NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
Formules de type Runge-Kutta-Nyström

par

Fadi Malek

Thèse présentée à l'Ecole des études supérieures
de l'Université d'Ottawa
pour l'obtention de la maîtrise en informatique.

© Fadi Malek, Ottawa, Canada, 1992
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Remerciements

Je voudrais exprimer ici mes plus sincères remerciements à Rémi Vaillancourt pour m'avoir guidé dans la réalisation de ce travail.

Je remercie également le Conseil de recherches en sciences naturelles et en génie pour l'aide financière qui a permis de mener à bien cette étude.
Résumé

On considère les méthodes de Runge–Kutta–Nyström explicites pour la résolution directe des équations différentielles du second ordre aux valeurs initiales de la forme $y'' = f(x, y)$ pour f indépendante de y'. Le contrôle de l'erreur locale en y, en y' ou en y et y', se fait au moyen de paires de formules d'ordre respectivement $p - 1$ et p. Le pas des approximations numériques se fait soit par les formules d'ordre inférieur ou celles d'ordre supérieur. On distingue donc cinq types de paires. On établit le nombre minimum de stages pour les cinq types de paires pour les formules d'ordre $p = 2, \ldots, 6$ en donnant, pour chaque type et chaque ordre, un exemple de méthodes qui existent et en démontrant l'inexistence de méthode d'ordre inférieur. On rappelle les notions de méthodes et d'arbres de Nyström ainsi que les conditions d'ordre de ces méthodes.

Abstract

Explicit Runge–Kutta–Nyström pairs, which solve directly second order initial value problems of the form $y'' = f(x, y)$ with the first derivative y' absent, are considered. Pairs consisting of formulae of order $p - 1$ and p, respectively, can be designed to control the local error in y, in y' or in y and y'. They may also advance the numerical approximations using the lower order formulae or the higher order formulae. These two sets of choices lead to five types of pairs. We establish the minimum number of stages required to form the five types of pairs for $p = 2, \ldots, 6$, by producing an existing pair and disproving the existence of a similar pair with fewer stages. Notions of Nyström methods and Nyström trees are recalled along with the order conditions for these methods.
Table des matières

1 Introduction ... 1

2 Théorie des méthodes de Nyström 3
 2.1 Paires de formules .. 3
 2.2 Théorie des arbres .. 4
 2.3 Les cinq types de formules 8

3 Conditions d'ordre ... 10

4 Nombre minimum de stages .. 13
 4.1 Paires du type I .. 13
 4.1.1 Paires d'ordre (1,2) du type I 13
 4.1.2 Paires d'ordre (2,3) du type I 14
 4.1.3 Paires d'ordre (3,4) du type I 15
 4.1.4 Paires d'ordre (4,5) du type I 18
 4.1.5 Paires d'ordre (5,6) du type I 20
 4.2 Paires du type II ... 22
 4.2.1 Paires d'ordre (1,2) du type II 22
 4.2.2 Paires d'ordre (2,3) du type II 23
 4.2.3 Paires d'ordre (3,4) du type II 24
 4.2.4 Paires d'ordre (4,5) du type II 25
 4.2.5 Paires d'ordre (5,6) du type II 28
TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Paires du type III</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Paires d'ordre (1,2) du type III</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Paires d'ordre (2,3) du type III</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Paires d'ordre (3,4) du type III</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>4.3.4 Paires d'ordre (4,5) du type III</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>4.3.5 Paires d'ordre (5,6) du type III</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Paires du type IV</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Paires du type V</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>42</td>
</tr>
</tbody>
</table>
Chapitre 1

Introduction

On peut obtenir la solution numérique de systèmes d'équations différentielles du second ordre de deux façons différentes. La première consiste à transformer le système en un système d'équations différentielles du premier ordre et à appliquer les méthodes de Runge-Kutta bien connues. La deuxième consiste à appliquer une méthode directe inventée par Nyström [9], qu'on nomme méthode Runge-Kutta-Nyström et qu'on note RKN. Les méthodes explicites RKN forment une classe d'algorithmes numériques intéressante pour résoudre les problèmes aux valeurs initiales de systèmes non raides d'équations différentielles du second ordre de la forme:

\[y'' = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0, \]

où \(f : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).

Le présent travail traite le cas spécial où \(f \) est indépendante de \(y' \), c'est-à-dire on considère le système:

\[y'' = f(x, y), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0, \tag{1.1} \]

où \(f : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).

Comme c'est le cas pour les systèmes d'équations différentielles du premier ordre, la majorité des algorithmes de Runge-Kutta-Nyström actuels utilisent des paires de formules emboîtées, c'est-à-dire une formule d'ordre inférieur \(p - 1 \) et une formule
d'ordre supérieur p. La technique des méthodes de Runge-Kutta-Nyström emboîtées est généralement reconnue comme étant une technique efficace pour la résolution numérique des problèmes aux valeurs initiales du second ordre.

Les méthodes RKN explicites utilisent les approximations y_0 pour $y(x_0)$ et y'_0 pour $y'(x_0)$ et un pas de longueur h_0 pour évaluer f à plusieurs points entre x_0 et $x_1 = x_0 + h_0$ et ainsi approximer $y(x_1)$ à ces points.

Lorsque la formule d'ordre supérieur est utilisée pour avancer la solution numérique d'un pas, nous parlons de mode d'extrapolation locale. Par contre, lorsque la formule d'ordre inférieur est utilisée pour avancer la solution numérique, alors nous parlons de mode standard.

Au chapitre 2, on étudie la théorie des méthodes de Nyström d'une manière détaillée et on présente les arbres de Nyström.

Au chapitre 3, on présente, dans une forme convenable, les conditions d'ordre jusqu'à l'ordre six. Puis au chapitre 4, on donne les preuves d'inexistence de méthodes à $s-1$ stages et on donne des méthodes à s stages pour les types I à V. Finalement, au chapitre 5, on résume les résultats obtenus et on indique des extensions possibles à notre travail.

On ne discutera pas des applications pratiques des résultats numériques obtenus.

Tous les calculs ont été effectués avec MAPLE sur l'ordinateur Amdahl installé à l'Université d'Ottawa.
Chapitre 2

Théorie des méthodes de Nyström

2.1 Paires de formules

On considère le système d'équations différentielles du second ordre:

\[y'' = f(x, y), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0, \]

où \(f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \).

Une paire de formules emboîtées de Runge-Kutta-Nyström (RKN) à \(s \) stages se définit par les formules de récurrence suivantes:

\[
\begin{align*}
y_{i+1} &= u_i + h_i u'_i + h_i^2 \sum_{j=1}^{s} \tilde{b}_j f_j, \\
y'_i &= u'_i + h_i \sum_{j=1}^{s} \tilde{b}_j f_j, \\
\tilde{y}_{i+1} &= u_i + h_i u'_i + h_i^2 \sum_{j=1}^{s} \tilde{b}_j f_j, \\
\tilde{y}'_i &= u'_i + h_i \sum_{j=1}^{s} \tilde{b}_j f_j,
\end{align*}
\]

(2.1) (2.2)

où \(h_i = x_{i+1} - x_i \) et

\[
\begin{align*}
f_1 &= f(x_i, u_i), \\
f_j &= f(x_i + h_i c_j, u_i + h_i c_j u'_i + h_i^2 \sum_{k=1}^{j-1} a_{jk} f_k), \quad j = 2, \ldots, s.
\end{align*}
\]

(2.3) (2.4)

Les deux formules de (2.1) sont d'ordre \(p \) et celles de (2.2) sont d'ordre \(p - 1 \). Si on avance les approximations numériques par les formules d'ordre \(p - 1 \), alors \(u_i = \tilde{y}_i, \)
$u_i' = y_i'$. Si on avance les approximations numériques par les formules d'ordre p, alors $u_i = y_i$, $u_i' = y_i'$.

Pour les méthodes de Runge-Kutta-Nyström, $\hat{\beta}_j$ et β_j sont les poids des formules de la solution, \hat{b}_j et b_j les poids des formules de la dérivée, c_j les nœuds, a_{jk} les coefficients de couplage de la paire de formules et h_i le pas d'intégration. Les y_i, y_{i+1}, y_i' et y_{i+1}' représentent les approximations de la solution y et de la dérivée y' aux points x_i et x_{i+1}. Le choix des paramètres mentionnés ci-haut a pour but de maximiser le nombre de termes des développements de Taylor respectifs de y_{i+1} et y_i' qui sont identiques à ceux des développements de $y(x_i + h_i)$ et $y'(x_i + h_i)$ lorsque l'on suppose que $y_i = y(x_i)$ et $y_i' = y'(x_i)$.

On présente, au tableau 1, dit de Butcher, les coefficients d'une paire de formules de Runge-Kutta-Nyström emboîtées.

Tableau 1. Coefficients d'une paire de formules de Runge-Kutta-Nyström emboîtées à s stages.

c_1	0				
c_2	a_{21}	0			
c_3	a_{31}	a_{32}	0		
\vdots	\vdots	\vdots	\vdots		
c_s	a_{s1}	a_{s2}	\ldots	$a_{s,s-1}$	0
b	\hat{b}_1	\hat{b}_2	\ldots	\hat{b}_s	
b'	\hat{b}_1'	\hat{b}_2'	\ldots	\hat{b}_s'	
b''	b_1'	b_2'	\ldots	b_s'	

2.2 Théorie des arbres

Pour mieux comprendre et mieux apprécier l'analyse des paires de formules pour les méthodes RKN, que l'on étudiera dans ce travail, il est important d'expliquer quelques notions sur les arbres de Nyström et la dérivation des conditions d'ordre qui ont été établies par Butcher et Hairer:
CHAPITRE 2. THÉORIE DES MÉTHODES DE NYSTRÖM

Définition 2.2.1 (Butcher [3], pp. 80 et 88, v. Verner [11]) Un arbre enraciné t, est un graphe connexe sans boucle où l'on choisit pour racine un nœud à l'une des extrémités de l'arbre. L'ordre $r(t)$ est égal au nombre de nœuds de l'arbre. La hauteur $h(t)$ est le nombre d'arcs du plus long chemin relié à la racine.

Définition 2.2.2 (Hairer [8], p. 145. Arbres enracinés étiquetés) Soit A une chaîne d'indices ordonnés: $A = \{ j < k < l < m < \ldots \}$ et A_q le sous-ensemble des q premiers indices.

Un arbre enraciné étiqueté d'ordre q, $q \geq 1$, est une application:

$$t : A_q - \{ j \} \rightarrow A_q$$

telle que $t(z) < z$ pour tout $z \in A_q - \{ j \}$. L'ensemble de tous les arbres étiquetés est noté LT_q ("Labelled Trees of order q"). On appelle z l'enfant de $t(z)$, $t(z)$ le parent de z et le nœud j la racine de l'arbre.

Afin de distinguer la première dérivée de la seconde dans les arbres associés aux méthodes RKN, il est nécessaire d'introduire deux sortes de nœuds: les nœuds épais et les nœuds minces.

Ceci nous conduit à définir certains termes relatifs aux arbres de Nyström.

