall yield from 45 (4 steps). This compares to the 14% yield obtained via the sequences which involved the extra protection-deprotection steps (i.e. through intermediates 49-51-55-
57-59). The tosylation of 61 was carried out using toluenesulfonyl chloride in pyridine at 0 °C to give 31 in 72% yield.

\[
\begin{align*}
\text{45} & \xrightarrow{a} \text{71} & \xrightarrow{b} \text{72} \\
\text{31} & \xrightarrow{e} \text{61} & \xrightarrow{d} \text{73}
\end{align*}
\]

a) CAN, MeCN, H₂O, -30 °C to -25 °C; b) NaH, BrCH₂COOCH₂CH₂SiMe₃, DMF, 0 °C; c) O₃, CH₂Cl₂, MeOH, -78 °C, DMS, -78 °C to 25 °C; d) NaCNBH₃, MeOH, pH 3-4, 25 °C; e) TsCl, pyridine, 0 °C
The big moment in this project arrived. Treatment of 29 with freshly prepared LDA solution in THF at -78 °C generated the ester enolate which was quenched in situ with carbon disulfide. The first experiment failed. Since the experiment involving the reaction of the anion 25 with acetaldehyde had shown that the generation and trapping of the anion with electrophiles was not a problem, a possible cause of failure might have been the quality of carbon disulfide. The experiment with carbon disulfide from new unopened bottle (supplied by BDH Chemicals, reagent grade) gave the desired bicyclic compound. (Carbon disulfide was carefully dried and distilled prior to use in both successful and unsuccessful cases). Purification of the product enethiol

\[
\begin{align*}
\text{29} & : R = \text{Et} \\
\text{64} & : R = (\text{S})-\text{CH(CH}_3\text{)OTBDMS} \\
\text{74} & : R = \text{Et}, R' = \text{H}; \\
\text{75} & : R = (\text{S})-\text{CH(CH}_3\text{)OTBDMS}, R' = \text{H} \\
\text{76} & : R = \text{Et}, R' = \text{Bn} \\
\text{77} & : R = (\text{S})-\text{CH(CH}_3\text{)OTBDMS}, R' = \text{Bn}
\end{align*}
\]

\[\text{a) LDA, CS}_2, \text{THF, -78 °C to 25 °C; b) NaH, BnBr, THF, 0 °C}\]

74 via silica gel chromatography was difficult due to streaking. Therefore, the crude product was placed on a column, washed with 1:5 ethyl acetate:hexanes to remove the faster moving impurities; the desired compound was then desorbed by an ethyl acetate wash. S-Benzylolation was accomplished in 95% yield by treatment with sodium
hydride and benzyl bromide. The product 75, a yellowish solid, mp 82-84 °C, showed carbonyl peaks at 1760 and 1710 cm\(^{-1}\) (in IR) attributed to the β-lactam and the unsaturated ester moieties respectively. The key features in the \(^1\)H NMR spectrum of 76 were the ABX pattern due to the N-CH-CH\(_2\)-S grouping at δ=2.88, 3.27 and 3.60 ppm (J\(_{AB}\) = 12.4 Hz, J\(_{AX}\)=9.8 Hz and J\(_{BX}\)=3.2 Hz), a singlet at δ=4.09 ppm for SCH\(_2\)Ph and the 9H singlet at δ=0.01 ppm due to the β-TMS group. Finally, the free acid 36, mp 189-191 °C, was obtained in 74% yield by deprotection with 1.5 equivalent of tetrabutylammonium fluoride (TBAF)\(^{22}\) in THF at room temperature for 17 h and acidification (Fig. 3). This compound was characterized by IR (3440, 1763 and 1654 cm\(^{-1}\)); \(^1\)H NMR (300 MHz, acetone-d\(_6\)) δ=0.92 (3H, t, J=7.4 Hz, CH\(_3\)), 1.73-2.26 (2H, m, CH\(_2\)CH\(_3\)) acetone peak overlaps, 3.10-3.14 (2H, m, CH\(_2\)S), 3.34 (3H, s, OCH\(_3\)), 3.60-3.65 (1H, m, HCN), 4.04 (2H, d, J=3.4 Hz, SCH\(_2\)Ph), 7.17-7.30 (5H, m, Ph); \(^1\)C NMR δ=7.8 (CH\(_3\)), 23.5 (CH\(_2\)), 28.8 (CH\(_2\)), 39.9 (CH\(_2\)), 55.2 (CH), 55.9 (CH\(_3\)O), 128.2 (CH), 129.3 (CH), 130.1 (CH), 137.6 (C); MS 365 (M\(^+\), 20) and HRMS for C\(_{16}\)H\(_{17}\)NO\(_4\)S\(_2\).

\[
\begin{align*}
\text{R} & \quad \text{OMe} \\
\text{O} & \quad \text{N} \\
\text{S} & \quad \text{Bn} \\
\text{O} & \quad \text{CO} \\
\text{SiMe\(_3\)} & \quad \text{a} \\
76 \quad R=\text{Et} \\
77 \quad R=(S)-\text{CH(CH\(_3\))OTBDMS} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{OMe} \\
\text{O} & \quad \text{N} \\
\text{S} & \quad \text{Bn} \\
\text{O} & \quad \text{CO} \\
36 \quad R=\text{Et} \\
37 \quad R=(S)-\text{CH(CH\(_3\))OH} \\
\end{align*}
\]

a) TBAF, THF, 25 °C

Compound 37 was obtained as a white solid in 75% yield (Fig. 4); mp 209-211 °C, IR: 3549 (broad, OH), 1736 (C=O), 1655 (COOH) cm\(^{-1}\); \(^1\)H

NMR (300 MHz, acetone-d$_6$ + 1 drop D$_2$O with HOD irradiation) δ: 1.24 (3H, d, J=6.5 Hz, CH$_3$), 3.17-3.21 (2H, m, H$_2$CS), 3.48 (3H, s, OCH$_3$), 3.88 (1H, dd, J=4.8, 8.3 Hz, HCN), 4.10 (2H, d, J=1.7 Hz, H$_2$CPh), 4.30 (1H, q, J=6.6 Hz, HCO), 7.21-7.33 (5H, m, Ph); 13C NMR (THF-d$_8$) δ: 18.0 (CH$_3$), 29.9 (CH$_2$), 40.6 (CH$_2$), 52.7 (CH), 54.6 (CH$_3$), 64.9 (HC), 96.1 (C), 124.5 (C=C), 125.2 (C=C), 128.0 (CH), 129.1 (CH), 130.1 (CH), 137.8 (C, Ph carbons), 162.4 (C=O), 163.9 (C=O); MS 381 (M$^+$, 2) and HRMS for C$_{16}$H$_{19}$NO$_3$S$_2$.
Fig. 3 1H NMR spectrum of 36
Synthesis of enantiomerically pure form of (+)-38

The use of enantiopure starting materials in the synthesis of enantiomerically pure compounds (EPC) is a common approach. Such building blocks or chirons are usually derived from natural compounds such as carbohydrates, amino acids, terpenes etc. Hiraoka and coworkers have prepared a variety of thienamycin precursors from L-threonine. The key transformations in this sequence are shown below.

The key monocyclic 4-tosyloxymethyl azetidinone 78, obtained following Hiraoka's procedure (ref. 24), was alkylated with β-trimethylsilylethyl bromoacetate by adding a mixture of tosylate 78 and the bromoacetate dropwise to a suspension of NaH in DMF to afford 79 (oil, IR 1760 cm\(^{-1}\)) in 70% isolated yield. The 4+2 cyclization of 79 as above with LDA and carbon disulfide afforded a 3-mercapto isocephem intermediate 80 (1763 cm\(^{-1}\)) which was immediately S-benzylated to give 81, mp 99-101 °C, in 63% yield. The presence of the β-trimethylsilylethyl group in 81 was supported by the appearance of peaks at δ=0.02, 9H [these SiMe\(_3\) signals overlaps with Si(Me)\(_2\) signal of TBDMS group], 0.92-1.01, 2H, m, CH\(_2\)Si and 3.94-4.27 (OCH\(_2\) signal overlapping with other OCH and OCH\(_2\) signals). The loss of peaks from tosylate indicated the formation of the bicyclic ring. Deprotection of

both the 6-hydroxyethyl and the acid function occurred upon overnight treatment with TBAF in THF to afford (+)-38 in 21% yield as a yellowish white solid (Fig. 5), mp 155-156 °C (decomp), $[\alpha]_D^{22} = +21.2^\circ$ (C 1.9, MeOH), IR: 3371 (OH, broad), 1758 cm$^{-1}$ (C=O); 1H NMR (300 MHz, acetone-d$_6$) $\delta=1.27$ (3H, d, J=6.3 Hz, CH$_3$), 3.06 (1H, dd, J=2.4, 6.4 Hz, CHCO), 3.15 (1H, dd, J=12.4, 10.1 Hz, CH$_2$S), 3.41 (1H, dd, J=3.3, 12.4 Hz, CH$_2$S), 3.79-3.84 (1H, m, HCN), 4.12 (2H, s, CH$_2$Ph), 4.16 (1H, q, J=6.5 Hz, CH$_3$CHO), 7.24-7.38 (5H, m, Ph); 13C NMR $\delta=22.3$ (CH$_3$), 32.7 (CH$_2$), 40.3 (CH$_2$), 49.5 (CH), 65.3 (CH), 65.9 (CH), 128.2 (CH), 129.3 (CH), 130.1 (CH) and 137.8 (C) (Ph carbons), 162.5 (C=O), 165.4 (C=O) and MS 352 (M+1, 25).

![Chemical Structures](image)

78 \[\text{TBDMSO} \quad \text{OTs} \quad \text{a} \quad \text{TBDMSO} \quad \text{OTs} \quad \text{SiMe}_3 \]

79 \[\text{HO} \quad \text{TBDMSO} \quad \text{SbN} \quad \text{SR}' \quad \text{SiMe}_3 \]

38 \[\text{R'=H} \quad \text{R'=Bn} \quad \text{c} \quad \text{d} \]

80

81

a) NaH, BrCH$_2$COOCH$_2$CH$_2$SiMe$_3$, DMF, 0 °C; b) LDA, CS$_2$, THF, -78 °C to 25 °C; c) NaH, BnBr, THF, 0 °C; d) TBAF, THF
Synthesis of the 7-methoxy isocephem 39

The isocephem 39 was synthesized in order to establish the
generality of the anionic 4+2 annulation methodology using carbon
disulfide. The initial effort was directed to utilize the readily available
azetidinone 44. The conversion of 44 to 84 was carried out by
applying the usual sequence of reactions: reductive ozonolysis,
benzenesulfonylation and CAN oxidation. When the azetidinone 84 was
subjected to the N-alkylation condition (addition of both 84 and the
bromoacetate to NaH in DMF, the condition which worked well for the
alkylation of 78 the reaction was found to yield many products and the
desired product 85 could not be isolated from the reaction mixture.
Therefore, this approach was abandoned and an equivalent of 85, the
PNB ester 92 was prepared as described below.

\[\text{OMe} \quad \text{Ph} \quad \overset{a}{\longrightarrow} \quad \text{OMe} \quad \text{OH} \]

\[\text{PMP} \quad \overset{\text{b}}{\longrightarrow} \quad \text{PMP} \]

\[\text{OMe} \quad \text{OSO}_2\text{Ph} \quad \underset{\text{d}}{\longrightarrow} \quad \text{OMe} \quad \text{OSO}_2\text{Ph} \quad \overset{\text{c}}{\longrightarrow} \quad \text{OMe} \quad \text{OSO}_2\text{Ph} \]

\[\text{SiMe}_3 \]

\[\text{85} \quad \text{84} \quad \text{83} \]

\[\text{a) } \text{O}_3, \text{CH}_2\text{Cl}_2, \text{MeOH, } -78 \degree \text{C, NaBH}_4, \text{EtOH, } -78 \degree \text{C to } 25 \degree \text{C; b) } \text{NaH, PhSO}_2\text{imid, DMF, } 0 \degree \text{C; c) CAN, MeCN, H}_2\text{O, } -5 \degree \text{C to } 0 \degree \text{C; d) NaH, BrCH}_2\text{COOCH}_2\text{CH}_2\text{SiMe}_3, \text{DMF, } 0 \degree \text{C to } 25 \degree \text{C} \]
The required monocyclic precursor 88 was eventually obtained by a very short route. Cycloaddition of the imine 87 derived from the p-nitrobenzyl ester of glycine and trans-cinnamaldehyde with in situ generated methoxyketene afforded 88, albeit in only 18% yield.

\[
\begin{align*}
\text{MeO} & \quad + \quad \text{OAc} \quad \text{Cl} \\
\text{CON} & \quad \text{CON} \quad \text{PNB} \\
\text{86} & \quad \text{87} \quad \text{88}
\end{align*}
\]

(a) TEA, CH\(_2\)Cl\(_2\), 0 °C to 25 °C

The precursor to the 4+2 cyclization, 92, could be obtained in only four steps from readily available precursors. Thus it was crucial to improve the yield of the azetidinone 88. Since the conversion of 87 to 88 gave only low yield, we looked for an alternate approach. The earlier experiment showed that the 2+2 cycloaddition of acetoxycetyl chloride with imine 41, derived from cinnamaldehyde and p-anisidine, gave better yield than did methoxyacetetyl chloride.\(^{24}\) Encouraged by this result, we carried out the cycloaddition of the ketene derived from acetoxycetyl chloride and imine 87. Surprisingly, the impure (by \(^1\)H NMR) azetidinone 89 was isolated in lower yield than that for 88.

\[
\begin{align*}
\text{89}
\end{align*}
\]

\(^{24}\) see p 25.
Ozonolysis of the compound 88 followed by reduction of the aldehyde 90 with sodium cyanoborohydride\(^\text{25}\) gave the alcohol 91 in 59% overall yield.

\[
\begin{align*}
\text{88} & \rightarrow \text{90} & \text{91} \\
\text{88} & \text{a) O}_3, \text{CH}_2\text{Cl}_2, \text{MeOH, -78} \degree \text{C, DMS, -78} \degree \text{C to 25} \degree \text{C; b) NaCNBH}_3, \text{MeOH, pH 3-4, 25} \degree \text{C}}
\end{align*}
\]

Tosylation of 91 with toluenesulfonyl chloride and pyridine as a solvent afforded 92 (in 69% yield) which was suitable for a 4+2 cyclization. This compound gave satisfactory spectral data consistent with its structure; IR (film): 1762 (C=O), 1522 and 1353 (NO\(_2\)) cm\(^{-1}\); \(^1\)H NMR \(\delta\): 2.43 (3H, s, CH\(_3\)Ph), 3.45 (3H, s, OCH\(_3\)), 3.97 (1H, d, J=18.1 Hz, NCH\(_2\)AHC\(_2\)COOR), 4.20-4.21 (4H, m, H\(_2\)CO, HCN, NCHHC\(_2\)COOR), 4.59 (1H, d, J=5.6 Hz, HC-C=O), 7.33 (2H, d, J=8.3 Hz, Tol.), 7.50 (2H, d, J=8.9 Hz, PNB), 7.72 (2H, d, J=8.2 Hz, Tol.), 8.21 (2H, d, J=8.9 Hz, PNB) and MS (CI): 479 (M\(^+\)+1, 0.6).

\[
\begin{align*}
\text{91} & \rightarrow \text{92} \\
\text{91} & \text{a) TsCl, pyridine, 0} \degree \text{C to -5} \degree \text{C}}
\end{align*}
\]

Reaction of 92 with freshly prepared LHMDS solution followed by carbon disulfide addition gave the desired bicyclic intermediate 93 which was alkylated with iodoethane to give isocephem 94. The overall yield of 94 (oil, IR: 1767, 1699, 1517, 1342 cm⁻¹) from 88 via this five step sequence was 37%. The other spectroscopic properties were also in agreement with the structure assignment. The sodium salt, 39, was obtained in 56% yield as a white powder, mp 190-191 °C, IR 1752 and 1610 cm⁻¹ after hydrogenolysis of 94 with 10% palladium on carbon, treatment of the resultant mixture with equimolar amount of sodium bicarbonate and purification via reverse phase flash column chromatography (Fig. 6). Other spectral evidences for this compound are as follows: ¹H NMR (300 MHz, D₂O) δ: 1.26 (3H, t, J=7.4 Hz, CH₃), 2.86-2.94 (2H, overlapping q, J=7.3 Hz, SCH₂CH₃), 3.20 (1H, dd, J=12.5, 9.6 Hz, CH₂S), 3.29 (1H, dd, J=12.5, 3.7 Hz, CH₂S), 3.50 (3H, s, OCH₃), 4.05 (1H, ddd, J=3.6, 4.5, 9.6 Hz, HCN), 4.98 (1H, d, J=4.5 Hz, HC-C=O); ¹³C NMR (300 MHz, D₂O) δ: 13.6 (CH₃), 27.5 (CH₂S), 28.3 (CH₂S), 51.8 (CH₃O), 58.8 (HCN), 85.0 (HC-C=O), 115.8 (C=C), 165.0 (C=O), 167.9 (C=O); MS (for free acid) 275 (M⁺, 1) and HRMS for C₁₀H₁₃NO₄S₂.

![Chemical structures](image)

a) LHMDS, CS₂, THF, -78 °C to 25 °C; b) NaH, EtI, THF, 0 °C to 25 °C; c) H₂, Pd-C (10%), EtOH:THF
Interestingly, amongst the four bicyclic acids 36-39, the isocephem carboxylic acid 37, bearing both the methoxy and hydroxyethyl groups at C-7, has a surprisingly low β-lactam carbonyl stretching frequency, 1736 cm⁻¹, compared to 1752-1763 cm⁻¹ for other derivatives 36, 38 and 39. This unusually low carbonyl frequency brings into the question whether the structural assignment for 37 is correct. Careful comparison of other spectroscopic properties of 37 and the remaining members of this group, e.g. the vicinal coupling constants between the methylene group at C-1 and the C-6 hydrogen (J_AB=12.5, J_AX=4.8, J_BX=8.3 vs. J_AB=12.0-12.5, J_AX=3.3-4.6, J_BX= 8.6-10.1 Hz for the analogs), the chemical shifts of the remaining hydrogen on C-6 (3.88 ppm vs. 3.60-4.05 ppm) revealed no anomalies. The mass spectrum of 37 excluded the possibility of a simple β-lactam ring opening by an external nucleophile. Finally, the internal esterification of the side-chain hydroxy group with concomitant β-lactam ring opening to form a 4.3.1 bicyclic system having amino, carboxylic acid and a 7-membered lactone functionalities, would account for the 1736 cm⁻¹ carbonyl band. This is excluded by the observation that the chemical shift of the secondary hydrogen on the hydroxyethyl group does not undergo the expected 0.5 ppm deshielding upon esterification. We therefore conclude that the structure assignment of 37 is correct.

At this stage the biological activity question was examined. Homothienamycin had been shown to be inactive.²⁶ During the course

Table 1 Antibacterial data for compounds 36, 37, 38 & 39: MIC (µg/mL)

<table>
<thead>
<tr>
<th>Organism</th>
<th>A No.</th>
<th>Compounds</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S. pneumoniae/Todd Hewitt</td>
<td>A9585</td>
<td>8</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>0.001</td>
</tr>
<tr>
<td>2. S. pyogenes/Todd Hewitt</td>
<td>A9604</td>
<td>8</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>0.001</td>
</tr>
<tr>
<td>3. E. faecalis</td>
<td>A20688</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.5</td>
</tr>
<tr>
<td>4. E. faecium</td>
<td>A24885</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>2</td>
</tr>
<tr>
<td>5. S. aureus/Pen.</td>
<td>A9537</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.007</td>
</tr>
<tr>
<td>6. S. aureus/50% human serum</td>
<td>A9537S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7. S. aureus/ NCCLS strain</td>
<td>A24227</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.015</td>
</tr>
<tr>
<td>8. S. aureus/ Pen. +</td>
<td>A9606</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.015</td>
</tr>
<tr>
<td>9. S. aureus/ Pen. +</td>
<td>A15090</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.015</td>
</tr>
<tr>
<td>12. S. epidermidis</td>
<td>A24548</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.015</td>
</tr>
<tr>
<td>13. S. epidermidis/Homo MR28degC+NaCl</td>
<td>A25783</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.015</td>
</tr>
<tr>
<td>14. S. haemolyticus</td>
<td>A21638</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.125</td>
</tr>
<tr>
<td>15. E. coli</td>
<td>A15119</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.06</td>
</tr>
<tr>
<td>16. E. coli/NCCLS strain</td>
<td>A20697</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.06</td>
</tr>
<tr>
<td>17. K. pneumoniae</td>
<td>A9664</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.06</td>
</tr>
<tr>
<td>18. E. cloacae</td>
<td>A9659</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>19. P. mirabilis</td>
<td>A9900</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>20. P. vulgaris</td>
<td>A21559</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>21. N. morganii</td>
<td>A15153</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>22. P. rettgeri</td>
<td>A22424</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>23. P. stuartii</td>
<td>A20615</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.5</td>
</tr>
<tr>
<td>24. S. marcescens</td>
<td>A20019</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>0.5</td>
</tr>
<tr>
<td>25. P. aeruginosa</td>
<td>A9843</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>26. P. aeruginosa/NCCLS strain</td>
<td>A21508</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>27. P. aeruginosa</td>
<td>A15195</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>28. P. aeruginosa/imipenem MIC=8</td>
<td>A26830</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>8</td>
</tr>
<tr>
<td>29. P. aeruginosa/imipenem MIC=32</td>
<td>A26833</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>32</td>
</tr>
<tr>
<td>30. P. cepacia</td>
<td>A20820</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>2</td>
</tr>
<tr>
<td>31. X. maltophilia</td>
<td>A24258</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>32. H. influenzae/P- W/1%sup. C</td>
<td>A9729</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>0.125</td>
</tr>
<tr>
<td>33. H. influenzae/P+ W/1%sup. C</td>
<td>A21515</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>0.125</td>
</tr>
</tbody>
</table>

In vitro Antibacterial activity. Conventional microtiter dilution process were used for determination of minimum inhibitory concentrations (MICS). Organisms were grown overnight in Mueller-Hinton Broth (Difco) at 37 °C. Twofold dilutions of the stock solution of each compound (125 µg/mL) were made in Mueller-Hinton Broth (Difco) to obtain a test concentration range from 0.005 to 125 µg/mL. The wells were then inoculated with approximately 10^4 organisms. The microtiter plates were incubated at 37 °C for 18 h. The MIC was the lowest concentration of the test compound that yielded no visible growth.
of our experiments reports on oxacephems\(^{27}\) and cephems\(^{28}\) having a thienamycin type (hydroxyethyl) substituent at the 7-position showed that such compounds possess low antibacterial activity; some of them showed β-lactamase inhibition. Biological screening studies of the compounds prepared in this study 36-39 showed no useful antibiotic activity (Table 1); possible β-lactamase activity was not investigated.

Related synthetic attempts

In order to facilitate the study of the potential of 4+1 and 4+2 cycloaddition reactions as suggested in the conversions of 25 to 28 and 31 to 35 (see page 20 and 22 respectively) with different electrophiles, we decided to prepare several simpler β-lactams in order to test model reactions.

The β-lactam 95 is readily available by chlorosulfonyl isocyanate (CSI) addition to iodo-2-methyl-1-propene and sodium sulfite reduction.\(^{29}\) When 95 and β-trimethylsilylethyl bromoacetate was treated with the suspension of the NaH in DMF, the usual N-alkylation condition used earlier in case of 78, the reaction mixture gave a quite complex \(^1\)H NMR spectrum. The desired alkylated product could not be isolated from this mixture.

Hrystak had reported that the diazo derivatives obtained from β-ketoester inserted into the NH bond of the β-lactams not only

intramolecularly but also intermolecularly.30 An attempt to obtain 96 by reacting 95 with 1.4 eq. of ethyl diazoacetate in toluene or with 6 eq. of ethyl diazoacetate in refluxing benzene in presence catalytic rhodium acetate, resulted in the recovery of a large amount of 95, dimer of diazo compound and a small amount of a second product which could not be identified by 1H NMR spectral analysis.

![Chemical Structures](image)

The second model cyclization precursor 99 was prepared by a standard sequence of reactions involving ozonolysis with reductive workup using NaBH\textsubscript{4} and conversion of the intermediate alcohol to its benzenesulfonate from readily available precursor 97.31 The compound 99 was a yellowish oil; 1H NMR $\delta=1.42$ (9H, s, t-Bu), 2.66 (1H, dd, J=1.6, 14.2 Hz, H_A^{-}C-3), 3.06 (1H, dd, J=5.1, 14.8 Hz, H_B^{-}C-3), 3.63 (1H, d, J=18.1 Hz, $CH_{A_{2}}HC\text{COOR}$), 4.01 (1H, d, J=18.1 Hz, $CH_{B_{2}}HC\text{COOR}$), 4.04-4.31 (3H, m, HC-4, CH\text{2}O), 7.52-7.68 (3H, m, Ph), 7.86-7.90 (2H, m, Ph) and MS(Cl): 356 (M$^{+}$+1, 5).

Reaction of 99 with 1.1 equivalent of LDA in THF followed by quenching with carbon disulfide at -78 °C and warming to 25 °C gave a crude product which was fractionated by column chromatography. No evidence of the formation of the desired bicyclic compound was observed upon examination of 1H NMR spectrum of various compounds. The anion of 99 was also quenched with 1.1 equivalent of phenyl vinyl sulfone in THF at -78 °C and warmed to 25 °C over 18 h. The reaction mixture upon column chromatography gave two impure fractions whose 1H NMR indicated the presence of two phenyl sulfonyl groups. Based on this observation one may infer that the initial Michael type addition occurred but the resultant anion did not undergo subsequent cyclization. Reaction of 99 with dimethyl methoxymethyldienemalonate under similar conditions gave several products one of which appeared to be an impure Michael adduct based on the complex 1H NMR spectrum. Perhaps, the bulk and low nucleophilicities of the resultant carbanions obtained upon Michael addition were not favorable for the cyclization in both phenyl vinyl sulfone and dimethyl methoxymethyldienemalonate reactions. Similar result was also observed during the reaction of 31 with bisphenylsulfonylethylene 32 as described in page 23.
Since most of the biologically active isocephems have a nitrogen substituent at C-7, we studied approaches to isocephems having only nitrogen (100), hydroxyethyl and nitrogen (101) and ethyl and nitrogen (102) substituent at C-7. The compounds, 101 and 102, are hybrids bearing a substituent typical of thienamycin and PS-5, respectively.

The azetidinone 103 was prepared by 2+2 ketene imine cycloaddition using carbobenzyloxyglycine activated with DMF/oxalyl chloride and imine 41 as described by Sharma. The N-H bond at C-3 of 103 was protected with an additional tBOC group so that this group could not interfere with the required anion formation. CAN cleavage of the PMP group of 104 gave the compound 105. The 1H NMR and MS(CI) data for this compound is in agreement with the structure assignment (see the Experimental section). The N-alkylation was attempted by adding a mixture of 105 and 1.5 equivalent of trimethylsilyl ethyl bromoacetate in DMF to the suspension of 1.1 equivalent of sodium hydride in DMF at 0 °C and stirring the resultant

reaction mixture (at 0 °C to 25 °C) for 18 h. The expected N-alkylation product could not be isolated from the reaction mixture.

\[
\begin{align*}
\text{103} & \xrightarrow{a} \text{104} \quad \text{105} \\
\text{106} & \xrightarrow{} \text{107}
\end{align*}
\]

a) (tBOC)₂O, DMAP, TEA, DMF; b) CAN, MeCN:H₂O, -30 °C to -25 °C

Compound 107, obtained from 103 via 106\(^{33}\) was subjected to similar N-alkylation conditions (NaH/BrCH₂COOCH₂CH₂SiMe₃/DMF, NaH/ICH₂COOTBu/THF and KOH/ BrCH₂COOTBu/CH₂Cl₂ at 0 °C to 25 °C for 18 h). Again none of the desired product was obtained.

The azetidinone 110 having an ethyl group and a nitrogen substituent were prepared from 103 as shown in the following scheme using standard methods.

In this case, the N-alkylation (BrCH₂COOCH₂CH₂SiMe₃, NaH, DMF, 0 °C to 25 °C, 18 h) proceeded in a desired manner and gave 40-55% of 111 which gave all expected peaks in ¹H NMR at δ=0.00 (9H, s, TMS), 0.92-1.01 (2H, m, CH₂Si), 1.11 (3H, t, J=7.5 Hz, CH₃CH₂), 1.28 (9H, s, t-Bu), 2.14-2.32 (1H, m, CH₂CH₃), 2.49-2.68 (1H, m, CH₂CH₃), 3.50 (1H, d, J=18.0 Hz, CH₃H₂COOR), 4.12-4.26 (2H, m, CH₂O), 4.34 (1H, d, J=18.0 Hz, CH₂H₂COOR), 4.37 (1H, d, J=7.9 Hz, HCN), 5.03 (2H, apparent d, J=2.2 Hz?, CH₂Ph), 6.12 (1H, dd, J=7.6, 16.2 Hz, HC=CHPh), 6.62 (1H, d, J=16.2 Hz, HC=CHPh), 7.17-7.36 (5H, m, Ph) and MS (Cl) at 581 (M⁺+1-28, 8).

The cyclization precursor 114 was obtained from 111 by the usual sequence of reactions: ozonolysis, sodium cyanoborohydride reduction and tosylation. It gave the following analytical data consistent with the proposed structure; IR: 1780, 1750, and 1720 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ=0.01 (9H, s, TMS), 0.97-1.05 (5H, m, CH₂Si,
CH₃CH₂), 1.34 (9H, s, t-Bu), 2.05-2.17 (1H, m, CH₂CH₃), 2.37-2.45 (4H, m, overlapping with s at 2.41, CH₂CH₃, CH₃Ph), 3.68 (1H, d, J=18.2 Hz, CH₃B₃COOR), 3.96 (1H, dd, J=3.1, 9.2 Hz, CH₃B₃BO), 4.13-4.26 (4H, m, CH₃B₃AO, CH₃B₃ACOOR, OCH₂), 4.34 (1H, dd, J=3.2, 10.2 Hz, HCN), 5.14 (2H, d apparent, J=2.3 Hz, CH₂Ph), 7.27-7.35 (7H, m, Ph, Tol), 7.68 (2H, d, J=8.4 Hz, Tol) and MS(Cl): 663 (M⁺+1-28, 1). The tosylation of 113 was found to proceed in low yield. A side product was isolated and tentatively assigned the structure 115 based on its ¹H NMR spectral analysis of 115 and the product 116 obtained by hydrogenolysis. This product, 115, may have resulted from the transfer of the carbobenzyloxy group from nitrogen to the hydroxyl group.

![Chemical structures](image)

a) O₃, CH₂Cl₂, MeOH, -78 °C, DMS, -78 °C to 25 °C; b) NaCNBH₃, MeOH, 25 °C; c) TsCl, pyridine, 0 °C to 5 °C
The anion of 114, generated using 1.1 equivalent of LDA was quenched with carbon disulfide, as described in the earlier successful examples. The desired bicyclic isocephem could not be isolated and about 80% of starting material was recovered. This failure could also be due to the fact that carbon disulfide was used from a bottle which had been opened and stored for two months. Due to the limited supply of the compound 114 further experiments were not repeated.

\[\text{113} \quad \rightarrow \quad \text{115} \]

As mentioned several times in the earlier parts of this chapter, the studies dealing with the anionic 4+2 cyclization involving carbon disulfide were greatly complicated by the "source" of the carbon disulfide. Successful results were often obtained when the carbon disulfide used was distilled from P₂O₅ immediately after opening a new
bottle. Amazingly, inferior results were obtained when the carbon disulfide, from the same bottle which has been opened and immediately resealed, was distilled and used. This variance caused one to question whether some of the unsuccessful experiments might have been successful with a new source of carbon disulfide. It was considered impractical to purchase a new supply (1 L bottle) use less than 1 mL and discard the rest. We also used anhydrous carbon disulfide supplied by Aldrich Chemical Co. in 100 mL sure seal bottle in one of the final experiment. We did not need to study the behavior of this supply on storage because we stopped the experiment. Thus this problem remains to be solved.
EXPERIMENTAL SECTION

General Techniques

Melting points were determined by use of a Gallenkamp melting point apparatus and were uncorrected. Infrared (IR) spectra were recorded as films on sodium chloride plates for oils, and potassium bromide (KBr) pellets for solids using either a Perkin Elmer 783 or a Bomem MB100 spectrometer. IR spectra were not taken for those compounds which either were difficult to handle or did not lead to the desired conclusion. Mass spectra were obtained by means of a AEIMS 9025 or a Kratos Concept 2H instrument. Possible fragmentation and relative intensity in percentage were reported in parentheses while quoting the mass spectral data. High resolution mass spectra were recorded whenever applicable. Elemental analyses would not be reported.

Nuclear magnetic resonance (NMR) spectral analyses were performed on a Gemini (for 200 MHz) or a Varian XL-300 (300 MHz) spectrometer. Samples were normally prepared as solutions in CDCl₃; deviations from these samples were indicated whenever applicable. The peak patterns were noted as singlet (s), doublet (d), triplet (t), quartet (q), doublets of doublets (dd), or multiplet (m). In ¹³C spectra, the number of attached protons were determined by DEPT or ADEPT experiments. These data were used as a guideline for assignment of carbons to their peaks and thus were not reported separately. Chemical shifts (δ) were reported in ppm downfield to tetramethylsilane.
Flash Column Chromatography were carried out in most of the experiments using Terrochem 230-400 mesh silica gel as the adsorbent. The term column chromatography, used in the experimental details refers to the flash column technique. Thin layer chromatography (tlc) was performed on Kieselgel 60 F254 precoated silica plates of 0.25 mm thickness. The spots were visualized by variety of methods such as uv, iodine, or molybdate-heat. Reverse phase column chromatography was performed using Bondpak C-18 silica gel.

Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under nitrogen atmosphere. Diisopropylamine (DA), hexamethyldisilazide (HMDS) and dimethylformamide (DMF) were distilled under a nitrogen atmosphere, from calcium hydride and stored over 4Å molecular sieves. Dichloromethane was distilled from phosphorous pentoxide (P2O5) and stored over 4Å molecular sieves. Butyllithium was purchased from Aldrich and used after titration with diphenylacetic acid in THF at 0 °C. Sodium hydride was obtained as 60% dispersion in mineral oil and used as such. Benzyl bromide, methyl iodide and ethyl iodide were purchased from Aldrich were used as such. Toluenesulfonyl chloride was recrystallized from THF. Acetoxyacetyl chloride was prepared from glycolic acid and methoxyacetyl chloride from methoxyacetic acid (Aldrich). Carbon disulfide was purchased from BDH and distilled from P2O5 and stored over 4Å molecular sieves under inert atmosphere. In one final experiment anhydrous carbon disulfide from Aldrich (sure seal bottle 100 mL) was used as such. β-Trimethylsilylethyl bromoacetate was prepared by acylation of β-trimethylsilylethanol with bromoacetyl chloride or bromide.

61
Solvents were removed by Buchi rotary evaporator connected to a water aspirator. Usual work up, frequently referred in following experimental descriptions, consists of washing with 10% HCl, 5% NaHCO₃, and saturated brine after dilution with appropriate solvents, drying of combined organic layer with anhydrous magnesium sulfate and filtration. Unless otherwise noted all reactions were conducted under inert atmosphere (nitrogen).

3-Ethyl-4-formyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (49)

Azetidinone 45³⁴ (8.0 g, 24 mmol) was dissolved in 300 mL of dry CH₂Cl₂ and 3 mL of CH₃OH containing about 1 g of crushed 4Å mol. sieves. The reaction mixture was cooled to -78 °C under N₂ and ozone was passed through the solution until the bluish color of excess ozone appeared. Dimethyl sulfide (5-10 mL, excess) was added after the removal of excess ozone and the resulting mixture was warmed to 25 °C over a period of 18 h. The reaction mixture was filtered and the filtrate was concentrated in vacuum. Flash column chromatography of the crude product (1:10 EtOAc:hexanes) gave 4.0 g (64%) of 49 as a yellowish oil; IR: 1744 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 1.05 (3H, t,

J=7.4 Hz, CH₃), 1.77-1.95 (1H, m, CH₂CH₃), 2.05-2.23 (1H, m, CH₂CH₃), 3.48 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 4.22 (1H, d, J=3.3 Hz, CHN), 6.84 (2H, dd, J=2.3, 6.9 Hz, PMP), 7.23 (2H, dd, J=2.3, 6.9 Hz, PMP), 9.70 (1H, d, J=3.3 Hz, CHO); MS: 263 (M⁺, 38), 235 (M⁺-28, 5), 206 (M⁺-28-29, 46), 204 (M⁺-28-31, 12); HRMS for C₁₄H₁₇NO₄ calcd 263.1156, found 263.1139.

3-t-Butyldimethylsilyloxyethyl-4-formyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (50)

The aldehyde 50 was obtained in 60-80% yield as a colorless oil after column chromatography (1:10 EtOAc:hexanes) of the crude product obtained by ozonolysis of the azetidinone 48 as described above; IR: 1749 (C=O) cm⁻¹; ¹H NMR (300 MHz) δ: 0.07 (3H, s, CH₃Si), 0.07 (3H, s, CH₃Si), 0.78 (9H, s, t-BuSi), 1.30 (3H, d, J=6.4 Hz, CH₃), 3.54 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.24 (1H, d, J=6.4 Hz, CH₃CHO), 4.57 (1H, d, J=2.2 Hz, HCN), 6.84 (2H, dd, J=2.2, 6.9 Hz, PMP), 7.26 (2H, dd, J=2.2, 6.9 Hz, PMP), 9.79 (1H, d, J=2.2 Hz, CHO); MS: 393 (M⁺, 6), 336 (M⁺-57, 50), 308 (M⁺-57-28, 12), 292 (M⁺-101, 18), 230 (M⁺-163, 1).

3-Ethyl-4-hydroxymethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (51)

The aldehyde 49 (4.0 g, 15.2 mmol) was dissolved in 50 mL of EtOH at 25 °C. NaBH₄ (0.164 g, 4.56 mmol) was added in one portion and the mixture was stirred for 30 min. The excess NaBH₄ was destroyed by stirring with Amberlite (1-2 g) for 10 min. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (1:3 EtOAc:hexanes) to afford 3.2 g (80%) of 51 as a colorless oil; IR: 3300 (OH), 1735 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.99 (3H, t, J=7.4 Hz, CH₃), 1.62-1.82 (1H, m, CH₂CH₃), 2.06-2.24 (1H, m, CH₂CH₃), 2.55 (1H, broad, OH), 3.60 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 3.94-3.96 (3H, broad m, CHN, CH₂O), 6.83 (2H, dd, J=2.4, 6.8 Hz, PMP), 7.32 (2H, dd, J=2.4, 6.8 Hz, PMP); MS: 265 (M⁺, 26), 206 (M⁺-59, 39), 192 (M⁺-73, 8), 164 (imine⁺-1, 4), 149 (M⁺-116, 80), 116 (M⁺-149, 19); HRMS for C₁₄H₁₉NO₄ calcd 265.1311, found 265.1321.

3-t-Butyldimethylsilyloxyethyl-4-hydroxymethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (52)

The reduction of the aldehyde 50 was carried out as described above to yield 88% of 52 as a colorless oil after purification by column chromatography (1:4 EtOAc:hexanes); IR: 1740 (C=O) cm⁻¹; ¹H NMR (300 MHz) δ: 0.07 (6H, s, CH₃SiCH₃), 0.84 (9H, s, t-BuSi), 1.23 (3H, d, J=6.5 Hz, 64
CH₃), 3.72 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 3.78-4.00 (2H, m, H₂CO), 4.13 (1H, dd, J=3.6, 6.3 Hz, HCN), 4.28 (1H, q, J=6.5 Hz, CH₃CHO), 6.85 (2H, dd, J=2.3, 6.9 Hz, PMP), 7.36 (2H, dd, J=2.2, 6.9 Hz, PMP); MS: 395 (M⁺, 9), 380 (M⁺-15, 1), 338 (M⁺-57, 76), 246 (M⁺-149, 1), 215 (230⁺-15, 0.3).

4-Hydroxymethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (82)

A solution of the azetidinone 44 (1.50 g, 4.85 mmol) in 80 mL of dry CH₂Cl₂ and 2 mL of MeOH was cooled to -78 °C. Ozone was passed through the solution until the bluish color appeared. NaBH₄ (0.2 g, 5.55 mmol) was added and the reaction mixture was stirred for 18 h while letting it to warm to room temperature. The reaction mixture was washed with 10% HCl, 5% NaHCO₃ and brine consecutively. Trturbation of the crude product with 20% ether in hexanes gave 700 mg (61%) of 82 as a white solid; mp 99-100 °C; ¹H NMR (300 MHz) δ: 2.33 (1H, dd, J=5.9, 7.7 Hz, OH), 3.68 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.01-4.06 (2H, m, CH₂O), 4.23-4.28 (1H, m, HCN), 4.66 (1H, d, J=5.2 Hz, HC-3), 6.86 (2H, d, J=9.2 Hz, PMP), 7.36 (2H, d, J=9.2 Hz, PMP); MS: 237 (M⁺, 18), 209 (M⁺-28, 1), 192 (M⁺-28-17, 3), 165 (M⁺-72, 8), 149 (M⁺-88, 100).
4-t-Butyldimethylsilyloxymethyl-3-ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (53)

Alcohol 51 (1.22 g, 4.60 mmol) in 20 mL of dry CH₂Cl₂ was treated with TBDMSOTf (2.1 mL, 6.90 mmol) and 2,6-lutidine (1.0 mL, 9.2 mmol) at 0 °C for 1 h. The reaction mixture was diluted with an additional 20 mL of CH₂Cl₂ and washed successively with 1% ice-cold HCl, 5% NaHCO₃ and saturated brine. Purification of the crude product by column chromatography (1:8 EtOAc:hexanes) afforded 1.50 g (86%) of 53 as an oil; ¹H NMR (200 MHz) δ: 0.01 (6H, s, CH₃SiCH₃), 0.87 (9H, s, t-BuSi), 0.98 (3H, t, J=7.5 Hz, CH₃), 1.67-1.77 (1H, m, CH₂CH₃), 2.02-2.09 (1H, m, CH₂CH₃), 3.52 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.83-3.96 (3H, m, H₂CO, CHN), 6.81 (2H, d, J=9.1 Hz, PMP), 7.53 (2H, d, J=9.1 Hz, PMP); MS: 379 (M⁺, 18), 351 (M⁺-28, 5), 322 (M⁺-57, 9), 294 (322⁺-28, 23), 149 (M⁺-230, 25); HRMS calcd for C₂₀H₃₃O₄NSi 379.2177, found 379.2148.

4-Benzylloxymethyl-3-ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (55)

NaH (0.64 g, 0.013 mol) was added to 3.2 g (0.012 mol) of alcohol 51 dissolved in 50 mL of dry DMF at 0 °C under N₂. This suspension was stirred for 10 min. Benzyl bromide (1.43 mL, 0.012 mol) was added and the reaction mixture was stirred without further cooling for 18 h. Usual workup gave a brownish oil which was purified by column
chromatography (1:8 EtOAc:hexanes) to yield 3.4 g (80%) of benzyl ether 55 as an oil; IR: 1744 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.96 (3H, t, J=7.4 Hz, CH₃), 1.62-1.82, (1H, m, CH₂CH₃), 2.06-2.24, (1H, m, CH₂CH₃), 3.53 (3H, s, OCH₃), 3.76 (4H, s with overlapping dd, OCH₃, CH₂O), 3.87 (1H, dd, J=3.7, 10.8 Hz, CH₂O), 4.06 (1H, dd, J=3.7, 6.5 Hz, CHN), 4.52-4.53 (2H, broad s, CH₂Ph), 6.83 (2H, dd, J=2.2, 6.8 Hz, PMP), 7.23-7.37 (5H, m, Ph), 7.55 (2H, dd, J=2.2, 6.8 Hz, PMP); MS: 355 (M⁺, 16), 327 (M⁺-28, 6), 297 (M⁺-28-30, 2), 206 (M⁺-149, 54), 149 (M⁺-206, 38).

3-t-Butyldimethylsilyloxyethyl-4-benzyloxyethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (56)

The alcohol 52 was benzylated as above to yield 87% of 56 as a yellow oil after purification by column chromatography (1:10 EtOAc:hexanes); IR: 1748 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.04 (3H, s, CH₃Si), 0.04 (3H, s, CH₃Si), 0.79 (9H, s, t-BuSi), 1.25 (3H, d, J=6.4 Hz, CH₃), 3.59 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.60-3.90 (2H, m overlaps with OMe, H₂CO), 4.17 (1H, q, J=6.4 Hz, CH₃CHO), 4.29 (1H, dd, J=3.0, 6.8 Hz, HCN), 4.53 (2H, s, CH₂Ph), 6.83 (2H, dd, J=2.3, 6.3 Hz, PMP), 7.28-7.32 (5H, broad s, Ph), 7.59 (2H, dd, J=2.3, 6.9 Hz, PMP); MS: 485 (M⁺, 8), 428 (M⁺-57, 33), 396 (M⁺-57-32, 2), 336 (M⁺-149, 4), 306 (336⁺-30, 2); HRMS calcd for C₂⁷H₃⁹NO₅Si 485.2595, found 485.2612.
4-Benzyl oxymethyl-3-ethyl-3-methoxy-2-azetidinone

\[
\begin{array}{c}
\text{OMe} \\
\text{O} \\
\text{H} \\
\end{array}
\]

Compound 55 (3.2 g, 9.01 mmol) was dissolved in 50 mL of CH\(_3\)CN and cooled in ice salt bath (-5 °C to 0 °C). CAN (14.82 g, 27.03 mmol) in 25 mL of ice-cold water was added dropwise over 15 min. Brown color appeared and disappeared during the early stages of addition; no noticeable color change was observed at the end of addition. The solution was stirred for further 10 min. [The progress of reaction must be followed carefully by tlc]. Typical workup and chromatography (1:2 EtOAc:hexanes) gave 1.32 g (59%) of a brownish oil which was not characterized since it was not pure and taken to the next step without further purification.

