STATIC ANALYSIS OF SKEW SANDWICH PLATES

BY THE METHOD OF FINITE ELEMENTS

BY

Wai-Lau Kwok

Thesis submitted to the Faculty of
Graduate Studies through the
Department of Civil Engineering in
partial fulfillment of the
requirements for the Degree of
Master of Applied Science at the
University of Ottawa.

Ottawa, Canada

March, 1972
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xi</td>
</tr>
<tr>
<td>NOTATION</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Review of previous work on the analysis of sandwich plates</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Numerical methods of structural analysis</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER III METHOD OF ANALYSIS</td>
<td>18</td>
</tr>
<tr>
<td>3.1 General</td>
<td>18</td>
</tr>
<tr>
<td>3.2 The general assumptions used in this investigation</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Assumed displacement fields</td>
<td>20</td>
</tr>
<tr>
<td>3.3.1 Three and five degrees of freedom elements</td>
<td>21</td>
</tr>
<tr>
<td>3.3.2 Displacement distribution for a parallelogram sandwich element</td>
<td>24</td>
</tr>
<tr>
<td>3.4 Formation of the stiffness matrix for the skin element</td>
<td>32</td>
</tr>
<tr>
<td>a) Strain-Displacement relationships</td>
<td>32</td>
</tr>
<tr>
<td>b) Stress-Strain relationships</td>
<td>37</td>
</tr>
</tbody>
</table>
c) Element properties and necessary transformations 38

3.5 Formation of the stiffness matrix for the core element 41
a) Element with three degrees of freedom per node 41
b) Element with five degrees of freedom per node 50

3.6 Formation of the stiffness matrix for the parallelogram sandwich element 51

3.7 Formation of the stiffness matrix for the structure 54

3.8 Details for joining skin element to core element 57

3.9 The consistent load vector 59

3.10 Rotation of co-ordinates 62

3.11 Boundary conditions 65

3.12 Solution of equilibrium equations 68

CHAPTER IV NUMERICAL RESULTS AND DISCUSSIONS 74

4.1 Introduction 74

4.2 Convergence and accuracy 76

4.3 Comparisons of results 78
a) Rectangular sandwich plates 78
b) Skewed sandwich plates 80
4.4 Effect of varying the shear rigidity of the core.......................... 83
4.5 Effect of core thickness/skin thickness ratio.............................. 86
4.6 Effect of Poisson's ratio... 87
4.7 Effect of aspect ratio.. 89
4.8 Effect of skew angle... 89
4.9 Stress... 92

CHAPTER V CONCLUSIONS... 134
5.1 Further comments on present work................................. 134
5.2 Conclusions.. 137

REFERENCE ... 140
APPENDIX I ... 146
APPENDIX II ... 150
APPENDIX III ... 155
APPENDIX IV ... 171
APPENDIX V ... 173
APPENDIX VI Computer program.. 175
 General... 176
 Flow chart.. 178
 Program listing.. 182
ACKNOWLEDGMENT

The work presented in this thesis was carried out under the direction of Dr. S. F. Ng, Department of Civil Engineering, University of Ottawa. The writer wishes to express his deep appreciation to Dr. S. F. Ng, for his guidance, constant encouragement, inexhaustible patience during the periods of difficulty and invaluable suggestions made in writing of this thesis. The writer also wishes to express his gratitude to Dr. G. M. Lindberg of the National Research Council for his review of the thesis and his helpful comments.

The financial support granted by the National Research Council of Canada is gratefully acknowledged.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Modifications of flexural and shearing rigidities for sandwich element</td>
<td>61</td>
</tr>
<tr>
<td>2.</td>
<td>Formation and solution of stiffness matrix</td>
<td>73</td>
</tr>
<tr>
<td>3.</td>
<td>Comparison of the centre deflection of four sides clamped sandwich plate with various skew angles, aspect ratios and core rigidities</td>
<td>94</td>
</tr>
<tr>
<td>4.</td>
<td>Comparison of the max. centre moment of four sides clamped sandwich plate with various skew angles, aspect ratios and core rigidities</td>
<td>95</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison of deflections for clamped skewed sandwich plate</td>
<td>96</td>
</tr>
<tr>
<td>6.</td>
<td>Comparison of centre deflection for a rectangular sandwich plate using various modified form of shear strain</td>
<td>97</td>
</tr>
<tr>
<td>7.</td>
<td>Comparison of the centre deflection of a clamped rectangular sandwich plate</td>
<td>98</td>
</tr>
<tr>
<td>8.</td>
<td>Comparison of centre deflection for simply supported rectangular sandwich plate</td>
<td>99</td>
</tr>
<tr>
<td>9.</td>
<td>Comparison of the deflection of a cantilevered rectangular sandwich plate</td>
<td>100</td>
</tr>
<tr>
<td>10.</td>
<td>Deflection of the Rhombic cantilevered sandwich plate under a uniformly load ($\nu = 0.32$)</td>
<td>103</td>
</tr>
<tr>
<td>11.</td>
<td>Deflection of the Rhombic cantilevered sandwich plate under a uniformly load ($\nu = 0.0$)</td>
<td>104</td>
</tr>
</tbody>
</table>
12. Max. edged moment of the Rhombic cantilevered sandwich plate under a uniformly distributed loading ($\nu = 0.32$) .. 105

13. Max. edged moment of the Rhombic cantilevered sandwich plate under a uniformly distributed loading ($\nu = 0.0$) .. 105

14. Deflection of the Rhombic cantilevered sandwich plate under a uniformly distributed loading 106

15. Max. edged moment of the Rhombic cantilevered sandwich plate under a uniformly load 107

16. The central deflection of a clamped flat sandwich plate for various shear stiffness of core 108

17. The central deflection of a simply supported sandwich plate for various shear stiffness of core .. 109

18. The central deflection of a clamped skew sandwich plate for various shear stiffness of core 110

19. The central deflection of a simply supported skew sandwich plate for various shear stiffness of core .. 110

20. Centre deflection & max. centre moment of a simply supported sandwich plate under a uniformly load .. 111
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skewed Sandwich Plate</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Co-ordinates and Order of Node Numbering of An Element</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Skin Element Layout</td>
<td>33</td>
</tr>
<tr>
<td>3a</td>
<td>Core Element Layout</td>
<td>42</td>
</tr>
<tr>
<td>4a</td>
<td>Comparison of Central Deflection for the Skew Clamped Sandwich Plates (Soft core)</td>
<td>101</td>
</tr>
<tr>
<td>4b</td>
<td>Comparison of Central Deflection for the Skew Clamped Sandwich Plates (Hard core)</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Variation of Centre Deflection with Shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($A_s = 1.0$)</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>Variation of Centre Deflection with Shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($A_s = 1.5$)</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>Variation of Centre Deflection with Shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($A_s = 2.0$)</td>
<td>114</td>
</tr>
<tr>
<td>8</td>
<td>Variation of Centre Deflection with Shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates ($A_s = 1.0$)</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>Variation of Centre Deflection with Shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates ($A_s = 1.5$)</td>
<td>116</td>
</tr>
</tbody>
</table>
Fig. 10 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates ($A_s = 2.0$) 117

Fig. 11 Variation of Centre Deflection with Skew Angle and Shear Modulus of Core for Clamped Skew Sandwich Plates 118

Fig. 12 Variation of Centre Deflection with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates 119

Fig. 13 Variation of Max. Centre and Edged Moments with Skew Angle and Shear Modulus of Core for Clamped Skew Sandwich Plates 120

Fig. 14 Variation of Max. Centre Moment with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates ($A_s = 1.0$) 121

Fig. 15 Variation of Max. Centre Moment with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates ($A_s = 1.5$) 122

Fig. 16 Variation of Max. Centre Moment with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates ($A_s = 2.0$) 123

Fig. 17 Variation in Centre Deflection of A Uniformly Loaded Rectangular Sandwich Plates with Thickness Ratio 124
Fig. 18 Percent of the Theoretical Max. Moment
- Resisted by Skins for A Simply Supported
Rectangular Sandwich Plate............................ 125

Fig. 19 Percent of the Theoretical Edged Moment
Resisted by Skins for A Cantilevered
Rectangular Sandwich Plate............................ 126

Fig. 20 Variation of Centre Moments with Aspect
Ratio & Angle of Skew for Clamped Sandwich
Plates.. 127

Fig. 21 Variation of Edged Moment with Aspect Ratio
& Angle of Skew for Clamped Skew Sandwich
Plates.. 128

Fig. 22 Variation of Centre Moments with Aspect
Ratio & Angle of Skew for Simply Supported
Skew Sandwich Plates................................. 129

Fig. 23 Effect of Poisson's Ratio on Clamped Skew
Sandwich Plates.. 130

Fig. 24 Effect of Poisson's Ratio on Clamped Skew
Sandwich Plates.. 131

Fig. 25 Effect of Poisson's Ratio on Simply
Supported Skew Sandwich Plates...................... 132

Fig. 26 Cantilever Layout............................... 133

Fig. 27 Discretization and Node Numbering of A
Sandwich Plate... 133
ABSTRACT

The static characteristics of skew sandwich panels are studied by the finite element method using skew elements having three and five degrees of freedom per node. The elements used in this thesis are developed on the basis of Reissner's simplified sandwich model.

Various parametric studies were conducted in an attempt to define the range of validity of the results. Wherever possible results obtained from the present investigation are compared with those available in the technical literature.

A computer program utilizing the Finite Element technique is developed to generate the stiffness matrix of skew sandwich plate element. The boundary conditions are taken as, fixed, free or simply-supported edge constraint. The scope of this work covers linear elastic structures subjected to uniformly distributed loads. Also point loads could be handled with very little modification of the program. In some cases, the resulting four-fold symmetry allows extraction of one-quarter of the plate for purposes of analysis, while in other cases this is not possible.

The results obtained from this numerical analysis are shown to be in good agreement with other precise analyses, such as differential equation method, which
involve much more computational effort than is required by the present method.

It is seen that the method outlined here, provides a workable and accurate means of treating skew sandwich plate problems of arbitrary boundary conditions.
NOTATION

$[\bar{A}], [A_f]$ Matrix relating generalized coordinate to nodal displacements of the skin and core element respectively

A_s Aspect ratio

$[B_d], [B_f]$ Matrix relating the strain in the skew coordinate system to the generalized coordinates of the core and skin element respectively

a, b Side dimensions of a rectangular plate

$[D_c], [D_f]$ Stress-Strain matrices

c, t_c Thickness of the core for a sandwich plate

E_c, E_f Young's modulus of the core and Young's modulus of the skin for a sandwich plate

$\{f\}, \{d\}$ Generalized forces and displacements respectively

$\{\tilde{f}\}, \{\tilde{d}\}$ Generalized forces and displacements respectively in an orthogonal coordinate system

f_{j}^{i}, d_{j}^{i} The force and displacement at the j^{th} node of the i^{th} element

G, G_c Shear modulus of the core

$[H]$ Matrix relating the strain in the skew coordinate system to the strain in the rectangular coordinate system

$[K]$ Stiffness matrix for the entire structure

$[K_c]$ Stiffness matrix for the core element
\[[K_r] \quad \text{Stiffness matrix for the skin element} \]
\[[\tilde{K}] \quad \text{Stiffness matrix in orthogonal coordinate system} \]
\[[K_{jm}] \quad \text{Matrix relating the deformations at node } m \text{ the the forces at node } j \text{ in the } i^{th} \text{ element} \]
\[[L] \quad \text{Transform matrix} \]
\[x_L, y_L \quad \text{Span of sandwich plate in } x, y-\text{directions respectively} \]
\[\bar{M}_x, \bar{M}_y \quad \text{Bending moments about the } y \text{ and } x \text{ axes in a sandwich plate respectively (lb.-in/in)} \]
\[q_u, q_v, q_w \quad \text{The applied loads in the } u, v \text{ and } w \text{ directions respectively} \]
\[q \quad \text{Intensity of a uniform load} \]
\[[Q] \quad \text{Angular transformation matrix} \]
\[r \quad \text{The vector of nodal displacements in global co-ordinates} \]
\[R \quad \text{Nodal loads applied to the structure} \]
\[r_n \quad \text{Displacement at node } n \]
\[R_j \quad \text{Nodal loads applied at node } j \]
\[[S_0] \quad \text{Nodal forces on the element} \]
\[t_s \quad \text{Thickness of the skins for a sandwich plate} \]
\[u, v, w \quad \text{Displacements of the nodes in the } x, y \text{ and } z-\text{direction} \]
\[w \quad \text{Transverse deflection of the plate} \]
\(W_u \) The work done by the uniform load
\(w_\zeta, w_\eta \) Derivatives of \(w \) with respect to the skew coordinate system
\(v_x', v_y \) Derivatives of \(v \) with respect to the rectangular coordinate system
\(u_p \) Component of displacement normal to the edge of the sandwich plate
\(v_p \) Component of displacement parallel to \(n \)-axis
\(\theta \) Skew angle
\(\phi, \phi' \) \(90^\circ - \theta \)
\(\{\Delta\} \) Virtual nodal displacements
\(\{\Delta_c\}, \{\Delta_f\} \) Nodal displacements for a core and skin element respectively
\(\{\alpha_c\}, \{\alpha_f\} \) Vector of generalized coordinate of the core and skin element respectively
\(\{\varepsilon_{xyz}\} \) Internal element strains in the rectangular coordinate system
\(\{\varepsilon_{\xi\eta\zeta}\} \) Internal element strains in the skew coordinate system
\(\sigma_x', \sigma_y \) Stresses in the \(x \) and \(y \) directions respectively
\(\tau_{xy} \) Shearing stress in the \(xy \)-plane
\(\varepsilon_{x'}, \varepsilon_y, \varepsilon_{xy} \) Components of the strain matrix
\(v \) Poisson's ratio
CHAPTER I

INTRODUCTION

Sandwich plates are a type of three layer construction, consisting of two thin sheets of high strength material between which a thicker layer of comparatively soft and light material is sandwiched. The two thin sheets are called face-sheets and the middle layer is called the core material. The core is considered to have such a small load carrying capacity in the plane of the plate as compared to that of the face layers that all the face-parallel core stresses may be neglected. The face layers are considered sufficiently thin to neglect the variation of the normal stresses over their thickness.

The noted advantages of light weight and high resistance to local buckling of sandwich material make it a suitable material for aerospace applications. For example, skew sandwich plates are often used for skins or partitions for military missiles. Because of its strength and stiffness characteristics, sandwich construction offers great interest and enthusiasm among builders, engineers and theoreticians to explore the
possibilities of its optimum utility. The mathematical analysis of sandwich plates has commanded a considerable attention among the pioneers interested in elasticity and its related fields of study. Many refined analyses have been put forward which are of great interest to the theoretical analysts. In practice, in order to make use of such theories, a great deal of simplifications are required before the design engineer can handle them effectively. Examples of this are described in the paper by Donnell [1] and the book by Plantema [2]. However, it is to be pointed out that, even with such simplifications, only a few problems with simplified boundary conditions could be solved analytically and that most such solutions require the use of a trigonometric series expansion. For the solution of more complex problems involving sandwich plates it has been necessary to use a numerical method such as finite differences.

The finite difference method has been employed for solving the problems of elasticity including plates and shells for over sixty years. In the past decade, however, the finite element method was developed, originally in the aircraft industry in response to the need for a procedure which could provide a refined solution for the problems resulted out of extremely
complex air frame configurations. The pioneering efforts of the aeronautical structural engineers, backed by the needs of the industry and facilitated by the availability of automatic digital computers in such establishments, resulted in the outcome of the finite element method, which could be applied equally well to problems of structural mechanics. This method has been and is being applied with success to many of the problems of elasticity which were previously solvable only with considerable computational difficulty.

The basic concept of the finite element method is that every structure may be considered as an assemblage of a finite number of individual components or elements. The finite character of interconnecting of the elastic structure makes the analysis possible by solution of simultaneous equations, and this is the characteristic feature which distinguishes a structural system from the problems of structural mechanics.

A natural extension of structural analysis by the finite element method is the use of a system of two or three-dimensional elements to represent an elastic continuum. For example, assemblages of two-dimensional elements can be used to represent plates in bending of arbitrary forms. Using such elements, the idealization of the structure is obtained by dividing the continuum
into segments of appropriate sizes and shapes, all the material properties being retained in the individual elements.

The finite element method was originally developed as an extension of the matrix displacement method in structural analysis. In this method the approximation employed, i.e. dividing the continuum into a finite number of interconnected elements is of a physical nature. In other words, a modified structural system is substituted for the actual continuum and there is no approximation in the mathematical analysis of the substitute system. This is the feature which distinguishes the finite element approach from the finite difference method in which the governing differential equations of the actual physical system are solved by approximate mathematical procedures. At a most recent study, a researcher [3] has shown that the finite element is a systematic approach for setting up finite difference equations in plate bending analysis.

It is of interest to note that a number of finite element analyses have been published in recent years especially for rectangular sandwich plates [9] [10] [11] [12]. However, for the analysis of skew
sandwich plates, very little information is available at present. The only work available is that of Kennedy [4] which presents the analysis and results of clamped skew sandwich plates with isotropic cores, using a trigonometric series solution.

The present investigation is devoted to the study of a variety of skew sandwich plate problems with clamped, simply supported and free boundary conditions. Different ratios of bending and shearing stiffnesses are considered using two distinct linear finite elements. Solutions of the above problems are compared between these two finite elements and other available solutions. Although the structures to be investigated in this thesis are limited to skewed sandwich plates the technique is applicable to plates and shells in general.

In the representation of a real structure by finite elements, the number of elements required in order to carry out a fairly detailed stress analysis may also be large enough to seriously challenge the capacities of even the big computers. This problem would become more critical when we use a refined element having more degrees of freedom. A utility computer program was written to generate the stiffness matrices and solve the equilibrium equations. A listing of this program is included for reference in the Appendix VI.
CHAPTER II

REVIEW OF LITERATURE

2.1 Review of previous work on the analysis of sandwich plates

Bending theory of sandwich panels has been investigated by several authors. Williams et al [31] in a paper published in 1940, derived a simple approximate formula concerning wrinkling of sandwich construction by using energy principles. This early theory accounts for the transverse shear effect in the core by assuming that a linear element initially straight and normal to the middle plane of the core will remain straight after deformation but will deviate from the normal to the deformed middle plane by an amount represented by a parameter. This assumption has further been used by March [24] in his analysis of sandwich plates.

March [24] in a paper published in 1948, used the energy method to study the behavior of a flat rectangular sandwich panel. His paper is devoted to determining approximately the effect of the shear deformation of the core on two types of problems (i) Buckling under compressive end load and (ii) centre deflection of clamped rectangular panels under uniform
transverse loads. As an approximation, all the displacements in the core and faces are expressed in term of the normal displacement of the panels and its derivatives and the problem is solved by assuming functions for this displacement that satisfy the boundary conditions. He also obtained the solution of isotropic problems where the facings are stressed beyond the proportional limit.

In the same year, Taylor [22] derived a system of differential equations governing the small deflections of sandwich plates by introducing the concept of separate deflections. The solution of these differential equations physically means that the total deflection W can be split up into a partial deflection W_b due to bending and a partial deflection W_s due to shear. The solution for a square plate with clamped edges under uniform load was presented in his work.

The basic differential equations for the finite deflection of isotropic sandwich plates were developed by Reissner [32] in 1948. In his work, the development of the bending theory for sandwich plates is based upon several fundamental assumptions concerning the behavior of the faces and the core. These assumptions are as follows:
(1) The thickness of the faces is very small in comparison with the thickness of the core and the stresses in the faces parallel to their planes are distributed uniformly over the thickness of the face layers.

(2) The values of the elastic constants E_f, G_f for the face layers are large compared with the values of the elastic constants E_c, G_c for the core layer so that the face-parallel stresses in the core layer and their effect on the deformation of the composite plate are negligible.

On the basis of these assumptions, Reissner treated the sandwich plate as a combination of two plates without bending stiffness (faces layer) and a third plate (core layer) offering resistance only to transverse shear stresses. With these assumptions a system of equations has been derived to describe the behavior of the sandwich plate under bending loads. In this study, he found that the transverse normal stress in the core is negligibly small compared with the transverse shear stresses and that the range of deflections for which the linear theory is adequate decreases as the core is made softer relative to the faces.

In 1948, Libove and Botdorf [33] developed both the energy expression and the differential equation
for sandwich plates on the basis of Reissner's simplified model. Boundary conditions corresponding to simply supported, clamped and elastically restrained edges were considered. When he developed the differential equations, the deflection due to shear and the orthotropic stretching properties of the skins and core were taken into consideration. Three sixth order differential equations were obtained.

In 1950, Hoff [34] used the Principle of Minimum Potential Energy and obtained a similar set of differential equations.

In 1951, Eringen [35] generalized the variational approach used by Hoff and obtained four partial differential equations for the bending and buckling of rectangular, flat sandwich plate having homogeneous cores and identical isotropic faces subjected to various types of loading and boundary conditions. Various effects previously omitted have been incorporated into the analysis. The three dimensional stress distribution in the core is taken into account and thus the bending rigidity and the flattening of the core are not neglected. Also the faces which are customarily assumed to be thin, have bending rigidity.

In 1951, Yen et. al [23] used a Fourier series
to solve the governing differential equations proposed by Hoff and get some numerical results for the maximum deflection of a simply supported rectangular sandwich plate. Both the upper bound and lower bound solutions were presented in his work.

In 1952, a simple order-of-magnitude analysis has been used by Gerard [36] in order to secure a formal basis for the various assumptions used in connection with sandwich construction. In his paper the complete equilibrium and stress-strain relations for the faces and core of an isotropic sandwich plate are considered by examining the orders of magnitude of the stresses and displacements in terms of the thickness of the sandwich. His analysis procedure is similar to that used by Goodier [39] in the development of homogeneous thin-plate theory. By use of this procedure, a set of simplified stress-strain relations is obtained for sandwich plate, which are equivalent to results obtained previously.

Cook [37] in a paper published in 1966, presents quantitative information regarding the validity of certain approximations applicable to sandwich plate analysis such as (1) neglecting face-parallel stresses in the core, (2) neglecting the bending stiffness of the facings, (3) using approximate expressions for strains in the core.
In his paper energy expressions are developed for each approximate theory. Results given by the approximate theories are compared with results given by a more general theory for several values of geometric and elastic properties.

With the advent of digital computer, numerical analysis based on the above mentioned theories become possible. In the last twenty years, most of the work of sandwich plate analysis are concentrated in the field of numerical approximate analysis.

In 1967, Kan et. al [25] used the method of successive approximation and obtained an approximate solution for the governing differential equations proposed by Riessner. He use the centre deflection ratio as a perturbation parameter. The solution is based upon the smallness of centre deflection ratio for the case of uniformly loaded, clamped rectangular sandwich plates considering large deflections.

Martin [11] in a report published in 1967 set forth the first investigation of the problem of thin plates as well as sandwich structures using a triangular sandwich element. Martin's element was formed by combining the stiffness matrices for two CST(constant strain triangle) elements representing
the skins and three CSHR(constant shear) elements representing the core. He used this element to solve the homogeneous thin plate problem and obtained some numerical results for the maximum deflection of a rectangular plate under a uniformly distributed loading.

Monfortan, et. al [10] in a paper published in 1968, used the finite element technique to solve the problem of the sandwich plates. The assumed displacement pattern was represented by the sum of products of one-dimensional first order Hermit-Interpolation polynomials and undetermined nodal coefficients. Eighty degrees of freedom per element were used in order to obtain an accurate representation of the elemental strain energy. Accurate results were obtained even for a coarse element grid.

In the particular area of skew sandwich plate the first and only contribution was made in 1969 by Kennedy [4], who investigated the problem of a clamped skew sandwich plate subjected to uniformly distributed loads. He traced Taylor's work and derived the differential equations by introducing partial deflections due to bending and shear separately. The basic assumptions of this analysis were identical to that proposed by
Reissner in the previously discussed paper. In his work, fair agreement with an error not exceeding 10% was obtained between the theory and experimental results in the small deflection range.

For most approximate methods encountered in practice, such as the series solution method and the strain energy approach, it is not easy to find general type of solutions due to complexity of geometry, loading, material properties and boundary conditions. Most of these difficulties have been overcome by the present method. In finite element method, we can obtain results up to needed accuracy, and it is found that very close results to the exact solution could be obtained by that method. The present work may be regarded as an extension of reference [9], which used similar displacement functions to generate the stiffness matrix for vibration analysis of sandwich plates. The element used in this thesis is more general than the aforementioned element in that it can apply to both rectangular or skew sandwich plates subject to various boundary conditions.

2.2 **Numerical methods of structural analysis**

To analyze a complex structure such as sandwich plate construction, many authors use the differential equation method. This method gives accurate results but solution can be obtained only for some simplified
boundary conditions. For general boundary conditions, the solutions are very complicated. Sometimes, exact solutions are not possible to obtain even for the most simple boundary conditions. It is for these reasons that numerical approaches are essential to effect a solution. What follows is a brief description of several of the numerical methods which may be used to analyze sandwich plate problems.

(a) **Ritz Method**: Ritz method is one of the energy methods and has found particular application in the analysis of very complex problems. This method is based on the principle that the total energy is a minimum when the loaded system is in stable equilibrium. In applying this method to the investigation of bending of plates, a deflection function which satisfies the boundary conditions of the structure is assumed. The undetermined parameters of the assumed function can be determined from the minimizing condition of the system. In this method the differential equations are not used and need not be known. In general, this will save a considerable amount of mathematical work. However, some difficulty is always encountered if the plate is not symmetric. For example, for a plate with one side simply supported and the other
side clamped, the choice of a complete deflection function to meet the geometric boundary conditions is indeed difficult.

(b) **Fourier Series Method**: When the governing differential equation of the problem is known, the rest of the work is reduced to solving the differential equation and a rigorous solution would involve adjusting certain constants to take care of the boundary conditions. Fourier series have found application in the solution of many structural problems because it can represent discontinuous functions. Kennedy[4] has presented solutions for clamped sandwich and homogeneous plates using this method.

(c) **Perturbation Method**: This method is often used to solve the large deflection problems. Kan, et. al [25] has successfully solved the sandwich plate problem using this technique. This method is based on the smallness of the central deflection of the plate. Then the nonlinear partial differential equations governing the problem are reduced to a sequence of linear or perturbed equations and the undetermined coefficients in the assumed displacement function can be evaluated by equating terms with corresponding powers of variables in the equation. The drawback of this method is that it is extremely
laborious and requires considerable computation.

(d) **Collocation Method**: This method is one of the easiest numerical methods. The method is based on error distribution principles and may be regarded as an improvement of the perturbation technique. This technique has been applied successfully by Walter [38] to the analysis of rectangular plates with large deflections. Application of this method to other boundary value problems may be feasible.

(e) **Finite Difference Method**: This method is based on the replacement of the differential equations by the corresponding finite difference equations. Application of this technique yields a set of linear simultaneous equations from which the deflection, slope and curvatures of the grid points can be evaluated. This method has found wide application in structural analysis. Experiments have demonstrated that finite difference equations are not easy to set up with odd meshes, irregular boundaries and certain types of boundary conditions such as free edges.

(f) **Finite Element Method**: In the last ten years, this method has widely been used to solve various structural problems. However, this method is not intended to replace other methods but rather to supple-
ment them. As stated earlier, the finite element and
finite difference method are not entirely unrelated.
The relative merits of these approximate methods can
be observed from the numerical results. Zienkiewicz
[6] showed that the finite element method gives better
results than finite difference of an equivalent mesh
size. The ease of changing grid spacing and of com-
bining different kinds of element to form the whole
structure in the finite element method can be a dis-
tinct advantage. Due to this advantage, it was tried
for complex structural problems such as stiffened
plates and sandwich plates with great success. A major
disadvantage in this method is that more equations must
be solved for a given grid pattern than those for finite
difference models. Details of this method will be given
in the next chapter.
CHAPTER III

METHOD OF ANALYSIS

3.1 General

In this chapter two linear finite elements for the analysis of skew sandwich plates are presented. The required stiffness and consistent load matrices are derived from the direct stiffness method using the displacement-strain-stress procedure. Two displacement models are used incorporating an element having three and five degrees of freedom per node. These two stiffness matrices are generated in subroutines independently.

Attention is also focussed on how the step-by-step technique, the so-called "direct stiffness" approach can be used to form the stiffness matrix for the skew sandwich element which has proved to be useful to solve sandwich plate problems. Some emphasis is placed on the techniques of joining the skin and the core, so that it can be used most appropriately to represent the sandwich element. Various modifications of flexural and shearing rigidities are also discussed.

3.2 The General Assumptions Used in This Investigation

In the traditional simplified analysis of sandwich plates it is generally assumed that bending is resisted
entirely by the pair of skins while the core resists only the transverse shear. This means that the skins are in a state of plane stress and that the transverse shear stresses are constant through the thickness of the core. These assumptions are easily satisfied by a finite element idealization. The following assumptions are made in the derivation of stiffness matrices.

1. Hooke's law holds, i.e. the plate is made of perfectly elastic material.

2. The facings and the core are isotropic and homogeneous. This assumption is reasonable for most of the sandwich structure of honeycomb or corrugated type when the cell size is small compared with the characteristic dimension under consideration.

3. The displacements are small, so that the linear (small deflection) theory is valid.

4. The two facings of equal thickness have negligible bending rigidity. This assumption implies that the strain in the faces is almost constant across the depth of the face and hence the flexural strain energy of the faces is usually negligible when the thickness of the faces is small in comparison with the thickness of the core. It also implies that the transverse shear is entirely carried by the core.

* although most sandwich core materials are only orthotropic in nature; However, due to the assumption that normal strains in the vertical direction are negligible (assumption 5, P20) the entire sandwich plate can be assumed as isotropic without appreciable error.
5. Transverse normal strain is negligible. This assumption generally means that the transverse contraction of the plate is small, neglecting this effect does not alter appreciably the accuracy of the bending analysis. This assumption is usually applied in the classical theory of plate analysis [5].

6. The core is made of very low density material in comparison with the face material \(E_c \ll E_f\) therefore the core stresses parallel to the face plates are very small and hence can be neglected, it implies that bending moments are resisted only by the faces.

7. Plane-section remains plane during deformation. This assumption implies that linear strain state exists across the depth of the core. Due to considerable shear strain in the transverse direction, the normal of the middle plane before bending is not remaining normal to the middle plane after bending. This assumption further implies that sandwich plate analysis is a three-dimensional problem which cannot be treated as a two-dimensional problem such as classical thin plate analysis.

8. The bond between facing and core is assumed perfect. This assumption is achieved by the displacement functions of the faces and core.

3.3 Assumed Displacement Fields
3.3.1 Three and Five Degrees of Freedom Elements

The accuracy of the finite element solution for solving structural problems depends mainly on the proper selection of the assumed displacement field. If the displacement functions are not properly selected, the results obtained may not converge to the correct answers. Now the question arises as to which criteria the assumed displacement functions must satisfy in order for the displacements, strains and stresses to converge towards the correct values when the element mesh size is decreased. Two well-known criteria proposed by Zienkiewicz [6] are:

1. The displacement function must be chosen such that the next to highest derivative occurring in the strain energy expression must be continuous.