Définition 2.2.3 (Hairer [8], p. 263) Un arbre de Nyström (N-arbre) étiqueté d'ordre q est un arbre étiqueté (v. la définition précédente) donné par l'application:

$$t : A_q - \{ j \} \rightarrow A_q,$$

et une seconde application:

$$t' : A_q \rightarrow \{ mince, épais \},$$

qui satisfait les règles suivantes:

a) La racine de l'arbre t est toujours épaisse, c'est-à-dire $t'(j) = épais.$
b) Un nœud mince admet au plus un enfant, et cet enfant doit être épais. Les arbres de Nyström étiquetés d'ordre q sont notés LNT_q ("Labelled Nyström Trees of order q ").

Deux arbres de Nyström étiquetés t et u sont équivalents (v. [8], p. 261) s'ils sont du même ordre q et se distinguent seulement par une permutation de leurs indices. L'ensemble des arbres de Nyström équivalents forment une classe d'équivalence qu'on note NT_q. De plus, on note $\alpha(t)$ le nombre d'éléments de la classe d'équivalence.

La solution exacte de l'équation différentielle (1.1) est donnée par le développement de Butcher:

$$y^{(q)} = \sum_{t \in LNT_{q-1}} F(t)(y) = \sum_{t \in NT_q} \alpha(t) F(t)(y)$$

où la différentielle $F(t)(y)$ est une somme sur les indices de tous les nœuds épais de t, (sauf la racine f), et sur les indices de tous les nœuds minces extrémaux ("end-vertex").

Afin de calculer la solution numérique, on a recours à quelques définitions formulées par Butcher et par Hairer:

Définition 2.2.4 (Butcher [3], p. 132, v. Vernor [11]) Pour chaque arbre enraciné t, d'ordre $r(t)$, la fonction $\gamma(t)$ est l'entier positif calculé de la manière suivante: on assigne un entier à chaque nœud; les nœuds extrémaux prennent la valeur 1; les autres nœuds prennent la valeur 1 plus la somme des valeurs de tous leurs successeurs immédiats. En particulier, la valeur assignée à la racine est $r(t)$. La valeur de $\gamma(t)$ est le produit de tous les entiers assignés aux nœuds de t.

Définition 2.2.5 (Hairer [8], p. 267) Un N-arbre s'appelle arbre spécial ou Sn-arbre si les nœuds épais ont seulement des enfants minces.
Les SN-arbres sont conçus spécifiquement pour les équations différentielles spéciales (1.1).

Définition 2.2.6 (Hairer [8], p. 266) Pour chaque SN-arbre de Nyström \(t \), la fonction \(\varphi_j(t) \) est définie comme la sommation sur les indices de tous les nœuds épais de \(t \), sauf la racine \(j \).

Le terme général de \(\varphi_j(t) \) est la somme du produit de:

(a) \(a_{kl} \) si le nœud épais \(k \) est relié à un enfant mince \(l \),

(b) \(c^m_k \) si le nœud épais \(k \) est relié à \(m \) nœuds minces qui sont situés au-dessus et ne sont pas reliés à d'autres nœuds.

La solution numérique de l'équation différentielle (1.1) est donnée par le développement de Butcher:

\[
y^{(q)}_{i+1} = q \sum_{l \in LNT_{q-1}} \gamma(t) \sum_{j=1}^{l} b_j \varphi_j(t) F(t)(y_i),
\]

\[
y^{(q-1)}_{i+1} = \sum_{l \in LNT_{q-1}} \gamma(t) \sum_{j=1}^{l} b'_j \varphi_j(t) F(t)(y_i).
\]

Une méthode de Nyström pour le système d'équations différentielles (1.1) est d'ordre \(p \) si et seulement si (v. [8], p. 267)

\[
\sum_{j} b_j \varphi_j(t) = \frac{1}{(r(t) + 1) \gamma(t)}
\]

pour les SN-arbres \(t \) d'ordre \(r(t) \leq p - 1 \), et

\[
\sum_{j} b'_j \varphi_j(t) = \frac{1}{\gamma(t)}
\]

pour les SN-arbres \(t \) d'ordre \(r(t) \leq p \).
2.3 Les cinq types de formules

On peut distinguer cinq types de paires différents, selon les formules de (2.1) et (2.2) qu'on utilise. Ces cinq types sont représentés au tableau 2 où 1 indique que la formule correspondante est utilisée et 0 indique qu'elle ne l'est pas. On note ces paires de type I, II, III, IV et V respectivement.

Tableau 2. Représentation schématique des cinq types.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>I</th>
<th></th>
<th>II</th>
<th></th>
<th>III</th>
<th></th>
<th>IV</th>
<th></th>
<th>V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>p−1</td>
<td>1</td>
<td>p</td>
<td>1</td>
<td>p−1</td>
<td>1</td>
<td>p</td>
<td>1</td>
<td>p−1</td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td>y</td>
<td>1</td>
<td>1</td>
<td>y</td>
<td>1</td>
<td>y</td>
<td>1</td>
<td>y′</td>
<td>1</td>
</tr>
<tr>
<td>y′</td>
<td></td>
<td>1</td>
<td>y′</td>
<td>1</td>
<td>0</td>
<td>y′</td>
<td>0</td>
<td>y′</td>
<td>0</td>
<td>y′</td>
<td>1</td>
</tr>
</tbody>
</table>

Les paires du type II et III n'ont qu'une formule pour la dérivée; elles contrôlent donc l'erreur locale en y seulement. Les paires du type II (respectivement du type III) n'ont pas la formule de la dérivée d'ordre supérieur (respectivement d'ordre inférieur); on ne les utilise donc qu'en mode standard (respectivement en mode d'extrapolation locale). Quelques exemples de paires des types II et III ont été construites respectivement par Fehlberg–Filippi–Gräf (1986) [6], et Filippi–Gräf (1986) [7]. Voir aussi [10].

Les paires du type IV (respectivement V) n'ont qu'une formule pour la solution; elles contrôlent donc l'erreur locale en y′ seulement. Puisque les paires du type IV (respectivement V) n'ont que la formule de la solution d'ordre inférieur (respectivement d'ordre supérieur), alors elle ne peuvent être utilisées qu'en mode standard (respectivement en mode d'extrapolation locale).
CHAPITRE 2. THÉORIE DES MÉTHODES DE NYSTRÖM

Si on échange les formules de la solution et de la dérivée, les paires des types II et III deviennent semblables à celles des types IV et V. Cependant, il y a une différence importante: presque toutes les paires des types IV et V deviennent des paires du type I par les transformations suivantes:

\[\hat{b}_i = (1 - c_i) \hat{b}'_i, \quad b_i = (1 - c_i) b'_i, \quad i = 1, \ldots, s. \]

Il est évident que s'il existe une paire de méthodes à s-stages du type I d'ordre \((p-1, p)\), alors il existe des paires à s-stages des types II à V d'ordre \((p-1, p)\). On peut poser la question suivante: "Existe-t-il des paires des types II à V qui ont moins de stages que celles du même ordre du type I?"

Comme c'est le cas pour les paires de Runge-Kutta, on utilise ordinairement le nombre minimum de stages possible pour les paires RKN. Dans ce travail, on détermine le nombre minimum de stages pour les paires des types I à V d'ordre \((p-1, p)\) où \(p = 2, \ldots, 6\). On a inclus les preuves pour les paires d'ordre \(p = 2\) et \(p = 3\) bien qu'elles soient simples. Toutes les preuves d'inexistence sont par contradiction: pour chaque type de paires et chaque valeur de \(p\), on suppose l'existence d'une paire qui admet un stage de moins que la valeur minimum. On montre alors, pour les paires du type I, soit que les conditions d'ordre pour les formules de la dérivée ne peuvent pas être satisfaites ou que les formules d'ordre \((p-1)\) et \(p\) de la dérivée sont identiques. Puisque les résultats pour les paires du type I sont basés exclusivement sur les formules de la dérivée, ils s'appliquent immédiatement aux paires des types IV et V. Pour les paires des types II et III, les démonstrations utilisent les conditions d'ordre des formules de la dérivée et de la solution, pour déduire que celles-ci ne peuvent pas être satisfaites ou que les deux formules de la solution sont identiques.
Chapitre 3
Conditions d’ordre

Les conditions d’ordre pour la formule de la dérivée d’ordre \(p - 1 \) comprennent les équations de quadrature:

\[
\sum_{i=1}^{s} b_i c_i^k = \frac{1}{k + 1}, \quad k = 0, 1, \ldots, p - 2, \quad (3.1)
\]

et les équations de non quadrature:

\[
\sum_{i=1}^{s} b_i S_{i,k}^q (a, c) = 0, \quad k = 1, \ldots, N_q - 1, \quad q = 1, \ldots, p - 1, \quad (3.2)
\]

où \(N_q \) est le nombre d’équations de conditions d’ordre \(q \).

Les conditions d’ordre pour la formule de la solution d’ordre \(p - 1 \) sont

\[
\sum_{i=1}^{s} b_i c_i^k = \frac{1}{(k + 1)(k + 2)}, \quad k = 0, 1, \ldots, p - 3, \quad (3.3)
\]

et

\[
\sum_{i=1}^{s} b_i S_{i,k}^q (a, c) = 0, \quad k = 1, \ldots, N_q - 1, \quad q = 1, \ldots, p - 1. \quad (3.4)
\]

Les conditions d’ordre pour la formule de la dérivée d’ordre \(p \) sont

\[
\sum_{i=1}^{s} b_i c_i^k = \frac{1}{k + 1}, \quad k = 0, 1, \ldots, p - 1, \quad (3.5)
\]

et

\[
\sum_{i=1}^{s} b_i S_{i,k}^q (a, c) = 0, \quad k = 1, \ldots, N_q - 1, \quad q = 1, \ldots, p. \quad (3.6)
\]
Les conditions d'ordre pour la formule de la solution d'ordre \(p \) sont
\[
\sum_{i=1}^s b_i c_i^k = \frac{1}{(k+1)(k+2)}, \quad k = 0, 1, \ldots, p-2,
\]
(3.7)

et
\[
\sum_{i=1}^s b_i S_{i,k}^q(a, c) = 0, \quad k = 1, \ldots, N_q - 1, \quad q = 1, \ldots, p.
\]
(3.8)

Aux colonnes 1 et 3 du tableau 3, on présente les \(S_{i,k}^q \) pour les conditions d'ordre sur \(y' \) et \(\dot{y} \) de l'ordre 1 à 6; les indices \(j \) répétés impliquent une sommation et
\[
Q_{i,k} := \frac{c_i^{k+2}}{(k+1)(k+2)} - \sum_{j=1}^{i-1} a_{ij} c_j^k, \quad i = 2, \ldots, s.
\]
(3.9)

Aux colonnes 2 et 3 du tableau 3, on présente les \(S_{i,k}^q \) pour les conditions d'ordre sur \(y \) et \(\dot{y} \) de l'ordre 1 à 6.

Tableau 3. Les \(S_{i,k}^q(a, c) \) d'ordre \(q \), de un à six, pour les formules respectivement de la dérivée et de la solution.

