APPLICATION OF THE PERTURBATION METHOD

TO THE SMALL AND LARGE DEFORMATION

PROBLEMS OF CLAMPED PLATES

by

Chun-Chow Eric CHAN

A thesis submitted to the Faculty of Graduate Studies through the Department of Civil Engineering in partial fulfillment of the requirements for the Degree of Master of Applied Science at the University of Ottawa, Ottawa, Canada.

March, 1970

© Chun-Chow Eric Chan 1971
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LISTS OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Linear Analysis</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Nonlinear Analysis</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER III FORMULATION OF EQUATIONS</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Assumptions</td>
<td>11</td>
</tr>
<tr>
<td>3.2 The Governing Partial Differential</td>
<td>12</td>
</tr>
<tr>
<td>Equations</td>
<td></td>
</tr>
<tr>
<td>3.3 The Governing Differential Equation for</td>
<td>22</td>
</tr>
<tr>
<td>Small Deflection Problem of Radially</td>
<td></td>
</tr>
<tr>
<td>Symmetric Loaded Circular Plate</td>
<td></td>
</tr>
<tr>
<td>3.4 The Governing Differential Equation for</td>
<td>23</td>
</tr>
<tr>
<td>Small Deflection Problem of Skewed Plate</td>
<td></td>
</tr>
<tr>
<td>CHAPTER IV METHOD OF SOLUTION</td>
<td>26</td>
</tr>
<tr>
<td>4.1 The Perturbation Procedure</td>
<td>26</td>
</tr>
<tr>
<td>4.2 Solution of the Linear Small Deflection</td>
<td>28</td>
</tr>
<tr>
<td>Problem</td>
<td></td>
</tr>
<tr>
<td>(First Order Approximation)</td>
<td></td>
</tr>
<tr>
<td>4.3 Solution to the Nonlinear Large Deflection Problem</td>
<td>31</td>
</tr>
<tr>
<td>(Second and Higher Order Approximations)</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Displacements, Bending Moments and Stress Relationships 35

CHAPTER V RATE OF CONVERGENCE OF THE PERTURBATION METHOD OF SUCCESSIVE APPROXIMATIONS 40

5.1 Linear Small Deflection Problem 40

5.2 Nonlinear Large Deflection Problem 49

CHAPTER VI INFLUENCE OF ELASTIC SUPPORT ON THE LINEAR AND NONLINEAR ANALYSES OF CLAMPED PLATES 58

6.1 Linear Analysis - Deflection and Moments.. 58

6.2 Nonlinear Analysis - Deflection and Total Stresses 74

6.3 Location of Maximum Moments or Stresses... 82

CHAPTER VII CONCLUSIONS .. 83

APPENDIX A ASSUMED DISPLACEMENT FUNCTIONS 85

APPENDIX B FLOW CHART AND COMPUTER PROGRAMS 88

REFERENCES ... 113

NOMENCLATURE .. 117
ABSTRACT

In the first part of the work, extensive investigations into the application of the perturbation method of successive approximations to the analyses of plate problems are carried out. The rate and pattern of convergence of the method is studied by applying it to analyse small deflection of clamped skewed plates and both small as well as large deflection problems of clamped circular, elliptical and rectangular plates under uniformly distributed loads. Linear and nonlinear results are obtained for each stage of the successive approximation process and for successive increments of the undetermined coefficients in the plate displacement functions. The effects of the assumed displacement functions, plate aspect ratios and additional parameters such as the elastic foundation modulus on the pattern of convergence are also investigated. Based on these results, a discussion is made on the convergence of the method both in small and large deflection range. It is shown that the rate of convergence depends largely on the assumed displacement functions and decreases significantly from the small to the large deflection theory. The range of variation of the linear and nonlinear results in deflection is plotted and compared with available data. It is found that the method yields results which closely agree with existing values by other investigators.
In the second part of the work, the perturbation technique is then used to investigate the effect of a Winkler type elastic support on the bending of clamped circular, elliptical, rectangular and skewed plates. In case of elliptical plates the nonlinear large deflection problem is also examined. Numerical and graphical results are presented. Variation of centre deflection, maximum centre and edge moments and stresses for such plates with elastic support for different aspect ratios, and changes in skew are shown. The influence of elastic support, plate aspect ratio and angle of skew on the design of plates is examined and discussed.
ACKNOWLEDGEMENTS

The writer is indebted to Dr. S. F. Ng for his continuous guidance and advice in the preparation of this work and his generous help and valuable criticisms throughout its development.

The financial assistance given by the National Research Council of Canada under Grant No. A-4357 is gratefully acknowledged.
List of Tables

<table>
<thead>
<tr>
<th>Table 5-1</th>
<th>Variation of the Maximum Deflection Coefficient α with the Number of Terms in the Lateral Deflection Function w_1 for Rectangular Plates with Built-in Edges</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5-2</td>
<td>Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Circular and Elliptical Plates with Built-in Edges</td>
<td>43</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Elastically Supported Elliptical Plates with Built-in Edge for Aspect Ratio of 1.5</td>
<td>44</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Elastically Supported Elliptical Plates with Built-in Edges for Aspect Ratio of 2</td>
<td>45</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Variation of the Maximum Deflection Coefficient γ with the Number of Terms in the Lateral Deflection Function w_1 for Skewed Plates with Built-in Edges for Aspect Ratio of 1.5</td>
<td>46</td>
</tr>
<tr>
<td>Table 5-6</td>
<td>Variation of the Maximum Deflection Coefficient γ with the Number of Terms in the Lateral Deflection Function w_1 for Skewed Plates with Built-in Edges for Aspect Ratio of 2</td>
<td>47</td>
</tr>
<tr>
<td>Table 5-7</td>
<td>Variation of the Maximum Deflection Coefficient γ with the Number of Terms in the Lateral Deflection Function w_1 for Skewed Plates with Built-in Edges for Aspect Ratio of 2</td>
<td>48</td>
</tr>
<tr>
<td>Table 5-8</td>
<td>Linear and Nonlinear Deflection Coefficients γ_1 and γ_3 in Dimensionless Load Expression for Rectangular Plates</td>
<td>51</td>
</tr>
<tr>
<td>Table 5-9</td>
<td>Linear and Nonlinear Deflection Coefficients γ_4 and γ_3 in Dimensionless Load Expression for Elliptical Plates</td>
<td>52</td>
</tr>
</tbody>
</table>
Table 6-1 Coefficient w for the Maximum Deflection at Centre for Elastically Supported Circular Plates 60

Table 6-2 Maximum Centre and Edge Moment Coefficients c and m for Elastically Supported Circular Plates 61
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1</td>
<td>In-plane Forces on Plate Element</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Moments and Shear Forces on Plate Element</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>The Rectangular and Skewed Coordinate Systems</td>
<td>24</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Square Plate with Built-in Edges</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Rectangular Plate of Aspect Ratio 1.5 with Built-in Edges</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5-3</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Rectangular Plate of Aspect Ratio 2 with Built-in Edges</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5-4</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Circular Plate with Built-in Edges</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5-5</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Elliptical Plate of Aspect Ratio 1.5 with Built-in Edges</td>
<td>56</td>
</tr>
<tr>
<td>Figure 5-6</td>
<td>Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Elliptical Plate of Aspect Ratio 2 with Built-in Edges</td>
<td>56</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>Variation of the Maximum Centre Deflection with Elastic Support and Aspect Ratio for Elliptical Plates</td>
<td>63</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>Variation of the Maximum Centre Deflection with Elastic Support and Aspect Ratio for Rectangular Plates</td>
<td>64</td>
</tr>
</tbody>
</table>
Figure 6-3 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, $R = 1$ 65

Figure 6-4 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, $R = 1.5$ 66

Figure 6-5 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, $R = 2$ 67

Figure 6-6 Variation of Centre and Maximum Edge Moments with Elastic Support and Aspect Ratio for Elliptical Plates 69

Figure 6-7 Variation of Centre and Maximum Edge Moments with Elastic Support and Aspect Ratio for Rectangular Plates 70

Figure 6-8 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, $R = 1$ 71

Figure 6-9 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, $R = 1.5$ 72

Figure 6-10 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, $R = 2$ 73

Figure 6-11 Variation of Centre Deflection with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 1.5$ 76

Figure 6-12 Variation of Centre Deflection with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 2$ 77

Figure 6-13 Variation of Total Centre and Maximum Edge Stresses with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 1.5$ 80

Figure 6-14 Variation of Total Centre and Maximum Edge Stresses with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 2$ 81
CHAPTER I

INTRODUCTION

Plates are frequently used as components of large structures such as fluid containers (circular, elliptical and rectangular plates), building and bridge floor systems (rectangular and skewed slabs) and aircraft wing panels (skewed plates). In most cases, the deflections of the plates used in the aforementioned structures are usually rather small in comparison with the thickness of the plate, so that for a proper design of such plates, only a small deflection (linear) theory is required. Nevertheless, movable structures such as aircraft and railroad rolling stock belong to a class in which payload is being increased at the expense of dead weight for reasons of economy. This situation has been intensified in recent years through the utilization of materials with thin sections and high elastic strengths. To gain full advantage from these materials in aircraft, railroad and related structures requires efficient design criteria. For example, the large deflection (nonlinear) theory has recently been applied to the design of railroad fluid-containing hopper cars (1) whose side sheets are made of U. S. S. Tenelon stainless steel (70,000 p.s.i. yield strength). The use of a more accurate theory made it possible to employ side sheets
thinner than those that would have been required based on the small deflection analysis. Occasionally environmental and functional phenomena may render structural plates with elastic supports. As a result, the deflections and stresses of structural plates will be reduced. Examples of plates resting on elastic support are plates on springs, slabs on grade, airport runways, mat foundations and ice sheets in frozen lakes and rivers.

Many different methods are now available for the linear analysis of clamped plates subjected to uniform normal loadings. Some of these methods are cited by Timoshenko and Woinowsky-Krieger (2). With the exception of clamped circular and elliptical plates where exact solutions are known, only approximate solutions are available for other plate shapes with similar boundary conditions. For clamped skewed plates, Morley (3) has presented results for a very limited number of skew angles and aspect ratios. Recently, due to the work of Kennedy (4) and (5) deflections as well as principal stresses for such plates have been determined for various skew angles and aspect ratios both analytically and experimentally.

For the nonlinear analysis, it can be shown that large deflection of elastic plates are governed by two coupled nonlinear partial differential equations first formulated by Von Karman (6). Approximate solutions for such equations
have been obtained, for example, for the case of the clamped rectangular plates by Way (7) using the Rayleigh-Ritz technique and by Levy (8) and (9) who substituted a double Fourier Series solution into the partial differential equations and evaluated the coefficients. The Ritz method has also been used to solve the problem of large deflection of elliptical plates by Weil and Newmark (10). Invariably, the methods of analysis employed are extremely laborious and require considerable computations.

More recently, a number of investigators notably Chien (11), (12), Nash (13) and Huang (14) have adopted a method of successive approximations based on the small perturbation technique and have applied the method quite successfully to obtain large deflection solutions of uniformly loaded circular, elliptical and rectangular plates. In comparison with the Ritz and Fourier Series approach of analysis, the method of successive approximations is simpler to apply and involves much less computational effort. Unfortunately, in all the successive approximation solutions cited above, approximations beyond the third are not considered and invariably solutions are only given from a six-term algebraic assumed displacement functions which are similar to those employed in this thesis. No mention is made of the degree of accuracy of the solution or the pattern of convergence of the method as the number of unknown coefficients in the assumed displacement functions is increased.
The work of this thesis consists of:

(i) To investigate the rate and pattern of convergence of the method of successive approximations based on the small perturbation technique as applied to linear and nonlinear plate problems. The method is applied to analyse small and large deflection problems of clamped elliptical and rectangular plates under uniform normal loads. Small deflection problem of skewed plates is also studied. Linear and nonlinear results are obtained for each stage of the successive approximation process and for successive increments of the undetermined coefficients in the plate displacement functions. Results so obtained are compared with those by other investigators (2), (3), (4), (7), (8), (9) and (10).

The effect of an elastic support on the small deflection problem of uniformly loaded clamped circular, elliptical, rectangular and skewed plates is then studied by this method and the results are compared with those obtained by the variation method of Galerkin (32).

(ii) To extend the theoretical analysis by this method into the large deflection behaviour of clamped elastically support elliptical plates under uniform normal load.

Throughout the analyses, the successive approximation method (15), (16) and (17) based on the smallness of the central
deflection is used to determine the lateral deflection, the inplane displacements and hence the moments and stresses of the clamped plates. Here the dimensionless ratio of the central deflection to the thickness of the plate, \(W_0 \), is used as the perturbation parameter. Essentially, the perturbation technique is based on the principle that, if a well constructed asymptotic power series should satisfy the differential equation, then each parameter should also satisfy the governing differential equation independently. Following the perturbation procedure, asymptotic power series containing a number of undetermined coefficients are assumed relating first the dimensionless load to the central deflection perturbation parameter \(W_0 \). Power series containing unknown functions of the co-ordinate axes are also assumed relating each of the displacement components \(u, v \) and \(w \) in the middle plane of the plate with the same perturbation parameter \(W_0 \). In assuming these functions for displacements, care was taken to ensure that these assumed functions satisfy not only the boundary conditions of the plate but also the condition of symmetry. The assumed displacement functions are next substituted in turn into the governing partial differential equations derived in each step in the successive approximation sequence. By equating equal powers of the co-ordinates, and by solving the set of simultaneous linear equations thus obtained, all the unknown coefficients in the
displacement functions are evaluated. Finally, these displacement functions with their determined parameters are differentiated to yield the required bending and membrane stresses anywhere within the plate boundary.

To facilitate the computational work involved in obtaining the deflection, principal bending and membrane stresses of the plates, all the problems are coded in Fortran for the IBM 360/65. To minimize round-off errors, double precision arithmetic was used throughout the work. The flow chart and a typical program are included in the Appendix B.
CHAPTER II

REVIEW OF LITERATURE

In the bending of plate problem when the strain in the middle plane of the plate is negligible and the lateral deflection from its initial plane is small compared with the thickness of the plate, the load and deflection relationship is linear. The analysis of this small deflection behaviour is regarded as linear analysis. However, if the lateral deflection is no longer small, the analysis of the problem must be extended to include the strain developed in the middle plane of the plate. The load and deflection relationship becomes nonlinear. Thus the analysis of this large deflection behaviour is regarded as nonlinear analysis.

2.1 Linear Analysis

The linear small deflection behaviour of circular, elliptical and rectangular plates is well documented since the start of the nineteenth century. For uniformly loaded circular, and elliptical clamped plates, rigorous solutions have been obtained (2). For rectangular plates with uniform lateral load and clamped edges, the problem has been solved by various approximate techniques (2), such as double Fourier series, energy method and finite difference approximations. In case
of skewed plates, the small deflection behaviour has been investigated mainly by the method of finite difference. The first publication was probably due to Brigatti (18) who obtained limited results, by means of finite difference equations, for uniformly loaded rhombic plates simply supported and clamped. In 1941, studies of skewed plates by means of finite difference techniques were also made by Jensen (19). In 1953, Dorman (20) used the energy approach to investigate the bending behaviour of clamped skewed plates. Other outstanding researchers in skewed plates and related structures included Morley (3), Mirsky (21) and Jones (22). More recently, Kennedy and Ng (4), (5) have solved the small deflection problem of uniformly load skewed plates by means of variational techniques and the results were verified by experiments.

2.2 Nonlinear Analysis

As opposed to the small deflection analysis of circular, elliptical and rectangular plates, the corresponding nonlinear large deflection analysis of such plates received comparably less attention. However some of the investigations are still quite well known in the technical literature. In case of clamped circular plates under uniform load, in 1924, Timoshenko (23) used the energy method based upon an assumed form of lateral displacement to obtain his approximate solution. In 1925, Nadai
(24) established an approximate solution by considering a circular plate subjected to only approximately uniform pressure. In 1934, Way (25) employed a power series to obtain an exact solution of the same problem. In 1942, McPherson, Ramberg and Levy (26) carried out tests of uniformly loaded circular plates to obtain their experimental results. In 1947, Chien (11) applied the perturbation technique, equivalent to a greatly simplified form of power series method, to obtained his solution of the same circular plate problem.

In case of clamped rectangular plates under uniform load, the problem was solved approximately by Way (7) in 1938 using the Ritz energy method. In 1942, Levy (8) obtained a solution to the same problem by the double Fourier series method. In 1948, Wang (27) solved the problem again by using the method of finite difference. In 1957, Chien and Yeh (12) used the successive approximations of the perturbation technique and obtained a solution to the square plate problem and verified by experiments.

In case of uniformly loaded elliptical plates with built-in edges, the first solution was probably due to Perry (28) in 1950, who employed expansions into Mathieu functions. In 1956, Weil and Newmark (10) solved the same problem based on the Ritz method. In 1959, Nash and Cooley (13) used the successive approximations of the perturbation technique to solve the problem again.
With regard to the influence of elastic support on the behaviour of plates, there are but a few investigations. In 1960, Nash and Ho (29) investigated the elastic support effect on the large deflection of clamped circular plates by means of the perturbation technique. In 1963, Sinha (30) examined the large deflections problems of simply supported rectangular plates on elastic foundations. In 1966, Ng and Kennedy (31) obtained approximate solutions for small and large deflection behaviour of elastically supported clamped rectangular plates. In 1969, Ng (32) obtained results of the influence of elastic support on small deflection of clamped circular, elliptical, rectangular and skewed plates by means of the variational method of Galerkin and verified by the perturbation method.

In the treatments of various kinds of plates, the perturbation method has been used to deal with nonlinear plate problems mainly because it is simpler to apply and requires less computational effort in comparison with the methods of Fourier series and the finite difference. However, in all the successive approximation solutions cited above, no mention is made of the degree of accuracy of the solution or the pattern of convergence as the number of unknown coefficients in the assumed displacement function is increased.
CHAPTER III

FORMULATION OF EQUATIONS

In the analysis of small deflection problems of elastic thin plates, the deflections are considered to be of such magnitude that the effect of stretching of the middle plane of the plate on its curvature can be neglected. When the lateral deflection of plate is moderately large, that is, in the neighbourhood of one half the plate thickness or more, the linear theory of thin plates is no longer applicable and the effect of the forces acting in the middle surface must be taken into account.

