INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600
MICROTUBULE-ASSOCIATED PROTEIN 1a: ANALYSIS OF ITS MICRO TUBULE BINDING DOMAIN AND ITS FUNCTION IN DIFFERENTIATING P19 NEURONS

By
Andrew R. Vaillant

A thesis submitted to the School of Graduate Studies and Research, University of Ottawa, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Ottawa-Carleton Institute of Biology

© Andrew R. Vaillant, Ottawa, Canada, 1997
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-28379-8
For Cyria and mom
ACKNOWLEDGMENTS

I would like to thank my thesis supervisor, Dr. David L. Brown, for his mentorship throughout my thesis research. I am grateful for the many instances when he has provided useful insight and helpful suggestions. I also appreciate his providing me with many opportunities to present my research at several scientific meetings and, last but not least, for introducing me to calamari!

I thank the members of my advisory committee for their input into this thesis research and to the many members of the Department of Biology at the University of Ottawa (especially Dr. Doug Johnson) for their invaluable expertise and advice.

My thanks to Dr. Martin Tenniswood at the W. Alton Jones Cell Science Center, Lake Placid, NY and all the members of his lab for their support.

No thesis work is really accomplished alone and I would like to acknowledge the members of Dr. Brown’s lab, past and present, for their contributions and friendship:

Beatrice Valentine, for her patience and good humour.
Nicole Laferrière, for the many discussions, support and inspiration she provided.
Judy Little for teaching me to be neat(er).
Srabani Banarjee for her friendship and advice.
Josée Dufresne, Allison Hunter and Mikolaj Ostroski for making lab work more bearable.

Finally, I would like to thank my mother, who helped me get through the difficult stages of this degree and Cyrla, for her concern, patience and support at all times.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>xvi</td>
</tr>
<tr>
<td><strong>INTRODUCTION</strong></td>
<td></td>
</tr>
<tr>
<td>MT organization and dynamics</td>
<td>1</td>
</tr>
<tr>
<td>The role of MTs in neuronal morphogenesis</td>
<td>1</td>
</tr>
<tr>
<td>Tubulin isotype sorting</td>
<td>6</td>
</tr>
<tr>
<td>Posttranslational modifications of tubulin</td>
<td>7</td>
</tr>
<tr>
<td>Microtubule-associated proteins</td>
<td>11</td>
</tr>
<tr>
<td>The MAP – MT interaction</td>
<td>11</td>
</tr>
<tr>
<td>Juvenile and adult MAPs</td>
<td>16</td>
</tr>
<tr>
<td>STOP</td>
<td>16</td>
</tr>
<tr>
<td>MAP3</td>
<td>19</td>
</tr>
<tr>
<td>MAP4</td>
<td>19</td>
</tr>
<tr>
<td>Tau</td>
<td>25</td>
</tr>
<tr>
<td>MAP2</td>
<td>30</td>
</tr>
<tr>
<td>MAP1</td>
<td>37</td>
</tr>
<tr>
<td>MAP1 LCs</td>
<td>42</td>
</tr>
<tr>
<td>P19 EC cells as a model for neuronal differentiation</td>
<td>43</td>
</tr>
<tr>
<td>Rationale for experiments</td>
<td>46</td>
</tr>
<tr>
<td><strong>MATERIALS AND METHODS</strong></td>
<td></td>
</tr>
<tr>
<td>Expression constructs</td>
<td>48</td>
</tr>
<tr>
<td>Screening of bacterial colonies</td>
<td>54</td>
</tr>
<tr>
<td>Large scale production of plasmid DNA for transfection</td>
<td>57</td>
</tr>
</tbody>
</table>
Tissue culture and drug treatments .......................................................... 57  
Transfection of P19 and HeLa cells .......................................................... 57  
Protein Extraction ..................................................................................... 58  
Cycling of tubulin and MAPs from bovine brain ....................................... 68  
Phosphocellulose purification of tubulin ..................................................... 68  
In vitro MAP binding assay ...................................................................... 73  
Microaffinity purification of polyclonal antibodies ................................... 76  
Antibodies .................................................................................................. 76  
SDS-PAGE and western blotting ................................................................. 79  
Enzyme-linked immunosorbent assay (ELISA) ......................................... 80  
Quantitative dot blotting .......................................................................... 80  
Cell fixation .............................................................................................. 80  
Cryosectioning ......................................................................................... 81  
Immunofluorescence microscopy .............................................................. 81  
Electron microscopy .................................................................................. 82  