<table>
<thead>
<tr>
<th>(q) pour (y') et (\dot{y})</th>
<th>(q) pour (y) et (\dot{y})</th>
<th>(S_{i,k}^q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>1, 2, 3, 4</td>
<td>aucune</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>(Q_{i1})</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>(c_i Q_{i1}, Q_{i2})</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(c_i^2 Q_{i1}, c_i Q_{i2}, Q_{i3}, a_{ij} Q_{i1})</td>
</tr>
</tbody>
</table>

Au tableau 3, on a supposé que l'hypothèse simplificatrice suivante est satisfaite:
\[
\frac{c_i^2}{2} = \sum_{j=1}^{i-1} a_{ij}, \quad i = 1, \ldots, s.
\]
(3.10)

Cette hypothèse exprime le fait que la valeur approchée de \(y \) à chaque point \(x_i + h_i c_j \),
\[
u_i + h_i c_j u'_i + h_i^2 \sum_{k=1}^{j-1} a_{jk} f_k,
\]
où l'on évalue \(f_j \) dans (2.4), approxime la solution locale \(y(x_i + h_i c_j) \) à l'ordre \(O(h_i^2) \) près. Sous cette hypothèse, certaines des conditions de non quadratures deviennent
identiques, d’où une réduction du nombre de conditions distinctes. Par la suite, on supposera toujours l’hypothèse (3.10).

Les hypothèses simplificatrices suivantes:

\[b_i = b'_i(1 = c_i), \quad \hat{b}_i = \hat{b}'_i(1 - c_i), \quad i = 1, \ldots, t, \quad (3.11) \]

impliquent l’existence d’une formule pour la solution \(y \) s’il existe une formule pour la dérivée \(y' \). On supposera l’une ou l’autre ou les deux de ces hypothèses selon les circonstances.

Pour réduire de un le nombre d’évaluations de \(f \) par pas, on ré-utilise le dernier stage du pas actuel comme premier stage du pas suivant. On appelle FSAL ("First Same As Last") les paires qui ré-utilisent le dernier stage et dans le cas contraire, non FSAL.

Pour les paires FSAL, on doit avoir \(c_s = 1 \) et on doit aussi satisfaire les conditions suivantes:

\[\hat{b}_s = 0, \quad a_{s,j} = \hat{b}_j, \quad j = 1, \ldots, s - 1, \quad Q_{s1} = 0. \quad (3.12) \]

en mode standard, et les conditions semblables:

\[b_s = 0, \quad a_{s,j} = b_j, \quad j = 1, \ldots, s - 1, \quad Q_{s1} = 0, \quad (3.13) \]

en mode d’extrapolation locale.

On notera \(c'_i = 1 \) même si \(c_i = 0 \).
Chapitre 4

Nombre minimum de stages

4.1 Paires du type I

Comme on l’a déjà mentionné, les paires du type I contrôlent l’erreur locale en y et y'. On doit donc considérer les équations de conditions en y, y', \dot{y} et \dot{y}' afin de trouver les méthodes pour les paires RKN de l’ordre $(1, 2)$ jusqu’à l’ordre $(5, 6)$.

4.1.1 Paires d’ordre $(1, 2)$ du type I

Il n’existe pas de méthode à un seul stage ($s = 1$) pour les paires de formules du type I. En effet, les équations de conditions pour les ordres 1 et 2 sont respectivement:

- Ordre 1 en \dot{y}: aucune condition d’ordre,
- Ordre 2 en y: $b_1 = \frac{1}{2},$
- Ordre 1 en \dot{y}': $\dot{b}'_1 = 1,$
- Ordre 2 en y': $b'_1 = 1,$
 \[b'_1c_1 = \frac{1}{2}. \]

On constate qu’on ne peut pas satisfaire l’équation de quadrature d’ordre 2 en y' puisque $c_1 = 0$. Il s’ensuit que quelque soit le mode d’avancement, il n’existe pas de méthode à un stage pour les paires de formules d’ordre $(1, 2)$.

Il existe des méthodes FSAL à deux stages pour les paires de formules d’ordre $(1, 2)$ du type I. On donne ci-dessous les équations de conditions pour ces paires:
CHAPITRE 4. NOMBRE MINIMUM DE STAGES

Ordre 1 en \(\hat{y} \): aucune condition,
Ordre 2 en \(y \): \(b_1 + b_2 = \frac{1}{2} \),
Ordre 1 en \(\hat{y}' \): \(\hat{b}_1 + \hat{b}_2 = 1 \),
Ordre 2 en \(y' \): \(b'_1 + b'_2 = 1 \),
\[b'_2c_2 = \frac{1}{2} \]

Pour les paires FSAL on a:

\[c_2 = 1, \left\{ \begin{array}{l}
\hat{b}_2 = 0, \quad a_{21} = \hat{b}_1, \quad \text{en mode standard,} \\
\hat{b}_2 = 0, \quad a_{21} = b_1, \quad \text{en mode d'extrapolation locale.}
\end{array} \right. \]

Le système ci-dessus admet la solution:

\[b'_2 = \frac{1}{2}, \quad b'_1 = \frac{1}{2}, \]

où \(b_1, \hat{b}_1, \hat{b}_1' \) sont arbitraires en mode standard et \(\hat{b}_1, \hat{b}_2 \) et \(\hat{b}_1' \) sont arbitraires en mode d'extrapolation locale.

Donc il existe des méthodes FSAL d'ordre (1, 2) dans les deux modes.

4.1.2 Paires d'ordre (2, 3) du type I

Il n'existe pas de méthode à deux stages pour les paires d'ordre (2, 3) du type I. Les équations de conditions pour ces paires sont les suivantes:

Ordre 2 en \(\hat{y} \): \(\hat{b}_1 + \hat{b}_2 = \frac{1}{2} \),
Ordre 3 en \(y \): \(b_1 + b_2 = \frac{1}{2} \),
\[b_2c_2 = \frac{1}{6} \],
Ordre 2 en \(\hat{y}' \): \(\hat{b}_1' + \hat{b}_2' = 1 \),
\[\hat{b}_2'c_2 = \frac{1}{2} \],
Ordre 3 en \(y' \): \(b'_1 + b'_2 = 1 \),
\[b'_2c_2 = \frac{1}{2} \],
\[b'_2c_2^2 = \frac{1}{3} \].

Les équations en \(y' \) nous donnent:

\[c_2 = \frac{2}{3}, \quad b'_2 = \frac{3}{4}, \quad b'_1 = \frac{1}{4}, \]

et les équations en \(\hat{y}' \) nous donnent:

\[\hat{b}'_2 = \frac{3}{4}, \quad \hat{b}'_1 = \frac{1}{4}. \]
Donc
\[
\hat{b}_i = \hat{\delta}_i, \quad i = 1, 2,
\]
et on déduit que quelque soit le mode d'avancement, il n'existe pas de méthode à deux stages pour les paires de formules (2, 3).

Il existe des méthodes FSAL à trois stages pour les paires de formules d'ordre (2, 3). Les équations de conditions pour ces paires sont les suivantes:

Ordre 2 en \(y \):
\[
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 = \frac{1}{2},
\]

Ordre 3 en \(y \):
\[
b_1 + b_2 + b_3 = \frac{1}{2},
\quad b_2c_2 + b_3c_3 = \frac{1}{6},
\]

Ordre 2 en \(y' \):
\[
\hat{b}'_1 + \hat{b}'_2 + \hat{b}'_3 = 1,
\quad \hat{b}'_2c_2 + \hat{b}'_3c_3 = \frac{1}{2},
\]

Ordre 3 en \(y' \):
\[
b'_1 + b'_2 + b'_3 = 1,
\quad b'_2c_2 + b'_3c_3 = \frac{1}{2},
\quad b'_2c'_2 + b'_3c'_3 = \frac{1}{3}.
\]

Pour les paires FSAL on a:

\[
c_3 = 1 \text{ et } \left\{ \begin{array}{ll}
\hat{b}_3 = 0, & a_{31} = \hat{b}_1, a_{32} = \hat{b}_2 \quad \text{en mode standard,} \\
b_3 = 0, & a_{31} = b_1, a_{32} = b_2 \quad \text{en mode d'extrapolation locale.}
\end{array} \right.
\]

On peut facilement trouver une solution pour le système donné ci-haut et par conséquent il existe des méthodes FSAL à 3 stages pour les paires de formules d'ordre (2, 3).

4.1.3 Paires d'ordre (3, 4) du type I

Il n'existe pas de méthode à trois stages pour les paires d'ordre (3, 4) du type I. Les équations de conditions pour ces paires sont les suivantes:

Ordre 3 en \(y \):
\[
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 = \frac{1}{2},
\quad \hat{b}_2c_2 + \hat{b}_3c_3 = \frac{1}{6},
\]
Ordre 4 en \(y \):
\[
\begin{align*}
 b_1 + b_2 + b_3 &= \frac{1}{2}, \\
 b_2 c_2^k + b_3 c_3^k &= \frac{1}{(k+1)(k+2)}, \quad k = 1, 2,
\end{align*}
\]

Ordre 3 en \(y' \):
\[
\begin{align*}
 \hat{b}'_1 + \hat{b}'_2 + \hat{b}'_3 &= 1, \quad (4.1) \\
 \hat{b}'_2 c_2^k + \hat{b}'_3 c_3^k &= \frac{1}{k+1}, \quad k = 1, 2, \quad (4.2)
\end{align*}
\]

Ordre 4 en \(y' \):
\[
\begin{align*}
 \hat{b}'_1 + \hat{b}'_2 + \hat{b}'_3 &= 1, \quad (4.3) \\
 \hat{b}'_2 c_2^k + \hat{b}'_3 c_3^k &= \frac{1}{k+1}, \quad k = 1, 2, 3, \quad (4.4) \\
 \hat{b}'_2 Q_{21} + \hat{b}'_3 Q_{31} &= 0.
\end{align*}
\]

On démontre le théorème suivant.

Théorème 4.1.1 Il n’existe pas de méthode à trois stages pour les paires de formules d’ordre \((3, 4)\).

Démonstration. La démonstration fait appel uniquement aux équations de quadrature des formules des dérivées \(y' \) et \(y' \). On suppose l’existence d’une méthode à trois stages et l’on considère la matrice et les vecteurs suivants:

\[
A = \begin{bmatrix}
 1 & 1 & 1 \\
 0 & c_2 & c_3 \\
 0 & c_2^2 & c_3^2
\end{bmatrix}, \quad \hat{b}' = \begin{bmatrix}
 \hat{b}'_1 \\
 \hat{b}'_2 \\
 \hat{b}'_3
\end{bmatrix}, \quad b' = \begin{bmatrix}
 b'_1 \\
 b'_2 \\
 b'_3
\end{bmatrix}, \quad r = \begin{bmatrix}
 \frac{1}{1} \\
 \frac{1}{2} \\
 \frac{1}{3}
\end{bmatrix}.
\]

On écrit l’équation (4.1) et les deux équations (4.2), avec \(k = 1, 2 \), sous forme matricielle:

\[
A \hat{b}' = r,
\]
et, de la même façon, l'équation (4.3) et les deux premières équations de (4.4), avec $k = 1, 2$:

$$Ab' = r.$$

On a donc

$$A\bar{b}' = Ab'.$$

Si A est régulière, la solution est unique: $b' = \bar{b}'$, ce qui contredit l'hypothèse d'existence. Donc A est singulière.