2. Rigid body motion must be adequately represented.

Based on some authors [7] [8] a further desirable property of a plate-bending element is conformity which means the slopes are continuous between elements as well as the transverse displacement. Although the need for conformity is a matter of some dispute, it would perhaps be fair to say that conformity is a sufficient but not a necessary condition that ensures convergence
of the finite element approximation to the true solution.

a) Three degrees of freedom per node

The equilibrium equations of skewed sandwich construction are a set of second order differential equations. The related minimum potential energy function requires only the first derivatives in the unknown displacement fields to be evaluated. This means that continuity of the displacement fields is only required in the finite element method. Based on these requirements, an element of three degrees of freedom per node has been developed. The components of displacement at a node are given by:

\[
\{ \mathbf{d} \}^T = [u, v, w]
\]

The displacement function is assumed as

\[
\begin{align*}
 u &= \alpha_1 + \alpha_2 \xi + \alpha_3 \eta + \alpha_4 \xi \eta \\
 v &= \alpha_5 + \alpha_6 \xi + \alpha_7 \eta + \alpha_8 \xi \eta \\
 w &= \alpha_9 + \alpha_{10} \xi + \alpha_{11} \eta + \alpha_{12} \xi \eta
\end{align*}
\]

b) Five degrees of freedom per node

Although the element (three degrees of freedom per node) described above give good results in many cases, experience \([9]\) with this element has demonstrated the need for a more refined element. The improved element can be obtained by two different approaches, either increasing
the number of nodes for each element or increasing the number of kinematic degrees of freedom at each node. In most cases the second approach has a decided topological advantage in that the connectivity of the element assemblage is greatly simplified. This type of element will be studied in some detail in the present work. Using both the displacement derivatives as well as displacements as nodal degrees of freedom, the displacement vector at a node is given by:

\[
\{ d \}^T = [u, v, w, \partial w/\partial \xi, \partial w/\partial \eta]
\]

where the assumed displacement field for \(u \) and \(v \) are the same as for the three degrees of freedom given before, except \(w \) has been taken to be a twelve term vector, thus

\[
w = a_9 + a_{10} \xi + a_{11} \eta + a_{12} \xi^2 + a_{13} \xi \eta + a_{14} \eta^2 + a_{15} \xi^3 + a_{16} \xi^2 \eta + a_{17} \xi \eta^2 + a_{18} \eta^3 + a_{19} \xi^3 \eta + a_{20} \xi \eta^3
\]

It has been shown by K. M. Ahmed [9] that the use of more terms in the vertical displacement will achieve a more reasonable representation for the shear properties of the core and the convergence to the correct solution is rapid. For these reasons elements having five degrees of freedom per node are used and results are compared with those obtained from elements having only
three degrees of freedom per node.

3.3.2 Displacement Distribution for a Parallelogram Sandwich Element

In order to study the continuity of displacements across element boundaries, the displacement fields u, v, w, are calculated in terms of the nodal coordinates as shown in Fig. 2 for both the three and five degrees of freedom elements.

a) Element containing three degrees of freedom per node

The expressions of displacement fields in terms of the nodal displacements are obtained, as follows:

$$u = u_1 + (u_2 - u_1) \xi/a + (u_3 - u_1) \eta/b$$
$$+ (u_4 - u_2 - u_3 + u_1) \xi/a \eta/b$$

$$v = v_1 + (v_2 - v_1) \xi/a + (v_3 - v_1) \eta/b$$
$$+ (v_4 - v_2 - v_3 + v_1) \xi/a \eta/b$$

$$w = w_1 + (w_2 - w_1) \xi/a + (w_3 - w_1) \eta/b$$
$$+ (w_4 - w_2 - w_3 + w_1) \xi/a \eta/b$$

To ensure the continuity of u, v and w across an interface we must have u, v and w uniquely defined by the values along such an interface. The following expressions are obtained.
Along the faces $1 - 3$ ($\xi = 0$) and $2 - 4$ ($\xi = a$), the following displacement fields are obtained, respectively as:

\[
\begin{align*}
 u &= u_1 + (u_3 - u_1)\eta/b \\
 v &= v_1 + (v_3 - v_1)\eta/b \\
 w &= w_1 + (w_3 - w_1)\eta/b \\
 u &= u_2 + (u_4 - u_2)\eta/b \\
 v &= v_2 + (v_4 - v_2)\eta/b \\
 w &= w_2 + (w_4 - w_2)\eta/b
\end{align*}
\]

(3 - 4a)

Along the faces $1 - 2$ ($\eta = 0$) and $3 - 4$ ($\eta = 0$) the following expressions are obtained respectively as:

\[
\begin{align*}
 u &= u_1 + (u_2 - u_1)\xi/b \\
 v &= v_1 + (v_2 - v_1)\xi/b \\
 w &= w_1 + (w_2 - w_1)\xi/b \\
 u &= u_3 + (u_4 - u_3)\xi/b \\
 v &= v_3 + (v_4 - v_3)\xi/b \\
 w &= w_3 + (w_4 - w_3)\xi/b
\end{align*}
\]

(3 - 5a)

From the above expressions, we found that the displacement functions depend linearly on nodal displacements and that the continuity of element displacements are maintained for the three degrees of freedom.
element.

b) **Element containing five degrees of freedom per node**

The displacement fields with regard to \(u, v \) are the same as in equations (3-3), (3-4) and (3-5), the only difference being the expansion of the displacement \(w \) which will given here.

The expressions of displacement fields in terms of the nodal displacements are obtained as:

\[
w = w_1 \left(1 - \frac{\xi}{a}\frac{n}{b}\right) - (3 - 2\frac{\xi}{a}) \frac{\xi^2}{a^2}(1 - \frac{n}{b}) - (1 - \frac{\xi}{a})(3 - 2\frac{n}{b})\frac{n^2}{b^2}
\]

\[+ w_{\xi_1}\left(\xi(1 - \frac{\xi}{a})^2 \left(1 - \frac{n}{b}\right)\right) + w_{\eta_1}\left(\eta(1 - \frac{\xi}{a})(1 - \frac{n}{b})^2\right)\]

\[+ w_2\left((3 - 2\frac{\xi}{a}) \frac{\xi^2}{a^2} \left(1 - \frac{n}{b}\right) + \frac{\xi}{a} \frac{n}{b}(1 - \frac{n}{b})(1 - 2\frac{n}{b})\right)\]

\[- w_{\xi_2}\left(\frac{\xi^2}{a} \left(1 - \frac{\xi}{a}\right)(1 - \frac{n}{b})\right)\]

\[+ w_{\eta_2}\left(\frac{\xi\eta}{a}(1 - \frac{\xi}{a})(1 - \frac{n}{b})^2\right)\]

\[+ w_3\left((3 - 2\frac{\xi}{a}) \frac{\xi^2}{a^2} \frac{n}{b} - \frac{\xi}{a} \frac{n}{b}(1 - \frac{n}{b})(1 - 2\frac{n}{b})\right)\]

\[- w_{\xi_3}\left(\xi(1 - \frac{\xi}{a})\frac{n}{b}\right) + w_3\left((1 - \frac{\xi}{a})(3 - 2\frac{n}{b})\frac{n^2}{b^2}\right)\]

\[+ \frac{\xi}{a}(1 - \frac{\xi}{a})(1 - 2\frac{\xi}{a}\frac{n}{b}) + w_{\xi_3}\left(\xi(1 - \frac{\xi}{a})^2\frac{n}{b}\right) - w_{\eta_3}\left(\eta(1 - \frac{\xi}{a})(1 - \frac{n}{b})\right)\]

\[(1 - \frac{n}{b})\frac{n}{b}\]

\[+ w_{\eta_4}\left(\eta(1 - \frac{n}{b})\frac{\xi}{a}\frac{n}{b}\right) \quad (3 - 6a)\]
\[
\frac{\partial w}{\partial \xi} = w_1 \left\{ \frac{m}{ab} - (1 - \frac{n}{b})(\frac{6\xi}{a^3} - \frac{6\xi^2}{a^2}) + \frac{n^2}{ab} (3 - \frac{2n}{b}) \right\} \\
+ w_{\xi_1} \left\{ \frac{m}{a}(1 - \frac{n}{b}) - \frac{2\xi}{a}(1 - \frac{n}{b}) (1 - \frac{\xi}{a}) \right\} \\
+ w_{\eta_1} \left\{ \frac{m}{a}(1 - \frac{n}{b}) \right\} + w_2 \left\{ (1 - \frac{n}{b}) \left(\frac{6\xi}{a^2} - \frac{\xi^2}{a^2} \right) \right\} \\
+ \frac{n}{ab} (1 - \frac{n}{b})(1 - \frac{2n}{b}) - w_{\xi_2} \left\{ (1 - \frac{n}{b}) \left(\frac{2\xi}{a} - \frac{3\xi^2}{a^2} \right) \right\} \\
+ w_{\eta_2} \left\{ \frac{n}{a}(1 - \frac{n}{b}) \right\} + w_4 \left\{ \frac{2\xi^2}{a^2} \frac{n}{b} + \frac{2\xi}{a} (3 - \frac{2\xi}{a}) \right\} \\
- \frac{n}{ab} (1 - \frac{n}{b})(1 - \frac{2n}{b}) - w_{\xi_4} \left\{ \frac{n}{ab} (2\xi - \frac{3\xi^2}{a}) \right\} - w_{\eta_4} \\
\{ n (1 - \frac{n}{b}) \frac{n}{ab} \} + w_3 \left\{ \frac{1}{a} (3 - \frac{2n}{b}) \frac{n^2}{b} + \frac{1}{a} (1 - \frac{2\xi}{a}) \frac{2n}{b} \right\} \\
- \frac{2}{a^2} \frac{n}{b} (\xi - \frac{\xi^2}{a}) + w_{\xi_3} \left\{ \frac{n}{b}(1 - \frac{\xi}{a})^2 + \frac{2\xi}{a} \frac{n}{b} (1 - \frac{\xi}{a}) \right\} \\
- \frac{2\xi^2}{a^2} (3 - \frac{6n}{ab})
\]

\[
\frac{\partial w}{\partial \eta} = w_i \left\{ \frac{\xi}{ab} + \frac{\xi^2}{ba^2} \right\} \left\{ (3 - \frac{2\xi}{a}) - \frac{6n}{b^2} - \frac{6\xi}{a} \frac{n}{b^2} - \frac{6\xi^2}{b^2} + \frac{6\xi n}{ab^2} \right\} \right\} \\
+ w_{\xi_1} \left\{ \frac{-\xi}{b}(1 - \frac{\xi}{a}) \right\} + w_{\eta_1} \left\{ (1 - \frac{4n}{b}) + \frac{3n^2}{b^2} - \frac{\xi}{a} + \frac{\xi n}{ab} - \frac{3\xi n^2}{ab^2} \right\} \\
+ w_2 \left\{ \frac{\xi^2}{ba^2} \right\} \left\{ 3 - \frac{2\xi}{a} \right\} + \frac{\xi}{ab} - \frac{6\xi n}{ab^2} + \frac{6\xi n^2}{a b^2} \right\} - w_{\xi_2} \\
\{ -(1 - \frac{\xi}{a}) \frac{\xi^2}{ab^2} \} + w_{\eta_2} \left\{ \frac{\xi}{a} + \frac{3\xi}{a} \frac{n^2}{b^2} - \frac{4\xi}{a} \frac{n}{b^2} \right\} + w_4 \left\{ (3 - \frac{2\xi}{a}) \frac{\xi^2}{ab^2} \right\} \\
- \frac{\xi^2}{ba^2} - \frac{\xi}{a} \frac{6\xi n}{ab^2} + \frac{6\xi n^2}{ab^3} \right\} \right\} - w_{\xi_4} \left\{ (1 - \frac{\xi}{a}) \frac{\xi^2}{ab^2} \right\} - w_{\eta_4} \\
\{ 2\xi n \frac{ab^2} - \frac{3\xi n^2}{ab^2} \} + w_3 \left\{ \frac{\xi}{ab}(1 - \frac{\xi}{a}) (1 - \frac{2\xi}{a}) + \frac{6n}{b} - \frac{\xi n}{ab} - \frac{n^2}{b^2} \right\} \\
+ \frac{\xi n^2}{ab^2} \} + w_{\xi_3} \left\{ \frac{\xi}{b}(1 - \frac{\xi}{a}) \right\} - w_{\eta_4} \left\{ \frac{2n}{b} - \frac{2\xi n}{ab} - \frac{3n^2}{b^2} + \frac{3\xi n^2}{ab^2} \right\} \\
(3 - \frac{6n}{ab})}
The displacement \(w \) and the normal slope across an interface have been defined as follows:

Along the faces 1 - 3 (\(\xi = 0 \)) and 2 - 4 (\(\xi = a \)), the following expressions for \(w \) and \(\partial w / \partial \xi \) are obtained respectively as:

\[
\begin{align*}
 w &= w_1 (1 - \frac{3n^2}{b^2} + \frac{2n^3}{b^3}) + w_{\eta_1} (n - \frac{2n^2}{b} + \frac{n^3}{b^2}) \\
 &+ w_3 (\frac{3n^2}{b^2} - \frac{2n^3}{b^3}) - w_{\eta_3} (\frac{n^2}{b} - \frac{n^3}{b^2}) \\

 \frac{\partial w}{\partial \xi} &= w_1 (\frac{-n}{ab} + \frac{3n^2}{ab^2} - \frac{2n^3}{ab^3}) + w_{\eta_1} (1 - \frac{n}{b}) + w_{\eta_2} (\frac{n}{a} - \frac{2n^2}{ab} + \frac{n^3}{ab^2}) \\
 &+ w_3 (\frac{n}{ab} - \frac{3n^2}{ab^2} + \frac{2n^3}{ab^3}) - w_{\eta_3} (\frac{n^2}{ab} - \frac{n^3}{ab^2}) + w_{\xi_3} \frac{n}{b} \\
 &+ w_{\eta_3} (\frac{n^2}{ab} - \frac{n^3}{ab^2}) \quad (3 - 7a) \\

 w &= w_2 (1 - \frac{3n^2}{b^2} + \frac{2n^3}{b^3}) + w_{\eta_2} (n - \frac{2n^2}{b} + \frac{n^3}{b^2}) \\
 &+ w_4 (\frac{3n^2}{b^2} - \frac{2n^3}{b^3}) - w_{\eta_4} (\frac{n^2}{b} - \frac{n^3}{b^2}) \\

 \frac{\partial w}{\partial \xi} &= w_1 (\frac{-n}{ab} + \frac{3n^2}{ab^2} - \frac{2n^3}{ab^3}) + w_{\eta_1} (\frac{n}{a} - \frac{2n^2}{ab} - \frac{n^3}{ab^2}) + w_2 (\frac{n}{ab} - \frac{3n^2}{ab^2} + \frac{2n^3}{ab^3}) \\
 &+ w_{\xi_2} (1 - \frac{n}{b}) + w_{\eta_2} (\frac{n}{a} - \frac{2n^2}{ab} + \frac{n^3}{ab^2}) \\
 &+ w_4 (\frac{n}{ab} - \frac{3n^2}{ab^2} - \frac{2n^3}{ab^3}) + w_{\xi_4} (\frac{n}{b}) - w_{\eta_4} (\frac{n^2}{ab} - \frac{n^3}{ab^2}) \\
 &+ w_3 (\frac{n}{ab} - \frac{3n^2}{ab^2} + \frac{2n^3}{ab^3}) + w_{\eta_3} (\frac{n^2}{ab} - \frac{n^3}{ab^2}) \quad (3 - 7b)
\end{align*}
\]
Similarly, along the faces $1 - 2 \ (\eta = 0)$ and $3 - 4 \ (\eta = b)$, the following expressions for w and $\partial w/\partial \eta$ are obtained respectively as:

\[
w = w_1 \left(1 - \frac{3\xi^2}{a^2} + \frac{2\xi^3}{a^3}\right) + w_{\xi_1} \left(\xi - \frac{2\xi^2}{a} + \frac{\xi^3}{a^2}\right) + w_2 \left(\frac{3\xi^2}{a^2} - \frac{2\xi^3}{a^3}\right) - w_{\xi_2} \left(\frac{\xi^2}{a} - \frac{\xi^3}{a^2}\right)
\]

\[
\frac{\partial w}{\partial \eta} = w_1 \left\{-\frac{\xi}{ab} + \frac{\xi^2}{ba^2} (3 - \frac{2\xi}{a})\right\} + w_{\xi_1} \left\{-\frac{\xi}{b}(1 - \frac{\xi}{a})^2\right\} + w_{n_1}
\]

\[
(1 - \frac{\xi}{a}) + w_2 \left\{-\frac{\xi}{ab} - \left(3 - \frac{2\xi}{a}\right)\frac{\xi^2}{ba^2}\right\} + w_{\xi_2} \left\{\frac{\xi^2}{ab}(1 - \frac{\xi}{a})\right\}
\]

\[
+ w_{n_2} \left(\frac{\xi}{a}\right) + w_4 \left\{(3 - \frac{2\xi}{a})\frac{\xi^2}{ba^2} - \frac{\xi}{ab}\right\} - w_{\xi_4} \left\{\frac{\xi^2}{ab}(1 - \frac{\xi}{a})\right\}
\]

\[
+ w_3 \left\{\frac{\xi}{ab}(1 - \frac{\xi}{a})(1 - \frac{2\xi}{a})\right\} + w_{\xi_3} \left\{\frac{\xi}{b}(1 - \frac{\xi}{a})^2\right\}
\]

\[
(3 - 8a)
\]

\[
w = w_4 \left(\frac{3\xi^2}{a^2} - \frac{2\xi^3}{a^3}\right) - w_{\xi_4} \left(\frac{\xi^2}{a} - \frac{\xi^3}{a^2}\right) + w_3 \left(1 - \frac{3\xi^2}{a^2} + \frac{2\xi^3}{a^3}\right)
\]

\[
+ w_{\xi_3} \left(\xi - \frac{2\xi^2}{a} + \frac{\xi^3}{a^2}\right)
\]

\[
\frac{\partial w}{\partial \eta} = w_1 \left\{-\frac{\xi}{ab} + \frac{\xi^2}{ba^2} (3 - \frac{2\xi}{a})\right\} + w_{\xi_1} \left\{-\frac{\xi}{b}(1 - \frac{\xi}{a})^2\right\} + w_2 \left\{\frac{\xi}{ab}\right\}
\]

\[
- \left(3 - \frac{2\xi}{a}\right)\frac{\xi^2}{ba^2}\right\} + w_{\xi_2} \left\{\frac{\xi^2}{ab}(1 - \frac{\xi}{a})\right\} + w_4 \left\{\frac{\xi^2}{ba^2}(3 - \frac{2\xi}{a})\right\}
\]

\[
- \frac{\xi}{ab}\right\} - w_{\xi_4} \left\{\frac{\xi^2}{ab}(1 - \frac{\xi}{a})\right\} + w_{n_4} \left(\frac{\xi}{a}\right) + w_3 \left\{\frac{\xi}{ab}(1 - \frac{\xi}{a})\right\}
\]

\[
(1 - \frac{2\xi}{a})\right\} + w_{\xi_3} \left\{\frac{\xi}{b}(1 - \frac{\xi}{a})^2\right\} - w_{n_3} \left(\frac{\xi}{a} - 1\right)
\]

\[
(3 - 8b)
\]
As can be observed from equations (3-4) and (3-5) the deflections are the same along a common edge between adjacent elements. Similarly from equations (3-5) and (3-7) it can be shown that the slopes are not the same along the edge. Therefore it can be deduced that continuity of element displacements is also maintained but continuity of normal slopes is violated for the five degrees of freedom element. As we mentioned before, the latter condition need not be satisfied for convergence criteria [6]; moreover, it can be seen that the normal slopes of the interface are independent of the normal slopes of the nodes on a parallel edge of an element under consideration. The normal slope is defined with respect to the skew coordinate \(\xi \) and \(\eta \); it need not necessarily be perpendicular to the boundaries.
Fig. 1 SKEWED SANDWICH PLATE

Fig. 2 CO-ORDINATES AND ORDER OF NODE NUMBERING OF AN ELEMENT.
3.4. Formation of the stiffness matrix for the skin element

Because of the unique behavior of sandwich plates as described above it is convenient to build each individual sandwich plate element using a set of sub-elements, two of which represent the opposite skins and the remainder of which represent the core, some elements previously developed for plane stress [13] and [14] may be used to represent the skin of sandwich. A parallelogram plane stress element is especially useful in skew sandwich plate analysis, although its use is obviously more restricted than the triangular one in other problems. On the other hand, the fact that the parallelogram element has four nodes permits the introduction of an extra parameter in the displacement function and permits a more accurate representation of a varying stress field.

a) Strain-displacement Relationship

The parallelogram element with nodes at the corners is as illustrated in Fig. 3. This subelement is used to represent the membrane displacements of the face,
where \(v_i \) and \(u_i \) are used to represent the membrane displacements at node \(i \) in the directions \(Y \) and \(X \) respectively.

The displacement functions are taken as

\[
\begin{align*}
u &= \alpha_1 + \alpha_2 \xi + \alpha_3 \eta + \alpha_4 \xi \eta \\
v &= \alpha_5 + \alpha_6 \xi + \alpha_7 \eta + \alpha_8 \xi \eta
\end{align*}
\] (3 - 9)

The coefficients \(\alpha_1, \alpha_2, \ldots, \alpha_8 \) were expressed in terms of the displacements \(u, v \) at the four nodes. Therefore the element has eight degrees of freedom. Evaluating equation (3 - 9) at each nodal point in turn, the nodal displacement-generalized displacement relationship may be constructed as
\[
\begin{bmatrix}
u_1 \\
v_1 \\
u_2 \\
v_2 \\
u_3 \\
v_3 \\
u_4 \\
v_4 \\
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & a & 0 & 0 \\
1 & b & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & b & 0 & 0 \\
1 & a & b & ab & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & a & b & ab \\
\end{bmatrix} \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5 \\
\alpha_6 \\
\alpha_7 \\
\alpha_8 \\
\end{bmatrix}
\]

(3 - 10)

In matrix notation

\[\{\Delta_f\} = [A_f]\{\alpha_f\}\]

where \(\{\Delta_f\}\) is the vector of element nodal displacements, \(\{\alpha_f\}\) is considered as a vector of generalized co-ordinates of the element.

The strain in the element with respect to the rectangular coordinate system are defined as:

\[
\begin{align*}
\varepsilon_x &= \frac{\partial u}{\partial x} \\
\varepsilon_y &= \frac{\partial v}{\partial y} \\
\gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\end{align*}
\]

(3 - 11)

The strain in the skew co-ordinate system are obtained from those in the rectangular system as follows.
The associated coordinate axes are shown in Fig. 3. The rectangular \(x, y \) axes and the skew \(\xi, \eta \) axes are related as follows.

\[
x = \xi + \eta \cos \phi
\]

\[
y = \eta \sin \phi
\]

or \(\xi = x - y \cot \phi \)

\[\eta = y \cosec \phi \]

By changing variables,

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}
\]

\[
\frac{\partial v}{\partial y} = \frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial y}
\]

\[
\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}
\]

\[
\frac{\partial v}{\partial x} = \frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x}
\]

From equations (3 - 12),

\[
\frac{\partial \xi}{\partial x} = 1, \quad \frac{\partial \xi}{\partial y} = -\cot \phi
\]

\[
\frac{\partial \eta}{\partial x} = 0, \quad \frac{\partial \eta}{\partial y} = \cosec \phi
\]

Equations (3 - 13) becomes,

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi}
\]

\[
\frac{\partial v}{\partial y} = -\cot \phi \frac{\partial v}{\partial \xi} + \cosec \phi \frac{\partial v}{\partial \eta}
\]

\[
\frac{\partial u}{\partial y} = -\cot \phi \frac{\partial u}{\partial \xi} + \cosec \phi \frac{\partial u}{\partial \eta}
\]

\[
\frac{\partial v}{\partial x} = \frac{\partial v}{\partial \xi}
\]
Substituting equations (3 - 15) into equations (3 - 11), the following relationship will be obtained,

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & -\cot\phi & \csc\phi \\
-\cot\phi & \csc\phi & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial u}{\partial \xi} \\
\frac{\partial v}{\partial \eta} \\
\frac{\partial v}{\partial \xi} \\
\frac{\partial v}{\partial \eta}
\end{bmatrix}
\]

(3 - 16)

In matrix notation,

\[
\{\varepsilon_{xy}\} = \left[H_f\right]\{\varepsilon_{\xi\eta}\}
\]

where \{\varepsilon_{\xi\eta}\} can be obtained by appropriate differentiations of equations (3 - 9).

\[
\begin{bmatrix}
\frac{\partial u}{\partial \xi} \\
\frac{\partial u}{\partial \eta} \\
\frac{\partial v}{\partial \xi} \\
\frac{\partial v}{\partial \eta}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & \eta & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \xi & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \eta \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \xi
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5 \\
\alpha_6 \\
\alpha_7 \\
\alpha_8
\end{bmatrix}
\]

(3 - 17)

In matrix notation,

\[
\{\varepsilon_{\xi\eta}\} = \left[B_f\right]\{\alpha_f\}
\]

The vector of generalized coordinates of the element \{\alpha_f\} will be obtained by rearranging equations (3 - 10),
\[
\{ \alpha_f \} = \left[A_f \right]^{-1} \{ \Delta_f \} \quad (3 - 18)
\]

where

\[
\left[A_f \right]^{-1} =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{a} & 0 & \frac{1}{a} & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{b} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 & 0 \\
\frac{1}{ab} & 0 & \frac{1}{ab} & 0 & \frac{1}{ab} & 0 & \frac{1}{ab} & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{a} & 0 & \frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{b} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & \frac{1}{ab} & 0 & -\frac{1}{ab} & 0 & -\frac{1}{ab} & 0 & \frac{1}{ab}
\end{bmatrix}
\]

If these equations (3 - 18), (3 - 17) are substituted into equation (3 - 16), the following strain-displacement relationship is obtained. In matrix notation,

\[
\{ \varepsilon_{xy} \} = \left[H \right] \left[B \right] \left[A \right]^{-1} \{ \Delta_f \} \quad (3 - 19)
\]

b) Stress-strain relationship

It has been assumed that the material is elastic homogeneous and isotropic, the stress-strain relationships
for plane stress with Poisson's ratio \(\nu \), are given by [15]

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = \frac{E}{(1 - \nu^2)} \begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-\nu)
\end{bmatrix} \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\tau_{xy}
\end{bmatrix}
\]

(3 - 20)

In matrix notation,

\[
\sigma_{xy} = [D_f] \{\varepsilon_{xy}\}
\]

where \([D_f]\) is the elastic coefficient matrix of the faces.

Substituting for \(\sigma_{xy}\) from equation (3 - 19) gives,

\[
\{\sigma_{xy}\} = [D_f][H][B][A]^{-1}\{\Delta_f\}
\]

(3 - 21)

where \([D_f]\), \([H]\), \([B]\) and \([A]^{-1}\) are as given previously.

c) Element properties and necessary transformation

The element stiffness matrix, \([K_f]\) may now be computed by applying the principle of virtual work, the simplest procedure is to impose an arbitrary (virtual) nodal displacement \(\{\Delta_f\}\) and to equate the external and internal work done by the various forces and stresses during that displacement.

The work done by the nodal forces is equal to the sum of the products of the individual force components and corresponding displacements, i.e. in matrix language,
\[
\{\bar{\Delta}_f\}^T \{S\} \quad (3 - 22)
\]

where \(\{S\}\) is the nodal forces.

Similarly, the internal work per unit volume done by the stresses can be obtained from equations (3 - 19) and (3 - 21),

\[
\{\varepsilon_{xy}\} \{\sigma_{xy}\} \, dx \, dy \, dz = \{\bar{\Delta}_f\}^T \left[A^{-1} \right]^T \left[B \right]^T \left[H \right]^T \left[D_f \right] \left[H \right] \left[B \right] \, dx \, dy \, dz \left\{\Delta_f\right\}
\]

Equating the external work with the total internal work obtained by integrating over the volume of the element we have,

\[
\{\bar{\Delta}_f\}^T \{S\} = \{\bar{\Delta}_f\}^T \left[A^{-1} \right]^T \iiint \left[B \right]^T \left[H \right]^T \left[D_f \right] \left[H \right] \left[B \right] \, dx \, dy \, dz \left[A \right]^{-1} \left\{\Delta_f\right\} \quad (3 - 24)
\]

The virtual displacements \(\{\bar{\Delta}_f\}\) are quite arbitrary and in particular may be taken to be represented by a unit matrix, thus equation (3 - 24) can be written,

\[
\{S\} = \left[A^{-1} \right]^T \iiint \left[B \right]^T \left[H \right]^T \left[D_f \right] \left[H \right] \left[B \right] \, dx \, dy \, dz \left[A \right]^{-1} \left\{\Delta_f\right\} \quad (3 - 25)
\]

which is the force-displacement relationship for the element, thus the element stiffness matrix becomes,

\[
K_f = \left[A^{-1} \right]^T \iiint \left[B \right]^T \left[H \right]^T \left[D_f \right] \left[H \right] \left[B \right] \, dx \, dy \, dz \left[A \right]^{-1} \quad (3 - 26)
\]
The stiffness matrix involves integrals over the volume of the element, the integration indicated in equation (3 - 26) can not be carried out directly since the matrix [B] is in terms of \(\xi, \eta \). A Jacobian [16] is used to transform the integration to the variables \(\xi, \eta \).

The Jacobian is a determinant defined as,

\[
J = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix}
\]

(3 - 27)

which, from equation (3 - 12) is equal to,

\[
J = \begin{vmatrix} 1 & \cos \phi \\ 0 & \sin \phi \end{vmatrix} = \sin \phi
\]

(3 - 28)

If taking \(t_s \) as constant within the element, the stiffness matrix becomes,

\[
[K_f] = \sin \phi [A^{-1}]^T \int_0^a \int_b t_s [B]^T [H]^T [D_f][H][B] d\xi d\eta [A^{-1}]
\]

(3 - 29)

which can be further reduced to,

\[
[K_f] = \sin \phi [A^{-1}]^T [R_f] [A^{-1}]
\]

(3 - 30)

where \([R_f]\) is the generalised stiffness matrix.
Performing the necessary integration and matrix multiplications we obtain the generalised stiffness matrix, which is completely defined in the Appendix I.

3.5 Formation of the stiffness matrix for the core element

The sandwich core which separates the skins is considered to be relatively thick, and it has been assumed that,

(1) The core is incompressible in the transverse direction.

(2) The transverse shear stresses is constant throughout the depth of the core.

(3) The displacement u and v at any given point on the core vary linearly across the depth.