**EXPRESSION AND DISTRIBUTION OF MAPS IN DIFFERENTIATING P19 NEURONS**

**Results**  
MAP expression in differentiating P19 EC cells ........................................ 84  
MAP1a expression in undifferentiated P19 EC cells ................................... 98  
MAP1a expression in differentiating P19 EC cells .................................... 98  

**Discussion**  
MAP expression patterns in differentiating P19 EC cells ......................... 111  
MAP1a in undifferentiated P19 EC cells ................................................. 112  
MAP1a in differentiating P19 EC cells ..................................................... 113  

**HETEROLOGOUS EXPRESSION OF MAP1a IN P19 EC AND HeLa CELLS**

**Results**  
Expression of MAP1a fragments in P19 EC and HeLa cells .................... 115  
Detection of MAP1a fragments with mAb 1A-1 ...................................... 115  
Analysis of myc-tagged MAP1a fragment MT-binding ............................ 124
CONCLUDING REMARKS

Function of MAP1a during neuronal differentiation ........................................ 150
A model for temporal and spatial regulation of MT dynamics by MAPs during
neuronal development .................................................................................. 152
The biochemistry of the MAP-MT interaction .................................................. 156

Future prospects

The basic repeats of MAP1a .............................................................................. 157
Real time dynamics of MAP1a-bound MTs ....................................................... 157
Analysis of MAP1a function in vivo ................................................................. 158
MAP1a / LC interactions .................................................................................. 158

APPENDIX 1 - CHARACTERIZATION OF MAP1b mAb 6D4 ......................... 160

APPENDIX 2 - HETEROLOGOUS EXPRESSION OF LIGHT CHAINS IN P19 EC
AND HeLa CELLS

Introduction ...................................................................................................... 170

Results

Expression of LC3 in differentiating P19 EC cells .......................................... 170
MT-stability and MT-bound MAPs ................................................................. 170
Expression of LCs in undifferentiated P19 EC and HeLa cells ..................... 180
Discussion

Expression of LC3 in differentiating P19 EC cells ........................................ 189
MT-stability and MT-bound MAPs ................................................................. 189
LC3 function .............................................................................................. 190
Expression of LCs in undifferentiated P19 EC and HeLa cells .................... 191
Neuronal-specific antigens in differentiating P19 EC cells ............................ 193

APPENDIX 3 - OLIGONUCLEOTIDES USED IN THIS STUDY ....................... 193

REFERENCES .............................................................................................. 197
### ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>BES</td>
<td>N,N'-bis;(2-hydroxyethyl)-2-aminoethanesulfonic acid</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CaMK</td>
<td>Ca(^{2+}) -calmodulin dependent protein kinase</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-cooled device</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>cs</td>
<td>coverslip</td>
</tr>
<tr>
<td>CY2</td>
<td>carboxymethylindocarbocyanine</td>
</tr>
<tr>
<td>CY3</td>
<td>indocarbocyanine</td>
</tr>
<tr>
<td>ddH(_2)O</td>
<td>double distilled, deionized water</td>
</tr>
<tr>
<td>dpi</td>
<td>dots per inch</td>
</tr>
<tr>
<td>EC</td>
<td>embryonal carcinoma</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>IR</td>
<td>immunoreactivity</td>
</tr>
<tr>
<td>LB-broth</td>
<td>Luria Bertani broth</td>
</tr>
<tr>
<td>LC</td>
<td>light chain</td>
</tr>
<tr>
<td>LMW</td>
<td>low molecular weight</td>
</tr>
<tr>
<td>MAB</td>
<td>microtubule assembly buffer</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>MAP</td>
<td>microtubule-associated protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>MDB</td>
<td>microtubule depolymerizing buffer</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MSB</td>
<td>microtubule stabilizing buffer</td>
</tr>
<tr>
<td>MT</td>
<td>microtubule</td>
</tr>
<tr>
<td>MTOC</td>
<td>microtubule organizing center</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NC</td>
<td>nitrocellulose</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
</tbody>
</table>
NTT  non-tyrosinatable tubulin
ON   overnight
pAb  polyclonal antibody
PEFA p-aminoethylbenzenesulfonyl fluoride
PEM  PIPES / EGTA / MgCl₂ buffer
PGK  phosphoglycerate kinase
PHF  paired helical filament
PKA  cAMP dependent protein kinase
PNS  peripheral nervous system
RA   retinoic acid
RT   room temperature
STOP stable tubule only protein
T-broth terrific broth
TIFF tagged image file format
α-mem α-modified Eagle’s minimal essential media