La matrice A est singulière si et seulement si $c_2 = c_3$ ou l'un des c_2 ou c_3 est zéro.

Dans les trois cas, les trois équations de (4.4), pour $k = 1, 2, 3$, peuvent s'écrire de la façon suivante:

$$x\alpha = \frac{1}{2}, \quad x\alpha^2 = \frac{1}{3}, \quad x\alpha^3 = \frac{1}{4}. \tag{4.5}$$

La solution des deux premières équations est

$$\alpha = \frac{2}{3}, \quad x = \frac{3}{4}.$$

On remarque alors que la troisième équation n'est pas satisfaite. Par conséquent, même si A est singulière, la paire n'existe pas parce que la formule d'ordre supérieure ne peut être que d'ordre trois.

Il existe des méthodes FSAL à quatre stages pour les paires de formules d'ordre $(3, 4)$. On présente une telle méthode au tableau 4.

Tableau 4. Une paire FSAL d'ordre $(3, 4)$ à quatre stages du type I

$\frac{1}{3}$	$\frac{1}{18}$	0	0	0
$\frac{1}{2}$	$\frac{1}{6}$	0	$\frac{1}{3}$	0
$\frac{1}{2}$	$\frac{1}{6}$	0	$\frac{1}{3}$	0
$\frac{1}{3}$	$\frac{1}{2}$	-1	1	0
$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	2	0
$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{3}{4}$	$\frac{1}{6}$
4.1.4 Paires d’ordre (4, 5) du type I

On montre qu’il n’existe pas de méthode d’ordre (4, 5) à 4 stages pour les paires non FSAL ni à 5 stages pour les paires FSAL. On utilise la même démonstration pour les paires non FSAL et FSAL.

Théorème 4.1.2 Il n’existe pas de méthode RKN d’ordre (4, 5) du type I pour les paires non FSAL à 4 stages ni pour les paires FSAL à 5 stages.

Démonstration. La démonstration est par contradiction, en supposant l’existence d’une telle paire.

On considère les équations de non quadrature:

\[
\begin{align*}
\beta_2 Q_{21} + \beta_3 Q_{31} + \beta_4 Q_{41} &= 0, \\
\beta_2 c_2 Q_{21} + \beta_3 c_3 Q_{31} + \beta_4 c_4 Q_{41} &= 0, \\
\beta_2 Q_{21} + \beta_3 Q_{31} + \beta_4 Q_{41} &= 0.
\end{align*}
\]

L’existence d’une paire implique que ces équations sont satisfaites. On remarque l’absence du terme en \(Q_{51}\) puisque \(b_5 = b_6 = 0\) pour les paires non FSAL (méthode à 4 stages), et \(Q_{51} = 0\) pour les paires FSAL.

Si les trois équations (4.6) sont indépendantes, elles admettent l’unique solution nulle: \(Q_{21} = Q_{31} = Q_{41} = 0\). Mais \(Q_{21}\) ne peut s’annuler parce que la méthode se réduirait à une méthode non FSAL d’ordre (4, 5) à 3 stages qui n’existe pas d’après le théorème 4.1.1 qu’on vient d’établir, ou à une paire FSAL d’ordre (4, 5) à 4 stages, que l’on considère dans la première partie du présent théorème.

Alors, les trois équations (4.6) sont dépendantes. Donc, il existe trois nombres \(\alpha\), \(\beta\) et \(\gamma\), non tous nuls, tels que:

\[
\begin{align*}
\alpha \beta_2 + \beta \beta_2 + \gamma \beta_2 c_2 &= 0, \\
\alpha \beta_3 + \beta \beta_3 + \gamma \beta_3 c_3 &= 0, \\
\alpha \beta_4 + \beta \beta_4 + \gamma \beta_4 c_4 &= 0.
\end{align*}
\]

Pour chacune des trois valeurs de \(k\), \(k = 1, 2, 3\), après avoir multiplié les trois équations de (4.7) par \(c_2^k\), \(c_3^k\) et \(c_4^k\), on additionne les équations et on utilise les équations de
quadrature (3.1) et (3.5); on obtient alors le système linéaire suivant:

\[
\begin{align*}
\left(\frac{1}{2} - b_5 \right) \alpha + \left(\frac{1}{2} - b_5 \right) \beta + \left(\frac{1}{2} - b_5 \right) \gamma &= 0, \\
\left(\frac{1}{3} - b_5 \right) \alpha + \left(\frac{1}{3} - b_5 \right) \beta + \left(\frac{1}{2} - b_5 \right) \gamma &= 0, \\
\left(\frac{1}{4} - b_5 \right) \alpha + \left(\frac{1}{4} - b_5 \right) \beta + \left(\frac{1}{2} - b_5 \right) \gamma &= 0,
\end{align*}
\] (4.8)

qu'on récrit de la façon suivante:

\[
\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{2} \\
1 & \frac{1}{3} & \frac{1}{2} \\
1 & \frac{1}{4} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
-\hat{b}_5 \alpha - b'_5 (\beta + \gamma) \\
\alpha + \beta \\
\gamma
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\] (4.9)

Puisque la matrice des coefficients est régulière, le système admet l'unique solution nulle:

\[-\hat{b}_5 \alpha - b'_5 (\beta + \gamma) = 0, \quad \alpha + \beta = 0, \quad \gamma = 0.\]

On a donc \(\beta = -\alpha\), ce qui, combiné avec le premier élément du vecteur nul, donne \(b'_5 = \hat{b}_5\).

Si on substitue ces valeurs de \(\alpha\), \(\beta\) et \(\gamma\) dans le système (4.7), on voit que \(b'_i = \hat{b}_i\), \(i = 2, 3, 4\). Ce résultat, combiné avec les deux premières équations de quadrature de (3.1) et (3.5), implique que \(b'_1 = \hat{b}_1\), et par conséquent, la paire n'existe pas.

Dormand, El-Mikkawy et Prince ont construit en [4] une méthode à 6 stages pour les paires FSAL d'ordre (4, 5). On présente, au tableau 5, une nouvelle méthode à 5 stages pour les paires non FSAL d'ordre (4, 5).

Tableau 5. Une paire non FSAL d'ordre (4, 5) à cinq stages du type I

<table>
<thead>
<tr>
<th>(b)</th>
<th>(b)</th>
<th>(b)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b')</th>
<th>(b')</th>
<th>(b')</th>
<th>(b')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b)</th>
<th>(b)</th>
<th>(b)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b')</th>
<th>(b')</th>
<th>(b')</th>
<th>(b')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>
4.1.5 Paires d'ordre (5, 6) du type I

On démontre l'inexistence de méthode à cinq stages par contradiction.

Théorème 4.1.3 Il n'existe pas de méthode à 5 stages pour les paires R KN d'ordre (5, 6) du type I.

Déémonstration. On suppose qu'une paire existe et on démontre que les équations de conditions suivantes sont incompatibles pour les paires à 5 stages.

Ordre 5 en \(y' \):

\[
\begin{align*}
\beta_1' + \beta_2' + \beta_3' + \beta_4' + \beta_5' &= \frac{1}{2}, \\
\beta_2' c_2^k + \beta_3' c_3^k + \beta_4' c_4^k + \beta_5' c_5^k &= \frac{1}{k + 1}, \quad k = 1, 2, 3, 4, \\
\beta_2 c_2^k Q_{21} + \beta_3 c_3^k Q_{31} + \beta_4 c_4^k Q_{41} + \beta_5 c_5^k Q_{51} &= 0, \quad k = 0, 1, \\
\beta_2 Q_{22} + \beta_3 Q_{32} + \beta_4 Q_{42} + \beta_5 Q_{52} &= 0.
\end{align*}
\]

Ordre 6 en \(y' \):

\[
\begin{align*}
\beta_1' + \beta_2' + \beta_3' + \beta_4' + \beta_5' &= 1, \\
\beta_2' c_2^k + \beta_3' c_3^k + \beta_4' c_4^k + \beta_5' c_5^k &= \frac{1}{k + 1}, \quad k = 1, \ldots, 5, \\
\beta_2 c_2^k Q_{21} + \beta_3 c_3^k Q_{31} + \beta_4 c_4^k Q_{31} + \beta_5 c_5^k Q_{31} &= 0, \quad k = 0, 1, 2, \\
\beta_2 c_2^k Q_{22} + \beta_3 c_3^k Q_{32} + \beta_4 c_4^k Q_{32} + \beta_5 c_5^k Q_{32} &= 0, \quad k = 0, 1, \\
\beta_2 Q_{22} + \beta_3 Q_{32} + \beta_4 Q_{42} + \beta_5 Q_{52} &= 0, \\
\beta_3 a_{32} Q_{21} + \beta_4 (a_{42} Q_{21} + a_{43} Q_{31}) \\
+ \beta_5 (a_{52} Q_{21} + a_{53} Q_{31} + a_{54} Q_{41}) &= 0,
\end{align*}
\]
Ordre 5 en \hat{y}:

\[
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 + \hat{b}_5 = \frac{1}{2},
\]
\[
\hat{b}_2 c_2^k + \hat{b}_3 c_3^k + \hat{b}_4 c_4^k + \hat{b}_5 c_5^k = \frac{1}{(k + 1)(k + 2)}, \quad k = 1, 2, 3,
\]
\[
\hat{b}_2 Q_{21} + \hat{b}_3 Q_{31} + \hat{b}_4 Q_{41} + \hat{b}_5 Q_{51} = 0,
\]

Ordre 6 en y:

\[
b_1 + b_2 + b_3 + b_4 + b_5 = \frac{1}{2},
\]
\[
b_2 c_2^k + b_3 c_3^k + b_4 c_4^k + b_5 c_5^k = \frac{1}{k + 1}, \quad k = 1, 2, 3, 4,
\]
\[
b_2 c_2^k Q_{21} + b_3 c_3^k Q_{31} + b_4 c_4^k Q_{41} + b_5 c_5^k Q_{51} = 0, \quad k = 0, 1,
\]
\[
b_2 Q_{22} + b_3 Q_{32} + b_4 Q_{42} + b_5 Q_{52} = 0.
\]

On procède comme au théorème 4.1.2. Quatre équations quelconques parmi les cinq équations de non quadrature (4.12), $k = 0, 1$, et (4.15), $k = 0, 1, 2$, doivent être dépendantes, sinon $Q_{21} = 0$ et par suite $c_2 = 0$. Ceci réduirait le nombre de stages de la méthode à 4; donc celle-ci n'existerait pas par le théorème 4.1.2. Alors il existe quatre scalaires, α, β, γ et δ, non tous nuls, tels que

\[
\alpha \hat{b}_i + \beta b_i + \gamma b_i c_i + \delta b_i c_i^2 = 0, \quad i = 2, \ldots, 5. \tag{4.16}
\]

On multiply la ième équation par c_i^k, $k = 1, 2, 3$ et on somme sur les i. Si on utilise les équations de quadrature (4.11) et (4.14), on obtient le système suivant:

\[
\begin{bmatrix}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
\alpha + \beta \\
\gamma \\
\delta
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]

La matrice des coefficients est régulière. Donc le système admet l'unique solution

\[
(\alpha + \beta, \gamma, \delta) = (0, 0, 0).
\]
Il s'ensuit que $\alpha = -\beta \neq 0$, sinon la paire n'existe pas.