Based on these assumptions, two elements are developed as follows:

(a) **Element with three degrees of freedom per node**

The subelement which is used for the core of the sandwich plate has essentially a tri-linear displacement assumption, the u and v displacement are assumed to be symmetric about the midplane and the w displacement is assumed to vary only with x and y, thus only 4 nodes are needed, Fig. (3a) shows the nodal arrangement for this subelement.
The displacement functions are taken to be,

\[u = (\alpha_1 + \alpha_2 \xi + \alpha_3 \eta + \alpha_4 \xi \eta) \xi \]

\[v = (\alpha_5 + \alpha_6 \xi + \alpha_7 \eta + \alpha_8 \xi \eta) \xi \]

\[w = \alpha_9 + \alpha_{10} \xi + \alpha_{11} \eta + \alpha_{12} \xi \eta \]

Thus the nodal displacements may be represented by,

\[\Delta_c \]

\[T = \{ u_1 \, v_1 \, w_1 \, u_2 \, v_2 \, w_2 \, u_3 \, v_3 \, w_3 \, u_4 \, v_4 \, w_4 \} \]

\[(3 - 32) \]
Following the scheme used in section 3-4, for the plane stress element, the nodal displacements \(\{\Delta\} \) in terms of the displacement parameters \(\{\alpha\} \) can be expressed as:

\[
\begin{bmatrix}
 u_1 & v_1 & w_1 & u_2 & v_2 & w_2 & u_3 & v_3 & w_3 & u_4 & v_4 & w_4
\end{bmatrix}^T = \begin{bmatrix} A_c \end{bmatrix} \begin{bmatrix}
 \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_8 & \alpha_9 & \alpha_{10} & \alpha_{11} & \alpha_{12}
\end{bmatrix}^T
\]

(3 - 33)

where,

\[
\begin{bmatrix}
 \frac{t}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & \frac{t}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & \frac{at}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & \frac{at}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & a & 0 & 0 & 0 \\
 0 & \frac{bt}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & \frac{bt}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & \frac{bt}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & \frac{at}{2} & \frac{bt}{2} & \frac{abt}{2} & 0 & 0 & 0 & 0 & 1 & 0 & b & 0 \\
 0 & 0 & 0 & 0 & \frac{at}{2} & \frac{bt}{2} & \frac{abt}{2} & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & a & b & ab & &
\end{bmatrix}
\]
The strains in the element are

\[
\{\varepsilon_{xyz}\} = \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{zx}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial w}{\partial z} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\
\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}
\end{bmatrix}
\]

(3 - 34)

As shown in Fig. (3a), the rectangular \(x, y, z\), axes and the orthogonal system \(\xi, \eta, \zeta\) axes are related as:

\[
x = \xi + \eta \cos \phi \\
y = \eta \sin \phi \\
z = \zeta
\]

(3 - 35)

or

\[
\xi = x - y \cot \phi \\
\eta = y \cosec \phi \\
\zeta = z
\]

Performing the necessary differentiations of equation (3 - 35). The strains in the element can be represented as:
\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{zx}
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\cot\phi \csc\phi & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-\cot\phi \csc\phi & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\cot\phi \csc\phi & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial u}{\partial \xi} \\
\frac{\partial u}{\partial \eta} \\
\frac{\partial v}{\partial \xi} \\
\frac{\partial v}{\partial \eta} \\
\frac{\partial w}{\partial \xi} \\
\frac{\partial w}{\partial \eta}
\end{bmatrix}
\]

\(3 - 36\)

In matrix notation,

\[
\{\varepsilon_{xyz}\} = \left[H_c \right] \{\varepsilon_{\xi\eta\zeta}\}
\]

where \{\varepsilon_{\xi\eta\zeta}\} can be obtained by equation (3 - 31)
\[
\begin{bmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} \\
\frac{\partial w}{\partial y} \\
\frac{\partial w}{\partial z}
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \xi & \eta & \zeta & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5 \\
\alpha_6 \\
\alpha_7 \\
\alpha_8 \\
\alpha_9 \\
\alpha_{10}
\end{bmatrix}
\]

(3 - 37)

In matrix notation,

\[
\{e_{\xi\eta\zeta}\} = [B_C] \{\alpha\}
\]

The vector \(\{\alpha\}\) can be obtained by rearranging equation (3 - 33)

\[
\{\alpha_c\} = [A_c^{-1}] \{\Delta_c\}
\]

where,
\[
[A_c^{-1}] = \\
\begin{bmatrix}
\frac{2}{t} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2}{at} & 0 & 0 & \frac{2}{at} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2}{bt} & 0 & 0 & 0 & 0 & \frac{2}{bt} & 0 & 0 & 0 & 0 \\
\frac{2}{abt} & 0 & 0 & -\frac{2}{abt} & 0 & 0 & -\frac{2}{abt} & 0 & 0 & \frac{2}{abt} & 0 \\
0 & \frac{2}{t} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{2}{at} & 0 & 0 & \frac{2}{at} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{2}{bt} & 0 & 0 & 0 & 0 & \frac{2}{bt} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{abt} & 0 & 0 & -\frac{2}{abt} & 0 & 0 & -\frac{2}{abt} & 0 & 0 & \frac{2}{abt} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{a} & 0 & 0 & \frac{1}{a} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{b} & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{ab} & 0 & 0 & -\frac{1}{ab} & 0 & 0 & \frac{1}{ab} & 0 & 0 & \frac{1}{ab} \\
\end{bmatrix}
\]

Substituting for \(\{ \epsilon_{xyz} \} \) from equation (3 - 36) gives,

\[
\{ \epsilon_{xyz} \} = [H_c] [B_c] [A_c^{-1}] \{ \Delta_c \} \quad (3 - 39)
\]

where \([H_c],[B_c],[A_c^{-1}]\) are defined previously.
The elasticity matrix \([D_c]\) for the isotropic sandwich core relating the six stress components to the strain components can be defined as \([15]\).

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{zx}
\end{bmatrix}
= \begin{bmatrix}
1 & \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & \text{Sym.} \\
\frac{\nu}{1-\nu} & 1 & \frac{\nu}{1-\nu} & 1 \\
\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)} \\
0 & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)} \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)} \\
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{zx}
\end{bmatrix}
\]

(3 - 40)

In matrix notation,

\[
\{\sigma_{\text{xyz}}\} = [D_c] \{\varepsilon_{\text{xyz}}\}
\]

Applying the principle of virtual work for the core element a similar relationships as given by equation (3 - 24) can be obtained. The stiffness matrix for the core element becomes:
\[
[K_c] = [A_c^{-1}]^T \iint \iint [B_c]^T [H_c]^T [D_c] [H_c] [B_c] \, dx \, dy \, dz [A_c^{-1}]
\]

(3 - 41)

Since the matrix \([B_c]\) is in terms of \(\xi, \eta, \zeta\). A Jacobian is again used to transform the integration to the variables \(\xi, \eta, \zeta\). It is defined as:

\[
dx \, dy \, dz = |J(\xi, \eta, \zeta)| \, d\xi \, d\eta \, d\zeta
\]

(3 - 42)

where,

\[
|J(\xi, \eta, \zeta)| =
\begin{vmatrix}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \zeta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} & \frac{\partial y}{\partial \zeta} \\
\frac{\partial z}{\partial \xi} & \frac{\partial z}{\partial \eta} & \frac{\partial z}{\partial \zeta}
\end{vmatrix}
\]

From equation (3 - 35) which is equal to,

\[
|J(\xi, \eta, \zeta)| = \sin \phi
\]

(3 - 43)

Now, the stiffness matrix becomes,

\[
[K_c] = 2\sin \phi [A_c^{-1}]^T \int_0^{t/2} \int_0^{b} \int_0^{a} [B_c]^T [H_c]^T [D_c] [H_c] [B_c] \, d\xi \, d\eta \, d\zeta [A_c^{-1}]
\]

(3 - 44)

which can be reduced to,

\[
[K_c] = 2\sin \phi [A_c^{-1}]^T \, [R_c] \, [A_c^{-1}]
\]

(3 - 45)

where \([R_c]\) is the generalised stiffness matrix for the
sandwich core. The matrix $[R_c]$ is defined in the Appendix II.

(b). **Element with five degrees of freedom per node**

It has been shown by K.M. Ahmed [9] that the use of more terms in the transverse displacement will yield better results. Therefore an element having five degrees of freedom per node is developed here. The displacement vector for such an element has been taken to consist of the displacement as in equation (3 - 32), except that $\frac{\partial w}{\partial \xi}$, $\frac{\partial w}{\partial \eta}$ are taken as an additional nodal degrees of freedom. The assumed displacement field is,

$$
\begin{align*}
 u &= (\alpha_1 + \alpha_2 \xi + \alpha_3 \eta + \alpha_4 \xi \eta) \\
 v &= (\alpha_5 + \alpha_6 \xi + \alpha_7 \eta + \alpha_8 \xi \eta) \\
 w &= (\alpha_9 + \alpha_{10} \xi + \alpha_{11} \eta + \alpha_{12} \xi^2 + \alpha_{13} \xi \eta \\
 &\quad + \alpha_{14} \eta^2 + \alpha_{15} \xi^3 + \alpha_{16} \xi^2 \eta + \alpha_{17} \xi \eta^2 \\
 &\quad + \alpha_{18} \eta^3 + \alpha_{19} \xi^3 \eta + \alpha_{20} \xi \eta^3)
\end{align*}
$$

(3 - 46)

Using these functions the required matrices appearing in equation (3 - 45) are derived in the Appendix III.
3.6. Formation of the stiffness matrix for the parallelogram sandwich element.

The sandwich element was formed by combining the stiffness matrices for two subelements representing the skins and a subelement representing the core. The condition for assembly of skin and core element is that they must have equal number of degrees of freedom at their common nodes. However, the skin element developed has two degrees of freedom per node. So in order to make it compatible for assembly the 8×8 stiffness matrix for the skin element is expanded to a 12×12 and 20×20 stiffness matrix for the three and the five degrees of freedom elements respectively. The expanded stiffness matrix will include zero in the corresponding rows and columns for degrees of freedom not considered in the skin element.

In order to combine these stiffness matrices, we have to redefine the combined nodal forces and displacements. For the three degrees of freedom element, the equilibrium equations which relate the element nodal forces to the subelement nodal forces at node l may be written as:
\[f_{x\ell} = 2f_{x\ell s} + f_{z\ell c} \]

\[f_{y\ell} = 2f_{y\ell s} + f_{y\ell c} \quad (3 - 47) \]

\[f_{z\ell} = f_{z\ell c} \]

In matrix form,

\[
\begin{bmatrix}
 f_{x\ell} \\
 f_{y\ell} \\
 f_{z\ell}
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 2f_{x\ell s} \\
 2f_{y\ell s} \\
 f_{x\ell c} \\
 f_{y\ell c} \\
 f_{z\ell c}
\end{bmatrix} \quad (3 - 48)
\]

or

\[
\{ f_{\ell} \} = [L_{\ell}]^T \{ f_{\ell sc} \}
\]

As mentioned earlier the bond between facing and core is assumed perfect the compatibility equations which relate the element nodal displacement to sub-element at node \(\ell \) may be written as:

\[
\begin{bmatrix}
 u_{x \ell s} \\
 v_{x \ell s} \\
 u_{x \ell c} \\
 v_{x \ell c} \\
 w_{x \ell c}
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_{\ell} \\
 v_{\ell} \\
 w_{\ell}
\end{bmatrix} \quad (3 - 49)
\]

or

\[
\{ d_{\ell sc} \} = [L_{\ell}] \{ d_{\ell} \}
\]
where the subscript \(l \) refers to node \(l \), the subscripts \(s \) and \(c \) refer to the skin and the core subelements respectively.

Using matrices of the type \([L_\lambda]\) the similarity transform matrix \([L]\) used for forming the element stiffness matrix may be constructed as,

\[
[K] = [L]^T \begin{bmatrix}
2K_S^{(8x8)} & 0^{(8x12)} \\
\cdots & \cdots \\
0^{(12x8)} & K_c^{(12x12)} \\
\end{bmatrix} [L]^{(20x12)}
\]

(3 - 50)

where \([K]\) represents the stiffness matrix for the sandwich element (three degrees of freedom/node), \([K_S]\) and \([K_c]\) represent the stiffness matrices of the skin and core respectively.

The transform matrix \([L]\) for three degrees of freedom per node is given here as:
\[
[L] \text{T} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

(3 - 51)

The formation of the stiffness matrix for the second element (five degrees of freedom per node) follows much the same procedure as for the first element (three degrees of freedom per node). The transform matrix \([L]\) for the element with five degrees of freedom per node is given in Appendix IV.

3.7. **Formation of the stiffness matrix for the structure.**

The dominant reason why the finite element method has been accepted so quickly and applied so extensively in engineering practice is its complete generality, a
single basic computer program may be employed in the analysis of structural systems ranging from simple plane trusses to elastic solids of arbitrary geometry. The only change necessary will be the substitution of some of the appropriate element subroutines, because the procedure of formation of the stiffness matrix is general for any type of element and structure. Some basic procedure will be presented here.

If the forces acting at the \(j \)th node of the \(i \)th element are \(\{f^i_j\} \) and the displacements at the same node are \(\{d^i_j\} \) then for an element with four nodes \(j, k, \ell \) and \(m \),

\[
\{f^i\} = \{f^i_j\} \quad \{f^i_k\} \quad \{f^i_\ell\} \quad \{f^i_m\}
\]

and

\[
\{d^i\} = \{d^i_j\} \quad \{d^i_k\} \quad \{d^i_\ell\} \quad \{d^i_m\}
\]

The stiffness matrix may be written as:

\[
f^i_j = \sum_{n=1}^{N} K^i_{jn} d^i_n
\]

(3 - 54)

where \(K^i_{jm} \) is the matrix which represents the forces at node \(j \) due to unit deformations at node \(m \).

Now considering the entire structure with \(M \) nodes and \(L \) elements. It is seen that for the \(j \)th node, the vector of nodal displacements in global co-ordinates,
r is related to the applied nodal load R_j by the stiffness matrix \mathbf{K} as:

$$R_j = \sum_{n=1}^{M} K_{jn} r_n$$ \hspace{1cm} (3 - 55)

Equilibrium of the j^{th} node requires that the summation of the element nodal loads for the element nodes which coincide with node j of the structure be equal to the load applied at the j^{th} node or

$$R_j = \sum_{\ell=1}^{L} f_{j}^{\ell}$$ \hspace{1cm} (3 - 56)

or

$$R_j = \sum_{\ell=1}^{L} \sum_{n=1}^{M} K_{jn}^{\ell} d_{n}^{\ell}$$ \hspace{1cm} (3 - 57)

As the displacements of node j are common to adjacent elements, therefore,

$$r_n = d_{n}^{\ell}$$ \hspace{1cm} (3 - 58)

Thus

$$R_j = \sum_{\ell=1}^{L} \sum_{n=1}^{M} K_{jn}^{\ell} r_n$$ \hspace{1cm} (3 - 59)

Comparing this expression with equation (3 - 55), the following relationships can be obtained,

$$\mathbf{K}_{jn} = \sum_{\ell=1}^{L} K_{jn}^{\ell}$$ \hspace{1cm} (3 - 60)

The stiffness matrix \mathbf{K} for the complete structure are built up simply by adding the stiffness of the
elements adjacent to the node in question, using equation (3 - 60).

3.8. Details for joining skin element to core element.

In most theories of sandwich plate analysis two assumptions are made which affect the distribution of stresses. The first assumption is that the transverse shear stresses of the face plates are negligible. The second is that the flexural rigidity of the sandwich is due entirely to the coupled plane stress rigidities of the skins. As a result of these assumptions, the stress condition of the core and faces would be violated. In order to improve the representation of these sandwich elements, some modifications are necessary. As can be seen later, each modification will get a physical meaning in the core-face bond.

Five possible representation of the core-face bond are discussed here. A numerical study of these five cases will be made in Chapter IV.

(1) Skin subelement attached to the nodes of the unmodified core subelement: The shear stress condition at face-core bond would be violated in this case.

(2) Skin subelement attached to the nodes of the core subelement which is modified by increasing the thickness: In this case, the shear stress at face-core
bond is improved, but the sandwich plate becomes stiffer, because it can carry more shear stress by the thickened core and the shear deflection will also be reduced.

(3) Skin subelement attached to the nodes which are extensions of the core subelement: The shear stress will be carried by the original core. It does not provide continuity through the thickness of the sandwich plate. The flexural rigidity and the shear rigidity of the sandwich plate will be considered separately.

(4) Skin subelement attached to the nodes of the thickened core subelement whose shear modulus has been reduced: This would improve the results of case 2. J. A. Maple [12] has suggested that the shear modulus of core should be modified for the thickened core. In other words, the shear rigidity will be suitably adjusted.

(5) This case is similar to case 4, K. M. Ahmad [9] has suggested a different modification for the shear modulus, he assumed that the shear stress in the core will vary parabolically.

The different values of shear moduli and flexural rigidities are presented in table (1). Comparison of the above modifications with an "exact" solution has been made for two different boundary conditions of the sandwich plate (as presented in table (6)). The deflection at the
centre of the plate for case (4) is found to be the closest to the "exact" solution and hence it can be concluded that of the five approaches cited above this arrangement yields the best results.

3.9. The consistent load vector.

The consistent load vector is obtained by calculating the virtual work done by the applied loads \(q_u(\xi, \eta), q_v(\xi, \eta) \) and \(q_w(\xi, \eta) \) in the \(u, v \) and \(w \) directions respectively.

The present analysis is made only for a lateral uniformly distributed load of intensity \(q_o \) and with no loads in the \(u \) and \(v \) directions; hence the work done in these directions is zero.

For a set of virtual nodal displacements \(\{\bar{\Delta}\} \), the work done by the equivalent nodal forces is,

\[
W_u = \{\bar{\Delta}\}^T [S_o] \tag{3 - 61}
\]

The work done by the uniform load is,

\[
W_u = \iint q_o \bar{W}^T \, dx \, dy = \sin \phi q_o \int_a^b \int_b^a \bar{W}(\xi, \eta)^T \, d\xi \, d\eta \tag{3 - 62}
\]

Equating work done by the equivalent nodal forces to that done by the uniform load, we get
\[[S_o] = \sin \phi q_o \int_0^b \int_0^a [A^{-1}]^T [L]^T d\xi dn \quad (3 - 63) \]

where \([A^{-1}]^T\) and \([L]^T\) will be defined in Appendix V.

Performing the necessary integration and matrix multiplications for equation (3 - 63), the load vector will be obtained as follows:

Elements with three degrees of freedom per node,

\[[S_o] = \sin \phi q_o ab \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \}^T \quad (3 - 64) \]

Elements with five degrees of freedom per node,

\[[S_o] = \sin \phi q_o ab \{ \frac{1}{4}, \frac{a}{24}, \frac{b}{24}, \frac{1}{4}, -\frac{a}{24}, -\frac{b}{24}, \frac{1}{4}, \frac{a}{24}, -\frac{b}{24}, \frac{1}{4}, -\frac{a}{24}, -\frac{b}{24} \}^T \quad (3 - 65) \]

It is seen that in the first element, the total distributed loading on the element is lumped into concentrated lateral forces acting at the nodal points, but in the second element, the distributed loading is represented by concentrated lateral forces as well as concentrated couples at the nodal points. In other words, the load representation in the second element is much better than the first one. It is one of the factors which will influence the accuracy of a finite element approximation.
TABLE 1
MODIFICATIONS OF FLEXURAL AND SHEARING RIGIDITIES FOR SANDWICH ELEMENT

<table>
<thead>
<tr>
<th>Case For</th>
<th>Flexural Rigidity D_s</th>
<th>Shearing Rigidity S_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(E_s t_s t_c^2/(2(1-\nu_s^2)))</td>
<td>(G_c t_c)</td>
</tr>
<tr>
<td>(2)</td>
<td>(E_s t_s (t_c + t_s)^2/(2(1-\nu_s^2)))</td>
<td>(G_c (t_c + t_s))</td>
</tr>
<tr>
<td>(3)</td>
<td>(E_s t_s (t_c + t_s)^2/(2(1-\nu_s^2)))</td>
<td>(G_c t_c ^{xx})</td>
</tr>
<tr>
<td>(4)</td>
<td>(E_s t_s (t_c + t_s)^2/(2(1-\nu_s^2)))</td>
<td>(G_c ^{xx} (t_c + t_s))</td>
</tr>
<tr>
<td>(5)</td>
<td>(E_s t_s (t_s + t_c)^2/(2(1-\nu_s^2)))</td>
<td>(G_c ^{xx} t_c)</td>
</tr>
</tbody>
</table>

G'_c = G_c (t_c / t_c + t_s)
G''_c = G_c 5/6

Although the flexural rigidity D_s and the shearing rigidity S_c appear to be the same for both cases 3 and 4, it should be noted that the stiffness matrix depends not only on the flexural and shearing rigidities but as a function of the thickness resisting shear deformation. Since in case 3 the thickness assumed capable of resisting shear deformation is \(t_c \) and the corresponding thickness assumed capable of resisting shear stresses is \((t_c + t_s) \) in case 4, therefore it is reasonable to expect that results obtained from the two cases are different as shown in Table 6.
3.10. Rotation of co-ordinates

The boundary conditions for skewed plates would be applied in two different ways. The first way is to express the boundary conditions in terms of derivatives of the global co-ordinate system. This is done by the use of Lagrangian Multiplier which are unknowns attached to the additional equations. These additional equations, called constraint equations for all points lying on the boundary can be solved by the minimization of potential energy subject to the constraints. The disadvantage of this approach is that the stiffness matrix will no longer be banded after we provide the constraint equations to the system, so that the whole stiffness matrix has to be stored in the computer memory.

An alternative procedure is to rotate the co-ordinate system for those points lying on the skewed boundaries so that the generalized displacements become normal and tangential components to the skew boundary. The boundary condition can then be applied directly by eliminating those displacements from the equation of the problem.

Referring again to Fig. (3a), it can be seen that the component of displacement parallel to edge is,
\[v_p = uc \cos \phi + vs \sin \phi \quad (3 - 66) \]

The component normal to edge is

\[u_p = us \sin \phi - vc \cos \phi \quad (3 - 67) \]

The transformation matrix relating the rectangular co-ordinate system and orthogonal co-ordinate system is of the form,

\[
\begin{bmatrix}
u \\
v \\
w \\
\frac{\partial w}{\partial \xi} \\
\frac{\partial w}{\partial \eta}
\end{bmatrix}
= \begin{bmatrix}
sin \phi & \cos \phi & 0 & 0 & 0 \\
-\cos \phi & \sin \phi & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \sin \phi & \cos \phi \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
u_p \\
v_p \\
w_p \\
\frac{\partial w_p}{\partial \xi} \\
\frac{\partial w_p}{\partial \eta}
\end{bmatrix}
\quad (3 - 68a)
\]

for three degrees of freedom element.

and,

\[
\begin{bmatrix}
u \\
v \\
w \\
\frac{\partial w}{\partial \xi} \\
\frac{\partial w}{\partial \eta}
\end{bmatrix}
= \begin{bmatrix}
sin \phi & \cos \phi & 0 & 0 & 0 \\
-\cos \phi & \sin \phi & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \sin \phi & \cos \phi \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
u_p \\
v_p \\
w_p \\
\frac{\partial w_p}{\partial \xi} \\
\frac{\partial w_p}{\partial \eta}
\end{bmatrix}
\quad (3 - 68b)
\]

for five degrees of freedom element.

or in general terms,

\[
\{ \bar{d} \} = [Q] \{ \bar{\tilde{d}} \}
\quad (3 - 69)\]
A similar expression may be written for the forces at the nodes of the boundaries in the form,

\[\{f\} = [Q] \{\ddot{f}\} \quad (3 - 70) \]

where \(\{\ddot{f}\}\) and \(\{\ddot{d}\}\) are the generalized forces and displacements respectively in an orthogonal co-ordinate system.

The general stiffness equation for structural systems is given as,

\[\{f\} = [K] \{d\} \quad (3 - 71) \]

substituting from equations (3 - 69) and (3 - 70)

\[[Q] \{\ddot{f}\} = [K] [Q] \{\ddot{d}\} \]

or

\[\{\ddot{f}\} = [Q]^{-1} [K] [Q] \{\ddot{d}\} \quad (3 - 72) \]

The stiffness matrix in orthogonal co-ordinate system become,

\[[\tilde{K}] = [Q]^{-T} [K] [Q] \quad (3 - 73) \]

It should be noted that because of the particular properties of the angular transformation matrix \([Q]\), the inverse \([Q]^{-1}\) is also equal to the transpose \([Q]^{T}\). This property allows the general stiffness matrix of equation (3 - 73) to be obtained without the necessity of inverting matrix \([Q]\).

The advantages of this approach is that the
transformation matrix for the complete structure need not be obtained. The co-ordinate system for those points lying on the skew boundary are rotated before the elements are assembled, so that the stiffness matrix for the complete structure retains its banded form, and the computer storage requirement are considerably reduced.

3.11. Boundary conditions.

As mentioned earlier, the assumed displacement function must represent rigid body motion. Clearly, it is impossible to solve this system without substitution of a minimum number of prescribed displacements of prevent rigid body movements of the structure, because the displacements cannot be uniquely determined by the forces in such a situation. The application of boundary conditions for skew sandwich plates considering it as a displacement model is slightly different from those derived for the classical plate theory. It is necessary to satisfy the kinematic boundary conditions only. This is by virtue of the principle of minimum potential energy. For example if at a particular point the force is known to be zero then the corresponding displacement must be free. This is the guiding principle in the derivation of boundary conditions in the finite
element method.

For the most common type of clamped edge support assumed in classical plate theory [4], the boundary conditions in terms of deflections, can be expressed in the partial deflections W_D and W_S. If the bending stiffness of the faces themselves is neglected, the first derivative of W_S will no longer vanish at the edges. It is assumed that at the edge, the face may undergo a discontinuity of its slope.

With regard to the finite element analysis presented here, it should be observed that boundary conditions never apply to the partial deflections themselves but only to their sum $W_T(W_T = W_D + W_S)$ or to their derivatives. Therefore, the first derivative of W_T may or may not be zero at the edges. These two different assumptions will be investigated in present work. The first assumption will be referred to as "The fully clamped edge" while the second as "The reduced clamped edge". In reality the stress condition at and near the clamped edge is rather complicated because of the local effect, and the actual condition will fall between these two bounds.

Various types of edge support commonly assumed in sandwich construction will be mentioned here, and the
corresponding displacement boundary conditions are also given:

(a) The boundary conditions for the clamped sandwich plate are:

(i) no deflection normal to the plate, i.e. parallel to the z-axis;

(ii) no displacement of the face plates along the lines of support;

(iii) no displacement of the face plates normal the edge.

The imposed displacement boundary conditions are:

(1) For fully clamped edge

\[w = u_p = v_p = w_\xi = w_\eta = 0 \] along \(\xi \) direction

\[w = u_p = v_p = w_\xi = w_\eta = 0 \] along \(\eta \) direction

(2) For reduced clamped edge

\[w = u_p = v_p = w_\xi = 0 \] along \(\xi \) direction

\[w = u_p = v_p = w_\eta = 0 \] along \(\eta \) direction

(b) The boundary conditions for a simply-supported panel are:

(i) no deflection normal to the plate;

(ii) no bending moments about the lines of support;
(iii) no displacement of the face plates along the lines of support.

The imposed displacement boundary conditions are:

\[w = u_p = w_\xi = 0 \quad \text{along } \xi \text{ direction} \]
\[w = v_p = w_\eta = 0 \quad \text{along } \eta \text{ direction} \]

(c) The boundary conditions for the free edge are:
 (i) no bending moment about the edge;
 (ii) no twisting moment along the edge;
 (iii) no shearing force at the edge.

This means that no displacement boundary conditions are prescribed along the edges.

3.12. **Solution of equilibrium equation.**

One of the important aspects of the finite element method is the choice of a suitable method for solving the simultaneous equations which for practical problems may contain several hundred equations. The choice of technique depends upon the size of problem envisaged and upon the type of computer available.

There are three distinct steps in the solution of the stiffness system of equations. First, the coefficients in the stiffness matrix are evaluated for each element and some technique is used to store the structure stiffness matrix in the computer. Second,
the known displacement boundary conditions are imposed. Finally, the equations are solved for the unknown displacements by any one of several methods. These three steps are illustrated in table (2).

Storage of an entire matrix requires \(N^2 \) spaces, where \(N \) is the number of equations. Thus, even with the very large computers available today the user is limited to solving approximately two hundred equations without using the tape or disk storage unit [17].

Fortunately the matrices encountered in structural engineering problems have some special characteristic which would allow programming to effect an efficient and economic usage of storage. For the problems examined herein, the stiffness matrix is symmetrical and banded. Advantage is taken of this fact and only the coefficients in the upper or lower band-width need be stored in either a rectangular or column array. These methods of storage lead not only to a saving of space in the computer, but also to a reduction in the time required for solutions as many multiplications, additions, and subtractions of zero quantities were eliminated.

The bandwidth of the stiffness matrix for the structure is influenced by the number of degrees
of freedom of each element, and by the nodal point numbering on the model [20]. It is, of course, advantageous to keep the band as narrow as possible. This is obtained by a numbering system whereby the differences between nodal point numbers of adjacent points are kept as low as possible.

In forming the structure stiffness matrix two different methods are commonly used. In one, the matrix is partitioned and only the terms corresponding to the actual degrees of freedom are used to solve for the unknown displacement. That is, the terms related to the known restraints are not included in the stiffness matrix. The number of equations to be solved is equal to the total number of degrees of freedom minus the number of imposed restraints.

The other method forms the structure stiffness matrix without regard to the known boundary conditions. The boundary conditions are imposed in such way when a particular displacement is known the corresponding row and column is zeroed and unity is placed in the leading diagonal. The corresponding term in load vector is suitably modified to account for known displacement. In this case, the number of equations to be solved is equal to the total number of degrees of
freedom of structure. However, the number of restraints in many problems such as plates and shells is small in comparison to the total number of degrees of freedom. Thus only a few extra equations are manipulated. Also, it can avoid reorganization of computer storage and the band size is not affected.

The final step in the solution of the system of equations is to find unknown displacements, many standard rountines are now available to solve large systems of equations. Two kinds of methods of solution are frequently used for the solution of the simultaneous equations: (a) Indirect method, such as Gauss-Seidel method, Successive relaxation method, in which a successive approximation technique is used to converge on the true solution, (b) Direct methods, such as Gaussian elimination method, Cholesky method, in which an exact solution is sought. As mentioned in References [18] and [19], no method has been found that is faster and more accurate than Gaussian elimination for system in which the matrix of coefficients is dense. The same conclusion will hold for a dense system banded along the main diagonal [17]. Most of the problems investigated in this thesis were solved by Gaussian elimination. Several of these same problems were also solved using
the Cholesky method, and the results of both method were identical to five or more places of accuracy.
FORMATION OF STIFFNESS MATRIX FOR ELEMENTS

THREE DEGREES OF FREEDOM PER NODE

FIVE DEGREES OF FREEDOM PER NODE

FORM STRUCTURE STIFFNESS MATRIX

STORE THE WHOLE SQUARE MATRIX

ADVANTAGE TAKEN OF SYMMETRY AND BAND FORM

ADD CONSTRAINT EQUATIONS

IMPOSE DISPLACEMENT BOUNDARY CONDITION

FORM STIFFNESS MATRIX TAKING INTO ACCOUNT THE DISPLACEMENT B.C.

SOLVE FOR THE UNKNOWN DISPLACEMENT

MATRIX INVERSION

DIRECT METHODS

INDIRECT METHODS

GAUSSIAN ELIMINATION
(No zero term on diagonal)

CHOLESKI METHOD
(Nonsingular, positive definite and symmetrical)

GAUSS-SEIDEL

SUCCESSIVE RELAXATION

STRESS

FORMATION AND SOLUTION OF STIFFNESS MATRIX

TABLE 2
CHAPTER IV

NUMERICAL RESULTS AND DISCUSSIONS

4.1 Introduction

The principle objective of this study is to develop two elements for the analysis of skew and rectangular sandwich plates under various boundary conditions. The aim of the numerical results presented herein is to provide information which may lead to better understanding of the static behavior of sandwich construction. The advantages and disadvantages of the two elements are also discussed based on the numerical results obtained.

The parameters that were varied in this study include skin thickness, shear stiffness, flexural rigidity, aspect ratio, Poisson's ratio and skew angles. The usefulness of this type of investigation is to indicate which parameters are important and hence a reasonable assumption can be deduced.

The intention of the present work is not to provide a complete record of the variation of deflection and stresses of sandwich plates due to the large number of parameters. The solutions presented are of
limited number and the conclusions drawn therefrom are generally of qualitative nature. A more complete study of the effects of the various parameters involved would require a greater number of results than are included here.

Most of the result obtained in this investigation for the behavior of sandwich plates make use of the first element, (i.e. a skew element with three degrees of freedom per node). The reason is that this less precise element seems to produce results which are fairly comparable with those obtained by the more precise element. Furthermore the more precise element takes relatively much more computer storage and time. From the economical point of view, the first element appears to be more useful for all practical engineering applications.

