AN EXPERIMENTAL INVESTIGATION OF LATERALLY
PRESTRESSED CONCRETE COLUMNS UNDER ECCENTRIC LOADS

by

Tak-Fong WONG

Submitted in partial fulfillment
of the requirements for the degree of
Master of Applied Science

Department of Civil Engineering
School of Graduate Studies
University of Ottawa
Ottawa, Canada

February, 1971
ABSTRACT

This thesis is a study of the effects of laterally stress, eccentricity of applied load and slenderness ratio on the ultimate load of laterally prestressed concrete columns.

An experimental investigation has been carried out on 6" diameter concrete columns with slenderness ratios of 16, 24, 36 and 48. Loads were applied at eccentricities $\frac{e}{D}$ of 0.1, 0.25 and 0.5. Initial laterally prestresses were applied to the columns by wrapping the columns with piano wires giving lateral stresses of 900, 1600 and 3200 psi.

Based on the test results together with those of concentrically loaded laterally prestressed columns from Godse's investigation (16), an empirical formula is proposed for predicting the ultimate load of laterally prestressed concrete columns under either concentric or eccentric loadings. Charts were prepared to simplify use of the proposed formula and a design method using the presented charts is also given.
ACKNOWLEDGMENTS

The author wishes to thank Dr. N. J. Gardner, supervisor for this project, for his patience and continued aid and guidance.

The author is grateful for assistance gained from the Department and Mr. E. Behrmann, the Department Technician who helped the preparation and testing work.

Thanks are due to the Structures Laboratory of the National Research Council and the Laboratory personnel, especially Mr. B. Ubbink, for providing the test machine.

Thanks to those friends in the Department, who gave help in the casting and testing work.

Finally, the author is grateful to acknowledge the financial assistance of the National Research Council under Grant No. A5645.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES AND ILLUSTRATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE SURVEY</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Theory of Columns</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Short Columns</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2 Long Columns</td>
<td>4</td>
</tr>
<tr>
<td>2.1.3 Euler's Column Formula</td>
<td>5</td>
</tr>
<tr>
<td>2.1.4 Tangent Modulus Formula</td>
<td>5</td>
</tr>
<tr>
<td>2.1.5 The Secant Formula</td>
<td>7</td>
</tr>
<tr>
<td>2.1.6 Representation of Imperfection by Equivalent</td>
<td>7</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>7</td>
</tr>
<tr>
<td>2.1.7 Empirical Column Formulas</td>
<td>8</td>
</tr>
<tr>
<td>2.1.7.a Rankine-Gordon Formula</td>
<td>8</td>
</tr>
<tr>
<td>2.1.7.b Johnson's Parabolic Formula</td>
<td>9</td>
</tr>
<tr>
<td>2.1.7.c Straight-line Formula</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Previous Investigations of Triaxial Effects</td>
<td>9</td>
</tr>
<tr>
<td>Concrete and Reinforced Concrete Columns and Cylinders</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Survey of Previous Investigations</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Conclusions on Previous Investigations</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>MATERIALS AND TESTING PROCEDURE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation of Specimens</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Casting</td>
</tr>
<tr>
<td>3.1.1.a</td>
<td>Specimens</td>
</tr>
<tr>
<td>3.1.1.b</td>
<td>Moulds and End Caps</td>
</tr>
<tr>
<td>3.1.1.c</td>
<td>Concrete Mix</td>
</tr>
<tr>
<td>3.1.1.d</td>
<td>Reinforcement</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Curing</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Wrapping of Cylinders</td>
</tr>
<tr>
<td>3.1.3.a</td>
<td>Wire for Wrapping</td>
</tr>
<tr>
<td>3.1.3.b</td>
<td>Wrapping Device</td>
</tr>
<tr>
<td>3.1.3.c</td>
<td>Wrapping of Cylinders</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Installation of Strain Gages</td>
</tr>
<tr>
<td>3.2</td>
<td>Testing</td>
</tr>
<tr>
<td>3.3</td>
<td>Nomenclatures for Specimens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>THEORETICAL CONSIDERATIONS AND ANALYSIS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Analysis of Lateral Pressure from Wrapping Wires to Concrete Cylinders</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Ultimate Strength Analysis of Plain Concrete Columns</td>
<td>46</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Cylindrical Concrete Columns under Concentric Load</td>
<td>47</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Cylindrical Concrete Columns under Eccentric Load</td>
<td>47</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Laterally Prestressed Plain Concrete Columns</td>
<td>51</td>
</tr>
</tbody>
</table>
CHAPTER 5 DISCUSSION OF TEST RESULTS AND

THE PROPOSED FORMULA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Failure Phenomena of Specimens</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of Lateral Prestress</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of Slenderness Ratio</td>
<td>60</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of Eccentricity</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>The Proposed Formula</td>
<td>65</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Values of Empirical Coefficients R_1 and R_2</td>
<td>65</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Values of Empirical Coefficients K_1, K_2, K_3, K_4 and α</td>
<td>66</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Values of Empirical Coefficient R_3</td>
<td>67</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Values of Empirical Coefficient K_5</td>
<td>67</td>
</tr>
<tr>
<td>5.5.5</td>
<td>The Proposed Formula</td>
<td>68</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Comparison of the Proposed Formula and the Test Results</td>
<td>69</td>
</tr>
<tr>
<td>5.5.6.a</td>
<td>Comparison with Present Investigation</td>
<td>69</td>
</tr>
<tr>
<td>5.5.6.b</td>
<td>Comparison with Previous Investigations</td>
<td>71</td>
</tr>
</tbody>
</table>

CHAPTER 6 CHARTS FOR THE PROPOSED FORMULA AND DESIGN METHOD

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Charts</td>
<td>74</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Chart for A'_c Values</td>
<td>75</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Chart for R Values</td>
<td>75</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Charts for βK Values</td>
<td>75</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Ultimate Load/Moment/Lateral Stress Interaction Diagrams</td>
<td>76</td>
</tr>
</tbody>
</table>
6.1.5 Chart for Axial Tensile Force in the Wrapping Wires .. 77

6.2 Example of Using the Presented Charts to Predict Failure Load 78

6.3 Design Method of Laterally Prestressed Concrete Columns .. 79

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS .. 115

7.1 Conclusions .. 115

7.2 Recommendations for Future Work .. 117

REFERENCES .. 118

LIST OF REFERENCES .. 119

APPENDIXES .. 122

APPENDIX A Steel Properties and Calibration Curve .. 123

APPENDIX B Individual Graphs of Testing Data of Specimens .. 127

APPENDIX C Experimental Failure Loads of All Specimens .. 188
LIST OF TABLES AND ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Specimens Details</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>End Cap and Casting</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Fabrication Details of Specimens</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Mix Proportion of Concrete</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Wrapping of Cylinders</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Wrapping Device</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Details of Loading Plates (for e/D = 0.10)</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Details of Loading Plates (for e/D = 0.25)</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>Details of Loading Plates (for e/D = 0.50)</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Loading Cover Plates</td>
<td>42</td>
</tr>
<tr>
<td>3.11</td>
<td>Specimen under Test</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Analysis of Lateral Pressure from Wrapping Wires to Concrete Cylinder</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Stress and Strain Distribution of Cylindrical Concrete Column under Concentric Load</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Stress and Strain Distribution of Cylindrical Concrete Column under Eccentric Load</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>Test Results of Laterally Prestressed Concrete Columns under Concentric Load</td>
<td>53</td>
</tr>
<tr>
<td>5.2</td>
<td>Test Results of Laterally Prestressed Concrete Columns under Eccentric Load</td>
<td>54</td>
</tr>
<tr>
<td>5.3</td>
<td>Typical Failure Phenomena of Series A</td>
<td>55</td>
</tr>
<tr>
<td>5.4</td>
<td>Typical Failure Phenomena of Series B</td>
<td>56</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Typical Failure Phenomena of Series C</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Typical Failure Phenomena of Series D</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Summary of Failure Phenomena of Test Specimens</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Variation of Failure Load with Lateral Prestress</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Variation of Failure Load with Slenderness ratio</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Variation of Failure Load with Eccentricity</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Comparison of Test Results P_{exp} and Calculated Values P_{ult}</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Comparison of Calculated Values P_{ult} and Test Results P_{exp} of Johnson's Investigation</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Comparison of Calculated Values P_{ult} and Test Results P_{exp} of Goldenbatt-Ratze's Investigation</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Comparison of Calculated Values P_{ult} and Test Results P_{exp} of Gambarov's Investigation</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Values of A'_c/D^2</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Values of R</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>6.3 to 6.12</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Values of βK (each with a different $\bar{\sigma}_3/f'_c$ ratio)</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Interaction Diagrams for Laterally Prestressed to Cylindrical Concrete Columns (each with a different L/r ratio)</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>6.30</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>80 % Ultimate Axial Tension in Wrapping Wires</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>A.1</td>
<td>Stress-Strain Characteristic Curve of 0.031" Diameter Steel Wire</td>
<td>124</td>
</tr>
<tr>
<td>A.2</td>
<td>Stress-Strain Characteristic Curve of Longitudinal Reinforcement</td>
<td>125</td>
</tr>
<tr>
<td>A.3</td>
<td>Calibration Curve of Wrapping Device</td>
<td>126</td>
</tr>
<tr>
<td>B.1 to B.48</td>
<td>Load/Deformation Curves of Specimens</td>
<td>128</td>
</tr>
<tr>
<td>B.49 to B.60</td>
<td>Load/Lateral Deflection Curves of Specimens</td>
<td>176</td>
</tr>
<tr>
<td>C.1</td>
<td>Experimental Failure Loads of All Specimens</td>
<td>189</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(A \)
Cross-sectional area of the column.

\(A_c \)
Net cross-sectional area of concrete, excluding any finishing material and reinforcing steel.

\(A_c' \)
Effective area of concrete section to resist compression.

\(A_e \)
Concrete area bounded by the edge fiber of the maximum strain and a straight line located at the point of eccentric load and parallel to the neutral axis.

\(A_w \)
Cross-sectional area of wire.

\(a \)
Empirical constant.

\(a_1 \)
Depth of equivalent rectangular stress block = \(k_1 c \).

\(C \)
Resultant of concrete compression of the section.

\(C_n \)
Nondimensional factor of ultimate bending moment = \(M_{ult} / (D^3 f'_c) \)

\(C_p \)
Nondimensional factor of ultimate axial load = \(P_{ult} / (D^2 f'_c) \)

\(c \)
Distance from extreme compressive fiber to neutral axis at ultimate strength.

\(c/c \)
Center to center.

\(c_1 \)
Empirical constant.

\(c_2 \)
Empirical constant.

\(c_3 \)
Empirical constant.

\(D \)
Diameter of concrete column.

\(D_w \)
Diameter of wire.

\(E \)
Young's modulus.

\(E_t \)
Initial tangent modulus.

\(e \)
Eccentricity.

\(e_o \)
Equivalent eccentricity.

\(F'_c \)
Maximum compressive strength.
F_t' Maximum tensile strength.

$F[]$ A function.

f_c' Unrestrained concrete crushing strength.

f_{sl}' Increase of compressive strength due to longitudinal reinforcement and longitudinal prestressing.

f_w Ultimate tensile strength of wire.

f_y Yield strength or elastic limit.

f_y' Yield strength of longitudinal steel.

f_y'' Yield strength of spiral ties.

f_y''' Yield strength of longitudinal prestressing wires.

I Moment of inertia.

K Empirical coefficient.

K_1 Empirical coefficient.

K_2 Empirical coefficient.

K_3 Empirical coefficient.

K_4 Empirical coefficient.

K_5 Empirical coefficient.

k_1 A factor, $k_1 = 0.85$ for $f_c' \leq 4000$ psi, and decreases by 0.05 for every 1000 psi above 4000.

kip One thousand pounds.

ksi One thousand pounds per square inch.

L Effective length of column.

l Over-all length of column.

$lb.$ One pound.

L/r Slenderness ratio.

M_{ult} Ultimate bending moment.
\(N_1 \)
Number of wires per inch of wrapping.

\(N_2 \)
Pitch of the wires (inch c/c of wires / layer).

\(P \)
Total failure load.

\(P_c \)
Load carried by concrete alone.

\(P_{\text{comp}} \)
Maximum load controlled by compression failure.

\(P_{\text{cr}} \)
Critical load.

\(P_E \)
Euler load.

\(P_{\text{exp}} \)
Experimental failure load.

\(P_{sl} \)
Load carried by longitudinal reinforcement, including spiral ties and prestressing cable.

\(P_{sp} \)
Load carried by spiral prestressing wire through lateral pressure.

\(P_{\text{ten}} \)
Maximum load controlled by tension failure.

\(P_{\text{ult}} \)
Theoretical ultimate load.

\(P_y \)
The yield load of the material.

\(p' \)
Ratio of volume of longitudinal reinforcement to \(A_c x \) unit length.

\(p'' \)
Ratio of volume of spiral ties to \(A_c x \) unit length.

\(p''' \)
Ratio of volume of longitudinal prestressing wires to \(A_c x \) unit length.

\(\text{psi} \)
Pounds per square inch.

\(q_1 \)
Pressure per unit length of the inside circumference of wrapping wire.

\(R \)
Reduction factor due to slenderness ratio and eccentricity.

\(R_1 \)
Empirical coefficient.

\(R_2 \)
Empirical coefficient.

\(R_3 \)
Empirical coefficient.

\(R_e \)
Empirical coefficient.

\(r \)
Radius of gyration.
T Tension exists in the wrapping wire.
T' Ultimate axial tension of wire.
y_1 Distance from neutral axis to the extreme fiber on the same side of the load.
y_2 Distance from neutral axis to the extreme fiber on the opposite side of the load.
α Empirical coefficient.
β Reduction factor for $\bar{\sigma}_3$.
δ Mid-height lateral deflection.
σ_{max} The maximum principal stress.
σ_{min} The smallest principal stress.
σ_y Yield stress.
σ_1 Longitudinal stress.
$\bar{\sigma}_1$ Total maximum longitudinal stress.
σ_3 Initial lateral prestress.
$\bar{\sigma}_3$ Final lateral stress at the time of column failure.
σ'_3 Ultimate lateral stress due to rupture of wires.
CHAPTER 1

INTRODUCTION

It has long been known that concrete under a triaxial state of stress can withstand larger stresses and deformations than the same concrete in its unrestrained state.

Many investigations have demonstrated the above hypothesis by testing concrete in a triaxial cell with the concrete subjected to an uniform cell pressure and a deviator stress applied to fail the concrete. A Coulomb type of failure criteria has been found to hold:

\[\sigma_1 = \sigma_3^c + K \sigma_3 \]

where \(\sigma_2 = \sigma_3 \)

The constant \(K \) varies in the range 2.65 for light weight concrete to nearly 6.0 for very dense concrete. Generally, a value of 4.1 is used for normal weight concrete.

The practical applications of triaxial confining stresses to increase load carrying capacity are in pipe columns and spiral reinforced columns. In these cases the lateral confining stress is provided by the distortion of the pipe or spiral respectively. No confining stress exists until the pipe or spiral distorts; thus the load capacity is increased but the deformations at high load are large.

To exploit this large increase in strength due to triaxial stress, several investigations have been performed on concrete cylinders laterally prestressed by being wrapped with wire under tension. These investigations all showed large increases in load capacity. Due to Poisson's Ratio type effects the lateral stress increases as the cylinder
deforms. Failure is governed by the maximum lateral stress provided by the steel wire; which disappears when the wire breaks. All these investigations were carried out with concentric loading.

One of the great handicaps of reinforced concrete frame buildings is the large diameter needed for the inside columns of the lower stories. In some cases, a reinforced concrete frame building has been decided against in favor of a steel frame building for this very reason. It is possible that the inside column diameters for the lower floors can be made as small as, or smaller than, those of structural steel by using laterally prestressed concrete columns. Lateral external prestressing can be also used to strengthen a column (building) after the building has been damaged by earthquake movement or blast.

Unfortunately, there are no provisions for the design of laterally prestressed columns in either the current (1970) ACI (American Concrete Institute) or NBC (National Building Code of Canada) codes, since not enough experimental data is available on which code recommendations can be based.

This investigation was carried out to determine experimentally the effects of lateral prestressing, slenderness ratio and eccentricity on the failure load of spiral wrapped concrete columns. Hence an empirical design formulae was derived, summarising the experimental results, to predict the behaviour of laterally prestressed concrete columns.
CHAPTER 2

LITERATURE SURVEY

Compression members are an integral part of most civil engineering structures, consequently being able to predict their performance is essential from both the economic and safety points of view. However, the problem is compounded that short columns fail by material failure and long columns by instability or buckling. Columns are typically constructed of reinforced concrete, steel, prestressed concrete, wood or concrete filled steel tubes. In this Chapter, the classical theories of column behaviour will be reviewed followed by a survey of previous investigations of triaxially stressed concrete compression members.

2.1 Theory of Columns

2.1.1 Short Columns

For a very short pin-ended column (27)1 and neglecting the lateral deflection due to the failure load \(P \) and eccentricity \(e \), the failure load (defined as end of elastic behaviour) is given by the two following formulas, whichever has a smaller value:

\[
P_{\text{comp}} = \frac{F_c^2}{\left(\frac{1}{A} + \frac{e y_1}{I} \right)} \tag{2.1a}
\]

1 Numerals in parentheses refer to corresponding items in the List of References.
\[P_{\text{ten}} = \frac{F_t'}{y_2} \left(\frac{e}{I} - \frac{1}{A} \right) \]

where \(P_{\text{comp}} \) is the failure load controlled by compression failure, \(P_{\text{ten}} \) is that controlled by tension failure, \(y_1 \) is the distance from neutral axis to the extreme fibre on the same side as the load, \(y_2 \) is that on the opposite side of the load, \(F'_c \) is the maximum compressive strength, \(F'_t \) is the maximum tensile strength, \(A \) is the cross-sectional area, and \(I \) is the moment of inertia of the column section.

If the material has the same strength in compression and tension, such as steel, the failure load will be obtained with Eqn.2.1a. However, if the maximum tensile strength of the material, such as concrete, is much lower than its maximum compressive strength, and if the eccentricity is large enough to produce tensile stress in the column, the failure load given by Eqn.2.1b will be very small and will control the failure. This is why concrete columns need reinforcing in the tension zone to take care of the tensile stress.

Many theoretical and empirical formulas have been proposed for the analysis and design of long slender columns (27). The following sections will review those formulas relevant to this work.