3-t-Butyldimethylsilyloxyethyl-4-benzyl oxymethyl-3-methoxy-2-azetidinone (58)

The PMP group in the azetidinone 56 was cleaved as described above to obtain 58 as an oil in 87% yield after purification by column chromatography (1:3 EtOAc:hexanes); IR: 3300 (broad, NH), 1758 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 0.02 (3H, s, CH\(_3\)Si), 0.04 (3H, s, CH\(_3\)Si), 0.83 (9H, s, t-BuSi), 1.22 (3H, d, J=6.4 Hz, CH\(_3\)), 3.53 (3H, s, OCH\(_3\)), 3.50-3.60 (1H, m overlaps with OMe, \(CH\(_2\)H\(_2\)B(O\(_3\)C\(_2\))), 3.66 (1H, dd, J=3.3, 10.1 Hz, \(CH\(_2\)B\(_3\)H\(_4\)O\)), 3.84 (1H, dd, J=3.4, 11.8 Hz, HCN), 4.12 (1H, q, J=6.4 Hz,
CH₃CHO), 4.51 (2H, s, CH₂Ph), 6.17 (1H, broad s, NH), 7.26-7.34 (5H, broad s, Ph); MS: 379 (M⁺, 1), 336 (M⁺-43, 4), 322 (M⁺-57, 100), 279 (M⁺-100, 99), 231 (322⁺-91, 5).

3-Ethyl-4-t-butyldimethylsilyloxymethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (54)

The cleavage of PMP group of 53 (1.50 g, 3.96 mmol) was carried out as described above to yield 200 mg (18%) of 54 as a brown oil after purification by column chromatography (1:4 EtOAc:hexanes); ¹H NMR (200 MHz) δ: 0.03 (6H, s, CH₃SiCH₃), 0.85 (9H, s, t-BuSi), 0.95 (3H, t, J=6.5 Hz, CH₃), 1.63-1.74 (1H, m, CH₂CH₃), 1.93-2.08 (1H, m, CH₂CH₃), 3.44 (3H, s, OCH₃), 3.51 (1H, dd, J= 7.6, 4.8 Hz, HCN), 3.67 (1H, dd, J=8.0, 10.6 Hz, CH₃HBO), 3.81 (1H, dd, J=4.4, 10.5 Hz, CH₃HBO), 6.08 (1H, broad s, NH); MS: 258 (M⁺-15, 2), 230 (M⁺-43, 3), 216 (M⁺-57, 21), 188 (M⁺-85, 26), 173 (188⁺-15, 49).

3-t-Butyldimethylsilyloxetyl-4-benzenesulfonyloxy-methyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (68)

NaH (60%) dispersion (56 mg, 1.40 mmol) was added to the solution of the alcohol 52 (500 mg, 1.27 mmol) in 20 mL of DMF at 0 °C. Benzenesulfonyl imidazole (529.5 mg, 2.54 mmol) in 5 mL of DMF was added slowly by cannula. The reaction mixture was stirred for 18 h while allowing it to warm to ambient temperature. Purification of the
crude product obtained, after the usual workup and removal of the solvent, was carried out by column chromatography (1:10 EtOAc:hexanes) to give 344 mg (77%) of 68 as a colorless oil; 1H NMR (200 MHz) δ: 0.02 (6H, s, CH$_3$SiCH$_3$), 0.75 (9H, s, t-BuSi), 1.20 (3H, d, J=6.4 Hz, CH$_3$), 3.52 (3H, s, OCH$_3$), 3.76 (3H, s, OCH$_3$), 4.07- 4.38 (4H, m, CH$_3$CHO, H$_2$CO, HCN), 6.81 (2H, d, J=9.2 Hz, PMP), 7.34 (2H, d, J=9.2 Hz, PMP), 7.47-7.61 (3H, m, Ph), 7.77-7.82 (2H, m, Ph); MS: 535 (M$^+$, 7), 478 (M$^+$-57, 70), 450 (M$^+$-57-28, 4), 329 (478$^+$-149, 24), 305 (M$^+$-230, 2); HRMS calcd for C$_{26}$H$_{37}$NO$_7$Si 535.2056, found 535.2066.

4-Benzene sulfonoyloxymethyl-3-methoxy-1-p-methoxy-phenyl-2-azetidinone (83)

A solution of the alcohol 82 (1.00 g, 4.22 mmol) and PhSO$_2$imid (1.32 g, 5.57 mmol) in 15 mL of DMF was added to a suspension of NaH (223 mg, 5.58 mmol) in 20 mL of DMF and stirred 1.5 h. The reaction mixture was worked up in usual manner using ether as a solvent and purified by column chromatography (1:1 EtOAc:hexanes) to give 930 mg (58%) of 83 as an oil; 1H NMR (200 MHz) δ: 3.48 (3H, s, OCH$_3$), 3.76 (3H, s, OCH$_3$), 4.20-4.37 (2H, m, H$_2$CO), 4.37-4.62 (1H, m, CHN), 4.61 (1H, d, J=4.9 Hz, HC-3), 6.81 (2H, d, J=9.1 Hz, PMP), 7.30 (2H, d, J=9.1 Hz, PMP), 7.48-7.65 (3H, m, Ph), 7.79 (2H, d, J=9.7 Hz, Ph); MS: 377 (M$^+$, 6), 304 (M$^+$-73, 1), 220 (M$^+$-157, 1), 192 (220$^+$-28, 17), 149 (M$^+$-228, 75).
3-\textit{t}-Butyldimethylsilyloxyethyl-4-benzenesulfonyloxy-methyl-3-methoxy-2-azetidinone (69)

\includegraphics{image}

Azetidinone 68 (334 mg, 0.624 mmol) was reacted with CAN (as described for 57) to yield 198 mg (71\%) of 69 as a yellowish oil after purification by column chromatography (1:3 EtOAc:hexanes); 1H NMR (200 MHz) δ: 0.02 (6H, s, CH$_3$SiCH$_3$), 0.79 (9H, s, t-BuSi), 1.18 (3H, d, J=6.4 Hz, CH$_3$), 3.48 (3H, s, OCH$_3$), 3.88 (1H, dd, J=5.4, 6.3 Hz, HCN), 4.07-4.15 (3H, m, CH$_2$O, CH$_3$CHO), 6.15 (1H, broad s, NH), 7.52-7.67 (3H, m, Ph), 7.86-7.92 (2H, m, Ph); MS(Cl): 430 (M$^+$+1, 20), 415 (M$^+$+1-15, 13), 402 (M$^+$+1-28, 100), 386 (M$^+$-43, 2), 372 (M$^+$-57, 29).

4-Benzenesulfonyloxymethyl-3-methoxy-2-azetidinone (84)

\includegraphics{image}

Azetidinone 83 (930 mg, 2.47 mmol) was treated with CAN (4.05 g, 7.39 mmol) as described above. The crude product was placed on a silica gel column. The less polar impurities were removed by elution with 1:3 EtOAc:hexanes. Elution with EtOAc gave 482 mg (72\%) of 84 as a brown oil; 1H NMR (200 MHz) δ: 3.45 (3H, s, OCH$_3$), 3.97-4.17 (2H, m, CHN, CH$_A$H$_B$O), 4.26 (1H, dd, J=6.5, 9.6 Hz, CH$_A$H$_B$O), 4.55 (1H, dd, J=3.7, 4.7 Hz, CH-3), 6.20 (1H, broad s, NH), 7.51-7.67 (3H, m, Ph), 7.89 (2H, d, J=6.9 Hz, Ph); MS(Cl): 272 (M$^+$+1, 2), 244 (M$^+$+1-29, 100), 172 (M$^+$-100, 0.5), 114 (M$^+$-157, 8).

71
β-Trimethylsilylethyl (4-benzylxocymethyl-3-ethyl-3-methoxy-2-azetidinone-1-yl)acetate (59)

NaH (0.26 g, 5.47 mmol) was suspended in 25 mL of dry DMF and cooled to 0 °C under N₂. A mixture of the compound 57 (1.24 g, 4.97 mmol) and β-trimethylsilylethyl bromoacetate (1.30 g, 5.47 mmol) in 10 mL of dry DMF was added by cannula and stirred overnight at 25 °C. The reaction mixture was diluted with 35 mL of ether, subjected to the usual workup procedure and purified by column chromatography (1:8 EtOAc:hexanes) to yield 1.4 g (70%) of 59 as a yellow oil; IR: 1754 (C=O, broad, 2 overlapping peaks) cm⁻¹; ¹H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.88-1.00 (5H, m overlapping t, CH₃, CH₂TMS), 1.69-2.11 (2H, m, CH₂CH₃), 3.45 (3H, s, OCH₃), 3.68 (1H, dd, J=7.3, 3.7 Hz, CHN), 3.75-3.91 (3H, m, CH₂OBn, NCH₃H₃COOR), 4.12-4.47 (3H, m, OCH₂CH₂TMS, NCH₃H₃COOR), 7.23-7.33 (5H, m, Ph); MS(Cl): 408 (M⁺+1, 4), 380 (M⁺+1-28, 100), 352 (M⁺+1-56, 71), 244 (M⁺+1-164, 15), 149 (M⁺+1-269, O=C-NCH₂COOCH₂CH₂TMS⁺, 76).
β-Trimethylsilylethyl 4-benzylxoxymethyl-3-t-butyldimethylsilyloxyethyl-3-methoxy-2-azetidinon-1-ylacetate (60)

The reaction of 58 with β-trimethylsilylethyl bromoacetate was performed as described above to give 60 as a yellow oil in 68% yield. Chromatography solvent (1:8 EtOAc:hexanes); IR: 1756 (broad, C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.01 (9H, s, TMS), 0.013 (3H, s, CH₃Si), 0.03 (3H, s, CH₃Si), 0.83 (9H, s, t-BuSi), 0.84-0.96 (2H, m, CH₂Si), 1.25 (3H, d, J=6.4 Hz, CH₃), 3.56 (3H, s, OCH₃), 3.65-3.76 (2H, m, CH₂O), 3.92-4.20 (6H, m, CHN, CHO, NCH₂COO, CH₂O), 4.46 (2H, s, CH₂Ph), 7.23-7.30 (5H, m, Ph); MS(Conf): 538 (M⁺+1, 6), 523 (M⁺+1-15, 0.3), 510 (M⁺+1-28, 71), 495 (510⁺-15, 3), 482 (M⁺+1-56, 17).

β-Trimethylsilylethyl 4-hydroxymethyl-3-ethyl-3-methoxy-2-azetidinon-1-ylacetate (61)

Benzyl ether 59 (1.32 g, 3.23 mmol) was dissolved in 20 mL of EtOH and 200 mg Pd-C (10%) was added and hydrogenated at 40 psi and 25 °C for 18 h. After removal of the catalyst, the solution was concentrated in vacuum. The crude product was purified by passing through a small silica gel plug (EtOAc) to yield 0.82 g (80%) of a
colorless oil 61; IR: 3441 (broad, OH), 1746 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.93-1.00 (5H, m, CH₃, CH₂TMS), 1.60-1.82 (1H, m, CH₂CH₃), 2.01-2.20 (1H, m, CH₂CH₃), 2.59 (1H, dd, J=5.6, 5.9 Hz, OH), 3.51 (3H, s, OCH₃), 3.53-3.72 (1H, m), 3.83 (2H, m), 4.20 (4H, m) these multiplets could not be assigned completely (HCN, 2XCH₂O, NCH₂COOR); MS: 274 (M⁺-43, 3), 246 (M⁺-43-28, 1), 216 (imine⁺-1, 0.7), 173 (M⁺-116-28, 1), 116 (M⁺-201, 36).

β-Trimethylsilyylethyl 4-hydroxymethyl-3-t-butyldimethyloxoylethyl-3-methoxy-2-azetidinon-1-ylacetate (62)

This compound 62 was obtained in 95% yield as described above and taken to the next step without further characterization.

p-Nitrobenzyl 4-formyl-3-methoxy-2-azetidinon-1-ylacetate (90)

The ozonolysis of 88 (2.5 g, 6.31 mmol) was done as in case of compound 49. The aldehyde 90 (2.0 g, 98% yield) was obtained after purification by column chromatography (2:1 EtOAc:hexanes). Due to its tendency to oxidize in air, it was reduced directly as described on page 76.

74
β-Trimethylsilylethyl 4-formyl-3-ethyl-3-methoxy-2-azetidinon-1-ylacetate (67)

\[
\begin{align*}
\text{OMe} & \\
N & \\
\text{H} & \\
\text{O} & \\
\text{Me} & \\
\text{SiMe}_3
\end{align*}
\]

Azetidinone 66 (360 mg, 0.925 mmol) was ozonolyzed in the usual manner and the crude product purified by column chromatography (1:4 EtOAc:hexanes) to give 220 mg (75%) of 67 as a colorless oil; IR: 1740-1780 (broad, C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.92-1.00 (2H, m, CH\(_2\)Si), 1.07 (3H, t, J=7.4 Hz, CH\(_3\)CH\(_2\)), 1.80-2.20 (2H, m, CH\(_2\)CH\(_3\)), 3.41 (3H, s, OCH\(_3\)), 3.93 (1H, d, J=18.3 Hz, CH\(_3\)BCH\(_2\)COOR), 4.13-4.21 (2H, m, CH\(_2\)O), 4.25 (1H, d, J=1.3 Hz, CHN), 4.34 (1H, d, J=18.3 Hz, CH\(_3\)BCH\(_2\)COOR), 9.65 (1H, d, J=1.4 Hz, CHO); MS: 315 (M\(^+\), 3), 287 (M\(^+\)-28, 1), 272 (M\(^+\)-43, 6), 244 (272+-28, 8), 214 (M\(^+\)-101, 1).

β-Trimethylsilylethyl 4-formyl-3-ethyl-3-(N-t-butyloxy-carbonyl, N-carbobenzyloxy)amino-2-azetidinon-1-ylacetate (112)

\[
\begin{align*}
\text{IBOC} & \\
N & \\
\text{CBz} & \\
\text{H} & \\
\text{O} & \\
\text{Me} & \\
\text{SiMe}_3
\end{align*}
\]

The azetidinone 111 (1.00 g, 1.65 mmol) was ozonolyzed as described above to yield 600 mg (68%) of 112 as a yellowish oil which

75
is unstable and reduced immediately; chromatography solvent (1:6 EtOAc:hexanes); 1H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.92-1.00 (2H, m, CH$_2$Si), 1.07 (3H, t, J=7.5 Hz, CH$_3$CH$_2$), 1.53 (9H, s, t-Bu), 2.14-2.25 (1H, m, CH$_2$CH$_3$), 2.43-2.54 (1H, m, CH$_2$CH$_3$), 3.80 (1H, d, J=18.1 Hz, NCH$_{\text{B}}$H$_{\text{A}}$COOR), 4.13-4.22 (2H, m, OH$_2$C), 4.35 (1H, d, J=18.0 Hz, NCH$_{\text{A}}$H$_{\text{B}}$COOR), 4.35 (1H, d, J=1.6 Hz, HCN), 5.15 (2H, apparent broad d, J=na, CH$_2$Ph), 7.33 (5H, s, Ph), 9.67 (1H, d, J=1.7 Hz, CHO); MS(Cl): 465 (M$^+$+1-28-42, 1), 451 (M$^+$+1-28-56, 4), 435 (M$^+$+1-100, 3), 407 (M$^+$+1-128, 59), 363 (407$^+$-44, 16).

p-Nitrobenzyl 3-methoxy-4-hydroxymethyl-2-azetidinon-1-ylacetate (91)

![Chemical Structure](image)

The aldehyde 90 was dissolved in 20 mL of THF and 20 mL of EtOH. Two drops of bromocresol green and 2 drops of 10% HCl were added followed by sodium cyanoboroxydrate (0.78 g, 12.41 mmol). The reaction mixture turned blue. The yellowish color was maintained by adding HCl. After 3.5 h the reaction mixture was diluted with 40 mL of water and extracted with 3X30 mL of CH$_2$Cl$_2$. The crude product was purified column chromatography (1.5:1 EtOAc:hexanes) to give 1.2 g (60%) of oil; IR: 3342 (broad, OH), 1750 (C=O), 1522 and 1348 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHz) δ: 3.53 (3H, s, OCH$_3$), 3.84 (2H, d, J=4.2 Hz, CH$_2$OH), 3.98 (1H, d, J=18.1 Hz, NCH$_{\text{A}}$H$_{\text{B}}$COOR), 3.98 (1H, m overlaps with other peak at 3.98, HCN), 4.26 (1H, d, J=18.1 Hz, NCH$_{\text{A}}$H$_{\text{B}}$COOR), 4.58 (1H, d, J=4.9 Hz, HCN-C=O), 5.21 (2H, s, OCH$_2$PNB), 7.46 (2H, d, J=8.8 Hz, PNB),
8.16 (2H, d, J=8.8 Hz, PNB); MS(Cl): 325 (M+1, 2), 297 (M+1-28, 1), 279 (M+46, 3), 247 (279+32, 12), 228 (M+1-97, 93).

β-Trimethylsilylethyl 3-ethyl-4-formyl-3-methoxy-2-azetidinon-1-ylacetate (61)

The aldehyde 67 (160 mg, 0.58 mmol) in 2 mL of EtOH was treated with NaCNBH₃ (126 mg, 1.32 mmol) as described for compound 91 to yield 119 mg (74%) of alcohol 61 after purification by column chromatography (1:2 EtOAc:hexanes). The ¹H NMR was identical to that obtained by earlier method (p 73).

t-Butyl 4-hydroxymethyl-2-azetidinon-1-ylacetate (98)

Azetidinone 97 (992 mg, 3.95 mmol) dissolved in 40 mL of dry CH₂Cl₂ and 5 mL of MeOH was ozonolyzed at -78 °C. NaBH₄ (84.5 mg, 2.35 mmol) in 5 mL of EtOH was added and the reaction mixture was stirred for 18 h (-78 °C to 25 °C). The reaction mixture was brought to pH 5 by stirring with Amberlite, filtered and concentrated to yield 1.07 g (99%) of 98 as an oil. The product was taken to the next step without further purification; ¹H NMR (200 MHz) δ: 1.38 (9H, s, t-Bu), 2.79-2.89 (2H, m, H₂C-3), 3.28-3.69 (4H, m, HCN, CH₂O, CH₃H₂COOR), 4.18 (1H, d,
\[J=18.3 \text{ Hz, CH}_3\text{H}_2\text{COOR}; \text{ MS(Cl): } 216 (M^{++1}, 34), 188 (M^{++1-28}, 9), 172 (M^{++1-44}, 20), 160 (216^{++-56}, 100), 118 (160^{++-42}, 43). \]

\[\beta\text{-Trimethylsilylethyl 4-benzenesulfonyloxyethyl-3-ethyl-3-methoxy-2-azetidin-1-ylacetate (29)} \]

\[\begin{align*}
\text{OMe} & \quad \text{OSO}_2\text{Ph} \\
\text{N} & \quad \text{SiMe}_3
\end{align*} \]

To a solution of the alcohol 61 (0.8 g, 2.52 mmol) in 20 mL of THF was added 1.03 g (5.1 mmol) of benzenesulfonyl imidazole in 20 mL of dry DMF (soln A). NaH (0.11 g, 2.77 mmol) was suspended in 20 mL of a mixture of THF and DMF (1:1) and cooled to 0 °C under N\textsubscript{2}. Soln A was added slowly by cannula and the mixture was stirred without further cooling for 18 h. The reaction mixture was diluted with 40 mL of ether and washed with 10% HCl, 5% NaHCO\textsubscript{3} and brine (30 mL each) respectively. Column chromatography (1:9 EtOAc:hexanes) gave 0.92 g (80%) of 29 as a colorless oil; IR: 1770 and 1740 (C=O), 1370 and 1190 (SO\textsubscript{2}) cm-1; 1H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.87-1.02 (5H, m, CH\textsubscript{3}, CH\textsubscript{2}TMS), 1.73-1.81 (1H, m, CH\textsubscript{2}CH\textsubscript{3}), 1.96-2.01 (1H, m, CH\textsubscript{2}CH\textsubscript{3}), 3.37 (3H, s, OCH\textsubscript{3}), 3.72 (1H, d, J=18.1 Hz, NCH\textsubscript{A}H\textsubscript{B}COOR), 3.87 (1H, dd, J=5.5, 6.6 Hz, CHN), 4.15 (5H, m, 2 x OCH\textsubscript{2}, NCH\textsubscript{A}H\textsubscript{B}COOR), 7.51-7.66 (3H, m, Ph), 7.85-7.90 (2H, m, Ph); MS: 414 (M++-43, 2), 386 (M++-71, 2), 256 (M++-201, 12), 242 (256++-14, 2).
β-Trimethylsilylethyl 4-benzenesulfonyloxyethyl-3-t-butyldimethylsilyloxyethyl-3-methoxy-2-azetidinon-1-ylacetate (63)

The compound 63 was prepared from 62 as described above in 63% yield as a colorless oil after purification by chromatography (1:7 EtOAc:hexanes); IR: 1757 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 0.01 (15H, s, TMS, CH\(_3\)SiCH\(_3\)), 0.77 (9H, s, t-BuSi), 0.93-0.99 (2H, m, CH\(_2\)Si), 1.20 (3H, d, J=6.7 Hz, CH\(_3\)CH), 3.48 (3H, s, OCH\(_3\)), 3.85 (1H, d, J=17.9 Hz, NCH\(_A\)H\(_B\)COOR), 4.00-4.31 (7H, m, HCO, 2XH\(_2\)CO, HCN, NCH\(_A\)H\(_B\)COOR), 7.49-7.89 (5H, m, Ph); MS(Cl): 588 (M\(^+\)+1, 2), 573 (M\(^+\)+1-15, 0.4), 560 (M\(^+\)+1-28, 98), 530 (M\(^+\)+1-57, 12), 502 (530\(^+\)-28, 6).

β-Trimethylsilylethyl 4-toluenesulfonyloxyethyl-3-(R)-t-butyldimethylsiloxyethyl-2-azetidinon-1-ylacetate (79)

NaH (0.052 g, 1.176 mmol) was suspended in 5 mL of DMF and cooled to 0 °C under N\(_2\). The solution of tosylate 78 (0.364 g, 0.98 mmol) and β-trimethylsilylethyl bromoacetate (0.28 g, 1.17 mmol) in 10 mL of dry DMF was then added to the NaH suspension by cannula (color
becomes reddish) and stirred overnight at 25 °C. The crude product obtained upon usual workup was purified by column chromatography (1:5 EtOAc:hexanes) to give 0.391 g (70%) of 79 as a yellow oil; IR: 1760 (broad, C=O), 1367 and 1182 (SO₂) cm⁻¹; ¹HNMR (200 MHz) δ: 0.02 (15H, s, TMS, (CH₃)₂Si), 0.78 (9H, s, t-BuSi), 0.92-1.01 (2H, m, CH₂Si), 1.16 (3H, d, J=5.2 Hz, CH₃CH), 2.43 (3H, s, CH₃Ph), 2.80 (1H, dd, J=2.2, 6.0 Hz, HC-C=O), 3.80 (1H, d, J=17.9 Hz, NCH₃H₃BCOOR), 3.95 (1H, d, J=17.9 Hz, NCH₃H₃BCOOR), 3.94-4.27 (6H, m, HCO, H₂CO), 7.32 (2H, d, J=8.1 Hz, Tol), 7.75 (2H, d, J=8.5 Hz, Tol); MS(CI): 572 (M⁺+1, 5), 557 (M⁺+1-15, 0.6), 544 (M⁺+1-28, 100), 515 (M⁺+1-57, 7), 272 (M⁺+1-200, 2).

p-Nitrobenzyl 3-methoxy-4-toluenesulfonyloxymethyl-2-azetidinon-1-ylacetate (92)

Tosyl chloride (0.49 g, 2.57 mmol) was dissolved in 4 mL of pyridine and added to the alcohol 91 (0.564 g, 1.7 mmol) at room temperature under N₂. It was stored at -5 to 0 °C for 18 h. Purification of the crude product by column chromatography (1:3 EtOAc:hexanes) yielded 0.579 g (69%) of 92 as a colorless oil; IR: 1762 (C=O), 1522 and 1353 (NO₂) cm⁻¹; ¹HNMR (200 MHz) δ: 2.43 (3H, s, CH₃Ph), 3.45 (3H, s, OCH₃), 3.97 (1H, d, J=18.1 Hz, NCH₃H₃BCOOR), 4.20-4.21 (4H, m, H₂CO, HCN, NCH₃H₃BCOOR), 4.59 (1H, d, J=5.6 Hz, HC-C=O), 7.33 (2H, d, J=8.3 Hz, Tol), 7.50 (2H, d, J=8.9 Hz, PNB), 7.72 (2H, d, J=8.2 Hz, Tol), 8.21 (2H, d,
J=8.9 Hz, "PNB"); MS(Cl): 479 (M⁺+1, 0.6), 451 (M⁺+1-28, 0.6), 371 (M⁺+1-108, 0.14), 343 (M⁺+1-143, 0.6).

β-Trimethylsilyethyl 4-toluenesulfonyloxymethyl-3-ethyl-3-methoxy-2-azetidinon-1-ylacetate (31)

Alcohol 61 (118 mg, 0.37 mmol) and toluenesulfonyl chloride (107 mg, 0.56 mmol) were dissolved in 1 mL of pyridine and stored at -5 °C to 0 °C for 24 h. Usual work up and purification by column chromatography (1:3 EtOAc:hexanes) gave 126 mg (72%) of 31 as a colorless oil; 1H NMR (200 MHz) δ: 0.03 (9H, s, TMS), 0.92 (3H, t, J=7.4 Hz, CH₃CH₂), 0.96-1.02 (2H, m, CH₂Si), 1.74-1.81 (1H, m, CH₂CH₃), 1.94-2.01 (1H, m, CH₂CH₃), 2.45 (3H, s, CH₃Ph), 3.39 (3H, s, OCH₃), 3.74 (3H, d, J=18.0 Hz, CH₃HBOOR), 3.88 (1H, t, J=6.1 Hz, HCN), 4.12-4.23 (5H, m, CH₂O, CH₃HBOOR, CH₂OTs), 7.34 (2H, d, J=8.6 Hz, Tol), 7.76 (2H, d, J=8.2 Hz, Tol); MS(Cl): 472 (M⁺+1, 6), 444 (M⁺+1-28, 100), 416 (M⁺+1-56, 67), 372 (M⁺+1-101, 6), 317 (M⁺+1-155, 4).
β-Trimethylsilylethyl [3-ethyl-4-tosyloxyethyl-3-(N-t-butyloxy carbonyl, N-carbobenzyloxy) amino-2-azetidinon-1-yl] acetate (114).

The tosylation of this compound was achieved in 14% yield after purification by column chromatography (1:10 EtOAc:hexanes) following the procedure described for the compound 31. IR: 1780, 1750 and 1720 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) δ: 0.01 (9H, s, TMS), 0.97-1.05 (5H, m, CH\(_2\)Si, CH\(_3\)CH\(_2\)), 1.34 (9H, s, t-Bu), 2.05-2.17 (1H, m, CH\(_2\)CH\(_3\)), 2.37-2.45 (4H, m, overlapping with s at 2.41, CH\(_2\)CH\(_3\), CH\(_3\)Ph), 3.68 (1H, d, J=18.2 Hz, CH\(_2\)HBO\(_2\)), 3.96 (1H, dd, J=3.1, 9.2 Hz, CH\(_2\)HBO\(_2\)), 4.13-4.26 (4H, m, CH\(_2\)HBO\(_2\), CH\(_2\)HBO\(_2\), OCH\(_2\)), 4.34 (1H, dd, J=3.2, 10.2 Hz, HCN), 5.14 (2H, d apparent, J=2.3 Hz, CH\(_2\)Ph), 7.27-7.35 (7H, m, Ph, Tol), 7.68 (2H, d, J=8.4 Hz, Tol); MS(CI): 663 (M\(^+\)+1-28, 1), 635 (M\(^+\)+1-56, 2), 601 (M\(^+\)+1-90, 2), 591 (M\(^+\)+1-100, 5), 563 (591+28, 17).

t-Butyl 4-benzenesulfonyloxyethyl-2-azetidinon-1-ylacetate (99)

The alcohol 98 (1.00 g, 4.65 mmol) and benzenesulfonyl imidazole (1.23 g, 5.91 mmol) in 10 mL of DMF:THF (1:1) was added to the suspension of NaH (0.20 g, 5.0 mmol) in 15 mL of DMF at 0 °C. After
stirring for 18 h at 0 °C to 25 °C, the reaction mixture was worked up using EtOAc as a solvent. Purification of the crude product by column chromatography (1:6 EtOAc:hexanes) afforded 385 mg (23%) of 99 as a yellowish oil; 1H NMR (200 MHz) δ: 1.42 (9H, s, t-Bu), 2.66 (1H, dd, J=1.6, 14.2 Hz, HAC-3), 3.06 (1H, dd, J=5.1, 14.8 Hz, HBC-3), 3.63 (1H, d, J=18.1 Hz, CHAHBCOOR), 4.01 (1H, d, J=18.1 Hz, CHBHAACOOR), 4.04-4.31 (3H, m, HCN, CH2O), 7.52-7.68 (3H, m, Ph), 7.86-7.90 (2H, m, Ph); MS(CI): 356 (M⁺+1, 5), 328 (M⁺+1-28, 1), 300 (M⁺+1-56, 100), 258 (300⁺-42, 31), 254 (M⁺+1-102, 5).

β-Trimethylsilyl ethyl 3-mercapto-7-methoxy-7-ethyl-1-dethia-2-thia-3-cephemcarboxylate (74)

A solution of compound 29 (0.389 g, 0.851 mmol) in 10 mL of dry THF was cooled to -78 °C under N2 and added to an LDA solution (1.1 eq) in 5 mL of THF at -78 °C via a cannula. The yellow solution was stirred for 15 min and excess CS₂ was added by cannula (pinkish tinge appeared). The reaction mixture was allowed to warm slowly to room temperature over a period of 18 h. The solvent was removed. The faster moving impurities in the crude product were removed by eluting with 1:4 EtOAc:hexanes and the desired compound was obtained by an EtOAc flush. The yellowish oil (0.22 g, 71%), reasonably pure by NMR, was carried through the next step without further purification; IR:

36 Carbon disulfide from old bottles gave poor results even after distillation and thus only new bottles were used.
1770 and 1690 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 1.00 (3H, t, J=7.4 Hz, CH₃), 1.07-1.10 (2H, m, CH₂TMS overlapping with CH₃), 1.85-2.14 (2H, m, CH₂CH₃), 2.85 (1H, dd, J=3.0, 12.2 Hz, CH₂S), 3.46 (4H, s overlapping with dd, J=9.7, 12.2 Hz, OCH₃, CH₂S), 3.61 (1H, dd, J=3.0, 9.7 Hz, HCN), 4.02 (1H, broad, SH), 4.23-4.36 (2H, m, OCH₂); MS(Cl): 376 (M⁺+1, 6), 361 (M⁺+1-15, 2), 348 (M⁺+1-28, 29), 332 (M⁺+1-44, 22), 320 (M⁺+1-56, 100).

β-Trimethylsilyylethyl 3-mercapto-7-methoxy-7-t-butyldimethylsilyloxyethyl-1-dedia-2-thia-3-cephemcarboxylate (75)

![Chemical Structure of 75](image)

The cyclization reaction was carried out as described above yielding 88% of 75 as a yellow oil; chromatography solvent (1:1 EtOAc:hexanes to remove faster moving impurities and EtOAc elution for the product 75); IR: 1747 (broad, C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.01 (9H, s, TMS), 0.04 (3H, s, CH₃Si), 0.06 (3H, s, CH₃Si), 0.84 (9H, s, t-Bu), 1.01-1.11 (2H, m, CH₂Si), 1.26 (3H, d, J=6.4 Hz, CH₃), 1.70 (1H, broad s, SH), 2.80 (1H, dd, J=3.5, 12.6 Hz, CH₃HBS), 3.44 (1H, dd, J=9.7, 12.6 Hz, CH₃HBS), 3.58 (3H, s, OCH₃), 3.73 (1H, dd, J=3.5, 9.7 Hz, CHN), 4.25 (3H, m, HCO, H₂CO); MS(Cl): 506 (M⁺+1, 3), 505 (M⁺, 1), 490 (M⁺-15, 3), 478 (M⁺-28, 31), 449 (M⁺-57, 2).
β-Trimethylsilylethyl 3-mercapto-7-(R)-t-butyldimethylsilyloxyethyl-1-dethia-2-thia-3-cephemcarboxylate (80)

This compound was obtained in 82% yield as a yellow oil by applying the annulation method described above; IR: 1763 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 0.01 (12H, s, TMS, CH\(_3\)Si), 0.06 (3H, s, CH\(_3\)Si), 0.85 (9H, s, t-Bu), 1.10 (2H, t, J=8.9 Hz, CH\(_2\)Si), 1.23 (3H, d, J=6.2 Hz, CH\(_3\)), 2.77 (1H, dd, J=2.2, 5.4 Hz, HCC=O), 3.09 (2H, dd, 1.5, 7.5 Hz, CH\(_2\)S), 3.70 (1H, m, HCN), 3.80 (1H, s, SH), 4.20-4.40 (3H, m, HCO, CH\(_2\)O); MS: 447 (M\(^+\)-28, 2), 432 (447-15\(^+\), 5), 418 (447-29\(^+\), 5), 390 (447-57\(^+\), 12), 346 (447-101, 16).

p-Nitrobenzyl 3-mercapto-7-methoxy-1-dethia-2-thia-3-cephemcarboxylate (93)

This compound was obtained as a yellow solid in 57% yield; mp 161-163 °C; chromatography solvent (2:1 EtOAc:hexanes followed by EtOAc elution); IR (KBr): 3378 (SH), 1749 and 1716 (C=O) cm\(^{-1}\); \(^1\)H NMR (300 MHz) \(\delta\): 3.22-3.23 (1H, m, CH\(_A\)H\(_B\)S), 3.31-3.38 (1H, m, CH\(_A\)H\(_B\)S), 3.49 (3H, s, OCH\(_3\)), 4.03-4.08 (1H, m, HCN), 4.50 (1H, broad s, SH), 4.94-4.54 (1H, d, J=4.4 Hz, HC-3), 5.30 (1H, d, J=13.9 Hz, CH\(_A\)H\(_B\)PNB), 5.44 (1H,
d, J=13.9 Hz, CH₃H₂PNB), 7.80 (2H, d, J=8.9 Hz, PNB), 8.20-8.24 (2H, d, J=9.0 Hz, PNB).

β-Trimethylsilyethyl 3-benzylthio-7-methoxy-7-ethyl-1-dethia-2-thia-3-cephemcarboxylate (76)

NaH dispersion (0.025 g, 0.63 mmol) was added to a solution of the enethiol 74 (0.215 g, 0.573 mmol) in 5 mL of dry THF at 0 °C. When the effervescence subsided, benzyl bromide (0.7 mL, 0.573 mmol) was added by syringe (white ppt. appeared). The cooling bath was removed and the reaction mixture was stirred for 30 min, diluted with 5 mL of EtOAc and washed with brine. Further workup and purification by column chromatography (1:8 EtOAc:hexanes) yielded 0.254 g (95%) of a yellowish solid 76; mp 80-82 °C; IR: 1760 and 1710 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.01 (9H, s, TMS), 0.96-1.08 (5H, m, CH₃, CH₂TMS), 1.87-2.12 (2H, m, CH₂CH₃), 2.88 (1H, dd, J=3.2, 12.4 Hz, CH₂S), 3.27 (1H, dd, J=9.8, 12.3 Hz, CH₂S), 3.45 (3H, s, OCH₃), 3.58 (1H, dd, J=3.2, 9.8 Hz, HCN), 4.09 (2H, s, SCH₂Ph), 4.23-4.32 (2H, m, OCH₂), 7.22-7.32 (5H, m, Ph); MS: 465 (M⁺, 8), 437 (M⁺-28, 7), 422 (M⁺-28-15, 7), 378 (M⁺-56-31, 6), 346 (M⁺-91-28, 0.5), HRMS for C₂₂H₃₃NO₄S₂Si calcd 465.1461, found 465.1448.
\(\beta \)-Trimethylsilyl ethyl 3-benzylthio-7-methoxy-7-\(t \)-butyldimethylsiloxyethyl-1-dethia-2-thia-3-cephemcarboxylate (77)

\[
\text{TBDMSO} \quad \text{OMe} \\
\text{O} \quad \text{SBN} \\
\text{O} \quad \text{SiMe}_3
\]

Compound 77 was obtained as a yellowish solid in 65\% yield as described above; mp 111-112 °C; chromatography solvent (1:15 EtOAc: hexanes); IR: 1748 (C=O), 1692 (COOR) \(\text{cm}^{-1} \); \(^1\text{H NMR} \) (200 MHz) \(\delta \): 0.00 (9H, s, TMS), 0.05 (3H, s, \(\text{CH}_3\text{Si} \)), 0.06 (3H, s, \(\text{CH}_3\text{Si} \)), 0.85 (9H, s, \(\text{t-BuSi} \)), 0.99-1.07 (2H, m, \(\text{CH}_2\text{TMS} \)), 1.26 (3H, d, \(J=6.4 \text{ Hz, CH}_3\text{CH} \)), 2.85 (1H, dd, \(J=3.3,12.6 \text{ Hz, CH}_2\text{S} \)), 3.25 (1H, dd, \(J=9.8,12.6 \text{ Hz, CH}_2\text{S} \)), 3.56 (3H, s, OCH\(\text{3} \)), 3.71 (1H, dd, \(J=3.3,9.7 \text{ Hz, HCN} \)), 4.10 (2H, s, SCH\(\text{2Ph} \)), 4.19-4.30 (3H, m, HCO, H\(\text{2CO} \)), 7.24-7.30 (5H, m, Ph); MS: 595 (M\(^+ \), 31), 580 (M\(^+ \), 15, 0.7), 567 (M\(^+ \)-28, 14), 552 (M\(^+ \)-43, 26), 538 (M\(^+ \)-57, 11).

\(\beta \)-Trimethylsilyl ethyl 3-benzylthio-7-(\(R \))-\(t \)-butyldimethylsiloxyethyl-1-dethia-2-thia-3-cephemcarboxylate (81)

\[
\text{TBDMSO} \quad \text{O} \\
\text{O} \quad \text{SBN} \\
\text{O} \quad \text{SiMe}_3
\]

Compound 81 was obtained as a yellow solid in 63\% yield, mp 99-101 °C, [\(\alpha \)]\(\text{D} \)\(^{22} \)-4.7\(^\circ \) (C 0.7, CHCl\(\text{3} \)); chromatography solvent (1:5 EtOAc: hexanes), IR: 1766 (C=O), 1719 (C=O) \(\text{cm}^{-1} \); \(^1\text{H NMR} \) (200 MHz) \(\delta \): 0.02 (9H, s, TMS), 0.06 (6H, s, \(\text{CH}_3\text{SiCH}_3 \)), 0.86 (9H, s, \(\text{t-BuSi} \)), 1.03-1.20 (2H,
m, H₂CSi), 1.22 (3H, d, J=6.2 Hz, CH₃CH), 2.86 (1H, dd, J=3.6, 5.1 Hz, HC-C=O), 2.88 (1H, d, J=10.1 Hz, H₂CS), 3.81 (1H, dd, J=3.4, 12.4 Hz, H₂CS), 3.68-3.74 (1H, m, HCN), 4.04 (2H, s, SCH₂Ph), 4.22-4.34 (3H, m, HCO, H₂CO), 7.22-7.40 (5H, m, Ph); MS: 565 (M⁺, 3), 537 (M⁺-28, 2), 522 (M⁺-43, 2), 508 (M⁺-57, 0.8), 480 (508⁺-28, 4).

p-Nitrobenzyl 3-ethylthio-7-methoxy-1-dethia-2-thia-3-cephemcarboxylate (94)

![Chemical structure](image)

Compound 94 was obtained as a yellow solid in 39% yield; mp 149-150 °C; IR: 1767 (C=O), 1699 (COOR), 1517 and 1342 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 1.29 (3H, t, J=7.4 Hz, CH₃CH), 2.89-2.98 (2H, overlapping q, H₂CCH₃), 3.03 (1H, dd, J=12.6, 3.4 Hz, CH₂S), 3.32 (1H, dd, J=9.9, 12.7 Hz, CH₂S), 3.54 (3H, s, OCH₃), 3.91-3.97 (1H, m, HCN), 4.82 (1H, d, J=4.6 Hz, HCC=O), 5.27 (1H, d, J=13.4 Hz, CH₂PNB), 5.37 (1H, d, J=13.4 Hz, CH₂PNB), 7.61 (2H, d, J=8.9 Hz, PNB), 8.20 (2H, d, J=8.7 Hz, PNB); ¹³C NMR (200 MHz) δ: 14.2 (CH₃), 27.6 (CH₂S), 28.6 (CH₂S), 50.3 (OCH₃), 59.2 (CHN), 65.8 (CH₂PNB), 85.3 (HCC=O), 104.7 (C=C), 123.6 and 128.7 (CH of PNB), 142.8 and 147.6 (C of PNB), 160.6 (C=O), 164.1 (C=O); MS: 411 (M⁺+1, 1), 410 (M⁺, 7), 382 (M⁺-28, 12), 351 (382⁺-31, 14), 337 (M⁺-84, 1); HRMS for C₁₇H₁₈N₂O₆S₂ calcd 410.0623, found 410.0621.
3-Benzylthio-7-ethyl-7-methoxy-1-dethia-2-thia-3-cephemcarboxylic acid (36)

TBAF (0.28 mL, 0.27 mmol, 1M solution in THF) was added to a solution of the compound 76 (86 mg, 0.185 mmol) in 1 mL of THF at 25 °C. It was then stirred overnight (17 h) under N₂. EtOAc (5 mL) and 0.3 N HCl (1 mL) was added to the reaction mixture (pH=1). The aqueous layer was separated and extracted with EtOAc twice (5 mL each). The combined organic layer (containing some white crystalline particles) was concentrated without drying and the crude product was recrystallised from ether-acetone (1:1) mixture containing traces of water (1-2 drops.) to give 50 mg (74%) of 36 as a white solid; mp 189-191 °C (decomp); IR: 3437 (broad, OH), 1763 and 1654 (C=O) cm⁻¹; ¹H NMR (300 MHz, acetone-d₆) δ: 0.92 (3H, t, J=7.4 Hz, CH₃), 1.73-2.26 (2H, m, CH₂CH₃) acetone peak overlaps, 3.10-3.14 (2H, overlapping 2 sets of dd, J=12.0, 4.6, 8.6 Hz, CH₂S), 3.34 (3H, s, OCH₃), 3.60-3.65 (1H, m, HCN), 4.04 (2H, d, J=3.4 Hz, SCH₂Ph), 7.17-7.30 (5H, m, Ph); ¹³C NMR (300 MHz) δ: 7.8 (CH₃), 23.5 (CH₂), 28.8 (CH₂), 39.9 (CH₂), 55.2 (CH), 55.9 (CH₃O), 128.2 (CH), 129.3 (CH), 130.1 (CH), 137.6 (C); MS: 365 (M⁺, 20), 337 (M⁺-28, 38), 321 (M⁺-44, 22), 293 (M⁺-44-28, 47), 262 (M⁺-100, 4); HRMS for C₁₇H₁₉NO₄S₂ calcd 365.0745, found 365.0750.
3-Benzylthio-7-hydroxyethyl-7-methoxy-1-dethia-2-thia-3-cephemcarboxylic acid (37)

TBAF deprotection of 77 gave 37 as a white solid in 75% yield; mp 209-211 °C; crystallization in aq CH3OH, IR: 3549 (broad, OH), 1736 (C=O), 1655 (COOH) cm⁻¹; ¹H NMR (300 MHz, acetone-d₆ + 1 drop D₂O with HOD irradiation) δ: 1.24 (3H, d, J=6.5 Hz, CH₃), 3.17-3.21 (2H, overlapping 2 sets of dd, J=12.5, 4.8, 8.3 Hz, H₂CS), 3.48 (3H, s, OCH₃), 3.88 (1H, dd, J=4.8, 8.3 Hz, HCN), 4.10 (2H, d, J=1.7 Hz, H₂CPh), 4.30 (1H, q, J=6.6 Hz, HCO), 7.21-7.33 (5H, m, Ph); ¹³C NMR (300 MHz, THF-d₈) δ: 18.0 (CH₃), 29.9 (CH₂), 40.6 (CH₂), 52.7 (CH), 54.6 (CH₃), 64.9 (HC), 96.1 (C), 124.5 (C=C), 125.2 (C=C), 128.0 (CH), 129.1 (CH), 130.1 (CH), 137-8 (C, Ph carbons), 162.4 (C=O), 163.9 (C=O); MS: 381 (M⁺, 2), 353 (M⁺-28, 3), 337 (M⁺-44, 5), 309 (M⁺-72, 8), 293 (M⁺-88, 1); HRMS for C₁₆H₁₉NO₃S₂ (M⁺-44) calcd 337.0805, found 337.0784.