Many approaches for modifications of the core-face bond were presented in the previous chapter. Accordingly all computations were carried out following these approaches as shown in cases 1, 2, 3, 4 and 5 (Table 6). However case 4 following Maple's modification [12] was found to be the closest, and so it was used to present the results hereafter. It should also be noted that all results presented here were computed using a
4.2 Convergence and accuracy

The evaluation of a particular finite element must be based on consideration of all the factors that influence the results obtained with that element. The two main aspects to be considered are the accuracy of the final answers and the time and labour involved in obtaining the results. It is important to note that the basic need is to obtain answers accurate to as many significant figures as may be required in the applications of the results. Based on the previous work on finite element study [26], the error in the results obtained using a finite element approximation may be conveniently separated into two types, the discretization error and the rounding off error. The rounding off error is the error associated with the accuracy with which the numbers are manipulated in the computations. The discretization error which occurs irrespective of the accuracy of the numerical calculations, is a consequence of approximating a continuum which has an infinite number of degrees of freedom with a model having a finite number of degrees of freedom.
The discretization error may approach zero as a limit when the element size tends to zero. In other words the approximate solution is said to converge to the exact solution. The convergence proof is based on the theorem of minimum potential energy. For further details see ref. [30].

In this section, the deflection of the centre of the plates is used as a measure of the quality of the approximation for each type of element. Table (7) through (9) present the results of the convergence study with various boundary conditions. It can be observed that the convergence of the solution in each case is quite satisfactory. The maximum deviation is only 4% with a 200 percent increase in the number of elements. The only exceptional case is using the first element (three degrees of freedom per node) to analyse very hard core sandwich material which is out of the limit of the traditional sandwich material specifications. This will be discussed in more details in section 4.4.

For the case of skew shape sandwich plate analysis, the rate of convergence is still quite fast for both elements. Results given in Table (5) shows
the convergence character of these two element with various skew angles. It has been found that the results change very little with even a 150 percent increase in the number of elements. For high skew angles the convergence of the solutions are as good as low skew angles for both elements.

4.3 Comparisons of results

The purpose of these comparisons is twofold. The first purpose is to investigate the accuracy of the finite elements used in this work when it is applied to skew or rectangular shape sandwich plates, and the second purpose is to illustrate the relative merits in using different elements for different boundary conditions. Establishing the accuracy of this method is sometimes difficult, because no exact solutions exist for sandwich plates with skew or other irregular plate boundaries.

(a) Rectangular Sandwich Plates

In order to assess the accuracy of this method some values are obtained for rectangular sandwich plate with three different boundary conditions, clamped, simply supported and cantilevered. Table (7) shows the central deflection of a clamped sandwich plate subjected to a
uniform load. Two sets of data are discussed, one is for soft core material (Problem 1) and the other is for hard core material (Problem 2). Results obtained in first problem show good agreement with Taylor [22], but it is not so close with results obtained by March [24] with a maximum deviation of up to 11%, since his results are based upon crude approximations [2].

For the second problem (hard core sandwich material) the results obtained by the second element (five degrees of freedom per node) show close agreement with a difference of only 2.5% when compared with existing values [25] and [10]. But the agreement is not close with the first element (three degrees of freedom per node). This discrepancy can be explained by the fact that the first element which use less terms in the lateral displacement function does not achieve a reasonable representation of the shear properties of the core.

In the case of simply supported rectangular sandwich plates under uniform loads, the results from Yen [23] and Plantema [2] are compared to those computed by the present two types of elements in Table (8). It shows an excellent agreement between the present results and the existing values. The maximum discrepancy in these comparisons does not exceed 1%. Table (9) shows
the maximum deflection of a cantilevered sandwich plate subjected to a concentrated load at the free end. The existing values are solved by the sandwich beam equation of Planter [2] as well as the sandwich plate equation of Reissner [21]. The maximum discrepancy in these comparisons with the first and second element does not exceed 3% and 2% respectively.

(b) Skewed Sandwich Plates

Relatively little data exist on skewed sandwich plates. Therefore comparison can only made to that of Kennedy [4] whose analysis is based on Fourier series for the deflection of plate and to that of Monforton+ who used the finite element analysis.

Fig. (4a) and Fig. (4b) gives a graphical comparison between the present results and other existing

+ Since carrying out this work, it has been found that the similar research work is being carried out by Monforton [29]. In his work, two finite element formulations are presented. In the first element (the L-H approach), the membrane displacements of the faces are represented in terms of bi-linear functions and the transverse displacement is represented in terms of bi-cubic functions. In the second element (the H-H approach), all displacements are represented in terms of bi-cubic functions. The writer has been able to obtain two sets of unpublished data by private communications. The comparison has made the present results more reliable.
values for the central deflection of a clamped skew sandwich plate under uniform loading. It shows that Monforton's results are in close agreement with results obtained by the second element (Five degrees of freedom per node with fully clamped edge) while Kennedy's results shows good agreement with the value obtained by first element (Three degrees of freedom per node) for soft core sandwich material. The average difference of the results obtained from the first element and the second element (first assumption and second assumption), when compared with Kennedy's are 2%, 7% and 2.5% respectively and with Monforton's results are 5%, 1.5% and 4.5% respectively. For hard core sandwich material, Monforton's results are still in close agreement with value obtained by the second element (with fully clamped edge) in the present investigation. The Maximum discrepancy in these values does not exceed 4%.

In order to provide further comparisons of results between the two finite element solutions, various properties of sandwich plate material were chosen for investigation. Table (3) and (4) gives the centre deflection and moment of a clamped sandwich plate with various skew angles, aspect ratios and core rigidities.
It is worth noting that finite element solutions are in general smaller than the exact values if such exact values can be determined. This can be explained by the fact that the minimum total potential energy principle will always underestimate the true strain energy, thus resulting in a stiffer model than the actual structure.

The examination of the data given in Table (3), (4) and (5), shows that the results for skew sandwich plate obtained by first element (three degrees of freedom per node) and second element (five degrees of freedom per node with reduced clamped edge) are closer to Kennedy's results than those obtained by using the second element (five degrees of freedom per node with fully clamped edge). This is opposite to that shown for the rectangular sandwich plates. A more accurate conclusion is that the behavior of the elements depend on how the boundary condition of clamped edge is defined. It is noted that there is a difference in boundary conditions proposed by Kennedy and the present study. Kennedy separated the total deflection into two parts as bending deflection (w_b) and shear deflection (w_s). In addition to forcing the total deflection ($w_t = w_b + w_s$) equal to zero, he also let the first derivative of w_b equal to zero along the boundaries.
These boundary conditions are similar to the boundary conditions we are applying in using the first element (three degrees of freedom per node) and second element (five degrees of freedom per node with reduced clamped edge). But in our second element (five degrees of freedom per node with fully clamped edge), we set the first derivative of $w_T (w_T = w_b + w_s)$ to zero along the boundaries. This assumption is based on Monforton's definition of clamped edge support, which is different from previous proposal. This implies a more restrained clamped edge condition, and therefore yields a smaller central deflection value.

4.4 Effect of varying the shear rigidity of the core

In traditional sandwich plate analysis, the core is considered to be very soft as compared to that of the face layers and the core stresses parallel to the face are negligible. This assumption has been used in many previous analysis and are known to represent actual sandwich construction very well. Possible sources of error naturally arise from this assumption when the core material becomes rather stiff. It is worthy to ascertain the range of applicability of the present finite element analysis in terms of the ratio of core stiffness to the modulus of elasticity of the skin. In
other words, the limitation of the present sandwich elements analysis for various core and skin rigidities.

In order to investigate this problem, the influence of the shear rigidity of the core on the deflection and stresses of the sandwich plate has to be determined. Table (10) to (13) and Fig. (11) to (16) show the effect of varying shear rigidity of the core on the deflection and moment in various boundary conditions. From the results obtained in these tables and figures, it is observed that when the shear rigidity is less than 10000 psi, the shear flexibility of the core has significant effect in increasing the centre deflection. However, when the shear rigidity is greater than 10000 psi, the additional deflection due to shear is negligible. It means that when the rigidity of the core is much greater than 10000 psi, a general composite plate theory should be used. Data shown in Tables (12) and (13) and Fig. (13) to (16) give a clear picture of showing the influence of the shear rigidity on the moment, when the shear modulus is greater than 10000 psi, the skin resist less and less of the bending moment and the core is resisting more and more moment. This implies that the traditional assumption of
simplified sandwich plate theory "The bending is resisted entirely by the skin." is not valid after this limit. Fig. (18) and (19) are two typical plots of the maximum centre moment and edge moment respectively. These figures show that when shear rigidity of the core is greater than 10000 psi., the moment resisted by the skins are markedly reduced. It can be deduced that a composite plate theory analysis will get a more reasonable result when shear modulus of the core is appreciably greater than \(10^4\) psi..

The shear rigidity of the sandwich core does not only influence the accuracy of the results for deflection and moment, but also influences the convergence characteristics of the sandwich element. It is interesting to observe the effect which shear rigidity has upon the property of convergence. Some idea of the effects of shear rigidity on the rate of convergence can be obtained from tables (16) to (19). These elements exhibit better convergence characteristics in flexible cores than in stiffer ones. For example, from the central deflection values of a clamped sandwich plate with a skew angle of 45° degrees as given in Table (18), we see that for a shear modulus of 500 psi., the element yields a constant value in 8x8 grids. But it gives 2
percents difference from the "best" solution in the same mesh size when the shear modulus is increased to 5000 psi.

4.5 Effect of core thickness/skin thickness ratio

This method has been carried out based on the traditional sandwich plate theory. One of the assumptions of the traditional sandwich plate theory is that "The flexural rigidity of the faces about their own middle surface is negligible", i.e. the strain in the faces is constant across the depth of the face. Hence the transverse shear of the faces is equal to zero and all shear force are resisted by the core. Based on this assumption, we are using a two-dimensional plane stress element to represent the faces. This assumption is valid only when the thickness of the faces is small in comparison with the thickness of the core. Such two dimensional representation could lead to large errors when the thickness of the faces becomes large in comparison with the thickness of the core.

In order to determine the validity of the elements developed in the last chapter, the same elements are applied to the solution of a rectangular sandwich plate with simply supported boundaries. The variation of central deflection
and moment with the thickness of the skin are shown in Table (20). From this table, it can be seen that when the thickness of the skin is less than 0.05 in., the thickness of the skin has the effect of decreasing the deflection. However, when the thickness of the skin is greater than 0.05 in., the influence of the thickness of skin in reducing deflection is rather insignificant. This can be explained by the fact that if the facings are relatively thick, the shear load will be carried to a considerable extent by the facings, the additional deflection due to the shear of the sandwich core is negligible. Therefore, the conclusion is that plane stress element should not be used to represent the faces when they are relatively thick in comparison with the thickness of the core.

Fig. (17) is a typical plot of the deflection against the thickness, the ratio of thickness \(t_s/t_c \) is marked in the corresponding positions, the value suggested by ref. [9] is drawn on this figure. It seems that the limit suggested by ref. [9] is reasonable.

4.6 Effect of Poisson's ratio

It is interesting to observe the effect which Poisson's ratio has upon the moments or stresses. In Fig. (23) and (24) the Poisson's ratio * was varied in

* In present study, the face and core materials have the same Poisson's ratios.
order to establish its effect on the centre and edge moment with different skew angles for clamped sandwich plates. Similar results are given in Fig. (25) for the simply supported sandwich plate. It has been found that the influence of Poisson’s ratio on the central moment are the same for both boundary conditions. Fig. (23) and (24) show that moments of sandwich plates vary linearly with Poisson's ratio for the uniformly loading condition, so that the moments for any given Poisson's ratio can be evaluated directly.

From Fig. (23) it is observed that the variation of Poisson's ratio from 0. to 0.3 has got more or less the same effect on both moments M_x and M_y for low skew angles and when the skew angle increases, it has got more significant effect on M_x than on M_y. For example, when the skew angle is zero, the variation of Poisson's ratio in the above mentioned range increases both M_x and M_y to an extent of about 34% and when the skew angle is 60°, its effect on M_x is more significant than on M_y as can be seen from an increase in the value of M_x to an extent of more than 60% whereas the increase for M_y is only 18%. However, the effect of Poisson's ratio is not significant on the values of edge moments as can be seen for a skew angle of zero, the change in
edge moment is only 2% (Fig(24)).

Therefore, it can be concluded that Poisson's ratio is an important factor in stress analysis and without due consideration, could lead to severe underestimation of the moments and stresses.

4.7 Effect of aspect ratio

Kennedy [4] studied the effect of the aspect ratio upon the moments for clamped skew sandwich panels, and found that both the maximum centre and edge moment decrease with increase in the aspect ratio. Same effects can also be found in other boundary conditions such as simply supported or cantilevered sandwich skewed plates. The results of deflection and moment with aspect ratio 1, 1.5 and 2.0 are presented for three boundary conditions in Fig. (20) to (22) and Table (14) to (15). It is found that they decrease with increase in aspect ratio in various boundary conditions. The central moment in x direction appears to decrease more rapidly than the moment in y direction in clamped and simply supported boundary conditions, but the effect of the aspect ratio upon the twisting moment is insignificant in both cases.

4.8 Effect of skew angles

Some idea of the effects of skew upon the
deflection can be obtained from this investigation. Fig. (5) to (7) show the manner in which the central deflection of the plate varies for different skew angles with the clamped boundary conditions. Fig. (8) to (10) show the corresponding effects for the simply supported skew sandwich plate.

Under a uniformly distributed load the central deflection decreases as the angle of skew increases. The rate of decrease being very nearly constant for high skew angles. For cores with a high shearing rigidity, the tendency for the centre deflection to decrease with an increase in the skew angle is greatly reduced.

The variation of plate moment with the angle of skew is shown in Fig. (13) and (14) for the clamped and simply supported sandwich skew plates respectively. From the figures, it can be observed that both the maximum centre moment and edge moment are considerably reduced with an increase in the angle of skew. Thus, the effect of skew upon the moment appears to be independent of the rigidity of the core.

The analysis of cantilever skew sandwich plates presents more difficulty than that of rectangular
sandwich cantilever plates due in part to the erratic behavior of the stresses between the fixed and trailing edges. For example, it is possible for unbounded stresses to occur at an obtuse corner [28]. A graded mesh was therefore suggested in calculating the deflection and stresses for skew shape cantilevered plates[28]. Although this could easily be accommodated it has not been attempted here. Table (10) and (11) show the effect of skew upon the deflection for a cantilevered sandwich plate subjected to a uniformly distributed load. It can be seen that the deflection at point 1 (see Fig. (26)) decrease and the deflection at point 2 increase up to 15° degrees skew and decrease again as the skew angle increases. This variation of corner deflections with skew angle is similar to the results obtained for a homogeneous cantilevered skew plate by Dawe [28].

For skew sandwich cantilevered plate under uniformly distributed loads, the variation of the maximum edge moment with various angles of skew and core rigidities are shown in Table (12) and (13). It can be seen from these tables that the maximum edge moment always occurs at the obtuse corner. It is
interesting to note that the value of the maximum edge moment increases to a maximum value for an angle of skew approaching 30° and then decreases again as the skew angle increases further.

4.9 Stress

The displacement models which are used in this investigation lead to continuous displacements in u, v, and w. Since the elements used in this investigation do not possess the property of continuous slope along the boundary, therefore discontinuities in moment value would also exist from one element boundary to another at a particular node point. It is reasonable to assume that the results will not give an accurate representation of the stresses at all points. From the data obtained in this investigation, it was found that the change in moment at the boundaries of the elements is insignificant for the rectangular shaped element. The change in moment for skewed shape element is larger and increases with sharper skew angles. It further implies that the present elements are more powerful to solve the rectangular shaped plate than the skew shaped plate, but further conclusive information cannot be drawn concerning this problem, due to the
absence of reliable analytical data.

In obtaining a value for the moment at a node point, Zienkiewicz [6] states that an average of the stress in adjacent element at internal nodes will closely approximate the true stresses. However this process will not lead to an exact representation of stresses on the boundaries. In this investigation, this averaging method was used to calculate the moment. It has been found that good agreement is obtained for the central moment when compared with existing results [4], but the maximum difference of edge moments is up to 30%. This further implies, that averaging for stress is not effective along boundaries to get good approximations. Refering to ref. [6], a weighting of averages near the faces of the structure can further be used for refinement, but it seems preferable, simply to use a finer mesh subdivision at the boundaries.
TABLE 3

Comparison of the Centre Deflection of Four Sides Clamped Sandwich Plate with Various Skew Angles, Aspect Ratios and Core Rigidities

\[
E_f = 10^7 \text{ psi.} \quad \nu = 0.32 \quad C = 1'' \quad a = 40'' \quad t_s = 0.025''
\]

\[A_s = a/b = \text{Aspect ratio} \quad G_c = \text{Shear modulus of core} \quad q = \text{Intensity of load}\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(G_c)</th>
<th>(A_s)</th>
<th>3 degrees of freedom/node (8x8)</th>
<th>5 degrees of freedom/node (8x8)</th>
<th>Kennedy [4]</th>
<th>Monforton [29]†</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15^\circ)</td>
<td>500.</td>
<td>1.0</td>
<td>0.2463''</td>
<td>0.2452''</td>
<td>0.2301''</td>
<td>0.2433''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.1442''</td>
<td>0.1435''</td>
<td>0.1346''</td>
<td>0.1425''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0894''</td>
<td>0.0889''</td>
<td>0.0834''</td>
<td>0.0884''</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>0.0290''</td>
<td>0.0302''</td>
<td>0.0295''</td>
<td>0.0302''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0133''</td>
<td>0.0136''</td>
<td>0.0130''</td>
<td>0.0134''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0068''</td>
<td>0.0069''</td>
<td>0.0065''</td>
<td>0.0068''</td>
</tr>
<tr>
<td></td>
<td>(30^\circ)</td>
<td>500.</td>
<td>1.0</td>
<td>0.2026''</td>
<td>0.2020''</td>
<td>0.1897''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.1184''</td>
<td>0.1178''</td>
<td>0.1106''</td>
<td>0.1172''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0727''</td>
<td>0.0724''</td>
<td>0.0679''</td>
<td>0.0720''</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>0.0215''</td>
<td>0.0223''</td>
<td>0.0217''</td>
<td>0.0223''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0100''</td>
<td>0.0102''</td>
<td>0.0097''</td>
<td>0.0101''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0052''</td>
<td>0.0052''</td>
<td>0.0049''</td>
<td>0.0051''</td>
</tr>
<tr>
<td></td>
<td>(45^\circ)</td>
<td>500.</td>
<td>1.0</td>
<td>0.1406''</td>
<td>0.1406''</td>
<td>0.1324''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0816''</td>
<td>0.0814''</td>
<td>0.0764''</td>
<td>0.0810''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0494''</td>
<td>0.0492''</td>
<td>0.0461''</td>
<td>0.0489''</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>0.0125''</td>
<td>0.0129''</td>
<td>0.0126''</td>
<td>0.0130''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0060''</td>
<td>0.0061''</td>
<td>0.0058''</td>
<td>0.0061''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0032''</td>
<td>0.0032''</td>
<td>0.0030''</td>
<td>0.0031''</td>
</tr>
<tr>
<td></td>
<td>(60^\circ)</td>
<td>500.</td>
<td>1.0</td>
<td>0.0742''</td>
<td>0.0749''</td>
<td>0.0711''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0426''</td>
<td>0.0426''</td>
<td>0.0400''</td>
<td>0.0425''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0252''</td>
<td>0.0251''</td>
<td>0.0234''</td>
<td>0.0249''</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>0.0052''</td>
<td>0.0054''</td>
<td>0.0052''</td>
<td>0.0055''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>0.0026''</td>
<td>0.0027''</td>
<td>0.0025''</td>
<td>0.0027''</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0014''</td>
<td>0.0014''</td>
<td>0.0013''</td>
<td>0.0014''</td>
</tr>
</tbody>
</table>

† The results indicated here are obtained by H-H approach which is superior to the L-H approach.

Note: (a) Fully clamped edge support. (b) Reduced clamped edge support.
TABLE 4

COMPARISON OF THE MAX. CENTRE MOMENT OF FOUR SIDES CLAMPED SANDWICH PLATE WITH VARIOUS SKEW ANGLES, ASPECT RATIOS AND CORE RIGIDITIES

\[
E_f = 10^7 \text{ psi} \quad \nu = 0.32 \quad C = 1'' \quad a = 40'' \quad t_s = 0.025''
\]

\[A_s = a/b = \text{Aspect ratio} \quad G_c = \text{Shear modulus of core} \quad q = \text{Intensity of load}\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(G_c)</th>
<th>(A_s)</th>
<th>3 degrees of freedom/node (12x12 lb.-in/in)</th>
<th>5 degrees of freedom/node (8x8 lb.-in/in)</th>
<th>Kennedy [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>15°</td>
<td>500.</td>
<td>1.0</td>
<td>37.29</td>
<td>36.26</td>
<td>36.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>23.02</td>
<td>22.34</td>
<td>22.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>14.50</td>
<td>14.07</td>
<td>14.05</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>35.47</td>
<td>36.26</td>
<td>36.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>23.29</td>
<td>23.27</td>
<td>23.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>14.64</td>
<td>14.44</td>
<td>14.42</td>
</tr>
<tr>
<td>30°</td>
<td>500.</td>
<td>1.0</td>
<td>31.58</td>
<td>30.61</td>
<td>30.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>19.07</td>
<td>18.49</td>
<td>18.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>11.84</td>
<td>11.47</td>
<td>11.46</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>30.63</td>
<td>31.84</td>
<td>31.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>19.23</td>
<td>19.14</td>
<td>19.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>11.88</td>
<td>11.68</td>
<td>11.66</td>
</tr>
<tr>
<td>45°</td>
<td>500.</td>
<td>1.0</td>
<td>22.50</td>
<td>21.71</td>
<td>21.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>13.29</td>
<td>12.86</td>
<td>12.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>8.05</td>
<td>7.79</td>
<td>7.78</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>22.08</td>
<td>22.23</td>
<td>22.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>13.30</td>
<td>13.15</td>
<td>13.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>8.01</td>
<td>7.83</td>
<td>7.82</td>
</tr>
<tr>
<td>60°</td>
<td>500.</td>
<td>1.0</td>
<td>12.13</td>
<td>11.66</td>
<td>11.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>6.97</td>
<td>6.75</td>
<td>6.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>4.10</td>
<td>3.96</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
<td>10000.</td>
<td>1.0</td>
<td>11.91</td>
<td>11.78</td>
<td>11.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>6.90</td>
<td>6.75</td>
<td>6.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>4.04</td>
<td>3.92</td>
<td>3.91</td>
</tr>
</tbody>
</table>

Note:
(a) Fully clamped edge support.
(b) Reduced clamped edge support.
Table 5

Comparison of Deflections for Clamped Skewed Sandwich Plate

\[E_f = 10^7 \text{lb./in}^2 \quad G_c = 10000. \quad q = 1 \text{ lb./in}^2 \]

<table>
<thead>
<tr>
<th>Results for</th>
<th>Mesh</th>
<th>15(^\circ) (in)</th>
<th>30(^\circ) (in)</th>
<th>45(^\circ) (in)</th>
<th>60(^\circ) (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Degrees of freedom/Node</td>
<td>2x2</td>
<td>0.01399</td>
<td>0.01125</td>
<td>0.00705</td>
<td>0.00375</td>
</tr>
<tr>
<td></td>
<td>4x4</td>
<td>0.01860</td>
<td>0.01420</td>
<td>0.00880</td>
<td>0.00405</td>
</tr>
<tr>
<td></td>
<td>8x8</td>
<td>0.02039</td>
<td>0.01550</td>
<td>0.00964</td>
<td>0.00441</td>
</tr>
<tr>
<td></td>
<td>12x12</td>
<td>0.02071</td>
<td>0.01570</td>
<td>0.00983</td>
<td>0.00453</td>
</tr>
<tr>
<td>5 Degrees of freedom/Node</td>
<td>2x2</td>
<td>0.01064</td>
<td>0.00856</td>
<td>0.00525</td>
<td>0.00285</td>
</tr>
<tr>
<td></td>
<td>4x4</td>
<td>0.01772</td>
<td>0.01357</td>
<td>0.00833</td>
<td>0.00383</td>
</tr>
<tr>
<td></td>
<td>8x8</td>
<td>0.01977</td>
<td>0.01511</td>
<td>0.00937</td>
<td>0.00433</td>
</tr>
<tr>
<td></td>
<td>12x12</td>
<td>0.02030</td>
<td>0.01550</td>
<td>0.00969</td>
<td>0.00450</td>
</tr>
<tr>
<td>5 Degrees of freedom/Node</td>
<td>2x2</td>
<td>0.01081</td>
<td>0.00869</td>
<td>0.00579</td>
<td>0.00290</td>
</tr>
<tr>
<td></td>
<td>4x4</td>
<td>0.01889</td>
<td>0.01452</td>
<td>0.00906</td>
<td>0.00423</td>
</tr>
<tr>
<td></td>
<td>8x8</td>
<td>0.02048</td>
<td>0.01572</td>
<td>0.00972</td>
<td>0.00455</td>
</tr>
<tr>
<td></td>
<td>12x12</td>
<td>0.02079</td>
<td>0.01588</td>
<td>0.00992</td>
<td>0.00464</td>
</tr>
<tr>
<td>Kennedy</td>
<td></td>
<td>0.02145</td>
<td>0.01630</td>
<td>0.01027</td>
<td>0.00479</td>
</tr>
</tbody>
</table>

Note: (a) Fully clamped edge support.
(b) Reduced clamped edge support.
TABLE 6

COMPARISON OF CENTRE DEFLECTION FOR A RECTANGULAR SANDWICH PLATE USING VARIOUS MODIFIED FORM OF SHEAR STRAIN.

\[E_f = 3 \times 10^6 \text{ psi.} \quad E_c = 1800 \text{ psi.} \quad \nu = 0.3 \quad a = 68.555'' \quad t_s = 0.05 \]
\[t_c = 1'' \quad A_s = 1. \quad q = \text{Intensity of load} = 1. \text{ lb./in}^2 \]

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Four sides clamped</th>
<th>Four sides simply supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 1</td>
<td>0.84070</td>
<td>1.58434</td>
</tr>
<tr>
<td>CASE 2</td>
<td>0.76246</td>
<td>1.43679</td>
</tr>
<tr>
<td>CASE 3</td>
<td>0.78477</td>
<td>1.45960</td>
</tr>
<tr>
<td>CASE 4</td>
<td>0.80820</td>
<td>1.48350</td>
</tr>
<tr>
<td>CASE 5</td>
<td>0.87827</td>
<td>1.55528</td>
</tr>
<tr>
<td>Taylor [22]</td>
<td>0.793''</td>
<td>--</td>
</tr>
<tr>
<td>March [24]</td>
<td>0.729''</td>
<td>--</td>
</tr>
<tr>
<td>Yen [23]</td>
<td>--</td>
<td>1.486''</td>
</tr>
</tbody>
</table>
TABLE 7

COMPARISON OF THE CENTRE DEFLECTION OF A CLAMPED RECTANGULAR SANDWICH PLATE

For problem 1 : $E_f = 3 \times 10^6$ psi. $E_c = 1800$ psi $\nu = 0.3$ $t_c = 1''$

$t_f = 0.05''$ $A_s = 1$. $a = 68.555''$

For problem 2 : $E_f = 10.5 \times 10^6$ psi. $G_c = 5 \times 10^4$ $\nu = 0.3$ $t_c = 1''$

$t_f = 0.015$ $A_s = 1$. $a = 50''$

<table>
<thead>
<tr>
<th>Results for</th>
<th>Three degrees of freedom</th>
<th>Five degrees of freedom</th>
<th>Three degrees of freedom</th>
<th>Five degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>2x2</td>
<td>0.64622''</td>
<td>0.48424'' 0.49147''</td>
<td>0.00468''</td>
<td>0.00356'' 0.00362''</td>
</tr>
<tr>
<td>4x4</td>
<td>0.78515''</td>
<td>0.70830'' 0.75998''</td>
<td>0.01549''</td>
<td>0.05396'' 0.05448''</td>
</tr>
<tr>
<td>8x8</td>
<td>0.81952''</td>
<td>0.78030'' 0.84570''</td>
<td>0.03751''</td>
<td>0.07527'' 0.07555''</td>
</tr>
<tr>
<td>16x16</td>
<td>0.82499''</td>
<td>0.80817'' 0.82411''</td>
<td>0.06235''</td>
<td>0.07898'' 0.07914''</td>
</tr>
</tbody>
</table>

P.H. Kan [25] -- 0.0816''
Monforton [10] -- 0.0812''
March [24] 0.729'' --
Taylor [22] 0.793'' --

Note: (a) Fully clamped edge support.
(b) Reduced clamped edge support.
<table>
<thead>
<tr>
<th>Element Type</th>
<th>Three degrees of freedom per node</th>
<th>Five degrees of freedom per node</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>1.19409"</td>
<td>1.31087"</td>
</tr>
<tr>
<td>4x4</td>
<td>1.40440"</td>
<td>1.45779"</td>
</tr>
<tr>
<td>8x8</td>
<td>1.45960"</td>
<td>1.47855"</td>
</tr>
<tr>
<td>16x16</td>
<td>1.47990"</td>
<td>1.48354"</td>
</tr>
<tr>
<td>Yen, et. al [23]</td>
<td></td>
<td>1.486"</td>
</tr>
<tr>
<td>Plantema [2]</td>
<td></td>
<td>1.465"</td>
</tr>
</tbody>
</table>
TABLE 9

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Results for</th>
<th>Three degrees of freedom per node</th>
<th>Five degrees of freedom per node</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2\times 2</td>
<td>0.35307"</td>
<td>1.26297"</td>
</tr>
<tr>
<td></td>
<td>4\times 4</td>
<td>1.10909"</td>
<td>1.26503"</td>
</tr>
<tr>
<td></td>
<td>8\times 8</td>
<td>1.31502"</td>
<td>1.34794"</td>
</tr>
<tr>
<td></td>
<td>12\times 12</td>
<td>1.35619"</td>
<td>1.37836"</td>
</tr>
</tbody>
</table>

Note: (a) Fully clamped edge support. (b) Reduced clamped edge support.
Kennedy [4] --------
Monforton [29] ------
(H-H approach &
16x16 grid)
Monforton [29] ------
(L-H approach &
16x16 grid)
3 Degrees of
freedom/node
(12x12 grid)
5 Degrees of
freedom/node
(Fully clamped
& 8x8 grid)
5 Degrees of
freedom/node
(Reduced clamped
& 8x8 grid)

\[F_s = 10^7 \text{psi.} \]
\[\nu = 0.32 \]
\[G_c = 500 \text{psi.} \]
\[t_s = 0.025" \]
\[t_c = 1" \]
\[a = 40" \]
\[A_s = a/b = 1. \]

Fig. 4a Comparison of Central Deflection for the Skew
Clamped Sandwich Plates (Soft Core)
Fig. 4b Comparison of Central Deflection for the Skew Clamped Sandwich Plates (Hard Core)
TABLE 10

DEFLECTION OF THE RHOMBIC CANTILEVERED SANDWICH PLATE UNDER A UNIFORMLY LOAD

\[E_f = 10^7 \text{ psi.} \quad \nu = 0.32 \quad C = 1'' \quad a = 40'' \quad t_s = 0.025'' \]

\[A_s = 1. \quad q = 1. \text{ lb./in}^2 \]

For location of points 1 and 2 see Fig. (26)