On remplace α, β, γ et δ dans (4.16) par leurs valeurs respectives, et on obtient $b'_i = \hat{b}'_i$, $i = 2, \ldots, 5$. Enfin, de (4.10) et de (4.13) on peut tirer que $b'_1 = \hat{b}'_1$. Donc la paire n'existe pas.

On complète l'étude des paires d'ordre $(5,6)$ en donnant au tableau 6 une paire FSAL à six stages. Un élément du tableau de la forme (a, b) représente le nombre algébrique $a + b\sqrt{5}$.

Tableau 6. Une paire FSAL d'ordre $(5,6)$ à six stages du type I

\[
\begin{array}{c|cccccc}
& \frac{1}{2} & \frac{7}{6} & \frac{3}{2} & \frac{1}{3} & \frac{13}{150} & \frac{1}{150} \\
\frac{1}{2} & \frac{11}{12} & \frac{11}{100} & \frac{13}{150} & \frac{1}{150} & \frac{1}{100} & \frac{1}{300} \\
\frac{1}{12} & 0 & 0 & -2 & 0 & \frac{1}{22} & \frac{1}{22} \\
\frac{1}{12} & 0 & 0 & 2 & 0 & \frac{5}{22} & \frac{1}{22} \\
\frac{1}{12} & 0 & -2 & 0 & \frac{5}{22} & \frac{5}{22} & \frac{1}{22} \\
\frac{1}{12} & 0 & -2 & 0 & \frac{1}{22} & \frac{5}{22} & \frac{1}{22} \\
\end{array}
\]

4.2 **Paires du type II**

Comme on l'a déjà mentionné, les paires du type II contrôlent l'erreur locale en \hat{y} et on avance le pas avec la méthode d'ordre inférieur.

4.2.1 **Paires d'ordre $(1,2)$ du type II**

On peut montrer facilement qu'il existe des méthodes à un seul stage pour les paires non FSAL d'ordre $(1,2)$, mais qu'il n'en existe pas pour les paires FSAL.

Les équations de conditions pour les méthodes à un stage, $s = 1$, sont:

- Ordre 1 en $\hat{y}': \hat{b}'_1 = 1$,
- Ordre 1 en \hat{y}: aucune condition d'ordre,
- Ordre 2 en y: $b'_1 = \frac{1}{2}$.
CHAPITRE 4. NOMBRE MINIMUM DE STAGES

On a donc

\[\hat{b}_1 = 1, \quad b_1 = \frac{1}{2}, \quad \hat{b}_1 \text{ arbitraire}. \]

Dans le cas FSAL, on devrait avoir \(c_1 = 1 \), ce qui n’est pas possible puisque \(c_1 = 0 \). On déduit donc qu’il n’y a pas de paire FSAL d’ordre \((1,2)\).

Il existe des méthodes à deux stages pour les paires FSAL d’ordre \((1,2)\) du type II puisqu’il en existe du type I.

4.2.2 Paires d’ordre \((2,3)\) du type II

Il n’y a pas de méthode à un stage pour les paires non FSAL d’ordre \((2,3)\).

(a) *Inexistence de méthode non FSAL à un stage.*

Les équations de conditions pour les méthodes à un stage, \(s = 1 \), sont:

Ordre 2 en \(\hat{y} \):

\[\hat{b}_1 = 1, \]
\[\hat{b}_1 c_1 = \frac{1}{2}, \]

Ordre 2 en \(y \):

\[b_1 = \frac{1}{2}, \]

Ordre 3 en \(y \):

\[b_1 c_1 = \frac{1}{6}, \]

Il est évident que les équations:

\[b_1 c_1 = \frac{1}{2}, \quad b_1 c_1 = \frac{1}{2}, \]

ne peuvent pas être satisfaites parce que \(c_1 = 0 \).

(b) *Existence de méthodes FSAL à deux stages.*

Il existe des méthodes à deux stages pour les paires FSAL d’ordre \((2,3)\). On en présente une au tableau 7.

<table>
<thead>
<tr>
<th>Tableau 7. Une paire non FSAL d’ordre ((2,3)) à 2 stages du type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>
4.2.3 Paires d’ordre (3, 4) du type II

On montre qu’il n’existe pas de méthode à 2 stages pour les paires non FSAL d’ordre (3, 4).

(a) *Inexistence de méthode à deux stages.*

On énumère les équations de conditions pour les paires à deux stages:

Ordre 3 en \hat{y}:

\[\hat{b}_1 + \hat{b}_2 = 1, \]
\[\hat{b}_2 c_2^k = \frac{1}{k+1} \quad k = 1, 2, \]

(4.17)

Ordre 3 en \acute{y}:

\[\acute{b}_1 + \acute{b}_2 = \frac{1}{2}, \]
\[\acute{b}_2 c_2 = \frac{1}{6}, \]

Ordre 4 en y:

\[b_1 + b_2 = \frac{1}{2}, \]
\[b_2 c_2^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2. \]

(4.18)

Les deux équations en (4.17) impliquent que $c_2 = 2/3$; d’autre part, les deux équations en (4.18) impliquent que $c_2 = 1/2$. Elles sont donc incompatibles et il n’y a pas de méthode à 2 stages pour les paires non FSAL (3, 4).

(b) *Existence de méthodes FSAL à trois stages.*

On présente, au tableau 8, une méthode à 3 stages pour les paires FSAL d’ordre (3, 4).
Tableau 8. Une paire FSAL d’ordre (3, 4) à trois stages du type II

\[
\begin{array}{c|ccc}
\frac{2}{3} & \frac{2}{9} & \frac{1}{4} & 0 \\
1 & \frac{1}{4} & \frac{1}{4} & 0 \\
\hline
\frac{6}{5} & \frac{8}{3} & \frac{1}{4} & 0 \\
\frac{24}{5} & \frac{8}{3} & \frac{1}{4} & -\frac{1}{12} \\
\frac{1}{4} & \frac{1}{4} & 0 & \\
\end{array}
\]

4.2.4 Paires d’ordre (4, 5) du type II

On montre qu’il n’existe pas de méthode du type II à 3 stages pour les paires non FSAL d’ordre (4, 5) ni à 4 stages pour les paires FSAL d’ordre (4, 5). On présente deux nouvelles méthodes, une non FSAL à 4 stages et l’autre FSAL à 5 stages.

(a) Inexistence de méthode non FSAL à trois stages.

On énumère les équations de conditions pour les méthodes à 3 stages, $s = 3$, pour les paires non FSAL:

Ordre 4 en \hat{y}:

\[
\begin{align*}
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 &= 1, \\
\hat{b}_2 c_2^k + \hat{b}_3 c_3^k &= \frac{1}{k + 1} \quad k = 1, 2, 3, \\
\hat{b}_2 Q_{21} + \hat{b}_3 Q_{31} &= 0,
\end{align*}
\]

(4.19)

Ordre 4 en \dot{y}:

\[
\begin{align*}
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 &= \frac{1}{2}, \\
\hat{b}_2 c_2^k + \hat{b}_3 c_3^k &= \frac{1}{(k + 1)(k + 2)}, \quad k = 1, 2, \\
\end{align*}
\]

(4.20)

Ordre 5 en y:

\[
\begin{align*}
b_1 + b_2 + b_3 &= \frac{1}{2}, \\
b_2 c_2^k + b_3 c_3^k &= \frac{1}{(k + 1)(k + 2)}, \quad k = 1, 2, 3, \\
b_2 Q_{21} + b_3 Q_{31} &= 0.
\end{align*}
\]

(4.22)
On montre que les conditions de quadratures pour \(y \) et \(\hat{y} \) sont incompatibles. Soit la matrice et les vecteurs

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
0 & c_2 & c_3 \\
0 & c_2^2 & c_3^2
\end{bmatrix}, \quad \hat{b} = \begin{bmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3
\end{bmatrix}, \quad b = \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}, \quad r = \begin{bmatrix}
\frac{7}{12} \\
\frac{1}{3} \\
\frac{1}{2}
\end{bmatrix}.
\]

Alors les trois équations (4.20) et (4.21), \(k = 1, 2 \), d'une part et les trois équations (4.22) et (4.23), \(k = 1, 2 \), d'autre part, s'écrivent respectivement de la façon suivante:

\[
A\hat{b} = r, \quad Ab = r.
\]

Donc

\[
A\hat{b} = Ab. \tag{4.24}
\]

Si \(A \) est régulière, le système (4.24) admet l'unique solution \(b = \hat{b} \), ce qui contredit l'existence d'une paire. Il faut donc que \(A \) soit singulière.

Dans ce cas, \(c_2 = c_3 \) ou \(c_2c_3 = 0 \). Dans ces trois cas, les trois équations (4.19) se réduisent à la forme suivante:

\[
x\alpha = \frac{1}{2}, \quad x\alpha^2 = \frac{1}{3}, \quad x\alpha^3 = \frac{1}{4}.
\]

On voit immédiatement que ce système est incompatible.

On conclut à l'inexistence de méthode à 3 stages pour les paires non FSAL d'ordre (4,5).

(b) *Inexistence de méthode FSAL à quatre stages.*

Les équations de conditions pour les méthodes FSAL à 4 stages sont les suivantes:

Ordre 4 en \(\hat{y} \):

\[
\begin{align*}
\hat{b}_1' + \hat{b}_2' + \hat{b}_3' + \hat{b}_4' & = 1, \\
\hat{b}_2'c_2^k + \hat{b}_3'c_3^k + \hat{b}_4'c_4^k & = \frac{1}{k+1}, \quad k = 1, 2, 3, \\
\hat{b}_2'Q_{21} + \hat{b}_3'Q_{31} & = 0,
\end{align*}
\]

\[
\tag{4.25}
\]
CHAPITRE 4. NOMBRE MINIMUM DE STAGES

Ordre 4 en \ddot{y}:

\[
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 = \frac{1}{2},
\]

\[
\hat{b}_2 c_2^k + \hat{b}_3 c_3^k + \hat{b}_4 c_4^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2,
\]

Ordre 5 en y:

\[
b_1 + b_2 + b_3 + b_4 = \frac{1}{2},
\]

\[
b_2 c_2^k + b_3 c_3^k + b_4 c_4^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3,
\]

\[b_2 Q_{21} + b_3 Q_{31} = 0. \quad (4.26)\]

On rappelle que $Q_{41} = 0$ puisqu'on est dans le cas FSAL. Les équations (4.25) et (4.26) doivent être dépendantes, sinon on aurait $Q_{21} = 0$, une impossibilité. Alors, il existe deux nombres, α et β, non tous nuls tels que

\[\alpha \hat{b}_i' + \beta b_i = 0, \quad i = 2, 3.\]

On multiplie cette équation par c_i^k, $k = 1, 2, 3$, et on somme sur les i. Puis on utilise les équations de quadrature en \dot{y}' et y pour obtenir le système suivant:

\[
\begin{align*}
\left(\frac{1}{2} - \hat{b}_4' \right) \alpha + \left(\frac{1}{6} - b_4 \right) \beta &= 0, \\
\left(\frac{1}{3} - \hat{b}_4' \right) \alpha + \left(\frac{12}{1} - b_4 \right) \beta &= 0, \\
\left(\frac{1}{4} - \hat{b}_4' \right) \alpha + \left(\frac{1}{20} - b_4 \right) \beta &= 0.
\end{align*}
\]

Si on soustrait la deuxième équation de la première et la troisième de la deuxième, on aura

\[
\frac{1}{2} \alpha + \frac{1}{12} \beta = 0, \quad \frac{1}{12} \alpha + \frac{1}{30} \beta = 0.
\]

Alors $\alpha = \beta = 0$ et par conséquent, la paire n'existe pas.