(+)-3-Benzylthio-7-(R)-hydroxyethyl-1-dethia-2-thia-3-cephemcarboxylic acid (38)

This compound was obtained from 81 as a yellowish white solid in 21% yield; mp 155-156 °C (decomp), [α]D²² +21.2° (C 1.9, MeOH),
recrystallization from aq MeOH (2-3 drops of water per mL); IR: 3371 (OH, broad), 1758 (C=O) cm\(^{-1}\); \(^1\)H NMR (300 MHz, acetone-d\(_6\)) \(\delta\): 1.27 (3H, d, J=6.3 Hz, CH\(_3\)), 3.06 (1H, dd, J=2.4, 6.4 Hz, CHCO), 3.15 (1H, dd, J=12.4, 10.1 Hz, CH\(_2\)S), 3.41 (1H, dd, J=3.3, 12.4 Hz, CH\(_2\)S), 3.79-3.84 (1H, m, HCN), 4.12 (2H, s, CH\(_2\)Ph), 4.16 (1H, q, J=6.5 Hz, CH\(_3\)CHO), 7.24-7.38 (5H, m, Ph); \(^13\)C NMR (300 MHz) \(\delta\): 22.3 (CH\(_3\)), 32.7 (CH\(_2\)), 40.3 (CH\(_2\)), 49.5 (CH), 65.3 (CH), 65.9 (CH), 128.2 (CH), 129.3 (CH), 130.1 (CH) and 137.8 (C) (Ph carbons), 162.5 (C=O), 165.4 (C=O); MS: 352 (M\(^+\)+1, 25), 337 (M\(^+\)+1-15, 0.5), 324 (M\(^+\)+1-28, 0.6), 308 (M\(^+\)+1-44, 89), 293 (308+-15, 1).

Sodium 3-ethylthio-7-methoxy-1-dethia-2-thia-3-cephemcarboxylate (39)

![Chemical Structure](image)

The compound 94 (0.12 g, 0.292 mmol) was dissolved in 30 mL of THF and 30 mL of EtOH and hydrogenated in presence of 50 mg of Pd-C (10\%) at 14 psi. Tlc after 10 h showed the presence of starting material. An additional 20 mL of EtOH and 150 mg of catalyst were added and hydrogenation was continued at 30 psi for 3 h. The mixture was filtered through a celite pad and concentrated in vacuum. The yellowish foam was treated with 1 eq of NaHCO\(_3\) (based on starting material) in 10 mL of water. The aq layer was washed twice with EtOAc (10 mL each) and lyophilized to give a crude sodium salt. Purification by reverse phase flash column chromatography (10% CH\(_3\)CN in H\(_2\)O) gave 45 mg (56%) of 39 as a white powder; mp 190-191 °C (decomp);
IR: 1752 (C=O), 1610 (COO⁻) cm⁻¹; ¹H NMR (300 MHz, D₂O) δ: 1.26 (3H, t, J=7.4 Hz, CH₃), 2.86-2.94 (2H, overlapping q, J=7.3 Hz, SCH₂CH₃), 3.20 (1H, dd, J=12.5, 9.6 Hz, CH₂S), 3.29 (1H, dd, J=12.5, 3.7 Hz, CH₂S), 3.50 (3H, s, OCH₃), 4.05 (1H, ddd, J=3.6, 4.5, 9.6 Hz, HCN), 4.98 (1H, d, J=4.5 Hz, HCC=O); ¹³C NMR (300 MHz, D₂O) δ: 13.6 (CH₃), 27.5 (CH₂S), 28.3 (CH₂S), 51.8 (CH₃O), 58.8 (HCN), 85.0 (HCC=O), 115.8 (C=C), 165.0 (C=O), 167.9 (C=O); MS (for free acid): 275 (M⁺, 1), 247 (M⁺-28, 4), 231 (M⁺-44, 16), 203 (M⁺-72, 22); HRMS for C₁₀H₁₃NO₄S₂ calc’d 275.0305, found 275.0296.

p-Nitrobenzyl 3-methoxy-4-cinnamyl-2-azetidinon-1-yl-acetate (88)

\[
\begin{align*}
\text{p-Nitrobenzyl glycine (7.5 g., 0.036 mol) and cinnamaldehyde (5.1 g, 0.039 mol) in 200 mL of CH₂Cl₂ was stirred with excess of anhyd MgSO₄ for 1 h. [Longer reaction time yielded a poor quality imine.] The imine}^{37} \text{ solution was quickly filtered into a dry flask containing 1.5 g of 4Å mol. sieves and cooled to -78 °C under N₂. Et₃N (6.5 mL, 0.047 mol) was added by syringe and an additional 50 mL of CH₂Cl₂ was introduced to dissolve imine. Methoxyacetyl chloride (3.5 mL, 0.037 mol) in 20 mL of CH₂Cl₂ was added dropwise over 15 min and the solution was allowed to slowly warm to 25 °C. After 5 h, 100 mL of 10% HCl was added and resulting layers separated. The crude product,} \\
\end{align*}
\]

obtained via standard workup procedure, was purified by repeated column chromatography (1:2 EtOAc:hexanes) to give 3.0 g (18%) of 88 as a yellow oil which solidified after a week; mp 102-103 °C; IR: 1750-1770 (broad, C=O), 1520 and 1350 (NO2) cm⁻¹; ¹H NMR (200 MHz) δ: 3.44 (3H, s, OCH3), 3.79 (1H, d, J=18.2 Hz, NCH₃H₅COOR), 4.25 (1H, d, J=18.4 Hz, NCH₅H₃COOR), 4.49 (1H, dd, J=9.2, 4.4 Hz, HCN), 4.70 (1H, d, J=4.4 Hz, HC=C=O), 5.20 (2H, s, CH₂PNB), 6.20 (1H, dd, J=15.9, 9.2 Hz, HC=C), 6.66 (1H, d, J=15.9 Hz, C=CHPh), 7.24-7.46 (7H, m, Ph and PNB), 8.13 (2H, d, J=18.3 Hz, PNB); MS: 396 (M⁺, 3), 366 (M⁺-30, 5), 325 (imine⁺+1, 26), 235 (M⁺-161, 1), 160 (M⁺-236, 89); HRMS for C₂₁H₂₀N₂O₆ calc 396.1318, found 396.1320.

(3-N-carbobenzyloxy, N-t-butyloxycarbonyl)amino-4-cinnamyl-1-p-methoxyphenyl-2-azetidinone (104)

(tBOC)₂O (5.66 g, 26.0 mmol) was added dropwise to the solution of azetidinone 103 (7.40 g, 17.3 mmol), 200 mg of DMAP and TEA (4.81 mL, 34.6 mmol) in 30 mL of DMF at 25 °C. The reaction mixture was stirred for 18 h. Usual work up using EtOAc as a solvent and purification by column chromatography (1:2 EtOAc:hexanes) gave 830 g (91%) of 104 as a yellowish oil; ¹H NMR (200 MHz) δ: 1.38 (9H, s, t-Bu), 3.74 (3H, s, OCH₃), 4.84 (1H, dd, J=7.9, 5.7 Hz, HCN), 5.53 (1H, d, J=5.6 Hz, HC-3), 5.18 (2H, s, CH₂Ph), 6.25 (1H, dd, J=8.0, 6.2 Hz, HC=CHPh), 6.67 (1H, d, J=16.2 Hz, HC=CHPh), 6.81 (2H, d, J=9.1 Hz, PMP), 7.20-7.30 (5H, broad s, Ph), 7.37 (2H, d, J=9.1 Hz, PMP); MS(CI): 529 (M⁺+1, 7), 473
(M^+1-56, 2), 429 (M^+1-56-44, 100), 385 (429^+44, 16), 324 (473^-149, 10).

(3-N-carbobenzyloxy, N-t-butyloxycarbonyl)amino-4-cinnamyl-3-ethyl-1-p-methoxyphenyl-2-azetidinone (109)

A solution of (tBOC)_2O (6.00 g, 26.1 mmol) in 40 mL of THF was added dropwise to the mixture of azetidinone 108 (8.0 g, 17.5 mmol), 1 g of 4 Å mol. sieves, 20 mL of dry DMF and 4.90 mL (35 mmol) of TEA. The reaction mixture was refluxed for 3 h. [The method described for 104 can be applied but unreacted starting material was recovered sometimes under those conditions.] Purification by column chromatography (1:6 EtOAc: hexanes) yielded 5.1 g (52%) of 109 as a yellowish oil; ^1H NMR (200 MHz) δ: 1.09 (3H, t, J=7.5 Hz, CH3CH2), 1.27 (9H, s, t-Bu), 2.01-2.22 (1H, m, CH2CH3), 2.50-2.65 (1H, m, CH2CH3), 3.74 (3H, s, OCH3), 4.51 (1H, d, J=7.0 Hz, HCN), 5.01 (2H, apparent d, J could not be calculated, CH2Ph), 6.25 (1H, dd, J=16.1, 7.0 Hz, HC=CHPh), 6.70 (1H, d, J=16.2 Hz, HC=CHPh), 6.80 (2H, d, J=8.8 Hz, PMP), 7.11-7.27 (10H, m, Ph), 7.38 (2H, d, J=8.8 Hz, PMP); MS: 457 (M^+1-100, 7), 413 (457^+44, 1), 349 (M^+1-100-108, 64), 238 (imine^+1, 2), 149 (M^+-408, 100).
4-Cinnamyl-3-ethyl-3-methoxy-2-azetidinone (71)

A solution of azetidinone 45 (6.50 g, 19.3 mmol) in 250 mL of MeCN was cooled to -25 °C to -30 °C. [Some material precipitated out after 10 min but the procedure was continued without further addition of the solvent.] CAN (32 g, 58.4 mmol) in 60 mL of ice-cold water was added dropwise over 20 min. The initial greenish black color turned yellow and at the end of the reaction time, the homogeneous solution was brown. Usual workup using ethyl acetate for extraction gave a yellow solid which on trituration with ether gave the β-lactam, 71, as a white solid (2.30 g, 52%); mp 102-103 °C; IR: 1760 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 1.03 (3H, t, J=7.4 Hz, CH₃CH₂), 1.84-2.05 (2H, m, CH₂CH₃), 3.46 (3H, s, OCH₃), 4.10 (1H, d, J=7.0 Hz, HCN), 6.25 (1H, broad s, NH), 6.29 (1H, dd, J=8.6, 16.0 Hz, H C=CHPh), 6.54 (1H, d, J=15.9 Hz, H C=CHPh), 7.23-7.41 (5H, m, Ph); MS: 231 (M⁺, 13), 216 (M⁺-15, 36), 188 (M⁺-43, 7), 132 (imine⁺+1, 66).

3-(N-carbobenzyloxy, N-t-butyloxycarbonyl)-amino-4-cinnamyl-2-azetidinone (105)

The azetidinone 104 (5.00 g, 9.47 mmol) was treated with CAN (15.60 g, 28.5 mmol) as described above. Purification of the crude product by column chromatography (1:2 EtOAc:hexanes) yielded 2.30 g (59%) of 105 as a brown oil; ¹H NMR (200 MHz) δ: 1.37 (9H, s, t-Bu),
4.52 (1H, m, HCN), 5.16 (2H, s, CH₂Ph), 5.43 (1H, dd, J=1.1, 5.5 Hz, HC-3),
6.11 (1H, broad s, NH), 6.14-6.26 (1H, dd, overlapping with NH, H-C=CHPh), 6.51 (1H, d, J=16.1 Hz, H-C=CHPh), 7.21-7.28 (10H, broad s, and overlapping m, Ph); MS(Cl): 379 (M⁺+1-44, 1), 369 (M⁺+1-56, 2),
323 (M⁺+1-100, 96), 279 (323⁺-44, 47), 215 (315⁺-108, 39).

3-(N-carbobenzyloxy, N-t-butyloxycarbonyl)-amino-4-
cinnamyl-3-ethyl-2-azetidinone (110)

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{H} & \quad \text{Ph} \\
\text{CH₂CH₃} & \quad \text{CBz}
\end{align*}
\]

Azetidinone 109 (4.00 g, 7.33 mmol) was treated with CAN (7.60 g, 13.9 mmol) as described above to afford 1.94 g (60%) of 110 as a yellowish oil; chromatography solvent (1:3 EtOAc:hexanes); \(^1\)H NMR (200 MHz) \(\delta:\) 1.09 (3H, t, J=7.5 Hz, CH₃CH₂), 1.26 (9H, s, t-Bu), 2.00-2.18 (1H, m, CH₂CH₃), 2.44-2.59 (1H, m, CH₂CH₃), 4.20 (1H, d, J=6.7 Hz, HCN), 4.97 (1H, d, J=12.1 Hz, CH₃H₂Ph), 5.05 (1H, d, J=11.8 Hz, CH₃H₂Ph), 5.93 (1H, broad s, NH), 6.23 (1H, dd, J=7.7, 16.1 Hz, H-C=CHPh), 6.64 (1H, d, J=16.1 Hz, H-C=CHPh), 7.13-7.29 (10H, broad m, Ph); MS(Cl): 451 (M⁺+1, 2), 423 (M⁺+1-28, 0.2), 409 (M⁺+1-42, 1), 407 (M⁺+1-44, 1), 395 (M⁺+1-57, 3).
4-Cinnamyl-3,3-spiro-[(4'-methyl-5,5-oxazolidinone)]-2-azetidinone (107)

Azetidinone 106 (800 mg, 2.20 mmol) in 50 mL of MeCN was reacted with CAN (1.2 g, 2.19 mmol) in 25 mL of H₂O as described above at 0 °C. Purification of the crude product by column chromatography afforded 216 mg (38%) of 107 as a colorless oil; ¹H NMR (200 MHz) δ: 1.57 (3H, d, J=6.6 Hz, CH₃CH), 4.25 (1H, d, J=6.8 Hz, HCN), 4.93 (1H, q, J=6.6 Hz, CHO), 6.13 (1H, dd, J=6.9, 15.9 Hz, HC=CHPh), 6.30 (1H, broad s, NH), 6.35 (1H, broad s, NH), 6.62 (1H, d, J=15.9 Hz, HC=CHPh), 7.27-7.40 (5H, broad m, Ph); MS: 258 (M⁺, 5), 215 (M⁺-43, 4), 199 (M⁺-59, 2), 170 (215⁺-45, 2), 132 (M⁺-126, 100); HRMS calcd for C₁₄H₁₄O₃N₂ 258.1001, found 258.0976.

β-Trimethylsilylethyl 4-cinnamyl-3-ethyl-3-methoxy-2-azetidinon-1-ylacetate (66)

Compound 65 (507 mg, 2.19 mmol) and β-trimethylsilylethyl bromide (575 mg, 2.41 mmol) in 5 mL of DMF were added to the suspension of NaH (96 mg, 2.41 mmol) in 10 mL of DMF at 0 °C. The reaction mixture was stirred for 4 h. The reaction mixture was worked
up with EtOAc as a solvent and purified by column chromatography (1:9 EtOAc:hexanes) to yield 386 mg (45%) of the product 66 as a yellowish oil; 1H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.91-1.00 (2H, m, CH$_2$Si), 1.03 (3H, t, J=7.4 Hz, CH$_3$CH$_2$), 1.80-2.15 (2H, m, CH$_2$CH$_3$), 3.47 (3H, s, OCH$_3$), 3.58 (1H, d, J=18.0 Hz, CH$_A$H$_B$COOR), 4.14-4.27 (4H, m, CHN, CH$_B$H$_A$COOR, CH$_2$O), 6.24 (1H, dd, J=8.9, 16.0 Hz, HC=CHPh), 6.62 (1H, d, J=15.9 Hz, HC=CHPh), 7.26-7.42 (5H, m, Ph); MS: 389 (M$^+$, 2), 361 (M$^+-$28, 1), 346 (M$^+-$43, 3), 331 (346$^+-$15, 5), 288 (M$^+-$101, 13).

β-Trimethylsilylethyl [4-cinnamyl-3-ethyl-3-(N-t-butyloxycarbonyl, N-carbobenzyl)oxyamino-2-azetidinon-1-yl]acetate (111)

Azetidinone 110 (930 mg, 2.07 mmol) was treated with β-trimethylsilylethyl bromide (540 mg, 2.26 mmol) as described above to yield 1.00 g (80%) of 111 as a yellow oil after purification by column chromatography (1:5 EtOAc:hexanes); 1H NMR (200 MHz) δ: 0.00 (9H, s, TMS), 0.92-1.01 (2H, m, CH$_2$Si), 1.11 (3H, t, J=7.5 Hz, CH$_3$CH$_2$), 1.28 (9H, s, t-Bu), 2.14-2.32 (1H, m, CH$_2$CH$_3$), 2.49-2.68 (1H, m, CH$_2$CH$_3$), 3.50 (1H, d, J=18.0 Hz, CH$_A$H$_B$COOR), 4.12-4.26 (2H, m, CH$_2$O), 4.34 (1H, d, J=18.0 Hz, CH$_B$H$_A$COOR), 4.37 (1H, d, J=7.9 Hz, HCN), 5.03 (2H, apparent d, J=2.2 Hz, CH$_2$Ph), 6.12 (1H, dd, J=7.6, 16.2 Hz, HC=CHPh), 6.62 (1H, d, J=16.2 Hz, HC=CHPh), 7.17-7.36 (5H, m, Ph); MS(Cl): 581 (M$^+$+1-28, 8),
553 (M+1-56, 21), 509 (M+1-100, 44), 481 (509+28, 66), 465 (481+-15, 5).

β-Trimethylsilyl ethyl [2-(4-benzenesulfonyloxyethyl-3-ethyl-3-methoxy-2-azetidinon-1-yl)]but-2'-enoate (30)

Compound 29 (82 mg, 0.18 mmol) was treated with 1.1 eq. of LDA. The resultant anion was quenched with excess acetaldehyde. The reaction mixture was stirred for 18 h (-78 °C to 25 °C). Usual work up and purification of the crude product by small column chromatography (1:10 EtOAc:hexanes) afforded 48 mg (55%) of 30; 1H NMR (200 MHz) δ: 0.02 (9H, s, TMS), 0.86-1.03 (5H, m, CH3, CH2Si), 1.72 (3H, d, J=7.1 Hz, CH3CH), 1.70-1.84 (1H, m, CH2CH3), 1.97-2.05 (1H, m, CH2CH3), 3.39 (3H, s, OCH3), 4.05-4.28 (5H, m, OCH2, OCH2, CHN), 6.79 (1H, q, J=7.2 Hz, CHCH3), 7.48-7.64 (3H, m, Ph), 7.81-7.85 (2H, m, Ph); MS(Cl): 456 (M+1-28, 27), 428 (M+1-56, 5), 328 (428+100, 7), 270 (428+-158, 100), 226 (270+-44, 64).
β-Trimethylsilyl ethyl 2’-(4-benzenesulfonyloxymethyl-3-ethyl-3-methoxy-2-azetidinon-1-yl)-4’-benzenesulfonylbut-2’-enoate (34).

The anion of compound 31 was prepared as described above and quenched with a solution of sulfone at -78 °C. The reaction mixture was stirred while allowing it to warm to room temperature. Usual work up and purification of the crude product by column chromatography (1:6 EtOAc:hexanes) yielded 80 mg (51%) of 34; 1H NMR (200 MHz, crude sample) δ: 0.02 (9H, s, TMS), 0.96-1.05 (2H, m, CH2Si), 1.65-1.72 (1H, m, CH2CH3), 1.73-2.02 (1H, m, CH2CH3), 2.42 (3H, s, CH3Ph), 3.36 (3H, s, OCH3), 3.88-4.27 (6H, m, CH2O, CH2OTs, CH2SO2Ph), 4.37 (1H, dd, J=4.4, 7.7 Hz, CHN), 6.42 (1H, t, J=7.2 Hz, CHCH2SO2Ph), 7.32 (2H, d, J=8.0 Hz, Tol), 7.48-7.63 (3H, m, Ph), 7.71 (2H, d, J=8.4 Hz, Ph), 7.86 (2H, d, J=8.3 Hz, Tol).
CHAPTER 3: CARBACEPHEMS

Structure activity studies

Christensen and collaborators were the first to synthesize carbacephems (complete cephalosporin mimics) and found that the replacement of sulfur in cephems by a methylene group did not lead to a significant loss in antibiotic activity.\(^1\) Subsequent work led to carbacefachlor \(2\), also known as loracarbef\(^2\) (LY163892 or KT3777), which is a potential clinical candidate as it possesses a broad spectrum of activity against microbial pathogens. This compound also has good chemical stability because no decomposition products were observed when it was incubated at 37 °C for 22 h at physiological pH.

\[
\begin{align*}
1 \quad X=S, \text{ cefachlor and} & \\
2 \quad X=\text{CH}_2, \text{ loracarbef} & \\
3 \quad R=\text{H} &
\end{align*}
\]

Hirata discovered that a conventional C-3 substituent, present in most of cephems, is not necessary for useful biological activity in carbacephems. Interestingly, he found that enantiopure compound \(3\) has better activity than its racemate by a surprisingly large factor of 4 or greater.

Colvin et al. prepared the 1-α-hydroxy analog 4 which has a high infrared frequency for its β-lactam carbonyl peak and an h value 0.204 Å; nevertheless it was found to be inactive.³ This result indicated that the IR and h values are not reliable indices of antibiotic activity (see chapter 1 for discussion of these terms in relation to the activity of the β-lactams).

\[
\text{PhO} - \text{C} - \text{NH} \quad \text{OH} \\
\text{ } \quad \text{O} \quad \text{COOH}
\]

4

Hirata and colleagues also prepared several carbacephems having substituents such as methyl, azido, hydroxy etc. at C-2. The 2-α-methyl isomer 5 had higher activity (comparable to 3) than 2-β-methyl analog 6.⁴ The 2-azido-carbacephem 7 had a minimum inhibitory concentration (MIC) of 1.56 μg/mL against Staphylococcus aureus 269-P.⁵ The 2-hydroxy carbacephem 10 having an amino-4-thiazolyl-2-(Z)-methoxyiminoacetamido side chain at the C-7 position, showed broad spectrum of Gram-negative antibiotic activity including the inhibition of Pseudomonas aeruginosa.⁶ This activity was lacking in 9.

Gram-negative activity was reduced when the methoxyimino group of the side chain of 9 was substituted by an amino group.7

\begin{align*}
5 & \text{ R=α-CH}_3; \text{ 6 R=β-CH}_3 \\
7 & \text{ R=N}_3; \text{ 8 R=OH} \\
9 & \text{ R=H, KT 3767} \\
10 & \text{ R=OH, KT 3937}
\end{align*}

The results obtained by Doyle's group indicated that an electron withdrawing group at C-2 such as an oxo function 11, maintained the activity relative to the cepham counterpart but when this group was reduced and converted to functional groups such as acetoxy in 12, the antibacterial activity was reduced.8

\begin{align*}
11 & \text{ X+Y=O, 12 X=OAc, Y=H} \\
13 & \text{ }
\end{align*}

Structural modifications at both C-1 and C-2 have also been reported. Hirata et. al. synthesized the 1,2-dehydrocarbacephem 13 expecting that the added strain would result in a more reactive β-lactam carbonyl group. Although infrared frequencies were comparable

or higher than the corresponding carbacephems, the antibacterial activity of 13 was poor. Hence they inferred that the planarity of the six-membered ring caused by the additional double bond is not favorable for antibiotic activity.9 The 1,2-substituted analogs such as 1,2-dihydroxy 14, 1,2-chlorohydrin 15 or 1,2-bromohydrin 16 derivatives were less active than the parent 1,2-unsubstituted compound.10

\begin{align*}
14 & \, R_1=\text{OH, } R_2=\text{OH, } 15 \, R_1=\text{Cl, } R_2=\text{OH, } 16 \, R_1=\text{Br, } R_2=\text{OH} \\
17 & \, \text{X=STetrazolyl, } 18 \, \text{X=OCH}_3 \\
19 & \, \text{X=H, } 20 \, \text{X=CH}_2\text{STetrazolyl}
\end{align*}

The introduction of 3-sulfur substituents containing a heterocyclic ring such as 4-pyridyl or N-methyltetrazolyl group resulted in an improvement in antibiotic activity compared to 3-H or 3-Cl compounds. An increase in the chemical stability of 17 compared to the corresponding cephems was also noted.11 Other substituents at this position have also been reported. Compound 18 had lower activity than 19 whereas, the compound 20 had biological activity comparable to 19. The methyl group in compound 22 lowered the activity compared to 21.

while the tetrazolylthiomethyl group retained the activity in 23.12

\[\text{\includegraphics[width=0.5\textwidth]{21_24.png}}\]

\[\text{21 } X=H, \quad \text{22 } X=\text{CH}_3, \quad \text{23 } X=\text{CH}_2\text{STetrazoly}, \quad \text{24 } X=\text{SO}_2R\]

The introduction a 3-sulfonyl group as in compound 24 reduced the Gram-negative activity and the chemical stability.13 In contrast, a quaternary nitrogen group at this carbon gave compound 25 which possessed good biological activity and \(\beta\)-lactamase stability.14 The 3-cyclopropyl derivative 26 was less stable compared to the thia congenor.15 The introduction of various alkyl groups and carboxyalkyl groups at C-3 position as in case of 27 has been reported.16 They did not report biological activities in this paper. The 3-carboxyalkyl-1-carbacephems were chemically and biologically more stable and had potent antimicrobial activity.17

15 Spry, D. O.; Snyder, N. J.; Kashner, J. S. J. Antibiotics 1989, XLII, 1653.

105
Some 7,7-disubstituted carbacephems have been described by Firestone18 (28-29) and by Ueyo19 (30-31). These compounds typically have a 7-methoxy function in addition to a normal amide nitrogen substituent. The difference in biological activity between these carbacephems and 7-demethoxy analogs was not reported by these authors.

\begin{align*}
28 & \quad X=\text{CH}_3, \ Y=\text{H} \\
29 & \quad X=\text{CH}_2OCONH}_2, \ Y=\text{H} \\
30 & \quad X=\text{CH}_2OCONH}_2, \ Y=\text{COOH} \\
31 & \quad XR=\text{CH}_2STetrazolyl, \ Y=\text{H}
\end{align*}

Synthetic strategies

An amazing variety of strategies for fusing the pre-existing β-lactam ring in order to generate carbacephems have been reported. These will be briefly discussed below. In many instances many

examples exist using a particular strategy, but only the key reaction is described. The structures of the compounds are generalized to simplify presentation. Methods which gave carbaceph(a)ms without a 4-carboxylic function are not discussed.\(^{20}\)

1) Rhodium carbenoid insertion

This method, developed by Merck chemists, is by far the best method of preparing carbacephem. The ease of reaction (both in terms of cyclization yields and purification of the product) and high catalytic turnover are the appealing features of this procedure. A variety of methods leading to the cyclization precursors has been reported. The reaction is presumed to proceed through a rhodium carbenoid species which undergoes the insertion reaction into the NH bond resulting in bicyclic compounds.\(^{21}\) [Cyclizations using this methodology which lead to carbapenems will be described in next chapter.]

2) Intramolecular Wittig reaction

The annulation via intramolecular Wittig type reactions was also developed by Merck chemists in their synthesis of carbacephems. In most of the cases the yields of bicyclic compounds obtained in this type of cyclization are modest.

The cyclization precursor 34 was prepared in 30% yield by 2+2 ketene imine cycloaddition using the imine 36 and azidoacetyl chloride. The complete carbon skeleton and all functional groups required for the cyclization of the second ring were incorporated into the imine. However this cycloaddition reaction leading to the β-lactam ring is difficult for several reasons: (1) the imine is not conjugated with other double bonds thus making it unstable and difficult to handle and (2) the

imine has enolizable protons, one of which could be lost and lead to the formation of an open chain enamide.

3) Enolate condensation reactions

Hatanaka utilized Dieckmann cyclization reactions in which thioesters are used as electrophilic carbonyl components to obtain carbacephem.\(^{23}\) When one equivalent of LHMDS was used, cyclization occurred through the amide nitrogen to give 38a. However use of 3 equivalents of LHMDS gave the desired bicyclic ketone 38 which has been elaborated to carbacephems. Jackson's and Wiegel's groups also carried out similar studies.\(^ {24}\)

Hirata and Mochida generated the carbacephem ring system via an intramolecular malonate condensation. The aldehyde 39, upon reduction of the α,β-unsaturated double bond with H₂/Pd cyclized spontaneously to give 41, which on decarboxylation-elimination reaction yielded the carbacephem intermediate 42.²⁵

\[\text{39} \xrightarrow{a} \text{40} \xrightarrow{b} \text{42} \]

a) H₂, Pd-C; b) MsCl, Pyridine, LiI

4) Radical Cyclization

Radical cyclizations have been extensively studied during past decade. It is therefore not surprising that such approaches have been applied to the syntheses of bicyclic β-lactams.²⁶ Due to the availability

of the 4-thiophenyl β-lactams and thus the possibility of generating a radical at that carbon these studies have focused on the generation of the key C1-C6 carbon-carbon bond in carbacephams. Carbacephams having 7-ethyl or 7-hydroxyethyl substituents have been prepared by this method in about 50% yield. Kametani and coworkers have noted that cyclization of 43 occurs preferentially via the 6-endo route and not the more frequently encountered 5-exo pathway which would have resulted in 1-methylcarbapenams. These authors claimed that no carbapenams were formed during this reaction and rationalized this observation by acknowledging the severe strain in carbapenams compared to carbacephams. This reaction, when applied to the azetidinone having an acetylenic bond as a radical receptor, gave Δ¹-carbacephem in about 10% yield.

![Chemical structure](image)

43 \(\rightarrow \) 44

a) Bu₃SnH, AIBN

An unusual synthesis of the 3-methylcarbacephem 46 had been reported by Blaszczyk.27 The synthesis commenced with the treatment of the selenium compound 45 derived from a cephalosporin sulfone, with Bu₃SnH/AIBN at 100 °C.

Presumably, this reaction condition generated the radical intermediate 47, which after extrusion of sulfur dioxide, gave 48. Subsequent 6-endo cyclization afforded the carbacephem 46.

5) Wasserman tricarbonyl cyclization

The conversion of the tricarbonyl system 49 was treated with fluoride ion which led to desilylation and spontaneous cyclization to the bicyclic carbacephem nucleus which upon dehydroxylation with TMSI gave 50. The examples of failure during the rhodium carbenoid cyclization such as in penem synthesis has been shown in Chapter 2. Since a tricarbonyl compound can be obtained from a suitable β-ketoester which is also a key precursor to diazo compound, this method could be an alternative in those cases.

6) 5+1 Cyclization

This method utilizes a malonate as a lynch pin to tie together the two carbons bearing good leaving groups in compound 51. The complete sequence: Michael addition, elimination and intramolecular alkylation occurs in one pot.\(^29\)

The cyclization precursor 51 was prepared from 54 by a 2+2 cycloaddition reaction with the ketene derived from azidoacetyl chloride and subsequent transformation of the ketal to an enol triflate under standard conditions.

Doyle and coworkers have converted 53 to the \(\Delta^2\)-carbacephem 55 by decarboxylative hydrolysis of ester groups. This conversion involves double decarboxylation to yield an allylic carbanion which preferentially protonates at the carbon \(\alpha\) to the carboxyl group.

Compound 55 has been utilized in the preparation of C-2 functionalized carbacephem.

7) 4+2 Cyclization

Tandem Michael addition to the suitable receptor 56 and intramolecular alkylation of the resulting anion has been exploited by Munroe and collaborators. During their studies only low yield of the bicyclic product 58 was obtained.

They isolated a byproduct 60 which might have caused the reduction in yield. The formation of 60 can be rationalized by invoking the elimination of the sulfinate via equilibration to the less stable anion 59.

$59 \rightarrow 60$
Carbacephem analogs 61 and 62

The preparation of the carbacephem analogs 61 and 62 which carry a 7-β-methoxy group in addition to either an ethyl or hydroxyethyl group typical of PS-5 or thienamycin antibiotics respectively will be discussed in the following section. As mentioned in the introduction to this chapter the most important methodology for the construction of the bicyclic ring system of both carbapenems and carbacephems is the rhodium carbenoid insertion route developed by Cama and collaborators during the preparation of oxapenems and extended to carbapenems by Ratcliffe and coworkers at Merck.

Surprisingly, this cyclization procedure has not been applied to examples which carry a methoxy group at the carbon α to the β-lactam carbonyl in the final product. Success in such cases is by no means

32 see Chapter 2 page 23 for unsuccessful anionic 4+2 cyclization approach to carbacephems.
assured since intramolecular trapping of carbenoids by ether oxygen (eq 1) has been often observed and studied in considerable detail.

![Chemical structure](image)

(eq 1)

Successful rhodium carbenoid cyclizations have been reported in the synthesis of 1-methoxycarbapenem, 1-oxapena(e)m and 1-oxacepham nuclei. In these examples the ethereal oxygen is one or two carbons removed from the carbenoid centre. These results do not undermine the importance of the present study since the distance and stereochemical relationship of methoxy groups to the carbenoid center is quite different in the problem at hand. Nitrogen substituents, when present at these positions, have been shown to give mixed results. For example, the azido group interferes in the cyclization process as shown in the equation 2.

40 Salzmann, T. N.; DiNinno, F. P.; Greenlee, M. L.; Guthikonda, R. N.; Quesada, M. L.; Schmitt, S. M.; Herrmann, J. J.; Woods, M. F. In *Recent Advances in the Chemistry*
Successful annulations have been reported in the case of carbacephem41 and carbapenem 6742 with α-nitrogen substituent. It appears that the nature of the substituent and its stereochemical relationship with the carbenoid govern the product obtained. Yamamoto and collaborators reported small amounts of product derived from the insertion of the carbenoid into the NH bond at C-7 (68) during a cyclization study leading to an oxacephem having a 7-nitrogen group.43

\begin{thebibliography}{43}
\end{thebibliography}
Failure of the carbenoid methodology during attempted cyclizations to penems44 and 2-dethia-2-azaisocehems45 has also been reported.

\begin{center}
\begin{tikzpicture}
 \node at (0,0) {\textbf{69}};
 \node at (1.5,0) {\textbf{70}};
 \draw[->] (0,0) -- (1.5,0) node[midway,above] {a,b};
 \node at (0,-2) {a) Rh(II), b) MeOH};
\end{tikzpicture}
\end{center}

The combination of ring size and the 7,7-disubstitution pattern of 61 and 62 call for addressing the issue of structure-activity relationships. As mentioned earlier, carbacephems having a typical amide substituent at C-7 are chemically more stable than the analogous cephalosporins, and tend to have comparable biological activity. The replacement of the amide nitrogen by an ester oxygen at the carbon α to the β-lactam carbonyl in penicillin and cephalosporin was found to diminish the activity.46 Homothienamycin is more stable than

\begin{center}
\begin{tikzpicture}
 \node at (0,0) {\textbf{71}};
 \node at (1.5,0) {\textbf{72}};
 \draw[->] (0,0) -- (1.5,0) node[midway,above] {Rh(II)};
\end{tikzpicture}
\end{center}

thienamycin but inactive.47 Some activity has been reported in oxacephems bearing a hydroxyethyl substituent.48 A cephem having a 7-hydroxyethyl was found to have low activity but good β-lactamase inhibition property.49 These results indicate that the compounds may not have the high antimicrobial activity displayed by thienamycin. Thus the compounds 61 and 62 were considered worthwhile targets from methodology point of view as model compounds.

Preparation of the β-ketoesters 81 and 85

The 3,3-disubstituted azetidinone 73 was available in multigram quantity as described in Chapter 2.50 N-Silylation was achieved by using t-butyldimethylsilyl triflate51 (TBDMSOTf) and 2,6-lutidine at 0 $^\circ$C to 25 $^\circ$C.

\[
\begin{align*}
\text{73} & \xrightarrow{\text{a}} \text{74} \\
\text{a) TBDMSOTf, 2,6-lutidine, CH}_2\text{Cl}_2, 0^\circ\text{C to 25}^\circ\text{C}
\end{align*}
\]

Ozonolysis of the N-TBDMS derivative 74 was carried out in dichloromethane with traces of methanol and molecular sieves to yield

49 Nishimura, S.; Yasuda, N.; Sasaki, H.; Matsumoto, Y.; Kamimura, T.; Sakane, K.; Takaya, T. J. \textit{Antibiotics} 1989, 42, 159.
50 see Chapter 2 page 95 for details of preparation of this compound.
75 (IR: 1755 and 1740 cm⁻¹; ¹H NMR δ: 9.61 ppm) in 81% overall yield from 73.

\[
\begin{align*}
\text{OMe} & \quad \text{Ph} \\
\text{a} & \quad \text{OMe} & \quad \text{H} \\
\text{TBDMS} & \quad \text{TBDMS} \\
\end{align*}
\]

a) O₃, CH₂Cl₂, MeOH, -78 °C, DMS, -78 °C to 25 °C

The two carbon homologation of 75 to 77 was achieved in excellent yield and in a practical manner on a multigram scale in two steps. Wittig reaction using benzyl(triphenylphosphoranylidene)acetate afforded the corresponding α, β-unsaturated ester 76. During the Wittig reaction a mixture of cis-trans isomers were obtained in about 1:4 ratio, as determined from the comparision of the integrals of olefinic signals in the ¹H NMR. However, this was of little consequence since both isomers can readily be reduced to the carboxylic acid, 77. Both reduction of the double bond and the debenzylation occurred upon hydrogenation with 10% Pd on C.
Wittig reaction resulting in four carbon homologations using (triphenylphosphoranylidene)-2,2,6-trimethyl-4H-1,3-dioxin-4-one 78 has been reported.\(^5^2\) This suggested an alternate route from 75 to 81. However, in our hands this reagent proved to be difficult to prepare and purify, especially on a multigram scale. Furthermore, one double bond has to be selectively reduced and as the disubstitution pattern in our azetidinones increases the steric hindrance at C-5, this reduction may not be facile.

The further elaboration of 77 to β-ketoester 80 was achieved by activation with carbonyldiimidazole and subsequent reaction with the magnesium salt of the mono-p-nitrobenzyl ester of malonic acid following the Masamune protocol.\(^{53}\) Methanolic HCl treatment of the N-silyl β-ketoester 80 gave the key desilylated compound 81. This compound showed peaks at 3292 (NH), 1522 and 1348 (NO\(_2\)) \(\text{cm}^{-1}\) in IR and \(\delta=5.24\) ppm for two benzylic protons, two sets of doublets at \(\delta=7.50\) and \(8.21\) ppm (J=8.9 Hz) for the aromatic protons of p-nitrobenzyl group and \(\delta=5.90\) ppm for NH in \(^1\text{H}\) NMR.

\[
\begin{align*}
 &\begin{array}{c}
 &\text{OMe} \\
 &\text{N} \\
 &\text{TBDMS} \\
 &\text{COOH} \\
 &\text{O} \\
\end{array} \\
 &a \rightarrow \\
 &\begin{array}{c}
 &\text{OMe} \\
 &\text{N} \\
 &\text{NR} \\
 &\text{COOPNB} \\
 &\text{O} \\
 &\text{COOH} \\
\end{array}
\end{align*}
\]

\[77 \quad 80 \text{ R=TBDMS} \quad 81 \text{ R=H}\]

a) CDI, THF, Mg(OOCC\(_2\)COOPNB\(_2\)), THF, 25 °C; b) 10% HCl, MeOH, 25 °C.

A similar sequence was used to obtain the intermediate 85 having both the 7-methoxy and epithienamycin type side chains at C-3. The preparation of the aldehyde 82 has already been described in Chapter 2.\(^{54}\) Removal of the p-methoxyphenyl group with CAN afforded the expected aldehyde which was rather unstable and difficult to handle compared to the N-silylated aldehyde 75. Therefore, the aldehyde was quickly purified by column chromatography to a usable

\(^{54}\) See Chapter 2 page 63 for experimental details.
state and subjected to the Wittig homologation sequence described above. The carboxylic acid 83 was obtained in 36% overall yield from 82. This compound was characterized by IR, 1H NMR and MS including HRMS.

![Chemical structures](image)

a) CAN, MeCN, H$_2$O, -10 °C; b) Ph$_3$P=CHCOOBn, toluene, reflux; c) H$_2$, Pd-C, EtOH, 25 °C.

The homologation of 83 to the β-keto ester 85 was again achieved using Masamune's method and desilylation with methanolic HCl. Compound 85 was obtained as a yellow oil. The presence of the key functional groups is supported by IR (CH$_2$Cl$_2$): 3327 (NH), 1740 (broad C=O), 1523 and 1348 (NO$_2$) cm$^{-1}$. The introduction of the p-nitrobenzyl acetate group was indicated by 1H NMR peaks at δ: 3.56-3.65 (6H, m with overlapping s due to OCH$_3$, CHN, CH$_2$), 5.23 (2H, s, CH$_2$PNB), 7.49 (2H, d, J=8.2 Hz, PNB) and 8.20 (2H, d, J=8.8 Hz, PNB) ppm.

![Chemical structures](image)

a) CDI, THF, Mg(OOCCH$_2$COOPNB)$_2$, THF, 25 °C; b) 6N HCl, MeOH, 25 °C.
Annulation

Diazot transfer between 81 or 85 and 4-carboxybenzene-sulfonazide was achieved in the presence of excess triethylamine. Both diazo compounds showed typical IR peaks at 2120 cm⁻¹.

![Chemical structures](image)

81 R'=H
85 R'=OH
86 R'=H
87 R'=OH

a) 4-HOOCPhSO₂N₃, Et₃N, MeCN, 0 °C

The resulting diazo compounds, 86 and 87, were refluxed in benzene with about 0.3 mol% of Rh₂(OAc)₄ to give 88 (60% from 81) and 89 (32% from 85), respectively. No other major products were evident by tlc which indicated that interference by the methoxy group in the carbenoid cyclization was not a major concern. The formation of the second ring in both products is evident from the 1H NMR and IR spectrum. The appearance of an AB pattern for the benzylic protons (δ: 5.25 ppm, 1H, d, J=13.9 Hz and 5.47 ppm, 1H, d, J=13.4 Hz) and shift of the β-lactam carbonyl peak in IR from 1740 (monocyclic precursor) to 1752 cm⁻¹ (bicyclic ketoester) are expected changes in going from 81 to 88. The conversion of 85 to 89 shows similar changes. The benzylic protons in 85 (δ: 5.23 ppm, s) became a AB quartet in 89 (δ: 5.24 ppm, 1H, d, J=13.7 Hz and 5.45 ppm, d, J=13.4 Hz). A concomitant shift of the IR peak for the β-lactam carbonyl from 1740 to 1750 cm⁻¹ was also

observed.

\[\begin{align*}
86 & \quad R' = H \\
87 & \quad R' = OH
\end{align*} \]

\[\begin{align*}
88 & \quad R' = H \\
89 & \quad R' = OH
\end{align*} \]

\[\text{a) } \text{Rh}_2(\text{OAc})_4, \text{C}_6\text{H}_6, \text{reflux} \]

The conversion of 88 to 90 involved the activation of enol group with diphenylchlorophosphosphate followed by addition of N-acetylaminoethanethiol56 in the presence of diisopropylethylamine (DIPEA). The intermediate of epi-homothienamycin analog 91 was obtained in similar manner using carbo-p-nitrobenzyloxyaminoethanethiol.

\[\begin{align*}
88 & \quad R' = H \\
89 & \quad R' = OH
\end{align*} \]

\[\begin{align*}
90 & \quad R' = H, R = \text{Ac} \\
91 & \quad R' = \text{OH}, R = \text{COOPNB}
\end{align*} \]

\[\text{a) } (\text{PhO})_2\text{POCl, DIPEA, MeCN, 0 °C, HSHCH}_2\text{CH}_2\text{NHR (R=Ac or COOPNB), DIPEA, 0 °C} \]

Removal of the p-nitrobenzyl groups from 90 and 91 \textit{via} catalytic hydrogenation afforded the crude carboxylic acids. Purification by reverse phase column chromatography and lyophilization of the resultant aqueous solution gave compound 61 as a white powder; mp:

56 Shinkai, I.; Liu, T.; Reamer, R.; Sletzinger, M. \textit{Synthesis} 1980, 924.
becomes translucent at 177-178 °C and chars at or above 217 °C; IR (KBr): 1742, β-lactam C=O. ¹H NMR (Fig. 7), ¹³C NMR (Table 2) and MS including HRMS were in agreement with the structure of the compound 61.

\[ext{90 } R'=H, \text{ R}=\text{Ac} \quad \text{61 } R'=H, \text{ R}=\text{Ac} \]

a) H₂, Pd-C, THF:H₂O.