<table>
<thead>
<tr>
<th>Shear stiffness of core</th>
<th>(0^\circ)</th>
<th>(15^\circ)</th>
<th>(30^\circ)</th>
<th>(45^\circ)</th>
<th>(60^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_c)</td>
<td>(W_1)</td>
<td>(W_2)</td>
<td>(W_1)</td>
<td>(W_2)</td>
<td>(W_1)</td>
</tr>
<tr>
<td>500.</td>
<td>3.886</td>
<td>3.886</td>
<td>3.265</td>
<td>4.188</td>
<td>2.435</td>
</tr>
<tr>
<td>1000.</td>
<td>3.069</td>
<td>3.069</td>
<td>2.555</td>
<td>3.289</td>
<td>1.849</td>
</tr>
<tr>
<td>5000.</td>
<td>2.332</td>
<td>2.332</td>
<td>1.932</td>
<td>2.450</td>
<td>1.384</td>
</tr>
<tr>
<td>10000.</td>
<td>2.155</td>
<td>2.155</td>
<td>1.784</td>
<td>2.252</td>
<td>1.238</td>
</tr>
<tr>
<td>100000.</td>
<td>1.199</td>
<td>1.199</td>
<td>0.995</td>
<td>1.235</td>
<td>0.694</td>
</tr>
</tbody>
</table>
Table 11

Deflection of the Rhombic Cantilevered Sandwich Plate Under a Uniformly Loading

\[E_f = 10^7 \text{ lb./in}^2 \quad v = 0. \quad C = 1'' \quad a = 40'' \quad A_s = 1. \]

\[t_s = 0.025'' \quad q = 1.0 \text{ lb./in}^2 \]

For location of points 1 and 2 see Fig. (26)

<table>
<thead>
<tr>
<th>Shear stiffness of core</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.</td>
<td>4.026</td>
<td>4.026</td>
<td>3.411</td>
<td>4.301</td>
<td>2.565</td>
</tr>
<tr>
<td>1000.</td>
<td>3.216</td>
<td>3.216</td>
<td>2.698</td>
<td>3.422</td>
<td>1.973</td>
</tr>
<tr>
<td>5000.</td>
<td>2.498</td>
<td>2.498</td>
<td>2.085</td>
<td>2.611</td>
<td>1.472</td>
</tr>
<tr>
<td>10000.</td>
<td>2.328</td>
<td>2.328</td>
<td>1.943</td>
<td>2.416</td>
<td>1.363</td>
</tr>
<tr>
<td>100000.</td>
<td>1.333</td>
<td>1.333</td>
<td>1.121</td>
<td>1.352</td>
<td>0.786</td>
</tr>
</tbody>
</table>
TABLE 12

MAX. EDGED MOMENT OF THE RHOMBIC CANTILEVERED SANDWICH PLATE UNDER A UNIFORMLY DISTRIBUTED LOADING

\[E_f = 10^7 \text{ lb./in}^2 \quad \nu = 0.32 \quad C = 1'' \quad a = 40'' \quad A_s = 1. \]

\[t_s = 0.025'' \quad q = 1 \text{ lb./in}^2 \]

<table>
<thead>
<tr>
<th>Skew</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_c)</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
</tr>
<tr>
<td>500.</td>
<td>874.286</td>
<td>1174.860</td>
<td>1317.770</td>
<td>1202.150</td>
<td>780.971</td>
</tr>
<tr>
<td>1000.</td>
<td>849.243</td>
<td>1192.220</td>
<td>1392.250</td>
<td>1338.380</td>
<td>965.244</td>
</tr>
<tr>
<td>5000.</td>
<td>736.309</td>
<td>1117.860</td>
<td>1399.160</td>
<td>1453.550</td>
<td>1183.020</td>
</tr>
<tr>
<td>10000.</td>
<td>665.430</td>
<td>1031.300</td>
<td>1318.970</td>
<td>1400.550</td>
<td>1163.440</td>
</tr>
<tr>
<td>100000.</td>
<td>341.623</td>
<td>505.377</td>
<td>650.205</td>
<td>713.451</td>
<td>620.122</td>
</tr>
</tbody>
</table>

TABLE 13

MAX. EDGED MOMENT OF THE RHOMBIC CANTILEVERED SANDWICH PLATE UNDER A UNIFORMLY DISTRIBUTED LOADING

\[E_f = 10^7 \text{ lb/in}^2 \quad \nu = 0. \quad C = 1'' \quad a = 40'' \quad A_s = 1. \]

\[t_s = 0.025'' \quad q = 1 \text{ lb/in}^2 \]

<table>
<thead>
<tr>
<th>Skew</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_c)</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
<td>lb-in/in</td>
</tr>
<tr>
<td>500.</td>
<td>733.038</td>
<td>970.006</td>
<td>1069.120</td>
<td>951.380</td>
<td>587.104</td>
</tr>
<tr>
<td>1000.</td>
<td>729.991</td>
<td>1002.170</td>
<td>1146.220</td>
<td>1075.480</td>
<td>746.745</td>
</tr>
<tr>
<td>5000.</td>
<td>706.496</td>
<td>1017.440</td>
<td>1225.430</td>
<td>1233.560</td>
<td>977.140</td>
</tr>
<tr>
<td>10000.</td>
<td>679.172</td>
<td>980.038</td>
<td>1192.350</td>
<td>1220.250</td>
<td>988.66</td>
</tr>
<tr>
<td>100000.</td>
<td>400.416</td>
<td>533.343</td>
<td>637.151</td>
<td>671.306</td>
<td>579.59</td>
</tr>
</tbody>
</table>
TABLE 14

DEFLECTION OF THE RHOMBIC CANTILEVERED SANDWICH PLATE UNDER A UNIFORMLY DISTRIBUTED LOADING

\[E_f = 10^7 \text{ lb/in}^2 \quad v = 0.32 \quad C = 1'' \quad a = 40'' \quad t_s = 0.025'' \]

\[A_s = a/b = \text{Aspect ratios} \quad q = 1 \text{ lb/in}^2 \]

<table>
<thead>
<tr>
<th>Skew angle</th>
<th>(A_s = 1.0)</th>
<th>(A_s = 1.5)</th>
<th>(A_s = 2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G_c = 500)</td>
<td>(G_c = 10000)</td>
<td>(G_c = 500)</td>
</tr>
<tr>
<td>(W_1)</td>
<td>3.886</td>
<td>3.886</td>
<td>2.155</td>
</tr>
<tr>
<td>(W_2)</td>
<td>3.265</td>
<td>4.188</td>
<td>1.784</td>
</tr>
<tr>
<td>(W_3)</td>
<td>2.435</td>
<td>4.142</td>
<td>1.238</td>
</tr>
<tr>
<td>(W_4)</td>
<td>1.562</td>
<td>3.778</td>
<td>0.677</td>
</tr>
<tr>
<td>(W_5)</td>
<td>0.810</td>
<td>3.129</td>
<td>0.254</td>
</tr>
</tbody>
</table>
MAX. EDGED MOMENT OF THE RHOMBIC CANTILEVERED SANDWICH PLATE UNDER A UNIFORMLY LOAD

\[E_f = 10^7 \text{ lb/in}^2 \quad \nu = 0.32 \quad C = 1" \quad a = 40" \]

\[A_s = \frac{a}{b} = \text{Aspect ratios} \quad t_s = 0.025" \quad q = 1 \text{ lb/in}^2 \]

<table>
<thead>
<tr>
<th>Skew angle</th>
<th>(A_s = 1.0)</th>
<th>(A_s = 1.5)</th>
<th>(A_s = 2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G_c = 500)</td>
<td>(G_c = 1000)</td>
<td>(G_c = 500)</td>
</tr>
<tr>
<td>0°</td>
<td>874.286 lb/in²</td>
<td>665.430 lb/in²</td>
<td>388.182 lb/in²</td>
</tr>
<tr>
<td>15°</td>
<td>1174.860 lb/in²</td>
<td>1031.300 lb/in²</td>
<td>520.148 lb/in²</td>
</tr>
<tr>
<td>30°</td>
<td>1317.770 lb/in²</td>
<td>1318.970 lb/in²</td>
<td>576.976 lb/in²</td>
</tr>
<tr>
<td>45°</td>
<td>1202.150 lb/in²</td>
<td>1400.550 lb/in²</td>
<td>516.550 lb/in²</td>
</tr>
<tr>
<td>60°</td>
<td>780.971 lb/in²</td>
<td>1163.440 lb/in²</td>
<td>328.278 lb/in²</td>
</tr>
</tbody>
</table>
TABLE 16

THE CENTRAL DEFORMATION OF A CLAMPED FLAT SANDWICH PLATE FOR VARIOUS SHEAR STIFFNESS OF CORE

\[E_f = 10^7 \text{ psi}, \quad \nu = 0.32 \quad t_s = 0.025'' \quad t_c = 1'' \quad a = 40'' \]

\[A_s = a/b = 1. \]

Loading condition: Uniformly distributed loading.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>(G_c = 500)</th>
<th>(G_c = 1000)</th>
<th>(G_c = 2000)</th>
<th>(G_c = 3000)</th>
<th>(G_c = 4000)</th>
<th>(G_c = 5000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three degree</td>
<td>Five degree</td>
<td>Three degree</td>
<td>Five degree</td>
<td>Three degree</td>
<td>Five degree</td>
</tr>
<tr>
<td></td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
</tr>
<tr>
<td>2x2</td>
<td>.3000</td>
<td>.2283</td>
<td>.1500</td>
<td>.1141</td>
<td>.0750</td>
<td>.0571</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0500</td>
<td>.0380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0375</td>
<td>.0285</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0300</td>
<td>.0228</td>
</tr>
<tr>
<td>4x4</td>
<td>.2691</td>
<td>.2308</td>
<td>.1443</td>
<td>.1248</td>
<td>.0813</td>
<td>.0717</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0597</td>
<td>.0539</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0486</td>
<td>.0449</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0417</td>
<td>.0395</td>
</tr>
<tr>
<td>8x8</td>
<td>.2620</td>
<td>.2446</td>
<td>.1424</td>
<td>.1335</td>
<td>.0823</td>
<td>.0778</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0620</td>
<td>.0592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0517</td>
<td>.0498</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0454</td>
<td>.0441</td>
</tr>
<tr>
<td>12x12</td>
<td>.2608</td>
<td>.2525</td>
<td>.1421</td>
<td>.1379</td>
<td>.0825</td>
<td>.0805</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0625</td>
<td>.0613</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0523</td>
<td>.0516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0462</td>
<td>.0457</td>
</tr>
</tbody>
</table>
TABLE 17

THE CENTRAL DEFLECTION OF A SIMPLY SUPPORTED SANDWICH PLATE FOR VARIOUS SHEAR STIFFNESS OF CORE

\[E_s = 10^7 \text{ psi}, \quad v = 0.32, \quad t_s = 0.025'' , \quad t_c = 1'' , \quad a = 40'' , \quad A_s = 1. \]

Loading condition: Uniformly distributed loading.

<table>
<thead>
<tr>
<th>Mesh Size</th>
<th>(G_c = 500)</th>
<th>(G_c = 1000)</th>
<th>(G_c = 2000)</th>
<th>(G_c = 3000)</th>
<th>(G_c = 4000)</th>
<th>(G_c = 5000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three Degree</td>
<td>Five Degree</td>
<td>Three Degree</td>
<td>Five Degree</td>
<td>Three Degree</td>
<td>Five Degree</td>
</tr>
<tr>
<td></td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
</tr>
<tr>
<td>2x2</td>
<td>.3525</td>
<td>.2930</td>
<td>.1996</td>
<td>.1767</td>
<td>.1196</td>
<td>.1178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.0905</td>
<td>.0976</td>
<td>.0746</td>
<td>.0871</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0642</td>
<td>.0642</td>
<td>.0805</td>
</tr>
<tr>
<td>4x4</td>
<td>.3169</td>
<td>.3049</td>
<td>.1916</td>
<td>.1869</td>
<td>.1275</td>
<td>.1277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1049</td>
<td>.1079</td>
<td>.0928</td>
<td>.0979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0849</td>
<td>.0849</td>
<td>.0919</td>
</tr>
<tr>
<td>8x8</td>
<td>.3091</td>
<td>.3063</td>
<td>.1894</td>
<td>.1883</td>
<td>.1291</td>
<td>.1292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1086</td>
<td>.1094</td>
<td>.0980</td>
<td>.0994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0914</td>
<td>.0914</td>
<td>.0934</td>
</tr>
<tr>
<td>12x12</td>
<td>.3078</td>
<td>.3066</td>
<td>.1890</td>
<td>.1886</td>
<td>.1294</td>
<td>.1295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1093</td>
<td>.1098</td>
<td>.0991</td>
<td>.0998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0927</td>
<td>.0937</td>
</tr>
</tbody>
</table>
TABLE 18

THE CENTRAL DEFLECTION OF A CLAMPED SKEW SANDWICH PLATE FOR VARIOUS SHEAR STIFFNESS OF CORE

\[E_f = 10^7 \text{ psi.} \quad \nu = 0.32 \quad t_s = 0.025'' \quad t_c = 1'' \quad a = 40'' \]

\[\lambda_s = a/b = 1. \quad \theta = \text{Skew angle} = 45^0 \]

<table>
<thead>
<tr>
<th>Mesh</th>
<th>(G_c = 500)</th>
<th>(G_c = 1000)</th>
<th>(G_c = 2000)</th>
<th>(G_c = 3000)</th>
<th>(G_c = 4000)</th>
<th>(G_c = 5000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>0.1500</td>
<td>0.0750</td>
<td>0.0375</td>
<td>0.0250</td>
<td>0.0187</td>
<td>0.0150</td>
</tr>
<tr>
<td>4x4</td>
<td>0.1415</td>
<td>0.0732</td>
<td>0.0389</td>
<td>0.0274</td>
<td>0.0216</td>
<td>0.0180</td>
</tr>
<tr>
<td>8x8</td>
<td>0.1406</td>
<td>0.0736</td>
<td>0.0399</td>
<td>0.0287</td>
<td>0.0230</td>
<td>0.0195</td>
</tr>
<tr>
<td>12x12</td>
<td>0.1406</td>
<td>0.0738</td>
<td>0.0403</td>
<td>0.0290</td>
<td>0.0234</td>
<td>0.0199</td>
</tr>
</tbody>
</table>

TABLE 19

THE CENTRAL DEFLECTION OF A SIMPLY SUPPORTED SKEW SANDWICH PLATE FOR VARIOUS SHEAR STIFFNESS OF CORE

\[E_f = 10^7 \text{ psi.} \quad \nu = 0.32 \quad t_s = 0.025'' \quad t_c = 1'' \quad a = 40'' \]

\[\lambda_s = a/b = 1. \quad \theta = \text{Skew angle} = 45^0 \]

<table>
<thead>
<tr>
<th>Mesh</th>
<th>(G_c = 500)</th>
<th>(G_c = 1000)</th>
<th>(G_c = 2000)</th>
<th>(G_c = 3000)</th>
<th>(G_c = 4000)</th>
<th>(G_c = 5000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>0.1594</td>
<td>0.0842</td>
<td>0.0463</td>
<td>0.0335</td>
<td>0.0269</td>
<td>0.0228</td>
</tr>
<tr>
<td>4x4</td>
<td>0.1530</td>
<td>0.0846</td>
<td>0.0501</td>
<td>0.0383</td>
<td>0.0323</td>
<td>0.0286</td>
</tr>
<tr>
<td>8x8</td>
<td>0.1537</td>
<td>0.0867</td>
<td>0.0530</td>
<td>0.0417</td>
<td>0.0359</td>
<td>0.0323</td>
</tr>
<tr>
<td>12x12</td>
<td>0.1545</td>
<td>0.0876</td>
<td>0.0541</td>
<td>0.0428</td>
<td>0.0371</td>
<td>0.0336</td>
</tr>
<tr>
<td>G_c</td>
<td>0</td>
<td>$t_s=0.025''$</td>
<td>$t_s=0.05''$</td>
<td>$t_s=0.10''$</td>
<td>$t_s=0.50''$</td>
<td>w_c(in)</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>0°</td>
<td>0.3078</td>
<td>77.59</td>
<td>0.2708</td>
<td>77.69</td>
<td>0.2524</td>
<td>77.75</td>
</tr>
<tr>
<td>15°</td>
<td>0.2872</td>
<td>77.28</td>
<td>0.2542</td>
<td>77.36</td>
<td>0.2378</td>
<td>77.40</td>
</tr>
<tr>
<td>30°</td>
<td>0.2309</td>
<td>66.85</td>
<td>0.2082</td>
<td>66.82</td>
<td>0.1969</td>
<td>66.78</td>
</tr>
<tr>
<td>45°</td>
<td>0.1545</td>
<td>47.36</td>
<td>0.1435</td>
<td>47.23</td>
<td>13.8000</td>
<td>47.15</td>
</tr>
<tr>
<td>60°</td>
<td>0.0786</td>
<td>24.57</td>
<td>0.0756</td>
<td>24.52</td>
<td>0.0742</td>
<td>24.49</td>
</tr>
<tr>
<td>0°</td>
<td>0.1890</td>
<td>77.39</td>
<td>0.1522</td>
<td>77.60</td>
<td>0.1399</td>
<td>77.70</td>
</tr>
<tr>
<td>15°</td>
<td>0.1749</td>
<td>77.11</td>
<td>0.1421</td>
<td>77.29</td>
<td>0.1258</td>
<td>77.37</td>
</tr>
<tr>
<td>30°</td>
<td>0.1370</td>
<td>66.83</td>
<td>0.1144</td>
<td>66.85</td>
<td>0.1032</td>
<td>66.81</td>
</tr>
<tr>
<td>45°</td>
<td>0.0876</td>
<td>47.50</td>
<td>0.0767</td>
<td>47.35</td>
<td>0.0713</td>
<td>47.22</td>
</tr>
<tr>
<td>60°</td>
<td>0.0421</td>
<td>24.65</td>
<td>0.0392</td>
<td>24.57</td>
<td>0.0377</td>
<td>24.51</td>
</tr>
<tr>
<td>0°</td>
<td>0.0927</td>
<td>75.82</td>
<td>0.0571</td>
<td>76.82</td>
<td>0.0390</td>
<td>77.33</td>
</tr>
<tr>
<td>15°</td>
<td>0.0839</td>
<td>75.58</td>
<td>0.0521</td>
<td>76.57</td>
<td>0.0361</td>
<td>77.05</td>
</tr>
<tr>
<td>30°</td>
<td>0.0610</td>
<td>65.76</td>
<td>0.0392</td>
<td>66.54</td>
<td>0.0281</td>
<td>66.80</td>
</tr>
<tr>
<td>45°</td>
<td>0.0336</td>
<td>47.22</td>
<td>0.0232</td>
<td>47.56</td>
<td>0.0178</td>
<td>47.50</td>
</tr>
<tr>
<td>60°</td>
<td>0.0127</td>
<td>24.68</td>
<td>0.0099</td>
<td>24.74</td>
<td>0.0085</td>
<td>24.65</td>
</tr>
</tbody>
</table>
Fig. 5 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($A_s = 1$.)

Centre Deflection for Skewed Sandwich Plates Under Uniformly Distributed Loading (w x 100, in.)

$E_s = 10^7$ psi.
$v = 0.32$
$t_s = 0.025''$
$t_c = 1''$
a = 4.0''
$A_s = a/b = 1$.
Fig. 6 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($a_s = 1.5$)
Fig. 7 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Clamped Skew Sandwich Plates ($A_s = 2.$)
Fig. 8 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates. \((A_s = 1)\)
Fig. 9 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates. \((A_s = 1.5) \)
Fig. 10 Variation of Centre Deflection with Shear Modulus of Core and Skew Angle for Simply Supported Skew Sandwich Plates ($A_s=2$.)
Fig. 11 Variation of Centre Deflection with Skew Angle and Shear Modulus of Core for Clamped Skew Sandwich Plates
Fig. 12 Variation of Centre Deflection with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates
Fig. 13 Variation of Max. Centre and Edged Moments with Skew Angle and Shear Modulus of Core for Clamped Skew Sandwich Plates

Plates under Uniformly Distributed Load (lb/in.²)

Maximum Centre and Edge Moment for Skewed Sandwich
Fig. 14 Variation of Maximum Centre Moment with Skew angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates (A_s = 1)
Fig. 15 Variation of Maximum Centre Moment with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates (A_e=1.5)

Under Uniformly Distributed Loading (lb/in)

Maximum Centre Moment for Skew Sandwich Plate
Fig. 16 Variation of Maximum Centre Moment with Skew Angle and Shear Modulus of Core for Simply Supported Skew Sandwich Plates (\(A_s = 2 \))
Fig. 17 Variation in Centre Deflection of a Uniformly Loaded Rectangular Sandwich Plate with Thickness Ratio
Fig. 10 Percent of The Theoretical Max. Moment Resisted by Skins for A Simply Supported Rectangular Sandwich Plate
Fig. 19 Percent of The Theoretical Edged Moment Resisted by Skins for A Cantilevered Rectangular Sandwich Plate
Fig. 20 Variation of Centre Moments with Aspect Ratio & Angle of Skew for Clamped Sandwich Plates
Fig. 21 Variation of Edged Moment with Aspect Ratio & Angle of Skew for Clamped Skew Sandwich Plates.

- $E_s = 10^7$ psi
- $G_c = 500$ psi
- $v = 0.32$
- $t_s = 0.025''$
- $t_c = 1''$
- $a = 40''$
- $A_s = a/b$
Fig. 22 Variation of Centre Moments with Aspect Ratio & Angle of Skew for Simply Supported Skew Sandwich Plates
Fig. 23 Effect of Poisson's Ratio on Clamped Skew Sandwich Plate
Fig. 24 Effect of Poisson's Ratio on Clamped Skew Sandwich Plate
Fig. 25 Effect of Poisson's Ratio on Simply Supported Skew Sandwich Plate
Fig. 26. Cantilever layout

Fig. 27. Discretization and Node Numbering of a Sandwich Plate
CHAPTER V

CONCLUSIONS

5.1 Further comments on present work

The application of the finite element method to the analysis of skew sandwich plates is presented in this study. Two displacement models were used to solve the problem. The solutions by using both elements were shown to agree with the solution of the associated differential equation. However, from a practical viewpoint, significant differences occur only when the sandwich core material are so stiff as to fall beyond the range of most sandwich construction designs.

The results of this investigation can be applied to sandwich plate of constant thickness and equal skin with skew and rectangular shapes, for any type of boundaries and loaded by any system of static loads.

Four major advantages have been found when this work was carried out:

(1) The choice of displacement function for complex geometric boundary conditions is not
difficult, because it is not dependent upon the boundary conditions at the nodes.

(2) In this method the partial differential equations of the problem are not used and need not be known, thus avoiding a higher mathematical analysis.

(3) This method provides the solution of skew and rectangular sandwich plates with general types of edge conditions.

(4) Some advantages may be taken in solving the simultaneous equations of representing stiffness matrices which possess symmetrical and banded properties. This usually will save considerable computer storage and time.

Two major disadvantages can be noted:

(1) Large numbers of simultaneous equations have to be solved in this work especially when the more refined element is used. This may lead to a serious problem with regard to storage, computation time and accuracy.

(2) Showing convergence and finding error bounds are difficult matters in this method. The dual analysis sometimes can only check whether true
convergence occurs.

It should be further mentioned here that choice of element type influences the mathematical character of the problem to some extent. Elements having many degrees of freedom produce a large element stiffness matrix and thus increase the size of the stiffness matrix for the structure, compared with elements with fewer degrees of freedoms. If the elements having the higher number of degrees of freedom require a reduced number of nodal points for the same accuracy then this increase of size of the structure stiffness matrix may not be critical. If this is not the case, the inversion of the stiffness matrix may cause considerably more time and computer core for the more refined element. Based on the data analysis in this investigation, it can be seen that the "simple element" (Three degrees of freedoms per node) seems to produce results which are nearly as good as the more complicated element (Five degrees of freedoms per node) for skew sandwich plate analysis. From results obtained in this study, it is apparent that fairly accurate results can be obtained by means of the less precise element. It is therefore suggested that for practical design purposes, the
less precise element should be used to minimize computer
time and storage.

5.2 Conclusions

The main conclusion which can be drawn from this investigation may be summarized as follows:

(1) For rectangular sandwich plate analysis, the use of more terms in the displacement function will produce better results on general types of edge conditions.

(2) For skew sandwich plate analysis, the first element (Three degrees of freedom per node), seem to produce results which were as good as the second element (Five degrees of freedom per node), but the computer storage and time are considerably reduced in the first element. It implies that the first element has more practical usage in design work.

(3) For very stiff cores, more reliable results will be obtained from a general composite plate theory since these elements are not applicable.

(4) The finite elements used seem to have better convergence characteristics in soft core sandwich plates than hard core sandwich plates.
(5) If the facings are relatively thick in comparison with the core, the shear load will be carried to a considerable extent by the faces. Reliable results can be obtained by the elements used in this investigation when the thickness of the faces is small, i.e. \(t_s / t_c \leq 1/20 \).

(6) In clamped skew sandwich plates the central deflection decreases as the skew angle increases. This is due to the increased rigidity of the plate at the obtuse corners. But this effect diminishes with decreasing flexibility of the core.

(7) Both the maximum centre and edge moment decrease with increase in the aspect ratio. In the case of clamped and simply supported skew sandwich plates, the central moment in \(x \) direction seems to decrease more rapidly than the moment in \(y \) direction. The effect of plate aspect ratio upon the twisting moment appears to be insignificant in both cases.

(8) For skew cantilevered sandwich plate analysis, significant concentrated moments at the obtuse corner can be expected. This value increases and decreases again as the skew angle increases. The pitch shifts to higher skew with decreasing flexibility of the core.
(9) Increase in the Poisson's ratio augments the central moment, but this effect diminishes with an increase in the skew angles. Variation of Poisson's ratio with moment has been found to be linear for clamped and simply supported skewed sandwich plates subject to a uniformly distributed load.

(10) In general, the stress obtained by this method appears to be less accurate near the boundaries than it is elsewhere in the plate.

(11) For skew sandwich plate analysis, the two finite element models yield results which closely agree with existing values by other investigators. Hence it is believed that a reliable method of solution to skewed sandwich plates subjected to various boundary conditions has been found.

The matrix \[R_T = \int_0^b \int_a^b [B^T][H][D][H][R] \, dx \, d\eta \] appearing in eqn. (3-50) is a symmetric matrix. The elements in the lower part are defined as,

\[
\begin{align*}
R(1,1) &= 0. \\
R(2,1) &= 0. \\
R(3,1) &= 0. \\
R(4,1) &= 0. \\
R(5,1) &= 0. \\
R(6,1) &= 0. \\
R(7,1) &= 0. \\
R(8,1) &= 0. \\
R(2,2) &= (1 + z_1)ab \\
R(3,2) &= -(z_2)ab \\
R(4,2) &= (ab^2)/2 + (ab^2)/2 \cdot z_1 - (a^2b)/2 \cdot z_2 \\
R(5,2) &= 0. \\
R(6,2) &= (-z_k - z_3)ab \\
R(7,2) &= z_5 ab \\
R(8,2) &= -ab^2z_k/2 - ab^2z_3/2 + a^2bz_5/2 \\
R(3,3) &= abz_7 \\
R(4,3) &= -ab^2z_2/2 + a^2bz_7/2 \\
R(5,3) &= 0. \\
R(6,3) &= abz_6 \\
R(7,3) &= 0.
\end{align*}
\]
$R(8,3) = ab^2 z_6/2$

$R(4,4) = ab^3/5 + ab^3 z_1/3 - a^2 b z_2/2 + a^5 b z_7/3$

$R(5,4) = 0.$

$R(6,4) = -ab^2 z_5/2 - ab^2 z_3/2 + a^2 b z_6/2$

$R(7,4) = ab^2 z_5/2$

$R(8,4) = -ab^2 z_5/3 - ab^2 z_3/3 + a^2 b^2 z_5/4 + a^2 b^2 z_6/1$

$R(5,5) = 0.$

$R(6,5) = 0.$

$R(7,5) = 0.$

$R(8,5) = 0.$

$R(6,6) = (z_1/z_8 + z_8)ab$

$R(7,6) = -(z_2/z_8)ab$

$R(8,6) = ab^2(z_1/z_8)/2 + ab^2 z_8/2 - a^2 b(z_2/z_8)/2$

$R(7,7) = (z_7/z_8)ab$

$R(8,7) = -ab^2(z_2/z_8)/2 + a^2 b(z_7/z_8)/2$

$R(8,8) = ab^3(z_1/z_8)/3 + ab^3 z_8/3 - a^2 b^2(z_2/z_8)/2 + a^3 b(z_7/z_8)/3$

where

\[z_1 = \left(\frac{1-v}{2} \right) \cot^2 \phi \]

\[z_2 = \left(\frac{1-v}{2} \right) \csc \phi \cot \phi \]

\[z_3 = \left(\frac{1-v}{2} \right) \cot \phi \]

\[z_4 = v \cot \phi \]

\[z_5 = v \csc \phi \]

\[z_6 = \left(\frac{1-v}{2} \right) \csc \phi \]

\[z_7 = \left(\frac{1-v}{2} \right) \csc^2 \phi \]

\[z_8 = \left(\frac{1-v}{2} \right) \]
Note: Each element mentioned above should be multiplied by a factor, \(\frac{E^+ S}{(1-v^2)} \)
The matrix \([\mathbf{c}] = \int_{0}^{t/2} \int_{0}^{a} \int_{0}^{b} \mathbf{B}^T \mathbf{H}^T \mathbf{D} \mathbf{H} \mathbf{B} \, d\xi \, d\eta \, d\zeta \)