3.1 Assumptions

Throughout the theoretical work of linear and nonlinear analyses, the following assumptions are made:

(i) Points which lie on a normal to the mid-plane of the undeflected plate lie on a normal to the mid-plane of the deflected plate.

(ii) The stresses normal to the mid-plane of the plate, arising from the applied loading, are negligible in comparison with the stresses in the plane of the plate.

(iii) The deflection, \(w \), of the plate is small enough so that the first two assumptions still hold, and yet large enough so
that the products of the in-plane forces or their derivatives
and the derivatives of \(w \) are of the same order of magnitude as
the derivatives of the shear forces.

Also for the linear (small deflection) analysis the
forces in the middle plane of the plate is neglected and this
gives one additional assumption viz.

(iv) The mid-plane of the plate is a neutral plane
i.e. any mid-plane stresses arising from the deflection of the
plate (into a non-developable surface) is ignored.

3.2 The Governing Partial Differential Equations

The nonlinear large deflection behaviour of thin
elastic plates is governed by two coupled nonlinear partial
differential equations derived by von Karman. It is often
advantageous to express these equations in terms of the
displacement components \(u, v, \) and \(w \) (parallel to the rectangular
coordinate axes \(\bar{x}, \bar{y} \) and \(\bar{z} \) respectively) of a point in the middle
plane of the plate.

(i) Equilibrium of the Plate Element in the \(\bar{x} \) and \(\bar{y} \)
Directions.

Consider the equilibrium of a small element cut out
from the middle plane of the plate with sides \(d\bar{x} \) and \(d\bar{y} \) as shown
in Figure 3-1. Let \(N_{x}, N_{y} \) and \(N_{xy} \) be the in-plane forces per
Figure 3-1 In-plane Forces on Plate Element
unit length of the plate.

Neglecting body forces and since ϕ and ϕ' are small $(\cos \phi = \cos \phi' = 1)$ the equilibrium of the plate element in the \bar{x} and \bar{y} directions yield respectively,

$$N_{x,x} \bar{x} + N_{x,y} \bar{y} = 0 \quad \text{(3-1)}$$

$$N_{x,y} \bar{x} + N_{y,y} \bar{y} = 0 \quad \text{(3-2)}$$

where the comma notation signifies differentiation.

(ii) Equilibrium of the Plate Element in the \bar{z} Direction.

The equilibrium in the \bar{z} direction is obtained by considering separately the in-plane forces and lateral loads acting along this direction.

(a) Forces in the \bar{z} direction due to the in-plane forces:

From Figure 3-1, the net contribution of the downward force by N_x and $(N_x + N_{x,x} \bar{x} d\bar{x})$ in the plate element is

$$-N_{\bar{x}} \bar{y} \sin \phi + (N_x + N_{x,x} \bar{x} d\bar{x}) \bar{y} \sin \phi'$$

For small ϕ and ϕ',

$$\sin \phi \approx \phi \approx \bar{w} \bar{x}$$

$$\sin \phi' \approx \phi' \approx \phi + \phi_{x} \bar{x} d\bar{x} = \bar{w} \bar{x} + \bar{w}_{xx} \bar{x} d\bar{x}$$

14
The above expression becomes:

\[(N_x \cdot \bar{w}, \bar{x} + N_x \cdot \bar{w}, \bar{x}) \, d\bar{x} \, d\bar{y} \](3-3)

where higher-order terms are neglected.

Similarly, the net downward contribution of \(N_y \) and \((N_y + N_y \cdot \bar{y}, \bar{y} \, d\bar{y}) \) on the plate element is

\[(N_y \cdot \bar{w}, \bar{y} + N_y \cdot \bar{w}, \bar{y} \, d\bar{y}) \, d\bar{x} \, d\bar{y} \](3-4)

The net downward contribution for \(N_{xy} \) and \((N_{xy} + N_{xy} \cdot \bar{x}, \bar{x} \, d\bar{x}) \) on the plate element is, where higher-order terms are neglected,

\[-N_{xy} \cdot \bar{y} \, w, \bar{y} + (N_{xy} + N_{xy} \cdot \bar{x}, \bar{x} \, d\bar{x}) \, d\bar{y} \, (w, \bar{y} + w, \bar{y} \, d\bar{x})\]

or

\[(N_{xy} \cdot \bar{w}, \bar{y} + N_{xy} \cdot \bar{w}, \bar{y} \, d\bar{y}) \, d\bar{x} \, d\bar{y} \](3-5)

Similarly, the net downward contribution of \(N_{yx} \) and \((N_{yx} + N_{yx} \cdot \bar{y}, \bar{y} \, d\bar{y}) \) is

\[(N_{yx} \cdot \bar{w}, \bar{y} + N_{yx} \cdot \bar{w}, \bar{y} \, d\bar{y}) \, d\bar{x} \, d\bar{y} \](3-6)

Since \(N_{xy} = N_{yx} \), and making use of equations (3-1) and (3-2), the net downward contribution of all the in-plane forces can be obtained by adding equations (3-3) through (3-6) viz.

\[(N_x \cdot \bar{w}, \bar{x} + 2N_{xy} \cdot \bar{w}, \bar{y} + N_y \cdot \bar{w}, \bar{y}) \, d\bar{x} \, d\bar{y} \](3-7)

(b) Forces in the \(\bar{z} \) direction due to lateral loads.
In Figure 3-2, let \(Q_{x}, Q_{y} \) be the shear forces per unit length, \(M_{x}, M_{y} \) and \(M_{xy} \) be the bending and twisting moments per unit length, \(q \) the intensity of downward lateral load and \(k \) the foundation modulus the magnitude of which is proportional to the deflection.

Neglecting the body forces of the plate element equilibrium in the downward direction (along the \(\tilde{z} \) axis) gives:

\[
(Q_{x,x} + Q_{y,y} + q - kw) \, dx \, dy = 0 \quad \ldots \ldots \ldots \ldots \ldots (3-8)
\]

By taking moments of all forces acting about an axis parallel to the \(\tilde{y} \) axis and neglecting higher-order terms gives:

\[
Q_{x,x} \, dx \, dy - M_{x,x} + M_{xy,y} \, dx \, dy = 0
\]

or

\[
M_{x,x} - M_{x,y} + Q_{x} = 0 \quad \ldots \ldots \ldots \ldots \ldots (3-9)
\]

Similarly by taking moments about an axis parallel to the \(\tilde{x} \) axis, we have

\[
M_{y,y} - M_{xy,x} - Q_{y} = 0 \quad \ldots \ldots \ldots \ldots \ldots (3-10)
\]

Now making use of the moments curvature relationships (2) viz.

\[
M_{x} = -D (w_{,xx} + w_{,yy}),
\]

\[
M_{y} = -D (w_{,yy} + w_{,xx}),
\]

\[
M_{xy} = D (1 - \nu) w_{,xy},
\]
Figure 3-2 Moments and Shear Forces on Plate Element
and substituting into expressions (3-9) and (3-10), we get:

\[Q_x = -D \left(w, \frac{x}{xxx} + w, \frac{x}{xyy} \right) \quad \text{(3-11)} \]

\[Q_y = -D \left(w, \frac{y}{yyy} + w, \frac{y}{yxx} \right) \quad \text{(3-12)} \]

Now adding equations (3-7) to (3-8) gives the equilibrium equation in the vertical direction due to the combined action of the lateral and in-plane membrane forces.

\[Q_x,_{x} + Q_y,_{y} + q - kw + N_x w,_{xx} + 2N_x w,_{x}y + N_y w,_{y}y = 0 \]

\[\text{(3-13)} \]

Substituting equations (3-11) and (3-12) into equation (3-13) gives:

\[D \left(w, \frac{xxx}{xxx} + 2w, \frac{xxy}{xxy} + w, \frac{yyy}{yyy} \right) = \]

\[q - kw + N_x w,_{xx} + 2N_x w,_{x}y + N_y w,_{y}y \]

\[\text{(3-14)} \]

In terms of stresses, equations (3-1), (3-2) and (3-14) can be written as:

\[\sigma_{x},_{x} + \tau_{x},_{xy},_{y} = 0 \quad \text{(3-15)} \]

\[\sigma_{y},_{y} + \tau_{y},_{xy},_{x} = 0 \quad \text{(3-16)} \]

\[\text{and} \quad D \nabla^2 \nabla^2 w = q - kw + h(\sigma_{x},_{x} w,_{xx} + \sigma_{y},_{y} w,_{yy} + 2\tau_{x},_{xy} w,_{xy}) \]

\[\text{(3-17)} \]
To establish equations (3-15), (3-16) and (3-17) in terms of the displacement u, v and w of the plate element, it is required to employ the equations of plane strain (33) viz.

\[
\sigma_{x} = \frac{E}{1-\nu^2} (\varepsilon_{x} + \nu \varepsilon_{y})
\]

\[
\sigma_{y} = \frac{E}{1-\nu^2} (\varepsilon_{y} + \nu \varepsilon_{x})
\]

\[
\tau_{xy} = \frac{E}{2(1+\nu)} \gamma_{xy}
\]

and the equations of compatibility (2) viz.

\[
\varepsilon_{x} = u_{x} + \frac{1}{2} (w_{x})^2
\]

\[
\varepsilon_{y} = v_{y} + \frac{1}{2} (w_{y})^2
\]

\[
\gamma_{xy} = u_{y} + v_{x} + w_{x} \frac{w_{y}}{y}
\]

Substituting equations (3-18) and (3-19) into equations (3-15), (3-16) and (3-17), the three general differential equations in terms of the displacements u, v and w in rectangular cartesian coordinates governing the large deflection of thin elastic plates are obtained.
\[u, \dddot{x} + w, \dddot{x} + v, \dddot{y} + \nu \left(\frac{w, \ddot{x}}{x} + \frac{w, \ddot{y}}{y} \right) \]
\[+ \frac{1}{2} \left(1 - \nu \right) \left(u, \dddot{y} + v, \dddot{x} + w, \dddot{x} + w, \dddot{y} \right) \]
\[= 0 \] \hspace{1cm} \text{(3-20)}

\[v, \dddot{y} + w, \dddot{y} + v, \dddot{x} + \nu \left(u, \dddot{y} + w, \dddot{x} \right) \]
\[+ \frac{1}{2} \left(1 - \nu \right) \left(v, \dddot{x} + u, \dddot{y} + w, \dddot{x} + w, \dddot{y} \right) \]
\[= 0 \] \hspace{1cm} \text{(3-21)}

\[D \nabla^2 \nabla^2 w = q - kw + h \left\{ \frac{E}{(1 - \nu^2)} \left[u, \dddot{x} + \frac{1}{2} \left(w, \dddot{x} \right)^2 + \nu \left(v, \dddot{y} + \frac{1}{2} \left(w, \dddot{y} \right)^2 \right) \right] \right\}_{x, \dddot{x}} \]
\[+ \frac{E}{(1 - \nu^2)} \left[v, \dddot{y} + \frac{1}{2} \left(w, \dddot{y} \right)^2 \right]_{y, \dddot{y}} + \frac{E}{(1 + \nu)} \left[u, \dddot{y} + v, \dddot{x} + w, \dddot{x} \right]_{y, \dddot{x}, \dddot{y}} \]
\[\{ \} \hspace{1cm} \text{(3-22)} \]

To solve the above equation (3-20), (3-21) and (3-22) it is often convenient to have them in dimensionless forms.

To render them non-dimensional the following dimensionless ratios are introduced:

- \(R = b/a \), \(x = \ddot{x}/a \), \(y = \ddot{y}/b \),
- \(U = u a / h^2 \), \(V = v a / h^2 \), \(W = w / h \),
- \(Q = q b^4 / D h \), \(K = k b^4 / D \)
\[u_, \ddot{x} + w, \ddot{x} + v (v, \ddot{y} + w, \ddot{y}) + \frac{1}{2} (1 - \nu) \left(u, \ddot{y} + v, \ddot{y} + w, \ddot{y} \right) = 0 \]
\[\text{(3-20)} \]

\[v, \ddot{y} + w, \ddot{y} + v (u, \ddot{y} + w, \ddot{y}) + \frac{1}{2} (1 - \nu) \left(v, \ddot{x} + u, \ddot{y} + w, \ddot{y} \right) = 0 \]
\[\text{(3-21)} \]

\[D \nabla^2 \nabla^2 w = q - kw + h \left\{ \frac{E}{(1 - \nu^2)} \left[u, \ddot{x} + \frac{1}{2} (w, \ddot{x})^2 + v (v, \ddot{y} + \frac{1}{2} (w, \ddot{y})^2) \right] w, \dddot{x} \right\} \]

\[+ \frac{E}{(1 - \nu^2)} \left[v, \ddot{y} + \frac{1}{2} (w, \ddot{y})^2 \right] w, \dddot{y} + \frac{E}{(1 + \nu)} \left(u, \ddot{y} + v, \dddot{x} + w, \dddot{y} \right) w, \dddot{y} \left\} \right. \]
\[\text{(3-22)} \]

To solve the above equation (3-20), (3-21) and (3-22) it is often convenient to have them in dimensionless forms.

To render them non-dimensional the following dimensionless ratios are introduced:

\[R = \frac{b}{a}, \quad x = \frac{\ddot{x}}{a} \quad y = \frac{\ddot{y}}{b}, \]

\[U = \frac{ua}{h^2}, \quad V = \frac{va}{h^2} \quad W = \frac{w}{h} \]

\[Q = \frac{q b^4}{D h}, \quad K = \frac{k b^4}{D} \]
With the dimensionless ratios, equations (3-20), (3-21) and (3-22) become:

\[2R^3 U_{xx} + R(1-\nu) U_{yy} + R^2(1+\nu) V_{xy} + 2R^3 W_{x} W_{xx} + R(1+\nu) W_{y} W_{xy} + R(1-\nu) W_{xy} W_{y} = 0 \] \hspace{1cm} (3-23)

\[2R V_{yy} + R^2(1-\nu) V_{xx} + R^2(1+\nu) U_{xy} + 2W_{,y} W_{,yy} + R^2(1+\nu) W_{,x} W_{,xy} + R^2 (1-\nu) W_{,xx} W_{,y} = 0 \] \hspace{1cm} (3-24)

\[R^4 W_{,xxxx} + 2R^2 W_{,xxy} + W_{,yyyy} = Q - KW + 12 \left\{ R^2 U_{,x} + \frac{1}{2} (RW_{,x})^2 \right\} + \nu \left[R V_{,y} + \frac{1}{2} (W_{,y})^2 \right] R^2 W_{,xx} + 12 \left\{ R V_{,y} + \frac{1}{2} (W_{,y})^2 \right\} W_{,yy} + 12 (1-\nu) (RU_{,y} + R^2 V_{,x} + RW_{,x} W_{,y}) RW_{,xy} \]

\[\hspace{1cm} \] \hspace{1cm} (3-25)

Hence the problem of large deflections of plates on elastic foundations is reduced to finding solutions to equations
(3-23), (3-24) and (3-25), satisfying the necessary boundary conditions.

It should be noted that a solution of the linear problem (small deflection) is obtained by solving equation (3-22) when the terms due to the effect of the in-plane forces are neglected. In non-dimensional form the equation becomes:

$$R^4W_{xxxx} + 2R^2W_{xyy} + W_{yyy} = Q - KW$$

..........................(3-26)

Also the solution for plates without the effect of foundation modulus is obtained by solving the equations with \(K = 0 \).

3.3 Governing Differential Equation for Small Deflection Problem of Radially Symmetric Loaded Circular Plate.

The governing differential equation of the elastically supported circular plate in terms of the polar coordinates system after some slight modification from (2) is given by:

$$D \frac{1}{r} \frac{d}{dr} \left\{ r \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dW}{dr} \right) \right] \right\} = q - kw \quad ...(3-27)$$

Now by employing an additional dimensionless ratio, \(\psi = 1 - \frac{r^2}{a^2} \), equation (3-27) can be transformed into dimensionless form as:
\[16 \frac{d}{d\psi} \left\{ (1 - \psi) \frac{d^2}{d\psi^2} \left[(1 - \psi) \frac{dw}{d\psi} \right] \right\} = Q - Kw \]

\[.......... (3-28) \]

3.4 Governing Differential Equation for Small Deflection Problem of Skewed Plate.

In investigating the small deflection problem of skewed plates, a coordinate system parallel to the edges of the plate, namely the oblique coordinate system \(\alpha\) and \(\beta\) as shown in Figure 3-3 is used.