Table 2 ¹³C NMR data for the compound 61.

<table>
<thead>
<tr>
<th>Chemical Shift, (ppm) δ</th>
<th>type of carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>CH₃</td>
</tr>
<tr>
<td>24.1</td>
<td>CH₂</td>
</tr>
<tr>
<td>24.6</td>
<td>CH₃</td>
</tr>
<tr>
<td>25.4</td>
<td>CH₂</td>
</tr>
<tr>
<td>28.8</td>
<td>CH₂</td>
</tr>
<tr>
<td>32.5</td>
<td>CH₂</td>
</tr>
<tr>
<td>42.1</td>
<td>CH₂</td>
</tr>
<tr>
<td>55.5</td>
<td>CH₃O</td>
</tr>
<tr>
<td>60.6</td>
<td>CH</td>
</tr>
<tr>
<td>94.2</td>
<td>C-7</td>
</tr>
<tr>
<td>120.4</td>
<td>O=C</td>
</tr>
<tr>
<td>134.7</td>
<td>O=C</td>
</tr>
<tr>
<td>169.7</td>
<td>O=O</td>
</tr>
<tr>
<td>172.8</td>
<td>O=O</td>
</tr>
<tr>
<td>177.2</td>
<td>O=O</td>
</tr>
</tbody>
</table>
In vitro antibacterial activity of 61 was determined by conventional microtiter dilution procedures. The MICs were higher than 64 μg/mL for organisms such as S. pneumoniae, S. pyogenes, H. influenzae and 128 μg/mL E. faecalis, E. faecium, S. aureus, S. epidermidis, S. haemolyticus, E. coli, K. pneumoniae, E. cloacae, P. mirabilis, P. vulgaris, N. morganii, P. rettgeri, S. marcescens, P. aeruginosa, P. cepacia and X. maltophilia.

Purification of the carboxylic acid 62 derived from 91 was unsuccessful on the first attempt. Due to a lack of material and the discouraging results observed in the studies of antibacterial activity of 61, purification of this compound was not repeated.

Conclusion

7-Methoxyhomo-PS-5 61 was found to be inactive as an antibacterial compound. From a methodology point of view, this study did indicate that the rhodium carbenoid annulation can be applied in β-lactams having a methoxy group α to the lactam carbonyl. Application of this methodology to the preparation of several 6-methoxy carbapenems including 6-methoxy-PS 5 will be discussed in the following chapters. None of these examples display intervention by the α-methoxy group.
EXPERIMENTAL SECTION

General techniques

The spectrometers used in the analysis of the compounds, general work up and purification methods have already been described in the Experimental section of Chapter 2. Toluene and benzene were distilled from sodium benzophenone ketyl and stored over 4Å molecular sieves. Analytical grade MeOH and 99% ethanol were used without further purification. The magnesium salt of the mono p-nitrobenzyl ester of malonic acid was purchased from Kasei Chemical Co. Acetonitrile was distilled from calcium hydride and stored over 4Å molecular sieves. Reverse phase column chromatography was performed using Waters C-18 Bondpak silica gel in a manner similar to the flash column chromatography. Lyophilization was carried out by freezing the aqueous solution in dry-ice acetone bath and drying under high vacuum.

1-t-Butyldimethylsilyl-4-cinnamyl-3-ethyl-3-methoxy-2-azetidinone (74)

2,6-Lutidine (2.32 mL, 19.9 mmol) and TBDMSOTf (3.43 mL, 14.9 mmol) were sequentially added via syringe to a solution of 73 in 50
mL of dry CH₂Cl₂ at 0 °C. The reaction mixture was stirred for 30 min at 0 °C and 1.5 h at room temperature. Usual workup and purification by column chromatography (1:15 EtOAc:hexanes) gave 3.40 g (99%) of a pale yellowish oil 74; IR: 1744 (β-lactam C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.15 (3H, s, CH₃Si), 0.21 (3H, s, CH₃Si), 0.93 (9H, s, t-BuSi), 0.97 (3H, t, J=7.3 Hz, CH₃CH₂), 1.79-2.01 (2H, m, CH₂CH₃), 3.43 (3H, s, OCH₃), 3.98 (1H, d, J=8.7 Hz, CHN), 6.22 (1H, dd, J=16.0, 8.9 Hz, CH=CHPh), 6.54 (1H, d, J=16.0 Hz, CH=CHPh), 7.10-7.30 (5H, m, Ph); MS: 345 (M⁺, 11), 330 (M⁺-15, 18), 302 (M⁺-15-28, 4), 288 (M⁺-57, 3), 188 (M⁺-157, 100); HRMS calcd for C₂₀H₃₁NO₂Si 345.2112, found 345.2118.

1-t-Butyldimethylsilyl-3-ethyl-4-formyl-3-methoxy-2-azetidinone (75)

Ozone was passed through a solution of 74 (3.40 g, 9.85 mmol) in 50 mL of dry CH₂Cl₂ and 5 mL of MeOH containing about 0.50 g of 4Å molecular sieves at -78 °C till the solution was bluish. Excess ozone was removed by bubbling dry nitrogen through the reaction mixture and 3 mL of dimethyl sulfide was added. The resulting reaction mixture was warmed slowly to 25 °C and stirred for 18 h. After removal of the solvent, the crude product was purified by flash column chromatography (1:10 EtOAc:hexanes) to yield 2.20 g (82%) of aldehyde 75 as a colorless oil; IR: 1740 (CHO), 1755 (β-lactam C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.10 (3H, s, CH₃Si), 0.29 (3H, s, CH₃Si), 0.94 (9H, s, t-Bu), 1.01 (3H, t, J=7.3 Hz, CH₃CH₂), 1.68-1.88 (1H, m, CH₂CH₃), 1.94-2.12 (1H, m, CH₂CH₃), 3.40 (3H, s, OCH₃), 3.81 (1H, d, J=3.1 Hz, CHN), 9.61 (1H, d,
J=3.0 Hz, CHO); MS: 272 (M^+1, 3), 244 (M^+1-28, 3), 214 (M^+-57, 29),
187 (M^+1-28-57, 87); 171 (M^+-100, 3).

1-t-Butylidemethylsilyl-4-(2'-carbobenzyloxyethenyl)-3-
ethyl-3-methoxy-2-azetidinone (76)

The solution of benzyl(triphenylphosphoranylidene)acetate (3.99
9.73 mmol) in 100 mL of toluene was stirred with aldehyde 75 (2.20
g, 8.12 mmol) at 50-60 °C for 18 h. Toluene was removed and the
residue was triturated with 100 mL of hexanes. Triphenylphosphine
oxide was removed by filtration. The filtrate was concentrated to a
yellow oil which on purification by column chromatography (1:10
EtOAc:hexanes) gave 3.10 g (95%) of a cis-trans (1:4, judged by
comparing integrals in ^1H NMR as well as weight after separation by
column chromatography) mixture of the corresponding α,β unsaturated
ester 76 as a colorless oil; IR: 1750 and 1728 (C=O) cm⁻¹; ^1H NMR (200
MHz, for pure trans isomer) δ: 0.12 (3H, s, CH₃Si), 0.21 (3H, s, CH₃Si),
0.87-1.00 (12H, t, J=7.4 Hz, overlapping with s of t-Bu, CH₃CH₂), 1.69-
2.08 (2H, m, CH₂CH₃), 3.41 (3H, s, OCH₃), 3.92 (1H, dd, J=0.7, 9.0 Hz,
CHN), 5.13 (1H, d, J=12.5 Hz, CH₃H₂Ph), 5.26 (1H, d, J=12.5 Hz,
CH₃H₂Ph), 5.99 (1H, dd, J=15.8, 0.7 Hz, CH=CHCOOR), 6.95 (1H, dd, J=8.9,
15.8 Hz, CH=CHCOOR), 7.34 (5H, s, Ph); MS: 403 (M^+, 0.6), 388 (M^+-15, 3),
346 (M^+-57, 16), 312 (M^+-91, 2), 304 (M^+-99, 4); HRMS calcd for
C₂₂H₃₃NO₄Si 403.2179, found 403.2179.

132
1-t-Butyldimethylsilyl-4-(2'-carboxyethyl)-3-ethyl-3-methoxy-2-azetidinone (77)

The ester 76 (3.10 g, 7.69 mmol) was dissolved in 10 mL of EtOH and hydrogenated in the presence of 2 g of Pd-C (10%) at 20 psi for 18 h. Removal of the catalyst and the solvent gave 2.40 g (99%) of the acid 77 as a colorless oil; IR: 3127 (COOH), 1741 (C=O), 1676 (COOH) cm⁻¹; ¹H NMR (200 MHz) δ: 0.18 (3H, s, CH₃Si), 0.21 (3H, s, CH₃Si), 0.87-0.94 (12H, t with overlapping s, CH₂CH₂, t-Bu), 1.48-1.68 (1H, m, CH₂CH₂), 1.90-2.12 (3H, m, CH₂CH₂, CH₂), 2.21-2.61 (2H, m, CH₂CO), 3.37 (1H, dd, J=4.8, 9.2 Hz, CHN), 3.47 (3H, s, OCH₃); MS: 315 (M⁺, 5), 300 (M⁺-15, 14), 272 (M⁺-15-28, 5), 258 (M⁺-57, 12), 243 (258⁺-15, 1); HRMS calcd for C₁₅H₂₉NO₄Si 315.1868, found 315.1867.

3-t-Butyldimethylsilyloxyethyl-4-(2'-carboxyethyl)-3-methoxy-2-azetidinone (83)

The aldehyde 82 (7.10 g, 18 mmol) was reacted with CAN (29.59 g, 54 mmol) at -10 °C to yield 3.50 g (66%) of N-deprotected aldehyde as a brown oil after column chromatography (1:4 EtOAc:hexanes). This compound showed the aldehyde proton at 9.61 ppm and was judged to be about 60% pure by ¹H NMR. It was used as such.
Reaction of the aldehyde (3.50 g, 12 mmol) with benzyl triphenylphosphoranylideneacetate (7.35 g, 17.9 mmol) gave 2.70 g (51%) of a brownish oil after column chromatography (1:4 EtOAc: hexanes); \(^1\)H NMR (200 MHz, for mixture of cis-trans isomers) \(\delta\): 0.04 + 0.06 + 0.08 (6H, SiCH\(_3\)), 0.84 (9H, s, t-Bu), 1.28 + 1.30 (3H, 2 sets of d, J=6.4 Hz, CH\(_3\)), 3.47 + 3.48 (3H, 2s, OCH\(_3\)), 4.05 + 4.20 (1H, q, J=6.4 Hz, CHO), 4.36 (dd, J=5.8, other coupling constants could not be calculated from the spectrum) + 5.06 (dd, J= 2.0, 6.1 Hz) - both of these proton signals are for 1H, CHN, 5.12 (d, J=2.38 Hz) + 5.13 (s) - both of these signals are for 2H, CH\(_2\)Ph, 5.97-6.03 (dd, J=1.9, 11.6 Hz) + 6.00-6.08 (dd, J=1.5, 15.8 Hz) - 1H, CH\(_A\)=CH\(_B\)Ph, 6.38-6.47 (less than 2H, broad d overlapping with dd, J=6.1, 11.6 Hz, NH, CH\(_A\)=CH\(_B\)Ph) + 7.00-7.08 (less than 1H, dd, J=15.8, 5.8 Hz, CH\(_A\)=CH\(_B\)Ph from trans isomer), 7.33 (5H, s, Ph).

The resultant oil was hydrogenated to yield 2.10 g (99%) of 83 as a brown oil; IR: 3362 (COOH), 1740 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 0.02 (3H, s, CH\(_3\)Si), 0.04 (3H, s, CH\(_3\)Si), 0.84 (9H, s, t-Bu), 1.21 (3H, d, J=6.4 Hz, CH\(_3\)CH\(_2\)), 1.80-1.93 (2H, m, CH\(_2\)COO), 2.20-2.55 (2H, m, CH\(_2\)CH\(_2\)COO), 3.58 (3H, s, OCH\(_3\)), 3.59-3.72 (1H, m, overlaps with 3.58 of OCH\(_3\), CHN), 4.10 (1H, q, J=6.4 Hz, CHO), 6.73 (1H, broad s, NH); MS: 316 (M\(^+\)-15, 2), 302 (M\(^+\)-29, 1), 287 (M\(^+\)-44, 3), 274 (M\(^+\)-57, 26), 230 (M\(^+\)-101, 21), HRMS calcd for C\(_{14}\)H\(_{26}\)NO\(_5\)Si (M\(^+\)-15) 316.1576, found 316.1578.
1-t-Butyldimethylsilyl-3-ethyl-3-methoxy-4-(4'-p-nitrobenzyloxy carbonyl-3'-oxobutyl)-2-azetidinone (80)

Carboxyldimidazole (CDI, 1.50 g, 9.52 mmol) was added to a solution of the acid 77 (2.00 g, 6.35 mmol) in 10 mL of THF and the mixture was stirred at 25 °C for 3.75 h. The suspension of the magnesium salt of the mono-p-nitrobenzyl ester of malonic acid (3.20 g, 6.39 mmol) was added by cannula and stirred vigorously for 16 h. The reaction mixture was diluted with EtOAc and washed with saturated NaCl solution. Column chromatography (1:4 EtOAc:hexanes) of the resulting crude product afforded 0.70 g (22%) of 80 as a colorless oil; IR: 1735 (C=O), 1524 and 1332 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 0.19 (3H, s, CH₃Si), 0.23 (3H, s, CH₃Si), 0.88 (3H, t, J=7.4 Hz, CH₃CH₂), 0.93 (9H, s, t-Bu), 1.52-1.60 (1H, m, CH₃CH₂), 1.82-2.03 (3H, m, CH₃CH₂), 2.46-2.63 (2H, m, CH₂CO), 3.35 (1H, dd, J=11.0, 3.2 Hz, CHN), 3.47 (3H, s, OCH₃), 3.51 (1H, d, J=7.5 Hz, COCH₂COOR), 3.54 (1H, d, J=7.5 Hz, COCH₂COOR), 5.25 (2H, s, CH₂PNB), 7.52 (2H, d, J=8.9 Hz, PNB), 8.21 (2H, d, J=8.9 Hz, PNB); MS: 492 (M⁺, 2), 477 (M⁺-15, 1), 435 (M⁺-57, 2), 335 (M⁺-157, 54), 303 (335⁺-32, 10).
3-Hydroxyethyl-3-methoxy-4-(4'-p-nitrobenzyloxy-carbonyl-3'-oxobutyl)-2-azetidinone (84)

The carboxylic acid 83 (2.13 g, 6.43 mmol) gave 1.2 g (37%) of β-ketoester 84 as a yellow oil using the above homologation procedure; chromatography solvent 1:2 (EtOAc:hexanes); IR: 3160-3400 (broad NH), 1720-1770 (broad C=O), 1520 and 1350 (NO2) cm−1; 1H NMR (300 MHz) 8: 0.4 (3H, s, CH3Si), 0.06 (3H, s, CH3Si), 0.86 (9H, s, t-Bu), 1.21 (3H, d, J=6.4 Hz, CH3CH2), 1.88-1.94 (2H, m, CH2CO), 2.38-2.76 (2H, m, CH2CH2CO), 3.52 (1H, d, J=1.7 Hz, COCH3HBCOOR), 3.59 (3H, s, OCH3), 3.61 (1H, s, COCH3HBCOOR), 3.64-3.68 (1H, m, CHN), 4.11 (1H, q, J=6.4 Hz, CHO), 5.20 (2H, s, CH2PNB), 6.02 (1H, s, NH), 7.51 (2H, dd, J=2.0, 6.9 Hz, PNB), 8.22 (2H, dd, J=2.0, 6.8 Hz, PNB); MS: 451 (M+−57, 2), 377 (M+−131, 2), 298 (M+−195−15, 8), 256 (298−42, 4), 231 (M+−277, 11).

3-Ethyl-3-methoxy-4-(4'-p-nitrobenzyloxy-carbonyl-3'-oxobutyl)-2-azetidinone (81)

The β-ketoester 80 (0.70 g, 1.42 mmol) in 10 mL of MeOH was stirred overnight with 1 mL of 10% aq HCl. The excess acid was neutralized by adding solid NaHCO3. The crude product obtained after work up using EtOAc as a solvent for extraction was purified by column chromatography (6:4 hexanes:EtOAc) to yield 0.39 g (73%) of 81 as a
pale yellowish oil; IR: 3292 (NH), 1740 (C=O), 1720 (COOR), 1522 and
1348 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 0.91 (3H, t, J=7.4 Hz, CH₃CH₂);
1.62-1.69 (1H, m, CH₂CH₃), 1.86-2.03 (3H, m, CH₂CH₃, CH₂), 2.54-2.69
(2H, m, CH₂CO), 3.41-3.52 (6H, m, overlapping with s at 3.48, OCH₃,
COCH₂COOR, CHN), 5.24 (2H, s, CH₂PNB), 5.90 (1H, broad, NH), 7.50 (2H,
d, J=8.9 Hz, PNB), 8.21 (2H, d, J=8.9 Hz, PNB); MS(CI): 379 (M₊+1, 9), 351
(M₊+1-28, 50), 333 (M₊+1-28-18, 12), 319 (M₊+1-60, 33), 301 (319₊-18,
1).

3-Hydroxyethyl-3-methoxy-4-(4'-p-nitrobenzyloxy-
carbonyl-3'-oxobutyl)-2-azetidinone (85)

O-Desilylation of the β-ketoester 84, obtained above, was effected
by treating the methanolic solution of this ester (1.2 g, 2.36 mmol) with
2 mL of 6N HCl dropwise at 0 °C to 25 °C for 18 h. The crude product
was passed through a short silica gel column using EtOAc to afford 630
mg (68%) of 85 as a yellow oil; IR (CH₂Cl₂): 3327 (NH), 1740 (broad
C=O), 1523 and 1348 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 1.20 (3H,
overlapping with EtOAc, CH₃CH₂), 1.80-2.10 (2H, m, CH₂), 2.30-2.70 (2H,
m, CH₂), 3.56-3.65 (6H, m with overlapping s due to OCH₃, CHN, CH₂),
4.12 (1H, overlapping with EtOAc, 5.23 (2H, s, CH₂PNB), 6.20 (1H, s,
broad, NH), 7.49 (2H, d, J=8.2 Hz, PNB), 8.20 (2H, d, J=8.8 Hz, PNB);
MS(CI): 353 (M₊+1-42, 2), 279 (M₊+1-116, 2), 274 (M₊+1-120, 20), 259
(M₊+1-136, 1), 215 (M₊+1-180, 6). This compound was purified after
conversion to the corresponding diazo compound.
3-Ethyl-3-methoxy-4-(4'-diazo-4'-p-nitrobenzyloxy-carbonyl-3'-oxobutyl)-2-azetidinone (86)

4-Carboxybenzenesulfonazide (0.37 g, 1.63 mmol) was added to a solution of the compound 81 (0.38 g, 1.00 mmol) in 25 mL of dry MeCN at 0 °C. The resulting suspension turned to a clear solution after the addition of TEA (0.56 mL, 4.02 mmol) and was stirred for 6 h. During this time the reaction mixture continued to turn cloudy. The reaction mixture was diluted with EtOAc and washed successively with 5% NaHCO₃ and saturated NH₄Cl. Purification of the crude product by column chromatography (2:5 EtOAc:hexanes) gave 0.35 g (85%) of the desired diazo compound 86 as a colorless oil; IR (CH₂Cl₂): 3292 (NH), 2143 (N₂), 1756 and 1727 (C=O), 1523 and 1348 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 0.93 (3H, t, J=7.4 Hz, CH₃CH₂), 1.62-1.70 (1H, m, CH₂CH₃), 1.90-2.06 (3H, m, CH₂CH₃, CH₂CO), 2.79-2.95 (2H, m, CH₂CO), 3.46 (1H, t, J=6.7 Hz, CHN), 3.49 (3H, s, OCH₃), 5.34 (2H, s, CH₂PNB), 5.95 (1H, broad t, NH), 7.52 (2H, d, J=8.8 Hz, PNB), 8.24 (2H, d, J=8.8 Hz, PNB); MS(Cl): 377 (M⁺+1-28, 2), 349 (M⁺+1-28-28, 5), 305 (M⁺+1-100, 0.5), 214 (349-135⁺, 0.1), 198 (349-151⁺, 5).
3-Hydroxyethyl-3-methoxy-4-(4'-diazo-4'-p-nitrobenzyl-oxy carbonyl-3'-oxobutyl)-2-azetidinone (87)

![Chemical structure of 3-Hydroxyethyl-3-methoxy-4-(4'-diazo-4'-p-nitrobenzyl-oxy carbonyl-3'-oxobutyl)-2-azetidinone (87)](image)

Compound 85 (610 mg, 1.55 mmol), when subjected to the diazo transfer reaction, yielded 520 mg (80%) of 87 as a yellowish semisolid after usual workup and column chromatography (1:2 acetone:hexanes); IR: 3200-3600 (broad OH), 2120 (N2), 1700-1780 (broad C=O), 1520 and 1350 (NO2) cm⁻¹; ¹H NMR (200 MHz) δ: 1.23 (3H, d, J=6.5 Hz, CH₃CH), 1.80 (1H, broad s, OMe), 1.83-1.98 (2H, m, CH₂CH₂), 2.86-2.98 (2H, m, COCH₂CH₂), 3.63 (4H, m with overlapping s, OCH₃, CH₃), 4.15 (1H, q, J=6.6 Hz, CHO), 5.31 (2H, s, CH₂PVB), 6.12 (1H, broad s, NH), 7.50 (2H, d, J=8.9 Hz, PNB). 8.23 (2H, d, J=8.9 Hz, PNB); MS: 277 (M⁺-114-29, 2), 198 (M⁺-194-28, 1), 170 (M⁺-250, 62), 188 (M⁺-278, 0.6).

p-Nitrobenzyl 7-ethyl-7-methoxy-3-hydroxy-1-carba-1-dethia-3-cephem carboxylate (88)

![Chemical structure of p-Nitrobenzyl 7-ethyl-7-methoxy-3-hydroxy-1-carba-1-dethia-3-cephem carboxylate (88)](image)

The diazo compound 86 (0.35 g, 0.86 mmol) was dissolved in 30 mL of dry benzene and 15 mL of solvent was distilled off. After cooling to 25 °C under N₂, about 1 mg of Rh₂(OAc)₄ was added and the solution was refluxed overnight. Purification of the crude product by column chromatography (2:5 EtOAc:hexanes) furnished 0.23 g (70%) of the product 88 as a white solid; mp: 125-126 °C; IR (KBr): 3435 (broad OH),
1752 (C=O), 1518 and 1344 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 1.00 (3H, t, J=7.4 Hz, CH₃CH₂), 1.55 (1H, broad s, OH), 1.79-2.21 (4H, m, CH₂CH₂, CH₂), 2.47-2.54 (2H, m, CH₂CO), 3.40-3.48 (4H, dd, J=10.3, 4.4 Hz, overlapping with s, CHN, OCH₃), 5.25 (1H, d, J=13.9 Hz, CH₂H₂PB₃PB₃), 5.47 (1H, d, J=13.4 Hz, CH₂H₂PB₃PB₃), 7.66 (2H, d, J=8.9 Hz, PNB), 8.21 (2H, d, J=8.9 Hz, PNB); MS: 376 (M⁺, 2), 348 (M⁺-28, 5), 318 (M⁺-28-30, 2), 302 (318⁺-16, 0.3), 240 (M⁺-136, 2); HRMS calcd for C₁₈H₂₀N₂O₇ 376.1268, found 376.1256.

p-Nitrobenzyl [3-hydroxy-7-(1'-hydroxyethyl)-7-methoxy]-1-carba-1-dethia-3-cephemcarboxylate (89)

After a rhodium carbenoid insertion reaction of the diazo compound 87 (400 mg, 0.950 mmol) and purification by column chromatography (2:3 acetone:hexanes), 370 mg (40%) of 89 was isolated as a yellowish oil; IR: 1710-1780 (broad peak centered at 1750 C=O), 1520 and 1350 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 1.26 (3H, d, J=6.5 Hz, CH₃CH₂), 1.97-2.14 (2H, m, CH₂CO), 2.48-2.60 (2H, m, CH₂CH₂CO), 3.64 (4H, 2s due to OCH₃ overlapping with CHN), 3.83 (1H, s, COCHCOO), 4.38 (1H, q, J=6.7 Hz, CHO), 5.24 (1H, d, J=13.7 Hz, CH₂H₂PB₃PB₃), 5.45 (1H, d, J=13.4 Hz, CH₂H₂PB₃PB₃), 7.63 (2H, d, J=8.3 Hz, PNB), 8.20 (2H, d, J=9.8 Hz, PNB) The ¹H NMR looked like a mixture of ketoenol tautomers based on the complexity of the spectrum and the 2 methoxy peaks; MS: 391 (M⁺-1, 0.4), 277 (M⁺-115, 100), 271 (M⁺-121, 15), 256 (M⁺-136, 2), 211 (M⁺-180, 11).
\textbf{p-Nitrobenzyl 7-ethyl-7-methoxy-3-N-acetylaminoethanethio-1-carbamidothia-3-cephenicarboxylate (90)}

![Chemical Structure](image)

Compound 88 (0.20 g, 0.53 mmol) in 5 mL of dry MeCN was cooled to 0 °C under N$_2$. Addition of DIPEA (0.12 mL, 0.69 mmol) gave a yellow colored solution. The color disappeared when the reaction mixture was stirred for 1 h after the addition of diphenylchlorophosphate (0.13 mL, 0.63 mmol). A solution of N-acetylaminoethanethiol (0.12 g, 1.01 mmol) in 2 mL of dry MeCN and DIPEA (0.12 mL, 0.69 mmol) was added and the reaction mixture was stirred for 1 h. After usual workup using EtOAc as a solvent, column chromatography of the crude product was carried out using a gradient of solvents. 1:2 EtOAc:hexanes gave starting compound 88, 3:1 EtOAc:hexanes N-acetylaminoethanethiol and 20:40:40 hexanes:EtOAc:MeCN 0.20 g (81%) of the desired product 90 as a yellowish oil; IR (CHCl$_3$): 3329 (broad, NH), 1755 (β-lactam C=O), 1713 (COOR), 1660 (CONH), 1530 and 1361 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHz) δ: 0.98 (3H, t, J=7.4 Hz, CH$_3$CH$_2$), 1.75-2.10 (7H, m with overlapping s at 1.90 due to CH$_3$CO, CH$_2$, CH$_2$CH$_3$), 2.43-2.76 (2H, m, CH$_2$), 2.79 (2H, t, J=5.8 Hz, CH$_2$S), 3.25-3.46 (6H, m, with overlapping s at 3.35 due to OCH$_3$, CH$_2$N, CHN), 5.20 (1H, d, J=13.6 Hz, CH$_2$AH$_BP$NB), 5.30 (1H, d, J=13.7 Hz, CH$_2$BH$_AP$NB), 6.76 (1H, broad t, NH), 7.52 (2H, d, J=8.9 Hz, PNB), 8.09 (2H, d, J=8.9 Hz, PNB); 13C NMR (200 MHz) δ: 7.3 (CH$_3$), 21.3 (CH$_2$), 22.7 (CH$_3$), 22.8 (CH$_2$), 26.6 (CH$_2$), 30.1 (CH$_2$), 38.9 (CH$_2$), 52.7 (CH$_3$O), 56.7
(CH), 65.7 (CH₂PNB), 90.7 (C-7), 122.6 (C=C), 123.6 (CH of PNB), 128.4 (CH of PNB), 133.2 (C=C), 142.9 (C of PNB), 147.6 (C of PNB), 162.1 (C=O), 166.3 (C=O), 170.7 (C=O); MS: no M⁺ ion in EI or CI, 356 (M⁺-121,1), 328 (356-28, 4).

p-Nitrobenzyl 7-hydroxyethyl-7-methoxy-3-N-carbo-p-nitroenezyloxyaminoethanethio-1-carba-1-dethia-3-cephem-carboxylate (91)

The reaction of 89 with carbo-p-nitroenezyloxyaminoethanethiol was carried out as described above and the crude product purified by column chromatography (20:20:80 EtOAc:hexanes:MeCN) to afford a yellow oil in 68% yield; IR: 3400 (broad, OH), 1700-1770 (broad, C=O), 1520 and 1350 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 1.26 (3H, d, J=6.4 Hz, CH₃CH₂), 1.80-2.60 (4H, m, CH₂CH₂), 2.88-2.94 (2H, m, CH₂N), 3.34-3.59 (2H, m, CH₂S), 3.60 (3H, s, CH₃O), 3.63-3.68 (1H, m, CHN), 4.38 (1H, q, J=6.5 Hz, CHO), 5.16 (2H, s, CH₂PNB), 5.27 (1H, d, J=13.5 Hz, CH'BH₃PNB), 5.39 (1H, d, J=13.4 Hz, CH'BH₄PNB), 5.59 (1H, broad s, NH), 7.48 (2H, d, J=8.8 Hz, PNB), 7.58 (2H, d, J=9.0 Hz, PNB), 8.19 (4H, d, J=8.8 Hz, PNB); MS: highest peak is 238 (MW=630).
Sodium 7-ethyl-7-methoxy-3-N-acetylaminoethanethio-1-carba-1-dethia-3-cephemcarboxylate (61)

The PNB ester 90 (0.20 g, 0.42 mmol) in 20 mL of THF:H₂O (1:1) was hydrogenated in presence of 0.12 g of Pd-C (10%) at 40 Psi and 25 °C for 7 h. After removal of the catalyst and THF, the suspension was treated with 36 mg of NaHCO₃. The resulting mixture was washed with EtOAc and the aq. layer was lyophilized to give 0.14 g of crude product. Reverse phase column chromatography (10% MeCN in H₂O) yielded 0.13 g (77%) of 61 as a white solid; mp: becomes translucent at 177-178 °C and chars at or above 217 °C; IR (KBr): 3396 (broad, NH), 1742 (β-lactam C=O), 1661 (CONH), 1610 (COO⁻) cm⁻¹; ¹H NMR (300 MHz, D₂O) δ: 0.99 (3H, t, J=7.4 Hz, CH₃CH₂), 1.79-1.91 (1H, m, CH₂CH₃), 1.98 (3H, s, CH₃CO), 2.00-2.17 (3H, m, CH₂CH₃, CH₂), 2.42-2.54 (2H, m, CH₂), 2.80-2.86 (2H, m, CH₂S), 3.31-3.42 (2H, m, CH₂N), 3.44 (3H, s, OCH₃), 3.68 (1H, dd, J=11.7, 3.4 Hz, CHN); ¹³C NMR (200 MHz, D₂O) δ: 9.6 (CH₃), 24.1 (CH₂), 24.6 (CH₃), 25.4 (CH₂), 28.8 (CH₂), 32.5 (CH₂), 42.1 (CH₂), 55.5 (CH₃O), 60.6 (CH), 94.2 (C-7), 120.4 (C=C), 134.7 (C=C), 169.7 (C=O), 172.8 (C=O), 177.2 (C=O); MS of free acid: 342 (M⁺, 0.4), 341 (M⁺-1, 2), 314 (M⁺-28, 8), 270 (M⁺-72, 5), 242 (M⁺-100, 2); HRMS calcd for C₁₅H₂₂N₂O₅S (free acid) 342.1235, found 342.1242.
CHAPTER 4: SYNTHESIS OF 6-METHOXY-PS-5 AND ATTEMPTED APPROACHES TO RELATED CARBAPENEMS

Thienamycin and related natural carbapenems

Thienamycin 1 was first isolated from the fermentation broth of S. cattleya in 1976. Thienamycin is tremendously appealing to both synthetic chemists and pharmacologists since it is highly potent against a broad range of bacterial infections and also possesses structural features which are quite different from other classical β-lactam antibiotics such as penicillins and cephalosporins. The bicyclic ring system of thienamycin has a methylene group instead of sulfur atom of penicillins and a double bond in the five membered ring, hence all compounds having this structure are categorized as carbapenems. The presence of an aminoethanethio side-chain at C-2 and a 1-hydroxyethyl group at C-6 is unusual among the classical β-lactams. The trans relationship between the hydroxyethyl side-chain and the five membered ring is also unusual. The cis epimer of thienamycin has been isolated but these compounds are more reactive towards β-lactamases than thienamycin. The absolute stereochemistry of thienamycin is 5R, 6S and 8R. Its epimers having 6R and 8S configurations have already been described.

1 thienamycin

Since the discovery of thienamycin more than forty natural carbapenems have been isolated. A related carbapenem, PS-5 2 has significant inhibitory properties against a variety of Gram-positive and Gram-negative bacteria and shows β-lactamase stability.

The carpetimycins 3 and asparenomycins 4 have 6-(2-hydroxy)propyl and 6-(1-hydroxy)propylidene groups respectively. Ohno and coworkers found R configuration at the sulfoxide by comparison of synthetic material with natural carpetimycin A. 2 Asparenomycin A was found to have 5R and also R configuration at the sulfur of sulfoxide. The epimer of asparenomycin A with S configuration at sulfoxide is less active than its R isomer. 3

3 carpetimycin A

4 asparenomycin A

Structural modifications of carbapenems

Due to the chemical instability of thienamycin, a lot of effort has been directed to obtain more stable analogs. Modification or introduction of substituents at various positions has been reported.

One of these attempts involve the modification of side-chain at C-2. (The C-i substituted analogs will be discussed in Chapter 5.) Numerous analogs having a variety of 2-sulfur side-chains derived from complex mercaptans have been synthesized. RS-533 5 is a typical example which is more active and chemically more stable than thienamycin. The replacement of aminoethanethio side-chain by 2-aminoethyl group (C-2 carbon) led to dethiathienamycin 6 which showed diminished antibacterial activity (about half that of thienamycin). Other examples bearing carbon substituents at C-2 have been reported. One interesting 2-carbon substituent is the nitromethyl group as in 7. Both thienamycin and PS-5 analogs bearing this side-chain has been found to be active as antibiotics. Replacement of a

sulfur side-chain by a nitrogen substituent at C-2 gave carbapenem 8 with less antibiotic activity than thienamycin.\(^9\)

Interestingly, increased DHP (renal dehydropeptidase, an enzyme found in mammalian kidney which is responsible for the metabolic cleavage of thienamycin and related carbapenems) stability was observed in the case of 3-phosphonyl carbapenems 9 compared to 3-carboxyl and 3-tetrazolyl carbapenems.\(^{10}\) The phosphonic acid or ester derivatives of carbapenems having a methoxy group instead of sulfur at C-2 were inactive or weakly active.\(^{11}\) A thienamycin analog with a 3-tetrazolyl group 10 has been claimed as a useful antibiotic.\(^{12}\)

Onoue and Narukawa13 prepared several thienamycin derivatives such as 11 with a C-5 methyl group. They reasoned that the methyl group should induce greater electron density at the β-lactam carbonyl carbon due to its electron donating effect. Hence the chemical reactivity of these carbapenems should decrease due to the decrease in electrophilicity of carbonyl group. These compounds showed an activity somewhat lower than that of N-acetyltihienamycin. Compared to 5-unsubstituted compounds, these 5-methyl analogs were more stable in mouse kidney homogenase.

\begin{center}
\begin{tabular}{c}

\text{HO} \\
\text{\includegraphics[width=0.2\textwidth]{fig11.png}} \\
\text{SR'} \\
\text{\includegraphics[width=0.2\textwidth]{fig12.png}} \\
\text{COOR} \\
\text{11} \\
\text{COO}^- \text{K}^+ \\
\text{12}
\end{tabular}
\end{center}

The C-6 unsubstituted analogs such as 12 are unstable.14 The replacement of the 6-\{(1-hydroxyethyl) substituent with functional groups attached by a nitrogen15 or oxygen16 atom at C-6 position has

been reported. Satoh and Tsuji prepared the 6-methylthienamycin analog 13.\(^\text{17}\)

\[
\begin{array}{c}
\text{13} \\
\text{COOH}
\end{array}
\quad
\begin{array}{c}
\text{14} \\
\text{COOR}
\end{array}
\]

6,6-Dimethylcarbapenem 14 has also been synthesized.\(^\text{18}\) Similarly introduction of 6-methoxy group in 6-epiPS-5 15 resulted in increased chemical stability compared to PS-5.\(^\text{19}\) Bateson and coworkers synthesized the cis carbapenem 16 having chloro and hydroxyethyl groups at C-6.\(^\text{20}\)

\[
\begin{array}{c}
\text{15} \\
\text{NHAc}
\end{array}
\quad
\begin{array}{c}
\text{16} \\
\text{COOH}
\end{array}
\]

\(^{17}\) Satoh, H.; Tsuji, T. *Heterocycles* 1988, 27, 2803.

Corbett prepared 6,6-disubstituted spirocyclic compounds 17 via dipolar cycloaddition reactions using suitable 6,7-unsaturated carba- penems.21

\begin{align*}
&\text{17} \\
&\text{18} \ Y=H, \ Z=F \\
&\text{19} \ Y=H, \ Z=\text{tetrazolyl} \\
&\text{20} \ Y, \ Z=-(\text{CH}_2)_3\text{SO}_2- \\
&\text{21} \ Y, \ Z=-\text{O(}\text{CH}_2\text{)}_2\text{O-} \\
\end{align*}

DeVries and colleagues prepared a series of carbenemcs such as 18 in which the hydroxy function of thienamycin side-chain was replaced by fluorine. These compounds were found to have little or no antibacterial activity.22 Coulton replaced the hydroxy group with a tetrazolyl group to give 19.23 Another unusual structural modification at this center is the introduction of the cyclic sulfone 20.24 The MIC of this compound against \textit{S. aureus} FDA 209P was reported to be 3.12 \(\mu\text{g/mL}\). A ketal function has also been introduced at this position to yield 21.25

The addition of a methoxy group at C-8 of thienamycin resulted in a carbenem 22 with diminished antibacterial activity relative to

24 Yoshioka, K.; Tamura, N.; Natsugarri, H. \textit{Chem. Abs.} 1985, 103, 178113x.
thienamycin.\(^{26}\) Haebich and Hartwig replaced the methyl group at C-8 by a carboxymethyl group to yield \(23.\(^{27}\)

\[
\begin{align*}
\text{O} & \quad \text{H} & \quad \text{O} \\
\text{MeO} & \quad \text{C} & \quad \text{NH}_2 \\
\text{C} & \quad \text{H} & \quad \text{O} \\
\text{MeO} & \quad \text{C} & \quad \text{NH}_2 \\
\text{S} & \quad \text{S} & \quad \text{S}
\end{align*}
\]

\(22\) \hspace{1cm} 23

Annulation methodologies

Although the synthesis of carbapenems has been extensively reviewed,\(^{28}\) a brief discussion of the key methodologies is presented below. Methods leading to bicyclic molecules without a suitable carboxyl group at C-3 are given minimum space and/or not discussed at all.

1) **Rhodium carbenoid insertion**

Perhaps the best method developed so far is the rhodium carbenoid cyclization developed by Merck chemists.\(^{29}\) This method has been widely applied in many carbapenems. This reaction has very high catalytic turn over (1:1000 catalyst:substrate). However this methodology fails in case of unusually strained carbapenems (Chapter 5) and penems having soft heteroatoms (see Chapter 3, page 119).

2) Wittig reaction

Intramolecular Wittig reaction has been applied to aldehydes, ketones and thioesters. This is one of the most commonly used methods after Merck method.30

3) Phosphite coupling

This method developed by chemists at Schering31 is an alternative to the Intramolecular Wittig approach. This cyclization has been proposed to proceed via a carbene (oxalimide carbon, α to the nitrogen) type intermediate.

30 Cama, L. D.; Christensen, B. G. J. Am. Chem. Soc. 1978, 100, 8006.
4) Kametani’s methodology

This method32 is somewhat related to the phosphite coupling method developed by Schering chemists. Reaction of the oxalimide group with triethyl phosphite generates a carbene species which presumably gives a sulphur ylide by reaction with the sulfur atom of the thioacetal. Subsequent rearrangement of the ylide yields the bicyclic product 31.

\begin{equation}
\begin{array}{c}
\text{30} \\
\text{31}
\end{array}
\end{equation}

4) Aldol and Dieckmann condensation

Foxton33 applied an aldol condensation methodology to prepare carbapenems. The selective generation of a carbanion at the carbon α to the nitrogen without competing deprotonation of other acidic protons in 32a is interesting. The bicyclic compound 33 was obtained in 33\% yield.

The use of thioester as an electrophilic carbonyl allowed to extend this methodology to the cases where enolizable hydrogens are present at C-5 yielding the desired bicyclic ketoester 34.34 The yield of this annulation is better than that involving aldehydes or ketones.

6) Michael addition

Hanessian applied intramolecular addition of an enolate to a nitroolefin.34a Normally, this addition is a high risk strategy because by comparing the acidity of enolizable protons one would expect deprotonation at homoallylic position. The resultant anion can undergo ring cleavage reaction. However, when the reaction was performed at -100 °C the desired bicyclic product was obtained.

34a Hanessian, S.; Desilets, D.; Bennani, Y. L. J. Org. Chem. 1990, 55, 3098.
7) Tandem (3+2) Michael addition and cyclization

Hirai and coworkers35 prepared the bicyclic ketoester precursor of thienamycin \textit{via}. 3+2 cyclization involving Michael addition of the β-lactam nitrogen to a suitable receptor and subsequent cyclization. The yield in this cyclization is low presumably due to the elimination of SCH_3 \textit{via}. 1,2 proton shift. Mastalerz also studied similar cyclization strategy using allenenes.36 Although the yield was reasonable in cyclization step the subsequent reaction leading to a carbapenem intermediate L was unsuccessful. (During our studies in this type of cyclization methodology we also encountered similar problems.)

36 Mastalerz, H.; Vinet, V. \textit{Tetrahedron Lett.} 1985, 26, 4315.
8) Radical cyclization

Bachi and coworkers37 prepared a carbapenam using a radical cyclization. The cyclization worked well when a phenylacetylene moiety was used but failed when a terminal double bond or triple bond was used.

9) S_N2 cyclization

The cyclization via nucleophilic substitution leading to N-C bond formation is highly dependent on the stereochemical features of the

substrate. The example shown below 46 cyclizes to give 80% yield of carbapenam 47, but its epimer polymerized under similar conditions.38

10) Wasserman's methodology

Wasserman prepared PS-5 intermediate 50 by cyclization of tricarbonyl system 48.39 The cyclization proceeds with excellent yield. However the deoxygenation step gives poor yield (30% when carboxylic protective group is p-nitrobenzyl and 42% for t-butyl group).

11) Ring contraction reactions

Rosati and collaborators used a photochemical Wolff-type rearrangement reaction to prepare carbapenems.40 The compound 52 was used as a precursor to carbapenems having C-1 oxo or hydroxy function.

40 Rosati, R. L.; Kapili, L. V.; Morrisssey, P.; Retsema, J. A. J. Med. Chem. 1990, 33, 291.
12) **Bristol method**

Dextraze reported the cyclization to a carbapenem by carbon-carbon bond formation at C-1 and C-5 position.\(^1\) The yield of 54 in this synthesis is low (17%).

\[\begin{align*}
\text{TBDMSO} & \quad \text{Cl} \\
\text{53} & \quad \text{COOMe} \\
\text{54} & \quad \text{COOMe} \\
\end{align*} \]

\(a\) LHDMS, AgBF₄

13) **Methods in which β-lactam ring is formed at a later stage**

Yoshioka and coworkers prepared the 6-hydroxy carbapenam 56 by DCC mediated cyclization of an amino acid.\(^2\) Although the yield in this reaction is very good, the number of steps involved in conversion of this compound to 6-methoxy-epi-PS-5 is high making it an unattractive approach. Bachi and Rosenblum used a similar strategy.

Attempted approaches to 6-methoxycarbapenems

As mentioned in Chapter 1, 6-methoxycarbapenems having thienamycin 57 or PS-5 58 type side-chains at C-6 may be more stable than thienamycin or PS-5. Hence we attempted to synthesize these carbapenems.

The following sections describe in brief, a number of synthetic pathways which were investigated prior to finding one that allowed us to complete the synthesis of a 6-methoxycarbapenem. These approaches are presented in more or less the same chronological order as they were carried out. All approaches seemed reasonable based on literature precedent. However in the specific situations, many of the sequences did not lead to desired targets, as certain reactions failed or gave poor yields or gave poor stereochemical control. Thus these appr-
oaches were abandoned. It seems that the additional methoxy group at C-3 in the monocyclic \(\beta \)-lactam exerted a more pronounced stereochemical influence than expected. Thus the approaches, which were based on the literature models without this methoxy group, proved to be overly optimistic. Although these experiments did not lead to desired conclusions it was felt necessary to include them in order to present a realistic account of events which led to the development of a successful approach.

The spectroscopic data concerning establishment of structures of products will not be described in the following sections. Most of these reactions were followed by \(^1\)H NMR. Mass spectra were recorded whenever feasible. Infrared spectra were not obtained. These data are presented in the Experimental section of this Chapter. We feel confident that the available data are consistent with the structures given in the following discussion.