It is a symmetric matrix, only its lower triangle is given here,

\[
\begin{align*}
R(1,1) &= \frac{1-2\nu}{2(1-\nu)} \\
R(2,1) &= a^2/2 \cdot t/2 \cdot b \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(3,1) &= a \cdot b^2/2 \cdot t/2 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(4,1) &= a^2/2 \cdot b^2/2 \cdot t/2 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(10,1) &= ab \cdot t/2 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(12,1) &= a \cdot b^2/2 \cdot t/2 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(2,2) &= 1/3(t/2)^3\frac{1-2\nu}{2(1-\nu)} + (t/2)^3 \frac{1-2\nu}{2(1-\nu)} + a^2/2 \cdot b^2/2 \cdot t/2 \\
R(3,2) &= -1/3(t/2)^3\frac{1-2\nu}{2(1-\nu)} - a^2/2 \cdot b^2/2 \cdot t/2 \\
R(4,2) &= b^2/2 \cdot 1/3 \cdot (t/2)^3 + a^2/2 \cdot 1/3 \cdot (t/2)^3 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(6,2) &= -1/3 \cdot (t/2)^3 \frac{1-2\nu}{2(1-\nu)} - 1/3 \cdot (t/2)^3 \frac{1-2\nu}{2(1-\nu)} \\
R(7,2) &= 1/3 \cdot (t/2)^3 \cdot \frac{1-2\nu}{2(1-\nu)} \\
R(8,2) &= -a \cdot b^2/2 \cdot 1/3 \cdot (t/2)^3 \frac{1-2\nu}{2(1-\nu)} - b^2/2 \cdot 1/3 \cdot (t/2)^3 \\
&\quad \cdot \frac{1-2\nu}{2(1-\nu)} + a^2/2 \cdot b \cdot 1/3 \cdot (t/2)^3 \frac{1-2\nu}{2(1-\nu)} \\
&\quad \cdot \frac{1-2\nu}{2(1-\nu)}
\end{align*}
\]
\[R(10,2) = \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,2) = \frac{a^2}{2} \cdot b^2 \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(7,5) = ab \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \]
\[R(9,5) = -a \cdot b^2 \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \cot \phi \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[+ a^2 \cdot b \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \csc^2 \phi \]
\[+ a^2 \cdot b^3 \cdot \frac{1}{3} \cdot \frac{(t/2)}{(1-2v)/2(1-v)} \]
\[R(6,3) = \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot ab \]
\[R(8,3) = a \cdot b^2 \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \csc \phi \]
\[R(10,3) = a \cdot b^2 \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,3) = a \cdot b^3 \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(4,4) = a \cdot b^3 \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{1/3} + a \cdot b^3 \cdot \frac{1}{5} \cdot \frac{(t/2)^3}{1/3} \]
\[- a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{1/3} \cdot \cot \phi \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + \frac{1}{3} \cdot \frac{(t/2)}{(1-2v)/2(1-v)} + \frac{a^2}{2} \cdot b \cdot \frac{1}{3} \]
\[\left(\frac{t}{2} \right)^3 \cdot \frac{csc \phi \cdot \phi}{(1-v)} \]
\[R(7,4) = a \cdot b^2 \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \csc \phi \cdot \frac{v}{(1-v)} \]
\[R(8,4) = -\frac{1}{3} \cdot b^3 \cdot a \cdot \frac{1}{5} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \cot \phi \cdot \frac{v}{(1-v)} - \frac{1}{3} \cdot b^3 \cdot a \cdot \frac{1}{5} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v)} \cdot \cot \phi \cdot \frac{v}{(1-v)} \]
\[R(10,4) = a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)}{(1-2v)/2(1-v)} \]
\[R(5,5) = ab \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(7,5) = a \cdot b^2 \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(8,5) = \left(\frac{a^2}{2}\right) \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(10,5) = -ab \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(11,5) = ab \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,5) = -a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} + \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(6,6) = \frac{ab \cdot 1}{3} \cdot \frac{(t/2)^3}{(1-2v)/2(1-v) + 1/3 \cdot a\frac{3}{2} \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)}} \]
\[R(7,6) = -ab \cdot 1/3 \cdot (t/2)^3 \cot \phi \cdot \csc \phi + \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \]
\[R(8,6) = a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot (t/2)^3 \cot \phi \cdot \csc \phi + a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot (t/2)^3 \]
\[R(10,6) = -\frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(11,6) = \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,6) = -a^2b^2/4 \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2/3 \cdot b \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(7,7) = ab \cdot 1/3 \cdot (t/2)^3 \csc^2 \phi + a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(8,7) = -\frac{b^2}{2} \cdot a \cdot \frac{1}{3} \cdot (t/2)^3 \cot \phi \cdot \csc \phi + a^2/2 \cdot b \cdot \frac{1}{3} \]
\[(t/2)^3 \csc^2 \phi + a^2/2 \cdot b^3/5 \cdot t/2 \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(10,7) = -a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(11,7) = a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,7) = -a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2/2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(s,s) = b^{2/3} \cdot 1/3 \cdot (t/3)^3 \cdot a \cdot \cot^2 \phi + a \cdot b^{2/3} \cdot 1/3 \cdot (t/3)^3 \]
\[\cdot (1-2v)/(2(1-v)) - a^2/2 \cdot b^2/2 \cdot 1/5 \cdot (t/2)^3 \cdot \cot \phi \cdot \csc \phi \]
\[- 1/2 \cdot a^2 \cdot b^2/2 \cdot 1/3 \cdot (t/3)^3 \cdot \cot \phi \cdot \csc \phi + a^2/3 \cdot b \]
\[1/5 \cdot (t/2)^5 \cdot \csc^2 \phi + a^2/3 \cdot b^{3/3} \cdot (1-2v)/(2(1-v)) \cdot t/2 \]
\[R(10,8) = -a^2/2 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/(2(1-v)) \]
\[R(11,8) = a^2/2 \cdot b^2/2 \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \cdot t/2 \]
\[R(12,8) = -a^2/2 \cdot 1/3 \cdot b^3 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/(2(1-v)) + 1/3 \]
\[a^2 \cdot b^2/2 \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \cdot t/2 \]
\[R(10,10) = ab \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + ab \cdot t/2 \cdot (1-2v)/(2(1-v)) \]
\[R(11,10) = -ab \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \]
\[R(12,10) = a \cdot b^2/2 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a \cdot b^2/2 \cdot t/2 \]
\[(1-2v)/(2(1-v)) - a^2/2 \cdot b \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \]
\[R(11,11) = ab \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]
\[R(12,11) = -a \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) + a^2/2 \]
\[b \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]
\[R(12,12) = a \cdot b^{3/3} \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a \cdot b^{3/3} \cdot t/2 \]
\[(1-2v)/(2(1-v)) + a^2/3 \cdot b \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]
\[- 2 \cdot a^2/2 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \]

Note: Each element mentioned above should be multiplied by a factor, \(E(1-v)/(1+v)(1-2v) \).
APPENDIX III
The element stiffness matrix \([K_c (20,20)]\) for five degrees of freedom is given by eqn. (5-45)

\[
[K_c] = 2 \sin \theta \begin{bmatrix} A_c^{-1} & R_c \\ R_c & A_c^{-1} \end{bmatrix}
\]

Since \(R_c \) is a symmetric matrix, only its lower triangle is given here,

\[
R(1,1) = \frac{t}{2} \cdot ab \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(2,1) = \frac{a^2}{2} \cdot \frac{t}{2} \cdot b \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(3,1) = a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(4,1) = \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(10,1) = a \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(12,1) = \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(13,1) = a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(15,1) = \frac{a^3}{2} \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(16,1) = \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(17,1) = a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(19,1) = \frac{a^3}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(20,1) = a \cdot \frac{b^4}{4} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(2,2) = ab \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{2(1-\nu)} + ab \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{2(1-\nu)} \cot^2 \phi
\]

\[
(1-2\nu)/2(1-\nu) + \frac{a^3}{3} \cdot b \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(3,2) = -\frac{1}{5} \cdot \frac{(t/2)^3}{2(1-\nu)} + ab \cot \phi \csc \phi \cdot \frac{(1-2\nu)}{2(1-\nu)} + \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]

\[
R(4,2) = a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{2(1-\nu)} + a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{2(1-\nu)} \cot^2 \phi \cdot \frac{(1-2\nu)}{2(1-\nu)} - \frac{a^2}{2} \cdot b \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{2(1-\nu)} \cot \phi \csc \phi \cdot \frac{(1-2\nu)}{2(1-\nu)} + \frac{1}{3} \cdot \frac{a^3}{3} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2\nu)}{2(1-\nu)}
\]
\[R(6,2) = -ab \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \cot \phi \cdot v/(1-v) - ab \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \cot \phi \cdot \frac{1}{2}(1-v) \]
\[R(7,2) = ab \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \csc \phi \cdot v/(1-v) \]
\[R(8,2) = -a \cdot b^2/2 \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \cot \phi \cdot \frac{1}{2}(1-v) - a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \cot \phi \cdot \frac{1}{2}(1-v) + a^2/2 \cdot b \cdot \frac{1}{3} \cdot (t/2)^3 \csc \phi \cdot \frac{1}{2}(1-v) \]
\[R(10,2) = a^2/2 \cdot b \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(12,2) = 2/3 \cdot a^3 \cdot b \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(15,2) = a^2/2 \cdot b^2/2 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(15,2) = 3/4 \cdot a^4 \cdot b \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(16,2) = 2/3 \cdot a^3 \cdot b^2/2 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(17,2) = a^2/2 \cdot b^3/3 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(19,2) = 3/4 \cdot a^4 \cdot b^2/2 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(20,2) = a^2/2 \cdot b^4/4 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(3,3) = ab \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \csc^2 \phi \cdot \frac{1}{2}(1-v) \]
\[+ a \cdot b^3/3 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(4,3) = -a \cdot b^2/2 \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \cot \phi \cdot \csc \phi \cdot \frac{1}{2}(1-v) \]
\[+ a^2/2 \cdot b \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \csc \phi \cdot \frac{1}{2}(1-v) + a^2/2 \cdot b^3/3 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(6,3) = ab \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \csc \phi \cdot \frac{1}{2}(1-v) \]
\[R(8,3) = a \cdot b^2/2 \cdot \frac{1}{3} \cdot (t/2)^3 \cdot \csc \phi \cdot \frac{1}{2}(1-v) \]
\[R(10,3) = a \cdot b^2/2 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(12,3) = a^2 \cdot b^2/2 \cdot \frac{t}{2} \cdot \frac{1}{2}(1-v) \]
\[R(13,3) = a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(15,3) = a^3 \cdot \frac{b^3}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(16,3) = a^3 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(17,3) = a \cdot \frac{b^5}{4} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(19,3) = a^3 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(20,3) = a \cdot \frac{b^5}{5} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(4,4) = a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} + a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \]
\[\cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} - a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \]
\[\cot \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b}{1/3} \cdot \frac{(t/2)^3}{(1/2)} \]
\[\csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(6,4) = -a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \cot \phi \cdot \frac{v}{(1-v)} - a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \cot \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b}{1/3} \cdot \frac{(t/2)^3}{(1/2)} \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(7,4) = a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \csc \phi \cdot \frac{v}{(1-v)} \]
\[R(8,4) = -a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \cot \phi \cdot \frac{v}{(1-v)} - a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \cot \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \frac{(t/2)^3}{(1/2)} \csc \phi \cdot \frac{v}{(1-v)} \]
\[R(10,4) = a^2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,4) = \frac{2}{3} \cdot \frac{a^3}{3} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(13,4) = a^2 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(15,4) = \frac{3}{4} \cdot \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(16,4) = \frac{2}{3} \cdot \frac{a^3}{3} \cdot \frac{b^3}{5} \cdot \frac{t}{2} \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(17,4) = \frac{a^2}{2} \cdot \frac{b}{4} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(19,4) = \frac{3}{4} \cdot \frac{a}{h} \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(20,4) = \frac{a^2}{2} \cdot \frac{b^5}{5} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(5,5) = \frac{a}{h} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(6,5) = \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(7,5) = a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(8,5) = \frac{a^2}{2} \cdot \frac{b^3}{2} \cdot \frac{t}{2} \cdot \frac{1-2v}{2(1-v)} \]
\[R(10,5) = -ab \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(11,5) = ab \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(12,5) = -a^2 b \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(13,5) = -a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cot \theta \cdot \frac{1-2v}{2(1-v)} + \frac{a^2}{2} \cdot b \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(14,5) = ab^2 \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(15,5) = -a^3 b \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(16,5) = -a^2 b^2 \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} + \frac{a^3}{3} \cdot b \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(17,5) = -a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} + \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(18,5) = ab^3 \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(19,5) = -a^3 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} + \frac{a^3}{4} \cdot b \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[R(20,5) = -a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \theta \cdot \frac{1-2v}{2(1-v)} + \frac{3}{2} \cdot b^2 \cdot \frac{t}{2} \cdot \csc \theta \cdot \frac{1-2v}{2(1-v)} \]
\[
R(6,6) = a b \cdot 1/3 \cdot (t/2)^3 \cdot \cot^2 \phi + a b \cdot 1/3 \cdot (t/2)^3 \\
(1-2v)/2(1-v) + 1/3 \cdot a^3 \cdot b \cdot t/2 \cdot (1-2v)/2(1-v)
\]

\[
R(7,6) = -a b \cdot 1/3 \cdot (t/2)^3 \cdot \cot \phi \csc \phi + a^2/2 \cdot b^2/2 \cdot t/2 \\
(1-2v)/2(1-v)
\]

\[
R(8,6) = a \cdot b^2/2 \cdot 1/3 \cdot (t/2)^3 \cdot \cot^2 \phi + a \cdot b^2/2 \cdot 1/3 \\
(t/2)^3 \cdot (1-2v)/2(1-v) - a^2/2 \cdot b \cdot 1/3 \cdot (t/2)^3 \\
\cot \phi \csc \phi + a^3/3 \cdot b^2/2 \cdot t/2 \cdot (1-2v)/2(1-v)
\]

\[
R(10,6) = -a^2/2 \cdot b \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v)
\]

\[
R(11,6) = a^2/2 \cdot b \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(12,6) = -a^2/3 \cdot a^3 \cdot b \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v)
\]

\[
R(13,6) = -a^2/2 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) + a^3/3 \\
b \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(14,6) = a^2 \cdot b^2/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(15,6) = -3/4 \cdot a^4 \cdot b \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v)
\]

\[
R(16,6) = -2/3 \cdot a^3 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \\
+ a^4/4 \cdot b \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(17,6) = -a^2/2 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) + 2/3 \cdot a^3 \\
b^2/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(18,6) = 3/2 \cdot a^2 \cdot b^3/3 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(19,6) = -3/4 \cdot a^4 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \\
+ a^5/5 \cdot b \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]

\[
R(20,6) = -a^2/2 \cdot b^4/4 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \\
+ a^3 \cdot b^3/3 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v)
\]
\[R(7,7) = \frac{ab}{3} \cdot \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \cdot \csc^2 \delta + a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \]
\[\frac{(1-2\nu)}{2(1-\nu)} \]

\[R(8,7) = -a \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \cdot \cot \varphi \csc \varphi + a^2/2 \cdot b \]
\[\frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \csc^2 \delta + a^2/2 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \]
\[\frac{(1-2\nu)}{2(1-\nu)} \]

\[R(9,7) = -a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(10,7) = a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(11,7) = -a^2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(12,7) = -a^2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(13,7) = -a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} + a^2/2 \cdot \frac{b^2}{2} \]
\[\frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(14,7) = 2a \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(15,7) = -a^3 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(16,7) = -a^2 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} + a^3/5 \cdot \frac{b^2}{2} \]
\[\frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(17,7) = -a \cdot \frac{b^4}{4} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} + a^2 \cdot \frac{b^3}{3} \]
\[\frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(18,7) = \frac{3}{4} \cdot \frac{ab}{4} \cdot \frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(19,7) = -a^3 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} + a^3/4 \cdot \frac{b^2}{2} \]
\[\frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(20,7) = -a \cdot \frac{b^5}{5} \cdot \frac{t}{2} \cdot \cot \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} + 3 a^2/2 \cdot \frac{b^5}{5} \cdot \frac{t}{2} \cdot \csc \varphi \cdot \frac{(1-2\nu)}{2(1-\nu)} \]

\[R(8,8) = a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \cdot \cot^2 \delta + a \cdot \frac{b^3}{3} \cdot \frac{1}{3} \]
\[\left(\frac{t}{2}\right)^3 \cdot \frac{(1-2\nu)}{2(1-\nu)} - a^2 \cdot \frac{b^2}{2} \cdot \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \]
\[\cot \varphi \csc \varphi + 1/3 \cdot a^3 \cdot b \cdot \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 \csc^2 \delta \]
\[+ a^3/5 \cdot \frac{b^3}{3} \cdot \frac{t}{2} \cdot \left(1-2\nu\right)\frac{2(1-\nu)}{2(1-\nu)} \]
\[R(10,8) = -a^2/2 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[R(11,8) = a^2/2 \cdot b^3/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(12,8) = -2/3 \cdot a^3 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[R(13,8) = a^2/2 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) + a^3/3 \]
\[b^2/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(14,8) = a^2 \cdot b^5/3 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(15,8) = -2/3 \cdot a^5 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[R(16,8) = -2/3 \cdot a^3 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[+ a^4/4 \cdot b^1/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(17,8) = -a^2/2 \cdot b^4/4 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[+ 2/3 \cdot a^3 \cdot b^3/3 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(18,8) = 3/2 \cdot a^2 \cdot b^4/4 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(19,8) = -2/4 \cdot a^5 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) \]
\[+ a^5/5 \cdot b^2/2 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(20,8) = -a^2/2 \cdot b^5/5 \cdot t/2 \cdot \cot \phi \cdot (1-2v)/2(1-v) + a^3 \]
\[b^4/4 \cdot t/2 \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(10,10) = ab \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/2(1-v) + ab \cdot t/2 \cdot \]
\[(1-2v)/2(1-v) \]
\[R(11,10) = -ab \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/2(1-v) \]
\[R(12,10) = a^2b \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/2(1-v) + a^2b \cdot t/2 \]
\[(1-2v)/2(1-v) \]
\[R(13,10) = a \cdot b^2/2 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/2(1-v) + a \cdot b^2/2 \]
\[t/2 \cdot (1-2v)/2(1-v) - a^2/2 \cdot b \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot \]
\[(1-2v)/2(1-v) \]
\[R(14,10) = -a^2 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(15,10) = a^3 b \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a^3 b \cdot \frac{t}{2} \]
\[(1-2v)/2(1-v) \]
\[R(16,10) = a^2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2 \cdot \frac{b^2}{2} \]
\[\frac{t}{2} \cdot (1-2v)/2(1-v) - a^3 \cdot \frac{b}{3} \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(17,10) = a \cdot \frac{b^3}{5} \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a \cdot \frac{b^3}{5} \cdot \frac{t}{2} \]
\[\cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(18,10) = -a b^3 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(19,10) = a^3 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a^3 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \]
\[(1-2v)/2(1-v) - a^4/4 \cdot \frac{b}{t} \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(20,10) = a \cdot \frac{b^4}{4} \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a \cdot \frac{b^4/4}{2} \cdot \frac{t}{2} \]
\[(1-2v)/2(1-v) - a^2/2 \cdot \frac{b^3}{2} \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(11,11) = a b \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(12,11) = -a^2 b \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(13,11) = -a \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + a^2/2 \cdot \frac{b}{t} \]
\[\frac{t}{2} \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(14,11) = a^2 b \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(15,11) = -a^3 b \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \]
\[R(16,11) = -a^2 \cdot \frac{b^2}{2} \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + a^3 \cdot \frac{b}{3} \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \]
R(17,11) = -a \cdot b^3/3 \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v) + a^2 \cdot b^2/2 \\
\quad t/2 \cdot \csc^2 \beta \cdot (1-2v)/2(1-v)

R(18,11) = a \cdot b^3 \cdot t/2 \cdot \csc^2 \beta \cdot (1-2v)/2(1-v)

R(19,11) = -a^3 \cdot b^2/2 \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v) + a^4/b \cdot b \\
\quad t/2 \cdot \csc^2 \beta \cdot (1-2v)/2(1-v)

R(20,11) = -a \cdot b^4/b \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v) + 3/2 a^2 \\
\quad b^3/3 \cdot t/2 \cdot \csc^2 \beta \cdot (1-2v)/2(1-v)

R(12,12) = 4/3 \cdot a^3/b \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) + 4/3 \cdot a^3/b \\
\quad t/2 \cdot (1-2v)/2(1-v)

R(13,12) = a^2 \cdot b^2/2 \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) + a^2 \cdot b^2/2 \\
\quad t/2 \cdot (1-2v)/2(1-v) - 2/3 \cdot a^3/b \cdot t/2 \cdot \cot \beta \cdot \csc \beta \\
\quad (1-2v)/2(1-v)

R(14,12) = -a^2 b^2 \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v)

R(15,12) = 6/a \cdot a^4/b \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) + 6/4 \cdot a^4/b \\
\quad t/2 \cdot (1-2v)/2(1-v)

R(16,12) = 4/3 \cdot a^3 \cdot b^2/2 \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) + 4/3 \cdot a^3 \\
\quad b^2/2 \cdot t/2 \cdot (1-2v)/2(1-v) - 1/3 a^4/b \cdot t/2 \cdot \cot \beta \cdot \csc \beta \\
\quad (1-2v)/2(1-v)

R(17,12) = a^2 \cdot b^3/3 \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) + a^2 \cdot b^3/3 \\
\quad t/2 \cdot (1-2v)/2(1-v) - 4/3 \cdot a^3 \cdot b^2/2 \cdot t/2 \cdot \cot \beta \cdot \csc \beta \\
\quad (1-2v)/2(1-v)

R(18,12) = -a^2 b^3 \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v)

R(19,12) = 6 \cdot a^4/b \cdot b^2/2 \cdot t/2 \cdot \cot^2 \beta \cdot (1-2v)/2(1-v) \\
\quad + 6 \cdot a^4/b \cdot b^2/2 \cdot t/2 \cdot (1-2v)/2(1-v) - 2 \cdot a^5/5 \\
\quad b \cdot t/2 \cdot \cot \beta \cdot \csc \beta \cdot (1-2v)/2(1-v)
\[R(20,12) = a^2 \cdot b^4/h \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a^2 \cdot b^4/h \cdot t/2 (1-2v)/(2(1-v)) - 6 \cdot a^3/3 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) \]

\[R(13,13) = a \cdot b^3/3 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a \cdot b^3/3 \cdot t/2 (1-2v)/(2(1-v)) - a^2 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) + a^3/3 \cdot b \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]

\[R(11,15) = -2a \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) + a^2 \cdot b^2/2 \]
\[t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]

\[R(15,13) = a^3 \cdot b^2/2 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a^3 \cdot b^2/2 \]
\[t/2 \cdot (1-2v)/(2(1-v)) - a^4/4 \cdot a \cdot b \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) \]

\[R(16,13) = a^2 \cdot b^3/5 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a^2 \cdot b^3/3 \]
\[t/2 \cdot (1-2v)/(2(1-v)) - a^3 \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) + a^4/4 \cdot a \cdot b \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]

\[R(17,13) = a \cdot b^4/4 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a \cdot b^4/4 \cdot t/2 \]
\[(1-2v)/(2(1-v)) - a^2/2 \cdot b^3/3 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) + 2 \cdot a^3/3 \cdot b^2/2 \cdot t/2 \cdot \csc^2 \phi \]
\[(1-2v)/(2(1-v)) \]

\[R(18,13) = -3 a \cdot b^4/4 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \cdot (1-2v)/(2(1-v)) \]
\[+ 3 \cdot a^2/2 \cdot b^3/3 \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]

\[R(19,13) = a^3 \cdot b^3/3 \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/(2(1-v)) + a^3 \cdot b^3/3 \]
\[t/2 \cdot (1-2v)/(2(1-v)) - a^4/4 \cdot a \cdot b^2/2 \cdot t/2 \cdot \cot \phi \cdot \csc \phi \]
\[(1-2v)/(2(1-v)) + a^5/5 \cdot b \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/(2(1-v)) \]
\(R(20,15) = a \cdot \frac{b^5}{5} \cdot t/2 \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a \cdot \frac{b^5}{5} \cdot t/2 \cdot \frac{(1-2v)}{2(1-v)} - 2a^2 \cdot \frac{b^4}{4} \cdot \frac{t/2}{\cot \phi \csc \phi} \cdot \frac{(1-2v)}{2(1-v)} + a^3 \cdot \frac{b^3}{3} \cdot \frac{t/2}{\csc^2 \phi \cdot (1-2v)/2(1-v)} \)

\(R(14,14) = 4a \cdot \frac{b^3}{3} \cdot t/2 \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(15,14) = -a^3 b^2 \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(16,14) = -2a^2 \cdot \frac{b^3}{3} \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + 2 \cdot \frac{a^3}{5} \cdot \frac{b^2}{2} \cdot \frac{t/2}{\csc^2 \phi \cdot (1-2v)/2(1-v)} \)

\(R(17,14) = -\frac{1}{2} ab^4 \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + 2 a^2 \cdot \frac{b^3}{3} \cdot t/2 \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(18,14) = 6a \cdot \frac{b^4}{4} \cdot t/2 \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(19,14) = -2 a^3 \cdot \frac{b^3}{3} \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + \frac{1}{2} a^4 \cdot \frac{b^2}{2} \cdot t/2 \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(20,14) = -2a \cdot \frac{b^5}{5} \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} + 3a^2 \cdot \frac{b^4}{4} \cdot t/2 \cdot \csc^2 \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(15,15) = \frac{9}{5} a^5 \cdot b \cdot t/2 \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + \frac{9}{5} a^5 b \cdot t/2 \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(16,15) = 6a^4 \cdot \frac{b^2}{2} \cdot t/2 \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + \frac{6}{3} \cdot a^4 b^2 \cdot t/2 \cdot \frac{(1-2v)}{2(1-v)} - \frac{3}{5} a^5 b \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(17,15) = a^5 b^3 \cdot t/2 \cdot \cot^2 \phi \cdot \frac{(1-2v)}{2(1-v)} + a^3 \cdot \frac{b^3}{3} \cdot \frac{t/2}{\cot \phi \csc \phi} \cdot \frac{(1-2v)}{2(1-v)} - \frac{6}{8} a^4 b^2 \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \)

\(R(18,15) = -a^3 b^3 \cdot t/2 \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)}{2(1-v)} \)
\[R(19,15) = \frac{9}{10} a^5 b^2 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + \frac{9}{10} a^5 b^2 \cdot \frac{t}{2} \cdot \frac{(1-2v)/3}{(1-v)} - \frac{9}{5} a^5 b \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(20,15) = a^3 \cdot b^4/4 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + a^3 \cdot b^4/4 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - 9 a^5/4 \cdot b^3/3 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(16,16) = \frac{4}{9} a^3 b^3 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + \frac{4}{9} a^3 b^3 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - a^4 b^2/2 \cdot t/2 \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[R(17,16) = a^2 b^4/4 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + a^2 b^4/4 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - 5/9 a^3 b^3 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) + \frac{1}{3} a^4 b^2/2 \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/2(1-v) \]
\[R(18,16) = -3a^2 b^4/4 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \cdot \frac{(1-2v)/2}{(1-v)} \]
\[+ a^3 b^3/3 \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot (1-2v)/2(1-v) \]
\[R(19,16) = \frac{1}{3} a^4 b^3 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + \frac{1}{3} a^4 b^3 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - a^5 b^2/2 \cdot t/2 \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) \]
\[+ a^6/6 \cdot b \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot (1-2v)/2(1-v) \]
\[R(20,16) = a^2 b^5/5 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + a^2 b^5/5 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - 7 a^5/3 \cdot b^4/4 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) + 3 a^5/4 \cdot b^3/3 \cdot \frac{t}{2} \cdot \csc^2 \phi \]
\[(1-2v)/2(1-v) \]
\[R(17,17) = a \cdot b^5/5 \cdot \frac{t}{2} \cdot \cot^2 \phi \cdot \frac{(1-2v)/2}{(1-v)} + a \cdot b^5/5 \cdot \frac{t}{2} \cdot \frac{(1-2v)/2}{(1-v)} - a^2/2 \cdot b^4 \cdot \frac{t}{2} \cdot \cot \phi \csc \phi \]
\[(1-2v)/2(1-v) + 4/9 a^3 b^3 \cdot \frac{t}{2} \cdot \csc^2 \phi \cdot (1-2v)/2(1-v) \]
\[R(18,17) = -\frac{3}{5} a \cdot b^{5/5} \cdot t/2 \cdot \cot \phi \csc \phi \cdot (1-2v)/(1-v) + \frac{3}{2} a^{2} b^{k/4} \cdot t/2 \cdot \csc^{2} \phi \cdot (1-2v)/(1-v) \]

\[R(19,17) = a^{3} b^{k/4} \cdot t/2 \cdot \cot^{2} \phi \cdot (1-2v)/(1-v) + a^{3} b^{k/4} \cdot t/2 \cdot \cot \phi \csc \phi \]

\[(1-2v)/(2(1-v)) - 7/12 a^{k} b^{3} \cdot t/2 \cdot \cot \phi \csc \phi \]

\[(1-2v)/(2(1-v)) + 2 a^{5}/5 \cdot b^{2}/2 \cdot t/2 \cdot \csc^{2} \phi \]

\[(1-2v)/(2(1-v)) \]

\[R(20,17) = a \cdot b^{6}/6 \cdot t/2 \cdot \cot^{2} \phi \cdot (1-2v)/(2(1-v)) + a \cdot b^{6}/6 \cdot t/2 \cdot (1-2v)/(2(1-v)) \]

\[-5 a^{2}/2 \cdot b^{5}/5 \cdot t/2 \cdot \cot \phi \csc \phi \cdot (1-2v)/(2(1-v)) + \frac{5}{2} a^{2}/2 \cdot b^{5}/5 \cdot t/2 \cdot \cot \phi \csc \phi \]

\[\csc \phi \cdot (1-2v)/(2(1-v)) + 5 a^{3}/3 \cdot b^{k}/4 \cdot t/2 \]

\[(1-2v)/(2(1-v)) \]

\[R(18,18) = 9 a \cdot b^{5}/5 \cdot t/2 \cdot \csc^{2} \phi \cdot (1-2v)/(2(1-v)) \]

\[R(19,18) = -3 a^{3} \cdot b^{k}/4 \cdot t/2 \cdot \cot \phi \csc \phi \cdot (1-2v)/(2(1-v)) \]

\[+ \frac{3}{2} a^{k}/4 \cdot b^{3}/5 \cdot t/2 \cdot \csc^{2} \phi \cdot (1-2v)/(2(1-v)) \]

\[R(20,18) = -\frac{3}{2} a^{5} b^{5} \cdot t/2 \cdot \cot \phi \csc \phi \cdot (1-2v)/(2(1-v)) + 9/10 \]

\[a^{5} b^{5} \cdot t/2 \cdot \csc^{2} \phi \cdot (1-2v)/(2(1-v)) \]

\[R(19,19) = 9 a^{5}/5 \cdot b^{5}/5 \cdot t/2 \cdot \cot^{2} \phi \cdot (1-2v)/(2(1-v)) + \frac{9}{2} a^{5}/3 \]

\[b^{3}/3 \cdot t/2 \cdot (1-2v)/(2(1-v)) - a^{b} \cdot b^{2}/2 \cdot t/2 \cdot \cot \phi \csc \phi \]

\[\csc \phi \cdot (1-2v)/(2(1-v)) + a^{7}/7 \cdot b \cdot t/2 \cdot \csc^{2} \phi \]

\[(1-2v)/(2(1-v)) \]

\[R(20,19) = a^{3} \cdot b^{5}/5 \cdot t/2 \cdot \cot^{2} \phi \cdot (1-2v)/(2(1-v)) + a^{3} \cdot b^{5}/5 \cdot t/2 \cdot (1-2v)/(2(1-v)) - 10/16 a^{k} \cdot b^{k} \cdot t/2 \cdot \cot \phi \csc \phi \]

\[(1-2v)/(2(1-v)) + 3 a^{5}/5 \cdot b^{3}/3 \cdot t/2 \cdot \csc^{2} \phi \]

\[(1-2v)/(2(1-v)) \]
\[\Gamma(20, 20) = a \cdot b^{7/7} \cdot t/2 \cdot \cot^2 \phi \cdot (1-2v)/2(1-v) + a \cdot b^{7/7} \cdot t/2 \cdot (1-2v)/2(1-v) - 3 \cdot a^2 \cdot b^5/5 \cdot t/2 \cdot \cot \phi \csc \phi \cdot (1-2v)/2(1-v) + 3 \cdot a^3 \cdot b^5/5 \cdot t/2 \cdot \csc^2 \phi \cdot (1-2v)/2(1-v) \]

Note: Each of the elements should be multiplied by a factor
\[
\frac{E(1-v)}{(1+v)(1-2v)}.
\]
The matrix for five degrees of freedom is given here as:

\[
\begin{pmatrix}
\frac{t}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{t}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{t}{2} & \frac{at}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{t}{2} & \frac{at}{2} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{bt}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{t}{2} & \frac{bt}{2} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
APPENDIX IV
For five degrees of freedom per node, similar expression of stiffness matrix \([K]\) are given as,

\[
[K]_{20\times20} = [L]^T_{20\times23} \begin{bmatrix}
2K_s & 0 \\
0 & K_c_{20\times20}
\end{bmatrix} [L]_{23\times20}
\]

where \([L]^T\) is defined as,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
The matrices \([A^{-1}]\) and \([L]\) appearing in equation (3 - 63) are defined as follows,

FOR THREE DEGREES OF FREEDOM PER NODE

\[
[L] = [1, \xi, n, \xi n]
\]

\[
[A^{-1}] = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-\frac{\xi}{a} & \frac{1}{a} & 0 & 0 \\
-\frac{1}{b} & 0 & \frac{1}{b} & 0 \\
\frac{1}{ab} & -\frac{1}{ab} & -\frac{1}{ab} & \frac{1}{ab}
\end{bmatrix}
\]

FOR FIVE DEGREES OF FREEDOM PER NODE

\[
[L] = [1, \xi, n, \xi^2, \xi n, n^2, \xi^2 n, \xi n^2, n^3, \xi^3 n, \xi n^3]
\]

\[
[A^{-1}] = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{3}{a} & -\frac{2}{a} & 0 & \frac{3}{a} & -\frac{1}{a} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{ab} & -\frac{1}{b} & -\frac{1}{a} & \frac{1}{ab} & 0 & \frac{1}{a} & \frac{1}{ab} & \frac{1}{b} & 0 & -\frac{1}{ab} & 0 \\
-\frac{3}{b} & 0 & -\frac{2}{b} & 0 & 0 & 0 & \frac{3}{b} & 0 & -\frac{1}{b} & 0 & 0 \\
2 & \frac{1}{a} & 0 & -\frac{2}{a} & \frac{1}{a} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{ab} & \frac{2}{ab} & 0 & -\frac{3}{ab} & \frac{1}{ab} & 0 & -\frac{3}{ab} & -\frac{2}{ab} & 0 & \frac{3}{ab} & \frac{1}{ab} \\
\frac{3}{ab} & 0 & 2 & \frac{3}{ab} & 0 & -\frac{2}{ab} & \frac{3}{ab} & 0 & \frac{1}{ab} & 3 & \frac{1}{ab} \\
2 & \frac{1}{b} & 0 & 0 & 0 & -\frac{2}{b} & 0 & \frac{1}{b} & 0 & 0 & 0 \\
-\frac{2}{ab} & -\frac{1}{ab} & 0 & \frac{2}{ab} & -\frac{1}{ab} & 0 & \frac{2}{ab} & \frac{1}{ab} & 0 & -\frac{2}{ab} & \frac{1}{ab} \\
-\frac{2}{ab} & 0 & -\frac{1}{ab} & \frac{2}{ab} & 0 & \frac{1}{ab} & \frac{2}{ab} & 0 & -\frac{1}{ab} & -\frac{2}{ab} & 0 & \frac{1}{ab}
\end{bmatrix}
\]
APPENDIX VI

COMPUTER PROGRAM
General

A general computer program had been written to perform the analysis of the skewed sandwich plate described previously. The program is written in Fortran IV language for the IBM-360 model 65 computer system.