2.1.2 Long Columns

Unfortunately the failure (maximum) load of a long column is limited by buckling. The development of the various long column formulas are followed in this section.
2.1.3 Euler's Column Formula

In 1757, L. Euler obtained a formula for the maximum load of an axially loaded elastic pin-ended column which is assumed to be initially straight. The formula is

\[P_E = \frac{\pi^2 E I}{L^2} \] \hspace{1cm} (2.2)

where \(L \) is the effective length, \(E \) is the Young's modulus and \(P_E \) is known as the Euler load of the pin-ended column. The Euler load is also called "critical load \(P_{cr} \)" at which the lateral buckling of the column occurs. This formula was verified by a series of experiments carried out by von Karman and others about 1900 (19).

2.1.4 Tangent Modulus Formula

Since the Modulus of Elasticity of a material is related to the stress in the material, Euler's formula only holds if the Modulus of Elasticity is independent of stress.

In 1889, Engesser (6) proposed the tangent modulus formula to avoid this criticism of Euler formula.

\[P_{cr} = \frac{\pi^2 E_t I}{L^2} \] \hspace{1cm} (2.3)

in which the tangent modulus \(E_t \) replaces Young's modulus in the Euler equation.

Failure is now given by the simultaneous solution of the equilibrium equation and the tangent modulus equation. This method can be shown to hold for columns where material failure and instability interact.
In the derivation of the Euler's column formula and the tangent modulus formula, the following assumptions have been made (19):

a) The column is incompressible.

b) Plane sections remain plane.

c) The stress-strain relationship of any fibre is the same as the stress-strain diagram for a small specimen of the material.

d) The plane of bending is a plane of symmetry.

e) The effect of shearing stresses in the deflected column when it passes from the stable to the unstable state can be neglected.

f) The load is applied along the centroidal axis of the column.

g) The column is perfectly straight.

h) The cross-sectional area of the column is constant.

The effect of a) is small in rigid material and can be neglected (26). Assumption b) and c) have been verified by experiment, and the effect of e) is small and can be neglected (6). However, most columns in structures and in experimental work are eccentrically loaded and have some initial imperfections such as curvature. Assumptions f), g) and h) are, in general, not valid and the conditions which are most difficult to satisfy are that the load is perfectly axial and that the column is perfectly straight. In the past, this difficulty has led to the use of the secant formula, but it is now considered better to use the tangent modulus formula and to allow for other effects by the use of an appropriate safety factor (8).
2.1.5 The Secant Formula

The secant formula was originally derived to allow calculation of the elastic stresses in columns loaded eccentrically.

When a column is loaded longitudinally with an eccentricity e, the mid-height lateral deflection δ is given by

$$\delta = e \left\{ \sec \left(\frac{L}{2} \sqrt{\frac{P}{EI}} \right) - 1 \right\}
\quad = e \left\{ \sec \left(\frac{L}{2r} \sqrt{\frac{P}{EA}} \right) - 1 \right\} \ldots \ldots (2.5)$$

where r is the radius of gyration.

By combining the bending and direct stresses, the maximum compressive stress is then obtained

$$\sigma_1 = \frac{P}{A} \left\{ 1 + \frac{e}{r^2} \sec \left(\frac{L}{2r} \sqrt{\frac{P}{EA}} \right) \right\} \ldots \ldots (2.6)$$

This equation gives the maximum compressive stress in the column for any value of P and e provided that this stress does not exceed the elastic limit.

2.1.6 Representation of Imperfections by Equivalent Eccentricity

In general, columns have imperfections such as initial curvature, errors in centering the load, uncertainty as to end conditions, etc. Thus, for an axially loaded column, the compressive load will produce more or less bending in addition to direct compression. On this basis it seems logical to conclude that the behaviour of a real imperfect column under load will be similar to that of a perfectly straight ideal column loaded with a suitable eccentricity e_0. This suggests that the secant formula could be used also as a design for
supposedly straight centrally loaded columns simply by choosing an appropriate value of the equivalent eccentricity to account for the effect of imperfections. Then the secant formula for this purpose may be given as follows

$$\sigma_1 = \frac{P}{A} \left(1 + \frac{e_o y_1}{r^2} \sec \left(\frac{L}{2r} \sqrt{\frac{P}{AE}} \right) \right) \cdots \cdots \cdots (2.7)$$

The value of equivalent eccentricity \(e_o \) was recommended to be \(e_o = L/400 \) for steel columns (27), or \(e_o = L/500 + B/50 \) for other material (25), where \(B \) is the width of the section in the plane of bending.

2.1.7 Empirical Column Formulas

Because of the objections to the transcendental nature of the secant formula, many simpler but wholly empirical formulas have been proposed as substitutes for it (25,27). These formulas usually give the permissible axial load \(P \) as a function of the slenderness ratio \(L/r \), without specifically indicating the factor of safety used.

2.1.7.a Rankine-Gordon Formula

One of the empirical formulas for pin-ended, centrally loaded columns is the Rankine-Gordon formula. The derivation was started with the equation

$$\frac{1}{P} = \frac{1}{P_E} + \frac{1}{P_y} \cdots (2.8a)$$

where \(P \) is the total failure load, \(P_E \) is the Euler load and \(P_y \) is the yield load of the material. Substituting the equation of \(P_E \) (Eqn.2.2) and replacing yield load \(P_y \) by yield stress \(\sigma_y \), the Rankine-Gordon
formula is obtained as

\[P = \frac{\sigma \; A}{1 + \frac{\sigma_y}{\frac{L}{r}} \left(\frac{L}{r} \right)^2} \](2.8)

which is used in British Code of Practice CP114.

2.1.7.b Johnson's Parabolic Formula

In order to make greater allowance for the effect of imperfections for the more slender columns, a parabolic formula is often used (27), such that

\[P = f_y A \left\{ 1 - c_1 \left(\frac{L}{r} \right)^2 \right\} \](2.9)

where \(c_1 \) is a numerical factor and \(f_y \) is the yield strength.

2.1.7.c Straight-line Formula

One of the most commonly used empirical column formulas is the Straight-line formula (27)

\[P = f_y A \left\{ 1 - c_2 \left(\frac{L}{r} \right) \right\} \](2.10)

where \(c_2 \) is a numerical factor. The Straight-line formula is used by NBC (National Building Code of Canada) for steel columns.

2.2 Previous Investigations of Triaxial Effects on Plain Concrete and Reinforced Concrete Columns and Cylinders

Many investigations of the load capacity of mortar, plain and reinforced concrete under triaxial compression have been carried out since the beginning of this century by using fluid pressures or mechanical restraints. However, as far as known to the author, all of these
investigations considered the longitudinal load applied concentrically.

2.2.1 Survey of Previous Investigations

In 1903 and 1906, Considere (9) investigated the triaxial behavior of cement mortar. Cement mortar cylinders 11.8" in diameter and 31.5" long were used. The lateral pressures on the mortar were applied by water under pressure. From these results, Considere obtained a formula for the axial stress at failure σ_1 in terms of the unconfined mortar crushing strength f'_c and lateral pressure σ_3

$$\bar{\sigma}_1 = a f'_c + 4.8 \sigma_3 \quad \ldots (2.11)$$

where a is a constant increasing with σ_3 in the range of 1.0 to 1.5.

In 1903, Considere (9) also reported a research carried out on the behavior of hoop reinforced and restrained concrete. A number of concrete specimens with various amounts of hoop reinforcement were tested. It was found that the hooped specimens initially behaved in a similar manner to nonreinforced specimens. However, the hooped specimens carried much higher loads than the unhooped specimens and only failed after extensive cracking had become apparent and large deformations had occurred. It was also found that the hooped concrete showed no drop off in load with deformation, exhibiting a plastic type of behavior.

Considere also noted that the ductility of restrained mortar and concrete was much increased over the unrestrained cylinders.
In 1928, Richart, Brandtzaeg, and Brown (23) carried out investigations of concrete in triaxial compression at the University of Illinois Engineering Experiment Station. The method used was that of applying a liquid pressure to the sides of a cylinder which was loaded in the axial direction in a testing machine. The specimens were enclosed inside a rubber tube to protect them against penetration of oil during the test. Each specimen was treated by rubbing the surface thoroughly with a paste of plaster of Paris until all surface cavities were filled in order to prevent the edges of small holes or cavities in the surface puncturing the rubber sheath. Two groups of specimens were tested.

In the first group, eighty concrete cylinders, 4" in diameter and 8" long, from three different mixtures, were tested. Sixty-four of these specimens were tested in three-dimensional compression, the two principal stresses produced normal to the axis of the cylinder by liquid pressure being smaller than the axial stress. Eight nominal intensities of oil pressure were used, ranging from 250 to 4000 psi. For comparison, sixteen specimens were tested in simple compression. From the results of the first group, it was concluded that the maximum unit load \(\bar{\sigma}_1 \) carried may be considered as made up of the strength \(f'_c \) of the concrete in simple compression plus an added strength equal to 4.1 times the lateral pressure \(\bar{\sigma}_3 \) developed at the time of failure.

That is

\[
\bar{\sigma}_1 = \frac{f'_c}{\sigma_c} + K \bar{\sigma}_3 \quad \text{..........................(2.12)}
\]

where \(K = 4.1 \), is a coefficient for \(\bar{\sigma}_3 \).
In the second group, forty-eight concrete cylinders, 4" in diameter and 22" long, were tested with the two principal stresses normal to the axis of the cylinders larger than the axial stress. The second group results, also showed that

\[\sigma_{\text{max}} = f_c' + 4.1 \sigma_{\text{min}} \]

(2.12a)

where \(\sigma_{\text{max}} \) = the maximum principal stress, and \(\sigma_{\text{min}} \) = the smallest principal stress.

Test results of the two groups were presented in table form and graphs showing a straight-line relationship between axial failure stress and lateral stresses. It was concluded that the rate of increase in the strength with increase in the smallest principal stress was largely independent of the proportions of the concrete mixture, and that the magnitude of the maximum principal stress developed was roughly equal to the strength of the concrete in simple compression plus 4.1 times the lateral pressure.

In 1929, Richart, Brandtzaeg and Brown (24) extended the study to spirally reinforced columns. These results, similar to Considere's investigations, showed that the failure stress of hooped concrete specimens was higher than that of unhooped specimens, and could be predicted with the expression obtained in 1928,

\[\bar{\sigma}_1 = f_c' + 4.1 \bar{\sigma}_3 \]

(2.12)

In 1944, Maney (20) investigated short cylindrical columns with artificial triaxial compression. The diameters of specimens varied
from 2" to 8", and the height was approximately four times the diameter. The specimens were confined laterally by a combination of a steel metal pipe-shaped form and spiral steel just outside the steel pipe-shaped form. The prestressing in the spirals was achieved by compacting the concrete with high pressure and vibration after casting. In this way, when the load-application unit was removed from the specimen the concrete had enough strength to keep the enclosed spiral in tension. All the specimens were tested to failure. It was concluded that the compressive load capacity of a pound of steel could be increased by at least 500 percent and the cost of the structure could be reduced to 1/3 to that of steel structures.

In 1949, Balmer (4) conducted research at the U. S. Bureau of Reclamation similar to that of Richart, Brandtzaeg, and Brown (23). The lateral confining pressure, ranging from 0 to 25000 psi, was applied first and held constant while the axial stress increased until the concrete failed. From the test results of all specimens, 6" in diameter and 12" long, Balmer assumed the same form of equation as proposed by Richart and his associates, but found that the coefficient \(K \) for the lateral pressure \(\sigma_3 \) varied from 6.00 to 2.00. For lower compressive loads the coefficient \(K \) was closer to 6.00 than to 4.10, while under high loads it varied between 3.00 and 2.00.

In 1950, Johnson (17) carried out an investigation of spirally prestressed short columns 3" in diameter and 12" long. A total of 135 specimens were cast, 27 were of plain concrete without any
reinforcement, while 108 specimens were spirally prestressed. The prestressing was achieved by wrapping the concrete cylinder with wire under tension. The cylinders were spun in a lathe with the wire being drawn through a pair of friction plates. The tensile force applied in the wire was read by means of a spring-scale attached to the friction plates.

The compressive strength of concrete used by Johnson ranged from 3470 to 4870 psi. Three wire sizes, 0.0317", 0.0475" and 0.0625" in diameter, with the ultimate strengths of 253 ksi, 395 ksi and 578 ksi respectively, were used with pitches of 3, 5, 7 and 9 wires per inch. Three different initial lateral prestresses of 300, 1500 and 3000 psi were applied to the specimens. All cylinders were tested to complete failure with a hydraulic testing machine. Most failures were similar in appearance. The typical concrete failure began as local crushing near the weak end of the specimen -- the end which was at the top when cast. On final failure, however, the majority of specimens showed the so-called shearing failure along a conical surface. From the test results, Johnson concluded that all spirally prestressed specimens had higher load carrying capacity than their un prestressed counterparts. The increase in load carrying capacity varied directly with the pitch of the wire wrapped. The magnitude of \(K \) in the University of Illinois equation (Eqn. 2.12) was calculated from the experimental values of \(\overline{\sigma}_1 \), \(f'_c \), and \(\overline{\sigma}_3 \) and was found to range from 3.60 to 5.77.

In 1958, Gitman reported Goldenblatt-Ratz investigations (15) on laterally prestressed concrete columns, 14" in diameter and 118"
long. The specimens were produced first as thin-wall concrete pipes
(1\(\frac{1}{4}\)" - 1\(\frac{1}{2}\)"") on a spinning machine and afterward filled with concrete. Longitudinal reinforcement of nine 1\(\frac{1}{4}\)" diameter mild steel bars and spiral reinforcement of \(\frac{5}{32}\) " diameter steel wire with pitches varying from 4" to 8" on different specimens were used to resist handling and transportation stresses. The circumferential prestress was applied by wrapping \(\frac{7}{32}\) " diameter wires around the columns, 9 specimens with a pitch of 0.6" and 5 with a pitch of 1.2". The initial stresses in the wires were 90 ksi for 11 of the 1\(\frac{1}{4}\) columns and 7 ksi for three others. Five specimens of the 11 with full circumferential prestress were covered with a protective shell.

All these specimens were loaded to failure, with spherical hinges between the loading plates and the top and bottom of the specimens. The test results showed that the failure compressive stress of the specimens with a pitch of 0.6" was increased 100 per cent of that of plain concrete specimen, while that of the specimens with a pitch of 1.2" was increased only 50 per cent. It was also found that, with the same pitch of wire, the specimens covered with a protective shell had higher failure stress than the specimens without a protective shell.

In 1961, Akroyd (1) studied the effect of pore-water pressure on the ultimate strength of concrete subjected to triaxial stresses. Cylindrical specimens, 3" in diameter and 6" long were cured in their cast-iron moulds for the first 24 hours after casting, then were cured in various ways until tested at the age of 7 days with a high-pressure triaxial machine. One series was cured in water at 18°C, a second
series was coated with an epoxy resin membrane to keep the water content constant. A third series was cured in water for three days and then dried at 100°C for two days. A fourth series was dried at 100°C and a fifth series was dried in silica gel. From these undrained tests of the specimens, Akroyd concluded that saturated concrete behaves like a material which does not possess the property of internal friction, when tested triaxially under condition of no change of water content (undrained). Akroyd's results were found to be similar to those of Balmer (4). Akroyd obtained the same relationship between the major (vertical) principal stress \(\sigma_1 \) and the minor (lateral) principal stress \(\sigma_3 \), with the form

\[
\sigma_3 = c_2 \sigma_1^3 + c_1
\]

which was developed by Balmer (4). For one series of Akroyd's tests, \(c_1, c_2 \) and \(c_3 \) had the values of

\[
c_1 = -4.30 \\
c_2 = 0.0051 \\
c_3 = 1.37
\]

In 1961 and 1962, Gambarov (12,13) carried out a research program dealing with the short-time effect of axial load on circumferentially prestressed columns. The program was based on round column specimens 5\(\frac{1}{2} \)" in diameter and 31\(\frac{1}{2} \)" long. Four groups of specimens were tested, one containing no circumferential wire and other three containing 1.08 per cent circumferential prestressing wire of 0.1" diameter. The initial prestresses in the wires were 7.1, 108 and 184.5
ksi. Each group had seven specimens. Three specimens in each group were tested at the age of 1 1/2 months and the remainder at the age of 1 year. It was found that the wrapped specimens had higher rupture strengths than their unwrapped counterparts and the rupture strength increased as the initial prestress increased.

In 1962, Feeser and Chinn (10,11) reported experiments on spirally prestressed concrete columns. Their project can be considered as a continuation of Johnson's work (17). Thirty-four short columns 3" in diameter and 12" long were tested. The average unconfined concrete compressive strength was 5230 psi. Circumferential prestressing was achieved by turning the specimen in a lathe and wrapping the specimen with wire drawn through a friction-plate device. The tension in the wire was measured by strain-recorder and the friction-plate device was calibrated for various tensions in the wire. Two sizes of wire, 0.054" and 0.0595" in diameter, were used. The pitches of wire were 0.0625", 0.1", 0.165" and 0.25". Four different tensions of 10, 100, 200 and 300 lbs. per wire were applied to the wire while wrapping. Thus, the initial lateral pressure on the concrete surface ranged from 27 psi to 2133 psi. In the testing, the failure of all specimens coincided with the rupture of the spiral wire. The lateral pressure at ultimate then ranged from 1533 psi to 6120 psi. From the test results, the average value of K in the University of Illinois equation (Eqn. 2.12) was found to be 3.818. Hence the equation for predicting the ultimate strength of wrapped cylinder was given by

\[
\overline{\sigma}_1 = f_c^i + 3.818 \overline{\sigma}_3 \hspace{1cm} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (2.14)
\]
It was also shown that the stiffness of the specimens can be increased by increasing the initial tension in the spiral wire. However, the initial tangent modulus of all laterally prestressed concrete was less than that of the un prestressed plain concrete. It was also concluded that the ultimate strength of the specimen was independent of the initial tension in the spiral wire but dependent only on the lateral confining stress to the specimen at the time of failure.

In 1965, Chinn and Zimmerman (7,28) extended the work of Balmer (4). Their program consisted of increasing the axial load until the concrete failed while the cell liquid pressure was held constant. Thirty-six concrete cylinders, 6" in diameter and 12" long, were tested using cell liquid pressures of 20000 psi and 60000 psi. From their test results, they concluded that the axial strength increases as the lateral stress increases.