By the transformation
\[\begin{align*}
\bar{x} &= \alpha \cos \theta \\
\bar{y} &= \beta + \alpha \sin \theta
\end{align*} \]

\[.......... (3-29) \]

where \(\theta\) is the skew angle, the following relationship between the rectangular \((\bar{x}, \bar{y})\) and the oblique \((\alpha, \beta)\) coordinate systems are obtained:

\[w, \bar{x} = w, \alpha \sec \theta - w, \beta \tan \theta \]
\[w, \bar{y} = w, \alpha \beta \sec \theta - w, \beta \tan \theta \]
\[w, \bar{xy} = w, \alpha \beta \sec^2 \theta - 2w, \alpha \beta \sec \theta \tan \theta + w, \beta \tan^2 \theta \]
\[w, \bar{x^2} = w, \alpha \alpha \beta \sec^4 \theta - 4w, \alpha \alpha \beta \sec^2 \theta \tan \theta \]
\[+ 6w, \alpha \beta \beta \sec^2 \theta \tan^2 \theta - 4w, \alpha \beta \beta \sec \theta \tan^3 \theta \]
\[+ w, \beta \beta \beta \beta \tan^4 \theta \]

23
Figure 3-3 The Rectangular and Skewed Coordinate Systems
\[w, \dddot{x}, \dddot{y} = w, \alpha \beta \alpha \beta \sec^2 \theta - 2w, \alpha \beta \alpha \beta \sec \theta \tan \theta + w, \beta \beta \beta \tan^2 \theta \]

\[w, \dddot{y}, \dddot{y} = w, \beta \beta \beta \beta \]

Using these transformation relationships and the additional dimensionless quantities \(\gamma = \alpha / a, \quad \eta = \beta / b, \) the differential equation governing the small deflection problem with elastic support can be written into the oblique dimensionless form as:

\[
\begin{align*}
R^4 w, \dddot{y}, \dddot{y} &+ 2 \left(1 + 2 \sin^2 \theta \right) R^2 w, \dddot{y}, \dddot{y} \\
&- 4 \sin \theta \left(R^2 w, \dddot{y}, \dddot{y} + w, \dddot{y}, \dddot{y} \right) + w, \dddot{y}, \dddot{y} \\
&= \cos^4 \theta (Q - kW) \\
\end{align*}
\]

Hence the problem of small and large deflections of plates is reduced to finding a solution to the appropriate governing differential equation (3-23), (3-24), (3-25), (3-26), (3-28) and (3-30).
CHAPTER IV

METHOD OF SOLUTION

4.1 The Perturbation Procedure

The small parameter perturbation method of successive approximations is now used to obtain approximate solutions to equations (3-23), (3-24), (3-25), (3-26), (3-28) and (3-30) for the linear and nonlinear deflections of clamped plates subjected to lateral uniform pressure with and without the elastic foundation modulus. This method requires the expansion of the displacement components and the dimensionless load quantity in a power series of ascending powers of the dimensionless centre deflection parameter w_0. Thus let

\[Q = \gamma_1 w_0 + \gamma_3 w_0^3 + \gamma_5 w_0^5 + \ldots \ldots \ldots \quad (4-1) \]

\[W = w_1 w_0 + w_3 w_0^3 + w_5 w_0^5 + \ldots \ldots \ldots \quad (4-2) \]

\[U = s_2 w_0^2 + s_4 w_0^4 + \ldots \ldots \ldots \ldots \quad (4-3) \]

\[V = t_2 w_0^2 + t_4 w_0^4 + \ldots \ldots \ldots \ldots \quad (4-4) \]

where γ_1, γ_3, γ_5, $\ldots \ldots$ are undetermined parameters relating the dimensionless centre deflection w_0 to the dimensionless load Q; s_2, s_4, $\ldots \ldots$, t_2, t_4, $\ldots \ldots$ and w_1, w_3, w_5, $\ldots \ldots$ are
functions of the dimensionless coordinates \((x, y; \zeta, \eta \text{ and } \psi)\) for rectangular, oblique and polar coordinates respectively) satisfying the boundary conditions of the plate and relating the in-plane and lateral displacements to the same perturbation parameter \(W_0\).

From the series for \(W\), equation (4-2) it can be seen that in order the centre deflection be \(W_0\) as defined, it is necessary to require:

\[
\begin{align*}
w_1(0,0) &= 1 & \text{and} & & w_3(0,0) = w_5(0,0) &= 0 \\
\end{align*}
\]

\[\text{-----------------------------}(4-5)\]

The prescribed boundary conditions for the clamped rectangular and elliptical plates are respectively:

\[
\begin{align*}
w_{,x} &= u = w = 0 & \text{at} & & x = \pm 1 \\
\text{and} & & w_{,\zeta} = v = w = 0 & \text{at} & y = \pm 1 \\
\end{align*}
\]

\[\text{-----------------------------}(4-6)\]

\[
\begin{align*}
u = v = w = 0 \\
w_{,x} = w_{,\zeta} = 0 \\
\end{align*}
\]

\[\text{at } x^2 + y^2 = 1 \]

\[\text{-----------------------------}(4-7)\]

The boundary conditions for the circular plate in polar coordinates are:

\[
\begin{align*}
w_{,r} &= w = 0 & \text{at} & & \psi = 0 \\
\end{align*}
\]

\[\text{-----------------------------}(4-8)\]
The corresponding boundary conditions in the case of skewed plates can easily be transformed in oblique coordinates as:

\[w_{,xx} = u \cos \theta = w = 0 \quad \text{at} \quad \zeta = \pm 1 \]

and

\[w_{,nn} = v \cos \theta = w = 0 \quad \text{at} \quad \eta = \pm 1 \]

.................................(4-9)

4.2 Solution to the Linear Small Deflection Problem (First Order Approximation)

For the linear small deflection problem, only the first order of \(W_o \) need be considered. Substituting equations (4-1) and (4-2) into equations (3-26), (3-28) and (3-30) and equating coefficients of the terms containing \(W_o \), the following differential equations governing the small deflection problem of the various types of elastically supported thin plates can be expressed as:

Rectangular Plates:

\[R^4 w_{1,xxxx} + 2R^2 w_{1,xxyy} + w_{1,yyyy} = \gamma_1 - Kw_1 \]

.................................(4-10)

Circular Plates:

\[16 \frac{d}{d\psi} \{ (1 - \psi) \frac{d^2}{d\psi^2} \left[(1 - \psi) \frac{dw_1}{d\psi} \right] \} = \gamma_1 - Kw_1 \]

.................................(4-11)
Skewed Plates:

\[R^4 \varepsilon^{(1)}_{\xi \xi \xi \xi} + 2 (1 + 2\sin^2 \theta) R^2 \varepsilon^{(1)}_{\eta \eta} \varepsilon^{(1)}_{\xi \xi} + 4R \sin \theta (R^2 \varepsilon^{(1)}_{\xi \xi \eta \eta} + \varepsilon^{(1)}_{\eta \eta \eta \eta}) + \varepsilon^{(1)}_{\xi \xi \eta \eta} \]
\[= \cos^4 \theta (\gamma_{1} - Kw_{1}) \] \hspace{1cm} (4-12)

To solve the linear small deflection problem of a plate, it is required to assume a deflection function \(w_{1} \) that satisfies the boundary conditions. Now by substituting the assumed deflection function \(w_{1} \) for a plate into the appropriate differential equation, (4-10), (4-11) or (4-12) and by equating the corresponding powers of the coordinates, a set of simultaneous equations will result. The solution of these equations defines the value of \(\gamma_{1} \) in equation (4-1) and all the undetermined coefficients in the assumed deflection function \(w_{1} \) in equation (4-2) and hence the solution of the linear small deflection problem of the plate.

The deflection functions assumed for the various plate shapes and the associated boundary conditions are outlined as follows:

Rectangular Plates:

\[w_{1} = (1 - x^2)^2 (1 - y^2)^2 \sum_{i,m,n=0}^{\infty} C_i x^{2m} y^{2n} \]

where \(C_0 = 1 \) \hspace{1cm} (4-13)
Boundary Conditions:

\[w_1 = w_1, \bar{x} = 0 \quad \text{at} \quad x = \pm 1 \]
\[w_1 = w_1, \bar{y} = 0 \quad \text{at} \quad y = \pm 1 \]

\[\cdots (4-13a) \]

Elliptical Plates:

\[w_1 = (1 - x^2 - y^2)^2 \sum_{i, m, n = 0}^\infty C_i x^{2m} y^{2n} \]

where \[C_0 = 1 \]

\[\cdots (4-14) \]

Boundary Conditions:

\[w_1 = w_1, \bar{x} = w_1, \bar{y} = 0 \quad \text{at} \quad x^2 + y^2 = 1 \]

\[\cdots (4-14a) \]

Circular Plates:

\[w_1 = \psi^2 \sum_{i=0}^\infty C_i (1 - \psi)^i \]

where \[C_0 = 1 \]

\[\cdots (4-15) \]

Boundary Conditions:

\[w_1 = w_1, \psi = 0 \quad \text{at} \quad \psi = 0 \]

\[\cdots (4-15a) \]

Skewed Plates:

\[w_1 = (1 - \chi^2)^2 (1 - \eta^2)^2 (1 - \zeta \eta) \sum_{i, m, n = 0}^\infty C_i \zeta^{2m} \eta^{2n} \]

where \[C_0 = 1 \]

\[\cdots (4-16) \]
Boundary Conditions:

\[w_1 = w_1, \bar{z} = 0 \quad \text{at} \quad \bar{z} = \pm 1 \quad \ldots \ldots \ldots (4-16a) \]

\[w_1 = w_1, n = 0 \quad \text{at} \quad n = \pm 1 \]

Where the infinite series of the displacement functions are expanded to include an appropriate number of terms, complete expressions of these functions are listed in Appendix A.

4.3 Solution to the Nonlinear Large Deflection Problem (Second and Higher Order Approximations).

Apart from obtaining the linear deflection solution for rectangular, elliptical, circular and skewed plates, the method of successive approximations is also used here to obtain the nonlinear large deflection solution of rectangular and elliptical plates. In case of elliptical plates, the influence of the elastic support on the lateral displacement, and on the distribution of stresses is also investigated.

Now making use of equations (4-2), (4-3) and (4-4) in equations (3-23) and (3-24) yields, after equating powers of \(w_o^2 \), the following differential equations governing the in-plane displacement components of the plate:

\[
2R^3 s_{2, xx} + R (1 - \nu) s_{2, yy} + R^2 (1 + \nu) t_{2, xy} + 2R^3 w_{1, xx} + R (1 + \nu) w_{1, yy} + R^2 w_{1, xy} = 0 \quad \ldots \ldots \ldots (4-17)
\]
\[2R t_{2,yy} + R^3 (1 + \nu) t_{2,xx} + R^2 (1 + \nu) s_{2,xy} \]
\[+ 2w_{1,y} w_{1,yy} + R^2 (1 + \nu) w_{1,x} w_{1,xy} \]
\[+ R^2 (1 - \nu) w_{1,y} w_{1,xx} = 0 \](4-18)

Substituting the two assumed displacement functions \(s_2 \) and \(t_2 \) with the boundary conditions and equating powers of \(x \) and \(y \) yield sufficient linear equations to define the undetermined coefficients in the assumed displacement functions \(s_2 \) and \(t_2 \), and hence the in-plane displacement components.

The displacement functions assumed for various shapes of plates and the associated boundary conditions are outlined as below:

Rectangular Plates:

\[s_2 = (1 - x^2) (1 - y^2) x \sum_{i,m,n=0}^{\infty} D_{i} x^{2m} y^{2n} \](4-19)

\[t_2 = (1 - x^2) (1 - y^2) y \sum_{i,m,n=0}^{\infty} E_{i} y^{2m} x^{2n} \](4-20)

Boundary Conditions:

\[s_2 = t_2 = 0 \] at \(x = \pm 1 \)
\[y = \pm 1 \]

...................................(4-20a)
Elliptical Plates:

\[s_2 = (1 - x^2 - y^2) \sum_{i,m,n=0}^{\infty} D_{i} x^{2m} y^{2n} \quad \ldots \ldots \ldots \ldots (4-21) \]

\[t_2 = (1 - x^2 - y^2) \sum_{i,m,n=0}^{\infty} B_{i} y^{2m} x^{2n} \quad \ldots \ldots \ldots \ldots (4-22) \]

where \(D_0 = E_0 = 0 \)

Boundary conditions:

\[s_2 = t_2 = 0 \quad \text{at} \quad x^2 + y^2 = 1 \quad \ldots \ldots \ldots \ldots (4-22a) \]

Where the appropriate complete expressions of the functions are also listed in Appendix A.

Now substituting equations (4-1), (4-2), (4-3) and (4-4) into equations (3-25) and collecting the coefficients of \(w_0^3 \) terms, the differential equation governing the first nonlinear term of the lateral displacement expression is obtained, viz.

\[R^4 w_{3,xxxx} + 2 R^2 w_{3,xyy} + w_{3,yyy} = \gamma_{3} - K w_{3} \]

\[+ 12 \left\{ \left(R^4 s_{2,x} w_{1,xx} + \frac{1}{2} R^4 w_{1,xx} (w_{1,x})^2 \right) \right\} \]

\[+ \nu \left[R^3 w_{1,xx} t_{2,y} + \frac{1}{2} R^2 w_{1,xx} (w_{1,y})^2 \right] \}

\[+ 12 \left\{ R w_{1,yy} t_{2,y} + \frac{1}{2} w_{1,yy} (w_{1,y})^2 \right\} \]

\[+ \nu \left[R^2 w_{1,yy} s_{2,x} + \frac{1}{2} R^2 (w_{1,x})^2 w_{1,yy} \right] \}

\[+ 12 (1 - \nu) \left(R^2 w_{1,xy} s_{2,y} + R^3 w_{1,xy} t_{2,x} \right) \]

\[+ R^2 w_{1,y} \left(w_{1,x} w_{1,xy} \right) \quad \ldots \ldots \ldots \ldots (4-23) \]
By substituting the assumed nonlinear deflection function \(w_j \) satisfying the associated boundary conditions and equating the powers of \(x \) and \(y \) result is a system of simultaneous equations whose solution yields the value of \(\gamma_j \) and all the undetermined coefficients of the assumed nonlinear deflection function \(w_j \).

The assumed nonlinear deflection function \(w_j \) for plates of various shapes and their associated boundary conditions are outlined as follows:

Rectangular Plates:

\[
 w_j = (1 - x^2)^2 (1 - y^2)^2 \sum_{i,m,n=0}^{\infty} F_{i,m} x^{2m} y^{2n} \\
 \text{where } F_0 = 0 \quad \text{.......................}(4-24)
\]

Boundary Conditions:

\[
 w_j, \frac{x}{x} = w_j = 0 \quad \text{at } x = \pm 1 \\
 w_j, \frac{y}{y} = w_j = 0 \quad \text{at } y = \pm 1
\]

Elliptical Plates:

\[
 w_j = (1 - x^2 - y^2)^2 \sum_{i,m,n=0}^{\infty} F_{i,m} x^{2m} y^{2n} \\
 \text{where } F_0 = 0 \quad \text{.......................}(4-25)
\]
Boundary Conditions:
\[w_{3,x} = w_{3,y} = w_3 = 0 \quad \text{at} \quad x^2 + y^2 = 1 \quad \ldots \ldots (4-25a) \]

Where the appropriate complete expressions of the functions are again listed in Appendix A.

It should be noted that the assumed displacement functions for both linear and nonlinear problems are chosen because of their simplicity and readiness to suit into another plate shape with the slightest modification.

Following much the same procedure as outlined above, coefficients \(s_4 \) and \(t_4 \) and subsequently, \(\gamma_5 \) and \(w_5 \) are obtained.

Thus the foregoing analysis provides a means of determining uniquely the lateral as well as the in-plane displacements anywhere within the plate boundary, hence solutions to linear and nonlinear problems.

4.4 Displacements, Bending Moments and Stresses Relationships.

From the theory of elastic thin plate the bending moments and stresses can be expressed in terms of the displacements (2). In rectangular coordinates \(x \) and \(y \), the relation between the displacements \(u \), \(v \) and \(w \) and the plate moments and stresses can be expressed as:

Bending Moments:

\[
\begin{align*}
M_x &= -D \left(w, \frac{\partial w}{\partial x} + \nu \frac{\partial w}{\partial y} \right) \\
M_y &= -D \left(w, \frac{\partial w}{\partial y} + \nu \frac{\partial w}{\partial x} \right) \\
M_{xy} &= \bar{M}_{xy} = D \left(1 - \nu \right) \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}
\end{align*}
\]
Bending Stresses:

$$\sigma_{x} = (-6D/h^2) \left(w_{xx} + \nu w_{yy} \right)$$
$$\sigma_{y} = (-6D/h^2) \left(w_{yy} + \nu w_{xx} \right)$$
$$\tau_{xy} = (6D/h^2) \left(1 - \nu \right) w_{xy}$$

Membrane Stresses:

$$\sigma'_{x} = \frac{E}{1 - \nu^2} \left\{ u_{,x} + \frac{1}{2} \left(w_{,x} \right)^2 + \nu \left[v_{,y} + \frac{1}{2} \left(w_{,y} \right)^2 \right] \right\}$$
$$\sigma'_{y} = \frac{E}{1 - \nu^2} \left\{ v_{,y} + \frac{1}{2} \left(w_{,y} \right)^2 + \nu \left[u_{,x} + \frac{1}{2} \left(w_{,x} \right)^2 \right] \right\}$$
$$\tau'_{xy} = G \left(u_{,y} + v_{,x} + w_{,x} w_{,y} \right)$$

Making use of the dimensionless ratios previously outlined and the additional non-dimensional forms from bending moments and stresses, viz.

$$M_x = \frac{12 \left(1 - \nu^2 \right) b^2}{Eh^4} M_x^*$$
$$M_y = \frac{12 \left(1 - \nu^2 \right) b^2}{Eh^4} M_y^*$$
$$M_{xy} = \frac{6b^2}{Gh^4} M_{xy}^*$$

36
\[\sigma_x = \frac{(1 - \nu^2) b^2}{Eh^2} \sigma_x \]
\[\sigma_y = \frac{(1 - \nu^2) b^2}{Eh^2} \sigma_y \]
\[\tau_{xy} = \frac{b^2}{Gh^2} \tau_{xy} \]

\[\sigma'_{x} = \frac{(1 - \nu^2) b^2}{Eh^2} \sigma'_{x} \]
\[\sigma'_{y} = \frac{(1 - \nu^2) b^2}{Eh^2} \sigma'_{y} \]
\[\tau'_{xy} = \frac{b^2}{Gh^2} \tau'_{xy} \]

Equations (4-26), (4-27) and (4-28) can be shown in the following non-dimensional forms:

\[M_x = -(R^2 w_{xx} + \nu w_{yy}) \]
\[M_y = -(w_{yy} + \nu R^2 w_{xx}) \]
\[M_{xy} = R w_{xy} \]

\[\sigma_x = -\frac{1}{3} (R^2 w_{xx} + \nu w_{yy}) \]
\[\sigma_y = -\frac{1}{3} (w_{yy} + \nu R^2 w_{xx}) \]
\[\tau_{xy} = R w_{xy} \]
\[
\sigma'_x = R^2 U_{,x} + \frac{1}{2} R^2 (W_{,x})^2 + \nu [R V_{,y} + \frac{1}{2} (W_{,y})^2]
\]
\[
\sigma'_y = R V_{,y} + \frac{1}{2} (W_{,y})^2 + \nu [R^2 U_{,x} + \frac{1}{2} (W_{,xx})^2]
\]
\[
\tau'_{xy} = R U_{,y} + R^2 V_{,x} + R W_{,x} W_{,y}
\]