N.B.: Standard abbreviations as defined in The Journal of Cell Biology are not included.
# LIST OF FIGURES

| Figure 1. | MT organization in undifferentiated cells | 3 |
| Figure 2. | MT dynamics and MT organization in neurons | 5 |
| Figure 3. | Posttranslational modifications of tubulin | 10 |
| Figure 4. | Model for MAP-MT interaction | 13 |
| Figure 5. | Sites of MAP interaction on tubulin | 15 |
| Figure 6. | Developmental expression of MAPs in brain | 18 |
| Figure 7. | STOP | 21 |
| Figure 8. | MAP4 isoforms | 24 |
| Figure 9. | Tau isoforms | 27 |
| Figure 10. | MAP2 isoforms | 32 |
| Figure 11. | MAP1a, 1b and associated LCs | 39 |
| Figure 12. | Neuron-specific cytoskeletal antigens in differentiating P19 EC cells | 45 |
| Figure 13. | cDNAs used in this study | 50 |
| Figure 14. | Expression vectors used in this study | 52 |
| Figure 15. | Expression constructs used in this study | 56 |
| Figure 16. | SDS-whole cell extraction | 61 |
| Figure 17. | Whole cell extraction | 63 |
| Figure 18. | SDS-polymer / soluble extraction | 65 |
| Figure 19. | Polymer / soluble extraction | 67 |
| Figure 20. | Cycling of tubulin from bovine brain | 70 |
| Figure 21. | Phosphocellulose purification of tubulin | 72 |
| Figure 22. | *in vitro* MAP binding assay | 75 |
| Figure 23. | MAP and βIII-tubulin levels in differentiating P19 EC cells | 86 |
| Figure 24. | Secondary antibody controls for immunofluorescence microscopy | 88 |
| Figure 25. | Localization of MAP1b in differentiating P19 EC cells | 90 |
| Figure 26. | Localization of MAP2 in differentiating P19 EC cells | 92 |
| Figure 27. | Localization of HMW-MAP2 in differentiating P19 EC cells | 94 |
| Figure 28. | Localization of βIII-tubulin in differentiating P19 EC cells | 96 |
Figure 29. MAP1a localization in undifferentiated cells fixed by methanol and precipitation ................................................................. 100
Figure 30. Localization of MAP1a in undifferentiated P19 EC cells .......... 102
Figure 31. MAP1a levels in undifferentiated P19 EC cells ....................... 104
Figure 32. Localization of MAP1a in differentiating P19 EC cells .......... 106
Figure 33. MAP1a levels in differentiating P19 EC cells ....................... 108
Figure 34. ELISA of MAP1a in differentiating P19 EC cells .................. 110
Figure 35. MAP1a fragments used in this study ..................................... 117
Figure 36. Expression of MAP1a fragments in P19 EC and HeLa cells ................................................................. 119
Figure 37. Detection of MAP1a fragments with mAb 1A-1 .................... 121
Figure 38. Detection of 6myc1A with 1A-1 ........................................... 123
Figure 39. Analysis of MAP1a fragment MT-binding in P19 EC cells .......... 126
Figure 40. Analysis of MAP1a fragment MT-binding in HeLa cells .......... 128
Figure 41. Process formation in 6myc1A-expressing P19 EC cells .......... 130
Figure 42. Analysis of MAP1a fragment MT-binding in taxol-treated P19 EC cells ................................................................. 133
Figure 43. In vitro MAP binding assay ................................................. 136
Figure 44. In vitro MT-binding of MAP1a fragments ............................ 138
Figure 45. Colchicine stability of MTs in MAP1a fragment-transfected P19 EC cells ................................................................. 142
Figure 46. α-tubulin modifications in MAP1a fragment-transfected P19 EC cells ................................................................. 145
Figure 47. A model for the role of MAPs in axonal and dendritic development .................................................................................... 155
Figure 48. 6D4 IR in neo-natal rat brain cryosections ............................. 162
Figure 49. 6D4 IR in adolescent (120 g) rat brain cryosections ............... 164
Figure 50. Characterization of 6D4 IR by SDS-PAGE .......................... 166
Figure 51. Comparison of 6D4 and 1B-4 IR in differentiating P19 EC cells ................................................................. 168
Figure 52. Accumulation of LC3 and its heavy chains in differentiating P19 EC cells ................................................................. 172
Figure 53. Colchicine stability of MTs in differentiating P19 EC cells .......... 174
Figure 54. Levels of MT-bound MAPs and βIII-tubulin in differentiating P19 EC cells ........................................................................................................... 177
Figure 55. Density of MT-bound MAPs and βIII-tubulin in differentiating P19 EC cells ........................................................................................................... 179
Figure 56. Affinity purification of pAbs LC1 and LC2 ........................................... 182
Figure 57. LC expression constructs used in this study ........................................ 184
Figure 58. Expression of myc-tagged LCs in P19 EC and HeLa cells .................. 186
Figure 59. Localization of myc-tagged LCs in P19 EC and HeLa cells ............... 188
Figure 60. Location of oligonucleotides used in this study ................................ 196
ABSTRACT