(c) Existence de méthodes non FSAL à quatre stages.

On présente au tableau 9 une méthode à 4 stages pour les paires non FSAL d'ordre (4, 5).
Tableau 9. Une paire non FSAL d'ordre (4, 5) à quatre stages du type II

<table>
<thead>
<tr>
<th>1</th>
<th>288</th>
<th>297</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>445</td>
<td>445</td>
</tr>
<tr>
<td>1</td>
<td>-1395</td>
<td>10002</td>
</tr>
<tr>
<td>4</td>
<td>-18625</td>
<td>18625</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>278</td>
<td>278</td>
</tr>
<tr>
<td>13</td>
<td>-48</td>
<td>743</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>432</td>
</tr>
<tr>
<td>24</td>
<td>-2</td>
<td>828</td>
</tr>
<tr>
<td>33</td>
<td>-2</td>
<td>1032</td>
</tr>
</tbody>
</table>

(d) *Existence de méthodes FSAL à cinq stages.*

Enfin, on présente au tableau 10 une méthode à 5 stages pour les paires FSAL d'ordre (4, 5).

Tableau 10. Une paire FSAL d'ordre (4, 5) à cinq stages du type II

<table>
<thead>
<tr>
<th>1</th>
<th>288</th>
<th>4389</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4389</td>
<td>4389</td>
</tr>
<tr>
<td>1</td>
<td>-1395</td>
<td>2195</td>
</tr>
<tr>
<td>9</td>
<td>-164257</td>
<td>160583</td>
</tr>
<tr>
<td>10</td>
<td>-2</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>12</td>
</tr>
<tr>
<td>55</td>
<td>-2</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>278</td>
<td>278</td>
</tr>
<tr>
<td>278</td>
<td>-48</td>
<td>743</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>432</td>
</tr>
<tr>
<td>24</td>
<td>-2</td>
<td>828</td>
</tr>
<tr>
<td>33</td>
<td>-2</td>
<td>1032</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>1032</td>
</tr>
</tbody>
</table>

4.2.5 *Paires d'ordre (5, 6) du type II*

Il n'existe pas de méthode à 5 stages pour les paires non FSAL d'ordre (5, 6). La démonstration qui est par contradiction suppose qu'une paire existe.

(a) *Inexistence de méthode non FSAL à cinq stages.*

Les équations de conditions pour les méthodes à 5 stages du type II sont les suivantes:

Ordre 5 en \hat{y}:

$$\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 + \hat{b}_5 = 1,$$ \hspace{1cm} \text{(4.27)}

\[\dot{\beta}_k c_k^k + \beta_k c_k^k + \dot{\beta}_k c_k^k + \dot{\beta}_5 c_5^k = \frac{1}{k + 1}, \quad k = 1, 2, 3, 4, \quad (4.28) \]

\[\dot{\beta}_2 c_2^k Q_{21} + \beta_3 c_3^k Q_{31} + \dot{\beta}_4 c_4^k Q_{41} + \dot{\beta}_5 c_5^k Q_{51} = 0, \quad k = 0, 1, \quad (4.29) \]

\[\dot{\beta}_2 Q_{22} + \beta_3 Q_{32} + \dot{\beta}_4 Q_{42} + \dot{\beta}_5 Q_{52} = 0, \]

Ordre 5 en \(\dot{y} \):

\[\dot{\beta}_1 + \dot{\beta}_2 + \dot{\beta}_3 + \dot{\beta}_4 + \dot{\beta}_5 = \frac{1}{2}, \quad (4.30) \]

\[\dot{\beta}_2 c_2^k + \beta_3 c_3^k + \dot{\beta}_4 c_4^k + \dot{\beta}_5 c_5^k = \frac{1}{(k + 1)(k + 2)}, \quad k = 1, 2, 3, \quad (4.31) \]

\[\dot{\beta}_2 Q_{21} + \beta_3 Q_{31} + \dot{\beta}_4 Q_{41} + \dot{\beta}_5 Q_{51} = 0, \quad (4.32) \]

Ordre 6 en \(\ddot{y} \):

\[b_1 + b_2 + b_3 + b_4 + b_5 = \frac{1}{2}, \quad (4.33) \]

\[b_2 c_2^k + b_3 c_3^k + b_4 c_4^k + b_5 c_5^k = \frac{1}{(k + 1)(k + 2)}, \quad k = 1, 2, 3, 4, \quad (4.34) \]

\[b_2 c_2^k Q_{21} + b_3 c_3^k Q_{31} + b_4 c_4^k Q_{41} + b_5 c_5^k Q_{51} = 0, \quad k = 0, 1, \quad (4.35) \]

\[b_2 Q_{22} + b_3 Q_{32} + b_4 Q_{42} + b_5 Q_{52} = 0, \]

On considère les conditions de non quadrature en \(Q_{11} \), c'est-à-dire les cinq équations (4.29), (4.32) et (4.35). Quatre quelconque de ces équations linéaires en les \(Q_{11} \) doivent être dépendantes, sinon on aura \(\dot{Q}_{21} = 0 \) et, par une seconde application de ce procédé, le nombre de stages de la méthode se réduirait à 3; alors on aurait l'inexistence par le cas précédent.

En premier lieu, on considère les quatre équations (4.29) et (4.35) respectivement pour \(k = 0, 1 \). Il existe alors quatre nombres, \(\alpha, \beta, \gamma \) et \(\delta \), non tous nuls tels que

\[\alpha \dot{b}_i + \beta \dot{b}_i c_i + \gamma b_i + \delta b_i c_i = 0, \quad i = 2, \ldots, 5. \quad (4.36) \]
On multiplie ces équations par c_l, $l = 1, 2, 3$, on somme sur les i et on utilise les équations de quadrature (4.28) et (4.34); on obtient alors le système linéaire:

\[
\begin{align*}
\frac{1}{2}\alpha + \frac{1}{3}\beta + \frac{1}{6}\gamma + \frac{1}{12}\delta &= 0, \\
\frac{3}{3}\alpha + \frac{4}{3}\beta + \frac{1}{12}\gamma + \frac{1}{20}\delta &= 0, \\
\frac{4}{3}\alpha + \frac{5}{5}\beta + \frac{1}{20}\gamma + \frac{1}{30}\delta &= 0.
\end{align*}
\]

La solution générale de ce système est:

\[
\alpha = a, \quad \beta = -a, \quad \gamma = -a, \quad \delta = 0,
\]

où $\alpha \neq 0$, sinon la méthode n'existerait pas. Si on substitue ces valeurs de $\alpha, \beta, \gamma, \delta$ dans (4.36) on a:

\[
b_i = \tilde{b}_i - \tilde{b}_i c_i, \quad i = 2, \ldots, 5. \tag{4.37}
\]

De même, si l'on considère les quatre conditions de non quadrature suivantes: (4.29) avec $k = 0, 1$, (4.32) et (4.35) avec $k = 1$, on a, comme avant:

\[
\alpha \hat{b}_i + \beta \hat{c}_i + \gamma \hat{c}_i + \delta \hat{c}_i = 0, \quad i = 2, \ldots, 5. \tag{4.38}
\]

On multiplie ces équations par c_l, $l = 1, 2, 3$, on somme sur les i et on utilise les équations de quadrature (4.28), (4.31) et (4.34); on obtient alors le système linéaire suivant:

\[
\begin{align*}
\frac{1}{2}\alpha + \frac{1}{3}\beta + \frac{1}{6}\gamma + \frac{1}{12}\delta &= 0, \\
\frac{3}{3}\alpha + \frac{4}{3}\beta + \frac{1}{12}\gamma + \frac{1}{20}\delta &= 0, \\
\frac{4}{3}\alpha + \frac{5}{5}\beta + \frac{1}{20}\gamma + \frac{1}{30}\delta &= 0.
\end{align*}
\]

La solution générale de ce système est:

\[
\alpha = a, \quad \beta = -a, \quad \gamma = -a, \quad \delta = 0,
\]
où $\alpha \neq 0$, sinon la méthode n'existerait pas. Si on substitue les valeurs de $\alpha, \beta, \gamma, \delta$ obtenues dans (4.38) on a:

$$\hat{b}_i = \hat{b}_i - \hat{b}_i c_1, \quad i = 2, \ldots, 5. \quad (4.39)$$

Il est évident que (4.37) et (4.39) donnent:

$$b_i = \hat{b}_i, \quad i = 2, \ldots, 5,$$

et par les équations de quadrature (4.30) et (4.33), on a $b_1 = \hat{b}_1$. Par conséquent, la paire n'existe pas.

(b) Existence de méthodes FSAL à six stages.

Il existe une méthode à 6 stages pour les paires FSAL d'ordre (5,6) du type II puisqu'une telle paire existe pour le type I.

4.3 Paires du type III

Les paires du type III contrôlent l'erreur locale en y et on avance le pas avec la méthode d'ordre supérieur.

4.3.1 Paires d'ordre (1, 2) du type III

On peut facilement montrer qu'il n'existe pas de méthode à un seul stage pour les paires non FSAL d'ordre (1,2).

Les équations de conditions pour les méthodes à un stage, c'est-à-dire pour $s = 1$, sont:

- **Ordre 2 en y'**: $b_1' = 1,$
 $b_1' c_1 = \frac{1}{2},$
- **Ordre 1 en \hat{y}**: aucune condition d'ordre,
- **Ordre 2 en y**: $b_1 = \frac{1}{2}.$

Il est évident que la deuxième équation de condition en y' ne peut pas être satisfaite puisque $c_1 = 0$. On déduit donc qu'il n'y a pas de paire non FSAL d'ordre (1, 2).
Il existe des méthodes à deux stages pour les paires FSAL d’ordre \((1, 2)\) du type III puisqu’il en existe du type I.

4.3.2 Paires d’ordre \((2, 3)\) du type III

Il n’y a pas de méthode à deux stages pour les paires FSAL d’ordre \((2, 3)\), mais il y a des paires non FSAL.