.........................(4-34)

Relationships between the dimensionless bending moments, stresses and the perturbing parameter \(W_0\), hence \(Q\), can be obtained by substituting equations (4-2), (4-3) and (4-4) into equations (4-32), (4-33) and (4-34) as:

\[
M_x = - (R^2 w_{1,xx} + w_{1,yy}) W_0 - (R^2 w_{3,xx} + \nu w_{3,yy}) \frac{W_0^3}{3} + \ldots
\]
\[
M_y = - (w_{1,yy} + \nu R^2 w_{1,xx}) W_0 - (w_{3,yy} + \nu R^2 w_{3,xx}) \frac{W_0^3}{3} + \ldots
\]
\[
M_{xy} = (R w_{1,xy}) W_0 + (R w_{3,xy}) \frac{W_0^3}{3} + \ldots
\]

.........................(4-35)

\[
\sigma_x = - \frac{1}{2} (R^2 w_{1,xx} + \nu w_{1,yy}) W_0 - \frac{1}{2} (R^2 w_{3,xx} + \nu w_{3,yy}) \frac{W_0^3}{3} + \ldots
\]
\[
\sigma_y = - \frac{1}{2} (w_{1,yy} + \nu R^2 w_{1,xx}) W_0 - \frac{1}{2} (w_{3,yy} + \nu R^2 w_{3,xx}) \frac{W_0^3}{3} + \ldots
\]
\[
\tau_{xy} = (R w_{1,xy}) W_0 + (R w_{3,xy}) \frac{W_0^3}{3} + \ldots
\]

.........................(4-36)

38
\[\sigma'_x = \left[R^2 s_{2,x} + \frac{1}{2} R^2 (w_{1,x})^2 + \nu \left[R t_{2,y} + \frac{1}{2} (w_{1,y})^2 \right] \right] w_0^2 + (R^2 w_{1,x} w_{3,x} + \nu w_{1,y} w_{3,y}) w_0^4 + \ldots \]

\[\sigma'_y = \left[R t_{2,y} + \frac{1}{2} (w_{1,y})^2 + \nu \left[R^2 s_{2,x} + \frac{1}{2} R^2 (w_{1,x})^2 \right] \right] w_0^2 + (w_{1,y} w_{3,y} + \nu R^2 w_{1,x} w_{3,x}) w_0^4 + \ldots \]

\[\tau'_{xy} = (R s_{2,y} + R^2 t_{2,x} + R w_{1,x} w_{1,y}) w_0^2 + R (w_{1,x} w_{3,y} + w_{3,x} w_{1,y}) w_0^4 + \ldots \]

(4-37)

To obtain the maximum bending moment, bending and membrane stresses at a point, the following equations are used, viz.

\[M_{\text{max}} = \frac{M_x + M_y}{2} + \sqrt{\left(\frac{M_x - M_y}{2}\right)^2 + M_{xy}^2} \]

\[\sigma_{\text{max}} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]

\[\sigma'_{\text{max}} = \frac{\sigma'_x + \sigma'_y}{2} + \sqrt{\left(\frac{\sigma'_x - \sigma'_y}{2}\right)^2 + \tau'_{xy}^2} \]
CHAPTER V

RATE OF CONVERGENCE OF THE PERMUTATION

METHOD OF SUCCESSIVE APPROXIMATIONS

The method of successive approximations is applied
to analyse small and large deflection problems of clamped circular,
eliptical, rectangular and skewed plates under uniform pressure.
To investigate the rate and pattern of convergence of the method,
linear and nonlinear results are obtained for each stage of the
successive approximation process and for successive increments of
the undetermined coefficients in the plate displacement functions.
Furthermore, in order to ascertain qualitatively the effect of
additional variable parameters on the pattern of convergence,
variables such as the elastic foundation modulus K is introduced
in the linear solution of elliptical plates.

5.1 Linear (Small) Deflection Problem

In order to have a reasonable investigation of the
pattern of convergence of the method, assumed small deflection
functions listed in Appendix A are used to analyse plates of
various shapes. These displacement functions contain up to
a maximum of 25 undetermined parameters. Typical results
showing the variation of centre deflections with the number
of parameters in the assumed lateral deflection function for
rectangular, circular and elliptical plates are tabulated in Tables 5-1 and 5-2 respectively; for elliptical plates with elastic support they are shown in Tables 5-3 and 5-4, while those for skewed plates are shown in Tables 5-5 to 5-7.

It can be observed from Tables 5-1 and 5-2 that, for the rectangular, circular and elliptical plates, the results not only converge rapidly but are also in excellent agreement with those obtained by Timoshenko (2). In the case of rectangular plates at least six terms are required to achieve a reasonable accuracy. However the degree of accuracy is not directly proportional to the number of terms employed in the lateral displacement function. The results reveal no characteristic of monotonic convergence. There is little, if any, tendency that the results will come to constant values as the number of terms in the displacement function increases.

With the circular and elliptical plates a two term solution yields an exact answer. This is to be expected since, unlike the deflection function assumed for rectangular plates, the assumed deflection function for the circular or elliptical plate takes on the exact mathematical equation of a circular or elliptical boundary. Also it can be seen from the results of elliptical plates that the rate of convergence seems to be relatively insensitive with the plate aspect ratio R. However, with the introduction of the foundation modulus (Tables 5-3 and
TABLE 5-1

Variation of the Maximum Deflection Coefficient α with the Number of Terms in the Lateral Deflection Function w_1 for Rectangular Plates with Built-in Edges

$$w_{\text{max}} = \alpha \frac{a b^4}{D} \left(10^{-2}\right)$$

<table>
<thead>
<tr>
<th>Plate Aspect Ratio K</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>15</th>
<th>24</th>
<th>25</th>
<th>Timoshenko Ref. (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.8382353</td>
<td>1.9453642</td>
<td>1.9240554</td>
<td>2.0198507</td>
<td>2.0259329</td>
<td>2.0255942</td>
<td>2.0248619</td>
<td>2.016</td>
</tr>
<tr>
<td>1.25</td>
<td>1.0836060</td>
<td>1.1442166</td>
<td>1.1687765</td>
<td>1.1898723</td>
<td>1.1947186</td>
<td>1.1944368</td>
<td>1.1941749</td>
<td>0.695</td>
</tr>
<tr>
<td>1.50</td>
<td>0.6312883</td>
<td>0.6627416</td>
<td>0.6777839</td>
<td>0.6900133</td>
<td>0.6944326</td>
<td>0.6942355</td>
<td>0.6941993</td>
<td>0.695</td>
</tr>
<tr>
<td>1.75</td>
<td>0.3775453</td>
<td>0.5933681</td>
<td>0.4020698</td>
<td>0.4087372</td>
<td>0.4122987</td>
<td>0.4122081</td>
<td>0.4122506</td>
<td>0.254</td>
</tr>
<tr>
<td>2.00</td>
<td>0.2344016</td>
<td>0.2428151</td>
<td>0.2474204</td>
<td>0.2508860</td>
<td>0.2533260</td>
<td>0.2533620</td>
<td>0.2533961</td>
<td>0.254</td>
</tr>
</tbody>
</table>
TABLE 5-2

Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Circular and Elliptical Plates with Built-in Edges

$$w_{\text{max}} = \beta \frac{ab^4}{D} \left(10^{-2} \right)$$

<table>
<thead>
<tr>
<th>Plate Aspect Ratio R</th>
<th>Number of Terms in the Lateral Deflection Function w_1</th>
<th>Timoshenko Ref. (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>1.00</td>
<td>1.56250</td>
<td>1.56250</td>
</tr>
<tr>
<td>1.25</td>
<td>0.92942202</td>
<td>0.92942202</td>
</tr>
<tr>
<td>1.50</td>
<td>0.55096419</td>
<td>0.55096419</td>
</tr>
<tr>
<td>1.75</td>
<td>0.33546493</td>
<td>0.33546493</td>
</tr>
<tr>
<td>2.00</td>
<td>0.21156441</td>
<td>0.21156441</td>
</tr>
</tbody>
</table>
TABLE 5-3

Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Elastically Supported Elliptical Plates with Built-in Edges

$$R = 1.5 \quad K = \frac{kb^4}{D}$$

$$w_{\text{max}} = \beta \frac{ab^4}{D} \times 10^{-2}$$

<table>
<thead>
<tr>
<th>Dimensionless Foundation Modulus K</th>
<th>Number of Terms in Lateral Deflection Function w_1</th>
<th>Timoshenko Ref.(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0.55096419</td>
<td>0.55096419</td>
</tr>
<tr>
<td>40</td>
<td>0.43791222</td>
<td>0.43155756</td>
</tr>
<tr>
<td>80</td>
<td>0.43504628</td>
<td>0.42733719</td>
</tr>
<tr>
<td>120</td>
<td>0.39236796</td>
<td>0.38379128</td>
</tr>
<tr>
<td>160</td>
<td>0.35522171</td>
<td>0.34803753</td>
</tr>
<tr>
<td>200</td>
<td>0.32531367</td>
<td>0.31814216</td>
</tr>
</tbody>
</table>
TABLE 5-4

Variation of the Maximum Deflection Coefficient β with the Number of Terms in the Lateral Deflection Function w_1 for Elastically Supported Elliptical Plates with Built-in Edges

$$ R = 2.0 \quad K = \frac{kb^4}{D} $$

$$ w_{\text{max}} = \beta \frac{ab^4}{D} \left(10^{-2}\right) $$

<table>
<thead>
<tr>
<th>Dimensionless Foundation Modulus K</th>
<th>Number of Terms in Lateral Deflection Function w_1</th>
<th>Timoshenko Ref. (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.21186441 0.21186441 0.21186441 0.21186441 0.21186441 0.21186441 0.21186441</td>
<td>0.212</td>
</tr>
<tr>
<td>40</td>
<td>0.20140821 0.20037367 0.20026422 0.20026045 0.20036127 0.20036127</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>0.19117770 0.19002790 0.18999515 0.18995388 0.18994655 0.18994655</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>0.18229312 0.18066277 0.18059955 0.18057365 0.18057375 0.18057375</td>
<td>-</td>
</tr>
<tr>
<td>160</td>
<td>0.17446709 0.17214458 0.17202461 0.17200725 0.17201408 0.17201408</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>0.16770755 0.16456292 0.16423166 0.16417611 0.16418485 0.16418496</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 5-5

Variation of the Maximum Deflection Coefficient γ with
the Number of Terms in the Lateral Deflection Function

w_1 for Skewed Plates with Built-in Edges

$R = 1.0 \quad w_{\text{max}} = \gamma \frac{a b^4}{D} (10^{-2})$

<table>
<thead>
<tr>
<th>Skew Angle</th>
<th>Number of Terms in Lateral Deflection Function w_1</th>
<th>Norley Ref.(3)</th>
<th>Kennedy Ref.(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>3 4 6 8 15 24 25</td>
<td>1.5809 1.59347 1.7975 1.7965 1.8359 1.8473 1.8524</td>
<td>1.792 1.793</td>
</tr>
<tr>
<td>30°</td>
<td>0.8402 1.4100 1.2278 1.0287 1.0922 1.0961 1.1787</td>
<td>- - - - - - -</td>
<td>- -</td>
</tr>
<tr>
<td>45°</td>
<td>0.2961 0.6998 0.5511 0.3771 0.4088 0.4163 0.5574</td>
<td>- - - - - - -</td>
<td>- 0.508</td>
</tr>
<tr>
<td>60°</td>
<td>0.0627 0.1712 0.1290 0.0809 0.0879 0.0963 0.1425</td>
<td>- - - - - - -</td>
<td>- 0.120</td>
</tr>
<tr>
<td>75°</td>
<td>0.00412 0.0115 0.00665 0.00535 0.00591 0.00672 0.00982</td>
<td>- - - - - - -</td>
<td>- 0.00836</td>
</tr>
</tbody>
</table>

TABLE 5-6

Variation of the Maximum Deflection Coefficient γ with the Number of Terms in the Lateral Deflection Function w_1 for Skewed Plates with Built-in Edges

$$R = 1.5 \quad w_{\text{max}} = \gamma \frac{q b^4}{D} \left(10^{-2}\right)$$

<table>
<thead>
<tr>
<th>Skew Angle</th>
<th>Number of Terms in Lateral Deflection Function w_1</th>
<th>Horley Ref.(3)</th>
<th>Kennedy Ref.(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>15°</td>
<td>0.5102</td>
<td>0.6333</td>
<td>0.6154</td>
</tr>
<tr>
<td>30°</td>
<td>0.3103</td>
<td>0.4554</td>
<td>0.4148</td>
</tr>
<tr>
<td>45°</td>
<td>0.1133</td>
<td>0.2253</td>
<td>0.1034</td>
</tr>
<tr>
<td>60°</td>
<td>0.02438</td>
<td>0.05042</td>
<td>0.04564</td>
</tr>
<tr>
<td>75°</td>
<td>0.00161</td>
<td>0.00414</td>
<td>0.00314</td>
</tr>
</tbody>
</table>

47

TABLE 5-7

Variation of the Maximum Deflection Coefficient γ with the Number of Terms in the Lateral Deflection Function w_1 for Skewed Plates with Built-in Edges

$$ R = 2, \quad w_{\text{max}} = \gamma \frac{Gb^4}{D} \times 10^{-2} $$

<table>
<thead>
<tr>
<th>Skew Angle</th>
<th>Number of Terms in Lateral Deflection Function w_1</th>
<th>Horley Ref.(3)</th>
<th>Kennedy Ref.(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>0.2107 0.2274 0.2259 0.2310 0.2344 0.2344 0.2339</td>
<td>0.222</td>
<td>0.211</td>
</tr>
<tr>
<td>30°</td>
<td>0.1260 0.1567 0.1567 0.1490 0.1559 0.1751 0.1555</td>
<td>0.145</td>
<td>0.147</td>
</tr>
<tr>
<td>45°</td>
<td>0.04863 0.07532 0.05839 0.06050 0.04099 0.0572 0.0684</td>
<td>0.0652</td>
<td>0.0556</td>
</tr>
<tr>
<td>60°</td>
<td>0.01075 0.02015 0.01726 0.01347 0.01366 0.01556 0.0171</td>
<td>-</td>
<td>0.0162</td>
</tr>
<tr>
<td>75°</td>
<td>0.000718 0.001501 0.00123 0.000902 0.000976 0.00117 0.00123</td>
<td>-</td>
<td>0.00114</td>
</tr>
</tbody>
</table>
5-4), a two term solution no longer gives an exact answer, but there is almost no appreciable change in result when more than 15 parameters in the lateral displacement function are used. Thus, it can be seen that the rate of convergence decreases as the foundation modulus is included.

In the case of skewed plates, it can be seen from the results of Tables 5-5 to 5-7 that there is again no monotonic convergence, but instead, an oscillating characteristic exists with no guarantee of decrease in amplitudes when the number of terms in the assumed displacement function increases. Here the skewed angles play an important part in the rate of convergence which decreases as the skewed angle increases. It shows that in general six term solutions are rather close to existing results. Here the rate of convergence decreases as the plate aspect ratio increases. This rather irregular behaviour of the rate of convergence of skewed plates may be due to the less refined approximation of the assumed lateral deflection function of the skewed plate as compared with that of the elliptical or the rectangular plate.

5.2 Nonlinear (Large) Deflection Problem

The patterns of convergence for the large deflection problem from succeeding approximations are investigated for rectangular, circular and elliptical plates. While only nine parameters are assumed for the in-plane displacement and large deflection
functions for the rectangular plate, fifteen parameters are assumed in corresponding functions on the circular and elliptical plates. The rate and pattern of convergence can best be revealed basically in the linear and nonlinear deflection coefficients γ_1 and γ_3 of Equation (4-1), tabulated in Tables 5-8, 5-9 for rectangular and elliptical plates respectively. Corresponding results for the large deflection problem obtained from succeeding approximations are shown in Figures 5-1 to 5-6. To exhibit the relative pattern of convergence of the linear and nonlinear analysis, results based on the small deflection theory are shown plotted in the aforementioned figures. From these figures it is quite obvious that, in comparison with the linear results, the rate of convergence of the large deflection results is appreciably slower. For example, in the case of the rectangular plate ($R = 1.5$) Figure 5-2 the deviation between a fourth term solution and a ninth term solution is only 4.2% whereas the corresponding deviation of the large deflection ($\frac{w_{\text{max}}}{h} = 1.5$) solution is 20%. It is perhaps interesting to note that, again due to the more exact nature of the assumed displacement functions for the elliptical plate, the rate of convergence is more rapid than in the case of rectangular plates. This is well illustrated by the closeness of the deflection curves obtained by taking 9 to 15 parameters in the displacement functions. However, in contrast with the linear
TABLE 5-8

Linear and Nonlinear Deflection Coefficients
\(\gamma_1 \) and \(\gamma_3 \) for Rectangular Plates

<table>
<thead>
<tr>
<th>Aspect Ratio R</th>
<th>Number of Terms in Displacement Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>1.00</td>
<td>54.4000</td>
</tr>
<tr>
<td>1.25</td>
<td>92.2673</td>
</tr>
<tr>
<td>1.50</td>
<td>158.4062</td>
</tr>
<tr>
<td>1.75</td>
<td>265.3092</td>
</tr>
<tr>
<td>2.00</td>
<td>426.6182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspect Ratio R</th>
<th>Number of Terms in Displacement Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>1.00</td>
<td>49.5086</td>
</tr>
<tr>
<td>1.25</td>
<td>84.0426</td>
</tr>
<tr>
<td>1.50</td>
<td>144.9247</td>
</tr>
<tr>
<td>1.75</td>
<td>244.6560</td>
</tr>
<tr>
<td>2.00</td>
<td>398.6192</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Number of Terms in Displacement Functions</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>γ_1</td>
</tr>
<tr>
<td>1.00</td>
<td>64.0000</td>
</tr>
<tr>
<td>1.25</td>
<td>107.5938</td>
</tr>
<tr>
<td>1.50</td>
<td>181.5000</td>
</tr>
<tr>
<td>1.75</td>
<td>298.0938</td>
</tr>
<tr>
<td>2.00</td>
<td>472.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>Number of Terms in Displacement Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>R</td>
<td>γ_1</td>
</tr>
<tr>
<td>1.00</td>
<td>64.0000</td>
</tr>
<tr>
<td>1.25</td>
<td>107.5938</td>
</tr>
<tr>
<td>1.50</td>
<td>181.5000</td>
</tr>
<tr>
<td>1.75</td>
<td>298.0938</td>
</tr>
<tr>
<td>2.00</td>
<td>472.0000</td>
</tr>
</tbody>
</table>
Figure 5-1 Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Square Plate with Built-in Edges
Figure 5-2

Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Rectangular Plate of Aspect Ratio 1.5 with Built-in Edges.