The expression of several microtubule-associated proteins (MAPs), including MAP1a, was examined in RA-induced P19 embryonal carcinoma (EC) neurons. Immunofluorescence microscopy revealed that MAP1a and MAP1b were detected associated with microtubules (MTs) in undifferentiated cells while MAP2 was absent. At day 2, cells spontaneously formed aggregates and in these aggregates, MAP2 and increased amounts of MAP1b were detected in some cells. By day 4 of differentiation, neurite outgrowth was observed from these aggregates and MAP1a, MAP1b and MAP2 were colocalized with MTs in all neurites, including growth cones. HMW-MAP2 was restricted to the proximal regions of neurites and cell bodies. By day 8, substantial neurite outgrowth had occurred and MAP1a, MAP1b and MAP2 were seen in all processes. HMW-MAP2 was restricted to cell aggregates and largely absent from processes. At day 12, no further neurite outgrowth was evident and existing neurites were organized into fascicles, which were MAP1a, 1b and MAP2 positive but weaker than at day 4. Also, the restriction of HMW-MAP2 to aggregates was even more marked. Western blotting and ELISA showed that MAP1a, 1b and LMW-MAP2 protein levels increased during differentiation. Peak accumulation occurred no later than day 8, coinciding with the period of neurite outgrowth, and then decreased after day 8. HMW-MAP2 was absent in undifferentiated cells and increased steadily as development progressed. Juvenile tau appeared at day 4, and adult tau appeared at day 6. Both tau forms increased during development. These results show that MAP expression in serum-free differentiating P19 EC cells is similar to that seen in brain development, with the exception of MAP1a, which mirrors expression patterns seen only in axons. These observations suggest that MAP1a may modulate microtubule dynamics during neurite outgrowth.

To determine how MAP1a interacts with MTs, several myc-tagged MAP1a fragments were expressed in P19 EC and HeLa cells. Confocal immunofluorescence microscopy showed that the fragment consisting of amino acids (aa) 1-281 of MAP1a did not bind while the fragment consisting of aa 1-630 could bind, indicating that the region of MAP1a between aa 281-630 contains the MT binding domain. This region of MAP1a contains a series of basic repeats thought to be the MT binding domain. However, deletion of the basic repeats from
aa 336-540 did not prevent MT binding, suggesting that the regions flanking the basic repeats also bind MAP1a to MTs. In P19 EC cells expressing 6myc1A, process outgrowth was observed. Compared to MAP2c, MAP1a was less effective in making MTs resistant to colchicine-induced depolymerization. MAP1a increased the levels of acetylation and deetyrosination of tubulin, but its effect was weaker than MAP2c and was only observed with the full-length MAP1a cDNA expression construct. The amount of MT-bound 6mycN1a-2ABR per unit microtubule length was greater than for any other fragment, suggesting it may have a greater affinity for MTs. These data show that aa 281-336 and/or 540-630 of MAP1a are involved in MT binding and may represent high affinity MT-binding regions. Additionally, MAP1a stabilized MTs, but to a lesser extent than MAP2c, supporting the hypothesis that MAP1a functions in the growth and/or plasticity of neurons.