Since the Merck method is the best method available for the synthesis of carbapenems, we decided to prepare 6-methoxy-7-epithienamycin 62 as shown in the following retrosynthetic scheme which involved the preparation of \(\beta \)-ketoester 59, rhodium carbenoid cyclization of the corresponding diazo compound 60 followed by introduction of a sulfur side-chain at C-2 of 61. The introduction of the various nucleophiles into the bicyclic thienamycin intermediate \(i.e. \) demethoxy analog of 61, at C-2 has been well developed.
Initial studies involved the use of compounds 63 and 64 for the preparation of 59 or 60. The preparation of compound 63 has already been described in Chapter 2. The compound 64 was prepared from the corresponding methylcinnamylazetidinone 68 by ozonolysis.43

The monocyclic azetidinone 65 was prepared using a 2+2 ketene imine cycloaddition reaction of an imine (derived from p-anisidine and 1-methylcinnamaldehyde) with methoxyacetic acid activated with

DMF/oxalyl chloride in the presence of TEA. The cycloaddition was carried out on a 175 mmol scale of imine in 76-80% yield. The anion derived from 65 was quenched with acetaldehyde to yield 3-hydroxyethyl azetidinone as a mixture of epimers. Oxidation with PCC and subsequent reduction of 66 using L-Selectride/TMEDA afforded one pure diastereomer 67 and the hydroxyl group was protected as its TBDMS ether.

\[
\text{OMe} \quad \begin{array}{c}
\text{Ph} \\
\text{OMe} \\
\text{PMP} \\
\text{N}
\end{array} \quad \xrightarrow{\text{a,b}} \quad \text{OMe} \quad \begin{array}{c}
\text{Ph} \\
\text{OMe} \\
\text{PMP} \\
\text{N}
\end{array} \\
\text{65} \\
\text{c} \\
\text{66}
\]

\[
\text{OMe} \quad \begin{array}{c}
\text{Ph} \\
\text{OMe} \\
\text{PMP} \\
\text{N}
\end{array} \quad \xrightarrow{\text{d}} \quad \text{OMe} \quad \begin{array}{c}
\text{Ph} \\
\text{OMe} \\
\text{PMP} \\
\text{N}
\end{array} \\
\text{TBDMSO} \\
\text{68} \\
\text{67}
\]

a) LDA, CH₃CHO, THF, -78 °C; b) PCC, CH₂Cl₂, NaOAc, 4Å mol. sieves; c) L-Selectride, TMEDA, THF, -78 °C; d) TBDMOSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C

The relative configuration at the hydroxyethyl side-chain in 68 was established by conversion of 69 to 64 via a sequence of reactions involving ozonolysis of the cinnamyl group and addition of methyl lithium to the resultant aldehyde followed by oxidation with PCC.

44 Sharma, M. K. Ph. D. thesis, University of Ottawa, 1990, p 211 and 216 details of similar conversions has already been described by him (note the difference in scale).
Fig. 8 1H NMR spectrum of 64 from 68
Since the sample of the acetyl compound 64 obtained from 69 is identical in 1H NMR (Fig. 8 and 9) to that from 68, the configuration at this center of both 68 and 69 is the same.

\[\text{69} \rightarrow \text{64} \]

a) O$_3$, CH$_2$Cl$_2$, MeOH, DMS, -78 $^\circ$C to 25 $^\circ$C; b) MeLi, THF, -78 $^\circ$C; c) PCC, CH$_2$Cl$_2$, 4Å mol. sieves, NaOAc.

When the project was initiated we had felt confident and most certainly hopeful that both 63 and 64 had all the required stereochemical features of thienamycin. The configuration of 69 has been determined by X-ray crystallography.\(^{45}\) Unfortunately the X-ray structure of 69 showed that the configuration at the hydroxyethyl side-chain is that of epithienamycin. Hence 64 should also have an epithienamycin type configuration at the hydroxyethyl side-chain. Nevertheless, we decided to investigate the possibility of using 63 or 64 in order to prepare the 6,6-disubstituted analogs such as 62.

1) Synthetic approach involving C-C bond formation at C-4

At this point, the synthetic problem appeared to have been reduced to the development of a simple and effective methodology for the production of 59 from either 63 or 64. Since 60 should be

accessible via a convergent route starting from the ketone 70 initial studies were directed towards effecting transformations shown below.46

\[
\begin{align*}
\text{70} & \quad \text{71} \\
\text{TBDMSO} & \quad \text{TBDMSO} + \text{OSiMe}_3 \text{COOPNB} \\
\text{OMe} & \quad \text{OMe} \quad \text{Ac} \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
\text{COO} & \quad \text{COO} \\
\text{PNB} & \quad \text{PNB}
\end{align*}
\]

When compound 72, obtained by ozonolysis of 65, was treated with MCPBA in refluxing dichloroethane for 24 hours the acetate 73 (cis, based on the J=3.6 Hz for proton signal at C-3) was obtained in 34\% yield.

\[
\begin{align*}
\text{72} & \quad \text{73} \\
\text{MeO} & \quad \text{MeO} \\
\text{PMP} & \quad \text{PMP} \\
\text{a} & \quad \text{a}
\end{align*}
\]

\text{a) MCPBA, C}_2\text{H}_4\text{Cl}_2

The Baeyer Villiger reaction of 64 and 70 was unsuccessful under a variety of conditions (such as MCPBA/NaHCO$_3$, MCPBA/H$^+$, MCPBA only, at 0 °C to refluxing dichloroethane; MMPT47, H$_2$O$_2$/acetic acid, peracetic acid, CAN48/MeCN/60 °C). In case of MCPBA and MMPT reactions, starting ketones were recovered. The starting material was destroyed in other experiments. The failure of the Baeyer Villiger reaction could presumably be due to the additional steric hindrance conferred by the t-butyldimethylsilyloxyethyl group since the ketone 72 without this substituent gave the rearranged product 73.

2) Approaches involving 1,2-carbonyl transposition in 64

An alternate approach to the β-ketoester 59, which would allow us to take advantage of the cis relationship between the methoxy group and the C-4 acetyl substituent, requires the conversion of 64 to the carboxylic acid 74 followed by two carbon homologation to 59. Such a sequence requires a 1,2-transposition of the carbonyl49 on the acetyl side-chain of 64.

A possible solution to this is to introduce hetero-atom substituents at the α-carbon of the acetyl moiety, reduce the carbonyl group,

47 Brougham, P.; Cooper, M. S.; Cummerson, D. A.; Heaney, H.; Thompson, N. Synthesis 1987, 1015.

49 Kane, V. V.; Singh, V.; Martin, A.; Doyle, D. L. Tetrahedron 1983, 39, 345.
activate the resultant hydroxyl group as a mesylate and eliminate it to yield a vinyl thioether or vinyl ether. Attempts to introduce sulfur (LDA/PhSSPh50, LDA/MeSSO$_2$Me51) or oxygen (LDA,TMSCl/MCPBA52) substituents at the methyl group α to the carbonyl could not be developed on preparatively useful scales. In most of these reactions the crude products gave complex 1H NMR spectra indicating many products and pure products could not be isolated.

\[
\begin{align*}
\text{TBDMSO} & \quad \text{OMe} \\
\text{N} & \quad \text{PMP} \\
64 \\
\text{a)} \text{ LDA, PhSSPh or LDA, MeSSO$_2$Me or LDA, TMSCl; MCPBA}
\end{align*}
\]

\[
\begin{align*}
\text{TBDMSO} & \quad \text{OMe} \\
\text{N} & \quad \text{PMP} \\
75 \; X=\text{SMe}, \; 76 \; X=\text{SPh, or} \\
77 \; X=\text{OH}
\end{align*}
\]

The enolsilyl ether derived from 64 was treated with bromine at -78 °C for 45 minutes to yield α-bromo product 78. This bromide was converted to the 4-vinyl azetidinone 79 via reduction of carbonyl group, activation of hydroxy group as a mesylate and elimination using zinc. We intended to transform this 4-vinyl azetidinone 79 to 4-(2-hydroxyethyl)azetidinone 80,53 by hydroboration. The reaction of 79 with borane/THF54 at 0 °C to 25 °C for 3 h gave abysmal yield of mixture of regioisomeric alcohols (12% of 80 and 9% of its regioisomer),

while no reaction occurred with 9-BBN at 25 °C for 24 h and at 67 °C for 3 h.55

\begin{align*}
\text{78} & \xrightarrow{\text{a}} \text{79} \\
\text{80}
\end{align*}

\text{a) NaBH}_4, \text{ EtOH; MsCl, TEA, CH}_2\text{Cl}_2; \text{ Zn, NaI, acetone:DMF}

Since the above sequences for a 1,2-carbonyl transposition were unsatisfactory, the following scheme was probed. The anion of the ketone 64 was quenched with benzaldehyde at -78 °C and the resultant aldol was converted to \(\alpha,\beta \)-unsaturated ketone 81 by refluxing in benzene in the presence of toluenesulfonic acid. This ketone upon deoxygenation and ozonolysis of the double bond was expected to result in the desired 1,2-carbonyl transposition product. Deoxygenation by converting the ketone to a dithiane derivative and subsequent desulfurization with Raney Nickel could not be completed since the attempted preparation of dithiane derivative with propanedithiol and BF\textsubscript{3}.OE\textsubscript{t}\textsubscript{2} at 25 °C for 24 hours resulted in destruction of starting material. Reduction of 81 with sodium borohydride and cerium

trichloride gave the allylic alcohol 82. Deoxygenation of this alcohol 82 via. a free radical56 (NaH, CS\textsubscript{2}, MeI and Bu\textsubscript{3}SnH) or carbocation57 (ZnI\textsubscript{2}, NaCNBH\textsubscript{3}) intermediates was unsuccessful.

\begin{center}
\begin{tikzpicture}
\node [anchor=west] at (0,0.75) {81};
\node [anchor=west] at (2.5,0.75) {82};
\coordinate (A) at (0,0);
\coordinate (B) at (2.5,0);
\coordinate (C) at (0,-1);
\coordinate (D) at (2.5,-1);
\coordinate (E) at (1.25,0.5);
\coordinate (F) at (1.25,-0.5);
\coordinate (G) at (0.5,0.25);
\coordinate (H) at (0.5,-0.25);
\coordinate (I) at (2,0.25);
\coordinate (J) at (2,-0.25);
\coordinate (K) at (1.5,0);
\coordinate (L) at (1.5,-1);
\coordinate (M) at (0.75,0.75);
\coordinate (N) at (0.75,-0.75);
\coordinate (O) at (2.25,0.75);
\coordinate (P) at (2.25,-0.75);
\coordinate (Q) at (1.5,1.25);
\coordinate (R) at (1.5,-1.25);
\coordinate (S) at (0.5,1.25);
\coordinate (T) at (0.5,-1.25);
\coordinate (U) at (2.75,0.75);
\coordinate (V) at (2.75,-0.75);
\coordinate (W) at (2.25,1.25);
\coordinate (X) at (2.25,-1.25);
\node at (0,0.25) {TBDMSO};
\node at (2.5,0.25) {TBDMSO};
\node at (0.75,0.25) {OMe};
\node at (2.25,0.25) {OMe};
\node at (1.5,0.25) {PMP};
\node at (2.25,0.25) {PMP};
\node at (0.5,0.25) {N};
\node at (0.5,-0.25) {N};
\node at (1.5,1) {\text{Ph}};
\node at (2.25,1) {\text{Ph}};
\node at (0.75,-1) {\text{Ph}};
\node at (2.25,-1) {\text{Ph}};
\draw (A) -- (B);
\draw (C) -- (D);
\draw (E) -- (F);
\draw (G) -- (H);
\draw (I) -- (J);
\draw (K) -- (L);
\draw (M) -- (N);
\draw (O) -- (P);
\draw (Q) -- (R);
\draw (S) -- (T);
\draw (U) -- (V);
\draw (W) -- (X);
\draw (Y) -- (Z);
\end{tikzpicture}
\end{center}

3) Approaches involving SN\textsubscript{2} reactions at C-5

These sequences involve the use of aldehyde 63 obtained from 4-cinnamylazetidinone. Sodium borohydride reduction of 63 and mesylation of the resultant alcohol gave the mesylate 83 in excellent yield (90\%). [The crude mesylate obtained was used in subsequent reaction without further purification.] Reaction of 83 with sodium iodide in refluxing acetone for 18 hours gave 79\% of iodide 86. The mesylate 83 upon reaction with CAN under the usual conditions gave 55\% yield of the N-unsubstituted compound 84 which was converted to iodide 88 by applying a procedure similar to that for 86. In this case the displacement reaction could not be pushed to completion since the prolonged heating resulted in the buildup of a non β-lactam product. (The structure of this compound could not be determined unambiguously; it is thought to be an isomeric γ-lactam). The NH compounds 84 and 87 obtained from mesylates 83 and 84 were

56 Tacono, S.; Ramussen, J. R. Org. Synth. 1985, 64, 57.
silylated with TBDMSOTf and 2,6-lutidine in dichloromethane at 0 °C to afford 85 and 88 in more than 90% yield respectively.

\[
\begin{align*}
&\text{a) NaI, acetone, reflux; b) CAN, MeCN:H}_2\text{O, -5 °C to 0 °C; c) TBDMSOTf, 2,6-lutidine, CH}_2\text{Cl}_2, 0 °C to 25 °C} \\
&2\text{-Lithio-1,3-dithiane, generated by treatment of dithiane with 1.1 equivalent of n-BuLi for 1 hour at -20 °C failed to give conclusive results when reacted with either the N-silylated iodide 88, the N-silylated mesylate 85 or the iodide 87 (2 equivalents of reagent was used in this example) for 18 hours at -20 °C to 25 °C.}
\end{align*}
\]
The iodide 87 when reacted with sodium cyanide in refluxing DMF for 18 hours gave a complex reaction mixture which was not further investigated.

87 \(R=H \)

The mesylate 84 or iodide 87 appeared to be valuable intermediates for a 3+2 type Michael induced cyclization reaction which has been a part of continuing study in our laboratory. The overall plan is shown in the following retrosynthetic scheme.

84a

91

92

94 \(X=\text{OH, or EWG} \)

93

Reaction of the mesylate 84 with Michael acceptor 95 in the presence of powdered KOH in THF at 25 °C for 3 hours gave the 3+2
cyclocondensation product 96 in 42% yield. The yield of this product increased to 65% when the reaction time was extended to 18 hours. Although this reaction is quite efficient in assembling the carbapenem ring system the attempts to convert the bromocinnamyl group to an ester group by ozonolysis followed by trapping of resultant acyl bromide with benzyl alcohol or methanol failed. When benzyl alcohol was used in this reaction ozonolysis of 96 was carried out at -78 °C and stirred with excess DMS for 18 hours. Benzyl alcohol (1.1 eq) and TEA (2.2 eq) was added at 0 °C to the reaction mixture which was stirred for further 2 hours. Only benzyl alcohol was isolated from the reaction mixture after usual workup. In another experiment the compound 96 was dissolved in 20 ml of CH2Cl2:MeOH (1:1) and ozonolyzed at -20 °C. The resultant mixture was stirred with excess DMS for 18 hours. Usual workup afforded only intractable crude product.
The above experiment clearly indicated that intramolecular displacement at this carbon is facile compared to the intermolecular S_N2 version. Therefore we also attempted to homologate the carbon chain from a different direction. A thioacetate moiety attached at the hydroxyethyl side-chain was chosen as a masked carboxyl(nyl) synthon. The anion of 97 upon intramolecular reaction was expected to give the seven membered lactone 98. Examination of the molecular models indicated that the formation of 98 was feasible.

![Chemical structures](image)

A solution of tosylate 97 in THF was added to a solution of LDA (1.1 eq) in THF at -78°C and warmed to 25°C over a period of 18 hours and the crude product was purified by column chromatography. Only the hydroxyethyl compound 101 was isolated from the reaction mixture (25% from 97). The structure of 101 was established by
comparison with the known 1H NMR spectrum. The formation of this product can be explained in terms of an elimination reaction to give a phenylthioketene and 101.

4) Approaches involving the homologation of 63

At this point it seemed that the homologation of aldehyde 63 might be a better course of action, since the addition at a sp2 carbon has different steric requirements compared to the S_N2 reaction at a sp3 carbon. Surprisingly, anions derived from methyl thiomethylmethanesulfoxide58 (n-BuLi, THF, -20 °C to 25 °C, 18 h) and methoxymethylsilane59 (s-BuLi, TMEDA, THF, -78 °C to 25 °C, 20 h) did not add cleanly to 63. The 1H NMR spectra of crude products showed mostly unreacted starting material. In contrast, the anion of chloromethyltrimethylsilane60 (s-BuLi, TMEDA, THF, -78 °C to 25 °C, 20 h) gave a reasonable yield of epoxysilane 102 as a mixture of diastereomers. Attempted conversion of 102 to the aldehyde 103 by treatment with acids under various conditions resulted in either a recovery (1 eq of CF$_3$COOH, 10%aq. THF) or destruction (BF$_3$.OEt$_2$, -20

°C to 25 °C, 24 h or CF₃COOH, refluxing C₂H₄Cl₂, 18 h) of the starting material 102.

\[
\begin{align*}
\text{TBDMSO} & \quad \text{CHO} & \quad \text{TBDMSC} & \quad \text{O}_{\text{Me}} & \quad \text{PMP} \\
\text{63} & \quad \text{a} & \quad \text{102} & \quad \text{a'} \\
\text{TBDMSO} & \quad \text{CHO} & \quad \text{OMe} & \quad \text{PMP} \\
\text{104} & \quad \text{b} & \quad \text{103} & \quad \text{b'}
\end{align*}
\]

a) ClCH₂SiMe₃, s-BuLi; a') MeOCH₂SiMe₃ or Ph₃P=CHOMe; b) H⁺

The conversion of the aldehyde 63 to 103 via a homologous enol ether 104 appeared to be another reasonable approach. The reaction of triphenylphosphoranylidene methoxymethane⁶¹ was carried out under two different conditions: (a) sodium hydride was added to a mixture of aldehyde and requisite phosphonium salt (1.1 eq) and the reaction mixture was stirred at 25 °C for 2 hours and 67 °C for 18 h, and (b) ylide was prepared by treatment with n-BuLi at 0 °C for 30 minutes, a solution of aldehyde 63 was added to it and the reaction mixture stirred at 0 °C to 25 °C. In both cases only unreacted starting material was seen in ¹H NMR spectra of crude products.

⁶¹ for use of this reagent: (a) Rousseau, G.; LePerchec, P.; Conia, J. M. *Synthesis* 1977, 67. and references therein.
Thus, it was quite surprising to find that the α,β-unsaturated ester 105 was obtained from 63 in 84% yield after heating with stabilized ylide such as benzyl triphenylphosphoranylideneacetate (THF or C$_2$H$_4$Cl$_2$ or toluene, reflux, 24 h). The conversion of 105 to the homologated aldehyde 103 was accomplished by the following sequence. Selective deprotection under transfer hydrogenation conditions (Pd-C, cyclohexene, EtOH, ultrasound) afforded α,β-unsaturated acid 106 in 72% yield. The acid 106 was treated with 1.1 equivalent of diphenylphosphoryl azide (DPPA) in the presence of TEA in refluxing toluene for 18 h to effect Curtius rearrangement. The reaction mixture from this rearrangement reaction containing crude 107 was stirred with 10% HCl for about 15 minutes to yield 103. The overall yield in the conversion of 106 to 103, 26% (0.68 g of 106), was reduced to 16% (1.3 g of 106). This sequence was abandoned since it could not be scaled up without a drastic loss of yield.

\[
\begin{align*}
105 & \quad \text{a)} \quad \text{Pd-C}(10\%), \text{C}_6\text{H}_{10}, \text{EtOH} \\
106 & \quad \text{b)} \quad \text{DPPA, TEA, toluene, reflux} \\
103 & \quad \text{c)} \quad \text{H}^+ \\
107 & \\
\end{align*}
\]
The ester 108 was obtained in 91% yield by reaction of the aldehyde 63 with ethyl triphenylphosphoranylidineacetate in refluxing THF for 20 hours. Hydrogenation of 108 in EtOH at 40 psi for 6 hours afforded 109 in 99% yield. Attempts to cleave one extra carbon in the ester 109 by conversion to 110 and subsequent ozonolysis in dichloromethane in the presence of traces of methanol gave several intractable products whereas the catalytic ruthenium tetroxide reaction \(\text{RuCl}_3, \text{NaIO}_4, 0 \, ^\circ\text{C} \text{ to } 25 \, ^\circ\text{C} \) resulted in a complex reaction mixture from which the desired product could not be isolated. The ozonolysis of the enol silylether derived from 109 at -78 \, ^\circ\text{C} \) gave very low (<10\%) yield of the homologated aldehyde 103.

![Chemical structures](image)

103

109

103

110

a) \(\text{H}_2, \text{Pd-C}(10\%), \text{EtOH}, 40 \, \text{psi} \); b) \(\text{PhLi, THF, -78} \, ^\circ\text{C} \text{ to } 25 \, ^\circ\text{C} ; \text{TsOH, toluene, reflux} \)

5) **Attempted synthesis of a 2-phenylcarbapenem**

Since most of the reactions described above which involved the cleavage of cinnamyl group and homologation of carbon side-chain at C-
4, did not lead to desired targets, we thought of using a different approach in which all carbons present in the cinnmayl group would be incorporated into the product. This would be possible if the transformations shown in the following retrosynthetic scheme were accomplished. It was planned to construct the bicyclic ring in 111 from oxalimide 112 by applying the triethyl phosphite coupling reaction (see p 152). This required transformation of 114 to 112.

\[\text{OMe} \quad \text{Ph} \quad \text{O} \quad \text{O} \quad \text{Me} \quad \text{Ph} \quad \text{N} \quad \text{Me} \quad \text{Ph} \]
\[\text{111} \quad \Rightarrow \quad \text{O} \quad \text{O} \quad \text{Me} \quad \text{Ph} \quad \text{N} \quad \text{Me} \quad \text{Ph} \]
\[\text{112} \]
\[\downarrow \]
\[\text{OMe} \quad \text{Ph} \quad \text{N} \quad \text{PMP} \quad \text{O} \quad \text{Me} \quad \text{Ph} \quad \text{N} \quad \text{Me} \quad \text{Ph} \]
\[\text{114} \quad \Leftrightarrow \quad \text{OMe} \quad \text{Ph} \quad \text{N} \quad \text{Me} \quad \text{Ph} \quad \text{O} \quad \text{Me} \quad \text{Ph} \quad \text{N} \quad \text{Me} \quad \text{Ph} \]
\[\text{113} \]

The azetidinone 114\(^{63}\) was hydrogenated at 40 psi in ethanol using Pd-C(10%) for 18 hours to afford the saturated compound 115. Oxidation at the benzylic carbon of 115 by bromination (NBS, AIBN, \(\text{CCl}_4\), \(\text{hu}\), reflux, 8 h), hydroxylation (aq \(\text{AgNO}_3\), acetone, 3-5 h) and oxidation (PCC, \(\text{CH}_2\text{Cl}_2\), 18 h) afforded ketone 116 in 23% overall yield form 115. The cleavage of the PMP group under usual conditions gave

a 65% yield of 113 which was treated with allyloxalyl chloride in the presence of DIPEA to yield the oxalimide 112 in 79% yield. When the cyclization was attempted with two equivalents of triethyl phosphite in refluxing toluene for 3 hours, only a small amount of reduced material 117 was obtained. This could be due to the trapping of a carbene intermediate with water. This result is quite surprising since both reagent and solvent were carefully dried prior to use.

\[
\text{114} \xrightarrow{a} \text{115} \\
\downarrow \text{d} \\
\text{113} \xrightarrow{c} \text{116} \\
\xrightarrow{e} \text{112} \xrightarrow{111}
\]

a) H₂, Pd-C(10%), EtOH, 40 psi; b) NBS, AIBN, CCl₄, reflux, hv; AgNO₃, aq acetone; PCC, CH₂Cl₂; c) CAN, MeCN, H₂O, -5 °C to 0 °C; d) CICOOCOCH₂CH=CH₂, DIPEA, CH₂Cl₂, 0 °C to 25 °C
Nitromethane as one carbon synthon

Initial attempts to use nitromethane as a synthon for a one carbon homologation were unsatisfactory due to the difficulties in product purification largely because of incomplete reactions or retro nitro-aldol condensation. In these early studies, condensation with aldehyde 63, activation of the hydroxy group as an acetate or a mesylate of the adduct and the elimination to form a nitro-olefin were carried out using equimolar quantities of reagents. Subsequent to these experiments Palomo and coworkers published nitromethane condensations with analogous β-lactam aldehydes.\(^{64}\) In their procedure the condensation was carried out in excess nitromethane as a solvent in the presence of a catalytic amount of TEA as a base. Excess unreacted nitromethane can readily be removed in a rotary evaporator. A solution of crude adduct in dichloromethane was added to excess methanesulfonyl chloride and TEA at -78 °C to achieve activation of the hydroxy group. After stirring for 45 minutes, excess TEA was added at -50 °C and the reaction mixture was warmed slowly to -10 °C to complete elimination

Nitro-olefins 122 and 121 were isolated in 65% overall yields from 118 and 63 respectively. Evidence for the formation of these nitro-olefins was available from IR, 1H NMR and MS including HRMS. These data are recorded in the Experimental section.

63 R=OTBDMS
118 R=H
120 R=H, X=Ms
121 R=OTBDMS
122 R=H

a) CH$_3$NO$_2$, TEA; TEA, MsCl, CH$_2$Cl$_2$, -78 °C to -50 °C; b) TEA, -50 °C to -10 °C

The cleavage of the PMP group might complicate the utility of this sequence. [This was found to be the case in subsequent cleavage reactions of products derived from nitro compound 122.] Hence the nitromethane reaction was attempted with the aldehyde 123. Unfortunately, the crude product gave quite complex 1H NMR which indicated the loss of TBDMS group. Hence this reaction was not further investigated.

a) CH$_3$NO$_2$, TEA; TEA, MsCl, CH$_2$Cl$_2$, -78 °C to -50 °C; TEA, -50 °C to -10 °C

The feasibility of using a three carbon homologating reagent, benzyl 3-nitropropionate 125 was also explored. Condensation of 125 with aldehyde 118 (TEA, MeCN, 18 h, 25 °C) gave 49% of a mixture of 126 and an α,β-unsaturated ester due to the elimination of the nitro group. Examination of 1H NMR of crude adduct showed olefinic signals at δ: 6.08 ppm (1H, ddd, J=0.6, 2.0 and 15.7 Hz) and 7.03 (1H, dd, J=4.2, 15.7 Hz) consistent with the elimination of nitro group from 126 to form an α,β-unsaturated ester. Subsequent dehydration under Miyashita conditions afforded only 11% of the desired elimination product 127 (5% overall yield from 118). Use of alumina as a solid reaction medium for the condensation of 125 with 118 gave 37% of 126. The olefinic signals were not observed in 1H NMR indicating that the elimination of the nitro group is not a problem under these conditions. This adduct gave 30% of 127 when subjected to Miyashita conditions. Although the overall yield of 127 from 118 increased to 11%, this conversion is still inadequate for multistep synthesis. Therefore, this convergent approach was abandoned.

118 R=PMP

125

126 R=PMP

127 R=PMP

183
Synthesis of 6-methoxy-PS-5

At this stage, we decided to exploit the nitro-olefin 122 in the synthesis of 6-methoxy-PS-5 58 as shown in the following retrosynthetic scheme. It was planned to prepare of 58 via 128 from 129 by applying the Merck cyclization method. This required the transformation of the aldehyde 118 to 129. Since the nitromethane condensation on 118 to yield nitro-olefin 122 has been accomplished, it should be possible to build the required carbon skeleton of 129 by using nitromethane as a formyl dianion synthon 131.

Nitro-olefin 122 was readily reduced to 132 in 46-50% yield by treatment with sodium borohydride in 1:1 mixture of ethanol and dioxane at room temperature.\(^{66}\) The formation of 132 is supported by the following spectral data: IR: 1744 (C=O), 1386 and 1513 (NO\(_2\)) cm\(^{-1}\);

the following spectral data: IR: 1744 (C=O), 1386 and 1513 (NO₂) cm⁻¹;
¹H NMR 8: 2.02-2.39 (2H, m, CH₂CH₃, CH₂CH₂NO₂), 2.62-2.80 (1H, m, CH₂CH₂NO₂), 4.44-4.51 (2H, m, CH₂NO₂); MS: 308 (M⁺) and HRMS for C₁₅H₂₀N₂O₅.

\[
\begin{align*}
&\text{OMe} \\
&\text{N} \\
&\text{PMP} \\
&\text{O} \\
&\text{a} \\
&\text{OMe} \\
&\text{N} \\
&\text{PMP} \\
&\text{O} \\
\end{align*}
\]

a) NaBH₄, EtOH:dioxane (1:1)

Further extension of the carbon skeleton by two carbons was achieved by condensation of compound 132 with p-nitrobenzyl glyoxylate⁶⁷ using 4Å molecular sieves and a catalytic amount of TEA in THF at 25 °C for 24 hours. Since 130 exists as its hydrate, molecular sieves were used to liberate 130 which underwent in situ condensation to afford a corresponding adduct in 60% yield. Miyashita dehydration sequence was applied to afford nitro-olefin 133 in 57% yield. This elimination sequence is complicated by a ring opening reaction via a retro-Michael addition shown in eq. 1 especially when longer reaction time and/or excess TEA was used. The compound 133 was identified by ¹H NMR of crude product and converted to a β-ketoester 135 without further purification and characterization.

The impure olefin 133 was treated with tributyltin hydride in dry dichloromethane for 3 hours at room temperature and the resultant tin-nitronate was ozonolyzed in situ to afford ketone 135 in 35% yield. This compound gave all the key spectral data: IR: 1740 (C=O), 1515 and 1351 (NO₂) cm⁻¹; ¹H NMR δ: 3.57 (2H, s, COCH₂COOR); MS: 470 (M⁺) and HRMS for C₂₄H₂₆N₂O₈. Thus the overall conversion of 132 to 135, shown below, was achieved in 12% overall yield.

132

a) (HO)₂CHCOOPNB, TEA, 4Å molecular sieves, THF, 0 °C to 25 °C; b) MsCl, TEA, CH₂Cl₂, -78 °C, TEA, -50 °C to 25 °C; c) Bu₃SnH, CH₂Cl₂; O₃, DMS, -78 °C to 25 °C

The p-methoxyphenyl (PMP) group of 135 was cleaved using ceric ammonium nitrate (CAN) to yield the NH compound 136 in 24-30% yield.⁶⁸

The conversion of \(136\) to bicyclic compound \(128\) was accomplished by using rhodium carbenoid insertion reported by Merck chemists.\(^6^9\) Diazot transfer reaction of \(136\) with 4-carboxybenzenesulfonamide\(^7^0\) and TEA afforded corresponding diazo compound in 72% yield (IR: 2142 cm\(^{-1}\)). A rhodium carbenoid insertion (using cat. rhodium octanoate in benzene) of the resultant diazo compound afforded the bicyclic compound \(128\) in 60% yield. The formation of a second ring is characterized by the splitting of benzylic proton signal into AB patterned doublets in \(^1\)H NMR at 5.22 and 5.32 ppm (\(J=13.4\) Hz) and shift of \(\beta\)-lactam carbonyl absorption in IR to 1770 cm\(^{-1}\). This compound gave all required spectral data including HRMS.

Compound 128 was activated by treatment with diphenylchlorophosphate and diisopropylethylamine (DIPEA). The in situ reaction of the resultant enolphosphosphate with N-acetylaminoethanethiol71 and DIPEA gave 137 in 36% yield. (Fig. 10). Compound 137 was obtained as a yellowish foam and gave all required spectral data to support its structure; IR: 3334 (broad, NH), 1773 (C=O, \(\beta\)-lactam), 1702 (COOR), 1660 (CONH), 1520 and 1340 (NO\textsubscript{2}) cm-1; \(^1\)H NMR \(\delta\): 0.97 (3H, t, J=7.4 Hz, \(CH_3\)CH\(_2\)), 1.81-2.21 (5H, m overlapping with s, \(CH_2\)CH\(_3\), \(CH_3\)CO), 2.85-3.15 (3H, m, \(CH_2\)S, \(CH_A\)CH\(_B\)CH\(_X\)N), 3.30-3.60 (6H, m with overlapping s, \(CH_3\)O, \(CH_2\)N, \(CH_A\)CH\(_B\)CH\(_X\)N), 4.03 (1H, t, J=9.3 Hz, CHN), 5.18 (1H, d, J=14.0 Hz, \(CH_A\)CH\(_B\)PNB), 5.46 (1H, d, J=13.9 Hz, \(CH_A\)CH\(_B\)PNB), 7.60 (2H, d, J=8.9 Hz, PNB), 8.17 (2H, d, J=8.8 Hz, PNB); \(^{13}\)C NMR \(\delta\): 7.4 (CH\(_3\)), 22.9 (CH\(_2\)), 23.2 (CH\(_3\)CO), 31.9 (CH\(_2\)), 35.1 (CH\(_2\)), 39.8 (CH\(_2\)), 52.5 (CH\(_3\)O), 60.4 (CHN), 65.0 (CH\(_2\)), 80.3 (C), 123.5 (C=C), 123.7 (CH, PNB), 128.0 (CH, PNB), 143.2 (C, PNB), 147.5 (C=C), 150.4 (C), 160.8 (C=O), 170.6 (C=O), 176.8 (C=O); MS(Cl): 464 (M\(^{+}\)+1, 1); HRMS for \(C_{20}H_{25}O_6N_3S\) (M\(^{+}\)-CO).

\[
\begin{align*}
\text{a} & : (\text{PhO})_2\text{POCl, DIPEA, MeCN, 0 }^\circ\text{C;} \\
\text{b} & : \text{HSCH}_2\text{CH}_2\text{NHCOCH}_3, \text{DIPEA; 0 }^\circ\text{C to 25 }^\circ\text{C}
\end{align*}
\]

Final deprotection of PNB group of 137 was carried out by hydrogenation using Pd-C(10\%) in aqueous THF. Conversion to the

71 Shinkai, I.; Liu, T.; Reamer, R.; Stetzinger, M. Synthesis 1980, 924.
Fig. 10. 1H NMR spectrum of 137
sodium salt of 58 and lyophilization gave a brownish grey solid. The 1H NMR spectrum indicated the presence of 58; 1H NMR (300 MHz, D$_2$O) δ: 0.98 (3H, t, J=7.4 Hz, CH$_3$CH$_2$), 1.87-2.11 (5H, m with overlapping s at 1.96, CH$_2$CH$_3$, CH$_3$CO), 2.94-3.02 (2H, m, CHHS, CHH), 3.22-3.44 (5H, m with overlapping s at 3.34, CH$_2$N, CH$_3$O), 4.09 (1H, t, J=9.2 Hz, CHN). However, attempted purification by reverse phase column chromatography failed since the product decomposed indicating 6-methoxy PS-5 58 is unstable compared to its epimer at C-6 and PS-5 2 itself. This indicated that a methoxy group at concave face of bicyclic carbapenems exerts destabilizing effect in PS-5 type compounds.

![Chemical structure](image)

137

58

a) H$_2$, Pd-C (10%), THF:H$_2$O (1:1)

Nitro-olefin 121 as an intermediate for 1-substituted carbapenems

As many examples of hetero-atom directed addition of nucleophiles to Michael acceptors are known,72 it appeared that the nitro-olefins such as 121 could be valuable intermediates for the preparation of the 1-substituted carbapenems. Hence the addition of methylmagnesium cuprate and vinylmagnesium cuprate were carried out.

a) MeMgBr, Cul, THF, -78 °C or CH₂=CHMgBr, Cul, THF, -78 °C

The addition of a methyl group gave a mixture (1:1) of diastereomers 138a and 138b. However, the addition of vinyl cuprate afforded only one isomer of 139. The relative configuration of 139 was established by X-ray crystallography experiment (Fig. 11, ORTEP diagram). This compound gave all the expected spectral data which are listed in the Experimental section. The observed stereoselectivity can be rationalized by invoking a Felkin Ahn type model shown below.

Fig. 11 ORTEP diagram of 139
Compound 139 could be a valuable precursor to 1-β-aminomethyl carbapenems such as 142. Similar 1-β-aminalkyl compounds have been reported in a series of communication by Bristol Chemists. This would require the conversion of the vinyl group to a carboxylic group and the reduction of nitro function to an amino group. Protection of the amino group should furnish 140. The conversion of 140 to 142 would involve homologation and annulation by Merck methodology.

Conclusion

Despite the considerable difficulties rendered by the methoxy group in these studies, the overall conversion of 118 to 58 was effected in ten steps. The yield in this conversion is low mainly due to the poor yield in the CAN reaction of β-ketoester 135. The preparation of 121 indicates similar cyclization to 6-methoxy-7-epithienamycin should be possible. This would require further optimization experiments or transposing the difficult steps in the synthetic sequence. An interesting feature of the above sequence is that the intermediate 136 was obtained with retention of the cis relationship of the C-4 substituent with C-3 methoxy group observed in the 2+2 cycloaddition reaction. It also allowed us to establish the potential utility of nitromethane as a formyl dianion synthon in the preparation of carbapenem intermediates. Surprisingly, the 6-methoxy PS-5 58 is unstable compared to its epimer and PS-5 2 itself. As a result the antibacterial activity of 58 could not be evaluated.
EXPERIMENTAL SECTION

General techniques

The general techniques described in Chapter 2 and 3 also apply in the following description. Trimethylsilyl chloride was distilled from CaH₂ under nitrogen just before use. Benzaldehyde and methane-sulfonyl chloride were distilled before use. DIPEA and 2,6-lutidine were distilled from CaH₂ and stored over 4Å molecular sieves. Benzyl and ethyl triphenylphosphoranylidineacetates were prepared from corresponding bromoacetates and triphenylphosphate. NBS was purified by recrystallization from water. Triethyl phosphite was dried using sodium, distilled and used immediately. Benzyl nitropropionate was prepared from a suitable acid chloride and benzyl alcohol in the absence of bases such as TEA.

4-Acetyl-3-t-butyldimethylsilyloxyethyl-3-methoxy-2-azetidinone (70)

CAN (1.30 g, 2.37 mmol) in 12 mL of H₂O was added dropwise to a solution of azetidinone 64⁷⁵ (301 mg, 0.74 mmol) in 20 mL of MeCN at -2 °C to 0 °C. After 30 min, the reaction mixture was diluted with EtOAc

and worked up in a usual manner. Purification of the crude product by column chromatography (1:4 EtOAc:hexanes) afforded 166 mg (75%) of 70 as a yellow oil; 1H NMR (300 MHz) δ: 0.10 (3H, s, SiCH$_3$), 0.11 (3H, s, SiCH$_3$), 0.89 (9H, s, t-Bu), 1.29 (3H, d, J=6.4 Hz, CH$_3$CH), 2.18 (3H, s, CH$_3$CO), 3.45 (3H, s, OCH$_3$), 4.19 (1H, q, J=6.4 Hz, OCHCH$_3$), 4.32 (1H, s, CHN), 6.20 (1H, broad s, NH); MS(Cl): 302 (M$^+$+1, 7), 274 (M$^+$+1-28, 7), 270 (M$^+$+1-32, 100), 258 (M$^+$-43, 6), 244 (M$^+$-57, 20).

4-Acetyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (72)

About 1 g of 4Å molecular sieves was added to a solution of 4-(1-methyl-cinnamyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone 6576 (6.46 g, 20.2 mmol) in 250 mL of CH$_2$Cl$_2$ and 50 ml of MeOH. Ozone was passed through this solution at -78 °C until a bluish color appeared. DMS (ca. 5 mL) was added to the reaction mixture which was stirred overnight (-78 °C to 25 °C). After removal of the solvent the crude product was triturated with ether to yield 3.80 g (76%) of 72 as a solid; mp 124-125 °C; 1H NMR (300 MHz) δ: 2.20 (3H, s, CH$_3$CO), 3.53 (3H, s, CH$_3$O), 3.77 (3H, s, CH$_3$O), 4.58 (1H, d, J=5.4 Hz, CHN), 4.82 (1H, d, J=5.4 Hz, CHO), 6.86 (2H, d, J=9.1 Hz, PMP), 7.23 (2H, d, J=9.2 Hz, PMP); MS: 249 (M$^+$, 26), 221 (M$^+$-28, 1), 205 (M$^+$-44, 1), 190 (205-15+, 7), 178 (M$^+$-71, 24); HRMS calcd for C$_{13}$H$_{15}$NO$_4$ 249.0986, found 249.0993.

4-Acetoxy-3-methoxy-1-p-methoxyphenyl-2-azetidinone

(73)

Azetidinone 72 (6.00 g, 24.1 mmol) in 20 mL of C₂H₄Cl₂ was refluxed with 4 eq of MCPBA (16.6 g, 9.62 mmol) and a crystal of 2,6-di-t-butylphenol for 24 h. The reaction mixture was diluted with 40 mL of CH₂Cl₂ and washed consecutively with 5% NaHSO₃, 5% NaHCO₃ and brine. Purification of the crude product by column chromatography (1:4 EtOAc:hexanes) afforded 2.20 g (34%) of 73 as a white solid; mp 80-84 ºC; ¹H NMR (300 MHz) δ: 2.20 (3H, s, CH₃CO), 3.58 (3H, s, CH₃O), 3.80 (3H, s, CH₃O), 4.73 (1H, d, J=3.5 Hz, CHN), 6.53 (1H, d, J=3.5 Hz, CHO), 6.88 (2H, d, J=9.1 Hz, PMP), 7.37 (2H, d, J=9.2 Hz, PMP); MS: 249 (M⁺, 26), 221 (M⁺-28, 1), 205 (M⁺-44, 1), 190 (205-15⁺, 7), 178 (M⁺-71, 24); HRMS calcd for C₁₃H₁₅NO₄ 265.0948, found 265.0946.

4-Bromoacetyl-3-t-butyldimethylsilyloxyethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (78)

TMSCl (6 mL, 47.3 mmol) followed by a solution of 64 (1.60 g, 3.93 mmol) in 20 mL of THF was added to 0.84 mmol of LDA in 20 mL of THF at -78 ºC over 15 min. The reaction mixture was stirred for an additional 1 h. 10% Bromine in THF was added dropwise over 45 min till a slight yellowish color persisted. After 10 min, the reaction mixture
was worked up in the usual manner using EtOAc as a solvent. Purification of the crude product by column chromatography (1:10 EtOAc:hexanes) gave 356 mg (19%) of 78 as a white solid (Yield was 25% on a 400 mg scale bromination); 1H NMR (300 MHz) δ: 0.10 (3H, s, SiCH$_3$), 0.11 (3H, s, SiCH$_3$), 0.84 (9H, s, t-Bu), 1.28 (3H, d, J=6.4 Hz, CH$_3$CH), 3.52 (3H, s, OCH$_3$), 3.77 (3H, s, OCH$_3$), 3.87 (1H, d, J=11.7 Hz, CH$_2$HCO), 4.12 (1H, d, J=11.7 Hz, CH$_2$HCO), 4.28 (1H, q, J=6.4 Hz, OCHCH$_3$), 5.15 (1H, s, CHN), 6.84 (2H, d, J=9.1 Hz, PMP), 7.24 (2H, d, J=9.1 Hz, PMP); MS: 487 (M$^+$+2, 4), 485 (M$^+$, 4), 428 (M$^+$-57, 38), 400 (M$^+$-28-57, 3), 336 (M$^+$-149, 7).

3-t-Butyldimethylsilyloxyethyl-3-methoxy-1-p-methoxyphenyl-4-vinyl-2-azetidinone (79)

NaBH$_4$ (16 mg, 0.44 mmol) was added to a solution of bromo compound 78 (113 mg, 0.23 mmol) in 2 mL of CH$_2$Cl$_2$ and 8 mL of EtOH. After stirring for 1.25 h, the reaction mixture was acidified to pH 3 by adding 10% HCl and extracted with 10 mL of CH$_2$Cl$_2$ twice. The combined organic layer was washed with 5% NaHCO$_3$ and brine respectively. The crude product, obtained in quantitative yield after removal of the solvent, was used as such in the next step without further purification.

MsCl (0.02 mL, 0.258 mmol) and TEA (0.04 mL, 0.287 mmol) were sequentially added to a solution of crude bromohydrin obtained as described above (103 mg, 0.211 mmol) in 10 mL of CH$_2$Cl$_2$ and the
reaction mixture was stirred for 1.5 h. Usual workup gave 103 mg (86%) of a bromomesylate.

The bromomesylate obtained (93 mg, 0.165 mmol), NaI (0.375 g, 2.50 mmol) and Zn (165 mg, 2.52 mmol) was mixed with 15 mL of acetone:DMF (1:1) and the mixture was refluxed for 10 h. Purification of the crude compound by column chromatography (1:10 EtOAc: hexanes) gave 41 mg (45% overall yield from 78) of 79; 1H NMR (300 MHz) δ: 0.04 (3H, s, SiCH$_3$), 0.05 (3H, s, SiCH$_3$), 0.76 (9H, s, t-Bu), 1.30 (3H, d, J=6.4 Hz, CH$_3$CH), 3.60 (3H, s, OCH$_3$), 3.76 (3H, s, OCH$_3$), 4.14 (1H, q, J=6.3 Hz, OCH$_2$CH$_3$), 4.55 (1H, d, J=7.5 Hz, CHN), 5.39-5.46 (2H, m, CH$_2$=CH), 5.98 (1H, ddd, J=7.4, 10.3 and 17.4 Hz, CH$_2$=CH), 6.82 (2H, d, J=9.1 Hz, PMP), 7.36 (2H, d, J=9.2 Hz, PMP); MS: 391 (M$^+$, 5), 359 (M$^+$-32, 0.5), 334 (M$^+$-57, 27), 185 (M$^+$-57-149, 52), 161 (M$^+$-230, 68).