Figure 5-3

Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Rectangular Plate of Aspect Ratio 2 with Built-in Edges.
Figure 5-4 Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Circular Plate with Built-in Edges

$\frac{q b^4}{D h}$

$b/a = 1.0$

$\nu = 0.3$

NO. OF PARAMETERS IN DISPLACEMENT FUNCTION

S.WAY REF.[25]
Figure 5-5
Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Elliptical Plate of Aspect Ratio 1.5 with Built-in Edges

Figure 5-6
Variation of Centre Deflection with Lateral Pressure and Number of Parameters for Elliptical Plate of Aspect Ratio 2 with Built-in Edges.
deflection results, the rate of convergence appears to increase with the plate aspect ratio, \(R \). For the sake of comparison, existing results for the large deflection problem of clamped circular, elliptical, square and rectangular plates obtained by other investigators are plotted, thus showing the range of variation of the successive approximation results with available data.

Summary of Results

From the extensive study of the method, it can been seen that the rate of convergence depends mainly on the closeness of the assumed displacement function to the actual boundary of the plate domain and is more rapid in small deflection than in large deflection. However, the rate of convergence decreases with additional parameters in the plate equation and is not directly proportional to the number of undetermined parameters employed in the assumed displacement function. For the various types of plates investigated, it is found that assumed displacement functions with six undetermined parameters yield results with discrepancy at most up to 7% for skewed plates but less than 4% for other types of plates as compared with available data from other investigators. With the exception of skewed plates, this discrepancy decreases as the number of undetermined parameters employed in the assumed displacement functions increase.
CHAPTER VI

INFLUENCE OF ELASTIC LATERAL SUPPORT ON THE LINEAR AND NONLINEAR ANALYSES OF CLAMPED PLATES

The successive approximation to the small perturbation method is used here to investigate the effect of the foundation modulus on: (a) the linear (small deflection) behaviour of clamped circular, elliptical, rectangular and skewed plates, (b) the nonlinear (large deflection) behaviour of clamped elliptical plates. Results are obtained by employing up to eight parameters in the assumed displacement functions and such results, wherever possible are compared with available data in the technical literature.

6.1 Linear Analysis --- Deflection and Moments

For circular plates, coefficients of maximum centre deflection, centre and edge moments are tabulated in Tables 6-1 and 6-2. To show the pattern of convergence of the perturbation method, results from three, five, six and eight parameters in the deflection function, together with the corresponding results from the variational method of Galerkin, are tabulated in the aforementioned Tables.

For elliptical and rectangular plates, the variation of the centre deflection, the centre and maximum edge moments with different foundation moduli are plotted for various plate aspect
ratios in Figures 6-1, 6-2, 6-6 and 6-7. For skewed plates, the centre deflection, the centre and maximum edge moments are plotted against the various skewed angles for different aspect ratios in Figures 6-3 to 6-5 and 6-8 to 6-10. In these graphs, results are obtained by employing six parameters in the deflection functions and whenever possible are compared with available data.

Discussion of Results

From Table 6-1 and Table 6-2, it can be seen that the influence of elastic support in reducing the magnitude of the central deflection, hence the bending moments, of the plate decreases as the foundation modulus increases. Furthermore, the results also show that the elastic support is more effective in reducing the centre moment than the maximum edge moment.

This is to be expected since the elastic support reaction is proportional to the lateral deflection and hence most effective at the plate centre. For example, with the foundation modulus K changing from 0 to 200, the reduction in the centre moment is 75.7% whereas the corresponding reduction in the maximum edge moment is only 54.4%. In the Tables the results agree closely with the corresponding values obtained by the variational method of Galerkin (32).

The effect of elastic support on the centre deflection
<table>
<thead>
<tr>
<th>Dimensionless Foundation Modulus K</th>
<th>Number of Terms in Lateral Deflection Function (w_1)</th>
<th>Galerkin Ref. (32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.56250, 1.56250, 1.56250, 1.56250</td>
<td>1.5625</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1.11818, 1.11429, 1.11359</td>
<td>1.112</td>
</tr>
<tr>
<td>80</td>
<td>0.86603, 0.85271, 0.85381</td>
<td>0.858</td>
</tr>
<tr>
<td>120</td>
<td>0.70339, 0.70137, 0.69518</td>
<td>0.695</td>
</tr>
<tr>
<td>160</td>
<td>0.59974, 0.58394, 0.58316</td>
<td>0.581</td>
</tr>
<tr>
<td>200</td>
<td>0.50586, 0.50604, 0.50015</td>
<td>0.496</td>
</tr>
</tbody>
</table>

\[
\text{TABLE 6-1}
\]

Coefficient \(w \) for the Maximum Deflection at Centre for Circular Plates

\[
w_{\text{max}} = w \frac{qa^4}{D} (10^{-2})
\]
TABLE 6-2

Moment Coefficients c and m for Circular Plates

Centre Moment: \(M_{rc} = M_{tc} = c q a^2 \times 10^{-2} \)

Edge Moments: \(M_{re} = m a^2 \times 10^{-2} \)

\(M_{te} = v M_{re} \)

<table>
<thead>
<tr>
<th>Dimensionless Foundation Modulus K</th>
<th>Number of Terms in Lateral Deflection Function (w_l)</th>
<th>Galerkin Ref. (32)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>c</td>
<td>m</td>
</tr>
<tr>
<td>200</td>
<td>1.9492</td>
<td>-6.1224</td>
</tr>
</tbody>
</table>

61
for elliptical, rectangular and skewed plates is shown graphically in Figures 6-1 to Figures 6-5. From these graphs it can be seen that introduction of the elastic support reduces the centre deflection of the plates. Furthermore as the aspect ratio of the plate increases the influence of the elastic support on centre deflection decreases. For instance, in the case of circular and elliptical plates, with the dimensionless foundation modulus changing from 0 to 200, there is a decrease in central deflection of 67.5% with aspect ratio equals to 1, however the decrease is only 22.6% with aspect ratio equals to 2. In the case of square and rectangular plates with aspect ratios of 1 and 2, and foundation modulus changing from 0 to 200, the corresponding reduction in central deflection are 74% and 26% respectively. In the case of skewed plates, it can also be observed that, in addition to the aspect ratio, the increase in skewed angle has a rather significant part in the reduction of the effectiveness of the elastic support. With the skewed angle approaching 60°, especially for aspect ratio of 2, the influence of elastic support in reducing the centre deflection is almost insignificant. This reduction in the influence of the elastic support with the increase in skew is probably due to the increased rigidity of the obtuse corners for high angle of skew. In the graphs for skewed plates the values obtained from the variational method of Galerkin (32) are also plotted for comparison.
Figure 6-1 Variation of the Maximum Centre Deflection with Elastic Support and Aspect Ratio for Elliptical Plates
Figure 6-2 Variation of the Maximum Centre Deflection with Elastic Support and Aspect Ratio for Rectangular Plates
Figure 6-3 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, \(R = 1 \)
Figure 6-4 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, $R = 1.5$
Figure 6-5 Variation of the Maximum Centre Deflection with Elastic Support and Angle of Skew for Skewed Plates, $R = 2$
The variation of the centre and maximum edge moments with elastic support for circular, elliptical, rectangular and skewed plates are shown in Figures 6-6 through 6-10. As in the case of centre plate deflections, the effectiveness of the elastic support in reducing the centre and edge moments decreases as the aspect ratio of the plate increases. As expected, the centre and maximum edge moments decrease as the influence of elastic support increases, however, as in the case of the circular plate the influence of the elastic support on the reduction of centre moment is more pronounced. For instance, in the case of a square plate, Figure 6-7, for a change of foundation modulus k from 0 to 200, the centre moment is decreased by 39.6% whereas the corresponding decrease in the maximum edge moment is only 57.5%. In the case of skewed plates, it can be seen from Figures 6-8, 6-9 and 6-10 that the influence of elastic support on centre and maximum edge moments decreases rather rapidly with increase of skew. It is also interesting to note that when the influence of elastic support is up to a certain magnitude, the centre plate moment can actually increase with an increase in plate aspect ratio. Figures 6-6 and 6-7, for a given value of the foundation modulus. This can be due to the fact that the increase in aspect ratio reduces the lateral deflections, thus diminishing the effectiveness of the elastic support to reduce the centre plate moments.
Figure 6-6 Variation of Centre and Maximum Edge Moments with Elastic Support and Aspect Ratio for Elliptical Plates
Figure 6-7 Variation of Centre and Maximum Edge Moments with Elastic Support and Aspect Ratio for Rectangular Plate
Figure 6-8 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, $R = 1$
Figure 6-9 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, $R = 1.5$
Figure 6-10 Variation of Centre and Maximum Edge Moments with Elastic Support and Angle of Skew for Skewed Plates, R = 2
Comparison of Results

From the results presented for circular plates (Tables 6-1 and 6-2), it can be seen that they are in extremely good agreement with those obtained from the variational method of Galerkin (32).

For the case of elliptical plates where the assumed deflection function takes on the exact mathematical equation of an elliptical boundary, results for centre deflection and maximum edge moments are in exact agreement with those obtained by Timoshenko (2) for plates with no elastic support. Good agreements are also obtained with the results from Galerkin's method (32) when the influence of elastic support is included.

For the case of rectangular plates, discrepancies in the centre deflection and maximum edge moments do not exceed 0.6% and 1.3% respectively when compared with existing results from Timoshenko (2) and Galerkin (32).

For the case of skewed plates where no quadrant symmetry exists, deviation from existing results (3) and (32) increase although the agreement in general is still good with the maximum discrepancy in the edge moment not exceeding 5%.

6.2 Nonlinear Analysis --- Deflection and Total Stresses

Here the influence of elastic support on the large deflection problem of clamped elliptical plates is analysed. Results are obtained by employing eight parameters in the
assumed displacement functions. Plates with aspect ratios of 1.5 and 2.0 are considered. Results showing the variation of the dimensionless centre deflection with the dimensionless load are plotted in Figures 6-11 and 6-12 for different values of foundation modulus K. Also, the variation of the maximum total dimensionless stresses produced by the effect of both bending and stretching of the plate with the dimensionless load for various values of foundation modulus K are shown in Figures 6-13 and 6-14. In both cases, results from the linear theory and large deflection theory obtained by Weil and Newmark (10) are plotted for comparison.

Discussion and Comparison of Results

From the deflection curves (Figures 6-11 and 6-12), it can be seen that the centre deflection starts to deviate notably from linear theory, when the dimensionless deflection exceeds 0.25. This means that the elementary linear plate theory would not be sufficiently accurate once the ratio of the centre deflection to the thickness of the plate exceeds this value. For plates with no elastic support, the centre deflection results agree very closely with those obtained by Weil and Newmark (10) for both aspect ratios $R = 1.5$ and 2. No data in the literature have yet been available for large deflections of clamped elliptical plates with elastic support, hence comparison is not possible for deflection values when
Figure 6-11 Variation of Centre Deflection with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 1.5$
Figure 6-12 Variation of Centre Deflection with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 2$
foundation modulus $K > 0$.

As in the case of small deflection, the influence of the elastic support on centre deflection decreases as the aspect ratios increases. For example, with K increases from 0 to 200, at $R = 1.5$ with dimensionless load $Q = 250$, there is 24.4% decrease in centre deflection; while at $R = 2$, with $Q = 250$, there is only 17.8% decrease in centre deflection.

For a given aspect ratio, the centre deflection decreases as the foundation modulus increases. This is to be expected since the effect of the elastic support is to reduce the lateral pressure on the plate. Also, as the foundation modulus increases, the influence of the nonlinear term for deflection decreases. Hence the large deflection curves tend to become relatively more linear as the values of the foundation modulus become higher, though this is also related to the aspect ratio of the plate. For instance such tendency is less pronounced with aspect ratio equals to 2. This is due to the fact, that, as mentioned earlier, the elastic support is less effective in reducing the centre deflection of plate with large aspect ratios.

Figures 6-13 and 6-14 show the relation of total maximum edge stresses, σ_e^*; and centre stresses, σ_c^*; with the dimensionless load, Q, for various values of the foundation modulus, K. The total linear edge and centre stresses with no elastic support on the plate ($K = 0$) are plotted in to show the deviation from the
nonlinear theory. Existing data from nonlinear analysis for elliptical plates with no elastic support from Weil and Newmark (10) are also shown. The maximum deviation is less than 7%. It can be noted that since the total edge stress is much higher than the total centre stress, the former generally governs for the design considerations. One point worthy of mention is that the total stress is the sum of two stresses one due to bending and the other due to the stretching of the plate. However, the membrane stresses due to stretching of the plate contribute up to only about 10% of the total stresses. From the figures, it can be seen that the curves of the total edge stresses, σ_E, and centre stresses, σ_C, are essentially linear until they reach respectively a dimensionless magnitude of 5 and 2.5 respectively for $R = 1.5$; 7 and 4.5 respectively for $R = 2$. At this magnitude, there corresponds a central dimensionless deflection, w_0, less than 0.5. Again as in small deflection, the influence of elastic support on the total stresses decreases as the aspect ratio increases. It can also be seen that the relative positions of σ-curves are closer together and tend to straighten out for higher values of foundation modulus K. This is probably due to the decreasing effect of the elastic support as the foundation modulus increases.

For the same plate aspect ratio, it is to be expected that increase in values of foundation modulus K, reduces the
Figure 6-13 Variation of Total Centre and Maximum Edge Stresses with Lateral Pressure for Elastically Supported Elliptical Plates, $R = 1.5$
Figure 6-14 Variation of Total Centre and Maximum Edge Stresses with Lateral Pressure for Elastically Supported Elliptical Plates, R = 2
magnitude of the total stresses both at the edge and in the centre. Nevertheless, it should be noted again that the elastic support is more effective in reducing the stress at the centre than it is at the edge. For instance, at \(R = 1.5 \) as \(K \) increases from 0 to 200 and \(q = 250 \), there is a 32.2\% decrease of stress in the centre, while the corresponding decrease in the edge stress is only 24.8\%. This can be explained by the fact that the elastic support in reducing the lateral pressure of the plate is more effective at the centre than it is at the edge.

6.3 Location of Maximum Moments or Stresses

From the analytical solutions, it is found that the maximum moment (or stress) for elliptical and rectangular plates occurs at the end of minor axis and at the middle of the longer edge respectively. The location of this maximum moment (or stress) appears to be invariant with the effect of the elastic support. In case of skewed plates the maximum moment also occurs along the longer edge of the plate but is invariably displaced towards to obtuse corners, the location of this maximum moment varies with the aspect ratio but appears to be relatively insensitive to changes in skew and the effect of elastic support.
CHAPTER VII

CONCLUSIONS

As a result of this analysis on the rate of convergence and the influence of the elastic support on clamped plates by the successive approximations of perturbation, the following conclusions may be drawn:

1. The rate of convergence of the method of successive approximations depends largely on the assumed plate displacement function for the type of plate. Both linear and nonlinear results indicate that the method converges quite rapidly provided suitable displacement functions are chosen to fit closely the mathematical boundary of the plate domain.

2. Invariably, the rate of convergence of the method is more rapid in the case of the small deflection theory than it is with the large deflection theory.

3. Convergence of the method of successive approximation decreases appreciably when additional parameters, such as an elastic foundation modulus, are added to the plate equation.

4. For plates with no elastic support, the perturbation method yields results which closely agree with existing values by other investigators.
5. The maximum centre deflection of the plate decreases with an increase in the foundation modulus.

6. The elastic support is more effective in reducing the centre moment (or stress) than the edge moment (or stress) of the plate.

7. The influence of the elastic support decreases as with an increase in the plate aspect ratio and, in the case of skew plates, the influence of the elastic support also decreases with an increase in the angle of skew.

8. In elliptical plates, the results start to deviate from linear theory as the ratio of maximum centre deflection to the thickness of the plate \(\frac{w_{\text{max}}}{h} \) approaches 0.5.

9. In the large deflection of elliptical plates, the membrane stress contributes less than 10% of the total centre or edge stresses.