To investigate the role of LCs in MAP1a function during development, the expression of LC3 during the differentiation of P19 EC cells was characterized. Western blotting and quantitative dot blotting showed that while the heavy chains for LC3 (i.e. MAP1a and 1b) peaked during the growth phase of development and then fell, the levels of LC3 steadily increased during development. The density of MAP1a bound to MTs was highest in undifferentiated cells and gradually decreased during differentiation, reaching a plateau at day 6. The decrease in MAP1b was more rapid, and it was not detected bound to MTs after day 6. The density of MT-bound LC3 exhibited a biphasic increase with a small peak at day 4 and a much larger peak at day 12, when MAP1a levels were the lowest. These observations suggest that MAP1a contains increasingly higher amounts of LC3 as differentiation progresses. This increase in LC3 association may serve to confer properties on MAP1a required for it to function properly in the adult. Myc-tagged LCs expressed in P19 EC and HeLa cells displayed a diffuse cytoplasmic distribution and never colocalized with MTs. These observations suggest that LC1 and LC2 association may be dependent on the processing event that forms these LCs and that factors present only during differentiation are required for LC3 binding.

The results of this study suggest a potential role for MAP1a during neuronal differentiation. The pattern of expression and effects on MT stability compared with MAP2 suggest that MAP1a is a weak stabilizer that functions in the growth of neurites
and in the adult may function to mediate MT stabilization by other adult MAPs. LC3 may also play a role in the regulation of MAP1a function during neuronal differentiation.
FOREWARD

A typical eukaryotic cell contains a network of polymerized protein filaments consisting of microfilaments, intermediate filaments and microtubules. This network of filaments is generally referred to as the cytoskeleton. The interaction of these cytoskeletal elements is responsible for several cellular functions including the regulation of cell shape. One of the hallmarks of neuronal development is a change in cellular morphology. Developing neurons form processes (neurites) which become specialized into axons and dendrites. The interaction of the various cytoskeletal elements is known to be an important factor in the changes in shape seen during neuronal differentiation (for review see Heidemann, 1996). This study is focused on one of these cytoskeletal elements, microtubules (MTs).

In undifferentiated cells, MTs form a radial array extending from an organizing center (MTOC). The change in neuronal shape is accompanied by changes in MT organization. In axons and dendrites, MTs are found in non-MTOC associated bundles that are present in all processes. MTs are dynamic structures growing and shrinking from the MTOC in undifferentiated cells. The MT bundles found in neurons are much less dynamic and are thought be the primary structural element in growing neurites (for review see Kirschner and Mitchison, 1988). The dynamics of MTs are regulated by many factors including tubulin isotype sorting, posttranslational modifications of tubulin, and the association of microtubule-associated proteins (MAPs) with MTs.

The research conducted in this study focuses on MAP1a, however there are many other MAPs which are present in developing neurons. The function of one particular MAP cannot be considered in isolation as the overall regulation of MT dynamics results from the interaction of many MAPs (Matus, 1994) and also from the isotype composition and posttranslational modifications of MTs.

The introduction that follows provides some basic information on tubulin isotype sorting, posttranslational modifications of tubulin, and the role that they play in MT dynamics in differentiating neurons. Because of many similarities and differences that exist between MAPs regarding their effect on MT dynamics, MT binding, and developmental expression in neurons, a comprehensive literature
review is provided for not only MAP1a, but also for the other neuronal MAPs: MAP1b, MAP2, MAP3, MAP4, tau and STOP.
INTRODUCTION

MT ORGANIZATION AND DYNAMICS

The cytoskeleton of eukaryotic cells consists of an internal, fibrous network composed of microfilaments, intermediate filaments and microtubules (MTs). MTs are polymers assembled from obligate heterodimers of α- and β-tubulin. These two 55 kDa subunits assemble into 110 kDa dimers that interact in a head to tail fashion to form protofilaments. Thirteen of these protofilaments assemble laterally to form a tube 24 nm in diameter (Fig. 1A). In undifferentiated cells, MTs are arranged in a radial array that has its origin in a MTOC located near the nucleus (Fig. 1B).