(a) *Inexistence de méthode FSAL à deux stages.*

Les équations de conditions pour les méthodes à deux stages, \(s = 2\), sont:

- **Ordre 3 en \(y'\):** \(\hat{b}_1 + \hat{b}_2 = 1\),
 \[
 \frac{\hat{b}_1 + \hat{b}_2}{k+1} = \frac{1}{k+1}, \quad k = 1, 2,
 \]
- **Ordre 2 en \(y\):** \(\hat{b}_1 + \hat{b}_2 = \frac{1}{2}\),
- **Ordre 3 en \(y\):** \(b_1 + b_2 = \frac{1}{2}\),
 \[
 b_2c_2 = \frac{1}{8}.
 \]

Dans le cas FSAL on a \(c_2 = 1\), \(b_2 = 0\). Alors on voit clairement que la deuxième équation de quadrature en \(y\) ne peut pas être satisfaite.

(b) *Existence de méthodes non FSAL à deux stages.*

Il y a des méthodes à deux stages pour les paires non FSAL d’ordre \((2, 3)\). On en présente une au tableau 11.

<table>
<thead>
<tr>
<th>(b)</th>
<th>(\frac{1}{2})</th>
<th>(\frac{1}{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{b})</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(y)</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

(c) *Existence de méthodes FSAL à trois stages.*

Il existe des méthodes à trois stages pour les paires FSAL d’ordre \((2, 3)\) du type III puisqu’il en existe du type I.
4.3.3 Paires d’ordre (3, 4) du type III

Il n’y a pas de méthode à deux stages non FSAL ni à trois stages FSAL, mais il y a des paires non FSAL à trois stages.

(a) Inexistence de méthode non FSAL à deux stages.

On montre qu’il n’existe pas de méthode à 2 stages pour les paires non FSAL d’ordre (3, 4). On donne ci-dessous les équations de conditions pour les paires à deux stages.

Ordre 4 en y':

\[b_1 + b_2 = 1, \quad b_2 c_2^k = \frac{1}{k+1}, \quad k = 1, 2, 3, \quad b_2 Q_{21} = 0, \quad \]

Ordre 3 en \dot{y}:

\[\dot{b}_1 + \dot{b}_2 = \frac{1}{2}, \quad \dot{b}_2 c_2 = \frac{1}{6}, \quad \]

Ordre 4 en y:

\[b_1 + b_2 = \frac{1}{2}, \quad b_2 c_2^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2. \]

Il est évident qu’on ne peut pas satisfaire la deuxième équation de quadrature en y' pour la même raison qu’en (4.5). Donc il n’y a pas de méthode à 2 stages pour les paires non FSAL d’ordre (3, 4).

(b) Inexistence de méthode FSAL à trois stages.

Il n’existe pas de méthode à 3 stages pour les paires FSAL d’ordre (3, 4). On donne ci-dessous les équations de conditions pour les paires à trois stages.
Chapitre 4. Nombre minimum de stages

Ordre 4 en y':

\[b_1' + b_2' + b_3' = 1, \]
\[b_2 c_2^k + b_3 c_3^k = \frac{1}{k+1}, \quad k = 1, 2, 3, \] (4.46)
\[b_2 Q_{21} + b_3 Q_{31} = 0, \] (4.47)

Ordre 3 en \hat{y}:

\[\hat{b}_1 + \hat{b}_2 + \hat{b}_3 = \frac{1}{2}, \]
\[\hat{b}_2 c_2 + \hat{b}_3 c_3 = \frac{1}{6}. \]

Ordre 4 en y:

\[b_1 + b_2 + b_3 = \frac{1}{2}, \]
\[b_2 c_2^k + b_3 c_3^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2. \] (4.48)

Dans le cas FSAL, on a $c_3 = 1$, $b_3 = 0$ et $Q_{21} = 0$ puisqu'on est dans la mode d'extrapolation locale. Les deux équations en (4.48) donnent $c_2 = \frac{1}{2}$, et avec ces valeurs de c_2 et c_3, les trois équations en (4.46) et l'équation (4.47) sont incompatibles puisque Q_{21} ne peut pas être nul.

(c) Existence de méthode non FSAL à trois stages.

On présente, au tableau 12, une méthode à 3 stages pour les paires non FSAL d'ordre $(3, 4)$ du type III.

Tableau 12. Une paire non FSAL d'ordre $(3, 4)$ à trois stages du type III

<table>
<thead>
<tr>
<th>b</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{6}$</th>
<th>1</th>
<th>$\frac{1}{6}$</th>
<th>$\frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b'</td>
<td>$\frac{13}{6}$</td>
<td>$-\frac{11}{6}$</td>
<td>2</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

(d) Existence de méthode FSAL à quatre stages.

Il existe des méthodes à quatre stages pour les paires FSAL d'ordre $(3, 4)$ du type III puisqu'il en existe du type I.
4.3.4 Paires d'ordre (4, 5) du type III

On montre qu'il n'existe pas de méthode du type III à 3 stages pour les paires d'ordre (4, 5) non FSAL ni à 4 stages pour les paires FSAL d'ordre (4, 5).

(a) Inexistence de méthode non FSAL à trois stages.

Les équations de conditions pour les méthodes à 3 stages, $s = 3$, pour les paires non FSAL sont les suivantes:

Ordre 5 en y':

$$b_1 + b_2 + b_3 = 1,$$

$$b_2c_2^k + b_3c_3^k = \frac{1}{k+1}, \quad k = 1, 2, 3, 4,$$ \hspace{1cm} (4.49)

$$b_2c_2Q_{21} + b_3c_3Q_{31} = 0, \quad k = 0, 1,$$

$$b_2Q_{22} + b_3Q_{32} = 0,$$

Ordre 4 en \hat{y}:

$$\hat{b}_1 + \hat{b}_2 + \hat{b}_3 = \frac{1}{2},$$ \hspace{1cm} (4.50)

$$\hat{b}_2c_2^k + \hat{b}_3c_3^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2,$$ \hspace{1cm} (4.51)

Ordre 5 en y:

$$b_1 + b_2 + b_3 = \frac{1}{2},$$ \hspace{1cm} (4.52)

$$b_2c_2^k + b_3c_3^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3,$$ \hspace{1cm} (4.53)

$$b_2Q_{21} + b_3Q_{31} = 0.$$

On montre que les conditions de quadratures pour y et \hat{y} sont incompatibles.

Soient la matrice et les vecteurs:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & c_2 & c_3 \\ 0 & c_2^2 & c_3^2 \end{bmatrix}, \quad \hat{b} = \begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \\ \hat{b}_3 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad r = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{6} \\ \frac{1}{12} \end{bmatrix}.$$
Alors les trois équations (4.50), (4.51), k = 1, 2, et les trois équations (4.52), (4.53), k = 1, 2, s'écrivent respectivement de la façon suivante:

\[A \hat{b} = r, \quad Ab = r. \]

Donc

\[A \hat{b} = Ab. \quad (4.54) \]

Si \(A \) est régulière, le système (4.54) admet l'unique solution \(b = \hat{b} \), ce qui contredit l'existence d'une paire. Donc il faut que \(A \) soit singulière.

Dans ce cas, \(c_2 = c_3 \) ou \(c_2c_3 = 0 \). Dans ces trois cas, les trois équations (4.49) se réduisent à la forme suivante:

\[x\alpha = \frac{1}{2}, \quad x\alpha^2 = \frac{1}{3}, \quad x\alpha^3 = \frac{1}{4}. \quad (4.55) \]

On voit immédiatement que ce système est incompatible.

On conclut à l'inexistence de méthode à 3 stages pour les paires non FSAL d'ordre (4, 5).

(b) Inexistence de méthode FSAL à quatre stages.

Les équations de conditions pour les méthodes FSAL à 4 stages sont les suivantes:

Ordre 5 en \(y' \):

\[
\begin{align*}
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 &= 1, \\
\hat{b}_2c_2^k + \hat{b}_3c_3^k + \hat{b}_4c_4^k &= \frac{1}{k+1}, \quad k = 1, 2, 3, 4, \\
\hat{b}_2c_2Q_{21} + \hat{b}_3c_3Q_{31} &= 0, \quad k = 0, 1, \\
\hat{b}_2Q_{22} + \hat{b}_3Q_{32} &= 0,
\end{align*}
\]

Ordre 4 en \(\hat{y} \):

\[
\begin{align*}
\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 &= \frac{1}{2}, \quad (4.57) \\
\hat{b}_2c_2^k + \hat{b}_3c_3^k + \hat{b}_4c_4^k &= \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, \quad (4.58)
\end{align*}
\]
Ordre 5 en y:

\[b_1 + b_2 + b_3 + b_4 = \frac{1}{2}, \]
\[b_2 c_k^2 + b_3 c_k^2 + b_4 c_k^2 = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3, \]
\[b_2 Q_{21} + b_3 Q_{31} = 0. \]

On rappelle que $Q_{41} = 0$ puisqu'on est dans le cas FSAL. Les équations (4.56), pour $k = 0$, et (4.61) doivent être dépendantes, sinon aurait $Q_{21} = 0$, une impossibilité. Alors, il existe deux nombres, α et β, non tous nuls tels que

\[\alpha b_i' + \beta b_i = 0, \quad i = 2, 3. \]

On multiplie cets équations par c_i^2, $k = 1, 2, 3$, et on somme sur les i. Puis on utilise les équations de quadrature en y' et y pour obtenir le système suivant:

\[
\left(\frac{1}{2} - b_4'\right) \alpha + \left(\frac{1}{6} - b_4\right) \beta = 0,
\left(\frac{1}{3} - b_4'\right) \alpha + \left(\frac{1}{12} - b_4\right) \beta = 0,
\left(\frac{1}{4} - b_4'\right) \alpha + \left(\frac{1}{20} - b_4\right) \beta = 0.
\]

Si on soustrait la deuxième équation de la première et la troisième de la deuxième, on aura

\[\frac{1}{2} \alpha + \frac{1}{12} \beta = 0, \quad \frac{1}{12} \alpha + \frac{1}{30} \beta = 0. \]

Alors $\alpha = \beta = 0$ et par conséquent, la paire n'existe pas.

(b) Existence de méthodes non FSAL à quatre stages.

On présente au tableau 13 une méthode à 4 stages pour les paires non FSAL d'ordre (4,5).
TABLEAU 13. Une paire non FSAL d'ordre (4,5) à quatre stages du type III

<table>
<thead>
<tr>
<th>17</th>
<th>20</th>
<th>3269</th>
<th>300</th>
<th>-179</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1827</td>
<td>888</td>
<td>8092</td>
<td>327</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>66896</td>
<td>45267</td>
<td>2200</td>
<td>2721600</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1/11</td>
<td>200</td>
<td>1/3</td>
<td>9</td>
</tr>
<tr>
<td>b'</td>
<td>102</td>
<td>1088</td>
<td>1160</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>b'</td>
<td>102</td>
<td>1107</td>
<td>21</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

(c) Existence de méthodes FSAL à cinq stages.

Enfin, on présente au tableau 14 une méthode à 5 stages pour les paires FSAL d'ordre (4,5).