10. The large deflection of elliptical plates becomes increasing linear as the foundation modulus increases.

11. The maximum resultant stress for elliptical and rectangular plates occurs at the end of the minor axis and at the centre of the longer edge respectively. In skew plates, it occurs along the longer edge of the plate but is invariably displaced towards the obtuse corners.
APPENDIX A

ASSUMED DISPLACEMENT FUNCTIONS
APPENDIX A

ASSUMED DISPLACEMENT FUNCTIONS

Rectangular Plates:

\[w_1 = (1 - x^2)^2 (1 - y^2)^2 \left(1 + c_1 x^2 + c_2 y^2 + c_3 x^2 y^2 + c_4 x^4 + c_5 y^4
ight. \\
+ \ldots . \left. + c_{22} x^6 y^6 + c_{23} x^3 y^6 + c_{24} x^6 y^8 \right) \]

\[s_2 = (1 - x^2)^3 (1 - y^2)^2 \left(D_1 + D_2 x^2 + D_3 y^2 + D_4 x^2 y^2 + D_5 x^4 + D_6 y^4
ight. \\
+ D_7 x^2 y^4 + D_8 x^4 y^2 + D_9 x^6 y^4 \right) \]

\[t_2 = (1 - x^2)^2 (1 - y^2)^2 \left(E_1 + E_2 x^2 + E_3 y^2 + E_4 x^2 y^2 + E_5 x^4 + E_6 y^4
ight. \\
+ E_7 x^2 y^4 + E_8 x^4 y^2 + E_9 x^6 y^4 \right) \]

\[w_3 = (1 - x^2)^2 (1 - y^2)^2 \left(F_1 x^2 + F_2 y^2 + F_3 x^2 y^2 + F_4 x^4 + F_5 y^4 + F_6 x^2 y^4
ight. \\
+ F_7 x^4 y^2 + F_8 x^4 y^4 \right) \]

Elliptical Plates:

\[w_1 = (1 - x^2 - y^2)^2 \left(1 + c_1 x^2 + c_2 y^2 + c_3 x^4 + c_4 y^4 + c_5 x^2 y^2 + c_6 x^2 y^4
ight. \\
+ \ldots . \left. + c_{22} x^6 y^6 + c_{23} x^3 y^6 + c_{24} x^6 y^8 \right) \]

\[s_2 = (1 - x^2 - y^2)^2 \left(D_1 + D_2 x^2 + D_3 y^2 + D_4 x^4 + D_5 y^4 + D_6 x^2 y^2 + \ldots . \right. \\
+ D_{15} x^4 y^4 + D_{16} x^6 y^6 + D_{17} x^6 y^8 \right) \]
$$t_2 = (1 - x^2 - y^2) \left(E_1 + E_2 x^2 + E_3 y^2 + E_4 x^4 + E_5 y^4 + E_6 x^2 y^2 + \ldots \right)$$
\[
+ E_7 x^4 + E_8 y^2 + E_9 y^4 + E_{10} x^2 y^2 + E_{11} x^4 + E_{12} y^4 + E_{13} y^2 + \ldots \right)$$

$$w_3 = (1 - x^2 - y^2)^2 \left(F_1 x^2 + F_2 y^2 + F_3 x^4 + F_4 y^4 + F_5 x^2 y^2 + \ldots \right)$$
\[
+ F_6 x^4 + F_7 y^2 + F_8 y^4 + F_{10} x^2 y^2 + F_{11} x^4 + F_{12} y^4 + F_{13} y^2 + \ldots \right)$$

Circular Plates:

$$w_1 = \psi^2 \left[1 + c_1 (1 - \psi) + c_2 (1 - \psi)^2 + c_3 (1 - \psi)^3 + c_4 (1 - \psi)^4 + c_5 (1 - \psi)^5 + c_6 (1 - \psi)^6 \right]$$

Skewed Plates:

$$w_1 = (1 - \zeta^2)^2 (1 - \eta^2)^2 (1 - \xi^2) \left(1 + c_{11} \zeta^2 + c_{12} \eta^2 + c_{13} \xi^2 + c_{14} \zeta^4 + c_{15} \eta^4 + c_{16} \xi^4 + c_{17} \zeta^2 \eta^2 + \ldots - c_{21} \zeta^6 \eta^2 + c_{22} \zeta^8 \eta^6 + c_{23} \zeta^8 \eta^8 \right)$$
APPENDIX B

FLOW CHART AND COMPUTER PROGRAMS
START

READ IN, NL, NK

READ XX, YY, W0

II = 1

IF II > IN?
 Yes STOP
 No

II = II + 1

READ R, V

KK = 1

IF KK > NK?
 Yes 8
 No

READ AK

INITIALIZATION
A(I,J) P(I,J) C(I,J)
V(I) W(I) W(I) W(I)

1
READ
A(I,J) B(I,J)
C(I,J) V(I)

NL = 2

Yes
NL > N? No
I = 1

Yes
I > N? No
j = 1

Yes
j > NL? No
AA(I,J) = A(I,J)
C3(I,J) = C(I,J)

j = j + 1

I = I + 1

Yes
IK = IK + 1
2

\[NL2 = 2 \times NL \]

\[I = 1 \]

\[\text{I > NL?} \]

\[\text{No} \]

\[J = 1 \]

\[J > NL2? \]

\[\text{No} \]

\[BB(I,J) = B(I,J) \]

\[J = J + 1 \]

\[I = I + 1 \]

CALL INVERSION SUBROUTINE MATINV

INITIALIZATION

CONF(I)

3
5

WRITE D(I)

COMPUTE W(I)

INITIALIZATION

P(I)

I = 1

I > NL ?

Yes

No

J = 1

J > NL ?

Yes

No

P(I) = P(I) + CG(I, J) × W(J)

J = J + 1

I = I + 1

WRITE P(I), DCW'3

94
6

COMPUTE MAX
BENDING AND
MEMBRANE STRESS
AT XX, YY
USING GAMMA
AND DCN3

A

NL = NL + 1

7
ELLiptical plate

ELLiptical with k

b.m. & stresses --- linear and ncn-linear

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(20,20), AA(20,20), V(20), COEF(20),
18(20,20), B8(20,20), VV(20), D1(20),
2C(20,20), CC1(20,20), W(20), FT(20), WO(20), XX(5), YY(5)

READ(1,1) NN,M,L, NK

1 FORMAT(8110)

READ(1,2) (XX(I), YY(I), I=1,3)

READ(1,2) (WO(I), I=1,16)

DO 100 II=1, NN

WRITE(3,4) R, ANU

2 FORMAT(8F10.2)

WRITE(3,20) AK

4 FORMAT(1H1,5X,*R = 'F10.3',10X,*ANU = 'F10.3/)

DO 100 KK=1, NK

READ(1,2) AK

WRITE(3,20) AK

20 FORMAT(1H1,5X,*AK = 'F10.2/)

R2=R*R

R3=R2*R

R4=R2*R2

A1=1.-ANU

A2=1.+ANU

ML2=2.*ML

DO 40 I=1, ML

V(I)=0.

W(I)=0.

DO 40 J=1, ML

A(I,J)=0.

C(I,J)=0.

DO 400 I=1, ML2

VV(I)=0.

DO 400 J=1, ML2

B(I,J)=0.

LHS matrix for small deflection coef.

A(1,1)=-(48.*R4+16.*R2)

A(1,2)=-1.

A(1,3)=-(16.*R2+48.)

A(1,4)=24.*R4
<table>
<thead>
<tr>
<th>Page</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>0036</td>
<td>$A(1, 5) = 24$</td>
</tr>
<tr>
<td>0037</td>
<td>$A(1, 6) = 8 \cdot R2$</td>
</tr>
<tr>
<td>0038</td>
<td>$V(1) = -(24 \cdot R4 + 16 \cdot R2 + 24 \cdot R2 + 24 \cdot AK)$</td>
</tr>
<tr>
<td>0039</td>
<td>$A(2, 1) = 360 \cdot R4 + 96 \cdot R2 + 24 \cdot R2 + 24 \cdot AK$</td>
</tr>
<tr>
<td>0040</td>
<td>$A(2, 3) = 48 \cdot R2 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0041</td>
<td>$A(2, 4) = -(720 \cdot R4 + 96 \cdot R2)$</td>
</tr>
<tr>
<td>0042</td>
<td>$A(2, 5) = 48 \cdot R2$</td>
</tr>
<tr>
<td>0043</td>
<td>$A(2, 6) = -(96 \cdot R2 + 48 \cdot R2)$</td>
</tr>
<tr>
<td>0044</td>
<td>$A(2, 7) = 360 \cdot R2$</td>
</tr>
<tr>
<td>0045</td>
<td>$A(2, 9) = 24 \cdot R4$</td>
</tr>
<tr>
<td>0046</td>
<td>$A(2, 10) = 48 \cdot R2$</td>
</tr>
<tr>
<td>0047</td>
<td>$V(2) = 2 \cdot R2 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0048</td>
<td>$A(3, 1) = 48 \cdot R4 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0049</td>
<td>$A(3, 3) = 24 \cdot R4 + 96 \cdot R2 + 360 \cdot R2 + 24 \cdot AK$</td>
</tr>
<tr>
<td>0050</td>
<td>$A(3, 4) = 48 \cdot R4 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0051</td>
<td>$A(3, 5) = -(96 \cdot R2 + 720 \cdot R4)$</td>
</tr>
<tr>
<td>0052</td>
<td>$A(3, 6) = -(48 \cdot R4 + 96 \cdot R2)$</td>
</tr>
<tr>
<td>0053</td>
<td>$A(3, 8) = 360 \cdot R2$</td>
</tr>
<tr>
<td>0054</td>
<td>$A(3, 9) = 48 \cdot R2$</td>
</tr>
<tr>
<td>0055</td>
<td>$A(3, 10) = 24 \cdot R4$</td>
</tr>
<tr>
<td>0056</td>
<td>$V(3) = 2 \cdot R2 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0057</td>
<td>$A(4, 1) = -2 \cdot AK$</td>
</tr>
<tr>
<td>0058</td>
<td>$A(4, 4) = 1680 \cdot R4 + 240 \cdot R2 + 24 \cdot AK$</td>
</tr>
<tr>
<td>0059</td>
<td>$A(4, 5) = 24 \cdot R4$</td>
</tr>
<tr>
<td>0060</td>
<td>$A(4, 6) = 120 \cdot R2 + 48 \cdot R2$</td>
</tr>
<tr>
<td>0061</td>
<td>$A(4, 7) = -(3360 \cdot R4 + 240 \cdot R2)$</td>
</tr>
<tr>
<td>0062</td>
<td>$A(4, 9) = 48 \cdot R2$</td>
</tr>
<tr>
<td>0063</td>
<td>$A(4, 10) = -(240 \cdot R2 + 48 \cdot R2)$</td>
</tr>
<tr>
<td>0064</td>
<td>$A(4, 11) = 1680 \cdot R4$</td>
</tr>
<tr>
<td>0065</td>
<td>$A(4, 13) = 24 \cdot R2$</td>
</tr>
<tr>
<td>0066</td>
<td>$A(4, 15) = 120 \cdot R4$</td>
</tr>
<tr>
<td>0067</td>
<td>$V(4) = -AK$</td>
</tr>
<tr>
<td>0068</td>
<td>$A(5, 3) = -2 \cdot AK$</td>
</tr>
<tr>
<td>0069</td>
<td>$A(5, 4) = 24 \cdot R2$</td>
</tr>
<tr>
<td>0070</td>
<td>$A(5, 5) = 24 \cdot R4 + 240 \cdot R2 + 1680 \cdot AK$</td>
</tr>
<tr>
<td>0071</td>
<td>$A(5, 6) = 48 \cdot R2 + 120 \cdot R2$</td>
</tr>
<tr>
<td>0072</td>
<td>$A(5, 8) = -(240 \cdot R2 + 3360 \cdot R2)$</td>
</tr>
<tr>
<td>0073</td>
<td>$A(5, 9) = -(48 \cdot R4 + 240 \cdot R2)$</td>
</tr>
<tr>
<td>0074</td>
<td>$A(5, 10) = 48 \cdot R4$</td>
</tr>
<tr>
<td>0075</td>
<td>$A(5, 12) = 1680 \cdot R2$</td>
</tr>
<tr>
<td>0076</td>
<td>$A(5, 13) = 24 \cdot R4$</td>
</tr>
<tr>
<td>0077</td>
<td>$A(5, 14) = 120 \cdot R2$</td>
</tr>
<tr>
<td>0078</td>
<td>$V(5) = -AK$</td>
</tr>
<tr>
<td>0079</td>
<td>A(6,1) = -2 • R4+288 • R2</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>0080</td>
<td>A(6,2) = 2 • R4</td>
</tr>
<tr>
<td>0081</td>
<td>A(6,3) = 2 • R4</td>
</tr>
<tr>
<td>0082</td>
<td>A(6,4) = 720 • R4+288 • R2</td>
</tr>
<tr>
<td>0083</td>
<td>A(7,1) = -2 • R4</td>
</tr>
<tr>
<td>0084</td>
<td>A(7,2) = 2 • R4</td>
</tr>
<tr>
<td>0085</td>
<td>A(7,3) = 2 • R4</td>
</tr>
<tr>
<td>0086</td>
<td>A(7,4) = -2 • R4</td>
</tr>
<tr>
<td>0087</td>
<td>A(7,5) = 2 • R4</td>
</tr>
<tr>
<td>0088</td>
<td>A(7,6) = 2 • R4</td>
</tr>
<tr>
<td>0089</td>
<td>A(7,7) = 2 • R4</td>
</tr>
<tr>
<td>0090</td>
<td>A(7,8) = 2 • R4</td>
</tr>
<tr>
<td>0091</td>
<td>A(7,9) = 2 • R4</td>
</tr>
<tr>
<td>0092</td>
<td>A(7,10) = 2 • R4</td>
</tr>
<tr>
<td>0093</td>
<td>A(7,11) = 2 • R4</td>
</tr>
<tr>
<td>0094</td>
<td>A(7,12) = 2 • R4</td>
</tr>
<tr>
<td>0095</td>
<td>A(7,13) = 2 • R4</td>
</tr>
<tr>
<td>0096</td>
<td>A(7,14) = 2 • R4</td>
</tr>
<tr>
<td>0097</td>
<td>A(7,15) = 2 • R4</td>
</tr>
<tr>
<td>0098</td>
<td>A(7,16) = 2 • R4</td>
</tr>
<tr>
<td>0099</td>
<td>A(7,17) = 2 • R4</td>
</tr>
<tr>
<td>0100</td>
<td>A(7,18) = 2 • R4</td>
</tr>
<tr>
<td>0101</td>
<td>A(7,19) = 2 • R4</td>
</tr>
<tr>
<td>0102</td>
<td>A(7,20) = 2 • R4</td>
</tr>
<tr>
<td>0103</td>
<td>A(8,1) = 2 • R4</td>
</tr>
<tr>
<td>0104</td>
<td>A(8,2) = 2 • R4</td>
</tr>
<tr>
<td>0105</td>
<td>A(8,3) = 2 • R4</td>
</tr>
<tr>
<td>0106</td>
<td>A(8,4) = 2 • R4</td>
</tr>
<tr>
<td>0107</td>
<td>A(8,5) = 2 • R4</td>
</tr>
<tr>
<td>0108</td>
<td>A(8,6) = 2 • R4</td>
</tr>
<tr>
<td>0109</td>
<td>A(8,7) = 2 • R4</td>
</tr>
<tr>
<td>0110</td>
<td>A(8,8) = 2 • R4</td>
</tr>
<tr>
<td>0111</td>
<td>A(8,9) = 2 • R4</td>
</tr>
<tr>
<td>0112</td>
<td>A(8,10) = 2 • R4</td>
</tr>
<tr>
<td>0113</td>
<td>A(8,11) = 2 • R4</td>
</tr>
<tr>
<td>0114</td>
<td>A(8,12) = 2 • R4</td>
</tr>
<tr>
<td>0115</td>
<td>A(8,13) = 2 • R4</td>
</tr>
<tr>
<td>0116</td>
<td>A(8,14) = 2 • R4</td>
</tr>
<tr>
<td>0117</td>
<td>A(8,15) = 2 • R4</td>
</tr>
<tr>
<td>0118</td>
<td>A(8,16) = 2 • R4</td>
</tr>
</tbody>
</table>

C

C

LHS MATRIX FOR MEMBRAN COEF.