MTs are dynamic polymers that undergo cycles of assembly and disassembly. The addition and removal of dimers occurs preferentially at the plus end of MTs while the minus end is less dynamic and is associated with the MTOC (Fig. 1C). The current model for MT dynamics was proposed by Mitchison and Kirschner (1984). Each tubulin subunit can bind one molecule of GTP; however, only GTP bound to the β-tubulin subunit is hydrolyzed to GDP (Burns and Farrell, 1996). GTP hydrolysis leads to a conformational change in the β-tubulin subunit (Vale et al., 1994), promoting the dissociation of the dimer from the MT. If GTP-bound tubulin is continuously added to the growing end of a MT, assembly continues, but if there is no GTP-dimer addition, the bound GTP will be hydrolyzed, destabilizing the MT lattice. This destabilization results in the depolymerization of the MT (Fig. 2A). Thus, the assembly of MTs is dependent on both the amounts of GTP and free tubulin present in the cytoplasm. The dynamic properties of MTs are essential for many cellular processes including cell division, organelle movement, maintenance of cell shape, cell motility and morphogenesis of differentiated cells (for review see Kirschner and Mitchison, 1986; Kreis, 1990; Ingber, 1993; Joshi and Baas, 1993)

THE ROLE OF MTS IN NEURONAL MORPHOGENESIS

A striking example of morphogenesis is seen in the formation of axons and dendrites during neuronal differentiation (see Fig. 2B). As neurons differentiate, the normal radial interphase array of MTs present in the cytoplasm is joined by non-MTOC associated bundles of MTs that run along the lengths of the axons and dendrites. The polarity of MTs in dendrites is mixed, while in axons MTs are all arranged with their +
Figure 1

Schematic showing: A) organization of tubulin dimers in MTs, B) organization of MTs within a typical eukaryotic cell and C) polarity of MTs with respect to the MTOC.
Figure 2

A) A model for the regulation of MT dynamics by GTP hydrolysis (from Kirschner and Mitchison, 1986). B) Illustration of the changes in MT organization observed following neuronal differentiation.
A

recapping → loss of the cap

slow growth → rapid shrinkage

= GTP bound β-tubulin

= GDP bound β-tubulin

B

undifferentiated cell

neuron → neurogenesis

soma → neurite

growth cone
ends distal to the cell body (Heidemann et al., 1981; Baas et al., 1988). In neurons, MTs function in many processes including formation of axons and dendrites, vesicle transport, synaptic plasticity and long term potentiation involving learning and memory (for review see Mitchison and Kirschner, 1988; Falconer et al., 1994 and Heidemann, 1996). The change in MT organization seen in differentiating neurons is accompanied by a change in MT dynamics. While MTs in undifferentiated cells have a half-life of approximately 5 min (Schulze and Kirschner, 1986), MTs in neurons have a half-life of approximately 2.2 h (Li and Black, 1996). During the differentiation of neurons, MTs become increasingly resistant to MT depolymerizing drugs (Black and Greene, 1982; Laferrière and Brown, 1996) and less dynamic (Lim et al., 1989). This increasing stability of MTs is believed to be necessary for neuronal morphogenesis. Mechanisms thought to contribute to the increased stability of MTs include tubulin isotype sorting, post-translational modifications of tubulin, and the attachment of microtubule-associated proteins (MAPs).