3-t-Butyldimethylsilylethyl-4-(2'-hydroxy)ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (80)

![Chemical Structure]

Olefin 79 (158 mg, 0.404 mmol) in 10 mL of THF was cooled to 0 °C and BH$_3$.THF (1M, 0.2 mL, 0.2 mmol) was added by syringe. The reaction mixture was stirred at 0 °C for 2 h and at room temperature for 1 h. A few drops of water, 0.5 mL of 3M NaOH and 0.1 mL of 30% H$_2$O$_2$ were added to the reaction mixture at 0 °C and heated in a water bath for 6 h. The purification of products by column chromatography (1:1 CH$_2$Cl$_2$:hexanes) afforded 80 mg (51%) of unreacted olefin, 15 mg (9%) of a regioisomeric alcohol and 20 mg (12%) of product 80; 1H NMR (300 MHz) δ: 0.08 (6H, s, CH$_3$SiCH$_3$), 0.84 (9H, s, t-Bu), 1.25 (3H, d, J=6.4
Hz, CH₃CH), 1.86-2.02 (1H, m, CH₂), 2.16-2.32 (1H, m, CH₂), 2.34-2.40
(1H, broad t, OH), 3.62-3.82 (8H, m, with overlapping 2s at 3.72 and
3.77, OCH₃, OCH₃, OCH₂), 4.21-4.26 (2H, m, CHO, CHN), 6.86 (2H, d, J=9.0
Hz, PMP), 7.33 (2H, d, J=9.1 Hz, PMP); MS: 409 (M⁺, 9), 394 (M⁺-15, 1),
352 (M⁺-57, 99), 320 (352-32⁺, 24), 260 (M⁺-149, 2).

3-t-Butyldimethylsilyloxyethyl-3-methoxy-4(1'-oxo-3'-
phenyl-2'-propene)-1-p-methoxyphenyl-2-azetidinone (81)

1.1 Eq of LDA (prepared from 1.1 mL of DA and 2.7 mL of n-BuLi,
2.48 M) was added by cannula to a solution of 64 (2.50 g, 6.15 mmol) in
50 mL of THF at -78 °C. After 10 min, benzaldehyde (0.65 mL, 6.40
mmol) was added to the reaction mixture which was stirred for 20 min
and quenched with satd NH₄Cl at -78 °C. Extraction of the product with
EtOAc and purification of the resultant impure product by column
chromatography (1:4 EtOAc:hexanes) gave 2.65 g (83%) of an adduct.

The aldol, obtained above, was refluxed in benzene in the
presence of a catalytic amount of toluene sulfonic acid for 20 h to yield
2.45 g (96%) of 81 as an oil; ¹H NMR (300 MHz) δ: 0.10 (3H, s, CH₃Si),
0.11 (3H, s, CH₃Si), 0.80 (9H, s, t-Bu), 1.35 (3H, d, J=6.3 Hz, CH₃CH), 3.50
(3H, s, OCH₃), 3.76 (3H, s, OCH₃), 4.26 (1H, q, J=6.3 Hz, OCH(CH₃), 4.94
(1H, s, CHN), 6.83 (2H, d, J=9.1 Hz, PMP), 6.93 (1H, d, J=16.1 Hz,
CH=CHPh), 7.28 (2H, d, J=9.1 Hz, PMP), 7.34-7.41 (3H, m, Ph), 7.54-7.57
(2H, m, Ph), 7.73 (1H, d, J=16.1 Hz, CH=CHPh); MS: 495 (M⁺, 10), 480

200
(M⁺-15, 0.7), 438 (M⁺-57, 55), 410 (M⁺-57-28, 3), 266 (M⁺-229, 10); HRMS calcd for C₂₈H₃₇O₅NSi 495.2448, found 495.2460.

3-t-Butyldimethylsilyloxyethyl-4-(1'-hydroxy-3'-phenyl-2'-propen-1'-yl)-1-p-methoxyphenyl-2-azetidinone (82)

A solution of the α,β-unsaturated ketone 81 (2.45 g, 4.95 mmol) in 50 mL of EtOH was treated with 1.5 eq of NaBH₄ in the presence of a catalytic amount of CeCl₃⁷⁷ (0 °C to 25 °C, 20 h). Then the reaction mixture was neutralized by adding about 2 g of Amberlite and filtered. The residue obtained after concentration of the filtrate was dissolved in EtOAc and washed with H₂O twice. Purification of the crude product by column chromatography (1:2 EtOAc:hexanes) afforded 2.30 g (93%) of 82; ¹H NMR (300 MHz) δ: 0.07+0.08 (6H, 2s, CH₃SiCH₃), 0.85+0.90 (9H, 2s, t-Bu), 1.22+1.26 (3H, 2d, J=6.4 Hz, CH₃CH), 3.74+3.76 (3H, 2s, OCH₃), 3.75+3.80 (3H, 2s, OCH₃), 4.22-4.29 (2H, m, CHO, CHN), 4.69-4.34 (1H, s+broad s, CHO), 6.23 (1H, dd, J=6.3, 16.0 Hz, CH=CHPh), 6.56 (1H, dd, J=1.4, 16.1 Hz, CH=CHPh), 6.79-6.85 (2H, m, PMP), 7.21-7.44 (7H, m, Ph, PMP); MS: 497 (M⁺, 11), 482 (M⁺-15, 1), 440 (M⁺-57, 18), 408 (M⁺-57-32, 6), 336 (M⁺-161, 100); HRMS calcd for C₂₈H₃₉O₅NSi 497.2596, found 497.2591.

3-t-Butyldimethylsilyloxyethyl-4-methanesulfonyloxy-methyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (83)

Aldehyde 63 was reduced with NaBH₄ to give an alcohol. The alcohol, thus obtained, (3.50 g, 8.86 mmol) was dissolved in 50 mL of THF. MsCl (0.75 mL, 9.69 mmol) and TEA (1.5 mL, 10.8 mmol) were sequentially added to the solution of alcohol at 0 °C. After stirring for 30 min, the reaction mixture was worked up in a usual manner using CH₂Cl₂ as a solvent. Purification of the crude product by column chromatography (1:4 EtOAc:hexanes) gave 3.80 g (91%) of mesylate 83 as an oil; ¹H NMR (300 MHz) δ: 0.06 (6H, s, CH₃SiCH₃), 0.81 (9H, s, t-Bu), 1.25 (3H, d, J=6.4 Hz, CH₃CH), 2.93 (3H, s, OSO₂CH₃), 3.66 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.12 (1H, q, J=6.4 Hz, OCHCH₂), 4.35-4.45 (2H, m, CH₂O), 4.56 (1H, dd, J=3.4, 10.6 Hz, CHN), 6.86 (2H, d, J=9.2 Hz, PMP), 7.41 (2H, d, J=9.2 Hz, PMP); MS: 473 (M⁺, 6), 458 (M⁺-15, 1), 416 (M⁺-57, 80), 388 (416-28⁺, 4), 267 (416-149⁺, 34).

3-t-Butyldimethylsilyloxyethyl-4-iodomethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (86)

The mesylate 83 (2.80 g, 6.08 mmol) was treated with NaI (2.73 g, 18.2 mmol) in 25 mL of refluxing acetone for 18 h. The reaction

78 see Chapter 2, p 64.
mixture was diluted with 50 mL of CH₂Cl₂, the precipitate was removed by filtration and the filtrate was evaporated in vacuum. The residue was dissolved in 25 mL of CH₂Cl₂ and successively washed with 5% NaHSO₃, 5% NaHCO₃ and water. The crude product thus obtained, was purified by column chromatography (1:5 EtOAc:hexanes) to afford 2.30 g (79%) of 86; ¹H NMR (60 MHz) δ: 0.00 (6H, s, CH₃SiCH₃), 0.70 (9H, s, t-Bu), 1.30 (3H, d, J=6.0 Hz, CH₃CH), 2.85-3.50 (2H, m, CH₂I), 3.70 (6H, s, OCH₃), 3.90-4.50 (2H, m, CHO, CHN), 6.75 (2H, d, J=10 Hz, PMP), 7.30 (2H, d, J=10 Hz, PMP).

3-t-Butyldimethyldisilyloxyethyl-4-methanesulfonyloxy-methyl-3-methoxy-2-azetidinone (84)

The mesylate 83 (538 mg, 1.14 mmol) was cleaved with CAN following a procedure as described for the preparation of 70 to yield 232 mg (55%) of 84 as an oil; ¹H NMR (60 MHz, contains EtOAc) δ: 0.00 (6H, s, CH₃SiCH₃), 0.85 (9H, s, t-Bu), 1.20 (3H, d, J=6.0 Hz, CH₃CH, overlapping with H₂O), 3.00 (3H, s, OSO₂CH₃), 3.55 (3H, s, OCH₃), 3.80-4.40 (4H, m, CHN, CHO, CH₂O), 6.60 (1H, broad s, NH).
3-t-Butyldimethylsilyloxyethyl-4-iodomethyl-3-methoxy-2-azetidinone (87)

Mesylate 84 (232 mg, 0.632 mmol) was treated with NaI (317 mg, 2.1 mmol) in 8 mL of acetone at reflux temperature for four days. Removal of the solvent from the reaction mixture afforded a crude product which was purified by column chromatography (1:4 EtOAc:hexanes) to afford 133 mg (53%, yield in this reaction is inconsistent due to the formation of a non-β-lactam product) of iodide 87 as an oil; ¹H NMR (300 MHz) δ: 0.05 (3H, s, CH₃Si), 0.06 (3H, s, CH₃Si), 0.86 (9H, s, t-Bu), 1.24 (3H, d, J=6.4 Hz, CH₃CH), 3.20-3.23 (2H, m, CH₂I), 3.60 (3H, s, OCH₃), 3.98 (1H, dd, J=5.2, 9.0 Hz, CHN), 4.11 (1H, q, J=6.4 Hz, CHO), 6.13 (1H, broad s, NH); MS(Cl): 400 (M⁺+1, 6), 384 (M⁺-15, 15), 372 (M⁺+1-28, 94), 342 (M⁺-57, 12), 231 (M⁺+1-169, 2).

1-t-Butyldimethylsilyl-3-t-butyldimethylsilyloxyethyl-4-methanesulfonyloxyethyl-3-methoxy-2-azetidinone (85)

The crude mesylate 84 (230 mg, 0.478 mmol) in 10 mL of CH₂Cl₂ was treated with 2,6-lutidine (0.11 mL, 0.94 mmol) and TBDMSOTf (0.17 mL, 0.74 mmol) at 0 °C. The reaction mixture was worked up in a usual manner to give a crude product which was purified by column chromatography (1:4 EtOAc:hexanes) to afford 185 mg (61%) of 85 as an
oil; 1H NMR (300 MHz) δ: 0.05 (3H, s, CH$_3$Si), 0.06 (3H, s, CH$_3$Si), 0.24 (3H, s, CH$_3$Si), 0.25 (3H, s, CH$_3$Si), 0.87 (9H, s, t-Bu), 0.96 (9H, s, t-Bu), 1.21 (3H, d, J=6.5 Hz, CH$_3$CH), 2.99 (3H, s, OSO$_2$CH$_3$), 3.58 (3H, s, OCH$_3$), 3.76-3.82 (1H, m, CHN), 4.08-4.24 (2H, m, CHO, CH$_2$O), 4.36-4.42 (1H, m, CH$_2$O); MS(Cl): 482 (M$^+$+1, 74), 467 (M$^+$+1-15, 1), 454 (M$^+$+1-28, 3), 424 (M$^+$-57, 14), 350 (M$^+$-131, 70).

1-t-Butyldimethylsilyl-3-t-butyldimethylsilyloxyethyl-4-iodomethyl-3-methoxy-2-azetidinone (88)

The iodide 87 (190 mg, 0.476 mmol) was N-silylated as described above to yield 236 mg (92%) of 88 as a brownish oil; 1H NMR (60 MHz) δ: 0.15 (6H, s, CH$_3$Si), 0.25 (3H, s, CH$_3$Si), 0.30 (3H, s, CH$_3$Si), 0.95 (9H, s, t-Bu), 1.00 (9H, s, t-Bu), 1.35 (3H, d, J=6.0 Hz, CH$_3$CH), 3.10-3.30 (2H, m, CH$_2$), 3.60 (3H, s, OCH$_3$), 3.80-4.15 (2H, m, CHN, CHO).

3-Bromocinnamyl-6-(1'-t-butyldimethylsilyloxy)ethyl-6-meethoxy-2,2-bismethylsulfonyl-2-oxo-4-azabicyclo[2.3]-heptane (96)

The sulfone 95 (183 mg, 0.50 mmol) was added to the solution of mesylate 84 (168 mg, 0.45 mmol) in 10 mL of THF. Powdered KOH
(28.5 mg, 0.51 mmol) was also added and the mixture was stirred for 3 h. The reaction mixture was washed with satd NH₄Cl and the organic layer was extracted with EtOAc. Purification of the crude product by column chromatography (1:4 EtOAc:hexanes) afforded 122 mg (42%) of 96 [When the reaction was carried out for the longer reaction time (18 h) the yield of bicyclic β-lactam 96 was 66% and about 18% of uncyclized Michael adduct was also isolated.]; ¹H NMR (300 MHz) δ: 0.07 (3H, s, CH₃Si), 0.08 (3H, s, CH₃Si), 0.88 (9H, s, t-Bu), 1.29 (3H, d, J=6.4 Hz, CH₃CH), 2.86 (1H, dd, J=9.0, 14.2 Hz, CH₃H₆), 3.06 (1H, dd, J=5.2, 14.7 Hz, CH₂H₅), 3.30 (3H, s, CH₃SO₂), 3.34 (3H, s, CH₃SO₂), 3.62 (3H, s, OCH₃), 4.28-4.34 (2H, m, CHN, OCH/CH₃), 4.35-4.45 (2H, m, CH₂O), 5.77 (1H, s, NCH-3), 7.33-7.41 (3H, m, Ph), 7.47 (1H, s, C=CHPh), 7.60-7.63 (2H, m, Ph); MS: 638 (M⁺+1, 0.5), 610 (M⁺+1-28, 21), 580 (M⁺-57, 1), 558 (M⁺-80, 0.3), 530 (558-28, 3).

3-Hydroxyethyl-3-methoxy-4-toluenesulfonyloxymethyl-1-p-methoxyphenyl-2-azetidinone (101)

The tosylate 101 was obtained in 96% (900 mg) yield by treatment of corresponding TBDMS derivative⁷⁹ (1.19 g, 2.16 mmol) with 1 mL of 6N HCl in 25 mL of MeOH at 25 °C for 19 h; white solid; mp 110-112 °C; ¹H NMR (300 MHz) δ: 1.23 (3H, overlapping dd, J=6.6,

⁷⁹ This compound is a mixture of diastereomers at C-3 and hydroxyethyl carbon. This compound was prepared from 65 via a sequence of reactions involving LDA/acetaldehyde, TBDMSOTf/2,6-lutidine/ 0 °C to 25 °C, O₃/NaBH₄/-78 °C to 25 °C, and TsCl/pyridine/0 °C.
6.4 Hz, CH₃CH), 1.80+2.08 (1H, 2d, J=5.6, 3.0 Hz, OH), 2.42 (3H, s, CH₃Ph), 3.54+3.60 (3H, 2s, OCH₃), 3.78+3.79 (3H, 2s, OCH₃), 4.21-4.40 (4H, m, CHO, CHN, CH₂O), 6.82-6.85 (2H, m, PMP), 7.26-7.34 (4H, m, PMP, tol), 7.68-7.71 (2H, m, tol); MS: 435 (M⁺, 13), 407 (M⁺-28, 2), 319 (M⁺-116, 2), 263 (M⁺-265, 0.4), 255 (M⁺-149-31, 9); HRMS calcd for C₂₁H₂₅NO₇S 435.1349, found 435.1357.

3-(1-S-Phenylthioacetoxy)ethyl-3-methoxy-4-toluene-sulfonyloxymethyl-1-p-methoxyphenyl-2-azetidinone (97)

A solution of oxalyl chloride (0.34 mL, 3.90 mmol) in about 2 mL of CH₂Cl₂ was added dropwise to a solution of DMF (0.28 mL, 3.56 mmol) in 2 mL of CH₂Cl₂ was cooled to 0 °C. [CAUTION: CO is formed in this step.] After 10 min, a solution of phenylthioacetic acid (544 mg, 3.24 mmol) in 10 mL of CH₂Cl₂ was added to the DMF/oxalyl chloride adduct obtained above. The reaction mixture thus obtained, was added to a mixture of 101 (900 mg, 2.16 mmol) and TEA (0.6 mL, 4.31 mmol) in 50 mL of CH₂Cl₂ at 0 °C. [CAUTION: Extra outlets in reaction vessel were added to avoid undesirable consequences due to the development of pressure.] The reaction mixture was worked up in a usual manner to give a crude product which was purified by column chromatography (1:8 EtOAc:hexanes) to afford 312 mg (26%) of 97; ¹H NMR (300 MHz) δ: 1.86-1.35 (3H, 2 sets of d, J=6.6 Hz, 2 sets of d, J=6.4 Hz, CH₃CH), 2.41 (3H, 2s, CH₃Ph), 3.45-3.65 (5H, m, COCH₂S, OCH₃), 4.21-4.31 (3H, m,
CHN, CH$_2$OTs), 5.32-5.58 (1H, 3 sets of q, one q has J=6.6 Hz, CHO), 6.81-6.86 (2H, m, PMP), 7.19-7.37 (10H, m, Ph, Tol), 7.66-7.71 (2H, m, PMP); MS: 586 (M$^+$+1, 26), 570 (M$^+$-15, 0.5), 476 (M$^+$-109, 6), 463 (M$^+$+1-123, 14), 418 (M$^+$-168, 74);

3-t-Butylidimethylsilyloxyethyl-4-(2'-trimethylsilyl)-glycidyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (102)

s-BuLi (0.85 mL, 1.21 mmol) was added by syringe to a solution of chloromethyltrimethylsilane (0.095 mL, 1.10 mmol) in 10 mL of THF at -78 °C. After 10 min, TMEDA (0.18 mL, 1.21 mmol) was added and the reaction mixture was stirred for an additional 1.5 h. A solution of aldehyde 63 (393 mg, 1.0 mmol) in 5 mL of THF was added by cannula. The reaction mixture was stirred for 18 h while warming it slowly to 25 °C. Usual work up of the reaction mixture gave 0.529 g of a crude product which was purified by means of a chromatotron (1:10 EtOAc:hexanes) to afford 65 mg (14%) of 102a, 103 mg (22%) of 102b and 60 mg (15%) of unreacted aldehyde 63.

Isomer A 102a: 1H NMR (300 MHz) δ: 0.04 (3H, s, CH$_3$Si), 0.05 (3H, s, CH$_3$Si), 0.07 (9H, s, TMS), 0.81 (9H, s, t-Bu), 1.19 (3H, d, J=6.3 Hz, CH$_3$CH), 2.20 (1H, d, J=3.7 Hz, OCHSi), 3.22 (1H, dd, J=3.7, 7.2 Hz, calcd using a ruler, CHO), 3.57 (1H, d, J=7.2 Hz, CHN), 3.63 (3H, s, OCH$_3$), 3.77 (3H, s, OCH$_3$), 4.20 (1H, q, J=6.3 Hz, OCHCH$_3$), 6.88 (2H, d, J=9.2 Hz, PMP), 7.57 (2H, d, J=9.2 Hz, PMP); MS: 479 (M$^+$, 6), 464 (M$^+$-15, 1), 422 (M$^+$-57 31), 330 (M$^+$-149, 1), 249 (M$^+$-230, 5).
Isomer B 102b: 1H NMR (300 MHz) δ: -0.02 (3H, s, CH$_3$Si), 0.03 (3H, s, CH$_3$Si), 0.20 (9H, s, TMS), 0.61 (9H, s, t-Bu), 1.43 (3H, d, J=6.3 Hz, CH$_3$CH), 2.43 (1H, d, J=5.4 Hz, OCHSi), 3.39 (1H, dd, J=5.3, 8.6 Hz, CHO), 3.66 (3H, s, OCH$_3$), 3.77 (3H, s, OCH$_3$), 3.82 (1H, d, J=8.6 Hz, CHN), 4.07 (1H, q, J=6.3 Hz, OCHCH$_3$), 6.86 (2H, d, J=9.2 Hz, PMP), 7.58 (2H, d, J=9.1 Hz, PMP); MS: 479 (M$^+$, 6), 464 (M$^+$-15, 1), 422 (M$^+$-57, 23), 330 (M$^+$-149, 1), 249 (M$^+$-230, 5).

4-(2'-Benzyloxy carbonyl vinyl)-3-t-butyldimethylsilyloxyethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (105)

[Structure diagram]

Aldehyde 63 (1.60 g, 4.07 mmol) and benzyl triphenylphosphoranylidineacetate (2.90 g, 6.10 mmol) was refluxed in 50 mL of C$_2$H$_4$Cl$_2$ for 24 h. Usual work up of the reaction mixture afforded a crude product which was purified by column chromatography (1:10 EtOAc:hexanes) to give 2.00 g (84%) of 105 as a colorless oil; 1H NMR (300 MHz, trans isomer) δ: 0.03 (3H, s, CH$_3$Si), 0.04 (3H, s, CH$_3$Si), 0.74 (9H, s, t-Bu), 1.30 (3H, d, J=6.4 Hz, CH$_3$CH), 3.55 (3H, s, OCH$_3$), 3.76 (3H, s, OCH$_3$), 4.12 (1H, q, J=6.3 Hz, CHO), 4.71 (1H, dd, J=1.2, 6.5 Hz, CHN), 5.17 (2H, apparent d, J=1.6 Hz, CH$_2$Ph), 6.12 (1H, dd, J=1.3, 15.8 Hz, CH=CHCOOR), 6.82 (2H, d, J=9.2 Hz, PMP), 7.08 (1H, dd, J=6.5, 15.9 Hz, CH=CHCOOR), 7.28 (2H, d, J=9.2 Hz, PMP), 7.32-7.36 (5H, m, Ph); MS: 525 (M$^+$, 2), 494 (M$^+$-31, 1), 468 (M$^+$-57, 23), 436 (468-32+, 3), 295 (M$^+$-230, 12).
3-t-Butyldimethylsilyloxyethyl-4-(2'-ethyloxycarbonylvinyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (108)

Aldehyde 63 (1.40 g, 3.56 mmol) was treated with ethyl triphenylphosphoranylidenacetate (1.86 g, 5.34 mmol) in refluxing THF for 20 h to yield 1.50 g (91%) of 108 as an oil; 1H NMR (300 MHz, trans isomer) δ: 0.04 (3H, s, CH₃Si), 0.05 (3H, s, CH₃Si), 0.75 (9H, s, t-Bu), 1.25-1.32 (6H, m, CH₃CH₂, CH₃CH), 3.56 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.13 (1H, q, J=6.4 Hz, CHCH₃), 4.19 (2H, q, J=7.1 Hz, CH₂O), 4.71 (1H, dd, J=1.2, 6.5 Hz, CHN), 6.06 (1H, dd, J=1.3, 15.8 Hz, CH=CHCOOR), 6.84 (2H, d, J=9.2 Hz, PMP), 7.04 (1H, dd, J=6.5, 15.8 Hz, CH=CHCOOR), 7.30 (2H, d, J=9.1 Hz, PMP); MS: 463 (M⁺, 4), 432 (M⁺-31, 2), 406 (M⁺-57, 56), 374 (406-32⁺, 7), 257 (406-149⁺, 61).

3-t-Butyldimethylsilyloxyethyl-4-(2'-hydroxycarbonylvinyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (106)

Compound 105 (2.00 g, 3.81 mmol) in 50 mL of EtOH and 10 mL of cyclohexene was mixed with 1.8 g of Pd-C (10%) and sonicated in an ultrasound bath for 3 h. The reaction mixture was filtered through a celite pad and the filtrate was concentrated in vacuum to give 1.20 g (72%) of 106; 1H NMR (300 MHz) δ: 0.04 (3H, s, CH₃Si), 0.05 (3H, s, CH₃Si), 0.75 (9H, s, t-Bu), 1.30 (3H, d, J=6.4 Hz, CH₃CH), 3.55 (3H, s,
OCH₃), 3.77 (3H, s, OCH₃), 4.14 (1H, q, J=6.4 Hz, CH₃CHO), 4.73 (1H, dd, J=1.1, 6.6 Hz, CHN), 6.07 (1H, d, J=15.7 Hz, HC=CHCOO), 6.84 (2H, d, J=9.1 Hz, PMP), 7.11 (1H, dd, J=7.5, 15.9 Hz, HC=CHCOO), 7.29 (2H, d, J=9.1 Hz, PMP); MS: 435 (M⁺, 6), 420 (M⁺-15, 1), 407 (M⁺-28, 1), 378 (M⁺-57, 55), 229 (M⁺-57-149, 61); HRMS calcd for C₂₂H₃₃O₆NSi 435.3521, found 435.2103.

3-t-Butyldimethylsilyloxyethyl-4-(2'-oxoethyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (103)

The carboxylic acid 106 (0.55 g, 1.26 mmol), DPPA (0.273 mL, 1.27 mmol) and TEA (0.176 mL, 1.26 mmol) were mixed in 20 mL of THF which was refluxed for 18 h. The reaction mixture was cooled to 25 °C and stirred with 10 mL of 10% HCl for 15 min. Extraction using EtOAc as a solvent and usual work up of the reaction mixture gave a crude product which was purified by column chromatography (1:9 EtOAc:hexanes) to give 120 mg (23%) of aldehyde 103; ¹H NMR (300 MHz) δ: 0.06 (3H, s, CH₃Si), 0.06 (3H, s, CH₃Si), 0.79 (9H, s, t-Bu), 1.28 (3H, d, J=6.4 Hz, CH₃CH), 2.90-2.93 (2H, m, CH₂CO), 3.63 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.18 (1H, q, J=6.4 Hz, CH₃CHO), 4.60 (1H, dd, J=3.5, 6.7 Hz, CHN), 6.85 (2H, d, J=9.1 Hz, PMP), 7.28 (2H, d, J=9.1 Hz, PMP), 9.80 (1H, broad s, CHO); MS: 407 (M⁺, 3), 392 (M⁺-15, 0.4), 350 (M⁺-57, 56), 230 (M⁺-177, 2), 201 (350-149+, 20).
3-t-Butyldimethylsilyloxyethyl-4-(2'-ethoxycarbonyl-ethyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (109)

The α,β-unsaturated ester 108 (386 mg, 0.83 mmol) was dissolved in about 20 mL of 99% EtOH and 45 mg of Pd-C (10%) was added. This mixture was hydrogenated at 40 psi for 6 h. After removal of the catalyst and the solvent, the crude product was purified by passing through a short column (1:10 EtOAc: hexanes) to give 384 mg (99%) of 109 as a colorless oil; 1H NMR (300 MHz) δ: 0.06 (6H, s, CH₃SiCH₃), 0.82 (9H, s, t-Bu), 1.19 (3H, d, J=6.4 Hz, CH₃CH), 1.25 (3H, t, J=7.1 Hz, CH₂CH₂), 1.82-1.98 (1H, m, CH₂), 2.22-2.52 (3H, m, CH₂CH₂CO), 3.67 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.07-4.20 (4H, m, CHO, CH₂O, CHN), 6.87 (2H, d, J=9.1 Hz, PMP), 7.40 (2H, d, J=9.1 Hz, PMP); MS: 465 (M⁺, 9), 450 (M⁺-15, 2), 408 (M⁺-57, 100), 316 (M⁺-149, 2), 235 (M⁺-230, 11); HRMS calcd for C₂₄H₃₉O₆NSi 465.3999, found 465.2534.

3-t-Butyldimethylsilyloxyethyl-3-methoxy-4-(3',3'-bis-phenylprop-2-enyl-1-p-methoxyphenyl-2-azetidinone (110)

Phenyllithium (1.8 M, 1.4 mL, 2.52 mmol) was added to a solution of ester 109 (472 mg, 1.02 mmol) in 20 mL of THF at -78 °C by a syringe. The reaction mixture was stirred for 20 h while allowing it to warm to 25 °C. Purification of the crude product by column chroma-
tography (1:4 EtOAc:hexanes) gave 262 mg (45%) of the corresponding diphenylalcohol derivative which was dehydrated by treatment with a catalytic amount of toluenesulfonic acid (ca. 10 mg) in refluxing toluene for 18 h to give 110 in 226 mg (40% overall yield from 109); \(^1H\) NMR (200 MHz) \(\delta\): 0.01 (3H, s, CH\(_3\)Si), 0.02 (3H, s, CH\(_3\)Si), 0.73 (9H, s, t-Bu), 1.26 (3H, d, J=6.4 Hz, CH\(_3\)CH), 2.41-2.53 (1H, m, CH\(_A\)H\(_B\)), 2.64-2.71 (1H, m, CH\(_A\)H\(_B\)), 3.67 (3H, s, OCH\(_3\)), 3.74 (3H, s, OCH\(_3\)), 4.00 (1H, dd, J=4.9, 9.1 Hz, CHN), 4.13 (1H, q, J=6.4 Hz, OCH\(_3\)CH), 6.14 (1H, dd, J=6.6, 8.8 Hz, CH=CPH\(_2\)), 6.72 (2H, d, J=9.2 Hz, PMP), 7.07 (2H, d, J=9.2 Hz, PMP), 7.12-7.43 (10H, m, Ph); MS: 557 (M\(^+\), 22), 542 (M\(^+\)-15, 2), 500 (M\(^+\)-57, 100), 472 (M\(^+\)-57-28, 3), 408 (M\(^+\)-149, 4); HRMS calcd for C\(_{34}\)H\(_{43}\)O\(_4\)N\(_2\)Si 557.2959, found 557.2950.

3-Ethyl-3-methoxy-4-(2-phenyl)ethyl-1-p-methoxy-phenyl-2-azetidinone (115)

![Chemical structure](image)

Azetidinone 114 (4.64 g, 13.8 mmol) was hydrogenated in 30 mL of EtOH in the presence of 400 mg of Pd-C(10%) at 40 psi for 18 h. Removal of the catalyst and the solvent from the reaction mixture afforded a crude product which was purified by column chromatography (1:4 EtOAc:hexanes) to yield 4.02 (87%) of 115 as an oil; \(^1H\) NMR (200 MHz) \(\delta\): 0.99 (3H, t, J=7.5 Hz, CH\(_3\)CH\(_2\)), 1.60-1.79 (1H, m, CH\(_2\)CH\(_3\)), 2.01-2.19 (3H, m, CH\(_2\)CH\(_3\), CH\(_2\)CH\(_2\)Ph), 2.46-2.62 (1H, m, CH\(_2\)CH\(_2\)Ph), 2.72-2.86 (1H, m, CH\(_2\)CH\(_2\)Ph), 3.62 (3H, s, OCH\(_3\)), 3.75 (3H, s, OCH\(_3\)), 3.83 (1H, dd, J=3.8, 8.7 Hz, CHN), 6.82 (2H, d, J=9.2 Hz, PMP), 7.16-7.31 (7H, m, Ph, PMP); MS: 339 (M\(^+\), 7), 311 (M\(^+\)-28, 0.4), 239 (M\(^+\)-100, 5), 190
(M+·149, 2), 162 (311-149+, 1); HRMS calcd for C21H25O3N 339.1833, found 339.1849.

3-Ethyl-3-methoxy-4-(2-oxo-2-phenyl)ethyl-1-p-methoxyphenyl-2-azetidinone (116)

Azetidinone 115 (4.0 g, 11.8 mmol) and NBS (2.2 g, 17.7 mmol) and a catalytic amount of AIBN was dissolved in 120 mL of dry CCl4. The reaction mixture was refluxed for 8 h and simultaneously irradiated by means of a lamp. The reaction mixture was diluted with dichloromethane and washed with 50 mL of water. The aq layer was extracted twice with 30 mL of EtOAc. Removal of the solvent from combined organic layer afforded a crude product which was purified by column chromatography (1:9 EtOAc:hexanes) to give 3.45 g (70%) of the bromo derivative of 115. Complete purification at this stage was difficult.

The benzylic bromide, obtained as described above, (3.43 g, 8.22 mmol) was treated with aq AgNO3 (1.58 g, 9.87 mmol) in acetone for 3 to 5 h in the dark. The crude product, obtained after removal of solvent and inorganic compounds, was purified by column chromatography (1:2 EtOAc:hexanes) to give 1.60 g (55%) of the corresponding alcohol.

The alcohol, prepared as described above, (1.60 g, 4.51 mmol) was oxidized with PCC (2.91 g, 13.53 mmol) in dry CH2Cl2 for 18 h. Removal of chromium residues and the solvent from the reaction mixture gave a crude product which was purified by column chromatography (1:4 EtOAc:hexanes) to afford 955 mg (60%) of 116 as a yellow oil; 1H NMR
(200 MHz) δ: 1.02 (3H, t, J=7.5 Hz, CH₃CH₂), 1.80-1.95 (1H, m, CH₂CH₃), 2.01-2.20 (1H, m, CH₂CH₃), 3.26 (1H, dd, J=3.6, 8.0 Hz, CH₃CHB CO), 3.50 (3H, s, OCH₃), 3.57 (1H, dd, J=8.3, 18.1 Hz, CH₃CHB CO), 3.75 (3H, s, OCH₃), 4.68 (1H, dd, J=3.6, 8.4 Hz, CHN), 6.85 (2H, d, J=9.1 Hz, PMP), 7.32 (2H, d, J=9.2 Hz, PMP), 7.39 (3H, m, Ph), 7.91-7.96 (2H, broad d, J=9.7 Hz, Ph); MS: 353 (M⁺, 9), 325 (M⁺-28, 4), 310 (325-15⁺, 2), 253 (M⁺-100, 4), 204 (M⁺-149, 1).

3-Ethyl-3-methoxy-4-(2-oxo-2-phenyl)ethyl-2-azetidinone (113)

The PMP moiety of ketone 116 (950 mg, 2.69 mmol) was cleaved using CAN as described in the preparation of 70. Purification of the crude product by column chromatography (1:2 EtOAc:hexanes) afforded 432 mg (65%) of 113 as a brown oil; ¹H NMR (200 MHz) δ: 0.97 (3H, t, J=7.5 Hz, CH₃CH₂), 1.70-1.85 (1H, m, CH₂CH₃), 2.01-2.14 (1H, m, CH₂CH₃), 3.28-3.33 (2H, m, CH₂CO), 3.52 (3H, s, OCH₃), 3.99 (1H, dd, J=5.0, 8.1 Hz, CHN), 6.18 (1H, broad s, NH), 7.41-7.57 (3H, m, Ph), 7.92-7.97 (2H, broad d, J=8.6 Hz, Ph); MS: 360 (M⁺-32, 8), 344 (M⁺-15, 7), 332 (M⁺+1-32, 100), 318 (M⁺-41, 4), 302 (M⁺-57, 6).
Allyl [3-ethyl-3-methoxy-4-(2-oxo-2-phenyl)ethyl-2-azetidinon-1-yl]-2-oxoethanoate (112)

\[
\begin{align*}
\text{OMe} & \\
\text{Ph} & \\
\text{C} & \\
\text{C} & \\
\text{C} & \\
\text{C} & \\
\end{align*}
\]

DIPEA (0.45 mL, 2.58 mmol) was added dropwise to a solution of ketone 113 (320 mg, 1.29 mmol) in 15 mL of CH₂Cl₂ at 0 °C. Allyloxalyl chloride (0.30 g, 2.03 mmol) in 2 mL of CH₂Cl₂ was added dropwise. The reaction mixture was stirred for 30 min and worked up in a usual manner. Purification of the crude product by column chromatography (1:6 EtOAc:hexanes) afforded 0.367 g (79%) of 112 as an oil; \(^1\)H NMR (200 MHz) δ: 1.06 (3H, t, J=7.5 Hz, CH₃CH₂), 1.90-2.20 (2H, m, CH₂CH₃), 3.41 (3H, s, OCH₃), 3.55-3.70 (2H, m, CH₂CO), 4.07-4.82 (3H, m, CHN, CH₂O), 5.85-6.10 (1H, m, HC=CH₂), 5.30-5.46 (2H, m, HC=CH₂), 7.40-7.60 (3H, m, Ph), 7.90-7.95 (2H, broad d, J=7.5 Hz, calcd by ruler, Ph); MS: 215 (M⁺-32, 2), 204 (M⁺-43, 7), 175 (204-29⁺, 2), 142 (M⁺-105, 0.3), 127 (142-15⁺, 6).
Allyl [3-ethyl-3-methoxy-4-(2-oxo-2-phenyl)ethyl-2-azetidinon-1-yl]-2-hydroxyethanoate (117)

This compound 117 was obtained by refluxing 112 with triethyl phosphite in toluene for 3 h after purification of the crude product by column chromatography (1:3 EtOAc:hexanes); \(^1\)H NMR (200 MHz) \(\delta\): 0.94 (3H, t, J=7.5 Hz, \(\text{CH}_3\text{CH}_2\)), 1.70-2.10 (2H, m, \(\text{CH}_2\text{CH}_3\)), 3.33-3.46 (2H, m, \(\text{CH}_2\text{CO}\)), 3.46+3.49 (3H, 2s, OCH\(_3\)), 4.12-4.45 (2H, m, CHN, HO), 4.68-4.80 (2H, m, \(\text{CH}_2\text{O}\)), 5.05-5.38 (2H, m, HC=CH\(_2\)), 5.48-5.92 (2H, m, CHO, HC=CH\(_2\)), 7.37-7.58 (3H, m, Ph), 7.90-7.94 (2H, m, Ph).

3-Ethyl-3-methoxy-1-p-methoxyphenyl-4-(2-nitrovinyl)-2-azetidinone (122)

TEA (0.88 mL, 6.32 mmol) was added to a solution of aldehyde 118\(^{80}\) (11.20 g, 42.4 mmol) in 65 mL of nitromethane and the reaction mixture was stirred at 25 °C for 6 h. Removal of solvent yielded a crude nitro-aldol adduct (dark red oil) which was taken to the next step without further purification.

\(^{80}\) see Chapter 2 p 62.
In another flask, freshly distilled methanesulfonylchloride (9.8 mL, 127 mmol) in 20 mL of dry CH$_2$Cl$_2$ was added dropwise to a solution of TEA (17.7 mL, 127 mmol) in 80 mL of dry CH$_2$Cl$_2$ at -78 °C. The crude nitro-aldol adduct was dissolved in 120 mL of dry CH$_2$Cl$_2$ (some 4Å molecular sieves were added to ensure moisture free conditions) and added dropwise to the methanesulfonylchloride and TEA mixture and stirred for 2 h (Yellow color appeared). After 10 min, the bath was removed and the reaction mixture was stirred for 35 min. The reaction mixture was recooled to -50 °C. TEA (17.7 mL, 127 mmol) was added and stirred for 1 h at -50 °C. The reaction mixture was warmed slowly to -10 °C over 7.5 h. Usual aqueous workup and purification of the crude product by column chromatography (1:4 EtOAc:hexanes) yielded 8.50 g (65%) of 122 as a yellow oil; IR: 1740-1770 (broad C=O), 1510-1540 and 1360 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHz) 8: 1.03 (3H, t, J=7.5 Hz, CH$_3$CH$_2$), 1.78-1.96 (1H, m, CH$_2$CH$_3$), 2.04-2.18 (1H, m, CH$_2$CH$_3$), 3.49 (3H, s, OCH$_3$), 3.76 (3H, s, OCH$_3$), 4.65 (1H, d, J=6.5 Hz, CHN), 6.85 (2H, d, J=8.9 Hz, PMP), 7.08 (1H, dd, J=0.9, 13.9 Hz, HC=CHNO$_2$), 7.22-7.35 (3H, m, HC=CHNO$_2$, PMP); MS: 306 (M$^+$, 15), 260 (M$^+$-46, 18), 232 (M$^+$-46-28, 17), 206 (M$^+$-100, 30), 149 (M$^+$-157, 100%); HRMS calcd for C$_{15}$H$_{18}$N$_2$O$_5$ 306.1213, found 306.1197.
3-t-Butyldimethylsilyloxyethyl-3-methoxy-1-p-methoxyphenyl-4-(2-nitro)vinyl-2-azetidinone (121)

The aldehyde $\text{C}_8\text{H}_{15}\text{O}_2\text{Si}$ (0.193 g, 0.491 mmol) was dissolved in 5 mL of nitromethane and 1 drop of TEA. The mixture was stirred for 9 h. The conversion to nitro-olefin was carried out in as described above. The reaction mixture was washed with saturated NH$_4$Cl and aq layer was extracted with EtOAc twice. The crude product was purified by column chromatography (1:10 EtOAc:hexanes) to yield 0.140 g (65%) of nitro-olefin 121 as a yellowish solid; mp: 109-110 °C; IR (KBr): 1743 (C=O), 1520 and 1349 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHz) δ: 0.04 (3H, s, CH$_3$Si), 0.06 (3H, s, CH$_3$Si), 0.76 (9H, s, t-Bu), 1.28 (3H, d, J=6.4 Hz, CH$_3$CH), 3.56 (3H, s, OCH$_3$), 3.77 (3H, s, OCH$_3$), 4.18 (1H, q, J=6.5 Hz, CHCH$_3$), 4.79 (1H, dd, J=1.1, 6.1 Hz, CHN), 6.85 (2H, d, J=9.0 Hz), 7.16 (1H, dd, J=1.1, 13.6 Hz, CH=CHNO$_2$), 7.25-7.38 (3H, dd, J=13.5, 5.8 Hz of CH=CHNO$_2$, overlapping with PMP); MS: 436 (M$^+$, 8), 421 (M$^+$-15, 81), 390 (M$^+$-46, 2), 379 (M$^+$-57, 90), 362 (M$^+$-46-28, 12); HRMS calcd for C$_{21}$H$_{32}$O$_6$N$_2$Si 436.1994, found 436.2012.

81 see Chapter 2, p 64.
4-(3'-Benzyloxycarbonyl-2'-nitro-1'-hydroxyprop-1'-yl)-3-ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (126)

TEA (0.18 mL, 1.32 mmol) was added to a mixture of aldehyde 118 (0.317 g, 1.20 mmol) and benzyl nitropropionate (0.504 g, 2.41 mmol) in 10 mL of MeCN at 25 °C. The reaction mixture was stirred for 18 h, then diluted with 10 mL of EtOAc and washed with 10% HCl followed by satd NaCl. The crude product, obtained, was purified by column chromatography (1:4 to 1:2 EtOAc:hexanes) to afford 280 mg (49%) of impure 126. Examination of 1H NMR spectrum showed an α,β-unsaturated ester derived from 126 as a major impurity. Impure 126 was used in next step without further purification.

4-(3'-Benzyloxycarbonyl-2'-nitroprop-1'-en-1'-yl)-3-ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (127)

Adduct 126 (275 mg, 0.58 mmol) in 10 mL of dichloromethane was added dropwise to a mixture of methanesulfonyl chloride (0.14 mL, 1.74 mmol) and TEA (0.25 mL, 1.79 mmol) at -78 °C. The reaction mixture was stirred and gradually warmed over a period of 1 h. TEA (0.25 mL, 1.79 mmol) was added to the reaction mixture which was stirred for 18 h at 0 °C to 25 °C. The crude product was purified by column chromatography (3:17:5 EtOAc:hexanes:CH₂Cl₂) to yield 30 mg

220
(11%) of 127 as a yellowish oil; IR: 1780 (C=O), 1560 and 1360 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 0.95-1.05 (3H, m, CH₃CH₂), 1.80-2.20 (2H, m, CH₂CH₃), 3.45+3.49 (3H, 2s, OCH₃), 3.74 (5H, broad s, OCH₃, CH₂CO), 4.45 (1H, d, J=8.6 Hz, CHN), 5.10-5.17 (2H, m with overlapping s, CH₂Ph), 6.81-6.87 (2H, m, PMP), 7.22-7.44 (8H, m, PMP, Ph, CH=CNO₂); MS (expanded Cl): 455 (M⁺+1, 100), 439 (M⁺-15, 17), 427 (M⁺-28, 30), 364 (M⁺+1-91, 10), 355 (M⁺+1-100, 2).