The flow charts of the main program together with the subroutine which is used to generate the element stiffness matrix are presented in this section. This program can analyse the sandwich plate with any number of nodes and elements, any type of loading system and any type of boundary conditions only with slight modifications.

The flow chart and the listing with the comment statements make this program self explanatory. A brief description of the program is given below:

a) **Input data**

1. Geometrical dimension of the structure in terms of length of plate in ξ and η directions, thicknesses of the core and faces, skew angle of the plate.
2. Mechanical properties of the plate in terms of Young's modulus of the faces, shear modulus of the core, Poisson's ratios of the core and faces.
3. Number of points on the boundary, nodal boundary conditions, and node numbering system.
4. A subroutine BUILD is used to generate the force matrix
for uniform loading condition. When the concentrated loading is applied to the structure, the force matrix should be read from cards.

b) Output data

1. The complete input data is printed as a check.
2. Displacements are printed at every grid points of the plate.
3. All stresses and moments are printed at every grid points of the plate.
FLOW CHART

START

Read number of elements and nodal points, Poisson's ratio of core and faces, Young's modulus of core and faces, Thickness of core and faces, Skew angle, Node number of each element, The boundary condition on the boundary, Dimension of the plate

Print check on input data

Generate the force matrix for each element and place it in the force matrix of the whole structure

Generate the element stiffness matrix and place it in the total element stiffness matrix, advantage taken of symmetry and band form

All elements considered

No

Yes

Apply boundary and symmetry conditions

Cont
Solution of equilibrium equations for displacements

Print out the displacements vector

Compute the strain at any particular point within the element

Calculate the stresses and moment at this point

All elements considered

Yes

Take an average of the stresses or moments in adjacent element at any nodes

Print out results

END
FLOW CHART
(Generate the element stiffness matrix)

Transfer the information of elements properties for computation of the sandwich element stiffness matrix

Define the elements of the transform matrix which are used for forming the sandwich element

Generate the matrix \([R_c]\) which is the generalised stiffness matrix for the sandwich core

Generate the geometric matrix \([A_c]\) of sandwich core

Compute the stiffness matrix for the core element in the skew co-ordinate system \([K_c]\)

Are any nodes of the core element lying on the boundary?

Yes

Generate the rotation matrix \([Q_c]\)

No

(Cont.)
Rotate the direction of displacement on the boundary points

Generate the geometric matrix \([A_f]\) of the skins

Generate the matrix \([R_f]\) which is the generalised stiffness matrix for the skins

Compute the stiffness matrix for the skin element in the skew co-ordinate system \([K_f]\)

Are any nodes of the skin element lying on the boundary?

No

Yes

Generate the rotation matrix \([Q_f]\)

Rotate the direction of displacement on the boundary points

(Cont.)
Combine skin stiffness and core stiffness to form element stiffness matrix for skew sandwich plates

Print out results

Return to the main program
FINITE ELEMENT ANALYSIS OF SKEW SANDWICH PLATES - BY W. L. KIOK

THIS PROGRAM CAN HANDLE THE SKEW SANDWICH PLATE STRUCTURE WITH DIFFERENT
ELEMENT PROPERTIES AND DIFFERENT BOUNDARY CONDITION AND ALSO ANY
TYPE OF LOADING CONDITION WITH SOME MODIFICATION.

CASE - FOUR SIDES CLAMPED

GRID - 4x4

A(I) - LENGTH OF ELEMENT IN X DIRECTION
B(I) - LENGTH OF ELEMENT IN Y DIRECTION

TC - THICKNESS OF THE CORE
TS - THICKNESS OF THE FACES
EC - YOUNG'S MODULUS FOR THE CORE
ES - YOUNG'S MODULUS FOR THE FACE
VC - POISSON'S RATIO FOR THE CORE
VS - POISSON'S RATIO FOR THE FACE

GC - SHEAR MODULUS OF THE CORE
SS(I,J) - ELEMENT STIFFNESS MATRIX
PL(I) - ELEMENT LOAD VECTOR

NPB(I) - NUMBER OF POINTS ON THE BOUNDARY
NBC(I) - NODAL BOUNDARY CONDITION
STRST(I,J) - STRUCTURAL STIFFNESS MATRIX

FGRDSP(I) - DISPLACEMENT OR LOAD VECTOR
NP1(I) - NODAL POINT 1
NP2(I) - NODAL POINT 2
NP3(I) - NODAL POINT 3
NP4(I) - NODAL POINT 4

NEX - NUMBER OF ELEMENTS IN THE X DIRECTION
NEY - NUMBER OF ELEMENTS IN THE Y DIRECTION

XL - LENGTH OF PLATE IN THE X DIRECTION
YL - LENGTH OF PLATE IN THE Y DIRECTION

ND - HALF WIDTH
NUMN3 - NUMBER OF EQUATIONS
NUMNP - NUMBER OF NODAL POINTS
C NUMEL-NUMBER OF ELEMENTS
C NPROB-NUMBER OF PROBLEMS
C
C**
C
0001 IMPLICIT REAL*8(A-H,O-Z)
C
C COMMON AND DIMENSION STATEMENTS
C THE DIMENSION STATEMENTS HAVE TO BE CHANGED EVERY TIME WE CHANGE THE
C NUMBER OF ELEMENTS
C
C**
C COMMON / REAL/ EC, ES, TC, TS, VC, VS, A, B, ALFP
0002 COMMON / AREA2/NUMNP, NUMEL, NPI, NPJ, NPK, NPL, FRCDSP, LM
0003 DIMENSION A(16), B(16), TC(16), EC(16), VC(16), TS(16), ES(16), VS(16)
0004 DIMENSION SS(20,20), NPL(16), LM(4), NBC(16), NCB(4), STRSTF(125,35),
FRCDSP(125), NPI(16), NPJ(16), NPK(16), NPL(16)
0005 DIMENSION PL(20)
0006 WRITE(3,20)
0007
0008 WRITE(3,18)
C**
C
C DATA INPUT
C READ THE STRUCTURE PROPERTIES
C
C**
0009 READ(1,40) NPROB
0010 1 CONTINUE
0011 NPROB=NPROB-1
0012 READ (1,46) ALFB
0013 READ(1,38) NUMEL, NUMNP, NUMRC, Y1, Y1, NFX, NFX
0014 DO 41 L=1, NUMFL
0015 41 READ(1,36) M, A(M), B(M), TC(M), EC(M), VC(M), TS(M), ES(M), VS(M), NPI(M),
NPK(M), NPL(M)
0016 DO 114 I=1, NUMEL
0017 ES(I)=10.**ES(I)
0018 114 CONTINUE
C**
C
C READ THE NODAL BOUNDARY CONDITIONS ON THE BOUNDARY
C
C**
0019 READ(1,39) (NPB(I), NRC(I), I=1, NUMRC)
0020 KK=0
0021 1111 KK=KK+1
0022 WRITE(3,20)
0023 C READ(1,112)VV
0024 DO 2 I=1,NUMEL
0025 GC=5.*10.*4
0026 FC(I)=2.*(1.+VC(I))*GC
0027 C MODIFY CORE THICKNESS
0028 C MODIFY YOUNGS MODULUS OF THE CORE
0029 TC(I)=1.
0030 TC(I)=TC(I)+TS(I)
0031 EC(I)=EC(I)/TC(I)
0032 2 CONTINUE
0033 C ***************
0034 C PRINT CHECK ON DATA
0035 C ***************
0036 WRITE(3,22) NUMEL,NUMNP,NUMBC,XL,YL,NEX,NEY,ALFB
0037 C WRITE(3,19)
0038 C WRITE(3,19)
0039 C WRITE(3,30)
0040 C WRITE(3,21) (N,A(N),B(N),TC(N),EC(N),VC(N),TS(N),ES(N),VS(N),
0041 C N=1,NUMEL)
0042 C WRITE(3,19)
0043 C WRITE(3,19)
0044 C WRITE(3,19)
0045 C WRITE(3,31)
0046 C WRITE(3,23) (L,NPI(L),NPJ(L),NPK(L),NPL(L),L=1,NUMEL)
0047 C WRITE(3,20)
0048 WRITE(3,24) (NPR(L),NRC(L)),L=1,NUMAC)
0049 C WRITE(3,28)
0050 C WRITE(3,19)
0051 C WRITE(3,19)
0052 C WRITE(3,19)
0053 C ***************
0054 C DEFINE THE NUMBER OF DEGREE OF FREEDOM FOR THE WHOLE STRUCTURE AND THE
0055 C BAND WIDTH OF THE STRUCTURE STIFFNESS MATRIX
0056 C ***************
0057 NUMN3=5*NUMNP
0058 NB=(NEX*3)*5
FORTRAN IV G LEVEL 19 MAIN DATE = 72034 13/32/20 PAGE 0004

0034 WRITE(3,45) NR
0035 DO 5 I=1,NUMN3
0036 FRCDSP(I)=0.
0037 DU_5_ J=1,NR
0038 5 STRSF(I,J)=0.
0039 DO 7 N=1,NUMEL

C***
C
C FORM LOAD VECTOR FOR EACH ELEMENT
C***

0040 DO 70 IP=1,4
0041 II=1+5*(IP-1)
0042 I2=1+I1
0043 I3=1+I2
0044 I4=1+I3
0045 I5=1+I4
0046 PL(I1)=0.
0047 PL(I2)=0.
0048 PL(I3)=(XL*YL)/(NEX*NEY)/4.
0049 PL(I4)=(XL*YL)/(NEX*NEY)/24.*A(N)
0050 PL(I5)=(XL*YL)/(NEX*NEY)/24.*B(N)
0051 IF(IP.EQ.2) PL(I4)=-PL(I4)
0052 IF(IP.EQ.3) PL(I5)=-PL(I5)
0053 IF(IP.EQ.4) PL(I5)=-PL(I5)
0054 70 CONTINUE

C***
C
C FORM ELEMENT STIFFNESS MATRIX
C***

0056 CALL SOLCOR (SS,N)

C***
C
C FORM LOAD VECTOR FOR THE WHOLE STRUCTURE, WHEN APPLYING CONCENTRATED
C LOAD TO THE STRUCTURE, THE FORCE MATRIX SHOULD BE READ FROM CARD
C***
CALL BUILD(LM, NUMNP, LM, FRCDSPL)

CFORMATION OF STIFFNESS MATRIX, ADVANTAGE TAKEN OF SYMMETRY AND BAND FORM

DO 7 L=1,4
 DO 6 LL=1,5
 LX=(LM(L)-1)*5+LL
 LY=(L-1)*5+LL
 DO 6 MM=1,5
 MX=(LM(M)-1)*5+MM
 MY=(M-1)*5+MM
 IF(MX.GT.NB) NB=MX
 IF(MY.GT.NB) NB=MY
 STRTF(LX,MX)=STRTF(LX,MX)+SS(LY,MY)
 CONTINUE

CPRINT OUT THE LOAD VECTOR

WRITE(3,34)
WRITE(3,25)
DO 4 I=1,NUMNP
 11=1+5*(I-1)
 I2=1+11
 I3=1+12
 WRITE(3,29)11,FRCDSPL(I1),FRCDSPL(I2),FRCDSPL(I3)
 WRITE(3,45) NB
 45 FORMAT(2X, 'HALF BAND WIDTH=', I4/

CENFORCE BOUNDARY CONDITIONS
C

DO 10 L=1, NUMBC

M1=(NPE(L)-1)*5+1
M2=M1+1
M3=M2+1
M4=M3+1
M5=M4+1
N=NBC(L)

NN=N-10000
IF(NN)=8,10,10
8
NN=N-10000
IF(NN)=9,12,12
9
NN=N-100
IF(NN)=91,14,14
91
NN=N-10
IF(NN)=92,93,93
92
NN=N-1
IF(NN)=16,94,94
10
STRSF(M1,1)=1.
16
ERDSSP(M1)=0.
94
MX=M1
DO 11 M=2, NB
11
MX=MX-1
STRSF(M1,M)=0.
DO 10 M=2, NB
10
IF(MX.LE.0) GO TO 11
11
STRSF(MX,M)=0.
12
CONTINUE
11
N=NN
10
GO TO 8
9
STRSF(M2,1)=1.
12
ERDSSP(M2)=0.
13
MX=M2
DO 13 M=2, NB
13
MX=MX-1
STRSF(M2,M)=0.
DO 10 M=2, NB
10
IF(MX.LE.0) GO TO 13
13
STRSF(MX,M)=0.
14
CONTINUE
14
N=NN
9
GO TO 9
0118 MX=M3
0119 DO 15 M=2,NB
0120 MX=MX-1
0121 STRSTF(M3,M)=0.
0122 IF(MX.LE.0) GO TO 15
0123 STRSTF(MX,M)=0.
0124 15 CONTINUE
0125 N=NN
0126 GO TO 91
0127 93 STRSTF(M4,M)=1.
0128 FRCDSP(M4)=0.
0129 MX=M4
0130 DO 98 M=2,NB
0131 MX=MX-1
0132 STRSTF(M4,M)=0.
0133 IF(MX.LE.0) GO TO 98
0134 STRSTF(MX,M)=0.
0135 99 CONTINUE
0136 N=NN
0137 GO TO 92
0138 94 STRSTF(M5,M)=1.
0139 FRCDSP(M5)=0.
0140 MX=M5
0141 DO 99 M=2,NB
0142 MX=MX-1
0143 STRSTF(M5,M)=0.
0144 IF(MX.LE.0) GO TO 99
0145 STRSTF(MX,M)=0.
0146 99 CONTINUE
0147 16 CONTINUE
C WRITE(3,42)
C42 FORMAT(12X, 'STRUCTURE STIFFNESS MATRIX AFTER B.C.'/)
C DO 44 I=1,NUMN3
C44 WRITE(3,43)(STRSTF(I,J), J=1,NB)
0148 43 FORMAT(11E10.2)
C
C SOLUTION OF EQUILIBRIUM EQUATIONS FOR DISPLACEMENTS
C
C
CALL SYMSEL(STRSTF, FRCDSP, NUMNP, N8).

PRINT OUT THE DISPLACEMENT OF EACH NODAL POINTS

WRITE(3,33)
WRITE(3,27)
DO 17 I=1, NUMNP
 I1 = I + 5 * (I-1)
 I2 = I + I1
 I3 = I + I2
 I4 = I3 + 1
 I5 = I4 + I
 WRITE(3,26) I, FRCDSP(I1), FRCDSP(I2), FRCDSP(I3)
 FRCDSP(I4), FRCDSP(I5)
WRITE(3,19)
WRITE(3,19)
WRITE(3,35)

COMPUTE STRESSES

CALL STRESS

IF(KK.LE.1) GO TO 1111
IF(NPROB.NE.0) GO TO 1

FORMAT STATEMENT

FORMAT(25X, 'FINITE ELEMENT SOLUTION OF THE SANICH PLATE BENDING PROBLEM')

FORMAT(1HO)
FORMAT(1HL)
FORMAT(23X, 'DIMENSIONS', 22X, 'CORE', 34X, 'SKIN',
 'YOUNG', 'POISSON', 'THICKNESS', 'MODULUS', 'RATIO'
 'STRESS', 'YOUNG', 'POISSON', 'THICKNESS', 'MODULUS', 'RATIO')
ORTRAN IV G LEVEL 19

MAIN

DATE = 72034 13/32/20

@/(13X,13,5X,2F7.2,1X,2(8X,F4.2,5X,F10.0,6X,F3.2,2X)))

0170 22 FORMAT(10X,'NO. ELEMENTS',5X,'NO. NODES',5X,'NO. BOUNDARY NODES',5X,
 3X,'X DIMENSION',5X,'Y DIMENSION',5X,'GRID'/14X,I4,10X,I5,14X,I4,
 15X,F7.2,9X,F7.2,6X,12,4X',12,3X,F7.2)

0171 23 FORMAT(10X,'ELEMENT NO.',3X,'NODE I',3X,'NODE J',3X,'NODE K',3X,'NO
 NODE L'/(14X,I3,7X,4,(14,5X))

0172 24 FORMAT(10X,'NODE NO.',3X,'BOUNDARY CONDITION'/12X,I4,12X,I5)

0173 25 FORMAT(10X,'NODE NO.',3X,'XMOM',4X,'YMOM',3X,'ZLOAD')

0174 26 FORMAT(12X,I4,5E15.6)

0175 112 FORMAT(E20.5)

0176 27 FORMAT(10X,'NODE NO.',6X,'THETA',6X,'THETAY',7X,'THETAZ',7X,'DISPZ')

0177 28 FORMAT(10X,*'NOTE FOR THE BOUNDARY CONDITIONS'/10X,'A 1 IN HUNDREDS INIC
 INDICATES Y FIXED'/10X,'A 1 IN TENS INDICATES Y FIXED')

0178 29 FORMAT(12X,I4,2X,3F8.2)

0179 30 FORMAT(42X,'PROPERTIES OF THE ELEMENTS')

0180 31 FORMAT(17X,'NODAL CONNECTIONS OF THE ELEMENTS')

0181 32 FORMAT(9X,'BOUNDARY CONDITIONS AT THE NODES')

0182 33 FORMAT(24X,'DISPLACEMENTS OF THE NODES')

0183 34 FORMAT(16X,'APPLIED NODAL LOADS')

0184 35 FORMAT(26X,'STRESSES AT THE NODES')

0185 36 FORMAT(14,2F7.4,2(F4.2,F10.1,F4.2),414)

0186 37 FORMAT(I4,3F10.5)

0187 38 FORMAT(3I5,2F6.3,2I4)

0188 39 FORMAT(15,17)

0189 40 FORMAT(12)

0190 46 FORMAT(F10.4)

0191 RETURN

0192 END
SUBROUTINE SYMSOL (A,B,NN,MM)

C THE EQUILIBRIUM EQUATIONS ARE SOLVES BY GAUSSIAN ELIMINATION METHOD,
C THIS SUBROUTINE TAKES ADVANTAGE OF THE FACT THAT THE STIFFNESS MATRIX IS
C STORED IN A COMPACT FORM TO REDUCE THE NUMBER OF NUMERICAL OPERATIONS
C REQUIRED.

C IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(125,35),B(125),C(35)

N=0
N=N+1

DO 3 K=2,MM

C(K)=A(N,K)

A(N,K)=A(N,K)/A(N,1)

DO 6 I=2,MM

I=N+L-1

IF(NN-I)6,4,4

J=0

DO 5 K=L,MM

J=J+1

A(I,J)=A(I,J)-C(I)*A(N,K)

B(I)=B(I)-C(L)*B(N)

6 CONTINUE

GO TO 1

BACK SUBSTITUTION

N=N-1

IF(N)8,11,8

DO 10 K=2,MM

L=N+K-1

10 IF(NM-L)10,9,9

B(N)=B(N)-A(N,K)*B(L)

CONTINUE

GO TO 7

RETURN

END
SUBROUTINE MATINV (A,N)

C
C THIS IS THE SUBROUTINE FOR MATRIX INVERSION
C
C
C IMPLICIT REAL*8(A-H,O-Z)
DIMENSION INDEX(20,2),A(N,N)

DO 108 I=1,N
108 INDEX (I,1) = 0
II = 0

109 AMAX = -1.
DO 110 I=1,N
110 IF (INDEX(I,1)) 110,111,110

111 DO 112 J=1,N
112 IF (INDEX(J,1)) 112,113,112
113 TEMP = DABS(A(I,J))

114 IRW = I
ICOL = J
AMAX = TEMP
CONTINUE

IF (AMAX) 225,115,116
INDEX(ICOL,1) = IRW
IF (IRW=ICOL) 119,118,119

119 DO 120 J=1,N
120 A(ICOL,J) = TEMP
II = II+1
INDEX(II,2) = ICOL

118 PIVOT = A(ICOL,ICOL)
A(ICOL,ICOL) = 1.
PIVOT = 1./PIVOT

DO 121 J=1,N
121 A(ICOL,J) = A(ICOL,J)*PIVOT
DO 122 I=1,N
122 IF (I-ICOL) 123,122,123
123 TEMP = A(I,ICOL)
A(I,ICOL) = 0.
DO 126 I = 1, N
A(I,J) = A(I,J) - A(ICOL,J) * TEMP
CONTINUE
GO TO 109
ICOL = INDEX(II,2)
IROW = INDEX(ICOL,1)
DO 126 I = 1, N
TEMP = A(I,IROW)
A(I,IROW) = A(I,ICOL)
A(I,ICOL) = TEMP
II = II - 1
IF (II) 125, 127, 125
WRITE (3, 1001)
FORMAT ('//2X,'ZERO PIVOT')
CONTINUE
RETURN
END
SUBROUTINE BUILD(LM, M1, PL, V)

C**

C THIS SUBROUTINE ASSEMBLES THE ELEMENT LOAD MATRIX TO FORM THE TATOL
C LOAD MATRIX.

C**

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION LM(4), PL(20), V(M1)

I = LM(1)
J = LM(2)
K = LM(3)
L = LM(4)

DO 1 M = 1, 5
 I1 = 5*I - 5 + M
 J1 = 5*J - 5 + M
 K1 = 5*K - 5 + M
 L1 = 5*L - 5 + M
 VI11 = V(I1) + PL(M)
 VJ11 = V(J1) + PL(M+5)
 VK11 = V(K1) + PL(M+10)
 VLI1 = V(L1) + PL(M+15)
 1 CONTINUE

RETURN
END
SUBROUTINE SOLCOR (SS,N)
C
**
C
C THIS SUBROUTINE GIVES THE SANDWICH ELEMENT STIFFNESS MATRIX FOR FIVE
C DEGREES OF FREEDOM/NODE
C
**
C
IMPLICIT REAL*8(A-H,O-Z)
COMMON/AREA1,FC,ES,TC,TS,VC,VS,A,8,ALFB
DIMENSION A(64),B(64),TC(64),EC(64),VC(64),TS(64),ES(64),VS(64)
DIMENSION SS(20,20),S(20,20),C(8,8),D(8,8),NSC(8)
DIMENSION R(20,20),RA(20,20),P(8,8)
DIMENSION CTM(20,20),STM(8,8),RSS(20,20),RP(8,8)

IF (N.EQ.1) WRITE(*,10)
 10
 NSC(1)=1
 NSC(2)=2
 NSC(3)=6
 NSC(4)=7
 NSC(5)=11
 NSC(6)=12
 NSC(7)=16
 NSC(8)=17
 PI=3.14159265
 ALFA=(PI*ALFB)/180.DO
 AJ=A(N)
 BJ=H(N)
 M=0
 DO 1 1=1,20
 DO j=1,20
 SI(J)=0.
 RI(J)=0.
 RA(J)=0.
 1 SS(I,J)=0.
 C
**
C FORM CORE STIFFNESS
**
C
E=EC(N)
V=VC(N)
T=TC(N)/2.
<table>
<thead>
<tr>
<th>GLEVEL</th>
<th>SOLCOR</th>
<th>DATE = 72076 13/10/37</th>
<th>PAGE 933?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLEVEL 19</td>
<td>SOLCOR</td>
<td>DATE = 72076</td>
<td>PAGE 933?</td>
</tr>
<tr>
<td>CM = (1 - 2 \times V)^2 + \frac{5}{(1 - V)}</td>
<td>CM = \frac{(1 - V) - (1 - 2 \times V)}{(1 + V)} \times (1 - 2 \times V)</td>
<td>CM = -V/(1 - V)</td>
<td>CM = -2\times V \times (1 - 2 \times V)</td>
</tr>
<tr>
<td>COT = \text{COTAN}(\text{ALFA})</td>
<td>CSC = \frac{1}{\text{COS}(\text{ALFA})}</td>
<td>R(1, 1) = AJ**2 \times T \times H \times 2 \times S \times \text{CMM}</td>
<td>R(2, 1) = AJ**2 \times T \times H \times 2 \times S \times \text{CMM}</td>
</tr>
<tr>
<td>R(3, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(4, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>3(1, 1) = AJ**2 \times T \times \text{CMM}</td>
<td>3(1, 1) = AJ**2 \times T \times \text{CMM}</td>
</tr>
<tr>
<td>R(12, 1) = AJ**2 \times T \times \text{CMM}</td>
<td>R(13, 1) = AJ**2 \times T \times \text{CMM}</td>
<td>R(15, 1) = AJ**2 \times T \times \text{CMM}</td>
<td>R(15, 1) = AJ**2 \times T \times \text{CMM}</td>
</tr>
<tr>
<td>R(16, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(17, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
</tr>
<tr>
<td>R(20, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(21, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(22, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
<td>R(22, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}</td>
</tr>
</tbody>
</table>

R(2, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(4, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(8, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(8, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(10, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(12, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(14, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(14, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(12, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(14, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(16, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(16, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(18, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(20, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(22, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(22, 2) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}

R(3, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(5, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(7, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(7, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(9, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(11, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(13, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(13, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(15, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(17, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}

R(2, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(4, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(6, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(6, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(8, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(10, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(12, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(12, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(14, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(16, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(18, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(18, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(20, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(22, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(24, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(24, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}

R(3, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(5, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(7, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(7, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(9, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(11, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(13, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(13, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(15, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(17, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(19, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
R(21, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(23, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(25, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}	R(25, 1) = AJ**2 \times T / 2 \times \text{S} \times \text{CMM}
$k(17, 4)$	$G = 12.24 \times T/6.0 \times C MM$		
$k(15, 3)$	$= A J * 3 B J / 3.0 \times T * C MM$		
$k(10, 3)$	$= A J * 3 B J / 9.0 \times T * 3 C S C * C M M$		
$k(14, 3)$	$= A J * 3 B J / 2.0 \times T * 3 C S C * C S C * C M M$		
$k(13, 3)$	$= A J * 3 B J / 3.0 \times T * 3 C S C * C S C *$		
$k(12, 3)$	$= A J * 3 B J / 3.0 \times T * 3 C S C * C M M$		

$o(14, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(13, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(12, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(11, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(10, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(9, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(8, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(7, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(6, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$
$o(5, 6)$	$= A J * 3 B J / 6.0 \times T * 3 C S C * C M M$

$\Phi = 612.0 \times 792.0$
0 LEVEL 19

SUCGR

DATE = 72076 13/18/37

PAGE 0307

R(1, 1) = 9.0 / 15.0 * AJ * 5 * BJ * 3 * T * COT * 2 * CMM + 9.0 / 15.0 * AJ * 5 * BJ * 3 * T * CMM

R(2, 1) = 6.0 * 15.0 * BJ * 2 * T / 2.0 * COT * CSC * CMM + AJ * 7 * BJ * T / 7.0 * CSC * 2 * CMM

R(2, 2) = AJ * 3 * BJ * 5 / 5.0 * T * COT * 2 * CMM + AJ * 3 * BJ * 5 / 5.0 * T * CMM

R(2, 20) = AJ * BJ * 7 * T / 7.0 * COT * 2 * CMM + AJ * BJ * 7 * T / 7.0 * CMM

R(3, 3) = AJ * 3 * BJ * 5 / 5.0 * T * CSC * 2 * CMM

C0 20 1 = 1, 20
C0 20 J = 1, 20

20 R(1, J) = CM * R(I, J) * 2

J = 1
D0 21 I = 1, 20
J = I + 1

D0 21 J = JM, 20

21 R(1, J) = R(K, I)

IF (K < GT 2) GO TO 31

31 CONTINUE

RA(1, 1) = T
RA(2, 5) = T

RA(3, 9) = 1.0
RA(4, 10) = 1.0
RA(5, 11) = 1.0
RA(6, 1) = T
RA(6, 2) = AJ * T
RA(7, 9) = T

RA(7, 6) = AJ * T
RA(8, 9) = 1.0
RA(8, 10) = AJ
RA(8, 12) = AJ * 2
RA(8, 15) = AJ * 3
RA(9, 10) = T
RA(9, 12) = AJ * 2
RA(9, 15) = 3.0 * AJ * 2
RA(10, 11) = 1.0
RA(10, 13) = AJ
RA(10, 16) = AJ * 2
RA(10, 19) = AJ * 3
RA(11, 1) = T
RA(11, 3) = BJ * T
RA(12, 5) = T
RA(12, 7) = BJ * T
RA(13, 9) = 1.0
RA(13, 11) = 0.0
RA(12,14)=BJ**2
RA(13,15)=BJ**3
RA(14,10)=1
RA(14,13)=BJ
RA(14,17)=BJ**2
RA(14,20)=BJ**3
RA(15,13)=1
RA(15,14)=20*BJ
RA(15,18)=30*BJ**2
RA(16,11)=T
RA(16,2)=AJ*T
RA(16,3)=BJ*T
RA(16,4)=AJ*BJ*T
RA(17,5)=T
RA(17,6)=AJ*T
RA(17,7)=BJ*T
RA(17,8)=AJ*BJ*T
RA(18,9)=1
RA(18,10)=AJ
RA(18,11)=BJ
RA(18,12)=AJ**2
RA(18,13)=AJ*BJ
RA(18,14)=BJ**2
RA(18,15)=AJ**3
RA(18,16)=AJ**2*BJ
RA(18,17)=AJ*BJ**2
RA(18,18)=BJ**3
RA(19,19)=AJ**2*BJ
RA(19,20)=AJ*BJ**3
RA(19,10)=1
RA(19,12)=2*BJ
RA(19,13)=BJ
RA(19,15)=30*AJ**2
RA(19,16)=2*AJ*BJ
RA(19,17)=BJ**2
RA(19,19)=30*AJ**2*BJ
RA(19,20)=31**3
RA(20,11)=1
RA(20,13)=4J
RA(20,14)=2*BJ
RA(20,15)=AJ**2
RA(20,17)=2*AJ*BJ
RA(20,18)=3*BJ**2
RA(20,19)=2
C LEVEL 19

SOLCOR

DATE = 7/2076

13/18/37

PAGE 0000

C

C = (20, 20) = 0

R = (20, 20) = 0 = J @ J = 2

CALL FNINT (R, 20)

C

C = WRITE (5, 11) (R(A, L), J=1, 20)

DO 22 J = 1, 20

D 21 J = 1, 20

S(I, J) = 0.