<table>
<thead>
<tr>
<th>0119</th>
<th>B(1,1) = -(12 • R3+2 • R4 • A1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0120</td>
<td>B(1,2) = -(2 • R2 • A2)</td>
</tr>
<tr>
<td>0121</td>
<td>B(1,3) = 12 • R3</td>
</tr>
<tr>
<td>0122</td>
<td>B(1,4) = 2 • R2 • A2</td>
</tr>
<tr>
<td>0123</td>
<td>B(1,5) = 2 • R4 • A1</td>
</tr>
<tr>
<td>0124</td>
<td>B(2,1) = -(2 • R2 • A2)</td>
</tr>
<tr>
<td>0125</td>
<td>B(2,2) = -(12 • R3+2 • R4 • A1)</td>
</tr>
</tbody>
</table>

C
<table>
<thead>
<tr>
<th>Row</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>0119</td>
<td>(B(2,6)=2 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0120</td>
<td>(B(2,5)=2 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0121</td>
<td>(B(2,4)=12 \cdot R)</td>
</tr>
<tr>
<td>0122</td>
<td>(B(3,3)=-(40 \cdot R 3+2 \cdot R \cdot A 1))</td>
</tr>
<tr>
<td>0123</td>
<td>(B(3,6)=-4 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0124</td>
<td>(B(3,5)=2 \cdot R \cdot A 1)</td>
</tr>
<tr>
<td>0125</td>
<td>(B(3,7)=40 \cdot R 3)</td>
</tr>
<tr>
<td>0126</td>
<td>(B(3,10)=4 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0127</td>
<td>(B(3,11)=2 \cdot R \cdot A 1)</td>
</tr>
<tr>
<td>0128</td>
<td>(B(3,12)=-4 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0129</td>
<td>(B(4,5)=-2 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0130</td>
<td>(B(4,4)=-(40 \cdot R+2 \cdot R 3 \cdot A 1))</td>
</tr>
<tr>
<td>0131</td>
<td>(B(4,9)=4 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0132</td>
<td>(B(4,8)=40 \cdot R)</td>
</tr>
<tr>
<td>0133</td>
<td>(B(4,12)=2 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0134</td>
<td>(B(5,3)=-(12 \cdot R 3))</td>
</tr>
<tr>
<td>0135</td>
<td>(B(5,6)=-6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0136</td>
<td>(B(5,5)=-(12 \cdot R 3+12 \cdot R \cdot A 1))</td>
</tr>
<tr>
<td>0137</td>
<td>(B(5,10)=-12 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0138</td>
<td>(B(5,4)=-(6 \cdot R 2 \cdot A 2))</td>
</tr>
<tr>
<td>0139</td>
<td>(B(5,9)=12 \cdot R \cdot A 1)</td>
</tr>
<tr>
<td>0140</td>
<td>(B(5,11)=12 \cdot R 3)</td>
</tr>
<tr>
<td>0141</td>
<td>(B(5,12)=6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0142</td>
<td>(B(6,3)=-6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0143</td>
<td>(B(6,6)=-(12 \cdot R+12 \cdot R 3 \cdot A 1))</td>
</tr>
<tr>
<td>0144</td>
<td>(B(6,9)=-6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0145</td>
<td>(B(6,4)=-(12 \cdot R))</td>
</tr>
<tr>
<td>0146</td>
<td>(B(6,10)=12 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0147</td>
<td>(B(6,11)=6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0148</td>
<td>(B(6,12)=12 \cdot R)</td>
</tr>
<tr>
<td>0149</td>
<td>(B(7,7)=-84 \cdot R 3+2 \cdot R \cdot A 1)</td>
</tr>
<tr>
<td>0150</td>
<td>(B(7,10)=-6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0151</td>
<td>(B(7,11)=2 \cdot R \cdot A 1)</td>
</tr>
<tr>
<td>0152</td>
<td>(B(7,13)=84 \cdot R 3)</td>
</tr>
<tr>
<td>0153</td>
<td>(B(7,16)=6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0154</td>
<td>(B(8,8)=-(12 \cdot R+2 \cdot R 3 \cdot A 1))</td>
</tr>
<tr>
<td>0155</td>
<td>(B(8,9)=-6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0156</td>
<td>(B(8,12)=12 \cdot R 3 \cdot A 1)</td>
</tr>
<tr>
<td>0157</td>
<td>(B(8,14)=84 \cdot R)</td>
</tr>
<tr>
<td>0158</td>
<td>(B(8,15)=6 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0159</td>
<td>(B(9,9)=-10 \cdot R 2 \cdot A 2)</td>
</tr>
<tr>
<td>0160</td>
<td>(B(9,8)=-(12 \cdot R 3+30 \cdot R \cdot A 1))</td>
</tr>
<tr>
<td>0161</td>
<td>(B(9,11)=-12 \cdot R 3)</td>
</tr>
<tr>
<td>B(^{(9, 12)})</td>
<td>= -10. * R2 * A2</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>B(^{(9, 15)})</td>
<td>= 30. * R * A1</td>
</tr>
<tr>
<td>B(^{(10, 7)})</td>
<td>= -10. * R * A2</td>
</tr>
<tr>
<td>B(^{(10, 11)})</td>
<td>= -10. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(10, 12)})</td>
<td>= -12. * R</td>
</tr>
<tr>
<td>B(^{(10, 16)})</td>
<td>= 30. * R3 * A1</td>
</tr>
<tr>
<td>B(^{(11, 7)})</td>
<td>= -40. * R3</td>
</tr>
<tr>
<td>B(^{(11, 9)})</td>
<td>= -12. * R * A1</td>
</tr>
<tr>
<td>B(^{(11, 10)})</td>
<td>= -12. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(11, 12)})</td>
<td>= -12. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(12, 8)})</td>
<td>= -40. * R</td>
</tr>
<tr>
<td>B(^{(12, 9)})</td>
<td>= -12. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(12, 10)})</td>
<td>= -12. * R3 * A1</td>
</tr>
<tr>
<td>B(^{(12, 11)})</td>
<td>= -12. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(13, 16)})</td>
<td>= 8. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(14, 15)})</td>
<td>= -8. * R2 * A2</td>
</tr>
<tr>
<td>B(^{(15, 14)})</td>
<td>= -14. * R2 * A2</td>
</tr>
</tbody>
</table>

LHS MATRIX FOR LARGE DEFLECTION COEF

<table>
<thead>
<tr>
<th>C(^{(1, 1)})</th>
<th>= -(48. * R4 + 16. * R2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(^{(1, 2)})</td>
<td>= 1.</td>
</tr>
<tr>
<td>C(^{(1, 3)})</td>
<td>= -(16. * R2 + 48.)</td>
</tr>
<tr>
<td>C(^{(1, 4)})</td>
<td>= 24. * R4</td>
</tr>
<tr>
<td>C(^{(1, 5)})</td>
<td>= 24.</td>
</tr>
<tr>
<td>C(^{(1, 6)})</td>
<td>= 8. * R2</td>
</tr>
<tr>
<td>C(^{(2, 3)})</td>
<td>= 480. * R2 + 48.</td>
</tr>
<tr>
<td>C(^{(2, 4)})</td>
<td>= -(720. * R4 + 96. * R2)</td>
</tr>
<tr>
<td>C(^{(2, 5)})</td>
<td>= 48.</td>
</tr>
<tr>
<td>C(^{(2, 6)})</td>
<td>= -(90. * R2 + 48.)</td>
</tr>
<tr>
<td>C(^{(2, 7)})</td>
<td>= 360. * R4</td>
</tr>
<tr>
<td>C(^{(3, 4)})</td>
<td>= 360. * R4</td>
</tr>
</tbody>
</table>
\[C(3,5) = -(96 \cdot R2 + 720) \]
\[C(3,6) = -(48 \cdot R4 + 96 \cdot R2) \]
\[C(3,8) = 360 \]
\[C(4,1) = -2 \cdot AK \]
\[C(4,4) = 1680 \cdot R4 + 240 \cdot R2 + 24 \cdot AK \]
\[C(4,5) = 24 \]
\[C(4,6) = 120 \cdot R2 + 48 \]
\[C(4,7) = -(3360 \cdot R4 + 240 \cdot R2) \]
\[C(5,3) = -2 \cdot AK \]
\[C(5,4) = 24 \cdot R4 \]
\[C(5,5) = 24 \cdot R4 + 24 \cdot R2 + 1680 \cdot AK \]
\[C(5,6) = 48 \cdot R4 + 120 \cdot R2 \]
\[C(5,8) = -(240 \cdot R2 + 3360) \]
\[C(6,1) = -2 \cdot AK \]
\[C(6,3) = -2 \cdot AK \]
\[C(6,4) = 720 \cdot R4 + 288 \cdot R2 \]
\[C(6,5) = 288 \cdot R2 + 720 \]
\[C(6,6) = 360 \cdot R4 + 576 \cdot R2 + 360 \cdot AK \]
\[C(6,7) = -720 \cdot R4 \]
\[C(6,8) = -720 \cdot R2 \]
\[C(7,1) = AK \]
\[C(7,4) = -2 \cdot AK \]
\[C(7,7) = 5040 \cdot R4 + 448 \cdot R2 + 24 \cdot AK \]
\[C(8,3) = AK \]
\[C(8,5) = -2 \cdot AK \]
\[C(8,8) = 24 \cdot R4 + 504 \cdot R2 + 504 \cdot AK \]

C

DO 200 NL=8, NL
DO 211 I=1, NL
DO 211 J=1, NL

AA(I,J)=A(I,J)
CC(I,J)=CI(I,J)
NL2=2*, NL
DO 201 I=1, NL2
DO 201 J=1, NL2

B(I,J)=B(I,J)

CALL MATINV(AA, NL)
CALL MATINV(CC, NL)

C

WRITE(3, 1010)
1010 FORMAT(1H, 1X, '--')
WRITE(3, 14)NL
I4 FORMAT(1HO,12X,I2,2X,'TERM SOLUTION')
DO 30 I=1,10
30 COEF(I)=0.
DO 300 I=1,NL
DO 300 J=1,NL
300 COEF(I)=COEF(I)+AA(I,J)*V(J)
DO 500 I=1,NL,5
11=I+1
12=I+2
13=I+3
14=I+4
WRITE(3,5)I,COEF(I),I1,COEF(I1),I2,COEF(I2),I3,COEF(I3),I4,COEF(I4)
5 FORMAT(1H5,5(1x,'C',I2,D16.8,5x))
GAMMA=COEF(2)
DC=1./GAMMA
WRITE(3,6)DC
C FORMING RHS OF MEMBRANE COEF
C
P1=-4.+2.*COEF(1)
P2=4.+8.*COEF(1)+4.*COEF(4)
P3=6.*COEF(1)-12.*COEF(4)+6.*COEF(7)
P4=-4.*COEF(1)-4.*COEF(3)+2.*COEF(6)
P5=2.*COEF(1)+4.*COEF(3)-4.*COEF(5)-4.*COEF(6)
P6=8.*COEF(1)+4.*COEF(3)-8.*COEF(4)-8.*COEF(6)
P7=4.*COEF(5)+2.*COEF(6)-4.*COEF(8)
P8=8.*COEF(4)-16.*COEF(7)
P9=4.+2.*COEF(3)
PP2=4.-8.*COEF(3)+4.*COEF(5)
PP3=6.*COEF(3)-12.*COEF(5)+6.*COEF(8)
PP4=4.-4.*COEF(1)-4.*COEF(3)+2.*COEF(6)
PP5=8.*COEF(5)-16.*COEF(8)
PP6=4.*COEF(1)+8.*COEF(3)-8.*COEF(5)-8.*COEF(6)
PP7=4.*COEF(1)+2.*COEF(3)-4.*COEF(4)-4.*COEF(6)
PP8=4.*COEF(4)+2.*COEF(5)-4.*COEF(7)
PX1=-4.+2.*COEF(1)
PX2=12.-24.*COEF(1)+12.*COEF(4)
PX3=4.-4.*COEF(1)-4.*COEF(3)+2.*COEF(6)
PX4=24.*COEF(1)+12.*COEF(3)-24.*COEF(4)-24.*COEF(6)
PX5=30.*COEF(1)-60.*COEF(4)+30.*COEF(7)
PX6=2.*COEF(1)+4.*COEF(3)-4.*COEF(5)-4.*COEF(6)
0281
PX7 = 56 * COEF (4) - 112 * COEF (7)
PY1 = -4 + 2 * COEF (3)
0282
PX8 = 4 * COEF (5) + 2 * CCEFF (6) - 4 * COEF (8)
PY2 = -4 + 2 * COEF (3)
0283
PY3 = -24 * CCEFF (3) + 12 * COEF (5)
0284
PY4 = 12 * COEF (1) + 24 * CCEFF (6) - 24 * COEF (7)
0285
PY5 = 0 + 2 * CCEFF (3) - 0 * CUEFF (4) - 24 * COEF (6)
PY6 = 0 + 2 * CCEFF (3) - 6 * CUEFF (5) + 36 * COEF (8)
0286
PY7 = 0 + 2 * CCEFF (3) - 0 * CUEFF (4) - 24 * COEF (7)
PY8 = 56 * COEF (5) - 112 * CUEFF (8)
0287
PY9 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0288
PY10 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0289
PX1 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0290
PY11 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0291
PY12 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0292
PX1 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0293
PX2 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0294
PX3 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0295
PX4 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0296
PX5 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0297
PX6 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0298
PX7 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0299
PX8 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0300
PX9 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0301
PX10 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0302
PX11 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0303
PX12 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0304
PX13 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0305
PX14 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0306
PX15 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0307
PX16 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0308
PX17 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0309
PX18 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0310
PX19 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0311
PX20 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0312
PX21 = 0 + 2 * CCEFF (3) - 16 * CUEFF (5) + 16 * COEF (6)
0313
PY = WRITE (3, 151) (VY, I, L, ML)
0314
LSI FORMAT (1HC, 5X, 5D15.8/6X, 5D16.8)
DO 31 I=1,20
31 C(I)=0.
DO 301 I=1,NL2
DO 361 J=1,NL2
301 D(I)=D(I)+BB(I,J)*VV(J)
WRITE(3,16)

FORMAT(1H0,5X,'LARGE DEFLECTION')
DO 501 I=1,NL2,5
11=I+1
12=I+2
13=I+3
14=I+4
501 WRITE(3,1511) D(I),I1,D(I1),I2,D(I2),I3,D(I3),I4,D(I4)

FORMAT(1H5,5(1X,'C'12,D16.8,5X))

C
FORMING RHS FOR W3

SX1=D(1)
SX2=-3.*D(1)+3.*D(3)
SX3=-D(1)+D(5)
SX4=-3.*D(3)-3.*D(5)+3.*D(11)
SX5=-5.*D(3)+5.*D(7)
SX6=-D(5)+D(19)
SX7=-7.*D(7)+7.*D(13)
SX8=-D(9)+C(15)
SX9=-2.*D(1)+2.*D(5)
TX1=-2.*C(2)+2.*D(6)

TY1=D(2)
TY2=-D(2)+D(6)
TY3=-3.*D(2)+3.*D(4)
TY4=-3.*C(5)-3.*D(14)+3.*D(12)
TY5=-D(6)+D(10)
TY6=-5.*D(4)+5.*D(8)
TY7=-D(10)+D(16)
TY8=-7.*D(8)+7.*D(14)
W(I)=12.*(R4*PX1*SX1*ANU*(R3*TY1*PX1)+12.*(R*TY1*PY1*ANU*R2*PY1*

1SX1)
W(I)=12.*(R4*(PX1*SX2+PX2*SX1)+5*R4*P1*P1*PX1*ANU*(R3*(PX1*TY2+PX
2*TY1))+12.*(R*(PY1*TY2*PY2*TY1)*ANU*(R2*(PY1*SX2+PY2*PX1)+5*R2*

3P1*P1*PY1))

W(3)=12.*(R4*(PX1*SX3*PX3*SX1)+ANU*(R3*(PX1*TY3+PX3*TY1)+5*R2*
4*(PP1*PP1*PX1))+12.*(R1*PY1*TY3+PY3*TY1)+.5*PP1*PP1*PY1*ANU*(R2*

5PY1*SX3*PY3*SX1))
C TO COMPUTE R.M. & STRESSES
<table>
<thead>
<tr>
<th>371</th>
<th>DO 1000 I=1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>372</td>
<td>WRITE(3,1100)</td>
</tr>
<tr>
<td>373</td>
<td>1100 FORMAT(1H,5X,'--------------------------')</td>
</tr>
<tr>
<td>374</td>
<td>X=XX(I)</td>
</tr>
<tr>
<td>375</td>
<td>Y=YY(I)</td>
</tr>
<tr>
<td>376</td>
<td>WRITE(3,1001)X,Y</td>
</tr>
<tr>
<td>377</td>
<td>1001 FORMAT(1H0,5X,'AT'5X,'X= '+'8.2',3X,'Y= '+'F8.2')</td>
</tr>
<tr>
<td>378</td>
<td>X2=X*X</td>
</tr>
<tr>
<td>379</td>
<td>X3=X2*X</td>
</tr>
<tr>
<td>380</td>
<td>X4=X3*X</td>
</tr>
<tr>
<td>381</td>
<td>X5=X4*X</td>
</tr>
<tr>
<td>382</td>
<td>X6=X5*X</td>
</tr>
<tr>
<td>383</td>
<td>X7=X6*X</td>
</tr>
<tr>
<td>384</td>
<td>X8=X7*X</td>
</tr>
<tr>
<td>385</td>
<td>X9=X8*X</td>
</tr>
<tr>
<td>386</td>
<td>X10=X9*X</td>
</tr>
<tr>
<td>387</td>
<td>X11=X10*X</td>
</tr>
<tr>
<td>388</td>
<td>Y2=Y*Y</td>
</tr>
<tr>
<td>389</td>
<td>Y3=Y2*Y</td>
</tr>
<tr>
<td>390</td>
<td>Y4=Y3*Y</td>
</tr>
<tr>
<td>391</td>
<td>Y5=Y4*Y</td>
</tr>
<tr>
<td>392</td>
<td>Y6=Y5*Y</td>
</tr>
<tr>
<td>393</td>
<td>Y7=Y6*Y</td>
</tr>
<tr>
<td>394</td>
<td>Y3=Y2*Y</td>
</tr>
<tr>
<td>395</td>
<td>Y10=Y9*Y</td>
</tr>
<tr>
<td>396</td>
<td>Y11=Y10*Y</td>
</tr>
<tr>
<td>397</td>
<td>EX1=2.-24.&&X2-4.,&&Y2+24.,&&X2*Y2+30.,&&X4+2.,&&Y4</td>
</tr>
<tr>
<td>398</td>
<td>EX2=-4.&&Y2+4.,&&X4+12.,&&X2*Y2</td>
</tr>
<tr>
<td>399</td>
<td>EX3=12.&&X2-60.,&&X4-24.,&&X2Y2+60.,&&X4Y2+56.,&&X6+12.,&&X2*Y4</td>
</tr>
<tr>
<td>400</td>
<td>EX4=-4.&&Y4+4.,&&Y6+12.,&&X2*Y4</td>
</tr>
<tr>
<td>401</td>
<td>EX5=2.,&&Y2-24.,&&X2Y2-4.,&&Y4+24.,&&X2Y4+30.,&&X4*Y2+2.,&&Y6</td>
</tr>
<tr>
<td>402</td>
<td>EX6=30.&&X4-112.,&&X6-60.,&&X2Y2+112.,&&X6Y2+90.,&&X8+30.,&&X4*Y4</td>
</tr>
<tr>
<td>403</td>
<td>EX7=-4.&&Y6+4.,&&Y8+12.,&&X2*Y6</td>
</tr>
<tr>
<td>404</td>
<td>EX1=2.,&&Y6+4.,&&Y8+12.,&&X2*Y6</td>
</tr>
<tr>
<td>405</td>
<td>EX1=-4.&&X2+4.,&&X4+12.,&&X2*Y2</td>
</tr>
<tr>
<td>406</td>
<td>EX2=2.,&&X2-24.,&&Y2+24.,&&X2*Y2+2.,&&X4+30.,&&Y4</td>
</tr>
<tr>
<td>407</td>
<td>EX3=4.*X4+4.*X6+12.*X4**Y2</td>
</tr>
<tr>
<td>408</td>
<td>EX4=12.*Y2-24.X2Y2-60.*Y4+60.X2Y4+12.X4Y2+56.*Y6</td>
</tr>
<tr>
<td>409</td>
<td>EX5=2.*X2-4.*X4-24.X2Y2+24.X4Y2+2.*X6+30.X2Y4</td>
</tr>
<tr>
<td>410</td>
<td>EX6=4.*X6+4.*X8+12.X6Y2</td>
</tr>
<tr>
<td>411</td>
<td>EX7=30.*Y4-60.X2Y4-112.*Y6+112.X2Y6+30.X4Y4+90.*Y8</td>
</tr>
<tr>
<td>412</td>
<td>EXY1=-8.*XY+16.X3Y+8.*XY</td>
</tr>
<tr>
<td>413</td>
<td>EXY2=-8.*XY+16.X3Y+8.*XY</td>
</tr>
</tbody>
</table>
C
C
BM & STRESS VS Q ---- LINEAR