3-Ethyl-3-methoxy-1-p-methoxyphenyl-4-(2-nitroethyl)-2-azetidinone (132)

Nitro-olefin 122 (8.50 g, 27.8 mmol) was dissolved in 200 mL of 1,4-dioxane:EtOH (1:1) and cooled to 0 °C. Sodium borohydride (0.28 g, 7.8 mmol) was added in one portion. Vigorous effervescence ensued and yellow color faded. The reaction was complete after stirring for 1.5 h at 0 °C to 25 °C. Excess borohydride was quenched by adding 3-4 g of Amberlite. Amberlite was filtered off and the filtrate (pH 6) was concentrated in vacuum. Purification of the crude product by column chromatography (1:5 EtOAc: hexanes) gave 6.10 g (71%) of 132 as a yellow oil; IR: 1744 (C=O), 1513 and 1386 (NO₂) cm⁻¹; ¹H NMR (200 MHz) δ: 0.95 (3H, t, J=7.5 Hz, CH₃CH₂), 1.59-1.79 (1H, m, CH₂CH₃), 2.02-2.39 (2H, m, CH₂CH₃, CH₂CH₂NO₂), 2.62-2.80 (1H, m, CH₂CH₂NO₂), 3.58 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 3.97 (1H, dd, J=2.9, 10.1 Hz, CHN), 4.44-4.51 (2H, m, CH₂NO₂), 7.25 (2H, d, J=9.3 Hz, PMP), 7.31(2H, d, J=10.0 Hz, PMP); MS: 308 (M⁺, 16), 280 (M⁺-28, 3), 206 (M⁺-102, 15), 193 (M⁺-
115, 21), 149 (M⁺-159, 100); HRMS calcd for C₁₅H₂₀N₂O₅ 308.1354, found 308.1363.

3-Ethyl-3-methoxy-1-p-methoxyphenvl-4-(3'-p-nitrobenzyloxy carbonyl-2'-oxopropy1)-2-azetidinone (135)

![Structure of 3-Ethyl-3-methoxy-1-p-methoxyphenvl-4-(3'-p-nitrobenzyloxy carbonyl-2'-oxopropy1)-2-azetidinone (135)](image)

p-Nitrobenzylglyoxyxlate (4.20 g, 18.5 mmol) in 50 mL of dry THF was added to the solution of 132 (6.10 g, 19.8 mmol) in 200 mL of THF in the presence of 20 g of 4Å molecular sieves and TEA (0.27 mL, 1.94 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 24 h, filtered, concentrated and purified by column chromatography (1:2 EtOAc:hexanes) to yield 6.60 g (60%) of the corresponding adduct.

Methanesulfonylchloride (2.96 mL, 38.2 mmol) in 20 mL of CH₂Cl₂ was added dropwise to a solution of TEA (5.33 mL, 38.2 mmol) in 80 mL of CH₂Cl₂ at -78 °C, followed by a solution of the nitro-aldol adduct obtained above (6.60 g, 12.8 mmol) in 75 mL of CH₂Cl₂. When the bath temperature reached -50 °C, TEA (1.80 mL, 12.9 mmol) was added by syringe and slowly warmed to 25 °C over 3 h. Usual workup and purification (1:3 EtOAc:hexanes) gave 3.63 g (57%) of 133 as an orange solid.

97% Tributyltin hydride (3.1 mL, 11.2 mmol) was added to a solution of nitro-olefin 133 (3.63 g, 7.27 mmol) in 50 mL of CH₂Cl₂. After stirring at 25 °C for 18 h, one more eq of tributyltin hydride was added and the mixture was stirred for 3 h. Ozonolysis of the resulting tin nitronate with reductive work up with dimethylsulfide (DMS) and
removal solvent followed by tin impurities by partitioning between acetonitrile and hexanes gave crude 135. Purification of this crude product by column chromatography (1:3 EtOAc:hexanes) yielded 1.20 g (35%) of 135 as a yellowish oil (still contaminated with traces of tin residue); IR: 1740 (C=O), 1515 and 1351 (NO2) cm-1; 1H NMR (200 MHz) δ: 0.94 (3H, t, J=7.4 Hz, CH3CH2), 1.70-1.90 (1H, m, CH2CH3), 2.00-2.20 (1H, m, CH2CH3), 2.98-3.03 (2H, m, CH2CHN), 3.53 (3H, s, OCH3), 3.57 (2H, s, COCH2COOR), 3.75 (3H, s, OCH3), 4.42 (1H, dd, J=8.8, 5.0 Hz, CHN), 5.23 (2H, s, CH2PNB), 6.84 (2H, d, J=9.1 Hz, PMP), 7.24 (2H, d, J=9.1 Hz, PMP), 7.49 (2H, d, J=8.9 Hz, PNB), 8.19 (2H, d, J=8.9 Hz, PNB); MS: 470 (M+, 7), 455 (M+-15, 2), 443 (M+-27, 2), 431 (M+-39, 2), 321 (M+-149, 3); HRMS calcd for C24H26N2O8 470.1691, found 470.1690.

3-Ethyl-3-methoxy-4-(3'-p-nitrobenzylloxycarbonyl-2'-oxopropyl)-2-azetidinone (136)

CAN (3.08 g, 5.62 mmol) in 15 mL of ice-cold water was added dropwise to a solution of compound 135 (1.20 g, 2.55 mmol) in 25 mL of MeCN at -20 °C to -30 °C over 30 min. Usual workup (avoid NaHCO3 wash) of the reaction mixture with EtOAc and purification of the crude product by column chromatography (1:1 EtOAc: hexanes) 226 mg (24%) of 136 as an oil; IR: 3302 (broad, NH), 1748 (broad, C=O), 1522 and 1347 (NO2) cm-1; 1H NMR (200 MHz) δ: 0.91 (3H, t, J=7.4 Hz, CH3CH2), 1.63-1.81 (1H, m, CH2CH3), 1.93-2.11 (1H, m, CH2CH3), 2.88 (2H, dd, J=6.8, 6.1 Hz, CH2CO), 3.47 (3H, s, OCH3), 3.56 (2H, s, COCH2CO), 3.85 (1H,
dd, J=6.1, 7.1 Hz, CHN), 5.25 (2H, s, CH$_2$PNB), 6.01 (1H, broad s, NH), 7.50 (2H, d, J=8.9 Hz, PMP), 8.21 (2H, d, J=8.8 Hz, PMP); MS(CI): 365 (M$^+$+1, 22), 337 (M$^+$+1-28, 66), 212 (M$^+$-152, 11), 184 (212-28$^+$, 98).

p-Nitrobenzyl (6-ethyl-6-methoxy-2-oxocarbapenam)-3-carboxylate (128)

![Diagram of 6-ethyl-6-methoxy-2-oxocarbapenam-3-carboxylate](attachment:image.png)

4-Carboxybenzenesulfonazide (307 mg, 1.35 mmol) was added to a solution of β-ketoester 136 obtained above (470 mg, 1.29 mmol) in 4 mL of MeCN and cooled to 0 °C. TEA (0.35 mL, 2.51 mmol) was added. The reaction mixture was stirred for 5 h, worked up in a usual manner and purified by column chromatography (1:1 EtOAc:hexanes) to yield 360 mg (72%) of diazo compound (IR: 3305 NH, 2142 N$_2$ and 1760 C=O cm$^{-1}$).

The diazo compound (360 mg, 0.923 mmol) was dissolved in 50 mL of benzene and 30 mL of which was distilled off. The solution left was cooled to 25 °C under nitrogen. A catalytic amount of rhodium octanoate (about 1 mg) was added to the reaction mixture which was refluxed for 2.5 h. Removal of the solvent and the catalyst [by passing through a small silica gel plug (1:1 EtOAc:hexanes)] gave 200 mg (60%) of 128 as a reddish oil; IR: 1770 (C=O), 1750 (C=O), 1523 and 1348 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHZ) δ: 1.02 (3H, t, J=7.4 Hz, CH$_3$CH$_2$), 1.99-2.18 (2H, m, CH$_2$CH$_3$), 2.58 (1H, dd, J=18.9, 7.0 Hz, CH$_A$H$_B$CH$_X$N), 2.85 (1H, dd, J=18.9, 7.9 Hz, CH$_A$H$_B$CH$_X$N), 3.44 (3H, s, OCH$_3$), 4.06 (1H, dd, J=7.0, 7.8 Hz, CH$_X$N), 4.64 (1H, s, CH), 5.22 (1H, d, J=13.4 Hz,
$\text{CH}_A\text{CH}_B\text{PNB}$, 5.32 (1H, d, J=13.4 Hz, $\text{CH}_B\text{CH}_A\text{PNB}$), 7.51 (2H, d, J=8.9 Hz, PNB), 8.21 (2H, d, J=8.8 Hz, PNB); MS: 362 (M⁺, 2), 226 (M⁺-136, 3), 182 (M⁺-180, 9), 154 (182-28⁺, 2), 136 (M⁺-226, 4); HRMS calcd for $\text{C}_{17}\text{H}_{18}\text{N}_2\text{O}_7$ 362.1162, found 362.1138.

p-Nitrobenzyl 6-ethyl-6-methoxy-2-(2'-N-acetylaminoethanethio)carbapen-2-em-3-carboxylate (137)

![Chemical Structure](image)

DIPEA (0.20 mL, 1.15 mmol) and diphenylchlorophosphate (0.21 mL, 1.01 mmol) was sequentially added to a solution of the bicyclic ketoester 128 (200 mg, 0.554 mmol) in 3 mL of MeCN by syringe. The reaction mixture was stirred for 1 h at 25 °C. Then, N-acetylaminoethanethiol (125 mg, 1.06 mmol) in 5 mL of MeCN was added by cannula. DIPEA 0.20 mL, 1.15 mmol) was added immediately to the reaction mixture which was stirred for 1 h. Usual workup of the reaction mixture using EtOAc as a solvent and purification of the crude product by column chromatography (1:10 EtOAc:hexanes) gave 156 mg (36%) of 137 as a yellowish foam; IR: 3334 (broad, NH), 1773 (C=O, β-lactam), 1702 (COOR), 1660 (CONH), 1520 and 1340 (NO₂) cm⁻¹; 1H NMR (200 MHz) δ: 0.97 (3H, t, J=7.4 Hz, CH_3CH_2), 1.81-2.21 (5H, m overlapping with s, CH_2CH_3, CH_3CO), 2.85-3.15 (3H, m, CH_2S, $\text{CH}_A\text{CH}_B\text{CH}_N$), 3.30-3.60 (6H, m with overlapping s, CH_3O, CH_2N, $\text{CH}_A\text{CH}_B\text{CH}_N$), 4.03 (1H, t, J=9.3 Hz, CHN), 5.18 (1H, d, J=14.0 Hz, $\text{CH}_A\text{CH}_B\text{PNB}$), 5.46 (1H, d, J=13.9 Hz, $\text{CH}_A\text{CH}_B\text{PNB}$), 6.06 (1H, broad s, NH), 7.60 (2H, d, J=8.9 Hz, PNB), 8.17 (2H, d, J=8.8 Hz, PNB); 13C NMR
(300 MHz) δ: 7.4 (CH₃), 22.9 (CH₂), 23.2 (CH₃CO), 31.9 (CH₂), 35.1 (CH₂), 39.8 (CH₂), 52.5 (CH₃O), 60.4 (CHN), 65.0 (CH₂), 80.3 (C), 123.5 (C=C), 123.7 (CH, PNB), 128.0 (CH, PNB), 143.2 (C, PNB), 147.5 (C=C), 150.4 (C), 160.8 (C=O), 170.6 (C=O), 176.8 (C=O); MS(CI): 464 (M⁺+1, 1), 436 M⁺+1-28, 33), 404 (436-32, 7), 364 (M⁺+1-100, 2), 317 (364-47, 1); HRMS calcd for C₂₀H₂₅O₆N₃S (M⁺-28) 435.1404, found 453.1434.

6-Methoxy-PS-5 (58)

The compound 137 was dissolved in 10 mL of THF:H₂O (1:1) and hydrogenated in the presence of 22 mg of Pd-C (10%) at 1 atm and 25 °C for 4 h. After removal of the catalyst by filtration, 8 mg of NaHCO₃ was added to the filtrate. The aq layer was washed with EtOAc (ca. 5 mL) and lyophilized to give 20 mg of a brown solid. The ¹H NMR spectrum of this compound indicated 58 to be impure. These impurities may be derived from the decomposition products of 58 since purification led to the decomposition of the product. The signals which suggest the presence of 58 are listed below: ¹H NMR (300 MHz, D₂O) δ: 0.98 (3H, t, J=7.4 Hz, CH₂CH₂), 1.87-2.11 (5H, m with overlapping s at 1.96, CH₂CH₃, CH₃CO), 2.94-3.02 (2H, m, CH₃HB₃, CH₃HB), 3.22-3.44 (5H, m with overlapping s at 3.34, CH₂N, CH₃O), 4.09 (1H, t, J=9.2 Hz, CHN).
3-t-Butyldimethylsilyloxyethyl-3-methoxy-4-(1-nitrobut-3-en-2-yl)-1-p-methoxyphenyl-2-azetidinone (139)

Nitro-olefin 121 (74 mg, 0.17 mmol) and Cul (20 mg, 0.105 mmol) were mixed with 5 mL of dry THF. A solution of vinylmagnesium bromide (1M, 0.34 mL, 0.34 mmol) in THF was added by syringe at -78 °C. The reaction mixture was warmed slowly to 25 °C over a period of 18 h, quenched with satd NH₄Cl and extracted with 10 mL of EtOAc thrice. The crude product obtained after removal of the solvent from the organic layer was purified by column chromatography (1:15 EtOAc:hex-anes) to yield 36 mg (46%) of 139 as a white solid; mp: 112-114 °C; IR (KBr): 1742 (C=O), 1513 and 1378 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 0.08 (6H, s, CH₃SiCH₃), 0.86 (9H, s, t-Bu), 1.16 (3H, d, J=6.5 Hz, CH₃CH), 3.66 (3H, s, OCH₃ + 1H, m, CHCH₂NO₂), 3.78 (3H, s, OCH₃), 4.25 (2H, d, J=4.8 Hz, with overlapping q, J=6.7 Hz, CHN, CHO), 4.51 (1H, dd, J=4.9, 13.3 Hz, CHₐHₐNO₂), 4.60 (1H, dd, J=8.8, 13.3 Hz, CHₐHₐNO₂), 4.89 (1H, dd, J=1.0, 17.2 Hz, CHₐHₐ=CH), 5.18 (1H, d, J=10.6 Hz, CHₐHₐ=CH), 5.84 (1H, ddd, J=17.2, 10.4, 9.0 Hz, CHₐHₐ=CH), 6.88 (2H, d, J=9.1 Hz, PMP), 7.30 (2H, d, J=9.1 Hz); ¹³C NMR (300 MHz) δ: -4.8 (CH₃Si), -4.5 (CH₃Si), 18.0 (CSI), 18.8 (CH₃), 25.7 (CH₃ of t-Bu), 42.0 (CH), 54.4 (OCH₃), 55.5 (OCH₃), 58.3 (CH), 66.0 (CH), 76.1 (CH₂), 92.4 (C-3), 114.6 (CH of PMP), 118.9 (CH of PMP), 121.0 (CH₂=CH), 129.7 (C of PMP), 132.5 (CH₂=CH), 156.7 (C of PMP), 163.4 (C=O); HRMS calcd for C₂₃H₃₆O₆N₂Si 464.2312, found 464.2332.
3-t-Butyldimethylsilyloxyethyl-3-methoxy-4-(1-nitroprop-2-yl)-1-p-methoxyphenyl-2-azetidinone (138)

An equal mixture of diastereomers (138a and 138b) were obtained in 73% (27 mg) yield by adding MeMgBr (3M, 0.06 mL, 1.80 mmol) to nitro-olefin 121 (35.5 mg, 0.81 mmol) in the presence of CuI (10 mg, 0.052 mmol) at -78 °C as described above; 1H NMR (200 MHz, crude product) δ: 0.07 (6H, s, CH$_3$SiCH$_3$), 0.84 (9H, s, t-Bu), 1.06-1.11 (3H, 2dd, J=6.9 Hz, CH$_3$CH), 1.16 (3H, d, J=6.4 Hz, CH$_3$CH), 2.90-3.15 (1H, m, CHCH$_3$), 3.66-3.77 (3H, s, OCH$_3$), 3.77 (3H, 2s, OCH$_3$), 4.18-4.47 (4H, overlapping m, CHO, CHN, CH$_2$NO$_2$), 6.83-6.90 (2H, m, PMP), 7.25-7.32 (2H, m, PMP).
CHAPTER FIVE: 1-METHYL-6,6-DISUBSTITUTED CARBAPENEMS

1-Substituted carbapenems

The chemical instability and the susceptibility to renal dehydروpeptidase, DHP-I, of thienamycin and related compounds posed a major problem concerning its clinical use.\(^1\) The development of imipenem\(^2\), the N-formimidoyl derivative of thienamycin, solved the problem of the chemical stability. In order to overcome its hydrolysis by DHP-I in mammalian kidney, an enzyme inhibitor such as cilastatin \(^2\) is added to pharmaceutical formulations of imipenem.

![Chemical structures](image)

1 \(R_1=H=R_2\). imipenem

2 Later, Merck chemists demonstrated that the introduction of a 1-\(\beta\)-methyl group imparts the beneficial effect of improving the DHP-I stability while maintaining the desirable, broad spectrum antibiotic activity.\(^3\) As a consequence of this discovery a large number of 1-\(\beta\)-

methyl carbapenems 3 have been reported. Most of these compounds have a typical thienamycin type i.e. hydroxyethyl substituent at C-6 position but vary considerably with respect to the nature of the substituent at the C-2 carbon.4

\[
\begin{align*}
&\text{3 } R_1=\text{Me, } R_2=\text{H} \\
&\text{4 }
\end{align*}
\]

Aside from this series, few carbapenems having a substituent other than a hydroxyethyl at C-6 have been reported. The substitution by an acyl amino group (bonded to C-3 through nitrogen) at this position did not lead to significant enhancement of chemical or enzymatic stability.5 The antibacterial activity of carbapenem 4 bearing a penicillin V type substituent is considerably reduced.

Chemists at Bristol-Myers Squibb Co. have reported the preparation of 1-β-methyl carbapenems having an asparenomycin type6 5-6, northienamycin type7 7 substituents, carbonyl (amide)8 8

8 Mastalerz, H.; Menard, M. Heterocycles 1991, 32, 93.
and aminoethyl\(^9\) 9-10 substituents at C-6. The biological activity of the first two type of compounds 5-7 was not reported. The carbapenem 8 with an amido substituent, was found to be moderately active against the Gram-positive bacteria. Its half life is 1.3 h at 37 °C and pH 7.4.

\[
\begin{align*}
&5 \text{ R=Me, asparenomycins} \\
&6 \text{ R=H, asparenomycin analogs}
\end{align*}
\]

![Chemical Structures](attachment:image)

8 \text{ COO·Na}^+

7 \text{ COO·K}^+

9 \text{ R}_1=\text{NH}_2, \text{ R}_2=\text{Me}

10 \text{ R}_1=\text{Me}, \text{ R}_2=\text{NH}_2

11 \text{ R}_1=\text{H}, \text{ R}_2=\text{NH}_2

The aminoethyl group in 9-10 imparts interesting biological activity. Unlike the hydroxyethyl carbapenems, the activity of both R and S isomers of aminoethyl carbapenems is identical. The parent 6-(1-aminoethyl)carbapenems have low Gram-positive but good Gram-negative activity including activity against *Pseudomonas*. The DHP stability of R isomer is greater than that of R hydroxyethyl compound. The stability of these compounds in the acidic range (pH 2) is increased

but decreased near the neutral range (pH 7.4). Acylation with amino acids or dipeptides decreases the antibacterial activity as does N-methylation. The 6-aminomethyl carbapenem 11 showed higher \textit{in vitro} activity but it is less stable and \textit{in vivo} activity is markedly reduced.

Related studies dealt with the synthesis of a variety of carbapenems having a substituent other than a methyl group at C-1 position. Cama and Shah reasoned that substituents having a steric bulk intermediate between hydrogen and methyl such as fluoro group should increase the DHP-I stability and maintain antibacterial activity.10 However, the 1,1-difluoro-2-phenyl carbapenem 12 did not survive the lyophilization. Substitution by a \(\beta \)-ethyl, \(\beta \)-hydroxyethyl or \(\beta \)-methoxy group retained the DHP-I stability but reduced the biological activity significantly.11 Nagao and coworkers also synthesized 1-\(\beta \)-methoxy carbapenem 1312, but did not report its biological activity. Rosati's group also introduced a hydroxy or oxo group at this position.13 They reported that the 1-hydroxy carbapenem has a broad range of antibacterial activity.

10 Shah, N. V.; Cama, L. D. \textit{Heterocycles} 1987, 25, 221.
Kim and coworkers have described 1-methylene 14 and 1-spiro
cyclopropyl 15 carbapenems.14 They found that the 1-methylene
compound 14 was chemically very unstable whereas the 1-
spirocyclopropyl 15 was 100 times less stable to DHP than 1-\beta-methyl
carbapenem. 1,1-Dimethyl carbapenems 16-18 which lack appropriate
substituents at C-6 carbon and hence antibacterial activity, have been
synthesized.15

14 Kim, C. U.; Misco, P. F.; Luh, B. Y. \textit{Heterocycles} \textbf{1987}, \textit{26}, 1193.
15 (a) Shibuya, M.; Kubota, S. \textit{Tetrahedron lett.} \textbf{1980}, \textit{21}, 4009. (b) Shibuya, M;
A series of 1-methylcarbapenems having two substituents at C-6 such as 19 has been reported by Merck chemists.16

Methods for stereoselective introduction of 1-β-methyl group

The survey of existing methods reveals that there are four different approaches for introduction of a methyl group at this position.

Various approaches towards 1-methyl carbapenems

(1) Reaction of C-5 carbanions with methyl electrophiles:

The "C-5" carbanions of azetidinones such as 20 give very poor yields because of the competing retro-Michael addition resulting in the rupture of β-lactam ring (eq 1). However, the dianion of azetidinone 22, when treated with methyl iodide at low temperature gave 23 with good yield. The stereoselectivity observed in these reactions favor the α isomers which makes this approach unattractive as a method to prepare β-methyl carbapenem precursors.

Ohno rationalized the introduction of a methyl group might be more selective in the alkylation of the dianion derived from the bicyclic azetidinone 24. This alkylation indeed has been shown to yield exclusively the isomer 25 which when unravelled possesses the desired β-methyl stereochemistry.18

a) 2.2 LDA, MeI, THF, -78 °C.

(2) Stereoselective addition of nucleophiles at C-4 of azetidinones:

The addition of simple ester enolates at C-4 carbon is again fraught with the problem of ring cleavage via retro-Michael addition (eq 3).

Barrett and Quayle described the reaction of enolsilyl ethers and 4-acetoxy azetidinone 26 in the presence of a catalytic amount of TMSOTf (0.1 eq.). This result showed the possibility of constructing this critical C-C bond under non-basic conditions. To date, numerous variations of this type of methodology has been published often with good to excellent stereoselectivity. Menard and coworkers reported excellent diastereoselectivities in the reaction of 30 with enolsilyl ethers from thioesters in the presence of zinc chloride. The diastereo-

selectivities are dependent on the nature of the substituent on sulfur of the enolates such as 31 and 32.

\[
\begin{align*}
\text{TBDMSO} & \quad \text{OAc} & \quad \text{OTBDMS} \\
\text{30} & \quad \text{31 & 32} & \quad \text{ZnCl}_2 \\
\rightarrow & \quad \text{33 & 34}
\end{align*}
\]

e. g. 31 & 33 \; R=\text{t-Bu}, \; \alpha: \beta = 92:8 (74\%) and 32 & 34 \; R=3\text{-methylpyrid-2-yl}. \; \alpha, \beta = \rightarrow 98 \; (85\%-90\%)

The stereoselectivity of this addition is also found to depend on the nature of metal used in the enolates. Kim et. al. reported enolate from thioester 35 added in excellent yield showing \(\alpha\) selectivity in the presence of TMSCl and in good yield with \(\beta\) selectivity in the presence of dicyclopentyl zirconium dichloride and TMSOTf21. Excellent stereoselective additions have been accomplished using zinc22, boron23, or tin24 enolates bearing a suitable oxazolidinone, thiazolidinone or thiazolidinethione auxiliaries (Table 3). The boron enolate having Evan's chiral auxillary has been found to give a product with >99% enantiomeric purity.

Table 1: Stereoselective addition of enolates to 30

<table>
<thead>
<tr>
<th>M</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Yield</th>
<th>α:β</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>94%</td>
<td>5.6:1</td>
<td>22</td>
</tr>
<tr>
<td>Zn</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>nBu</td>
<td>nBu</td>
<td>-(CH₂)₂-</td>
<td>H</td>
<td>H</td>
<td>97%</td>
<td>20:1</td>
</tr>
<tr>
<td>Zn</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>H</td>
<td>iPr</td>
<td>H</td>
<td>H</td>
<td>99%</td>
<td>91:9</td>
<td>22</td>
</tr>
<tr>
<td>Zn</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>H</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>91%</td>
<td>90:10</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>H</td>
<td>iPr</td>
<td>H</td>
<td>H</td>
<td>95%</td>
<td>>99:1</td>
<td>23</td>
</tr>
<tr>
<td>Si</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>H</td>
<td>iPr</td>
<td>H</td>
<td>H</td>
<td>78%</td>
<td>40:1</td>
<td>23</td>
</tr>
<tr>
<td>Sn</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>Et</td>
<td>H</td>
<td>H</td>
<td>93%</td>
<td>60:1</td>
<td>23</td>
</tr>
<tr>
<td>Sn</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>iPr</td>
<td>H</td>
<td>H</td>
<td>74%</td>
<td>91:9</td>
<td>24</td>
</tr>
<tr>
<td>Sn</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>79%</td>
<td>24:1</td>
<td>24</td>
</tr>
</tbody>
</table>

Similar reactions of this type include Lewis acid catalyzed addition of suitably functionalized allenic tin compound 39.25 The nature of the Lewis acid appears to govern the diastereoselectivity of this reaction. Trimethylsilyl triflate (TMSOTf) gave 98% of a 1:1 mixture of α and β

isomers, whereas boron trifluoride etherate gave 89% of a 4:1 mixture of α and β isomers.

Uyco and Itani carried out a 3,3' sigmatropic rearrangement reaction to introduce a β-methyl group.26 This reaction can also be visualized as an intramolecular crotylsilylation. The yield of 43 is good (84%) and the observed diastereoselectivity (97:3) is excellent. The selectivity is influenced dramatically by the nature of Lewis acid employed.

Meyers prepared 1-methyl carbapenems via 2+4 cycloaddition. The compound 45 was obtained in 65% yield with 80:20 diastereomeric ratio.

(3) Reduction of a methylene group at C-5:

The reduction of α,β-unsaturated ester 47 with hydrogen and catalyst gave poor diastereoselectivity. Shibasaki and coworkers found L-Selectride reduction of 47 in the presence of 2-butanol gave good diastereoselectivity ($\alpha:\beta=1:8$). Noyori's group reported excellent selectivity ($\alpha:\beta=0.1:99.9$) in the reduction of allylic alcohol 49 using BINAP-Ru(II) catalyst.

The reduction of bicyclic acetonide 51 is quite unpredictable.31 The selectivity is dependent on the nature of catalyst and solvent.

Liebeskind and Prasad reported reduction of propargyl cation stabilized by hexacarboxyldicobalt derived from 53.32 They rationalized the stereochemical outcome in terms of a Felkin Ahn type model.

(4) Syntheses starting with a methylated fragment or its equivalent:

This approach includes syntheses in which the β-lactam ring is prepared after incorporation of the methyl group. Salzmann's group prepared 1-methylcarbapenems starting from imines (55 and 56) with a suitable methyl group using well known 2+2 cycloaddition.33 (S)-Methyl 3-hydroxy-2-methylpropionate was used by Terashima to prepare enantiopure imine 55 which was reacted with diketene to yield an azetidinone intermediate, bearing a thienamycin type side-chain at C-3. They observed highest diastereoselectivities (11-15:1 with 49-52% combined yield) when methylimidazole was used as a catalyst.34

Kametani used the nitrone cycloaddition method to prepare intermediate 60.35 Intermolecular cycloaddition gave equal amounts of all four diastereomers. When the intramolecular reaction was carried out a single isomer of adduct 58 was obtained in 51\% yield. The conversion of 58 to 60 was carried out in five steps in 77\% overall yield. In addition to the good yield, the induction of three chiral centers in one step is quite appealing.

Turner prepared lactone 66 by exploiting hetero Diels Alder methodology. The cycloaddition step proceeded with diastereoselectivities ranging from 1:1 to 1:20 and the yields are greater than 75%. In subsequent transformations, epimerization at the carbon bearing methyl group occurred in most of the cases, to give mixtures of α and β isomers. This problem was eliminated when protective groups which can be removed by hydrogenolysis were used.

\[\text{61} + \text{62} \rightarrow \text{63} \]

\[\text{65} \rightarrow \text{64} \rightarrow \text{66} \rightarrow \text{67} \]

Hatanaka approached this problem by using the addition of the dianion 68 to imine 69 to create two new chiral centers. The diastereoselectivity in this condensation step is low. The best selectivity (syn:anti=1:4) was observed in the reaction of the anion derived from t-butyl hydroxybutyrate (which, he reported, was difficult to prepare in good yields). The syn:anti ratio in this step dropped to 1:2 when 68 was used. The fourth chiral center was created during the formation of pyranoside 71 under acidic conditions.\(^{37}\) This cyclization proceeded stereospecifically to give 71 exclusively. The synthesis of imine 69 required six steps. Further six steps (43\% overall yield) were required to convert 70 to the carbapenem intermediate 73.

246
Honda's group used (-)-carvone 74 as a chiron to prepare a closely related lactone 78.38 The introduction of the nitrogen of the \(\beta \)-lactam by using Beckmann rearrangement is an interesting step. Ketone 75 was prepared from 74 in six steps. This approach is quite imaginative but requires many steps. During the final steps, equal

amount of epimers (at C-5) of 67 were formed.

\[\text{74} \quad \xrightarrow{a} \quad \text{75} \quad \xrightarrow{b} \quad \text{76} \]

\[\xrightarrow{c} \quad \text{77} \quad \xrightarrow{d} \quad \text{78} \]

Fraser-Reid used carbohydrate precursors to prepare a similar intermediate.\(^{39}\) His synthesis includes some interesting reactions such as photochemical addition of methanol to enone 79 with stereochemical induction opposite to that observed during the addition of cuprates. But this strategy is not practical for the synthesis of 1-methylcarbapenems because of the large number of steps involved and low overall yield.

1-Methyl-6-methoxycarbapenems

Although a large number of 1-methyl carbapenems have been reported, only a limited attention has been directed to C-6 disubstituted 1-methyl carbapenems. If the two substituents at the C-1 and C-6 position exert a cumulative stabilizing effect without a reduction in antibacterial activity, such carbapenems may prove to be clinically valuable candidates. Based on an earlier discussion in Chapter 4, the 6-methoxy group has a stabilizing effect on the β-lactams. The 1-β-methyl group also stabilizes carbapenems as mentioned earlier. Therefore, we began to explore the synthetic sequences leading to 1-β-methyl-6-β-methoxycarbapenems 83. It should be pointed out that

these compounds have both methyl and methoxy groups on the concave face of the V-shaped bicyclic ring system. One can expect increased risk in synthesis of these compounds due to this unfavorable steric hindrance. However, the examination of a molecular model did not reveal it to be an impossible situation.

\[\text{Diagram of compound} \]

83

Four basic methods of incorporating the 1-β-methyl group were described in the introduction to this Chapter. Method 1 is quite unsatisfactory due to the poor selectivity. Method 2 has extensively been studied in thienamycin type molecules, but during our studies towards 6-methoxy thienamycin intermediates, the Baeyer Villiger reaction of 85 and 86 leading to the C-4 acetoxyacetidinones failed.

\[\text{Chemical reactions} \]

- **a)** O₃, CH₂Cl₂, DMS, -78 °C to 25 °C; b) CAN, MeCN, -2 °C to 0 °C

250

Carbonylations

We chose the reduction approach over method 4 because the methodology to prepare ketone 85 has already been established. The elaboration of the compound 85 into intermediates 91, which is suitable for the synthesis of bicyclic 1-methylcarbapenems by rhodium carbenoid insertion, is outlined below.

\[
\begin{align*}
85 & \xrightarrow{a} 87 \\
& \xrightarrow{b} 88 \\
& \xrightarrow{c} 89 & \xrightarrow{90 \ R=\text{Me}} 91 \ R=\text{Bn}
\end{align*}
\]

a) LDA, PhN(Tf)_2, THF, -78 °C to 25 °C; b) Pd(OAc)_2, PPh_3, TEA, THF, MeOH or BnOH, CO, 25 °C; c) Pd(OAc)_2, PPh_3, TEA, THF, Meldrum's acid, CO, 25 °C
The conversion of C-4 acetyl compound 85 to its enol triflate 87 was achieved by using LDA and N-phenyl trifluoromethanesulfonimide. The enol triflate showed characteristic olefinic peaks in its 1H NMR spectrum at $\delta=5.20$ (1H, dd, $J=0.9, 4.2$ Hz) and 5.45 (1H, d, $J=4.2$ Hz). The carbonylation reaction was carried out using palladium acetate and triphenylphosphine as a catalyst. It is presumed to proceed by insertion of the metal into the carbon-oxygen bond of the enol triflate. This metal species can exchange ligands with carbon monoxide. The resultant intermediate, after reductive elimination, yields an acyl palladium species. When methanol and benzyl alcohol were used as nucleophiles to trap the acyl palladium intermediate, the corresponding esters (90 and 91) were isolated in good yields. The methyl ester 90, white solid, mp 89-90 °C, showed three singlets for methoxy groups at $\delta=3.50, 3.76$ and 3.81 ppm in the 1H NMR. The benzyl ester 91 is pale-yellowish solid with surprisingly, the same melting point as the methyl ester. This ester contains two diastereotopic benzylic protons which appeared as AB doublets at $\delta=5.18$ and 5.29 ppm with a coupling constant of 12.5 Hz. These products require an additional de-esterification step. An attempt to obtain the carboxylic acid directly from the acyl palladium intermediate by using water instead of the above alcohols was unsuccessful. The use of Meldrum's acid as a nucleophile afforded 89 in poor yield (15%). This approach is appealing since the adduct 89 can, in principle, be converted to β-ketoesters by reaction with various alcohols thereby eliminating the activation and

homologation sequence. Due to the low yield, this approach was not pursued. Overall, the enol triflate carbonylation reaction is regiospecific compared to carbonylation of similar acetylenic compound in which case the product from the double carbonylation was isolated as a minor product.44

Reductions

The reduction of azetidinone 92 (a yellowish solid: mp 73-74 °C, obtained by CAN cleavage of PMP group of 91 at -5 °C to 0 °C) with L-Selectride45 in 1:1 mixture of THF and sec. butyl alcohol at -78 °C gave only one isomer of 93. The yield in this reduction is modest (40%).

![Chemical structures](image)

92 \[\xrightarrow{\text{L-Selectride, THF:2-butanol (1:1), -78 °C, 1 h.}}\] 93

a) L-Selectride, THF:2-butanol (1:1), -78 °C, 1 h.

At this stage the relative configuration at this new chiral center is unknown. The configuration shown in 93 is based on the results of the reduction of a related azetidinone having an 3-ethyl group 100 instead of 3-t-butyldimethylsilyloxyethyl substituent (see discussions at page 259). Catalytic hydrogenations of 90 and 92 in EtOH and CH\textsubscript{2}Cl\textsubscript{2}, respectively using palladium on carbon gave mixtures of diastereomers in almost equal amounts as indicated by the integrals for the doublets of newly created methyl group.

Having established a method to prepare a pure diastereomer of 1-
methylcarbapenem intermediate, we decided to perform annulation experiments leading to bicyclic compounds. At this stage (while waiting for the results on X-ray studies aimed to establish the configuration) we turned our attention to the synthesis of 1-methyl-6-methoxy-PS-5, since it requires fewer steps compared to thienamycin derivative. The preparation of \(\alpha,\beta \)-unsaturated ester 98 is shown below. The 3,3-disubstituted azetidinone 95 was prepared in 92% yield by treatment of anion derived from 94 (53 mmol) with iodoethane in THF at -78 °C to -30 °C.

\[\text{OMe} \quad \text{Ph} \quad \text{N} \quad \text{PMP} \quad \overset{a}{\rightarrow} \quad \text{OMe} \quad \text{Ph} \quad \text{N} \quad \text{PMP} \]

94 95

a) LDA, EtI, THF, -78 °C to -30 °C

Ozonolysis was carried out in a similar manner as in the case of 85. The formation of 96 is again well evidenced by the loss of signals for the phenyl group in the \(^1\text{H}\) NMR. The enol triflate 97 [vinylic protons: \(\delta = 5.15 \) (J=5.0 Hz) and \(5.44 \) ppm (J=4.2 Hz) respectively] was prepared by a method similar to 87 again using McMurry's reagent. Careful examination of tlc and integrals in \(^1\text{H}\) NMR spectrum revealed that 97 is contaminated, in some preparations with a byproduct (presumably PhNHTf) of McMurry's reagent. The traces of this impurity did not interfere with subsequent carbonylation. The benzyl ester group in 98 was chosen since it can be cleaved under relatively mild hydrogenation conditions thus preventing epimerization, which is likely
to occur during the basic hydrolysis of an ester. This ester 98 compared to 91 did not give an AB splitting pattern for benzylic protons in 1H NMR ($\delta=5.24$ ppm, s).

![Chemical structures](image)

95
96
97
98

a) O_3, CH$_2$Cl$_2$, MeOH, -78 °C; DMS, -78 °C to 25 °C; b) LDA, PhN(Tf)$_2$, THF, -78 °C to 25 °C; c) Pd(OAc)$_2$, PPh$_3$, TEA, THF, BnOH, CO, 25 °C

The PMP group of 98 was cleaved with CAN in the usual manner to yield 99 which was reduced with L-Selectride in THF: sec.-butyl alcohol (1:1) to give a reduced ester with a diastereomeric ratio of 1:7 ($\beta:\alpha$). The diastereomeric ratio was determined by careful separation of two compounds by column chromatography and comparison of the mass of each isolated diastereomer (Fig. 12 and 13). The major isomer was isolated in 53% yield as a yellowish oil (IR: 3302 NH, 1761 C=O, 1731 C=O cm$^{-1}$). Notable features in the 1H NMR spectrum of 100 are peaks at $\delta=1.16$ ppm (d, $J=7.1$ Hz, CH$_3$CH) and 5.11 ppm (s, CH$_2$Ph). About 10-20% of a non β-lactam (retro-Michael addition) product was isolated from the baseline impurity.
Fig. 13 1H NMR spectrum of 104 obtained as a minor diastereomer during L-Selectride reduction
The major product 100 was found to be an \(\alpha \)-isomer by X-ray crystallography of the carboxylic acid 101 obtained by catalytic hydrogenation in the presence of 10\% Pd-C in ethanol (Fig. 14, ORTEP diagram). The \(^1 \)H NMR of the crude sample contains some impurities that could not be identified. In contrast, hydrogenation of 100 proceeds cleanly when methylene chloride was used as a solvent. The acid 101 is a white solid (mp: 139-141 °C) well characterized by MS, IR, \(^1 \)H NMR, \(^{13} \)C NMR and HRMS. The important \(^1 \)H NMR peaks for this compound are doublets at 1.16 ppm for 5-methyl and 3.46 ppm for C-4 protons. The \(\beta \)-lactam ring of acid 101 was found to be hydrolyzed by atmospheric moisture at room temperature. The acid 101 is soluble in \(\text{CH}_2\text{Cl}_2 \) but the hydrolysis product is not. This methylene chloride insoluble residue when examined by MS gave molecular ion peak corresponding to the diacid 102 (i.e. M+18 where M is molecular mass of 101) which probably exists as zwitterionic species hence is insoluble in dichloromethane. Inert atmosphere was therefore necessary for growing crystals. (Similar hydrolysis, evidenced by the loss of the \(\beta \)-lactam carbonyl absorption in the IR, 1720 cm\(^{-1} \), was observed in the preparation of the acid derived from 93).
a) H₂ (1 atm), Pd-C (10%), EtOH or CH₂Cl₂

The observed stereoselectivity of the reduction is surprising and disappointing. We had expected that the protonation of the intermediate chelated dianion 103 should occur preferentially from the less hindered convex side, giving the isomer which would lead to 1-β-methyl derivatives. The fact that 101 is obtained, may be explained by invoking the protonation from the hindered face perhaps through the hydrogen bonding of alcohol proton with the 3-methoxy group.

After the relative configuration at this newly created chiral center had been established, efforts were directed towards obtaining the
desired epimer at this center. The reduction of the α,β-unsaturated ester 98 having a PMP group at the β-lactam nitrogen with L-Selectride gave the reduced ester which was treated with CAN to produce ester 104 as a major product. Comparison by tlc showed that this material 104 is identical to the minor product obtained in the reduction of 99. This experiment led to the conclusion that changing the nature of the substituent on the β-lactam nitrogen could reverse the diastereoselectivity of the reduction. However the yield in this reduction was rather low (29%) and the purification of the product was difficult.

When the reduction of 98 was carried out under catalytic hydrogenation conditions using 5% rhodium on carbon both reduction and debenzylation occurred. The concomitant debenzylation was somewhat surprising since rhodium on carbon had been used in reductions without hydrogenolysis of oxygen substituents at the benzylic position. The 1H NMR of the crude product revealed that this reduction is not diastereoselective. More than 90% of the starting material was recovered upon attempted reduction of 98 with either sodium cyanoborohydride/HCl or hydrogen/Wilkinson's catalyst. The reduction of the same α,β-unsaturated ester 98 with sodium borohydride in the presence of nickel chloride46 gave a mixture of diastereomers which is not separable by column chromatography. However, this mixture, after CAN cleavage of the PMP group, gave corresponding NH compounds including 108. The diastereomeric ratio (5:1) can be determined both by 1H NMR and by actual separation of

two diastereomers by column chromatography. TLC and 1H NMR indicated that the major product 104 in above reaction is identical to the minor product (β epimer) in L-Selectride reduction of α,β-unsaturated ester 99 (Fig. 15). The ester 104 is a yellowish solid (mp 70-72 °C) which gave a doublet at $\delta=1.21$ ppm ($J=7.2$ Hz) for new methyl group (1.16 ppm, $J=7.1$ Hz for other epimer) and AB patterned doublets at $\delta=5.03$ and 5.17 ppm with $J=12.4$ Hz for benzylic protons (5.11 ppm, s for other epimer).

\[
\begin{align*}
\text{98} & \quad \text{a, b} \\
\text{104} & \\
\end{align*}
\]

a) NaBH$_4$, NiCl$_2$, EtOH, -78 °C to 0 °C, 1h; b) CAN, MeCN, -5 °C, 0.5 h

This change in diastereoselectivity of the reduction might be explained by assuming the non-chelated conformer of enolate 105 protonated from the less hindered face.

\[
\begin{align*}
\text{105} & \\
\end{align*}
\]
Annulation

The homologation of acid 101 to β-ketoester 106 was carried out using Masamune's method. As in the examples described in Chapter 3, the yields of the homologation involving acids derived from 3-methoxyazetidinones is low; in this case the yield is 20%. The conversion of β-ketoester 106 to diazo compound 107 was carried out by using a reported method. The diazo compound 107 showed a typical signal at 2146 (N₂) cm⁻¹ in IR spectrum. This compound gave M+1 peak in MS(CI) and showed the disappearance of the methylene signal (δ=3.61 ppm) of starting compound 106. Rhodium(II) octanoate mediated diazo insertion reaction gave a mixture of products. The ¹H NMR spectrum of crude product showed an AB pattern for the benzylic protons of PNB ester (δ=5.23 and 5.32 ppm, J=13.4 Hz) which indicated the formation of bicyclic ketoester 108. The IR of crude product has a peak at 1770 cm⁻¹ for β-lactam carbonyl indicating a strained bicyclic ring. Attempted purification of 108 by silica gel column chromatography was unsuccessful and the isolated fractions could not be characterized. The activation of 108 by diphenyl chlorophosphate and addition of N-acetyl aminoethanethiol in the presence of excess DIPEA failed to yield the desired product 109.

An alternate approach for obtaining 1-α-methyl carbapenem 112 is shown below. This involved the conversion of 101 to the thioester 110 using 2-mercaptopryridine and DCC. The ester 110 was then converted to oxalimide derivative 111 by reaction with allyloxalyl chloride. Due to the instability of 111 the planned phosphite cyclization could not be attempted.
The rhodium cyclization method was attempted next in the β-methyl series. The acid 113 (1740 cm⁻¹ absorption in IR and doublets at δ=1.24 and 3.66 ppm for 5-methyl and C-4 protons in ¹H NMR) was obtained by hydrogenation of 104 using methylene chloride as a solvent. The necessary two carbon homologation was accomplished as in the case of 106; the yield of 114 was again low (15%). The diazo compound 115 was prepared again using 4-carboxybenzenesulfonazide and TEA. It showed an IR peak at 2142 cm⁻¹ (N₂) and showed the disappearance of the methylene protons of 114 in the ¹H NMR. The diazo-insertion reaction was performed in dry benzene at ambient temperature. The examination of partially purified product by ¹H NMR, ¹³C NMR, IR, and MS showed this product was not the desired carbapenem 116 since it showed a NH band at 3304 cm⁻¹ in the IR spectrum. The presence of the NH function was further confirmed by
the appearance of a broad band at $\delta=6.17$ ppm in the 1H NMR. The available data is most consistent with the spirocyclic β-lactam 117 which resulted from the insertion of the rhodium carbenoid into the C-H bond at C-4 position. As mentioned earlier in this chapter, the steric congestion in 116 poses a big challenge in this cyclization reaction. The formation of 117 instead of 116 could be due to this factor. An alternate structure for this product could be 118 which results from the insertion of carbenoid to C-O bond. The lack of coupling between CH protons next to nitrogen and methyl respectively even in high resolution 300 MHz 1H NMR made us to believe that the product is indeed 117.

\[\text{a, b} \quad 113 \quad \text{a, b} \quad 114 \quad x=H, 115 \quad x=N \]

\[\text{118} \quad \text{117} \quad \text{116} \]

a) CDI, MeCN; Mg(OOCCH$_2$COOPNB)$_2$, MeCN, 60 °C; b) 4-HOOCPhSO$_2$N$_3$, TEA, MeCN, 0 °C; c) Rh$_2$(OOct)$_4$, C$_6$H$_6$.