In 1965, Kral, Victory, Erkmen and Sims (18) reported the research of the behavior of plain mortar and concrete under triaxial stress. Mortar cylindrical specimens, \(\frac{1}{2} \)" in diameter and 1" long, were drilled from cast blocks of mortar with a diamond drill and were cut to length with a diamond saw. Four mortar mixes were used, one of which included light weight aggregates. Approximately 50 specimens were tested from each of four mixes. Each specimen was tested under constant hydrostatic confining pressure, as axial load was increased to failure. Some specimens were protected from the confining fluid by a plastic membrane and others were not. From test results, they concluded that
the use of very small cylinders of mortar in triaxial tests is feasible and meaningful results are still obtained provided special care is devoted to the preparation of specimens, and that the effect of confining pressure on the axial strength of a mortar or concrete cylinder can be expressed by the equation

\[\bar{\sigma}_1 = f'_c + c_1 \bar{\sigma}_3^c \] \hspace{1cm} (2.15)

where \(c_1 \) and \(c_2 \) are empirical constants. This equation implies that

\[\log(\bar{\sigma}_1 - f'_c) = \log c_1 + c_2 \log \bar{\sigma}_3 \] \hspace{1cm} (2.16)

that is, a linear relationship exists between \(\log(\bar{\sigma}_1 - f'_c) \) and \(\log \bar{\sigma}_3 \).

The value of the constants were determined by the method of least square and were presented in table form in their paper.

In 1966, Ben-Zvi, Muller and Rosenthal (5) carried out an investigation of the effects of triaxial stress caused by circumferential prestressing of concrete columns. Prestressing was achieved by wrapping the column with steel wires under tension. Three sizes of concrete specimens were used in their investigation.

In the first series, thirty-two of the total forty-four concrete cylinders, 3" in diameter and 6" long, were circumferentially prestressed with initial tensions in the wire of 7.10, 9.22 and 163.5 ksi. Two sizes of wire were 0.04" and 0.055" in diameter and the pitches were 0.04" and 0.067" respectively. All specimens failed by rupture of the spiral prestressing wire due to the lateral pressure exerted on it through the expansion of the concrete.
In the second series, six specimens, 10" in diameter and 100" long, with average concrete strength of 4260 psi, were cast with longitudinal reinforcement of six 0.4" diameter wires and a spiral of 0.24" diameter wire. The columns were prestressed longitudinally by means of a 0.24" cable, with a force of 32 tons. Four of the specimens were circumferentially prestressed with steel of 0.2" diameter with an initial prestress of 99400 psi in the wire and a pitch of 0.4" or 0.8". In the test of this series, columns without wrapping failed by concrete compression crushing. The wrapped ones failed by buckling and rupture of the winding wire.

In the last series, a total of fifty one concrete columns with an average cube strength of 6800 psi, were cast in three different lengths, 24", 36" and 72". All were 3" in diameter. Specimens were reinforced and prestressed in three different combinations of: longitudinal reinforcement containing six wires 0.12" diameter and a spiral 0.08" diameter, spiral reinforcement of 2.17" diameter spiral with 1" pitch, six longitudinal prestressing wires of 0.2" diameter with a prestressing of 2 tons in each wire, and circumferential prestressing of 0.055" diameter spiral steel wires in one, two or three layers with a pitch of 0.06" and an average initial tension of 7.1 or 163 ksi in the wire. All specimens were tested under axial compression. Failure of the short unwrapped and some short wrapped specimens occurred in vertical and oblique planes while all other specimens generally failed by buckling.

From these tests, Ben-Zvi and his associates concluded that column strength is increased with an increase of initial spiral prestressing, but decreased with the increase of the slenderness ratio of the column, and that longitudinal prestressing does not reduce column
ultimate strength and has a beneficial effect on deformation and transportation stresses. They proposed a new form of the University of Illinois equation (Eqn. 2.12)

\[\sigma_1 = (f'_c + f'_{sl}) + \beta K \overline{\sigma} \]

\[(2.17) \]

where \(f'_{sl} \) is the compressive strength increase due to longitudinal reinforcement and longitudinal prestress. \(\beta \) is a slenderness correction coefficient. The value of \(\beta K \) varied from 0.15 to 3.52. They also proposed a design formula for triaxially prestressed columns. The failure load \(P_{ult} \) of such column is

\[P_{ult} = P_c + P_{sl} + P_{sp} \]

\[(2.18) \]

in which, \(P_c = A_c f'_c \)

\[(2.18a) \]

load carried by concrete alone,

\[P_{sl} = A_c (p' f'_y + 2.5p'' f''_y + p''' f'''_y) \]

\[(2.18b) \]

load carried by longitudinal reinforcement including spiral ties and prestressing wires,

and \(P_{sp} = A_c \beta K \overline{\sigma}_3 \)

\[(2.18c) \]

load carried by spiral prestressing wire through lateral pressure.

where \(A_c \) is the cross-sectional area of concrete, excluding any finishing material and reinforcement,

\(p' \) is the ratio of volume of reinforcement to \(A_c \times \) unit length,

\(p'' \) is the ratio of volume of spiral ties to \(A_c \times \) unit length,

\(p''' \) is the ratio of volume of longitudinal prestressing wire to \(A_c \times \) unit length,

and \(f'_y, f''_y, f'''_y \) are yield stresses of steel, spiral ties and
longitudinal prestressing wires respectively.

In 1968, Martin (21) reported experiments on 17 spirally prestressed concrete cylinders, 4" in diameter and 8" long. The cylinders were wrapped with steel piano wires of 0.016" diameter in a lathe. The pitches of the wire were 0.016", 0.018" and 0.032" with the initial lateral stresses varying from 140 to 1482 psi. Plain concrete compressive strength was 6490 psi with a standard deviation of 357 psi. Specimens were tested on short-term and long-term axial compression. Martin concluded that the increase in axial ultimate stress and strain of these cylinders depended essentially on the lateral ultimate stress that the spiral wire caused in the concrete. For wrapped specimens, the value of Poisson's ratio varied from 0.16 at small stress to more than 1.0 at large stresses during rapid loading.

In 1969, Gardner (14) reported the use of a soil mechanics theory to predict the behavior of concrete under conditions of triaxial stress. An experimental investigation was carried out which justified the use of the theory which relates the stress in the concrete to the instantaneous Poisson's ratio. Twenty eight concrete cylinders, 3" in diameter and 6" long, with compressive strength of 4000 psi, were tested to failure in a triaxial apparatus under lateral oil pressures of 0, 1250, 2500 and 3750 psi. Gardner concluded that all the mechanical properties of concrete were improved under triaxial loading, and that the failure strength, ductility, and the value of the instantaneous Poisson's ratio at failure all increase with an increase in confining pressure.
In 1969, Godse (16) carried out an experimental investigation of the effects of initial prestress and slenderness ratios on the ultimate load carrying capacity of axially loaded spirally prestressed concrete columns. A total of forty-four 6" diameter concrete cylinders were cast in four series of 12", 24", 42" and 60" long. The compressive strengths of concrete were 4600, 5100, 5000 and 4950 psi respectively. For the two longer series, longitudinal reinforcing of 4-No.3 bars and No.2 ties at 6" c/c were used to take care of stresses due to transportation and handling. From each series, four levels of initial prestress were employed, being 0, 960, 1706 and 3412 psi, with pitches of 0 (unwrapped), 18, 32 and 64 wires per inch. Initial lateral prestressing was achieved by turning the specimen in a lathe and wrapping high strength piano wire, under tension, around the specimens. High strength piano wire of 0.031" diameter with 342 ksi average ultimate stress was used.

All specimens were loaded axially and concentrically to failure. Loads were applied through spherically-seated bearing blocks at the top and bottom of the specimens. From the test results, Godse concluded that the load carrying capacity can be increased by the increase in initial spiral prestress, but will be decreased as the slenderness ratio of the column increased. Empirical coefficient βK of Eqn.2.17, calculated from test results, ranged between 1.23 to 3.90.
2.2.2 Conclusions on Previous Investigations

From the results of the previous investigations which have been reviewed in section 2.2.1, the following conclusions are made:

1) Concrete column strength can be increased by applying a lateral pressure or lateral prestressing.

2) For the short plain concrete column, the axial compressive strength can be predicted by the Illinois equation (Eqn. 2.12)

\[\overline{\sigma}_1 = f'_c + K \overline{\sigma}_3 \]

where \(K \) is itself a function of \(\overline{\sigma}_3 \) which decreases with increase of \(\overline{\sigma}_3 \).

3) The coefficient \(K \) is also a decreasing function with increase in slenderness ratio. Hence the Illinois equation (Eqn. 2.12) can be modified to

\[\overline{\sigma}_1 = f'_c + \beta K \overline{\sigma}_3 \]

The value of \(\beta \) decreases with increase in slenderness ratio.

4) For columns where the lateral stress is provided by wire wrapping, the load is governed by the final, not the initial, stress in the wire.
CHAPTER 3

MATERIALS AND TESTING PROCEDURE

The experimental program described in this thesis consisted of casting a number of columns of different lengths, with different amounts of lateral prestress, and loading these columns to failure with the loads being applied at various eccentricities. The columns were laterally prestressed by turning them in a lathe and wrapping them with piano wire under tension. All tests were duplicated to improve reliability.

The casting, curing, lateral prestressing and testing details will be described later in this chapter. Fig. 3.1 p. 26 gives details of the number and types of the test columns.

3.1 Preparation of Specimens

3.1.1 Casting

3.1.1.a Specimens

A total of 96 cylindrical specimens 6" in diameter were cast in four different lengths of 17½", 29½", 47½" and 65½" and were labelled A, B, C and D series respectively. When attached to the loading plates and spherical bearings, these four lengths would become effective lengths of 24", 36", 54" and 72" respectively.

Two steel stands, accommodating 24 moulds at a time, were used to hold the moulds vertical while casting.
Fig. 3.1 Specimens Details

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Length overall L</th>
<th>L/effective L</th>
<th>L/r</th>
<th>No. of spec.</th>
<th>(f'_c) (psi)</th>
<th>Layers of wires</th>
<th>(\sigma_3) (psi)</th>
<th>(e/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- 0-a</td>
<td>17(\frac{1}{2})"</td>
<td>24"</td>
<td>16</td>
<td>2</td>
<td>7200</td>
<td>1</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>A- 0-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>A- 0-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>A-18-a</td>
<td>29(\frac{1}{2})"</td>
<td>36"</td>
<td>24</td>
<td>2</td>
<td>7460</td>
<td>1</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>A-18-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>A-18-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>A-32-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>A-32-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>A-32-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>A-64-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>A-64-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>A-64-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>B- 0-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B- 0-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B- 0-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>B-18-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-18-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-18-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-32-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-32-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-32-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-64-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-64-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>B-64-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C- 0-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C- 0-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C- 0-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>C-18-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-18-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-18-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-32-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-32-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-32-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-64-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-64-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>C-64-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>D- 0-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D- 0-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D- 0-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>D-18-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-18-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-18-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-32-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-32-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-32-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-64-a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-64-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>D-64-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
<td>0.25</td>
<td>0.50</td>
</tr>
</tbody>
</table>

4- No. 3 longitudinal bars and No. 2 ties at 6" c/c were used in series D.
For each series, twenty 6"x12" cylinders were cast to determine the compressive strength.

3.1.1.b Moulds and End Caps

The moulds were cut to the required lengths from 6"x8'-0" sono-tubes. To be able to bolt up the specimen to the loading plates or the cap for wire-wrapping, steel anchor caps were placed at both ends of each specimen during the casting of specimens.

The steel end caps were 6" in diameter, $\frac{3}{4}$" thick, with four $\frac{5}{8}$"-diameter threaded holes for bolting up to the loading plates or the cap for wire-wrapping. Two spiral bars and one straight bar were welded to the end cap as an anchor between the end cap and the concrete portion of the specimen. The straight bar was on the tension side of the cylinder to increase the bond when tensile stress occurred. The top end caps had three $\frac{1}{4}$" holes for bleeding of water and air during casting. At the edge of each end cap, two $\frac{1}{4}$" threaded holes, $\frac{1}{2}$" deep were made for anchoring the ends of wrapping wire. The end cap is shown in Fig.3.2 p. 28.

The eccentric load was applied by the ball seats of the loading plattens of the columns being displaced from the section centroid the desired distance. In order to enable the application of eccentric load, the axes of top and bottom end caps had to be on the same plane. This was achieved by marking the axes on the end caps and one longitudinal reference line along the sono-tube before casting, and matching these axes and the line while casting.

Fig.3.3 p. 29 shows the fabrication details of specimen.
(a) END CAP

(b) CASTING OF SPECIMENS

FIG. 3.2 END CAP AND CASTING OF SPECIMENS
(a) END CAP

(b) CASTING OF SPECIMENS

FIG. 3.2 END CAP AND CASTING OF SPECIMENS
FIG. 3.3 FABRICATION DETAILS OF SPECIMEN
3.1.1.c Concrete Mix

The concrete used in all specimens was obtained from the Dominion Building Material Co., a local ready-mixed concrete manufacturing plant. The concrete was proportioned by weight and machine mixed. The mix proportion of the concrete is given in Fig.3.4 p.30.

Fig.3.4 Mix Proportions by Weight
(slump = 3"

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight per cubic yard of concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Portland Cement</td>
<td>615 lbs.</td>
</tr>
<tr>
<td>Sand (Type 1)</td>
<td>1,570 lbs.</td>
</tr>
<tr>
<td>3/8" Aggregate</td>
<td>1,565 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>310 lbs.</td>
</tr>
</tbody>
</table>

3.1.1.d Reinforcement

To avoid damage of the longest columns in transportation and to take care of the stresses due to the self weight of column as well as the lateral force of the prestressing wire while the column was supported in the lathe, longitudinal reinforcing was provided for the series D columns only.

Nominal reinforcing of 4-No.3 bars, $\frac{3}{8}"$ centre to centre, and No.2 ties at 6" centre to centre (to comply the 1965 National Building Code of Canada requirement, section 4.5.3.67(2); p.22) were provided.

The arrangement of these bars is shown in Fig.3.3 p.29.

Stress-strain characteristic of these bars is shown in Fig.A.2 p.125 in Appendix A.
3.1.2 Curing

After casting, all specimens were left in the moulds for 24 hours. All specimens were cured vertically in a moist room after stripping the moulds. The curing time of all four series was at least 28 days.

3.1.3 Wrapping of Cylinders

The specimens were taken out of the moist room and air dried for at least 7 days before wrapping. The columns were laterally prestressed by wrapping high-strength wire, under tension, around the columns. This was done by turning the column slowly in a lathe, the rotation of the column drawing the wire through a pair of adjustable clamped friction plates (washers) of the wrapping device which was fixed to the tool carriage of the lathe. Fig. 3.5 p. 32 shows the wrapping of cylinder.

Both ends of the wire were anchored at the end caps by passing the wire between the two mild steel washers and clamping them with a nut. This arrangement is shown in Fig. 3.3 p. 29.

The pitches of the wire were chosen to be similar to the cutting threads of a lathe, and the tool carriage could be traversed at the given pitch by adjusting the set up of the lathe. For this experiment, pitches of 18 and 32 threads per inch were used. The wrapping of 64 wires per inch was done by a double layer of 32 wires per inch.
FIG. 3.5 WRAPPING OF CYLINDERS
FIG. 3.5 WRAPPING OF CYLINDERS
3.1.3.a Wire for Wrapping

The wire used to provide the lateral spiral prestressing was high strength piano wire of 0.031" in diameter. The average ultimate strength of the wire was 342000 psi. The stress-strain characteristic is shown in Fig.A.1 p.124 in Appendix A.

3.1.3.b Wrapping Device

The device for wrapping consisted of three parts which were a mounting plate, a vertical cantilever and a pair of adjustable clamped friction plates. It is shown in Fig.3.6 p.33.

The aluminium bottom mounting plate was 9"x6"x3/8", with four holes for fixing the device on the tool carriage of the lathe. The aluminium vertical cantilever, a piece of 3"x1"x1/8" aluminium channel, 7 5/8" long, was welded to the central portion of the bottom plate. An aluminium block, 2"x2"x1", was bolted to the cantilever on one side at the top. A bolt went vertically through the centre of this block and two pieces of steel plate (washers). A horizontal hole in the bolt allowed the wire to pass through the bolt between the two washers. The washers could be tightened by a nut at the top part of the bolt. At the base of the cantilever, four EA-06-250BG-120 type strain gages were mounted in a full-bridge configuration.

3.1.3.c Wrapping of Cylinders

The tensile force applied to the wire was 150 lbs. From this force, the initial lateral prestress applied to the column by the wire was calculated. The tensile force in the wire was obtained from
a Budd-strain-gage indicator which was connected with the strain gages mounted on the wrapping device. The strain gage readings were calibrated to give the force in the wire.

In order to maintain a constant force in the wire, the strain gage reading of the wrapping device was kept constant by adjusting the nut clamping the steel plates between which the wire passed during wrapping.

The wrappings of 18, 32 and 64 wires per inch produced an initial lateral prestresses of 900, 1600 and 3200 psi respectively with a wire tension of 150 lbs.

3.1.4 Installation of Strain Gages

At the mid-height of each column specimen, one longitudinal and one circumferential electrical resistance foil type strain gages, 5 mm. gage length, type KF-5-C8-11 of Kyowa Co. were installed on both the inside and outside faces of the column. An epoxy material was applied over the piano wire of each wrapped specimen to provide a smooth base for the strain gages.

3.2 Testing

All specimens were tested in a hydraulically operated 600000 lbs. capacity Badwin-Sowthwark Tate-Emery Testing Machine, and were loaded to failure. Three different eccentricities, \(\phi/D = 0.10, 0.25 \) and 0.50 were used for each combination of length and lateral prestress of the specimens.
All specimens were loaded with ball bearing hinged end plates. The designs of these end bearing loading plates are shown in Fig.3.7 p.39 to Fig.3.9 p.41. These loading plates were fabricated by a "steel-ball-press" technique. High strength stainless steel balls were utilized. A cone-shaped depression was machined into each of the SPS 245 Chrome Nickel pads. Then, employing one pair of such chrome nickel pads, the steel ball was "pressed" hydraulically into the cone-shaped recess with a total axial force of 500 kips. The resulting plastic deformation formed a spherically shaped recess conforming perfectly to the contours of the steel ball. The seating pads formed were then welded at the required eccentricities onto thick steel plates which could be bolted to the ends of each specimen. Two other thick steel cover plates with the same type of spherically shaped recess were bolted to the testing machine, one at the loading head and one on the base. These two cover plates are shown in Fig.3.10 p.42.

The lateral deflection of the columns was measured at mid-height. Since it was dangerous to read the deflection directly by means of dial gages, a 8" long cantilever was used to measure the lateral deflection by means of the strain gage at the base of the spring steel cantilever. This cantilever was calibrated by applying a known displacement to the cantilever and measuring the corresponding strain gage reading.