TABLEAU 14. Une paire d'ordre FSAL (4,5) à cinq stages du type III

<table>
<thead>
<tr>
<th>1</th>
<th></th>
<th>1</th>
<th>1039</th>
<th>4</th>
<th>1039</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>121</td>
<td>339</td>
<td>57200</td>
<td>486000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>-1/12</td>
<td>25</td>
<td>-15</td>
<td>0</td>
</tr>
<tr>
<td>b'</td>
<td>24</td>
<td>38</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>b'</td>
<td>24</td>
<td>336</td>
<td>5/48</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

4.3.5 Paires d'ordre (5,6) du type III

Il n'existe pas de méthode à 5 stages pour les paires non FSAL d'ordre (5,6). La démonstration est par contradiction en supposant qu'une paire existe.

(a) Inexistence de méthode non FSAL à cinq stages.

Les équations de conditions pour une méthode à 5 stages du type III sont les suivantes:

Ordre 6 en y':

\[b'_1 + b'_2 + b'_3 + b'_4 + b'_5 = 1, \quad (4.62) \]
\(b_2 c_2^k + b_3 c_3^k + b_4 c_4^k + b_5 c_5^k = \frac{1}{k+1}, \quad k = 1, \ldots, 5, \quad (4.63) \)

\(b_2 c_2^k Q_{21} + b_3 c_3^k Q_{31} + b_4 c_4^k Q_{41} + b_5 c_5^k Q_{51} = 0, \quad k = 0, 1, 2, \quad (4.64) \)

\(b_2 c_2^k Q_{22} + b_3 c_3^k Q_{32} + b_4 c_4^k Q_{42} + b_5 c_5^k Q_{52} = 0, \quad k = 0, 1, \quad (4.65) \)

\(b_2 Q_{23} + b_3 Q_{33} + b_4 Q_{43} + b_5 Q_{53} = 0, \quad (4.66) \)

\(b_2 a_{32} Q_{21} + b_4 (a_{42} Q_{21} + a_{43} Q_{31}) + b_6 (a_{52} Q_{21} + a_{53} Q_{31} + a_{54} Q_{51}) = 0, \)

Ordre 5 en \(\tilde{y} \):

\[b_1 + b_2 + b_3 + b_4 + b_5 = \frac{1}{2}, \quad (4.65) \]

\[\tilde{b}_2 c_2^k + \tilde{b}_3 c_3^k + \tilde{b}_4 c_4^k + \tilde{b}_5 c_5^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3, \quad (4.66) \]

\(\tilde{b}_2 Q_{21} + \tilde{b}_3 Q_{31} + \tilde{b}_4 Q_{41} + \tilde{b}_5 Q_{51} = 0, \quad (4.67) \)

Ordre 6 en \(y \):

\[b_1 + b_2 + b_3 + b_4 + b_5 = \frac{1}{2}, \quad (4.68) \]

\[b_2 c_2^k + b_3 c_3^k + b_4 c_4^k + b_5 c_5^k = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3, 4, \quad (4.69) \]

\[b_2 c_2^k Q_{21} + b_3 c_3^k Q_{31} + b_4 c_4^k Q_{41} + b_5 c_5^k Q_{41} = 0, \quad k = 0, 1, \quad (4.70) \]

\[b_2 Q_{22} + b_3 Q_{32} + b_4 Q_{42} + b_5 Q_{52} = 0, \]

On considère les cinq conditions de non quadrature en \(Q_{41} \), c'est-à-dire les équations (4.64), (4.67) et (4.70). Quatre quelconques de ces équations linéaires en \(Q_{41} \) doivent être dépendantes, sinon on aura \(Q_{21} = 0 \) et le nombre de stades de la méthode se réduirait à 4; alors l'inexistence s'ensuivrait par le cas précédent.

En premier lieu, on considère les quatre équations (4.64) et (4.70) pour \(k = 0, 1 \). Il existe alors quatre nombres, \(\alpha, \beta, \gamma \) et \(\delta \), non nuls, tels que

\[\alpha \tilde{b}_i + \beta c_i + \gamma b_i + \delta b_i c_i = 0, \quad i = 2, \ldots, 5. \quad (4.71) \]
On multiplie ces équations par c_i^l, $l = 1, 2, 3$, on somme sur les i et on utilise les équations de quadrature (4.63) et (4.69); on obtient alors le système linéaire suivant:

\[
\begin{align*}
\frac{1}{2} \alpha + \frac{1}{3} \beta + \frac{1}{6} \gamma + \frac{1}{12} \delta &= 0, \\
\frac{1}{3} \alpha + \frac{1}{4} \beta + \frac{1}{12} \gamma + \frac{1}{20} \delta &= 0, \\
\frac{1}{4} \alpha + \frac{1}{5} \beta + \frac{1}{20} \gamma + \frac{1}{30} \delta &= 0.
\end{align*}
\]

La solution générale de ce système est:

\[
\alpha = a, \quad \beta = -a, \quad \gamma = -a, \quad \delta = 0,
\]

où $\alpha \neq 0$, sinon la méthode n’existerait pas. Si on substitue dans (4.71) les valeurs de $\alpha, \beta, \gamma, \delta$ obtenues, on a:

\[
b_i = b_i^l - b_i^l c_i, \quad i = 2, \ldots, 5.
\] \(4.72\)

De même, si l’on considère les quatre conditions de non quadrature (4.64) avec $k = 0, 1$, (4.67) et (4.70) avec $k = 1$, on a, comme avant:

\[
\alpha b_i^l + \beta b_i^l c_i + \gamma b_i^l + \delta b_i^l c_i = 0, \quad i = 2, \ldots, 5.
\] \(4.73\)

On multiplie ces équations par c_i^l, $l = 1, 2, 3$, on somme sur les i et on utilise les équations de quadrature (4.63), (4.66) et (4.69); on obtient alors le système linéaire suivant:

\[
\begin{align*}
\frac{1}{2} \alpha + \frac{1}{3} \beta + \frac{1}{6} \gamma + \frac{1}{12} \delta &= 0, \\
\frac{1}{3} \alpha + \frac{1}{4} \beta + \frac{1}{12} \gamma + \frac{1}{20} \delta &= 0, \\
\frac{1}{4} \alpha + \frac{1}{5} \beta + \frac{1}{20} \gamma + \frac{1}{30} \delta &= 0.
\end{align*}
\]

La solution générale de ce système est:

\[
\alpha = a, \quad \beta = -a, \quad \gamma = -a, \quad \delta = 0,
\]
où $\alpha \neq 0$, sinon la méthode n'existerait pas. Si on substitue dans (4.73) les valeurs de $\alpha, \beta, \gamma, \delta$ obtenues, on a:

$$\hat{b}_i = b_i' - b_i'\alpha_i, \quad i = 2, \ldots, 5. \tag{4.74}$$

Il est évident que (4.72) et (4.74) donnent:

$$b_i = \hat{b}_i, \quad i = 2, \ldots, 5,$$

et par les équations de quadrature (4.65) et (4.68), on a $b_1 = \hat{b}_1$. Par conséquent, la paire n'existe pas.

(b) *Existence de méthodes FSAL à six stages.*

Il existe une méthode à 6 stages pour les paires FSAL d'ordre $(5, 6)$ du type III puisqu'il en existe du type I.

4.4 Paires du type IV

Les résultats de non-existence sont pareils à ceux des paires du type I, puisqu'on a utilisé uniquement les formules des dérivées dans les preuves du type I. Ainsi, l'existence d'une méthode pour une paire du type I implique l'existence d'une méthode semblable du type IV.

4.5 Paires du type V

De la même manière que pour le type IV, les résultats d'inexistence pour le type V sont pareils à ceux des paires du type I, puisqu'on a utilisé uniquement les formules des dérivées dans les preuves du type I. Ainsi, l'existence d'une méthode pour une paire du type I implique l'existence d'une méthode semblable du type V.
Chapitre 5

Conclusion

Dans ce travail, on a déterminé le nombre minimum de stages requis pour l'existence de paires de formules de Runge-Kutta-Nyström des ordres $(1,2)$ à $(5,6)$. On a considéré cinq types de paires selon qu'on emploie une ou deux formules pour y et y'; par conséquent, ces types se distinguent par le modè d'avancement soit selon les formules d'ordre inférieur (mode standard), soit celles d'ordre supérieur (mode d'extrapolation locale), ainsi que par le contrôle de l'erreur locale sur y, sur y', ou sur y et y'. La recherche nous a conduits à trouver des nouvelles paires que nous n'avons pas essayé d'optimaliser pour une classe donnée. Le but de ces paires est de confirmer l'existence d'au moins une paire dont le nombre de stages est minimum.

On résume au tableau 15 les résultats obtenus pour chaque type de paires. Le tableau donne le nombre minimum de stages pour les paires jusqu'à l'ordre $(5,6)$.

Tableau 15. Résumé des résultats. Nombre minimum de stages
pour l'existence de chacune des paires d'un type donné.

<table>
<thead>
<tr>
<th>Ordres</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
<th>Type V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1,2)$</td>
<td>$2F$</td>
<td>$1NF$</td>
<td>$2F$</td>
<td>voir I</td>
<td>voir I</td>
</tr>
<tr>
<td>$(2,3)$</td>
<td>$3F$</td>
<td>$2F$</td>
<td>$2NF$</td>
<td>voir I</td>
<td>voir I</td>
</tr>
<tr>
<td>$(3,4)$</td>
<td>$4F$</td>
<td>$3F$</td>
<td>$3NF$</td>
<td>voir I</td>
<td>voir I</td>
</tr>
<tr>
<td>$(4,5)$</td>
<td>$5NF$</td>
<td>$4NF$</td>
<td>$5F$</td>
<td>voir I</td>
<td>voir I</td>
</tr>
<tr>
<td>$(5,6)$</td>
<td>$6F$</td>
<td>$6F$</td>
<td>$6F$</td>
<td>voir I</td>
<td>voir I</td>
</tr>
</tbody>
</table>
CHAPITRE 5. CONCLUSION

Il est important de remarquer que, si une méthode FSAL existe pour une paire, alors une méthode non-FSAL existe aussi, puisque cette dernière classe inclut la première. Il est également important de remarquer que si une méthode existe pour une paire du type I, alors une méthode doit exister pour les paires semblables des autres types. De plus, si une méthode existe pour une paire du type III, alors il en existe une semblable du type II. Les divers types satisfont donc les relations d'ordre partiel suivantes: I ⊂ II ⊂ III, I ⊂ V ⊂ IV et FSAL ⊂ non FSAL.

On pourrait prolonger ce travail en considérant des paires d'ordres plus élevés, et essayer d'établir le nombre minimum de stages pour chacun des types de paires. Il est important de remarquer qu'au fur et à mesure que l'ordre augmente, les démonstrations se compliquent.

Une autre extension à ce travail, du point de vue pratique, serait de tester les nouvelles paires obtenues. Ces paires utilisent le nombre minimum de stages, mais plusieurs paires admettent des noeuds égaux. Deux questions se posent. Premièrement, même si le coût par pas est minimisé, l'est-il par pas unitaire? Deuxièmement, l'égalité des noeuds réduit-elle la fiabilité de l'estimation de l'erreur locale?
Bibliography