It has been reported that 120 is a major product during a rhodium carbenoid reaction. The formation of compound 120 from
119 presumably involved insertion carbene into C-H bond at C-4 to give 121 which underwent an elimination of a ketene.

\[
\begin{align*}
119 & \quad \xrightarrow{\text{reaction}} \quad 120 \\
121 & \quad \xrightarrow{\text{reaction}}
\end{align*}
\]

The phosphite coupling method in this series was attempted. The conversion of the carboxylic acid 113 to the cyclization precursor \textit{i.e.} the oxalimide 123, involved the DCC coupling reaction with thiophenol and subsequent reaction with allyloxyalyl chloride in the presence of DIPEA. The compound 122 gave IR peaks at 1760 and 1701 cm\(^{-1}\) for \(\beta\)-lactam carbonyl and thioester group respectively. The cyclization reaction was carried out using a dilute solution of substrate and slow addition of a dilute solution of triethyl phosphite by means of a syringe pump. This experiment did not give the desired bicyclic compound 124.
a) 2-Pyridylthiol, DCC, THF, 25 °C; b) ClOCCOOCH₂CH=CH₂, DIPEA, CH₂Cl₂, 30 min
EXPERIMENTAL SECTION

General techniques

Details concerning spectrometers, solvent purification and chromatography have been described in earlier chapters. McMurry's reagent (PhNTf₂) was purchased from Aldrich Chemical Co. and used as received.

3-Ethyl-3-methoxy-1-p-methoxyphenyl-4-(1'-methyl-cinnamyl)-2-azetidinone (95)

3-Methoxy azetidinone 94 (17.0 g, 52.63 mmol) was dissolved in 500 mL of dry THF and cooled to -78 °C. LDA solution (1.1 eq prepared from 30.5 mL of 1.9 M n-BuLi and 8.9 mL (63.62 mmol) of diisopropyl amine) was added by cannula and the reaction mixture was stirred for 30 min. The solution developed a brown color. Iodoethane (16.8 mL, 210.5 mmol) was added and stirred. The temperature was allowed to rise slowly to -30 °C. Usual workup of the reaction mixture using ethyl acetate as a solvent and purification of the crude product by column chromatography (1:8 EtOAc:hexanes) afforded 17.0 g (92%) of 95 as a white solid; mp 88-89 °C; IR (CH₂Cl₂ film): 1743 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 1.08 (3H, t, J=7.4 Hz, CH₃CH₂), 1.81-2.19 (5H, m with overlapping s at 1.95, CH₂, CH₃), 3.53 (3H, s, OCH₃), 4.36 (1H, s, CHN),
6.52 (1H, s, PhHC≡C), 6.84 (2H, d, J=9.2 Hz, PMP), 7.23-7.42 (7H, m, Ph, PMP); MS: 351 (M^+, 16), 336 (M^+-15, 1), 321 (M^+-30, 1), 294 (M^+-57, 2), 250 (M^+-101, 100); HRMS calcd for C_{22}H_{25}NO_{3} 351.1834, found 351.1833.

4-Acetyl-3-ethyl-3-methoxy-1-p-methoxyphenyl-2-azetidinone (96)

3-Ethyl-3-methoxyazetidinone 95 (11.20 g, 31.9 mmol) was dissolved in 250 mL of dry CH_{2}Cl_{2}, 4 Å molecular sieves (1.0 g) and 10 mL of MeOH was also added. The reaction mixture was cooled to -78 °C and ozone was passed till the reaction mixture was bluish and TLC indicated complete reaction. The excess ozone was removed by passing a stream of nitrogen through the reaction mixture. Excess DMS (5 mL) was added. The reaction mixture was stirred overnight and allowed to warm slowly to 25 °C over 18 h. After removal of the solid residue and solvents, the crude oil was purified by column chromatography (1:6 EtOAc:hexanes) to yield 6.80 g (77%) of 96 as a white solid; mp 85-86 °C; IR (CH_{2}Cl_{2} film): 1745 [with a shoulder at 1730] (C=O) cm^{-1}; 1H NMR (200 MHz) δ: 1.08 (3H, t, J=7.4 Hz, CH_{3}CH_{2}), 1.79-1.97 (1H, m, CH_{2}CH_{3}), 2.05-2.25 (4H, m overlapping with s at 2.21, CH_{2}CH_{3}, COCH_{3}), 3.48 (3H, s, OCH_{3}), 3.76 (3H, s, OCH_{3}), 4.35 (1H, s, CHN), 6.84 (2H, d, J=9.16 Hz, PMP), 7.22 (2H, d, J=9.16, PMP); MS: 277 (M^+, 43), 248 (M^+-28, 3), 220 (M^+-28-29, 3), 206 (M^+-28-43, 100), 192 (220-28, 15); HRMS calcd for C_{15}H_{19}NO_{4} 277.1300, found 277.1307.
3-Ethyl-3-methoxy-1-p-methoxyphenyl-4-(-1'-trifluoromethylsulfonyloxyvinyl)-2-azetidinone (97)

A solution of C-4 acetyl azetidinone 96 (10.26 g, 37.04 mmol) in 200 mL of dry THF was cooled to -78 °C and 1.1 eq of freshly prepared LDA solution in THF was added by cannula. The reaction mixture was stirred for about 15 min and a solution of 15.9 g (44.5 mmol) of N-phenyltrifluoromethylsulphonimide\(^{50}\) in 25 mL of THF was added by cannula. The reaction mixture was stirred overnight and allowed to warm to room temperature. After removal of the solvent, the crude product was purified by column chromatography (1:6 EtOAc:hexanes) to yield 13.80 g (91%) of 97 as a yellowish oil; IR: 1750 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 1.05 (3H, t, J=7.4 Hz, CH\(_3\)CH\(_2\)), 1.74-1.92 (1H, m, CH\(_2\)CH\(_3\)), 1.95-2.23 (1H, m, CH\(_2\)CH\(_3\)), 3.55 (3H, s, OCH\(_3\)), 3.77 (3H, s, OCH\(_3\)), 4.39 (1H, s, CHN), 5.15 (1H, d, J=5.0 Hz, H\(_2\)C=C), 5.44 (1H, d, J=4.3 Hz, H\(_2\)C=C), 6.87 (2H, d, J=9.0 Hz, PMP), 7.29 (2H, d, J=9.0 Hz, PMP); MS: 409 (M\(^+\), 3), 381 (M\(^+\)-28, 1), 309 (M\(^+\)-100, 46), 295 (309-14, 1), 260 (M\(^+\)-149, 5); HRMS calcd for C\(_{16}\)H\(_{18}\)NO\(_6\)SF\(_3\) 409.0781, found 409.0794.

\(^{50}\) purchased from Aldrich Chem. Co.
3-t-Butyldimethylsilyloxy-3-methoxy-1-p-methoxyphenyl-4-(1'-trifluoromethananesulfonyloxyvinyl)-2-azetidinone (87)

![Chemical structure of compound 87]

Compound 87 was prepared in 80% yield by a method similar to that of 97 as a white crystalline solid; mp 55-56 °C; IR: 1762 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.35 (6H, s, CH₃SiCH₃), 0.68 (9H, s, t-BuSi), 1.36 (3H, d, J=6.3 Hz, CH₃CH), 3.64 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.11 (1H, q, J=6.2 Hz, CHN), 4.64 (1H, d, J=0.7 Hz, CHN), 5.20 (1H, dd, J=0.9, 4.2 Hz, H₂C=C), 5.45 (1H, d, J=4.5 Hz, H₂C=C), 6.86 (2H, d, J=9.2 Hz, PMP), 7.34 (2H, d, J=9.2 Hz, PMP); MS: 539 (M⁺, 6), 524 (M⁺-15, 1), 482 (M⁺-57, 83), 454 (M⁺-57-28, 1), 333 (M⁺-57-149, 79); HRMS calcd for C₂₂H₃₂NO₇SF₃Si 539.1679, found 539.1650.

3-Ethyl-3-methoxy-1-p-methoxyphenyl-4-(1'-carboxybenzylvinyl)-2-azetidinone (98)

![Chemical structure of compound 98]

The vinyl triflate 97 (5.70 g, 14.07 mmol) was dissolved in 100 mL of THF. TEA (5.82 mL, 41.7 mmol), benzyl alcohol (4 mL, 38.6 mmol), palladium acetate (0.156 g, 0.695 mmol) and triphenylphosphine (0.365 g, 1.36 mmol) was added. Carbon monoxide gas was passed through the reaction mixture at room temperature for 6 h. After
removal of the solvent, the excess benzyl alcohol was removed in vacuum at 100 °C for several hours. The black crude oil was purified by column chromatography (1:6 EtOAc:hexanes) to yield 4.85 g (87%) of 98 as a yellowish oil; IR: 1752 (C=O), 1723 (COOR) cm⁻¹; ¹H NMR (200 MHz) δ: 1.00 (3H, t, J=7.5 Hz, CH₃CH₂), 1.91-2.02 (2H, q, J=7.6 Hz, CH₂CH₃), 3.42 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 4.83 (1H, d, J=0.6 Hz, CHN), 5.24 (2H, d, J=0.8 Hz, CH₂Ph), 5.66 (1H, d, J=0.8 Hz, H₂C=C), 6.47 (1H, s, H₂C=C), 6.82 (2H, d, J=8.1 Hz, PMP), 7.24-7.39 (7H, m, Ph, PMP); MS: 395 (M⁺, 10), 367 (M⁺-28, 20), 352 (M⁺-28-15, 3), 295 (M⁺-100, 11), 276 (M⁺-28-91, 7); HRMS calcd for C₂₃H₂₅NO₅ 395.1755, found 395.1744.

3-t-Butyldimethylsilyloxyethyl-4-(1'-carboxymethylvinyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (90)

A method similar to that for 98, except that benzyl alcohol was replaced by methanol, was used to obtain compound 90 in 69% yield as a yellowish oil which solidified slowly to a yellowish white solid; mp 89-90 °C; IR(CH₂Cl₂ film): 1752 cm⁻¹; ¹H NMR (200 MHz) δ: 0.04 (3H, s, CH₃Si), 0.05 (3H, s, CH₃Si), 0.64 (9H, s, t-BuSi), 1.38 (3H, d, J=6.2 Hz, CH₃CH), 3.50 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 4.11 (1H, q, J=6.4 Hz, CHO), 5.00 (1H, d, J=1.3 Hz, CHN), 5.68 (1H, d, J=0.6 Hz, H₂C=C), 6.43 (1H, d, J=0.9 Hz, H₂C=C), 6.81 (2H, d, J=9.2 Hz, PMP), 7.30 (2H, d, J=9.2 Hz, PMP); MS: 449 (M⁺, 3), 392 (M⁺-57, 32), 360 (M⁺-57-
32, 3), 348 (M⁺-57-44, 3), 243 (M⁺-57-149, 20); HRMS calcd for C₂₃H₃₅N₅O₆Si 449.2215, found 449.2224.

3-t-Butyldimethylsilyloxyethyl-4-(1'-carboxybenzylvinyl)-3-methoxy-1-p-methoxyphenyl-2-azetidinone (91)

The carbonylation reaction was carried out by a method similar to that for 98, to yield 62% of compound 91 as a pale yellow solid; mp 89-90 °C; IR (CH₂Cl₂): 1752, 1732 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: -0.11 (3H, s, CH₃Si), -0.07 (3H, s, CH₃Si), 0.58 (9H, s, t-BuSi), 1.32 (3H, d, J=7.3 Hz, CH₃CH), 3.50 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 3.99 (1H, q, J=6.2 Hz, CHO), 4.95 (1H, s, CHN), 5.18 (1H, d, J=12.5 Hz, CH₃H₅BPh), 5.29 (1H, d, J=12.5 Hz, CH₃H₅BPh), 5.68 (1H, dd, J=0.7, 1.6 Hz, H₂C=C), 6.48 (1H, d, J=0.4 Hz, H₂C=C), 6.79 (2H, d, J=9.2 Hz, PMP), 7.29 (2H, d, J=9.2 Hz, PMP), 7.36 (5H, s, Ph); MS: 525 (M⁺, 2), 468 (M⁺-57, 23), 436 (M⁺-57-32, 2), 424 (M⁺-57-44, 2), 319 (M⁺-57-149, 3); HRMS calcd for C₂₉H₃₉NO₆Si 525.2585, found 525.2566.
3-t-Butyldimethylsilyloxyethyl-4-[1'-carboxy(2",2"-dimethyl-1",3"-dioxane-4",6"-dion-5"-yl)vinyl]-3-methoxy-1-p-methoxyphenyl-2-azetidinone (89)

The enol triflate 87 (0.076 g, 0.141 mmol) was carbonylated in the presence of Meldrum's acid (0.02 g, 0.139 mmol) as described in the case of 98, to yield 89 in 15% yield as a yellowish oil which slowly solidified to give a yellowish solid; mp 152-153 °C; ¹H NMR (200 MHz) δ: 0.04 (6H, s, CH₃SiCH₃), 0.65 (9H, s, t-Bu), 1.38 (3H, d, J=6.3 Hz, CH₃CH), 1.76 (6H, s, 2XCH₃), 3.54 (3H, s, OCH₃), 3.56 (1H, s, CH), 3.59 (3H, 2s, OCH₃), 4.14 (1H, q, J=6.2 Hz, CHCH₃), 5.01 (1H, s, CHN), 5.80 (1H, s, H₂C=C), 6.56 (1H, s, H₂C=C), 6.83 (2H, d, J=9.2, PMP), 7.40 (2H, d, J=9.1 Hz, PMP).

4-(1'-carboxymethylvinyl)-3-ethyl-3-methoxy-2-azetidinone (99)

The α,β-unsaturated ester 98 (7.50 g, 19.0 mmol) in 200 mL of MeCN was cooled to -15 °C to -30 °C. CAN (31.22 g, 57.0 mmol) in 50 mL of ice-cold water was added dropwise over 30 min and stirred for further 15 min. Usual workup and purification by column chromatography (1:3 EtOAc:hexanes) yielded 2.80 g (51%) of compound.
99 as a colorless oil; IR: 1761 (C=O), 1725 (COOBn) cm⁻¹; ¹H NMR (200 MHz) δ: 1.01 (3H, t, J=7.5 Hz, CH₃CH₂), 1.86-1.97 (2H, q, J=7.3 Hz, CH₂CH₃), 3.36 (3H, s, OCH₃), 4.46 (1H, t broad, J=1.6 Hz, CHN), 5.21 (2H, s, CH₂Ph), 5.83 (1H, t, J= Hz, H₂C=C), 5.99 (1H, broad s, NH), 6.46 (1H, t, J= Hz, H₂C=C), 7.34 (5H, s, Ph); MS (EI 10X expanded): 289 (M⁺, 7), 274 (M⁺-15, 6), 261 (M⁺-28, 2), 258 (M⁺-31, 2), 246 (M⁺-44, 8).

3-t-Butyldimethylsilyloxyethyl-4-(1'-carboxybenzyl-vinyl)-3-methoxy-2-azetidinone (92)

The cleavage of the PMP group was achieved by a method described for 99 at -5 °C to 0 °C to yield 40% of 92 as a yellowish solid; mp 73-74 °C; IR: 3271 (NH), 1761 (C=O), 1725 (COOR) cm⁻¹; ¹H NMR (200 MHz) δ: -0.06 (3H, s, CH₃Si), -0.01 (3H, s, CH₃Si), 0.082 (9H, s, t-Bu), 1.29 (3H, d, J=6.2 Hz, CH₃CH), 3.36 (3H, s, OCH₃), 3.93 (1H, q, J=6.2 Hz, CHO), 4.60 (1H, d broad, J=1.5 Hz, CHN), 5.15 (2H, d, J=12.7 Hz, CH₁₄H₂₅Ph), 5.25 (1H, d, J=12.3 Hz, CH₁₂H₂₅Ph), 5.84 (1H, dd, J=0.8, 1.6 Hz, H₂C=C), 6.00 (1H, broad s, NH), 6.46 (1H, overlapping dd, J=0.9, 1.4 Hz, H₂C=C), 7.34 (5H, s, Ph); MS (EI expanded): 419 (M⁺, 4), 376 (M⁺-43, 11), 362 (M⁺-57, 100), 334 (M⁺-57-28, 10), 318 (M⁺-57-44, 20); HRMS calcd for C₁₈H₂₄NO₅Si (M⁺-57) 362.1436, found 362.1430.
3-Ethyl-3-methoxy-4-(1'-carboxybenzylethyl)-2-azetidinone (104)

The α,β-unsaturated ester 98 (2.34 g, 5.92 mmol) was dissolved in 125 mL of MeOH and cooled to -78 °C. NiCl₂·6H₂O (0.28 g, 1.18 mmol) and NaBH₄ (0.853 g, 23.7 mmol) were added. The reaction was found to be incomplete after stirring for 2 h, therefore the reaction mixture was then warmed to -60 °C and a yellowish brown color appeared at this stage. The reaction was still incomplete and hence warmed to -20 °C. An additional 0.2 g (5.55 mmol) of NaBH₄ was added and the color changed to brown. The reaction mixture was further warmed to 0 °C and 0.2 g more of NaBH₄ was added, at which point a black precipitate appeared. [It appears this reaction is complete within 1 h at -78 °C when 31 mg of α,β-unsaturated ester but took 2 h for 5.92 mmol scale]. The excess NaBH₄ was destroyed by adding 10% HCl and most of MeOH was removed under vacuum. The product was extracted with CH₂Cl₂ and purified by column chromatography (1:8 EtOAc:hexanes) to yield 1.20 g (51%) of 104 as an oil; IR: 1740 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.94 (3H, t, J=7.3 Hz, CH₃CH₂), 1.19 (3H, d, J=7.3 Hz, CH₃CH), 1.70-1.80 (1H, m, CH₂CH₃), 1.97-2.08 (1H, m, CH₂CH₃), 2.96-3.03 (1H, m, CH₃CH), 3.49 (3H, s, OCH₃), 3.74 (3H, s, OCH₃), 4.33 (1H, d, J=6.6 Hz, CHN), 5.12 (1H, d, J= 12.3 Hz, CH₃CH₂Ph), 5.23 (1H, d, J=12.3 Hz, CH₃CH₂Ph), 6.78 (2H, d, J=9.2 Hz, PMP), 7.22 (2H, d, J=8.3 Hz, 7.32 (5H, s, Ph); MS: 397 (M⁺, 9), 369 (M⁺-28, 2), 297 (M⁺-100, 20), 248 (M⁺-149, 8), 234 (M⁺-
28-135, 4), HRMS calcd for C_{23}H_{27}NO_{5} 397.1904, found 397.1897. This product contained a mixture of epimers at the newly created chiral center. The separation of these two epimers at this step was not possible and it was taken to the next step.

The ester, obtained as a mixture of isomers as described above, (1.05 g, 2.64 mmol) was dissolved in 30 mL of MeCN and cooled to -5 °C. CAN (4.35 g, 7.94 mmol) in 15 mL of ice-cold water was added dropwise over 20 min. After stirring for an additional 10 min, the reaction mixture was worked up using EtOAc in the usual manner. Purification of the crude product by column chromatography (1:3 EtOAc:hexanes) yielded 0.54 g (70%) of 104 as a yellowish solid; mp 70-72 °C; IR: 3264 (NH), 1758 and 1737 (C=O) cm\(^{-1}\); \(^1\)H NMR (200 MHz) \(\delta\): 0.91 (3H, t, J=7.4 Hz, CH\(_2\)CH\(_2\)), 1.21 (3H, d, J=7.2 Hz, CH\(_3\)CH), 1.61-2.00 (2H, m, CH\(_2\)CH\(_3\)), 2.73-2.81 (1H, m, CH\(_3\)CH), 3.43 (3H, s, OCH\(_3\)), 3.69 (1H, d, J=9.0 Hz, CHN), 5.03 (1H, d, J=12.4 Hz, CH\(_A\)CH\(_B\)Ph), 5.17 (1H, d, J=12.4 Hz, CH\(_A\)CH\(_B\)Ph), 6.15 (1H, broad s, NH), 7.32 (5H, s, Ph); MS: 291 (M\(^+\), 2), 248 (M\(^+\)-43, 35), 200 (M\(^+\)-91, 1), 191 (M\(^+\)-107, 1), 184 (M\(^+\)-107, 0.5); HRMS calcd for C\(_{15}\)H\(_{20}\)O\(_3\) (M\(^+\)-43) 238.1435, 238.1415.

3-Ethyl-3-methoxy-4-(1'-carboxybenzylethyl)-2-azetidinone (100)

![Chemical Structure](image)

Compound 99 (2.80 g, 9.69 mmol) was dissolved in 50 mL of THF and 25 mL of 2-butanol and cooled to -78 °C. L-Selectride (24.2 mL, 0.0242 mmol) was added slowly by a syringe over a period of 20 min.
After stirring for 30 min the reaction was quenched with 10% HCl at -78°C and usual work up of the reaction mixture using EtOAc as a solvent and purification of the crude product by column chromatography (1:3 EtOAc:hexanes) afforded 1.50 g (53%) of reduced ester 100 as a yellowish oil; IR: 3302 (NH), 1761 (C=O), 1731 (COOR) cm⁻¹; ¹H NMR (200 MHz) δ: 0.94 (3H, t, J=7.4 Hz, CH₃CH₂), 1.16 (3H, d, J=7.1 Hz, CH₃CH), 1.55-1.71 (1H, m, CH₂CH₃), 1.98-2.09 (1H, m, CH₂CH₃), 2.80-2.89 (1H, m, CHCH₃), 3.99 (4H, s, with overlapping d, J=10.4 Hz, CHN, OCH₃), 5.11 (2H, s, CH₂Ph), 6.00 (1H, s broad, NH), 7.32 (5H, broad s, Ph); MS (expanded El): 291 (M⁺, 4), 263 (M⁺-28, 0.4), 248 (M⁺-43, 65), 200 (M⁺-91, 3), 191 (M⁺-100, 2). The configuration of major isomer was determined by an X-Ray structure of the carboxylic acid obtained after debenzylation and found to be as shown. The minor isomer in this reduction was also isolated and the diastereomeric ratio of this reduction was found to be 7:1 (α:β).

3-t-Butyldimethylsilyloxyethyl-3-methoxy-4-(1'-carboxybenzylethyl)-2-azetidinone (93)

L-Selectride reduction was performed as in the case of 100 to obtain 93 in 52% yield as a paleyellowish oil, IR (CDCl₃ film): 3275 (NH), 1745 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.04 (3H, s, CH₃Si), 0.06 (3H, s, CH₃Si), 0.85 (9H, s, t-Bu), 1.17 (3H, d, J=7.1 Hz, CH₃CH), 1.23 (3H, d, J=6.4 Hz, CH₃CHO), 2.43 (1H, dq, J=7.1, 10.6 Hz, CHCH₃), 3.60 (3H, s, OCH₃), 3.68 (1H, d, J=10.4 Hz, CHN), 4.14 (1H, q, J=6.4 Hz, CHO), 5.12 (2H, s,
CH₂Ph), 6.02 (1H, d, J=2.2 Hz, NH), 7.35-7.38 (5H, broad s, Ph); MS (Cl): 422 (M⁺+1, 11), 394 (M⁺+1-28, 75), 377 (M⁺+1-45, 2), 364 (M⁺+1-58, 8), 321 (M⁺+1-58-43, 8).

3-Ethyl-3-methoxy-4-(1'-carboxyethyl)-2-azetidinone (113)

The ester 104 (0.23 g, 0.79 mmol) was dissolved in 4 mL of CH₂Cl₂ and hydrogenated at 1 atm and 25 °C using 44 mg of Pd-C (10%) for 8 h. After removal of the catalyst by passing through a small Celite plug, the solvent was removed in vacuum to yield 0.149 g (94%) of acid 113 as a white solid; mp 135-136 °C, IR: 3360 (OH, NH), 1740 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.96 (3H, t, J=7.5 Hz, CH₃CH₂), 1.24 (3H, d, J=7.3 Hz, CH₃CH), 1.73-2.05 (2H, m, CH₂CH₃), 2.71-2.79 (1H, m, CHCH₃), 3.51 (3H, s, OCH₃), 3.66 (1H, d, J=8.8 Hz, CHN), 6.36 (1H, broad s, NH); MS(Cl): 202 (M⁺+1, 35), 184 (M⁺+1-18, 1), 174 (M⁺+1-28, 88), 159 (M⁺+1-43, 4), 158 (M⁺+1-44, 3), 184 (M⁺+1-18, 1).

3-Ethyl-3-methoxy-4-(1'-carboxyethyl)-2-azetidinone (101)

The benzyl ester 100 (507 mg, 1.74 mmol) was dissolved in 20 mL of EtOH and hydrogenated in the presence of 100 mg of Pd-C (10%) at 1 atm and 25 °C for 6 h. A brownish solid was obtained after
removal of the solvent. The crude product was purified by treatment with NaHCO₃ solution (146 mg in 12 mL of water), washing with ether and acidification with concentrated HCl to yield 280 mg (80%) of 101 as an oil (which is unstable in moist air and can be crystallized under argon atmosphere to give colorless crystals; mp 139-141 °C, which became a foamy liquid at this temperature); IR (CHCl₃ film): 3287 (COOH), 1741 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.93 (3H, t, J=7.3 Hz, CH₃CH₂), 1.16 (3H, d, J=7.0 Hz, CH₃CH), 1.60-1.71 (1H, m, CH₂CH₃), 1.95-2.10 (1H, m, CH₂CH₃), 2.73-2.82 (1H, m, CH₃CH), 3.46 (1H, d, J=12.0 Hz, CHN), 3.49 (3H, s overlapping with d at 3.49, OCH₃), 6.97 (1H, broad s, NH), 7.71-7.75 (1H, broad s, COOH); MS: 201 (M⁺, 2), 182 (M⁺-18, 1), 158 (M⁺-43, 16), 143 (M⁺-43-15, 2.5), 113 (M⁺-43-45, 100); HRMS calcd for C₉H₁₅NO₄ 201.1001, found 201.1001.

3-Ethyl-3-methoxy-4-(1'-carbothiophenylethyl)-2-azetidinone (122)

![Chemical structure](image)

The carboxylic acid 113 (0.10 g, 0.496 mmol) and DCC (0.20 g, 0.969 mmol) were dissolved in 10 mL of THF at 25 °C. Thiophenol (0.07 mL, 0.682 mmol, freshly distilled under N₂) was added and the reaction mixture was stirred for 48 h. The solvent was removed by passing a stream of N₂ in a fumehood and the residue was purified by column chromatography (1:2 EtOAc:hexanes) to yield 0.132 g (90%) of 122 as a white solid; mp 108-109 °C; IR (CDCl₃ film): 3268 (NH), 1758 (C=O), 1700 (COS) cm⁻¹; ¹H NMR (200 MHz) δ: 0.93 (3H, t, J=7.4 Hz, CH₃CH₂), 282
1.30 (3H, d, J=7.0 Hz, CH₃CH), 1.67-1.78 (1H, m, CH₂CH₃), 1.94-2.05 (1H, m, CH₂CH₃), 3.04-3.12 (1H, m, CHCH₃), 3.53 (3H, s, OCH₃), 3.76 (1H, d, J=7.9 Hz, CHN), 5.87 (1H, broad s, NH), 7.38 (5H, s, Ph); MS (Cl): 294 (M⁺+1, 25), 292 (M⁺+1-2, 14), 266 (M⁺+1-28, 93), 251 (M⁺+1-43, 2), 184 (M⁺+1-100, 32); HRMS calcd for C₁₄H₁₅O₂NS (M-32) 261.0815, found 261.0819.

3-Ethyl-3-methoxy-4-(1'-carbothiopyridylethyl)-2-azetidinone (110)

DCC coupling reaction was accomplished as above to give 110 in 69% yield as a yellow oil; chromatography solvent (1:1 EtOAc:hexanes); IR: 1753 (C=O), 1701 (O=C-S) cm⁻¹; ¹H NMR (200 MHz) 8: 0.94 (3H, t, J=7.5 Hz, CH₃CH₂), 1.28 (3H, d, J=7.0 Hz, CH₃CH), 1.61-2.07 (2H, m, CH₂CH₃), 3.46-3.56 (4H, m with overlapping s at 3.52, OCH₃, CHN), 6.40 (1H, broad s, NH), 7.25-7.40 (2H, m, SPyr), 7.68-7.73 (1H, m, SPyr), 8.62 (1H, m, SPyr); MS(Cl): 295 (M⁺+1, 91), 267 (M⁺+1-28, 3), 224 (M⁺+1-28-43, 1), 186 (M⁺+1-109, 2), 158 (M⁺+1-109-28, 18).

283
Allyl 3-ethyl-3-methoxy-4-(1'-carbothiophenylethyl)-2-azetidinon-1-yloxoethanoate (123)

The thioester 122 (132 mg, 0.45 mmol) was dissolved in 4 mL of dry CH₂Cl₂ and cooled to 0 °C and DIPEA (0.093 mL, 0.534 mmol) was added by syringe. Allyloxalyl chloride (0.073 g, 0.492 mmol) in 1 mL of CH₂Cl₂ was added by cannula and the reaction mixture was stirred for 30 min, neutralized by 10% HCl and extracted with CH₂Cl₂. The CH₂Cl₂ layer was washed with saturated NaCl. The crude product was quickly passed through a small silicagel plug (1:5 EtOAc:hexanes) to yield 150 mg (82%) of 123 as a yellowish oil; IR: 1804, 1754, 1705 and 1655 (C=O) cm⁻¹; ¹H NMR (200 MHz) δ: 0.94 (3H, t, J=7.4 Hz, CH₃CH₂), 1.45 (3H, t, J=7.1 Hz, CH₃CH), 1.74-2.06 (2H, m, CH₂CH₃), 3.23-3.27 (1H, m, CHCH₃), 3.53 (3H, s, OCH₃), 4.79 (2H, d, J=6.0 Hz, CH₂O), 5.28-5.44 (2H, m, CH₂=CH), 5.88-6.02 (1H, m, CH=CH₂), 7.38 (5H, s, Ph) this compound contains some impurity derived from allyloxalyl chloride and DIPEA; MS (expanded EI): 405 (M⁺, 1), 378 (M⁺-27, 4), 373 (M⁺-32, 8), 364 (M⁺-41, 2), 296 (M⁺-109, 5).
Allyl 3-ethyl-3-methoxy-4-(1'-carbothiopyridylethyl)-2-azetidinon-1-yloxoethanoate (111)

Compound 111 was obtained as a crude product and when the purification by column chromatography was attempted only decomposition products were isolated; 1H NMR (200 MHz, crude sample contains excess allyloxal chloride and DIPEA) δ: 0.92-1.02 (3H, m, CH$_3$CH$_2$), 1.25-1.35 (3H, 2d, J=ca 7.0 Hz, caled using a ruler, CH$_3$CH), 1.60-2.10 (2H, m, CH$_2$CH$_3$), 3.00-3.15 (1H, m, CHCH$_3$), 3.26+3.53 (3H, 2s, OCH$_3$), 3.55-3.70 (1H, m, CHN), 4.65-4.85 (2H, m, OCH$_2$), 5.20-5.50 (2H, m, CH$_2$=CH), 5.80-6.05 (1H, m, CH$_2$=CH), 7.25-7.37 (1H, m, Pyr), 7.60 (1H, d, J=ca 5.0 Hz, Pyr), 7.70-7.80 (1H, m, Pyr), 8.55-8.65 (1H, m, Pyr); MS (Cl): 407 (M$^+$+1, 2), 380 (M$^+$+1-27, 2), 368 (M$^+$+1-39, 0.2), 352 (M$^+$+1-55, 0.4), 254 (M$^+$+1-153, 1).

3-Ethyl-3-methoxy-4-(1'-methyl-3-p-nitrobenzyl-oxycarbonyl-2-oxopropyl)-2-azetidinone (114)

The carboxylic acid 113 (62 mg, 0.31 mmol) in 8 mL of dry MeCN was added to carbonyl diimidazole (CDI) (60 mg, 0.37 mmol) and stirred for 2 h. The magnesium salt of mono p-nitrobenzyl ester of malonic
acid (92 mg, 0.184 mmol) and a crystal of DMAP was added. The reaction mixture was maintained at 60 °C for 2 days. After removal of the solvent the product was purified by preparative thin layer chromatography (2:1 EtOAc:hexanes) yield 18 mg (15%) of 114 as a solid; mp 99-101 °C; IR: 3300 (NH), 1746 (C=O), 1523 and 1347 (NO$_2$) cm$^{-1}$; 1H NMR (200 MHz) δ: 0.86 (3H, t, J=7.4 Hz, CH$_3$CH$_2$), 1.14 (3H, t, J=7.1 Hz, CH$_3$CH), 1.58-1.82 (1H, m, CH$_2$CH$_3$), 1.84-2.02 (1H, m, CH$_2$CH$_3$), 2.87-3.02 (1H, m, CH$_2$CH$_3$), 3.46 (3H, s, OCH$_3$), 3.64 (2H, d, J=2.1 Hz, COCH$_2$COOR), 3.68 (1H, J=9.4 Hz, CHN), 5.20 (1H, d, J=13.4 Hz, CH$_A$CH$_B$Ph), 5.29 (1H, d, J=13.4 Hz, CH$_A$CH$_B$Ph), 6.08 (1H, d, broad s, NH), 7.50 (2H, d, J=8.9 Hz, PNB), 8.20 (2H, d, J=8.8 Hz, PNB); MS(Cl): 279 (M$^+$+1-100, 1), 277 (M$^+$+1-102, 1), 276 (M$^+$+1-103, 1), 248 (M$^+$+1-103-28, 1), 198 (M$^+$+1-181, 0.2).

3-Ethyl-3-methoxy-4-(1'-methyl-3-p-nitrobenzyl-oxycarbonyl-2-oxopropyl)-2-azetidinone (106)

![Chemical Structure](image)

The acid 101 (75 mg, 0.37 mmol) was dissolved in 16 mL of MeCN and mixed with 90% pure CDI (81 mg, 0.44 mmol) in 2 mL of MeCN. After stirring for 3 h, this solution was added to the magnesium salt of mono p-nitrobenzyl ester of malonic acid (180 mg, 0.36 mmol) suspension in 10 mL of MeCN. The resulting reaction mixture was stirred at 60 °C for 18 h. The solvent was removed and the crude product was purified by column chromatography (1:2 EtOAc:hexanes) to yield 28 mg (20 %) of 106 as a white solid; 1H NMR (200 MHz) δ: 0.92
(3H, t, J=7.4 Hz, CH₃CH₂), 1.14 (3H, d, J=7.2 Hz, CH₃CH), 1.60-1.71 (1H, m, CH₂CH₃), 1.99-2.10 (1H, m, CH₂CH₃), 2.94-3.03 (1H, m, CHCH₃), 3.42-3.52 (4H, m with overlapping s at 3.48, CHN, OCH₃), 3.61 (2H, d, J=1.1 Hz, COCH₂COOR), 5.24 (2H, s, CH₂PNB), 6.05 (1H, broad s, NH), 7.49 (2H, d, J=8.8 Hz, PNB), 8.20 (2H, d, J=8.8 Hz, PNB); MS (Cl): 379 (M⁺+1, 22), 351 (M⁺+1-28, 100), 336 (M⁺+1-43, 2), 333 (M⁺+1-46, 1), 279 (M⁺+1-100, 1).

3-Ethyl-3-methoxy-4-(1'-methyl-3'diazo-3'-p-nitrobenzyloxycarbonyl-2-oxopropyl)-2-azetidinone (115)

The β-ketoester 114 (16 mg, 4.23X10⁻² mmol) in 2 mL of MeCN was added to 4-carboxybenzenesulfonazide (13 mg, 5.72 x10⁻² mmol) at 0 °C. TEA (0.024 mL, 0.172 mmol) was added by syringe. The solvent was removed after 1.5 h and the residue was purified by preparative thin layer chromatography (2:1 EtOAc:hexanes) to yield 14 mg (82%) of diazo compound 115 as an oil; IR: 3306 (NH), 2142 (N₂), 1755 and 1720 (C=O), 1523 and 1347 (NO₂); ¹H NMR (200 MHz) δ: 0.92 (3H, t, J=7.4 Hz, CH₃CH₂), 1.16 (3H, d, J=6.6 Hz, CH₃CH), 1.68-1.94 (2H, m, CH₂CH₃), 3.42 (3H, s, OCH₃), 3.70-3.86 (2H, m overlapping, CHN, CHCH₃), 5.35 (2H, s, CH₂PNB), 5.90 (1H, broad s, NH), 7.52 (2H, d, J=8.5 Hz, PNB), 8.23 (2H, d, J=8.8 Hz, PNB); MS (Cl): 377 (M⁺+1-28, 0.2), 318 (M⁺+1-43-16, 0.2), 274 (M⁺+1-131, 6), 230 (M⁺+1-131-44, 2), 199 (M⁺+1-206, 1).
3-Ethyl-3-methoxy-4-(1'-methyl-3'-diazo-3'-p-nitrobenzyloxy carbonyl-2-oxopropyl)-2-azetidinone (107)

\[
\text{\begin{tikzpicture}
\node[draw,rectangle,inner sep=0.5mm] (A) at (0,0) {
\begin{tikzcd}
\text{OMe} & \\
\text{\textbf{O}} & \text{\textbf{N}} & \text{\textbf{2}} & \text{\textbf{COOPNB}} \\
\text{\textbf{O}} & \text{\textbf{NH}} & \text{\textbf{C}} & \text{\textbf{O}}
\end{tikzcd}}
\end{tikzpicture}}
\]

The diazo compound was prepared from β-ketoester 106 (28 mg, 7.4X10^{-5} mmol) in 80% yield after purification by column chromatography (1:2 EtOAc:hexanes) as described above; IR: 2146 (N=N), 1758 and 1721 (C=O), 1523 and 1347 (NO_2) cm^{-1}; ^1H NMR (200 MHz) δ: 0.95 (3H, t, J=7.4 Hz, CH_3CH_2), 1.11 (3H, d, J=6.8 Hz, CH_3CH), 1.61-1.76 (1H, m, CH_2CH_3), 2.10-2.12 (1H, m, CH_2CH_3), 3.51 (3H, s, OCH_3), 3.63 (1H, d, J=10.0 Hz, CHN), 3.71-3.86 (1H, dq, J=6.6, 10.0 Hz, CHCH_3), 5.35 (2H, s, CH_2PNB), 5.88 (1H, broad s, NH), 7.53 (2H, d, J=8.8 Hz, PNB), 8.24 (2H, d, J=8.8 Hz, PNB); MS (Cl): 405 (M^+ +1, 1), 377 (M^++1-28, 29), 349 (M^++1-56, 77), 334 (M^++1-28-43, 1), 331 (M^++1-28-46, 1).

3-Ethyl-4,4-spiro(2'-p-nitrobenzylloxy carbonyl-1-oxo-4-methylcyclobuty-3',3'-yl)-2-azetidinone (117)

\[
\text{\begin{tikzpicture}
\node[draw,rectangle,inner sep=0.5mm] (A) at (0,0) {
\begin{tikzcd}
\text{\textbf{OMe}} & \\
\text{\textbf{O}} & \text{\textbf{NH}} & \text{\textbf{C}} & \text{\textbf{O}} & \text{\textbf{COOPNB}} \\
\end{tikzcd}}
\end{tikzpicture}}
\]

Benzene (2.5 mL) was distilled from a solution of the diazo compound 115 (14 mg, 3.46X10^{-5} mol) in about 5 mL of benzene. The remaining solution was cooled under nitrogen. About 0.1 mg of rhodium octanoate was added and the mixture was stirred at 25 °C for 18 h. Purification of the product by preparative thin layer
chromatography (2:1 EtOAc:hexanes) yielded 8 mg (61%) of spirocylic compound 117 as a foam; IR: 3304 (NH), 1768 (C=O), 1522 and 1346 (NO₂) cm⁻¹; ¹H NMR (300 MHz) δ: 1.12 (3H, t, J=7.5 Hz, CH₃CH₂), 1.21 (3H, d, J=7.5 Hz, CH₃CH), 2.09 (2H, q, J=7.5 Hz, CH₂CH₃), 3.33 (1H, q, J=7.4 Hz, overlapping with s from impurity, CHCH₃), 3.65 (3H, s, OCH₃), 3.72 (1H, s, COCHCOOR), 5.29 (1H, d, J=14.2 Hz, CHÅHBPNB), 5.41 (1H, d, J=14.2 Hz, CHBHA PNB), 6.07 (1H, broad s, NH), 7.60 (2H, d, J=8.9 Hz, PNB), 8.22 (2H, d, J=8.9 Hz, PNB); ¹³C NMR (300 MHz) δ: 8.4 (CH₃), 17.0 (CH₃), 22.7 (CH₂), 41.1 (CH), 60.3 (CH), 64.6 (OCH₃), 76.2 (CH₂PNB), 104.1 (C-3), 123.7 (CH PN B), 127.7 (CH PN B), 143.6 (C), 147.5 (C), 162.7 (C=O), 166.5 (C=O), 166.8 (C=O) [one of these carbonyls should be from impurity and two quaternary carbons (C-4 and C=O) were not observed]; MS(CI): 377 (M⁺+1, 4), 347 (M⁺+1-30, 1), 316 (M⁺+1-30-31, 26), 288 (M⁺+1-30-31-28, 1), 241 (M⁺+1-136, 1).

p-Nitrobenzyl 3-ethyl-1-methyl-1-methoxy-2-oxocarba-penamcarboxylate (108)

The desired product 108 was obtained in 67% pure form (determined by NMR) by the reaction of 107 with rhodium ocianoate in refluxing benzene for 2h. The compound was found to decompose on silica gel and could not be completely characterised; IR: 1770, 1746 (C=O) cm⁻¹; ¹H NMR (300 MHz crude) δ: 1.03 (3H, t, J=7.4 Hz, CH₃CH₂), 1.20 (3H, t, J=7.0 Hz, CH₃CH), 1.77-2.24 (2H, m, CH₂CH₃), 2.76-2.88 (1H, apparent p, J=7.1 Hz, CHCH₃), 3.48 (3H, s, OCH₃), 3.60 (1H, d, J=7.2 Hz, 289
4.20 (1H, s, COCHCOOR), 5.23 (1H, d, J=13.4 Hz, CH$_A$H$_B$PNB), 5.32 (1H, d, J=13.4 Hz, CH$_A$H$_B$PNB), 7.52 (2H, d, J=8.8 Hz, PNB), 8.22 (2H, d, J=8.8 Hz, PNB). [These NMR signals were obtained from a spectrum of crude sample using cosy experiment.]
CLAIMS TO ORIGINAL RESEARCH

1. Four novel isocephem analogs (2)36, (2)37, (2)38 and (2)39 were synthesized via anionic 4+2 cyclization reaction using CS₂. The antibacterial activities of these compounds have been studied. The MIC values indicated that these compounds are inactive as antibiotics.

2. Two carboxylic acids (3)77 and (3)83 suitable for preparation of carbacephem intermediates, were obtained by Wittig reaction involving benzyl triphenylphosphoranylidenecacetate and hydrogenation resulting in reduction of the double bond as well as debenzylolation.

3. 7-Ethyl-7-methoxycarbacephem analog (3)61 was prepared by applying rhodium carbenoid insertion. This compound was also inactive as an antibiotic.

4. Nitromethane was utilized as a formyl dianion synthon to prepare the β-ketoester (4)135 which served as a key intermediate for carbapenems.

5. p-Nitrobenzyl ester of 6-methoxy-PS-5 (4)137 was prepared by rhodium carbenoid insertion. Deprotection by hydrogenolysis appeared to afford an unstable carbapenem which could not be purified.

6. 6-Methoxy-1-α-methylcarbapenem intermediate (5)100 and its 1-β-methyl epimer (5)104 were prepared via a stereodivergent approach involving chelation controlled and non-chelation controlled reduction of azetidinone (5)98.

7. The rhodium carbenoid cyclization of (5)115 gave a rather unusual product (5)117. The formation of this product indicate that C-H insertion reaction occurs in preference to N-H insertion when a severe steric congestion disfavors the latter process.
PUBLICATIONS FROM THIS THESIS

 manuscript accepted for publication in Can. J. Chem.)