All deformation and lateral deflection measurements were made at essentially equal load increments of 10000 lbs. for specimens of eccentricity $\frac{e}{D} = 0.10$, 5000 lbs. for those of $\frac{e}{D} = 0.25$ and 1000 lbs. for those of $\frac{e}{D} = 0.50$.
The strain gage readings of all deformations and lateral
deflections were read with a Digital Strain Indicator, Model 205 of CMS
Laboratories, through with a Switch and Balance Unit, Model 305 of Binary
Electronics.

Fig. 3.11 p. 43 shows the specimen under test.

3.3 Nomenclature for Specimens

In order to identify all the specimens, each specimen was
designated for length, wires per inch of wrapping (i.e. initial lateral
prestress), eccentricity and a number denoting the specimen in that
particular type. Nomenclatures used in this thesis for specimens are
as follows:

For the effective length:

A : 2'-0" (24")
B : 3'-0" (36")
C : 4'-6" (54")
D : 6'-0" (72")

For the lateral prestress:

0 : without lateral prestress
18 : 18 wires per inch of wrapping, \(\sigma_3 = 900 \text{ psi} \)
32 : 32 wires per inch of wrapping, \(\sigma_3 = 1600 \text{ psi} \)
64 : 64 wires per inch of wrapping, \(\sigma_3 = 3200 \text{ psi} \)
For eccentricity:

\[
\begin{align*}
 a & : \ e/D = 0.10 \\
 b & : \ e/D = 0.25 \\
 c & : \ e/D = 0.50
\end{align*}
\]

Thus, as an example:

A-32-b(2) is the second of the columns of 24" in effective length, with 32 wires per inch of wrapping (i.e. initial lateral prestress is 1600 psi) and is loaded with a eccentricity of \(\frac{e}{D} = 0.25 \).
FIG. 3.7 DETAIL OF LOADING PLATE (FOR $\frac{E}{D} = 0.1$)
FIG. 3.7 DETAIL OF LOADING PLATE (FOR $\frac{e}{D} = 0.1$)
FIG. 3.8 DETAIL OF LOADING PLATE (FOR $\frac{e}{D} = 0.25$)
FIG. 3.8 DETAIL OF LOADING PLATE (FOR $\frac{e}{D} = 0.25$)
FIG. 3.9 DETAIL OF LOADING PLATE (FOR $\frac{e}{D} = 0.5$)
FIG. 3.9 DETAIL OF LOADING PLATE (FOR $\frac{e}{D} = 0.5$)
LEFT : BOTTOM COVER PLATE

RIGHT : TOP COVER PLATE

FIG. 3.10 LOADING COVER PLATES
LEFT : BOTTOM COVER PLATE

RIGHT : TOP COVER PLATE

FIG. 3.10 LOADING COVER PLATES
FIG. 3.11 SPECIMEN UNDER TEST
FIG. 3.11 SPECIMEN UNDER TEST
CHAPTER 4

THEORETICAL CONSIDERATIONS AND ANALYSIS

The theoretical analysis and derivation described in this Chapter is based on elementary strength of materials principles, and the conclusions obtained from previous investigations of the triaxial effects on cylindrical concrete columns under concentric load.

4.1 Analysis of Lateral Pressure from Wrapping Wires to Concrete Cylinders

When a concrete cylinder is wrapped with wire under tension, the wire is stretched by the tension \(T \) applied to the wire. After the cylinder is wrapped and both ends of the wire are fixed on the cylinder, the wire will have a tendency to return to its original length. This effect produces a pressure interacting between the wire and the cylinder surface.

Fig. 4.1 p. 45 shows the free body diagrams of the wire and the wrapped cylinder. If \(N_1 \), the number of wires per inch of the wrapping, is known, the diameter \(D \) is expressed in inches and the tension \(T \) in the wire in pounds, the lateral stress \(\sigma_3 \) (psi) acting on the outside cylindrical surface of concrete cylinder can be calculated with the formula

\[
\sigma_3 = \frac{2 N_1 T}{D} \quad \text{..(4.1)}
\]
FIG. 4.1 LATERAL PRESSURE FROM WRAPPING WIRES TO THE CYLINDER
In this thesis, Eqn. 4.1 was used to calculate the lateral stress σ_3.

4.2 Ultimate Strength Analysis of Plain Concrete Column

As the tensile strength of concrete is very weak, it is reasonable and usual to assume that the concrete takes no tensile stress. The tensile stress is usually taken by longitudinal reinforcement in reinforced concrete columns.

The ultimate strength analysis of plain concrete columns shall be based on the two following additional assumptions which are given in both the ACI (2) and NBC (22) building codes:

a) At ultimate strength, concrete stress is not proportional to strain. The variation of compressive concrete stress distribution may be assumed to be a rectangle, trapezoid, parabola, or any other shape which results in predictions of ultimate strength in reasonable agreement with the results of compressive tests.

b) The requirements of assumption a) may be considered satisfied by the equivalent rectangular concrete stress distribution which is defined as follows. At ultimate strength, a concrete stress intensity of $0.85f'_c$ shall be assumed uniformly distributed over an equivalent compression zone bounded by the edge of the cross section and a straight line located parallel to the neutral axis at a distance $a = k_1 c$ from the fiber of maximum compressive strain. The distance c from the fiber of maximum strain to the neutral axis is measured in a direction
perpendicular to that axis. The fraction \(k_1 \) shall be taken as 0.85 for \(f'_c < 4000 \) psi, and decreases by 0.05 for every 1000 psi above 4000.

4.2.1 Cylindrical Plain Concrete Columns Under Concentric Load

Let Fig. 4.2(b) and 4.2(c) p. 48 represent the distribution of internal strains and stresses when the plain concrete column is about to fail under a concentric load \(P_{ult} \). The whole section in this case will be under compressive stress (i.e. \(a = D \)). Using the assumption of equivalent rectangular stress block as shown in Fig. 4.2(d) p. 48, the magnitude of this stress is \(0.85 f'_c \) uniformly distributed over the whole section. The failure load \(P_{ult} \) will be given by

\[
P_{ult} = A_c \left(0.85 f'_c \right) \quad \text{(4.2)}
\]

where \(A_c \) is the sectional area \(= \frac{\pi D^2}{4} \) for cylinder.

4.2.2 Cylindrical Concrete Columns Under Eccentric Load

When a cylindrical plain concrete column is under load \(P_{ult} \) at an eccentricity \(e \) from the plastic centroid of the section as shown in Fig. 4.3 p. 49, the resultant \(C \) of the equivalent rectangular stress block must be collinear with and equal to \(P_{ult} \) for equilibrium. Since the resultant \(C \) passes through the centroid of the equivalent compression zone and the point of loading, the area \(A'_c \) of the equivalent compression zone will be

\[
A'_c = 2 A_e \quad \text{(4.3)}
\]

where \(A_e \) is the area bounded by the edge fiber of the maximum strain
\[A_c = \frac{\pi D^2}{4} \]

(a) Cross section and loading

(b) Strain distribution

(c) Stress distribution

(d) Equivalent rectangular stress block

FIG. 4.2 STRESS AND STRAIN DISTRIBUTION OF CYLINDRICAL CONCRETE COLUMN UNDER CONCENTRIC LOAD
FIG. 4.3 STRESS AND STRAIN DISTRIBUTION OF CYLINDRICAL CONCRETE COLUMN UNDER ECCENTRIC LOAD

(a) Cross section and loading

(b) Strain distribution

(c) Equivalent rectangular stress block
and a straight line located at the point of eccentric load and parallel to the neutral axis as shown in Fig. 4.3(a) p. 49.

The failure load P_{ult} in this case can be given by

$$P_{ult} = 0.85 f_c' A' c$$

...............(4.4)

The expression of A_e in terms of eccentricity e can be derived by integration and found to be

$$A_e = \frac{\pi D^2}{8} - e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{4} \sin^{-1} \left(\frac{2e}{D}\right)$$

..........(4.5)

Thus, A'_c becomes

$$A'_c = \frac{\pi D^2}{4} - 2e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{2} \sin^{-1} \left(\frac{2e}{D}\right)$$

..........(4.6)

Eqn. 4.6 shows that

$$A'_c = \frac{\pi D^2}{4} = A_c$$ when $\frac{e}{D} = 0$, and

$$A'_c = 0$$ when $\frac{e}{D} = 0.50$.

For convenience, the values of the effective sectional area A'_c for different $\frac{e}{D}$ ratios, less than 0.50, have been plotted in Fig. 6.1 p. 84 in Chapter 6.

For long columns with the load applied eccentrically, reduction factors must be applied to Eqn. 4.4

$$P_{ult} = A'_c \left(0.85 f_c' \right) \left(R_1 - R_2 \frac{L}{h} \right) \left(1 - R_3 \frac{e}{D}\right)$$

..........(4.7)

where R_1, R_2 and R_3 are empirical coefficients which will be discussed in Chapter 5, and A'_c is the effective area of the cross section.

Eqn. 4.7 can be considered as general form of formula for cylindrical plain concrete columns with an eccentricity ranging from
\(\frac{e}{D} = 0 \) to 0.50.

4.2.3 Laterally Prestressed Plain Concrete Columns

Previous investigations of the effects of lateral prestress to the concrete columns found that the lateral prestress increases the load capacity a certain amount. It is logical that Eqn. 4.7 can also be used for laterally prestressed plain concrete columns by replacing the unconfined concrete compressive strength \(f'_c \) by the confined concrete compressive strength. That is

\[
P_{\text{ult}} = A'_c \left\{ 0.85f'_c + \beta K \bar{\sigma}_3 \right\} \left[R_1 - R_2 \frac{L}{r} \right] \left[1 - R_3 \frac{e}{D} \right] \cdots (4.8)
\]

where \(\beta K \) is an empirical constant which decreases with increases of either lateral prestress or slenderness ratio. As it will be discussed in Chapter 5, \(\beta K \) is also a function of the \(\frac{e}{D} \) ratio. Thus, \(\beta K \) can be expressed in the form of

\[
\beta K = K_1 \left\{ 1 - K_2 \left(\frac{\bar{\sigma}_3}{f'_c} \right)^{\alpha} \right\} \left[K_3 - K_4 \frac{L}{r} \right] \left[1 - K_5 \frac{e}{D} \right] \cdots (4.9)
\]

where \(K_1, K_2, K_3, K_4, K_5 \) and \(\alpha \) are empirical coefficients which will be determined in Chapter 5.

Thus, the general form of the formula to predict the failure load \(P_{\text{ult}} \) for laterally prestressed plain concrete columns may be written as

\[
P_{\text{ult}} = A'_c \left\{ 0.85f'_c + K_1 \left\{ 1 - K_2 \left(\frac{\bar{\sigma}_3}{f'_c} \right)^{\alpha} \right\} \left[K_3 - K_4 \frac{L}{r} \right] \left[1 - K_5 \frac{e}{D} \right] \bar{\sigma}_3 \right\} \left[R_1 - R_2 \frac{L}{r} \right] \left[1 - R_3 \frac{e}{D} \right] \cdots (4.10)
\]

where \(A'_c \) is the same as before, with \(\frac{e}{D} \) ranging from 0 to 0.50.
CHAPTER 5

DISCUSSION OF TEST RESULTS AND THE PROPOSED FORMULA

The individual test results are presented in the form of load/deformation curves. These graphs as well as the load/lateral deflection curves are presented in Appendix B, from Fig.B.1 p.128 to Fig.B.60 p.187. The experimental failure loads of all specimens are presented in Fig.C.1 p.189 in Appendix C.

The average failure loads for each type of specimens are presented in Fig.5.2 p.54 and curves showing the effects of lateral prestress, of slenderness ratio, and of eccentricity are presented in Fig.5.8 p.62, Fig.5.9 p.63 and Fig.5.10 p.64 respectively.

In order to obtain some of the empirical coefficients for the proposed formula, the test results of Godse's investigation (16) of similar specimens under concentric load were also used and are presented in Fig.5.1 p.53.

5.1 Failure Phenomena of Specimens

The various typical failure phenomena are shown in Fig.5.3 p.55 to Fig.5.6 p.58. A summary of failure phenomena observed is given briefly in Fig.5.7 p.59.

It was found that all unwrapped concrete columns failed by crushing of concrete at mid-height or at the weaker end of the cylinder.

Most of the shorter series of wrapped specimens, failed at mid-height portion by crushing of concrete and simultaneous rupture of
wires. The rupture of wires indicated the tensile stress in the wires reached its ultimate value. The final lateral stress σ_3 can then be calculated from the ultimate strength of the wire.

However, most of the longer specimens failed by crushing of the concrete without rupture of the wire. The value of the final lateral stress at failure σ_3 cannot be predicted. In this case, the value σ_3 at failure was obtained from the circumferential strain readings of test results and the characteristic curve of the wire.

All specimens which were loaded with $\frac{e}{D} = 0.50$ failed by tension failure of the concrete at the weaker end.

Those of series D with $\frac{e}{D} = 0.10$ and 0.25 failed by general buckling.

It was concluded that lateral prestressing does not increase the tensile strength of concrete and results for $\frac{e}{D} = 0.50$ were not considered in the development of the empirical equation.

Fig. 5.1 Test Results of Laterally Prestressed Concrete Columns Under Concentric Load (obtained from Golde's investigation (16)).

<table>
<thead>
<tr>
<th>Specimen NO.</th>
<th>$\frac{L}{r}$</th>
<th>f_c (psi)</th>
<th>$\bar{\sigma}_3$ (psi)</th>
<th>\bar{P}_{exp} (kips)</th>
<th>P_{sl} (kips)</th>
<th>P_{exp} (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- 0-0</td>
<td>16.60</td>
<td>4600</td>
<td>0</td>
<td>112</td>
<td>112.0</td>
<td>112.0</td>
</tr>
<tr>
<td>A-18-0</td>
<td>25.40</td>
<td>5100</td>
<td>0</td>
<td>133</td>
<td>133.0</td>
<td>133.0</td>
</tr>
<tr>
<td>A-32-0</td>
<td></td>
<td></td>
<td>0</td>
<td>153</td>
<td>153.0</td>
<td>153.0</td>
</tr>
<tr>
<td>A-64-0</td>
<td></td>
<td></td>
<td>0</td>
<td>173</td>
<td>173.0</td>
<td>173.0</td>
</tr>
<tr>
<td>B- 0-0</td>
<td></td>
<td></td>
<td>0</td>
<td>111</td>
<td>111.0</td>
<td>111.0</td>
</tr>
<tr>
<td>B-18-0</td>
<td></td>
<td></td>
<td>0</td>
<td>1452</td>
<td>290.0</td>
<td>290.0</td>
</tr>
<tr>
<td>B-32-0</td>
<td></td>
<td></td>
<td>0</td>
<td>2581</td>
<td>374.0</td>
<td>374.0</td>
</tr>
<tr>
<td>B-64-0</td>
<td></td>
<td></td>
<td>0</td>
<td>5162</td>
<td>573.0</td>
<td>573.0</td>
</tr>
<tr>
<td>C- 0-0</td>
<td></td>
<td></td>
<td>0</td>
<td>1452</td>
<td>290.0</td>
<td>290.0</td>
</tr>
<tr>
<td>C-18-0</td>
<td></td>
<td></td>
<td>0</td>
<td>2581</td>
<td>374.0</td>
<td>374.0</td>
</tr>
<tr>
<td>C-32-0</td>
<td></td>
<td></td>
<td>0</td>
<td>5162</td>
<td>573.0</td>
<td>573.0</td>
</tr>
<tr>
<td>C-64-0</td>
<td></td>
<td></td>
<td>0</td>
<td>5162</td>
<td>573.0</td>
<td>573.0</td>
</tr>
<tr>
<td>D- 0-0</td>
<td></td>
<td></td>
<td>0</td>
<td>1452</td>
<td>290.0</td>
<td>290.0</td>
</tr>
<tr>
<td>D-18-0</td>
<td></td>
<td></td>
<td>0</td>
<td>2581</td>
<td>374.0</td>
<td>374.0</td>
</tr>
<tr>
<td>D-32-0</td>
<td></td>
<td></td>
<td>0</td>
<td>5162</td>
<td>573.0</td>
<td>573.0</td>
</tr>
<tr>
<td>D-64-0</td>
<td></td>
<td></td>
<td>0</td>
<td>5162</td>
<td>573.0</td>
<td>573.0</td>
</tr>
</tbody>
</table>
Test Results of Laterally Prestressed Concrete Columns Under Eccentric Load