**TUBULIN ISO TYPE SORTING**

In mouse, α- and β-tubulins are encoded by a multigene family which results in the expression of many different isotypes of tubulin (Villasante et al., 1986; Lopata and Cleveland, 1987). These isotypes are distinguished by their heterogeneity in the last 15 aa of the tubulin peptide (Sullivan and Cleveland, 1986, Villasante et al., 1986). An additional tubulin isotype, γ-tubulin, is found in the MTOC and functions in the nucleation of MTs (Oakley, 1994; Moritz et al., 1995). The α- and β-tubulin isotypes display different levels of expression in different tissues (for review see Laferrière et al., 1997). Given that MTs are assembled from the available pool of α- and β-tubulin isotypes (Raff, 1994), different isotype expression patterns in different tissues results in MTs with differing tubulin isotype compositions. The varying isotype composition of MTs may confer tissue-specific properties on them (Laferrière et al., 1997). In brain, αI, αII and βII are the major isotypes expressed (Frankfurter et al., 1986; Villasante et al., 1986; Miller et al., 1987). βIII tubulin is a neuron-specific, but lower abundance isotype in brain (Frankfurter et al., 1986; Banerjee et al., 1988). Panda et al. (1994) have shown that MTs assembled from purified dimers containing only the βIII isotype are more dynamic than MTs assembled from all brain isotypes or MTs assembled from αβII
or αβIV. However, MTs assembled from 20% αβIII and 80% αβII are less dynamic than MTs assembled from αβII alone, suggesting that isotype composition of MTs and cooperative interactions between isotypes may influence MT dynamics. In differentiating neurons, the amounts of βIII-tubulin and its incorporation into MT polymer increase concomittantly with an increase in MT stability, suggesting a role for the βIII isotype in stabilizing neuronal MTs (Laferrière and Brown, 1996).

POSTTRANSLATIONAL MODIFICATIONS OF TUBULIN

Several posttranslational modifications occur on tubulin and all except for one occur within the 15 aa isotype-defining region (Fig. 3). This region is known to be a site for interactions with MAPs (see Fig. 5) and with the exchangeable GTP site in β-tubulin (Padilla et al., 1993). Since most of the modifications increase the negative charge of the already acidic c-terminus, these modifications may regulate ionic MAP-MT interaction or GTP interaction with β-tubulin, thus influencing MT dynamics. Posttranslational modifications of tubulin include deacetylation, acetylation, glycylation, glutamylation and phosphorylation.

Detyrosination of α-tubulin is a reversible modification that involves the removal of the c-terminal tyrosine residue by a tubulin carboxy-peptidase, exposing the penultimate glutamate residue. A tubulin-tyrosine ligase adds the tyrosine back on to the c-terminus (MacRae, 1997). Detyrosination preferentially occurs on polymerized tubulin whereas tyrosination occurs preferentially on depolymerized tubulin. Within neurons, MTs which turn over the slowest and display the greatest stability are found in the proximal regions of neurites. MTs in this region are most heavily deacetylated while tyrosinated tubulin is most abundant in MTs in the proximal neurite and growth cone, which are the most dynamic and least stable (Lim et al., 1989). While there is a correlation between the presence of deacetylated tubulin and MTs with a low rate of turnover (Li and Black, 1996), there is evidence suggesting that deacetylation does not influence stability directly (Webster et al., 1990; Robinson and Vandré, 1995).

An additional deacetylated form of tubulin, called Δ2-tubulin is formed by the irreversible removal of the 2 c-terminal aa of α-tubulin (Paturle-Lafanèche et al., 1991). This non-tyrosinatable form of tubulin (NTT) is neuron-specific, comprises 35–50% of brain tubulin, and is developmentally regulated. NTT is expressed early in
differentiation and is found in developing growth cones and dendrites, regions where deetyrosinated tubulin is absent (Paturle-Lafancheire et al., 1994). This modification may represent the final maturation of \( \alpha \)-tubulin in MTs.

Acetylation involves the addition of an acetyl group to lysine 40 of \( \alpha \)-tubulin by an acetyltransferase (Piperno and Fuller, 1985; Lloyd et al., 1994). Acetylation occurs preferentially on assembled MTs, but also occurs on soluble tubulin (Maruta et al., 1986; MacRae and Langdon, 1989). The acetyl group can be removed by a tubulin deacetylase. Acetylated tubulin shows the same distribution among MTs in neurons as deetyrosinated tubulin (Li and Black, 1996). Any direct effect acetylation has on MT dynamics has yet to be determined. It has been suggested that acetylated tubulin may act as a localized MTOC in axons (Baas and Ahmad, 1992).

Glycylation involves the addition of 1-34 glycyl residues to glutamate residues within the 15 aa isotype defining region of both \( \alpha \)- and \( \beta \)-tubulin (Redeker et al., 1994; Mary et al., 1996). Glycylation decreases the acidity of the c-terminus of tubulin and may serve to modify MAP binding and MT dynamics and perhaps anchor MTs to the cytoplasmic membrane (Laferrière et al., 1997). This modification has yet to be characterized in neurons.