0422 BMX=-DC*(R2*WX2+ANU*WY2)
0423 BMY=-DC*(WY2+ANU*R2*WX2)
0424 BMYX=DC*R*WX
0425 SIGX=5*BMX
0426 SIGY=5*BMY
0427 SIGXY=BMXY
C
0428 WRITE(3,1002)
0429 1002 FORMAT(10Q50,'BM & STRESS VS Q ---- LINEAR')
0430 WRITE(3,1003)BMX,BMY,BMXY,SIGX,SIGY,SIGXY
0431 1003 FORMAT(10Q50,'BMX='D16.8',BMY='D16.8',BMYX='D16.8',SIGX='D16.8',SIGY='D16.8',SIGXY='D16.8')

C
C
BM & STRESS VS WO ---- LINEAR

0432 BMX1=-(R2*WX2+ANU*WY2)
0433 BMY1=-(WY2+ANU*R2*WX2)
0434 BMXY1=R*WX
0435 SIGX1=5*BMX1
0436 SIGY1=5*BMY1
0437 SIGXY1=R*WX
0438 WRITE(3,1004)
0439 1004 FORMAT(10Q50,'BM & STRESS VS WO ---- LINEAR')
0440 WRITE(3,1005)BMX1,BMY1,BMXY1,SIGX1,SIGY1,SIGXY1
0441 1005 FORMAT(10Q50,'BMX='D16.8',BMY='D16.8',BMYX='D16.8',SIGX='D16.8',SIGY='D16.8',SIGXY='D16.8')

C
C
Q,BM & STRESS VS WO ---- NLN-LINEAR

0442 WX2=F(1)*EX1+F(3)*EX2+F(4)*EX3+F(5)*EX4+F(6)*EX5+F(7)*EX6
0443
1+F(8)*EX7
w3y2=F(1)*ey1+F(3)*ey2+F(4)*ey3+F(5)*ey4+F(6)*ey5+F(7)*ey6
1+F(8)*ey7

0444
w3xy=F(1)*exy1+F(3)*exy2+F(4)*exy3+F(5)*exy4+F(6)*exy5+F(7)*exy5
1+F(8)*exy7

0445
bm2x=-(r2*w3x2+anuyw3y2)

0446
bm2y=-(w3y2+anuyr2*w3x2)

0447
bmx2=r*x3xy

0448
write(3,1011)bm2x,bm2y,bmxy2

0449
format(1,ho,5x,'qmx2='d16.8,5x,'bm2y='d16.8,5x,'bmxy2='d16.8/1)

0450
write(3,10c9)

0451
format(1,ho,5x,'q',bm, & stress vs wo --- non-linear')

0452
du=2000 k=1,16

0453
ww=wo(i)

0454
w3=ww**3

0455
g=coef(2)*ww+f(2)**ww**3

0456
bmx3=bxm1*ww+bmx2*xw

0457
bmy3=bmy1*ww+bmy2*xw

0458
bmy3=bmxy1*ww+bmxy2*xw

0459
sigx3=.5*bxm3

0460
sigy3=.5*bmy3

0461
sigxy3=bmxy3

0462
format(1,ho,5x,'wc='f6.3,5x,'q='d16.8/20x,'bm3='d16.8,5x,'bmy3='

1006
sigx3='d16.8,5x,

1011
sigxy3='d16.8/20x,'sigx3='d16.8,5x,'sigy3='d16.8,5x,'sigxy3='

0463
bn=abs((.5*(bxm3-bmy3)**2+bmxy3**2)**.5)

0464
bmax=.5*(bmx3*bmy3)+BM

0465
sig=abs((.5*(SIGX3-SIGY3)**2+SIGXY3**2)**.5)

0466
sigmax=.5*(SIX3*SIGY3)+SIG

0467
write(3,1012)bn,sigmax

0468
format(1,ho,20x,'bmax='d16.8/20x,'sigmax='d16.8/1)

0469
write(3,1006)ww,g,bmx3,bm3,bmxy3,sigx3,sigy3,sigxy3

0470
to compute membrane stresses

0471
c

c

c

0472
S2X=D(1)*(1.33**X2+Y2)+D(3)*(3.33**X2+3.33**X2+Y2)
1+D(5)*(Y2-3)**X2**Y2-4)+D(7)*(7.33**X4-7.33**X4+3.33**X4**Y2)
2+D(9)*(Y4-3)**X2**Y4-6)+D(11)*(3.33**X2**Y2-5.33**X4**Y2-3.33**X2**Y4)
3+D(13)*(7.33**X4-9.33**X4-7.33**X4**Y2)+D(15)*(Y6-3.33**X2**Y6-8Y)

0473
S2Y=D(1)*(-2.33**X2**Y2+3)+D(3)*(-2.33**X3**Y3)+D(5)*(-2.33**X5**Y5)
1+D(7)*(-2.33**X5**Y5)+D(9)*(-4.33**X3**Y3+6.33**X3**Y3)
2+D(11)*(-2.33**X3**Y3-2.33**X5**Y5-4.33**X3**Y3)+D(13)*(-2.33**X7**Y7)
| 0472 | \[3 + D(15) \ast (6 \ast X \ast Y^5 - 6 \ast X \ast 3 \ast Y^5 - 8 \ast X \ast Y^7)\]
 | \[T2 \ast X = D(2) \ast (-2 \ast X \ast Y + 1) \ast (4) \ast (-2 \ast X \ast Y + 3) + D(6) \ast (2 \ast X \ast Y - 4 \ast X \ast 3 \ast Y - 2 \ast X \ast Y^3)\]
 | \[1 + D(8) \ast (-2 \ast X \ast Y^5) + D(10) \ast (4 \ast X \ast Y - 6 \ast X \ast 5 \ast Y - 4 \ast X \ast Y^3)\]
 | \[2 + D(12) \ast (2 \ast X \ast Y^3 - 4 \ast X \ast 3 \ast Y^3 - 2 \ast X \ast Y^5) + D(14) \ast (-2 \ast X \ast Y^7)\]
 | \[4 + D(16) \ast (6 \ast X \ast 5 \ast Y - 8 \ast X \ast Y^7 - 8 \ast X \ast Y^9) + D(18) \ast (3 \ast X \ast Y - 2 \ast X \ast Y^3 - 5 \ast X \ast Y^5)\]

| 0473 | \[2 + D(12) \ast (2 \ast X \ast Y^3 - 4 \ast X \ast 3 \ast Y^3 - 2 \ast X \ast Y^5) + D(14) \ast (-2 \ast X \ast Y^7)\]
 | \[1 + D(6) \ast (X^2 - X^3 - 3 \ast X \ast Y^2 + 6 \ast X \ast Y^3) + D(8) \ast (5 \ast X \ast Y - 4 \ast X \ast Y^2 - 7 \ast X \ast Y^3)\]
 | \[2 + D(10) \ast (X^4 - 2 \ast X \ast X^2 \ast Y + 1) + D(12) \ast (3 \ast X \ast X^2 \ast Y - 3 \ast X \ast X^2 \ast Y^2 - 5 \ast X \ast X^2 \ast Y^4)\]
 | \[3 + D(14) \ast (7 \ast X \ast Y^6 - 7 \ast X \ast Y^6 - 6 \ast X \ast Y^8 + 4 \ast X \ast Y^8)\]
 | \[7 + D(16) \ast (X \ast X \ast Y - 3 \ast X \ast X \ast Y^2 + 2 \ast X \ast X \ast Y^2)\]

| C474 | \[WX = -4 \ast X \ast Y^4 + 4 \ast X \ast Y^4 + 4 \ast X \ast Y^3\]
 | \[1 + COEF(1) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[2 + COEF(3) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[3 + COEF(5) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[5 + COEF(7) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]

| C475 | \[WY = -4 \ast X \ast Y^4 + 4 \ast X \ast Y^4 + 4 \ast X \ast Y^3\]
 | \[1 + COEF(1) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[2 + COEF(3) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[3 + COEF(5) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[5 + COEF(7) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]

| 0476 | \[WX = -4 \ast X \ast Y^4 + 4 \ast X \ast Y^4 + 4 \ast X \ast Y^3\]
 | \[1 + F(3) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[2 + F(4) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[3 + F(5) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[5 + F(7) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]

| 0477 | \[WX = -4 \ast X \ast Y^4 + 4 \ast X \ast Y^4 + 4 \ast X \ast Y^3\]
 | \[1 + F(3) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[2 + F(4) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[3 + F(5) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[5 + F(7) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]

| C478 | \[WX = -4 \ast X \ast Y^4 + 4 \ast X \ast Y^4 + 4 \ast X \ast Y^3\]
 | \[1 + F(3) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[2 + F(4) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[3 + F(5) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]
 | \[5 + F(7) \ast (1 \ast X \ast Y - 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y + 2 \ast X \ast X \ast Y)\]

SMX, SMY, SMXY VS W02
0479 \[SMX_2 = R^2 \times W_1 \times W_3 + A_1 \times W_1 \times W_3 \]
0480 \[SMX_3 = 0.5 \times (R^2 \times W_3 \times W_3 + A_1 \times W_3 \times W_3) \]
0481 \[SMY_1 = (R^2 \times T_2 \times W_3 \times W_3 + A_1 \times R^2 \times W_3 \times W_3) \]
0482 \[SMY_2 = W_1 \times W_3 + A_1 \times R^2 \times W_1 \times W_3 \]
0483 \[SMY_3 = 0.5 \times (W_3 \times W_3 + A_1 \times R^2 \times W_3 \times W_3) \]
0484 \[SMXY_1 = R^2 \times S_2 \times Y + R^2 \times T_2 \times X \]
0485 \[SMXY_2 = R^2 \times (W_1 \times W_3 \times W_3 \times W_3) \]
0486 \[SMXY_3 = R^2 \times W_3 \times W_3 \]
0487 \[WRITE(3, 1007) SMX_1, SMX_2, SMX_3, SMY_1, SMY_2, SMY_3, SMXY_1, SMXY_2, SMXY_3 \]
0488 \[1007 FORMAT(1HO, 5X, 'MEMBRANE STRESS CDEF. OF W02'//3(48X, 3D16.8)) \]
0489 \[DO 2001 K = 1, 16 \]
0490 \[w1 = w0(k) \]
0491 \[w2 = w1 *** 2 \]
0492 \[w4 = w1 *** 4 \]
0493 \[w6 = w1 *** 6 \]
0494 \[SMX = SMX_1 \times w2 + SMX_2 \times w4 + SMX_3 \times w6 \]
0495 \[SMY = SMY_1 \times w2 + SMY_2 \times w4 + SMY_3 \times w6 \]
0496 \[SMXY = SMXY_1 \times w2 + SMXY_2 \times w4 + SMXY_3 \times w6 \]
0497 \[2001 WRITE(3, 1008) W1, SMX, SMY, SMXY \]
0498 \[1008 FORMAT(1HO, 3D, 20X, 'SMX = ', 'D16.8, 5X, ', 'SMY = ', 'D16.8, 5X, ', 'SMXY = ', 'D16.8) \]
0499 \[1600 CONTINUE \]
0500 \[CONTINUE \]
0501 \[CONTINUE \]
0502 \[CONTINUE \]
0503 \[STOP \]
0504 \[END \]
SUBROUTINE FOR MATRIX INVERSION

SUBROUTINE MATINV(A,N)
IMPLICIT REAL*8(A-H,O-Z)

DIMENSION INDEX(20,2),A(20,20)

DO 108 I=1,N
108 INDEX(I,1)=0

II=0
A(MAX)=-1.

DO 110 I=1,N
110 IF (INDEX(I,1))110,111,110

DO 112 J=1,N
111 IF(INDEX(J,1))112,113,112

TEMP=ABS(A(I,J))
IF(TEMP-A(MAX))112,112,114

ICOL=J
A(MAX)=TEMP
CONTINUE

IF(A(MAX))125,115,116

INDEX(ICOL,1)=1

IF(IROW-ICOL)115,116,116

DC 120 J=1,N
119 TEMP=A(IROW,J)

A(IROW,J)=A(ICOL,J)
A(ICOL,J)=TEMP
II=II+1

INDEX(II,2)=ICOL

PIVOT=A(ICOL,ICOL)
A(ICOL,ICOL)=1.

PIVOT=1./PIVOT

DO 121 J=1,N

DO 122 I=1,N
121 A(ICOL,J)=A(ICOL,J)*PIVOT

DO 122 I=1,N
123 TEMP=A(I,ICOL)

DO 124 J=1,N
124 A(I,J)=A(I,J)-A(ICOL,J)*TEMP

CONTINUE
GO TO 105

ICOL=INDEX(II,2)
IROW=INDEX(ICOL,1)
DO 126 I=1,N
 TEMP=A(I, IROW)
 A(I, IROW)=A(I, ICOL)
 126 A(I, ICOL)=TEMP
 II=II-1
 225 IF(II) 125,127,125
 115 WRITE(6,1001)
1001 FORMAT(1HO,2X,11H ZERO PIVOT)
 127 CONTINUE
 RETURN
END
REFERENCES

(1) McDermott, J. F.,
"Theoretical and Experimental Study of Steel Panels in which Membrane Tension is Developed", ASME 65 - HT - 15, 1965.

(2) Timoshenko, S. P. and Woinowsky-Krieger, S.,

(3) Morley, I. S. D.,

(4) Kennedy, J. B.,

(5) Kennedy, J. B. and Hg, S.,

(6) Von Kármán, Theo.,

(7) Way, S.,

(8) Levy, S.,
"Square Plates with Clamped Edges under Normal Pressure Producing Large Deflections", NASA TN.740, 1942.

(9) Levy, S. and Greason, S.,
"Bending with Large Deflections of a Clamped Rectangular Plate with Length-width Ratio of 1.5 under Normal Pressure", NASA TN.853.

(10) Weil, M. A. and Newmark, H. N.,
(11) Chien, W. Z.,

(12) Chien, W. Z. and Yeh, K. Y.,

(13) Nash, W. A. and Cooley, L. D.,

(14) Kau, M. P. and Huang, T. C.,

(15) Von Dyke, M.,

(16) Bellman, R.,

(17) Nusseifeld, E. M.,

(18) Bragatti, C. V.,

(19) Jensen, V. P.,
"Analysis of Skewed Slabs", University of Illinois Engineering Experimental Station, Bulletin No. 332, 1941.

(20) Doorn, F. H.,
(21) Mirkov, I.,

(22) Jones, P. E.,

(23) Timoshenko, S.,

(24) Nadai, A.,

(25) Way, S.,

(26) McPherson, A., Ramberg, J. and Levy, S.,

(27) Wang, C. T.,

(28) Perry, C. L.,

(29) Nash, W. A. and H. E. H.,

(30) Sih, S. W.,
(31) Ng, S. F. and Kennedy, J. B.,

(32) Ng, S. F.,

(33) Timoshenko, S., and Goodier, J. N.,
NOMENCLATURE

\(D \) = flexural rigidity of plate \(\frac{EH^3}{12(1 - \nu^2)} \)

\(E \) = modulus of elasticity of plate material

\(G \) = shear modulus

\(R \) = plate aspect ratio \(b/a \)

\(Q \) = dimensionless uniformly distributed load

\(U, V, W \) = dimensionless displacement components parallel to \(\bar{x}, \bar{y}, \bar{z} \)

\(W_0 \) = dimensionless lateral displacement at centre of plate

\(K \) = dimensionless foundation modulus

\(C_i, D_i, E_i, F_i \) = unknown parameters in assumed displacement functions

\(N \) = total number of undetermined parameters in plate displacement functions

\(Q_x, Q_y \) = shearing forces per unit length of plate

\(M_x, M_y, M_{xy} \) = in-plane forces per unit length of plate

\(M_x, M_y, M_{xy} \) = bending and twisting moments per unit length of plate

\(H_x, H_y, H_{xy} \) = dimensionless bending and twisting moments per unit length of plate

\(a, b \) = dimensions of plate

\(h \) = thickness of plate

\(q \) = intensity of uniformly distributed load

\(k \) = elastic foundation reaction per unit area per unit deflection
\(\bar{x}, \bar{y}, \bar{z} \) = rectangular cartesian coordinates

\(x, y, z \) = dimensionless cartesian coordinates

\(u, v, w \) = displacement of point on middle plane of plate parallel to \(\bar{x}, \bar{y}, \bar{z} \) axes respectively

\(r \) = radial distance of circular plate

\(n \) = outwardly drawn normal to oblique side of skewed plate

\(\alpha, \beta \) = oblique coordinates for skewed plate

\(\zeta, \eta \) = dimensionless oblique coordinates for skewed plate

\(\Theta \) = skew angle

\(\nu \) = Poisson's ratio

\(\gamma_i \) = undetermined constants

\(\nabla \) = Laplacian operator

\(\epsilon_x, \epsilon_y, \tau_{xy} \) = longitudinal and shearing strain components

\(\sigma_x, \sigma_y, \tau_{xy} \) = extreme fibre bending and shearing stresses

\(\sigma_x', \sigma_y', \tau_{xy}' \) = dimensionless bending stresses and shearing stresses

\(\sigma_x', \sigma_y', \tau_{xy}' \) = membrane stresses in middle surface of plate

\(\sigma_x', \sigma_y', \tau_{xy}' \) = dimensionless stresses in middle surface of plate