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>L/r</th>
<th>$f'c$ (psi)</th>
<th>$\bar{\sigma}_3$ (psi)</th>
<th>e/D</th>
<th>P_{exp} (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-0-a</td>
<td>16</td>
<td>7200</td>
<td>0</td>
<td>0.10</td>
<td>120.0</td>
</tr>
<tr>
<td>A-0-b</td>
<td></td>
<td></td>
<td>0</td>
<td>0.25</td>
<td>63.0</td>
</tr>
<tr>
<td>A-0-c</td>
<td></td>
<td></td>
<td>0</td>
<td>0.50</td>
<td>10.5</td>
</tr>
<tr>
<td>A-18-a</td>
<td></td>
<td></td>
<td>900</td>
<td>1547</td>
<td>0.10</td>
</tr>
<tr>
<td>A-18-b</td>
<td></td>
<td></td>
<td>900</td>
<td>1547</td>
<td>0.25</td>
</tr>
<tr>
<td>A-18-c</td>
<td></td>
<td></td>
<td>910</td>
<td>910</td>
<td>0.50</td>
</tr>
<tr>
<td>A-32-a</td>
<td></td>
<td></td>
<td>1600</td>
<td>2750</td>
<td>0.10</td>
</tr>
<tr>
<td>A-32-b</td>
<td></td>
<td></td>
<td>1600</td>
<td>2130</td>
<td>0.25</td>
</tr>
<tr>
<td>A-32-c</td>
<td></td>
<td></td>
<td>1600</td>
<td>1600</td>
<td>0.50</td>
</tr>
<tr>
<td>A-64-a</td>
<td></td>
<td></td>
<td>3200</td>
<td>4750</td>
<td>0.10</td>
</tr>
<tr>
<td>A-64-b</td>
<td></td>
<td></td>
<td>3200</td>
<td>3860</td>
<td>0.25</td>
</tr>
<tr>
<td>A-64-c</td>
<td></td>
<td></td>
<td>3200</td>
<td>3200</td>
<td>0.50</td>
</tr>
<tr>
<td>B-0-a</td>
<td>24</td>
<td>7460</td>
<td>0</td>
<td>0.10</td>
<td>117.0</td>
</tr>
<tr>
<td>B-0-b</td>
<td></td>
<td></td>
<td>0</td>
<td>0.25</td>
<td>59.0</td>
</tr>
<tr>
<td>B-0-c</td>
<td></td>
<td></td>
<td>0</td>
<td>0.50</td>
<td>9.0</td>
</tr>
<tr>
<td>B-18-a</td>
<td></td>
<td></td>
<td>900</td>
<td>1547</td>
<td>0.10</td>
</tr>
<tr>
<td>B-18-b</td>
<td></td>
<td></td>
<td>900</td>
<td>1075</td>
<td>0.25</td>
</tr>
<tr>
<td>B-18-c</td>
<td></td>
<td></td>
<td>900</td>
<td>900</td>
<td>0.50</td>
</tr>
<tr>
<td>B-32-a</td>
<td></td>
<td></td>
<td>1600</td>
<td>2750</td>
<td>0.10</td>
</tr>
<tr>
<td>B-32-b</td>
<td></td>
<td></td>
<td>1600</td>
<td>1950</td>
<td>0.25</td>
</tr>
<tr>
<td>B-32-c</td>
<td></td>
<td></td>
<td>1600</td>
<td>1600</td>
<td>0.50</td>
</tr>
<tr>
<td>B-64-a</td>
<td></td>
<td></td>
<td>3200</td>
<td>4300</td>
<td>0.10</td>
</tr>
<tr>
<td>B-64-b</td>
<td></td>
<td></td>
<td>3200</td>
<td>3700</td>
<td>0.25</td>
</tr>
<tr>
<td>B-64-c</td>
<td></td>
<td></td>
<td>3200</td>
<td>3200</td>
<td>0.50</td>
</tr>
<tr>
<td>C-0-a</td>
<td>36</td>
<td>6750</td>
<td>0</td>
<td>0.10</td>
<td>101.0</td>
</tr>
<tr>
<td>C-0-b</td>
<td></td>
<td></td>
<td>0</td>
<td>0.25</td>
<td>50.0</td>
</tr>
<tr>
<td>C-0-c</td>
<td></td>
<td></td>
<td>0</td>
<td>0.50</td>
<td>7.0</td>
</tr>
<tr>
<td>C-18-a</td>
<td></td>
<td></td>
<td>900</td>
<td>1100</td>
<td>0.10</td>
</tr>
<tr>
<td>C-18-b</td>
<td></td>
<td></td>
<td>900</td>
<td>955</td>
<td>0.25</td>
</tr>
<tr>
<td>C-18-c</td>
<td></td>
<td></td>
<td>900</td>
<td>900</td>
<td>0.50</td>
</tr>
<tr>
<td>C-32-a</td>
<td></td>
<td></td>
<td>1600</td>
<td>2000</td>
<td>0.10</td>
</tr>
<tr>
<td>C-32-b</td>
<td></td>
<td></td>
<td>1600</td>
<td>1730</td>
<td>0.25</td>
</tr>
<tr>
<td>C-32-c</td>
<td></td>
<td></td>
<td>1600</td>
<td>1600</td>
<td>0.50</td>
</tr>
<tr>
<td>C-64-a</td>
<td></td>
<td></td>
<td>3200</td>
<td>3670</td>
<td>0.10</td>
</tr>
<tr>
<td>C-64-b</td>
<td></td>
<td></td>
<td>3200</td>
<td>3410</td>
<td>0.25</td>
</tr>
<tr>
<td>C-64-c</td>
<td></td>
<td></td>
<td>3200</td>
<td>3200</td>
<td>0.50</td>
</tr>
<tr>
<td>D-0-a</td>
<td>48</td>
<td>5600</td>
<td>0</td>
<td>0.10</td>
<td>66.0 *</td>
</tr>
<tr>
<td>D-0-b</td>
<td></td>
<td></td>
<td>0</td>
<td>0.25</td>
<td>41.0 *</td>
</tr>
<tr>
<td>D-0-c</td>
<td></td>
<td></td>
<td>0</td>
<td>0.50</td>
<td>9.8 *</td>
</tr>
<tr>
<td>D-18-a</td>
<td></td>
<td></td>
<td>900</td>
<td>1065</td>
<td>0.10</td>
</tr>
<tr>
<td>D-18-b</td>
<td></td>
<td></td>
<td>900</td>
<td>980</td>
<td>0.25</td>
</tr>
<tr>
<td>D-18-c</td>
<td></td>
<td></td>
<td>900</td>
<td>900</td>
<td>0.50</td>
</tr>
<tr>
<td>D-32-a</td>
<td></td>
<td></td>
<td>1600</td>
<td>1820</td>
<td>0.10</td>
</tr>
<tr>
<td>D-32-b</td>
<td></td>
<td></td>
<td>1600</td>
<td>1810</td>
<td>0.25</td>
</tr>
<tr>
<td>D-32-c</td>
<td></td>
<td></td>
<td>1600</td>
<td>1600</td>
<td>0.50</td>
</tr>
<tr>
<td>D-64-a</td>
<td></td>
<td></td>
<td>3200</td>
<td>3540</td>
<td>0.10</td>
</tr>
<tr>
<td>D-64-b</td>
<td></td>
<td></td>
<td>3200</td>
<td>3510</td>
<td>0.25</td>
</tr>
<tr>
<td>D-64-c</td>
<td></td>
<td></td>
<td>3200</td>
<td>3200</td>
<td>0.50</td>
</tr>
</tbody>
</table>

* Since the contribution of longitudinal reinforcement remains unknown, Series D is not included in the analysis.
FIG. 5.3 TYPICAL FAILURE PHENOMENA OF SERIES A

CRUSHING OF CONCRETE ONLY.

TENSION FAILURE AT WEAKER END.

SIMULTANEOUS CRUSHING OF CONCRETE AND RUPTURE OF WIRES.

CRUSHING OF CONCRETE AT MID-HEIGHT.

A-32-6 (1)

A-18-6 (1)

A-0-a (1)
SIMULTANEOUS CRUSHING OF CONCRETE AND RUPTURE OF WIRES.

CRUSHING OF CONCRETE ONLY.

CRUSHING OF CONCRETE AT MID-HEIGHT.

TENSION FAILURE AT WEAKER END.

FIG. 5.3 TYPICAL FAILURE PHENOMENA OF SERIES A
Fig. 5.4 Typical failure phenomena of series B
SIMULTANEOUS CRUSHING OF CONCRETE AND RUPTURE OF WIRES.

CRUSHING OF CONCRETE ONLY.

CRUSHING OF CONCRETE AT WEAKER END.

TENSION FAILURE AT WEAKER END.

FIG. 5.4 TYPICAL FAILURE PHENOMENA OF SERIES B
CRUSHING OF CONCRETE ONLY.

TENSION FAILURE AT WEAKER END.

FIG. 5-5 TYPICAL FAILURE PHENOMENA OF SERIES C
CRUSHING OF CONCRETE ONLY.

TENSION FAILURE AT WEAKER END.

FIG. 5·5 TYPICAL FAILURE PHENOMENA
OF SERIES C
FAILED BY GENERAL BUCKLING.

TENSION FAILURE AT WEAKER END.

FIG. 5-6 TYPICAL FAILURE PHENOMENA OF SERIES D
FAILED BY GENERAL BUCKLING.

TENSION FAILURE AT WEAKER END.

FIG. 5·6 TYPICAL FAILURE PHENOMENA OF SERIES D
Fig. 5.7 Summary of Failure Phenomena of Test Specimens

<table>
<thead>
<tr>
<th>L/r</th>
<th>wires (\frac{e}{D}) (\text{in.})</th>
<th>0</th>
<th>18</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (16)</td>
<td>a (0.10)</td>
<td>Crushing of concrete at mid-height</td>
<td>Crushing of concrete and simultaneous rupture of wire</td>
<td>Crushing of concrete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b (0.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c (0.50)</td>
<td>Tension failure of concrete at weaker end (the top end of the specimen while casting)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (24)</td>
<td>a</td>
<td>Crushing of concrete near the weaker end</td>
<td>Crushing of concrete and simultaneous rupture of wire</td>
<td>Crushing of concrete only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td>Crushing of concrete only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Tension failure of concrete at weaker end (the top end of the specimen while casting)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (36)</td>
<td>a</td>
<td>Crushing of concrete only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Tension failure of concrete at weaker end (the top end of the specimen while casting)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (48)</td>
<td>a</td>
<td>Failed by general buckling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Tension failure of concrete at weaker end (the top end of the specimen while casting)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Since the load was too high, testing not continued up to complete failure.
5.2 Effect of Lateral Prestress

Fig. 5.8 p. 62 shows the variation of failure load with lateral prestress. It was found that the lateral prestress increased the failure load in each type of specimens except for $\frac{e}{D} = 0.50$. The failure load increased as the lateral prestress increased. The rate of increase of failure load decreased as the lateral prestress increased. This showed the assumption for βK is reasonable in the form

$$\beta K \propto F\{1 - K_2 \left(\frac{\bar{\sigma}}{f_c}\right)^{\alpha}\} \quad \ldots (5.1)$$

where K_2 and α are empirical coefficients.

5.3 Effect of Slenderness Ratio

Fig. 5.9 p. 63 shows the variation of failure load with slenderness ratio. It was found that the failure load P_{ult} decreased as the slenderness ratio increased. It can be expressed in the form of the straight-line relationship

$$P_{ult} \propto F\{R_1 - R_2 \frac{L}{R}\} \quad \ldots (5.2)$$

considering the $\frac{L}{R}$ also affects the factor βK_3

$$\beta K \propto F\{K_3 - K_4 \frac{L}{R}\} \quad \ldots (5.3)$$

where R_1, R_2, K_3 and K_4 are empirical coefficients.
5.4 Effect of Eccentricity

Fig. 5.10 p. 64 shows the variation of failure load with eccentricity $\frac{e}{D}$. It was found that the failure load P_{ult} decreased as $\frac{e}{D}$ increased. When $\frac{e}{D} = 0.50$, P_{ult} was approaching to zero since these specimens with $\frac{e}{D} = 0.50$ failed by tension failure of the concrete. The assumption was that the tensile strength of concrete is zero and is unchanged by lateral prestressing. This shows the application of A'_{c} in Eqn. 4.6 in Chapter 4 is correct, where A'_{c} is the area of the equivalent compression zone of concrete

$$A'_{c} = \frac{\pi D^2}{4} - 2e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{2} \sin^{-1}\left(\frac{2e}{D}\right) \ldots \ldots \ldots \ldots \ldots (5.4)$$

Furthermore, an empirical factor R_{e} may be applied to the area of the equivalent compression zone A'_{c}. Let it be in the form of

$$R_{e} A'_{c} = A'_{c} (1 - R_{3} \frac{e}{D}) \ldots \ldots \ldots \ldots \ldots (5.5)$$

where R_{3} is an empirical coefficient.

Considering the $\frac{e}{D}$ ratio also affects the factor βK, then it is necessary to assume that

$$\beta K \propto F\{1 - K_{5} \frac{e}{D}\} \ldots \ldots \ldots \ldots \ldots (5.6)$$

where K_{5} is an empirical coefficient.
FIG. 5.8 VARIATION OF FAILURE LOAD WITH LATERAL PRESTRESS
FIG. 5.9 VARIATION OF FAILURE LOAD WITH SLENDERNESS RATIO
FIG. 5.10 VARIATION OF FAILURE LOAD WITH ECCENTRICITY
5.5 The Proposed Formula

Assuming the expression of \(\bar{\sigma}_1 = 0.85f' + 2K_3 \) holds and combining Eqns. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 from the effects of lateral prestress, slenderness ratio and eccentricity, a general expression of the relation between the failure load \(P_{ult} \) and the final lateral stress \(\bar{\sigma}_3 \), slenderness ratio \(\frac{L}{r} \) and eccentricity \(\frac{e}{D} \), can be written in the following form:

\[
P_{ult} = A_c \left\{ 0.85\frac{f'}{c} + K_1 \left[1 - K_2 \left(\frac{\bar{\sigma}_3}{\frac{f'}{c}} \right)^\alpha \right] \left[K_3 - K_4 \frac{L}{r} \right] \left[1 - K_5 \frac{e}{D} \right] \bar{\sigma}_3 \right\} \\
\left\{ R_1 - R_2 \frac{L}{r} \right\} \left[1 - R_3 \frac{e}{D} \right] \]
\[
(5.8)
\]

Using test results, the coefficients \(K_1, K_2, K_3, K_4, K_5, \alpha, R_1, R_2 \) and \(R_3 \) for Eqn. 5.8 can be found by trial and error as well as the iteration method using computer programming.

5.5.1 Values of Empirical Coefficients \(R_1 \) and \(R_2 \)

When \(\frac{e}{D} = 0 \) and \(\bar{\sigma}_3 = 0 \), Eqn. 5.8 becomes

\[
P_{ult} = A_c \left\{ 0.85\frac{f'}{c} \right\} \left\{ R_1 - R_2 \frac{L}{r} \right\} \]
\[
(5.9)
\]

Since \(\frac{e}{D} = 0 \), \(A_c = A_c = \pi d^2/4 \) for cylindrical section.

The empirical coefficients \(R_1 \) and \(R_2 \) in Eqn. 5.9 can be determined from the test results of axially loaded unwrapped columns from Fig. 5.1 p. 53 by trial and error.
\[R_1 = 1.042 \text{ and } R_2 = 0.0057 \] were fitted to the test results with a mean value of \(P_{\text{exp}} \)/\(P_{\text{ult}} \) of 1.0443, standard deviation of 0.0355 and the coefficient of variation of 3.40 \%.

5.5.2 Values of Empirical Coefficients \(K_1, K_2, K_3, K_4 \) and \(\alpha \)

When \(\frac{e}{D} = 0 \), \(\bar{\sigma}_3 \neq 0 \), and \(R_1, R_2 \) are replaced by the values found in section 5.5.1, Eqn. 5.8 becomes

\[
P_{\text{ult}} = A'_c \left\{ 0.85 \frac{f'_c}{c} + K_1 \left[1 - K_2 \left(\frac{\bar{\sigma}_3}{f'_c} \right) \right] \left[K_3 - K_4 \left(\frac{L}{r} \right) \bar{\sigma}_3 \right] \right\} \left[1.042 - 0.0057 \frac{L}{r} \right] \]

(5.10)

In this case, \(A'_c = A_c = \frac{\pi D^2}{4} \) for cylindrical section as \(\frac{e}{D} = 0 \).

The empirical coefficients \(K_1, K_2, K_3, K_4 \) and \(\alpha \) in Eqn. 5.10 were found from the test results of axially loaded wrapped columns from Fig. 5.1 p. 53 by the same methods as in section 5.5.1. The values

\[K_1 = 11.6 \]
\[K_2 = 0.715 \]
\[K_3 = 1.04 \]
\[K_4 = 0.0056 \]
\[\alpha = 0.2 \]

were fitted to the test results with a mean value of \(P_{\text{exp}} \)/\(P_{\text{ult}} \) of 1.0177, standard deviation of 0.0805 and the coefficient of variation of 7.92 \%.
5.5.3 Value of Empirical Coefficient \(R_3 \)

When \(\frac{e}{D} \neq 0 \), \(\bar{\sigma}_3 = 0 \) and \(R_1, R_2 \) are replaced by the values found in section 5.5.1, Eqn.5.8 becomes

\[
P_{ult} = A'_{c} \left\{ 0.85f'_c \right\} \left\{ 1.042 - 0.0057 \frac{L}{R} \right\} \left\{ 1 - R_3 \frac{e}{D} \right\} \quad \text{(5.11)}
\]

In this case,

\[
A'_{c} = \frac{\pi D^2}{4} - 2e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{2} \sin^{-1} \left(\frac{2e}{D} \right)
\]

The empirical coefficient \(R_3 \) in Eqn.5.11 can be found from the test results of eccentrically loaded unwrapped columns, from Fig.5.2 p.54, by iteration method. The value of the coefficient \(R_3 = 0.35 \) was found to fit the test results with a mean value of \(P_{exp}/P_{ult} \) of 1.0281, standard deviation of 0.0253 and the coefficient of variation of 2.47%.

5.5.4 Value of Empirical Coefficient \(K_5 \)

Substituting the values of \(R_1, R_2, R_3, K_1, K_2, K_3, K_4 \) and \(\alpha \) into Eqn.5.8, Eqn.5.8 becomes

\[
P_{ult} = A'_{c} \left\{ 0.85f'_c + 11.6 \left[1 - 0.715 \left(\frac{\bar{\sigma}_3}{f'_c} \right)^{0.2} \right] \left[1.04 - 0.0056 \frac{L}{R} \right] \right\}
\]

\[
\left(1 - K_5 \frac{e}{D} \right) \bar{\sigma}_3 \left\{ 1.042 - 0.0057 \frac{L}{R} \right\} \left\{ 1 - 0.35 \frac{e}{D} \right\} \quad \text{....(5.12)}
\]

\(K_5 \) can be found based on test results of eccentrically loaded wrapped columns (i.e. when \(\frac{e}{D} \neq 0 \) and \(\bar{\sigma}_3 \neq 0 \)) from Fig.5.2 p.54 by trial and error. Hence \(K_5 \) was found to be 0.66 to fit the test results.
with a mean value of P_{ult} of 1.0381, standard deviation of 0.0587 and the coefficient of variation of 5.66%.

5.5.5 The Proposed Formula

Finally, the proposed formula for the failure load of laterally prestressed cylindrical concrete columns, either concentrically or eccentrically loaded, was determined to be

$$P_{\text{ult}} = A_{c}^{'} \left[0.85 f_{c}^{1} + 11.6 \left[1 - 0.715 \left(\frac{\sigma_{3}}{f_{c}^{1}} \right)^{0.2} \right] \left[1.04 - 0.0056 \frac{L}{r} \right] \left[1 - 0.66 \frac{e}{D} \right] \left[1 - 0.0057 \frac{L}{r} \right] \right] \left[1 - 0.35 \frac{e}{D} \right]$$

where $A_{c}^{'} = \frac{\pi D^{2}}{4} - 2e \sqrt{\frac{D^{2}}{4} - e^{2} - \frac{D^{2}}{2} \sin^{-1} \left(\frac{2e}{D} \right)}$ for $\frac{e}{D}$ varying from zero to 0.50.