DO 22 K = 1, 20

DO 28 I = 1, 20

DO 26 J = 1, 20

K(I, J) = S(I, J)

DO 23 J = 1, 20

DO 23 I = 1, 20

S(S, J) = 0.

DO 23 K = 1, 20

SS(I, J) = SS(I, J) + R(I, K) * R(K, J)

DO 24 I = 1, 20

DO 24 J = 1, 20

SS(I, J) = SS(I, J)

C CHECK SUBELEMENT STIFFNESS MATRIX

IF(N,E. P) GO TO 41

IF(N,E.57) GO TO 41

GO TO 42

C 41 CONTINUE

C

C ROTATE THE DIRECTION OF DISPL. ON THE BOUNDARY POINTS

C

C

IF(N,G.57) GO TO 64

DO 53 I = 1, 20

DO 53 J = 1, 20

C 53 CTM(I, J) = 0.

DO 54 I = 1, 20

C 54 CTM(I, J) = 1.

CTM(C, 6) = DSI(N(ALFA)

CTM(7, 7) = DSI(N(ALFA)

CTM(7, 6) = DCO(S(ALFA)

CTM(6, 7) = DCO(S(ALFA)

CTM(9, 9) = DSI(N(ALFA)

CTM(6, 10) = DCO(S(ALFA)
CTM(10,10) = CTM(6,6)
CTM(17,17) = CTM(0,6)
CTM(17,18) = CTM(7,6)
CTM(16,17) = CTM(6,7)
CTM(19,19) = DSIN(ALFA)
CTM(19,20) = DCOS(ALFA)
GO TO 64

64 CONTINUE
DO 57 I = 1, 20
DO 57 J = 1, 20
57 CTM(I, J) = 0
DO 58 I = 1, 20
58 CTM(I, 1) = 1

CTM(1, 1) = DSIN(ALFA)
CTM(2, 2) = CTM(1, 1)
CTM(2, 1) = -DCOS(ALFA)
CTM(1, 2) = DCOS(ALFA)
CTM(4, 4) = DSIN(ALFA)
CTM(4, 5) = DCOS(ALFA)
CTM(11, 11) = CTM(1, 1)
CTM(12, 12) = CTM(1, 1)
CTM(12, 11) = CTM(2, 1)
CTM(11, 12) = CTM(1, 2)
CTM(14, 14) = DSIN(ALFA)
CTM(14, 15) = DCOS(ALFA)

61 CONTINUE
DO 45 J = 1, 20
DO 45 I = 1, 20
45 RSS(I, J) = 0
DO 46 K = 1, 20
45 RSS(I, J) = RSS(I, J) + SS(I, K) * CTM(K, 1)
DO 46 I = 1, 20
DO 46 J = 1, 20
46 SS(I, 1) = RSS[I, 1]
CALL MATINV(CTM, 20)
DO 47 J = 1, 20
DO 47 I = 1, 20
47 RSS(I, J) = 0
DO 47 K = 1, 20
47 RSS(I, J) = RSS(I, J) + CTM(I, K) * SS(K, J)
DO 48 J = 1, 20
DO 48 I = 1, 20
48 SS(I, 1) = RSS[I, 1]
43 IF (NLT n2) GO TO 32
32 CONTINUE
11 FORMAT (2X, 10D12.4)

C FORM SKIN STIFFNESS
C

C
E = ES (N)
V = VS (N)
T = TS (N)
AREA = AJ = BJ
CM = E * T / (1.0 - V ** 2.0)

DO 4 I = 1, 8
DO 4 J = 1, 8
C (I, J) = 0.

4 D (1, J) = 0.
C (1, J) = 1.
C (2, 3) = 1. / AJ
C (3, 1) = -1. / BJ
C (3, 5) = 1. / BJ
C (4, 1) = 1. / AREA
C (4, 3) = -1. / AREA
C (4, 5) = -1. / AREA
C (4, 7) = 1. / AREA
C (5, 2) = 1. / AJ
C (6, 2) = -1. / AJ
C (6, 4) = 1. / AJ
C (7, 2) = -1. / BJ
C (7, 6) = 1. / BJ
C (8, 2) = 1. / AREA
C (8, 4) = -1. / AREA
C (8, 6) = -1. / AREA
C (8, 8) = 1. / AREA

C CHECK NODAL-GENERALIZED DISPLACEMENT MATRIX
IF (No GT 2) GO TO 33

33 CONTINUE
14 FORMAT (8E14.4)
Q1 = (1.0 - V) * DCOTAN(ALFA) ** 2 / 2.
Q2 = (1.0 - V) / 2.0 / DSIN(ALFA) * DCOTAN(ALFA)
Q3 = (1.0 - V) / 2.0 * DCOTAN(ALFA)
Q4 = V * DCOTAN(ALFA)
G LEVEL 1

SCLCOR

DATE = 72076

13/18/37

PAGE 0012

D5=V(1)/(DSIN(1/FA))
D6=1.0-V1/2.0/DSIN(ALFA)
Q7=1.0-V1/2.0/DSIN(ALFA)**2
Q8=(1.0-V1/2.0)

D(2,2)=(-1.0+Q1)*A*BJ
D(3,2)=-Q2*AJ*BJ
D(4,2)=AJ*BJ*2/2.0+AJ*BJ*2/2.0*Q1-AJ**2*BJ/2.0*Q2
D(5,2)=(-Q4-Q3)*AJ*BJ
D(7,2)=Q5*AJ*BJ
D(8,2)=(-AJ*BJ**2*Q4/2.0-AJ*BJ**2*Q3/2.0+AJ**2*BJ/2.0*Q5/2.0)
D(3,3)=AJ*BJ*Q7
D(4,3)=-AJ*BJ**2*Q2/2.0+AJ**2*BJ*Q7/2.0
D(6,3)=AJ*BJ*Q6
D(8,3)=AJ*BJ**2*Q6/2.0
D(6,4)=(-AJ*BJ**2*Q4/2.0-AJ*BJ**2*Q3/2.0+AJ**2*BJ*Q6/2.0)
D(7,4)=AJ*BJ**2*Q5/2.0
D(8,4)=-AJ*BJ**3*Q4/3.0-AJ*BJ**3*Q3/3.0+AJ**2*BJ**2*Q5/4.0+AJ**2*BJ**
D(2,6)=(Q1/Q8+Q8)*AJ*BJ
D(7,6)=(-Q2/Q8)*AJ*BJ
D(16,5)=AJ*BJ**2*Q1/3.0-AJ**2*BJ**2*Q8/2.0-AJ**2*BJ*(Q2/Q8)/2.0
D(7,7)=(Q7/Q8)*AJ*BJ
D(16,7)=-AJ*BJ**2*Q2/Q8/2.0+AJ**2*BJ**2*(Q7/Q8)/2.0
D(16,8)=AJ*BJ**2*Q1/3.0-AJ*BJ**3*Q9/3.0-AJ**2*BJ**2*(Q2/Q8)/1.0

D(0,26)=I=1,8
D(26,26)=J=1,9

26 DI=I,J=CAWD(1,J)
JN=1
IO=25, I=1,9
JM=JM+I
DO 25 J=J4,8

25 G(I,J)=DI(J,J)

C CHECK GENERALIZED FORCE-DISPLACEMENT MATRIX
IF (N>GT-2) GO TO 34

24 CONTINUE

17 FORMAT(8E1.3,5)
DO 5 I=1,9
DO 5 J=1,9

5 P(I,J)=0.0
DO 5 I=1,9
DO 5 J=1,9

CHECK
C
P(I, J) = 0

GO TO K = 1, 8

C P(I, J) = P(I, J) + D(I, K) * C(K, J)

DO 7 I = 1, 8

7 U(J, I) = P(I, J)

DO 8 J = 1, 8

8 P(I, J) = 0.

DO 9 K = 1, 8

8 P(I, J) = P(I, J) + D(I, K) * C(K, J)

IF(N, LE, 8) GO TO 42
IF(N, GE, 57) GO TO 42

GO TO 44

42 CONTINUE

C
C *********************
C
C ROTATE THE DIRECTION OF DISPL. ON THE BOUNDARY POINTS
C
C *********************

C IF(N, GE, 57) GO TO 63

DO 55 I = 1, 8

55 STM(I, J) = 0.

DO 56 J = 1, 8

55 STM(I, I) = 1.

STM(3, 3) = DSIN(ALFA)
STM(4, 4) = STM(3, 3)
STM(4, 3) = -DCOS(ALFA)
STM(3, 4) = DCOS(ALFA)
STM(7, 7) = STM(3, 3)
STM(8, 7) = STM(4, 3)
STM(7, 8) = STM(3, 4)

GO TO 62

63 DO 59 I = 1, 8

59 STM(I, J) = 0.

DO 60 J = 1, 8

60 STM(I, 1) = 1.

STM(I, 1) = DSIN(ALFA)
STM(2, 2) = STM(1, 1)
STM(2, 1) = -DCOS(ALFA)
C LEVEL 1

```
STM(1,2) = DCOS(A) + FA
STM(5,5) = STM(1,1)
STM(6,6) = STM(1,1)
STM(1,5) = STM(2,1)
STM(5,6) = STM(1,2)
```

C CONTINUE
```
DO 49  J = 1, 8
KP(1,J) = 0
DO 49  K = 1, 8
```

```
49  RP(1,J) = RP(1,J) + P(1,K) * STM(K,J)
DO 50  I = 1, 8
DO 50  J = 1, 8
```

```
50  P(I,J) = RP(I,J)
DO 51  I = 1, 8
DO 51  J = 1, 8
```

```
RP(1,J) = 0
DO 51  K = 1, 8
```

```
51  RP(I,J) = RP(I,J) + P(I,K) * STM(K,J)
DO 52  I = 1, 8
DO 52  J = 1, 8
```

```
52  P(I,J) = RP(I,J)
```

```
44  IF(N0.GE.2) GO TO 35
35  CONTINUE
```

C Combine Skin Stiffness and Core Stiffness to Form Element Stiffness

```
C  DO 9  K = 1, 8
    I = NSC(K)
DO 9  L = 1, 8
    J = NSC(L)
    SS(I,J) = SS(I,J) + P(K,L) * 2
```

C CHECK ELEMENT STIFFNESS MATRIX SS
```
IF(N0.GE.2) GO TO 36
```

```
36  CONTINUE
```

```
19  FORMAT(12E10.3)
12  FORMAT(/2X,*ELEMENT STIFFNESS MATRIX SS'//)
100  FORMAT(1H0)
10  FORMAT('1SOLCOR')
RETURN
```
F(1,1)=0.
F(1,1)=1.
F(2,1)=-1./AJ
F(2,3)=1./AJ
F(3,1)=-1./BJ
F(3,5)=1./BJ
F(4,1)=1./AREA
F(4,3)=-1./AREA
F(4,5)=-1./AREA
F(6,7)=1./AREA
F(5,2)=1.
F(6,2)=-1./AJ
F(6,4)=1./AJ
F(7,2)=-1./BJ
F(7,6)=1./BJ
F(8,2)=1./AREA
F(8,4)=-1./AREA
F(8,6)=-1./AREA
D(1,1) = CM
D(1,2) = CM = V
D(1,3) = C
D(2,1) = D(1,2)
D(2,2) = CM
D(2,3) = 0.
D(3,1) = 0.
D(3,2) = 0.
D(3,3) = CM = (1. - V)/2.
DO 19 I = 1, 3
DO 19 J = 1, 4
HP(1,1) = 0.
HP(1,1) = 1.
HP(2,3) = DCOTAN(ALFA)
HP(2,4) = 1./DSIN(ALFA)
HP(3,1) = HP(2,3)
HP(3,2) = HP(2,4)
HP(3,3) = 1.
I = NPI(N)
J = NPJ(N)
K = NPK(N)
L = NPL(N)
L4(1) = 1
LM(2) = J
C***
C ROTATE THE DIRECTION OF DISPL. ON THE BOUNDARY POINTS
C***
0054 IF(N.GE.13) GO TO 63
0095 DO 55 I=1,8
0096 DO 55 J=1,8
0097 55 STM(I,J)=0,
0098 DO 56 I=1,8
0099 56 STM(I,1)=1,
0100 STM(3,3)=DSIN(ALFA)
0101 STM(4,4)=STM(3,3)
0102 STM(4,3)=-DCOS(ALFA)
0103 STM(3,4)=DCOS(ALFA)
0104 STM(7,7)=STM(3,3)
0105 STM(8,8)=STM(3,3)
0106 STM(8,7)=STM(4,3)
0107 STM(7,8)=STM(3,4)
0108 GO TO 62
0109 63 DO 55 I=1,8
DO 59 J = 1, 8

59 STM(1, J) = 0.

DO 60 I = 1, 8

60 STM(1, I) = 1.

STM(1, 1) = DSIN(ALFA)
STM(2, 1) = STM(1, 1)
STM(2, 1) = -DCOS(ALFA)

STM(1, 2) = DCOS(ALFA)
STM(5, 5) = STM(1, 1)
STM(4, 6) = STM(1, 1)
STM(6, 5) = STM(2, 1)
STM(5, 6) = STM(1, 2)

DO 77 I = 1, 8

77 UU(I) = UU(I) * STM(I, J) * UU(J)

DO 78 I = 1, 8

78 UU(I) = UU(I)

DO 8 MM = 1, 4

DO 3 II = 1, 4

DO 3 JJ = 1, 8

DO 10 II = 1, 4

DO 10 JJ = 1, 8

3 BE(11, J) = 0.

BE(1, 2) = 1.

BE(2, 3) = 1.

BE(3, 4) = 1.

IF(MM, EQ. 1) GO TO 4

BE(2, 4) = AJ

IF(MM, EQ. 2) GO TO 4

BE(2, 4) = 0.

BE(4, 8) = A J

BE(1, 4) = B J

BE(3, 8) = R J

IF(MM, EQ. 3) GO TO 4

BE(4, 8) = AJ

BE(2, 4) = AJ

CONTINUE

DO 5 II = 1, 4

DO 5 JJ = 1, 8
0153 C(II,JJ)=0.
0154 DO 5 KK=1,8
0155 C C(II,JJ)=C(II,JJ)+E(II,KK)*F(KK,JJ)
0156 DO 6 II=1,4
0157 EP(II)=0.
0158 DO 6 KK=1,8
0159 6 EP(II)=EP(II)+C(II,KK)*U(KK)
0160 DO 20 II=1,3
0161 EH(II)=0.
0162 DO 20 KK=1,4
0163 20 EH(II)=EH(II)+HP(II,KK)*EP(KK)
0164 DO 7 II=1,3
0165 SG(II)=0.
0166 DO 7 KK=1,3
0167 7 SG(II)=SG(II)+U(II,KK)*EH(KK)
0168 WRITE(3,11)(M,SG(1),SG(2),SG(3))
0169 110 FORMAT(1UX,'STRESS IN CORNERS AT ELEMENT NO.',I4)
0170 NPL=M=NPL(M)+1
0171 SIGX(M)=SIGX(M)+SG(1)
0172 SIGY(M)=SIGY(M)+SG(2)
0173 SIGXY(M)=SIGXY(M)+SG(3)
0174 DO 9 M=1,NUMNP
0175 NN=NPL(M)
0176 AN=M*FLOAT(NN)
0177 SIGX(M)=-SIGX(M)/AN
0178 SIGY(M)=-SIGY(M)/AN
0179 SIGXY(M)=-SIGXY(M)/AN
0180 EMX(M)=SIGX(M)*ATSM

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0181</td>
<td>EMY(M) = SIGY(M) * ATS * ATC</td>
</tr>
<tr>
<td>0182</td>
<td>EMXY(N) = SIGXY(N) * ATS * ATC</td>
</tr>
<tr>
<td>0183</td>
<td>FACTS = ((EMX(M) + EHY(M)) * (EMX(M) - EHY(M)) / 4 + EMXY(M) * EMXY(M)) * 3.5</td>
</tr>
<tr>
<td>0184</td>
<td>EMM1(M) = (EMX(M) + EMY(M)) / 2 * FACTS</td>
</tr>
<tr>
<td>0185</td>
<td>EMM2(M) = (EMX(M) + EMY(M)) / 2 * FACTS</td>
</tr>
<tr>
<td>0186</td>
<td>IF (EMX(M) EQ EMY(M)) GO TO 113</td>
</tr>
<tr>
<td>0187</td>
<td>ARGG = -Z * EMXY(M) / (EMX(M) - EMY(M))</td>
</tr>
<tr>
<td>0188</td>
<td>ARG(M) = 0.5 * DATAN(ARGG) * 180.0D0 / PI</td>
</tr>
<tr>
<td>0189</td>
<td>GO TO 9</td>
</tr>
<tr>
<td>0190</td>
<td>113 ARG(M1) = 45</td>
</tr>
<tr>
<td>0191</td>
<td>CONTINUE</td>
</tr>
<tr>
<td>0192</td>
<td>WRITE(3,10)</td>
</tr>
<tr>
<td>0193</td>
<td>WRITE(3,11)(M, SIGX(M), SIGY(M), SIGXY(M), M = 1, NUMNP)</td>
</tr>
<tr>
<td>0194</td>
<td>10 FORMAT(10X, 'NODE NO.', 6X, 'SIGX', 9X, 'SIGY', 9X, 'SIGXY')</td>
</tr>
<tr>
<td>0195</td>
<td>11 FORMAT(12X, I4, 2X, 3E15.6)</td>
</tr>
<tr>
<td>0196</td>
<td>WRITE(3,111)</td>
</tr>
<tr>
<td>0198</td>
<td>WRITE(3,112)(M, EMX(M), EHY(M), EMXY(M), EMM1(M), EMM2(M), ARG(M), M = 1, NUMNP)</td>
</tr>
<tr>
<td>0199</td>
<td>112 FORMAT(15X, I4, 2X, 6E15.6)</td>
</tr>
<tr>
<td>0200</td>
<td>RETURN</td>
</tr>
<tr>
<td>0201</td>
<td>END</td>
</tr>
</tbody>
</table>
SUBROUTINE SOLCO3 (SS, N)

THIS SUBROUTINE GIVES THE SANDWICH ELEMENT STIFFNESS MATRIX FOR THICK DEGREES OF FREEDOM/NODE

C***
C IMPLICIT REAL*8(A-H, O-Z)
C
COMM/AREA1, ES, ES, TC, TS, VC, VS, A, B, ALFB
DIMENSION A(64), B(64), TC(64), ES(64), VS(64)
DIMENSION SS(12, 12), S(12, 12), N(3, 3), NSC(19)
DIMENSION R(12, 12), RA(12, 12), P(8, 8)
DIMENSION CTM(12, 12), STM(8, 8), RSS(12, 12), RP(9, 9)

IF (N.EQ.1) WRITE(3,10)

NSC(1) = 1
NSC(2) = 2
NSC(3) = 4
NSC(4) = 5
NSC(5) = 7
NSC(7) = 10
NSC(6) = 8
NSC(8) = 11
PI = 3.14159265
ALFA = (PI * ALFB) / 180.0
AJ = A(N)
BJ = B(N)
M = 0
DI 1 I = 1, 12
DJ 1 J = 1, 12
S(I, J) = 0
R(I, J) = 0
RA(I, J) = 0
SS(I, J) = 0

C***
C FORM CORE STIFFNESS
C***

E = ES(N)
V = VS(N)
T = TC(N) / 2.
9000 20 \(R(I,J) = \sin^2(I,J) \)
9010 JM = 1
9020 DO 21 I = 1, 12
9030 JM = JM + 1
9040 DO 21 J = JM, 12
9050 21 \(R(I,J) = R(I,J) \)
9060 IF (N.GT.2) GO TO 31
9070 WRITE(3,100)
9080 DO 30 I = 1, 12
9090 30 WRITE(3,111) \(R(I,J), J = 1, 12 \)
9100 31 CONTINUE
9101 RA(1,1) = 1./T
9102 RA(2,1) = -1./AJ/T
9103 RA(2,4) = 1./AJ/T
9104 RA(3,1) = -1./T/BJ
9105 RA(3,7) = 1./BJ/T
9106 RA(4,1) = 1./(AJ*BJ*T)
9107 RA(4,4) = -RA(4,1)
9108 RA(4,7) = -RA(4,1)
9109 RA(4,10) = RA(4,1)
9110 RA(5,2) = 1./T
9111 RA(6,2) = -1./(AJ*T)
9112 RA(6,5) = -RA(6,2)
9113 RA(7,2) = 1./(BJ*T)
9114 RA(7,8) = -RA(7,2)
9115 RA(8,2) = 1./(AJ*BJ*T)
9116 RA(8,5) = -RA(8,2)
9117 RA(8,8) = -RA(8,2)
9118 RA(8,11) = RA(8,2)
9119 RA(9,3) = 1.
9120 RA(10,3) = -1./AJ
9121 RA(10,6) = 1./AJ
9122 RA(11,3) = -1./BJ
9123 RA(11,9) = 1./BJ
9124 RA(12,3) = 1./(AJ*BJ)
9125 RA(12,6) = -RA(12,3)
9126 RA(12,9) = -RA(12,3)
9127 DO 22 J = 1, 12
9128 DO 22 I = 1, 12
9129 DO 22 I = 1, 12
9130 S(I,J) = 0.
9131 DO 22 K = 1, 12
TRAN IV G LEVEL 19

SOLCO3

DATE = 7/20/24
13/32/20

132 22 S(I,J) = S(I,J) + 8(I,K) * RA(K,J)

133 DO 28 I = 1, 12

134 DJ 28 J = 1, 12

135 28 R(J,I) = S(I,J)

136 DO 23 J = 1, 12

137 DO 23 I = 1, 12

138 SS(I,J) = 0.

139 DO 23 K = 1, 12

140 23 SS(I,J) = SS(I,J) + 8(I,K) * RA(K,J)

141 DO 24 J = 1, 12

142 DO 24 I = 1, 12

143 SS(I,J) = SS(I,J)

C CHECK SUBELEMENT STIFFNESS MATRIX

144 IF(NKLE.EQ.8) GO TO 41

145 IF(NKGE.EQ.57) GO TO 41

146 GO TO 43

147 41 CONTINUE

C ROTATE THE DIRECTION OF DISPL. ON THE BOUNDARY POINTS

148 IF(NKGE.EQ.57) GO TO 64

149 DO 53 I = 1, 12

150 DO 53 J = 1, 12

151 53 CTM(I,J) = 0.

152 DO 54 I = 1, 12

153 54 CTM(I,1) = 1.

154 CTM(4,4) = DSIN(ALFA)

155 CTM(5,5) = CTM(4,4)

156 CTM(5,4) = - DCOS(ALFA)

157 CTM(4,5) = DCOS(ALFA)

158 CTM(10,1) = CTM(4,4)

159 CTM(10,1) = CTM(4,4)

160 CTM(11,1) = CTM(4,4)

161 CTM(11,1) = CTM(4,4)

162 GO TO 61

163 64 DO 57 I = 1, 12

164 DO 57 J = 1, 12

165 57 CTM(I,J) = 0.

166 DO 58 I = 1, 12

167 58 CTM(I,1) = 1.

168 CTM(1,1) = DSIN(ALFA)

169 CTM(2,2) = CTM(1,1)

170 CTM(2,1) = - DCOS(ALFA)
171 CMT(1,2) = DCOS(ALFA)
172 CMT(7,7) = CMT(1,1)
173 CMT(8,8) = CMT(1,1)
174 CMT(1,7) = CMT(2,1)
175 CMT(7,8) = CMT(1,2)
176 CONTINUE
177 DO 45 I = 1, 12
178 DO 45 I = 1, 12
179 RSS(I, J) = 0.
180 DO 45 K = 1, 12
181 45 RSS(I, J) = RSS(I, J) + SS(I, K) * CMT(K, J)
182 DO 46 I = 1, 12
183 DO 46 J = 1, 12
184 46 SS(I, J) = RSS(J, I)
185 DO 47 J = 1, 12
186 DO 47 I = 1, 12
187 RSS(I, J) = 0.
188 DO 47 K = 1, 12
189 47 RSS(I, J) = RSS(I, J) + SS(I, K) * CMT(K, J)
190 DO 48 J = 1, 12
191 DO 48 I = 1, 12
192 48 SS(I, J) = RSS(I, J)
193 CONTINUE
194 IF(N, NGE.2) GO TO 32
195 DO 13 I = 1, 12
196 WRITE(3, 11) (SS(I, J), J = 1, 12)
197 CONTINUE
198 FORMAT(2X, 12E10.3)
3109 C
3110 C***
3111 C FORM SKIN STIFFNESS
3112 C***
3113 C
3114 E = ES(N)
3115 V = VS(N)
3116 T = TS(N)
3117 AREA = A * RB
3118 CM = E * T / (1.0 - V ** 2.0)
3119 DO 4 I = 1, 8
3120 DO 4 J = 1, 3
3121 C(I, J) = 0.
3122 D(I, J) = 0.
3123 C(I, J) = 1.
C(2,1) = -1.0/AJ
C(2,3) = 1.0/AJ
C(3,1) = -1.0/BJ
C(3,5) = 1.0/BJ
C(4,1) = 1.0/AREA
C(4,3) = -1.0/AREA
C(4,5) = -1.0/AREA
C(4,7) = 1.0/AREA
C(5,2) = 1.0/AJ
C(6,4) = 1.0/AJ
C(7,2) = -1.0/BJ
C(7,4) = 1.0/BJ
C(8,2) = 1.0/AREA
C(8,4) = -1.0/AREA
C(8,6) = -1.0/AREA
C(8,8) = 1.0/AREA

C
CHECK NODAL-GENERALIZED DISPLACEMENT MATRIX
TE (N.GT.2) GO TO 23

WRITE(3,100)
DO 15 1 = 1,8
WRITE(3,141)(C(I,J),J=1,8)
CONTINUE
FORMAT(9E14.4)
Q1 = (1.0-V1)*DCOTAN(ALFA)*V2/2.
Q2 = (1.0-V1)/2.0/DSIN(ALFA)*DCOTAN(ALFA)
Q3 = (1.0-V1)/2.0/DCOTAN(ALFA)
Q4 = V1*DCOTAN(ALFA)
Q5 = V1/DSIN(ALFA)
Q6 = (1.0-V1)/2.0/DSIN(ALFA)
Q7 = (1.0-V1)/2.0/DSIN(ALFA)*V2
Q8 = (1.0-V1)/2.
Q9 = (1.0+Q1)*AJ*B
Q10 = -Q2*AJ*BJ
Q11 = AJ*BJ**2/2.*Q1-AJ*BJ**2/2.*Q1-AJ**2*BJ/2.*Q2
Q12 = (-Q4-Q3)*AJ*BJ
Q13 = Q5*AJ*BJ
Q14 = AJ*BJ**2*Q4/2.0-AJ*BJ**2*Q3/2.0+AJ**2*BJ*Q5/2.0
Q15 = AJ*BJ**2*Q7/2.
Q16 = AJ*BJ*Q7
Q17 = AJ*BJ**2*Q2/2.+AJ**2*BJ*Q7/2.
Q18 = AJ*BJ*Q6
Q19 = AJ*BJ**2*Q6/2.0

$D(17,6) = (Q1/Q8+Q8)*A*J*B*I$.

$D(18,6) = (Q2/Q8)*A*J*B*I$.

$D(17,7) = (Q7/Q8)*A*J*B*I$.

$D(17,8) = (Q1/Q8+Q8)*A*J*B*I$.

$D(18,8) = (Q2/Q8)*A*J*B*I$.

$D(17,9) = (Q7/Q8)*A*J*B*I$.

$C(1, J) = C*E*D(I, J)$

J = M

DO 25 I = 1, 8

DO 25 J = 1, 8

DO 25 M = 1

DO 25 K = 1

IF (N LT 2) GO TO 34

WRITE (3, 100)

WRITE (3, 17) (D(I, J), J = 1, 8)

CONTINUE

FORMAT (GE13.5)

DO 5 I = 1, 8

DO 5 J = 1, 8

P(I, J) = 0.

DO 6 I = 1, 8

DO 6 J = 1, 8

P(I, J) = 0.

DO 6 K = 1, 8

P(I, J) = P(I, J) + D(I, J)*C(K, J)

DO 7 J = 1, 8

DO 7 I = 1, 8

D(I, J) = P(I, J)

DO 8 J = 1, 8

DO 8 I = 1, 8

P(I, J) = 0.

DO 8 K = 1, 8

P(I, J) = P(I, J) + D(I, K)*C(K, J)

IF (N LE 8) GO TO 42.
ORTRAN IV G LEVEL 19

SULCO3

DATE = 72034 15/2/20

IF(N,GE,57) GO TO 42

GO TO 44

CONTINUE

C ROTATE THE DIRECTION OF DISPL ON THE BOUNDARY POINTS

C===

IF(N,GE,57) GO TO 63

DO 55 I=1,8

DO 55 J=1,8

STM(I, J)=0.

STM(1, I)=1.

STM(3, J)=DSIN(ALFA)

STM(4, I)=STM(3, 3)

STM(4, 2)=-DCOS(ALFA)

STM(3, 3)=DCOS(ALFA)

STM(7, J)=STM(3, 3)

STM(8, 3)=STM(3, 3)

STM(8, 4)=STM(4, 3)

STM(7, 8)=STM(3, 4)

STM(7, 1)=STM(3, 1)

GO TO 62

DO 59 I=1,8

DO 59 J=1,8

STM(I, J)=0.

STM(1, 8)=1.

STM(1, 2)=DSIN(ALFA)

STM(2, 1)=STM(1, 1)

STM(2, 1)=DCOS(ALFA)

STM(1, 2)=STM(1, 1)

STM(5, 1)=STM(1, 1)

STM(6, 3)=STM(1, 1)

STM(5, 3)=STM(1, 1)

CONTINUE

DO 49 I=1,8

DO 49 J=1,8

NP(I, J)=0.

DO 49 K=1,8

NP(I, J)=NP(I, J)+P(I, K)*STM(K, J)

DO 50 I=1,8

DO 50 J=1,8

P(I, J)=P(I, J)*STM(I, J)
DO 51 I=1,8
51 RP(I,J)=RP(I,J)+P(I,K)*ST(K,J)
DO 52 I=1,8
DO 52 J=1,8
P(I,J)=RP(I,J)
CONTINUE
IF(N,GE,2) GO TO 35
DO 27 I=1,8
WRITE(3,17)(P(I,J),J=1,8)
CONTINUE

C
C***
C COMBINE SKIN STIFFNESS AND CORE STIFFNESS TO FORM ELEMENT STIFFNESS
C***

DO 350 K=1,8
I=NSC(K)
DO 348 L=1,8
J=NSC(L)
SS(I,J)=SS(I,J)+P(K,L)*2.
CONTINUE
WRITE(3,100)
WRITE(3,12)
DO 18 L=1,12
WRITE(3,11)(SS(I,J),J=1,12)
CONTINUE
FORMAT(12E10.2)
FORMAT(/2X,'ELEMENT STIFFNESS MATRIX SS')
FORMAT(1HO)
FORMAT('ISOLCOR')
RETURN
END