Eqn. 5.13 can be written in a simpler form as

$$P_{\text{ult}} = A_{c}^{'} \left\{ 0.85 f_{c}^{1} + \beta K \sigma_{3} \right\} R \quad \text{(5.13a)}$$

where

$$\beta K = 11.6 \left[1 - 0.715 \left(\frac{\sigma_{3}}{f_{c}^{1}} \right)^{0.2} \right] \left[1.04 - 0.0056 \frac{L}{r} \right] \left[1 - 0.66 \frac{e}{D} \right]$$

and

$$R = \left\{ 1.042 - 0.0057 \frac{L}{r} \right\} \left(1 - 0.35 \frac{e}{D} \right) \quad \text{(5.13c)}$$

The bending moment M_{ult} due to this failure load P_{ult} at the eccentricity e is then

$$M_{\text{ult}} = (P_{\text{ult}})(e) \quad \text{(5.14)}$$

In order to simplify the calculation of these equations (Eqn. 5.13 and Eqn. 5.14), some charts were prepared for the terms $A_{c}^{'}$,
$\beta K, R, P_{ult}$ and M_{ult}, and are presented in Chapter 6.

5.5.6 Comparison Between the Values Calculated from the Proposed Formula and the Test Results

5.5.6.a Comparison with Present Investigation

The comparison between test results P_{exp} of present investigation and the calculated value P_{ult} from the proposed formula (Eqn.5.13) is presented in Fig.5.11 p.70.

It shows that Eqn.5.13 gives a conservative value of P_{ult} for columns wrapped with single layer. Columns wrapped with double layers, the values of P_{ult} from Eqn.5.13 are a little bit higher than test results. This is because of that the application of double-layer wires has less efficiency than that of single-layer wires. When the outer layer wires were wrapped, it pressed on the inner layer wires and reduced the prestress in the inner layer wires. As the wrapped column was being loaded, the outer wires took more lateral stress and reached the ultimate value before the inner layer wires. After the outer wires had broken, the lateral stress was then taken by the inner wires alone and thus the inner wires failed too. The lateral stress could not be distributed to the two layers of wires equally. Thus longitudinal failure load was then lower than it was expected.

The empirical formula fitted to the results with a mean of P_{exp}/P_{ult} of 1.0311, a standard deviation of 0.061 and the coefficient of variation of 5.83%. This shows the internal consistency of the proposed equation with all the test results is extremely good.
Fig. 5.11 Comparison of Test Results P_{exp} and Calculated Values P_{ult}

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>P_{exp} (kips)</th>
<th>P_{ult} (kips)</th>
<th>$P_{\text{exp}}/P_{\text{ult}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-0-0</td>
<td>112.0</td>
<td>104.7</td>
<td>1.0694</td>
</tr>
<tr>
<td>A-18-0</td>
<td>290.0</td>
<td>289.4</td>
<td>1.0020</td>
</tr>
<tr>
<td>A-32-0</td>
<td>374.0</td>
<td>380.5</td>
<td>0.9830</td>
</tr>
<tr>
<td>A-64-0</td>
<td>573.0</td>
<td>512.3</td>
<td>1.1184</td>
</tr>
<tr>
<td>B-0-0</td>
<td>111.0</td>
<td>110.0</td>
<td>1.0094</td>
</tr>
<tr>
<td>B-18-0</td>
<td>284.0</td>
<td>280.2</td>
<td>1.0134</td>
</tr>
<tr>
<td>B-32-0</td>
<td>364.0</td>
<td>366.4</td>
<td>0.9935</td>
</tr>
<tr>
<td>B-64-0</td>
<td>545.0</td>
<td>496.3</td>
<td>1.0982</td>
</tr>
<tr>
<td>C-0-0</td>
<td>101.7</td>
<td>99.8</td>
<td>1.0187</td>
</tr>
<tr>
<td>C-18-0</td>
<td>261.7</td>
<td>245.3</td>
<td>1.0668</td>
</tr>
<tr>
<td>C-32-0</td>
<td>323.7</td>
<td>318.6</td>
<td>1.0161</td>
</tr>
<tr>
<td>C-64-0</td>
<td>378.7</td>
<td>428.2</td>
<td>0.8844</td>
</tr>
<tr>
<td>D-0-0</td>
<td>97.7</td>
<td>90.5</td>
<td>1.0800</td>
</tr>
<tr>
<td>D-18-0</td>
<td>239.7</td>
<td>212.2</td>
<td>1.1294</td>
</tr>
<tr>
<td>D-32-0</td>
<td>281.7</td>
<td>273.4</td>
<td>1.0303</td>
</tr>
<tr>
<td>D-64-0</td>
<td>319.7</td>
<td>364.6</td>
<td>0.8768</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>P_{exp} (kips)</th>
<th>P_{ult} (kips)</th>
<th>$P_{\text{exp}}/P_{\text{ult}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-0-a</td>
<td>120.0</td>
<td>118.6</td>
<td>1.0117</td>
</tr>
<tr>
<td>A-18-a</td>
<td>290.0</td>
<td>265.0</td>
<td>1.0942</td>
</tr>
<tr>
<td>A-32-a</td>
<td>358.0</td>
<td>343.7</td>
<td>1.0415</td>
</tr>
<tr>
<td>A-64-a</td>
<td>460.0</td>
<td>442.9</td>
<td>1.0387</td>
</tr>
<tr>
<td>B-0-b</td>
<td>63.0</td>
<td>58.7</td>
<td>1.0732</td>
</tr>
<tr>
<td>B-18-b</td>
<td>139.0</td>
<td>123.5</td>
<td>1.1256</td>
</tr>
<tr>
<td>B-32-b</td>
<td>156.0</td>
<td>141.4</td>
<td>1.1035</td>
</tr>
<tr>
<td>B-64-b</td>
<td>193.0</td>
<td>184.4</td>
<td>1.0466</td>
</tr>
<tr>
<td>B-0-a</td>
<td>117.0</td>
<td>117.0</td>
<td>1.0000</td>
</tr>
<tr>
<td>B-18-a</td>
<td>262.0</td>
<td>250.9</td>
<td>1.0444</td>
</tr>
<tr>
<td>B-32-a</td>
<td>340.0</td>
<td>323.3</td>
<td>1.0517</td>
</tr>
<tr>
<td>B-64-a</td>
<td>380.0</td>
<td>396.9</td>
<td>0.9574</td>
</tr>
<tr>
<td>B-0-b</td>
<td>59.0</td>
<td>57.9</td>
<td>1.0183</td>
</tr>
<tr>
<td>B-18-b</td>
<td>110.0</td>
<td>102.2</td>
<td>1.0761</td>
</tr>
<tr>
<td>B-32-b</td>
<td>140.0</td>
<td>128.7</td>
<td>1.0878</td>
</tr>
<tr>
<td>B-64-b</td>
<td>170.0</td>
<td>170.1</td>
<td>0.9994</td>
</tr>
<tr>
<td>C-0-a</td>
<td>101.0</td>
<td>97.9</td>
<td>1.0321</td>
</tr>
<tr>
<td>C-18-a</td>
<td>192.0</td>
<td>183.5</td>
<td>1.0462</td>
</tr>
<tr>
<td>C-32-a</td>
<td>248.0</td>
<td>234.0</td>
<td>1.0597</td>
</tr>
<tr>
<td>C-64-a</td>
<td>301.0</td>
<td>306.6</td>
<td>0.9818</td>
</tr>
<tr>
<td>C-0-b</td>
<td>50.0</td>
<td>48.4</td>
<td>1.0323</td>
</tr>
<tr>
<td>C-18-b</td>
<td>85.0</td>
<td>82.2</td>
<td>1.0335</td>
</tr>
<tr>
<td>C-32-b</td>
<td>105.0</td>
<td>102.4</td>
<td>1.0249</td>
</tr>
<tr>
<td>C-64-b</td>
<td>119.0</td>
<td>136.4</td>
<td>0.8725</td>
</tr>
</tbody>
</table>

Mean of $\frac{P_{\text{exp}}}{P_{\text{ult}}} = 1.0311$

Standard deviation $= 0.0601$

Coefficient of variation $= 5.827\%$
5.5.6.b Comparison with Previous Investigations

The comparisons between the calculated values \(P_{ult} \) from Eqn.5.13 and the test results \(P_{exp} \) of Johnson's (17), Goldenbatt-Ratz's (15) and Gambarov's (12,13) investigations are presented in Fig.5.12 p.72, Fig.5.13 p.73 and Fig.5.14 p.73 respectively. The comparisons are limited to \(\frac{e}{D} = 0 \) since all previous investigations of wire-wrapped columns used concentric loading only.

In Fig.5.12 p.72, the comparison with Johnson's (17) investigation, shows the mean of \(\frac{P_{exp}}{P_{ult}} \) of 1.1094, a standard deviation of 0.0971 and the coefficient of variation of 8.754 %.

In Fig.5.13 p.73, the comparison with Goldenbatt-Ratz's (15) investigation, shows the mean of \(\frac{P_{exp}}{P_{ult}} \) of 1.2222, a standard deviation of 0.0428 and the coefficient of variation of 3.500 %.

In Fig.5.14 p.73, the comparison with Gambarov's (12,13) investigation, shows the mean of \(\frac{P_{exp}}{P_{ult}} \) of 1.0702, a standard deviation of 0.1591 and the coefficient of variation of 14.862 %.
<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>(f'_c) (psi)</th>
<th>(\delta_3) (psi)</th>
<th>(P_{\text{exp}}) (kips)</th>
<th>(P_{\text{ult}}) (kips)</th>
<th>(\frac{P_{\text{exp}}}{P_{\text{ult}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH = 12”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4870</td>
<td>400</td>
<td>44.66</td>
<td>44.60</td>
<td>1.0013</td>
<td></td>
</tr>
<tr>
<td>3680</td>
<td>39.60</td>
<td>37.07</td>
<td>1.0684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3470</td>
<td>51.60</td>
<td>53.59</td>
<td>0.9628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3680</td>
<td>49.60</td>
<td>45.42</td>
<td>1.0921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3470</td>
<td>50.30</td>
<td>43.92</td>
<td>1.1452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4870</td>
<td>56.40</td>
<td>61.35</td>
<td>0.9193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3680</td>
<td>56.20</td>
<td>52.51</td>
<td>1.0703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3470</td>
<td>59.60</td>
<td>50.87</td>
<td>1.1716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4870</td>
<td>65.60</td>
<td>68.69</td>
<td>0.9550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAMETER = 3”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3680</td>
<td>1200</td>
<td>63.50</td>
<td>59.13</td>
<td>1.0740</td>
<td></td>
</tr>
<tr>
<td>3470</td>
<td>67.30</td>
<td>57.33</td>
<td>1.1740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3620</td>
<td>48.00</td>
<td>48.35</td>
<td>0.9928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/r = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>790</td>
<td>51.40</td>
<td>51.13</td>
<td>1.0053</td>
<td></td>
</tr>
<tr>
<td>3630</td>
<td>55.60</td>
<td>48.42</td>
<td>1.1483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3620</td>
<td>61.20</td>
<td>61.33</td>
<td>0.9979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>1320</td>
<td>67.90</td>
<td>64.63</td>
<td>1.0506</td>
<td></td>
</tr>
<tr>
<td>3630</td>
<td>70.70</td>
<td>61.42</td>
<td>1.1511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3620</td>
<td>74.60</td>
<td>72.06</td>
<td>1.0353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>1850</td>
<td>77.70</td>
<td>75.92</td>
<td>1.0234</td>
<td></td>
</tr>
<tr>
<td>3630</td>
<td>87.70</td>
<td>72.16</td>
<td>1.2153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3620</td>
<td>83.20</td>
<td>80.93</td>
<td>1.0281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>2370</td>
<td>89.10</td>
<td>85.38</td>
<td>1.0436</td>
<td></td>
</tr>
<tr>
<td>3630</td>
<td>94.60</td>
<td>81.05</td>
<td>1.1672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3800</td>
<td>61.40</td>
<td>59.19</td>
<td>1.0374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3660</td>
<td>1160</td>
<td>69.60</td>
<td>58.02</td>
<td>1.1996</td>
<td></td>
</tr>
<tr>
<td>3880</td>
<td>71.50</td>
<td>59.85</td>
<td>1.1948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3800</td>
<td>85.80</td>
<td>75.42</td>
<td>1.1376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3660</td>
<td>1930</td>
<td>93.00</td>
<td>73.95</td>
<td>1.2576</td>
<td></td>
</tr>
<tr>
<td>3880</td>
<td>91.60</td>
<td>76.25</td>
<td>1.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3800</td>
<td>96.50</td>
<td>88.32</td>
<td>1.0926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3660</td>
<td>2710</td>
<td>111.20</td>
<td>86.51</td>
<td>1.2854</td>
<td></td>
</tr>
<tr>
<td>3880</td>
<td>109.50</td>
<td>89.34</td>
<td>1.2257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3800</td>
<td>115.70</td>
<td>98.41</td>
<td>1.1757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3660</td>
<td>120.20</td>
<td>96.25</td>
<td>1.2489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3880</td>
<td>124.40</td>
<td>99.62</td>
<td>1.2487</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean of \(\frac{P_{\text{exp}}}{P_{\text{ult}}} \) = 1.1094

Standard Deviation = 0.0971

Coefficient of Variation = 8.754%
FIG. 5.13 COMPARISON BETWEEN CALCULATED VALUES Pult & Test
RESULTS P_{exp} OF GOLDENBATT-RATZE'S (15) INVESTIGATION

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>f'_c (psi)</th>
<th>$\overline{\delta}_3$ (psi)</th>
<th>P_{exp} (kips)</th>
<th>P_{ult} (kips)</th>
<th>$\frac{P_{\text{exp}}}{P_{\text{ult}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH = 118"</td>
<td>4250</td>
<td>850</td>
<td>1162.00</td>
<td>1001.57</td>
<td>1.1602</td>
</tr>
<tr>
<td>DIAMETER = 14"</td>
<td>4400</td>
<td>920</td>
<td>1332.00</td>
<td>1056.31</td>
<td>1.2610</td>
</tr>
<tr>
<td>$\frac{L}{r}$ = 33.7</td>
<td>4700</td>
<td>460</td>
<td>1016.00</td>
<td>849.91</td>
<td>1.1954</td>
</tr>
<tr>
<td>$\frac{e}{D}$ = 0</td>
<td>5100</td>
<td>910</td>
<td>1432.00</td>
<td>1147.17</td>
<td>1.2483</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>430</td>
<td>1082.00</td>
<td>868.30</td>
<td>1.2461</td>
</tr>
</tbody>
</table>

MEAN OF $P_{\text{exp}} / P_{\text{ult}}$ = 1.2222
STANDARD DEVIATION = 0.0428
COEFFICIENT OF VARIATION = 3.500%

FIG. 5.14 COMPARISON BETWEEN CALCULATED VALUES Pult & Test
RESULTS P_{exp} OF GAMBAROV'S (12,13) INVESTIGATION

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>f'_c (psi)</th>
<th>$\overline{\delta}_3$ (psi)</th>
<th>P_{exp} (kips)</th>
<th>P_{ult} (kips)</th>
<th>$\frac{P_{\text{exp}}}{P_{\text{ult}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH = 31.5"</td>
<td>7300</td>
<td>1200</td>
<td>237.00</td>
<td>272.24</td>
<td>0.8706</td>
</tr>
<tr>
<td>DIAMETER = 5.5"</td>
<td>7500</td>
<td>1200</td>
<td>278.00</td>
<td>276.66</td>
<td>1.0049</td>
</tr>
<tr>
<td>$\frac{L}{r}$ = 22.9</td>
<td>7300</td>
<td>1200</td>
<td>311.00</td>
<td>272.24</td>
<td>1.1424</td>
</tr>
<tr>
<td>$\frac{e}{D}$ = 0</td>
<td>8100</td>
<td>1200</td>
<td>255.00</td>
<td>289.78</td>
<td>0.9835</td>
</tr>
<tr>
<td></td>
<td>8150</td>
<td>1200</td>
<td>316.00</td>
<td>290.87</td>
<td>1.0864</td>
</tr>
<tr>
<td></td>
<td>8050</td>
<td>1200</td>
<td>385.00</td>
<td>288.69</td>
<td>1.3336</td>
</tr>
</tbody>
</table>

MEAN OF $P_{\text{exp}} / P_{\text{ult}}$ = 1.0702
STANDARD DEVIATION = 0.1591
COEFFICIENT OF VARIATION = 14.862%
CHAPTER 6

CHARTS FOR THE PROPOSED FORMULA AND DESIGN METHOD

Because the proposed formula is quite lengthy and cumbersome, computer generated design charts have been prepared to simplify the calculation of the proposed formula. A design method using the presented ultimate load/moment/lateral stress interaction diagrams is also given.

6.1 Charts

The empirical formula summarizing the experimental results is repeated below:

\[P_{ult} = A'^c \left[0.85f'c + 11.6 \left(1 - 0.715 \left(\frac{\sigma}{f'c} \right)^{0.2} \right) \left(1.04 - 0.0056 \frac{L}{r} \right) \left(1 - 0.35 \frac{E}{D} \right) \right] \left(1.042 - 0.0057 \frac{L}{r} \right) \left(1 - 0.35 \frac{E}{D} \right) \] \[\text{(5.13)} \]

This equation can be rewritten in the form as given by Eqn.5.13a

\[P_{ult} = A'^c \left(0.85f'c + \beta K \sigma_3 \right) R \] \[\text{(6.1)} \]

where \[\beta K = 11.6 \left(1 - 0.715 \left(\frac{\sigma}{f'c} \right)^{0.2} \right) \left(1.04 - 0.0056 \frac{L}{r} \right) \left(1 - 0.35 \frac{E}{D} \right) \] \[\text{(6.1a)} \]

and \[R = \left(1.042 - 0.0057 \frac{L}{r} \right) \left(1 - 0.35 \frac{E}{D} \right) \] \[\text{(6.1b)} \]

Four groups of design charts are prepared in nondimensional forms, for the values of \(A'^c \), \(\beta K \), and \(R \) in Eqn.6.1, and also the interaction of axial load \(P_{ult} \) and bending moment \(M_{ult} \).
6.1.1 Chart for A'_C Values

In section 4.2.2, A'_C was derived to be

$$A'_C = \frac{\pi D^2}{4} - 2e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{2} \sin^{-1}\left(\frac{2e}{D}\right)$$

Dividing both sides by D^2, it becomes the nondimensional expression

$$\frac{A'_C}{D^2} = \frac{\pi}{4} - 2e \sqrt{\frac{1}{4} - \left(\frac{e}{D}\right)^2} - \frac{1}{2} \sin^{-1}\left(\frac{2e}{D}\right) \quad \text{...............(6.2)}$$

Eqn.6.2 is represented by Fig.6.1 p.84, from which the nondimensional value of A'_C/D^2 can be obtained for e/D values ranging from $e/D = 0$ to 0.50. The magnitude of A'_C can then be obtained by multiplying A'_C/D^2 by the specified D^2.

6.1.2 Chart for R Values

In Eqn.6.1, the reduction factor R is expressed by Eqn.6.1b

$$R = \{1.042 - 0.005\frac{L}{r}\} \{1 - 0.35\frac{e}{D}\} \quad \text{..........................(6.1b)}$$

The values of R can be obtained from Fig.6.2 p.85 for the specified L/r and e/D ratios.

6.1.3 Charts for βK Values

The parameter βK representing the increase in axial stress capacity due to lateral stress with L/r, e/D and $\bar{\sigma}_3/f'_c$, is given by
Eqn.6.1a as
\[\beta K = 11.6 \left[\frac{1}{1-0.715 \left(\frac{\sigma_3^3}{f_c} \right)^{0.2}} \right] \left[\frac{1.04}{0.0056 \frac{L}{D}} \right] \left[1-0.66 \frac{e}{D} \right] \] (6.1a)

The values of \(\beta K \) can be obtained for the specified ratios of lateral stress, slenderness and eccentricity ratios from Fig.6.3 p.86 through Fig.6.12 p.95.

6.1.4 Ultimate Load/Moment/Lateral Stress Interaction Diagrams

Dividing both sides of Eqn.5.13 by \(\frac{D^2 f_c}{C} \), the load equation becomes

\[\frac{P_{ult}}{D^2 f_c} = \frac{A}{C} \left[0.85 + 11.6 \left[1-0.715 \left(\frac{\sigma_3^3}{f_c} \right)^{0.2} \right] \left[1.04 - 0.0056 \frac{L}{D} \right] \left[1-0.66 \frac{e}{D} \right] \right] \] (6.3)

where \(\frac{A}{C} \) has been described in section 6.1.1 Eqn.6.2. Based on Eqn.6.3, Figs.6.13 p.96 through 6.30 p.113 were plotted for interaction diagrams with the nondimensional values of \(C_P \) and \(C_M \), where

\[C_P = \frac{P_{ult}}{D^2 f_c} \] (6.4)

\[C_M = C_P \frac{e}{D} = \frac{P_{ult} (e)}{D^3 f_c} = \frac{M_{ult}}{D^3 f_c} \] (6.5)
For any combination of lateral stress ratio $\frac{\sigma_3}{f'_c}$, slenderness ratio $\frac{L}{r}$ and eccentricity $\frac{e}{D}$, the values of C_p and C_M can be obtained from these diagrams. The magnitude of the ultimate load P_{ult} and moment M_{ult} can then be obtained with

$$P_{ult} = C_p D^2 f'_c \quad \ldots (6.6)$$

and

$$M_{ult} = C_M D^3 f'_c \quad \ldots (6.7)$$

6.1.5 Chart for Axial Tensile Force in the Wrapping Wires

The lateral stress at failure governs the load capacity of those columns at failure. Hence, to predict the failure load, it is necessary to know the lateral stress at failure. It is suggested that the initial lateral prestress be 80% of the wire ultimate tension and that this stress also be used as the final lateral stress at failure.

For the given values of diameter D_w and ultimate strength f_w of the wrapping wires, the axial tensile force T' developed just before the rupture of the wires is

$$T' = A_w f_w = \frac{\pi D_w^2}{4} f_w \quad \ldots (6.8)$$

where A_w is the cross-sectional area of the wire.

Fig. 6.31 p. 114 shows the values of force T, which is 80% of T', against D_w for several selected ultimate strengths of wires.
6.2 Example of Using The Charts to Predict Failure Load

For a plain concrete column with known values of concrete strength, diameter, length, eccentricity and the final lateral stress at the time of failure, the failure load can be predicted by using the design charts presented in this Chapter. Let's take specimen C-32-a as an example:

Specimen C-32-a:

Known: Effective length \(L = 54'' \)

- Diameter \(D = 6'' \)
- \(f'_c = 6750 \text{ psi} \)
- \(\sigma_3 = 2000 \text{ psi} \)
- \(e = 0.6'' \)

Solutions:

1) \(\frac{L}{r} = \frac{4L}{D} = 36 \)

 \[e = 0.10 \]

 \[\frac{\sigma_3}{f'_c} = 0.3 \]

2) **Method 1:** Find the failure load and moment by parts:

 From Fig. 6.1 p. 84, for \(\frac{e}{D} = 0.1 \), it gives

 \[\frac{A'_c}{D^2} = 0.588 \]

 Then, \(A'_c = 0.588(36) = 21.12 \text{ sq.in.} \)
From Fig. 6.2 p. 85, for $\frac{e}{D} = 0.1$ and $\frac{L}{r} = 36$, it gives

$$R = 0.808$$

From Fig. 6.5 p. 88, for $\frac{\sigma_0}{f'_c} = 0.3$, $\frac{e}{D} = 0.1$ and $\frac{L}{r} = 36$, it gives $\beta K = 3.98$

Then, the failure load and moment are

$$P_{ult} = 21.12(0.85f'_c + 3.98\sigma_0)(0.808) = 234000 \text{ lbs.} \quad \text{and} \quad M_{ult} = P_{ult}(e) = 140400 \text{ in.-lb.}$$

3) **Method 2**: Find the failure load and moment from the interaction diagrams:

From Fig. 6.23 p. 106, for $\frac{L}{r} = 36$, $\frac{e}{D} = 0.1$ and $\frac{\sigma_3}{f'_c} = 0.3$

it gives $C_p = 0.965$ and $C_M = 0.0965$.

Then

$$P_{ult} = C_p \frac{D^2}{f'_c} = 234000 \text{ lbs.} \quad \text{and} \quad M_{ult} = C_M \frac{D^3}{f'_c} = 140400 \text{ in.-lb.}$$

6.3 **Design Method of Laterally Prestressed Concrete Columns**

From the test results, it is found that the magnitude of the final lateral stress $\bar{\sigma}_3$ at the moment of column failure is between the initial lateral prestress σ_3 and the ultimate lateral stress σ'_3, depending upon the failure phenomenon of the column. If it is known that the column will fail simultaneously by both crushing of the concrete and rupture of wires, $\bar{\sigma}_3$ can be replaced by σ'_3 in the design formula. However, in general, especially for the long columns with eccentric loads,
the column fails by crushing of the concrete, without rupture of the wire, and the magnitude of $\bar{\sigma}_3$ becomes unpredictable.

For design purposes, this difficulty can be overcome by using the initial lateral prestress σ_3 equal to the final lateral stress $\bar{\sigma}_3$ in the design formula, and by specifying the percentage of σ_3/σ_f' in order to give a reasonable result.

In this thesis, it is suggested to that the initial lateral prestress σ_3 be 80 % of the ultimate lateral stress σ_f', and to use this initial lateral prestress for design, i.e., use 80 % of the ultimate tensile force T' of the wire as the initial axial tension T applied to the wires. This suggestion will probably give a conservative result but will not be very inaccurate since the maximum $\bar{\sigma}_3$ in this case is just slightly higher than σ_3, within 20 %.

For a given column height L, concrete strength f_c', design ultimate axial load P_{ult} and bending moment M_{ult}, the laterally prestressed concrete column can be designed as follows:

1) Choose a cross-section (diameter D) of concrete column.

2) With given data and chosen cross-section, calculate the values of:

$$e = M_{\text{ult}}/P_{\text{ult}}$$

$$\frac{L}{r} = \frac{4L}{D}$$

$$C_p = P_{\text{ult}}/(D^2 f_c')$$

$$C_m = M_{\text{ult}}/(D^3 f_c')$$

and

$$e/D$$

If $\frac{e}{D} \geq 0.50$, choose another bigger cross-section until $\frac{e}{D} < 0.50$.
3) From the appropriate interaction diagram, from Fig.6.13 p.96 through Fig.6.30 p.113, for the calculated \(\frac{L}{r} \), find the required lateral prestress ratio \(\sigma_3 / f'_c \) for calculated \(C_p \), \(C_m \) and \(\frac{e}{D} \) ratios. Then the required lateral prestress

\[
\sigma_3 = \left(\frac{\sigma_3}{f'_c} \right) f'_c
\]

4) Choose the diameter \(D_w \) and ultimate strength \(f'_w \) of the wrapping wires. From Fig.6.31 p.114, find the initial tensile force \(T \) for the chosen wire.

5) Calculate the required pitch \(N \) of the wrapping, using Eqn.4.1

Total \(N_1 = \sigma_3 D / (2T) \) wires/inch

\(N_2 = 2T / (\sigma_3 D) \) inch c/c of wires/layer

6) Check the pitch \(N_2 \) inch c/c of wires/layer

if \(N_2 \geq D_w \), (O.K.)

if \(N_2 < D_w \), repeat from step 4) with other size \(D_w \) of wire, or redesign from step 1) with another cross-section \(D \) of the column section.

Example: Design a laterally prestressed concrete column to carry a design ultimate load of 416 kips and bending moment 83.1 ft.-kips.

The storey height is 10 feet. Concrete strength \(f'_c = 5000 \text{ psi} \).

1) Choose \(D = 12" \) for the cross section of the column.

2) \(\frac{L}{r} = \frac{4L}{D} = \frac{4(10)(12)}{12} = 40 \)

\[e = \frac{M_{ult}}{P_{ult}} = \frac{83.1(12)}{416} = 2.4" \]
\[
\frac{e}{D} = \frac{2.4}{12} = 0.2
\]

\[
C_p = \frac{P_{ult}}{D^2 f_c^\prime} = \frac{416000}{12(12)(5000)} = 0.5775
\]

\[
C_m = \frac{M_{ult}}{D^3 f_c^\prime} = \frac{83100(12)}{12(12)(12)(5000)} = 0.1155
\]

3) From Fig. 6.25 p. 108, for \(\frac{L}{r} = 40\), \(\frac{e}{D} = 0.2\), \(C_p = 0.5775\) and \(C_m = 0.1155\), the required prestress ratio is

\[
\frac{\sigma_3}{f_c^\prime} = 0.3
\]

Then the required lateral prestress is

\[
\sigma_3 = 0.3(5000) = 1500 \text{ psi}
\]

4) Choose the wrapping wire: size \(D_w = 0.04\)", \(f_w = 375\) ksi.

From Fig. 6.31 p. 114, the required initial tensile force applied to the wire is

\[
T = \frac{377.5}{3} \text{ lbs.}
\]

5) The total pitch of wires

\[
N_1 = \frac{D}{2T} = \frac{1500(12)}{2(377.5)} = 23.8 \text{ wires/inch}
\]

say \(N_1 = 24\) wires/inch, wrapped in one layer.

6) Check \(N_2\)

\[
N_2 = \frac{1}{24} = 0.0417 \text{ "c/c} > D_w = 0.04\)" (O.K.)
\]

7) Therefore, the designed column is then

Diameter \(D = 12\)"

Wrapping wire: Diameter \(D_w = 0.04\)"
ultimate strength $f_w = 375$ ksi

Pitch of wrapping $N_2 = 24$ wires/inch, one layer of wrapping,

Initial tension applied to the wire $T = 377.5$ lbs.
FIG. 6.1 VALUES OF $\frac{A_c'}{D^2}$
FIG. 6.2 VALUES OF \(R \)

\[R_{ul} = A' \left(0.85 \frac{f'}{c} \cdot \frac{\rho K}{\sqrt{3}} \right)^{\frac{1}{2}} \]
\[P_{ult} = A'_c \left(0.85 f'_c + \beta K \delta_3 \right) R \]

Fig. 6.3 Values of βK

For $\frac{\delta_3}{f_c} = 0.10$
Fig. 6.4 Values of βK for $\frac{\gamma_3}{f'_c} = 0.20$

\[P_{ult} = A'_c \left(0.85 f'_c + \beta K \gamma_3 \right) R \]
Fig. 6.5 Values of βK

For $\frac{\delta_3}{f'_c} = 0.30$

$$P_{ult} = A'_c \left(0.85 \frac{f'_c}{f'_c} + \beta K \delta_3 \right) R$$
FIG. 6.6 VALUES OF βK

FOR $\frac{\delta_3}{f'_c} = 0.40$

$P_{ult} = A'c\left(0.85 f'_c + \beta K \delta_3\right)R$
FIG. 6.7 VALUES OF βK

FOR $\frac{\delta_3}{f'c} = 0.50$
\[P_{\text{ult}} = A' c \left(0.85 f'_c + \beta K \bar{\delta}_3 \right) R \]

FIG. 6.8 VALUES OF βK

FOR $\frac{\bar{\delta}_3}{f'_c} = 0.60$
\[
P_{\text{ult}} = A' c \left[0.85 f'_c + \beta K \delta_3 \right] R
\]

FIG. 6.9 VALUES OF \(\beta K \)
FOR \(\frac{\delta_3}{f'_c} = 0.70 \)
\[P_{ult} = A'_c \left(0.85 f'_c + \beta K \bar{\delta}_3 \right) R \]

FIG. 6.10 VALUES OF \(\beta K \)

FOR \(\frac{\bar{\delta}_3}{f'_c} = 0.80 \)
Fig. 6.11 Values of βK

For $\frac{\delta_3}{f'_c} = 0.90$
FIG. 6.12 VALUES OF β_K

FOR $\frac{\delta_3}{f'_c} = 1.00$

$P_{ult} = A'_c \left(0.85 f'_c + \beta_K \delta_3 \right) R$
$C_p = \frac{P_{ult}}{D f'_c}$

$C_M = C_p \frac{e}{D} = \frac{M_{ult}}{D^3 f'_c}$

FIG. 6.13 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN

$L/r = 16$
FIG. 6.14 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 18$
FIG. 6.15 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{l}{r} = 20$
FIG. 6.16 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 22$
FIG. 6.17 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN \(\frac{L}{r} = 24 \)
\[\frac{L}{r} = 2.6 \]

FIG. 6.18 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN

\[C_M = C_P \frac{e}{D} = \frac{M_{ult}}{D^2 f'_c} \]
FIG. 6.19 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 28$
FIG. 6.20 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 30$
FIG. 6.21 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 3.2$
Fig. 6.22 Interaction diagram for lat. prestressed cylindrical concrete column \(\frac{L}{r} = 3.6 \)
FIG. 6.23 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 3.6$
FIG. 6.24 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{l}{r} = 3.8$
FIG. 6.25 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{f} = 40$
FIG. 6.26 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN $\frac{L}{r} = 4.2$
\[C_p = \frac{P_{ult}}{D^2 f_c} \]

\[C_M = C_p \frac{e}{D} = \frac{M_{ult}}{D^3 f_c^2} \]

FIG. 6-27 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN \(\frac{L}{f} = 4.4 \)
FIG. 6.28 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN \(\frac{L}{r} = 46 \)
FIG. 6.29 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN \(\frac{L}{r} = 4.8 \)
FIG. 6-30 INTERACTION DIAGRAM FOR LAT. PRESTRESSED CYLINDRICAL CONCRETE COLUMN \(\frac{l}{r} = 50 \)
Fig. 6.31
80% Ultimate Axial Force in Wrapping Wire

Axial Tension \(T = 80\% T' = 80\% A_w f_w' \) (LBS.)

Wire Diameter \(D_w \) (Inch)

0.002
0.003
0.004
0.005

0
100
200
300
400
500
600
700
800
900
1000

200 kips
250 kips
300 kips
350 kips
400 kips
450 kips
500 kips

2.25 ksi
2.5 ksi
2.75 ksi
3.0 ksi
3.25 ksi
3.5 ksi
3.75 ksi

\(f_w' = \)
CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

From this study, several principal conclusions are made as follows:

1) Double (or more) wrapping is not recommended.

2) The load carrying capacity of concrete columns can be increased by prestressing the column by wrapping the column with wires under tension.

3) For cylindrical concrete columns, the relationship between the failure load, concrete crushing strength, the final lateral stress at the time of column failure, eccentricity $\frac{e}{D} < 0.50$ and slenderness ratio, can be expressed in the form of

$$P_{ult} = A_c' \left[0.85\bar{f}_c + 11.6 \left(1 - 0.715 \left(\frac{\bar{f}_c}{\bar{f}_c} \right)^{0.2} \right) \left(1.04 - 0.0056 \frac{L}{r} \right) \left(1 - \frac{0.65e}{D} \right) \bar{\sigma}_3 \right]$$

$$\left(1.042 - 0.0057 \frac{L}{r} \right) \left(1 - 0.35 \frac{e}{D} \right)$$

where $A_c' = \frac{\pi D^2}{4} - 2e \sqrt{\frac{D^2}{4} - e^2} - \frac{D^2}{2} \sin^{-1} \left(\frac{2e}{D} \right)$

4) Failure of wrapped columns is governed by the maximum lateral stress $\bar{\sigma}_3$ developed in the wires just before the column fails.

The magnitude of the maximum lateral stress $\bar{\sigma}_3$ is bounded between initial lateral prestress σ_3 and the ultimate lateral stress...
\(\sigma'_3 \), which disappears when the wire breaks.

5) For columns of small slenderness ratio and small eccentricity, columns will fail by both the crushing of the concrete and rupture of the wires simultaneously. The maximum lateral stress \(\bar{\sigma}_3 \) is then equal to the ultimate lateral stress \(\sigma'_3 \).

6) For columns of large slenderness ratio or large eccentricity (for \(\frac{e}{D} < 0.50 \)), columns will fail by the crushing of the concrete only, without the rupture of wires. The maximum lateral stress \(\bar{\sigma}_3 \) in between initial lateral prestress \(\sigma_3 \) and ultimate lateral stress \(\sigma'_3 \) is then unpredictable.

7) The lateral prestressing does not increase the tensile strength of concrete.
7.2 Recommendations for Future Work

1) To study analytically the effect of initial lateral prestress σ_3 and the ultimate lateral stress σ'_3 on the maximum lateral stress $\bar{\sigma}_3$ at the time of column failure, for the laterally prestressed concrete column under concentric and eccentric loads.

(i.e. To study the relationship of $\bar{\sigma}_3$, σ_3, σ'_3, L/r and e/D, in order to express the unknown $\bar{\sigma}_3$ in terms of the known values of σ_3, σ'_3, L/r and e/D in the formula.)

2) To study the effect of lateral prestress on the reinforced concrete columns under eccentric loading.

3) Study of long-term loading and creep behaviour of laterally prestressed columns.

4) To study the effect of the size and the pitch of wrapping wires on the failure load of wrapped columns.
REFERENCES

Following abbreviations have been used:

ACI : American Concrete Institute.
ASCE : American Society of Civil Engineers.
ENR : Engineering News Record.
MCR : Magazine of Concrete Research.
NRC : National Research Council of Canada.
LIST OF REFERENCES

1. AKROYD, T. N. W.
 "Concrete Under Triaxial Stress"

2. AMERICAN CONCRETE INSTITUTE
 Building Code Requirements for Reinforced Concrete
 (ACI 318-63), June, 1963.

3. ANNON
 "Prestressed Concrete Pipe by a New Manufacturing Method"
 ENR. December 16, 1943.

4. BALMER, G. G.
 "Shearing Stress of Concrete Under High Triaxial Stress;
 Computation of Mohr's Envelope as a Curve"
 Structural Research Laboratory Report No. S. P. 23,

5. BEN-ZVI, E.; MULLER, G.; and ROSENTHAL, I.
 "Effect of Active Triaxial Stress on the Strength of
 Concrete Elements"
 Paper No.9, Symposium on Reinforced Concrete Columns.
 ACI Publication SP-13, Detroit, 1966.

6. BLEICH, E.
 "Buckling Strength of Metal Structures"

7. CHINN, J.; and ZIMMERMAN, R. M.
 "Behavior of Plain Concrete Under Various High Triaxial
 Compression Loading Condition"
 Technical Report, No. WL.TR 64-163, University of Colorado,
 1965.

8. COLUMN RESEARCH COUNCIL
 "Guide to Design Criteria for Metal Compression Members"

9. CONSIDERE, A.
 "Compressive Resistance of Reinforced Concrete and
 Circumferential Wound Concrete" (Resistance a la compression
 du beton armé et du beton fretté)
 Le Genie Civil (Paris), 1903.
10. FEESER, L. J.
"Strength and Stiffness of Spirally Prestressed Concrete Cylinders"

11. FEESER, L. J.; and CHINN, J.
"Strength and Stiffness of Spirally Prestressed Concrete Cylinders"

12. GAMBAROV, G. A.
"Centrally Compressed Prestressed Elements"
(Centralno szatie spiralno armairo-vanye predivaritelno napriazonnye elementy).
Beton; Zhelezobeton (Moscow), April, 1961. pp. 164-169.

13. GAMBAROV, G. A.
"Creep and Contraction of Triaxially Stressed Concrete"
(Polzucest i ussadka truchkossno-napriazonovo betona)
Beton i Zhelezobeton (Moscow), Jan., 1962, pp. 21-24.

14. GARDNER, N. J.
"Triaxial Behavior of Concrete"

15. GITMAN, F. E.
"Investigation of Cylindrical Columns with Prestressed Reinforcement"
(Issledovanie Cylindriceskich Kolonn s predvaritelno napriazonoi Spizalnoj armaturoj)
Trudy Institute NII (Moscow), 1958, pp. 204-235.

16. GODSE, R. M.
"An Experimental Investigation of Spirally Prestressed Concrete Columns"

17. JOHNSON, W. B.
"An Experimental Investigation of Prestressed Spirally Reinforced Columns"
M.S. Thesis, the University of Colorado, Department of Civil Engineering. 1950.

18. KRAHL, N. W.; VICTORY, S. P.; ERKHEN, E.; and SIMS, J. R.
"The Behavior of Plain Mortar and Concrete Under Triaxial Stress"
19. KNOWLES, R. B.
"Steel Tube Columns Infilled with Concrete"
M.E. Thesis in Civil Engineering, the University of Canterbury, Christchurch, New Zealand, 1967.

20. MANEY, G. A.
"High Strength Reinforced Column Developed"
Civil Engineering. ASCE. Vol.14, No.12, Dec.,1944, pp.496-498.

21. MARTIN, C. W.
"Spirally Prestressed Concrete Cylinders"

22. NATIONAL RESEARCH COUNCIL
"National Building Code of Canada"
1965.

23. RICHART, F. E.; BRANDTZAEG, A.; and BROWN, R. L.
"A Study of the Failure of Concrete Under Combined Compressive Stresses"
Bulletin No.185, Engineering Experiment Station, University of Illinois, Urbana, Nov., 1928.

24. RICHART, F. E.; BRANDTZAEG, A.; and BROWN, R. L.
"The Failure of Plain and Spirally Reinforced Concrete in Compression"
Bulletin No.190, 1929.
Engineering Experiment Station, University of Illinois.

25. RYDER, G. H.

26. TIMOSHENKO, S. P.; and GERE, J. M.

27. TIMOSHENKO, S.; and YOUNG, D. H.
pp.21-23 and pp.268-291.

28. ZIMMERMAN, R. M.
"The Effect of Various Types of Restraint on the Triaxial Behaviour of Plain Concrete"
Ph.D. Thesis, the University of Colorado. 1965.
APPENDIXES

APPENDIX A Steel Properties and Calibration Curve

APPENDIX B Individual Graphs of Testing Data of Specimens

APPENDIX C Experimental Failure Loads of All Specimens
APPENDIX A

Steel Properties and Calibration Curve

Fig.A.1 Stress-Strain Characteristic Curve of 0.031" Diameter Steel Wire 124

Fig.A.2 Stress-Strain Characteristic Curve of Longitudinal Reinforcement 125

Fig.A.3 Calibration Curve of Wrapping Device 126
FIG. A-1 STRESS-STRAIN CHARACTERISTIC OF 0.031" DIAMETER STEEL WIRE
FIG. A-2 STRESS-STRAIN CHARACTERISTIC OF LONGITUDINAL REINFORCEMENT (#3 BAR)
FIG. A-3 CALIBRATION CURVE OF WRAPPING DEVICE
APPENDIX B

Individual Graphs of Testing Data of Specimens

Page

Fig.B.1 to Fig.B.48 Load/Deformation Curves of Specimens 128

Fig.B.49 to Fig.B.60 Load/Lateral Deflection Curves of Specimens 176
FIG. B.1 LOAD DEFORMATION CURVE
SPECIMENS A-0-a
FIG. B.2 LOAD DEFORMATION CURVE OF SPECIMENS A-18-a
FIG. B-3 LOAD/DEFORMATION CURVE OF SPECIMENS A-32-a
FIG. B-4 LOAD/DEFORMATION CURVE OF SPECIMENS A-64-a
FIG. B.5 LOAD/DEFORMATION CURVE OF SPECIMENS A-0-b
FIG. B.6 LOAD/DEFORMATION CURVE OF SPECIMENS A-18-b

- C_v LONGITUDINAL STRAIN ON THE INTRADOS
- C_H CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- T_H CIRCUMFERENTIAL STRAIN ON THE EXTRADOS
FIG. B.7 LOAD/DEFORMATION CURVE OF SPECIMENS A-32-b
FIG. B·8 LOAD/DEFORMATION CURVE OF SPECIMENS A-64-b

SPECIMENS A-64-b

- C_v LONGITUDINAL STRAIN ON THE INTRADOS
- C_H CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- T_H CIRCUMFERENTIAL STRAIN ON THE EXTRADOS
FIG. B.9 LOAD/DEFORMATION CURVE OF SPECIMENS A-0-c
FIG. B.10 LOAD / DEFORMATION CURVE OF SPECIMENS A-18-c
FIG. B·11 LOAD / DEFORMATION CURVE OF SPECIMENS A-32-c
FIG. B.12 LOAD / DEFORMATION CURVE OF SPECIMENS A-64-c
FIG. B.13 LOAD / DEFORMATION CURVE OF SPECIMENS B-O-α
SPECIMENS B-18-α

- ○ C_v: LONGITUDINAL STRAIN ON THE INTRADOS
- △ C_h: CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- ○ T_v: LONGITUDINAL STRAIN ON THE EXTRADOS
- □ T_h: CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

C_v (-), C_h (○), T_v (○), T_h (-)

FIG. B.14 LOAD / DEFORMATION CURVE OF SPECIMENS B-18-α
FIG. B·15 LOAD / DEFORMATION CURVE OF SPECIMENS B-32-a
FIG. B-16 LOAD / DEFORMATION CURVE OF SPECIMENS B-64-a
SPECIMENS B-0-b

- ○ C_v (Longitudinal strain on the intrados)
- △ C_H (Circumferential strain on the intrados)
- ○ T_v (Longitudinal strain on the extrados)
- □ T_H (Circumferential strain on the extrados)

FIG. B.17 LOAD / DEFORMATION CURVE OF SPECIMENS B-0-b
SPECIMENS B-18-b

- O C_v LONGITUDINAL STRAIN ON THE INTRADOS
- ▲ C_h CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- O T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- □ T_h CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.18 LOAD / DEFORMATION CURVE OF SPECIMENS B-18-b
FIG. B.19 LOAD / DEFORMATION CURVE OF SPECIMENS B-32-b
FIG. B.20 LOAD/DEFORMATION CURVE OF SPECIMENS B-64-b
FIG. B.21 LOAD / DEFORMATION CURVE OF SPECIMENS B-0-c
FIG. B.22 LOAD / DEFORMATION CURVE OF SPECIMENS B-18-c
FIG. B·23 LOAD / DEFORMATION CURVE OF SPECIMENS B-32-c
FIG. B-24 LOAD / DEFORMATION CURVE OF SPECIMENS B-64-c
FIG. B.25 LOAD / DEFORMATION CURVE OF SPECIMENS C-0-α
FIG. B-26 LOAD/DEFORMATION CURVE OF SPECIMENS C-18-α
FIG. B-27 LOAD/DEFORMATION CURVE OF SPECIMENS C-32-a
SPECIMENS C-64-α

- ○ ○ \(C_v \) **LONGITUDINAL STRAIN**
 - ON THE INTRADOS
- △ △ \(C_h \) **CIRCUMFERENTIAL STRAIN**
 - ON THE INTRADOS
- ○ ○ \(T_v \) **LONGITUDINAL STRAIN**
 - ON THE EXTRADOS
- □ □ \(T_h \) **CIRCUMFERENTIAL STRAIN**
 - ON THE EXTRADOS

\[\text{STRAIN } (\mu \text{''/''}) \]

\(C_v (-), C_h (+), T_v (+), T_h (-) \)

FIG. B.28 **LOAD / DEFORMATION CURVE OF SPECIMENS C-64-α**
FIG. B.29 LOAD / DEFORMATION CURVE OF SPECIMENS C-0-b
SPECIMENS C-18-b

○ C_v LONGITUDINAL STRAIN ON THE INTRADOS

△ C_H CIRCUMFERENTIAL STRAIN ON THE INTRADOS

○ T_v LONGITUDINAL STRAIN ON THE EXTRADOS

□ T_H CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.30 LOAD / DEFORMATION CURVE OF SPECIMENS C-18-b
FIG. B-31 LOAD/DEFORMATION CURVE OF SPECIMENS C-32-b
FIG. B-32 LOAD/DEFORMATION CURVE OF SPECIMENS C-64-b
FIG. B·33 LOAD / DEFORMATION CURVE OF SPECIMENS C-0-c
SPECIMENS C-18-c

- ○ ○ C_v LONGITUDINAL STRAIN ON THE INTRADOS
- △ △ C_H CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- ○ ○ T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- □ □ T_H CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.34 LOAD / DEFORMATION CURVE OF SPECIMENS C-18-c
FIG. B.35 LOAD / DEFORMATION CURVE OF SPECIMENS C-32-c
FIG. B.36 LOAD/DEFORMATION CURVE OF SPECIMENS C-64-c
FIG. B·37 LOAD/DEFORMATION CURVE OF SPECIMENS D-0-a
FIG. B.38 LOAD / DEFORMATION CURVE OF SPECIMENS D-18-a
FIG. B-39 LOAD / DEFORMATION CURVE OF SPECIMENS D-32-a
FIG. B.40 LOAD/DEFORMATION CURVE OF SPECIMENS D-64-a
Fig. B-41 LOAD/DEFORMATION CURVE OF SPECIMENS D-0-b

Specimens D-0-b

- C_V LONGITUDINAL STRAIN ON THE INTRADOS
- C_H CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- T_V LONGITUDINAL STRAIN ON THE EXTRADOS
- T_H CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

Strain (μ''/μ')

C_V (-), C_H (+), T_V (+), T_H (-)
SPECIMENS D-18-b

○ ○ \(C_Y \) LONGITUDINAL STRAIN ON THE INTRADOS

△ △ \(C_H \) CIRCUMFERENTIAL STRAIN ON THE INTRADOS

○ ○ \(T_Y \) LONGITUDINAL STRAIN ON THE EXTRADOS

□ □ \(T_H \) CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.42 LOAD / DEFORMATION CURVE OF SPECIMENS D-18-b
FIG. B.43 LOAD / DEFORMATION CURVE OF SPECIMENS D-32-b
SPECIMENS D-64-b

- ○ C_v LONGITUDINAL STRAIN ON THE INTRADOS
- △ C_h CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- ○ T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- □ T_h CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.44 LOAD / DEFORMATION CURVE OF SPECIMENS D-64-b
FIG. B.45 LOAD/DEFORMATION CURVE OF SPECIMENS D-0-c

SPECIMENS D-0-c

- $\circ \circ \ C_V$ LONGITUDINAL STRAIN ON THE INTRADOS
- $\triangle \triangle \ C_H$ CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- $\circ \ C_V$ LONGITUDINAL STRAIN ON THE EXTRADOS
- $\circ \ T_H$ CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

LOAD (KIPS)

STRAIN (μ''/μ)

$C_V (-)$, $C_H (*)$, $T_V (*)$, $T_H (-)$
FIG. B.46 LOAD / DEFORMATION CURVE OF SPECIMENS D-18-c
SPECIMENS D-32-c

- ○ C_v LONGITUDINAL STRAIN ON THE INTRADOS
- △ C_h CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- ○ T_v LONGITUDINAL STRAIN ON THE EXTRADOS
- □ T_h CIRCUMFERENTIAL STRAIN ON THE EXTRADOS

FIG. B.47 LOAD / DEFORMATION CURVE OF SPECIMENS D-32-c

C_v (-), C_h (○), T_v (○), T_h (-)
FIG. B·48 LOAD/DEFORMATION CURVE OF SPECIMENS D-64-c

SPECIMENS D-64-c

- \(C_V \) LONGITUDINAL STRAIN ON THE INTRADOS
- \(C_H \) CIRCUMFERENTIAL STRAIN ON THE INTRADOS
- \(T_V \) LONGITUDINAL STRAIN ON THE EXTRADOS
- \(T_H \) CIRCUMFERENTIAL STRAIN ON THE EXTRADOS
FIG. B·49 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS A-a
FIG. B-50 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS A-b
FIG. B-51 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS A–C
FIG. B·52 LOAD/LAT. DEFLECTION CURVE
OF SPECIMENS B-a

SPECIMENS B-a

$\delta_3 = 0$ psi ○○
$\delta_3 = 900$ psi ○○
$\delta_3 = 1600$ psi △△
$\delta_3 = 3200$ psi □□
FIG. B-53 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS B-b
FIG. B-54 LOAD / LAT. DEFLECTION CURVE OF SPECIMENS B-c
FIG. B.55 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS C-a
FIG. B-56 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS C-b
FIG. B-57 LOAD / LAT. DEFLECTION CURVE OF SPECIMENS C-c
Fig. B.58 Load/Lat. Deflection Curve of Specimens D-α

\[
\delta_3 = \begin{align*}
0 \text{ psi} & : \bigcirc \\
900 \text{ psi} & : \bigcirc \\
1600 \text{ psi} & : \triangle \triangle \\
3200 \text{ psi} & : \square \square
\end{align*}
\]
FIG. B.59 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS D-b
FIG. B·60 LOAD/LAT. DEFLECTION CURVE OF SPECIMENS D-c
APPENDIX C

Experimental Failure Loads of All Specimens

Fig.C.1 Experimental Failure Loads of All Specimens 189
Experimental Failure Loads of All Specimens

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Failure Load (kips)</th>
<th>Individual</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- 0-a(1)</td>
<td>123.0</td>
<td>117.0</td>
<td>120.0</td>
</tr>
<tr>
<td>A- 0-a(2)</td>
<td>61.0</td>
<td>65.0</td>
<td>63.0</td>
</tr>
<tr>
<td>A- 0-b(1)</td>
<td>10.0</td>
<td>11.0</td>
<td>10.5</td>
</tr>
<tr>
<td>A- 0-b(2)</td>
<td>281.0</td>
<td>290.0</td>
<td>290.0</td>
</tr>
<tr>
<td>A- 0-c(1)</td>
<td>146.0</td>
<td>132.0</td>
<td>139.0</td>
</tr>
<tr>
<td>A- 0-c(2)</td>
<td>12.0</td>
<td>11.6</td>
<td>11.8</td>
</tr>
<tr>
<td>A- 32-a(1)</td>
<td>356.0</td>
<td>358.0</td>
<td>358.0</td>
</tr>
<tr>
<td>A- 32-a(2)</td>
<td>157.0</td>
<td>156.0</td>
<td>156.0</td>
</tr>
<tr>
<td>A- 32-c(1)</td>
<td>11.2</td>
<td>10.4</td>
<td>10.6</td>
</tr>
<tr>
<td>A- 32-c(2)</td>
<td>10.0</td>
<td>10.4</td>
<td>10.6</td>
</tr>
<tr>
<td>A- 64-a(1)</td>
<td>468.0</td>
<td>460.0</td>
<td>460.0</td>
</tr>
<tr>
<td>A- 64-a(2)</td>
<td>192.0</td>
<td>193.0</td>
<td>193.0</td>
</tr>
<tr>
<td>B- 0-a(1)</td>
<td>120.0</td>
<td>114.0</td>
<td>117.0</td>
</tr>
<tr>
<td>B- 0-a(2)</td>
<td>56.0</td>
<td>62.0</td>
<td>59.0</td>
</tr>
<tr>
<td>B- 0-c(1)</td>
<td>8.9</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>B- 0-c(2)</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>B- 18-a(1)</td>
<td>258.0</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>B- 18-a(2)</td>
<td>114.0</td>
<td>110.0</td>
<td>110.0</td>
</tr>
<tr>
<td>B- 18-b(1)</td>
<td>106.0</td>
<td>113.0</td>
<td>110.0</td>
</tr>
<tr>
<td>B- 18-b(2)</td>
<td>10.3</td>
<td>11.3</td>
<td>10.7</td>
</tr>
<tr>
<td>B- 32-a(1)</td>
<td>344.0</td>
<td>340.0</td>
<td>340.0</td>
</tr>
<tr>
<td>B- 32-a(2)</td>
<td>135.0</td>
<td>140.0</td>
<td>140.0</td>
</tr>
<tr>
<td>B- 32-b(1)</td>
<td>124.0</td>
<td>12.4</td>
<td>12.7</td>
</tr>
<tr>
<td>B- 32-c(1)</td>
<td>377.0</td>
<td>380.0</td>
<td>380.0</td>
</tr>
<tr>
<td>B- 64-c(1)</td>
<td>10.1</td>
<td>10.5</td>
<td>10.3</td>
</tr>
</tbody>
</table>
END OF REEL