Both \( \alpha \)- and \( \beta \)-tubulin undergo the reversible addition of 1 – 6 glutamates to a glutamate residue in their c-terminus (Redeker et al., 1991; Wolf et al., 1994). Glutamylation is found on tubulin that is also deetyrosinated, acetylated or phosphorylated (Laferrière et al., 1997). Glutamylation of tubulin occurs preferentially on MTs while deglutamylation can occur on MTs or soluble tubulin dimers (Audebert et al., 1993). During neuronal differentiation, the extent of \( \alpha \)-tubulin glutamylation is constant at high levels while \( \beta \)-tubulin glutamylation steadily increases (Audebert et al., 1994), concomitant with the increase in MT stability seen in neurons (Laferrière and Brown, 1996). There is some evidence that posttranslational modifications of tubulin can affect MAP binding. The affinity of tau for tubulin is greatest when there is an intermediate level of polyglutamylation (i.e., 3 glutamyl residues). This affinity drops when there are either more or less than 3 glutamyl residues present (Boucher et al., 1994).

Although both \( \alpha \)- and \( \beta \)-tubulin can be phosphorylated in vitro (Wandosell et al., 1986), the functionally significant phosphorylation of tubulin is thought to occur in the
Figure 3

Location of posttranslational modifications of tubulin.
\[\alpha\]

\[\alpha\] detyrosinated

\[\alpha\] non-tyrosinatable

\[\beta\]

\[\begin{align*}
A & = \text{acetylation} \\
E & = \text{glutamylation} \\
G & = \text{glycylation} \\
P & = \text{phosphorylation} \\
\text{[ ]} & = \text{isotype defining region}
\end{align*}\]
isotype defining region of βIII-tubulin (Khan and Ludueña, 1996). The sites of phosphorylation affect the ability of the tubulin to assemble. Tubulin phosphorylated by Ca\(^{2+}\) / calmodulin kinases assembles inefficiently (Wandosell et al., 1986) while tubulin modified by casein kinase II, the probable in vivo kinase for tubulin (Serrano et al., 1987; Díaz-Nido et al., 1990), is readily assembled (Serrano et al., 1987). βIII-tubulin can be phosphorylated on ser239, ser444 and tyr437 (the latter two being in the isotype defining region) (Díaz-Nido et al., 1990; Khan and Ludueña, 1996). Phosphorylated β-tubulin increases 4-fold during neuronal differentiation (Gard and Kirchner, 1985) and phosphorylated βIII-tubulin is always found in the assembled MT fraction (Denoulet et al., 1989), suggesting that phosphorylation influences MT dynamics in neurons. It is thought that phosphorylation of βIII-tubulin increases the acidic charge of its c-terminal domain, increasing the strength of the partially ionic MT-MAP interaction (Laferrière et al., 1997).

MICROTUBULE-ASSOCIATED PROTEINS

MAPs are proteins that associate with MTs. MAPs can be divided into two groups: motor MAPs which utilize nucleotide hydrolysis to move along MTs, and structural MAPs which can affect the assembly, stability, and organization of MTs. Motor MAPs include the dynein and kinesin families of proteins which interact with MTs to function in mitosis, organelle movement and flagellar-based motility (for review see Collins, 1994; Pereira and Goldstein, 1994; Scholey and Vale, 1994; Smith and Sale, 1994). The structural MAPs consist of groups of related proteins that include MAP1, MAP2, MAP3, MAP4, tau and STOP (stable tubule only protein).

THE MAP – MT INTERACTION

In all well characterized structural MAPs, there are two functional regions, a projection domain and a highly basic domain that binds MTs. Early studies demonstrated the periodic association of MAPs along MTs (Murphy and Borisy, 1975; Cleveland et al., 1977; De Brabander et al., 1981). More recent studies have shown that the association of MAPs along the MT results in projections extending from the microtubule wall (Fig. 4) (Murofushi et al., 1986; Shiomura and Hirokawa, 1987; Hirokawa et al., 1988; Sato-Yoshitake et al., 1989). Several studies have shown that
Figure 4

A model of MAP association with MTs.
Figure 5

Location of MAP binding sites on tubulin.
\[ \alpha \]

TAU *

\[ \beta \]

MAP1A  *
MAP1B  *
MAP2  *
MAP4  *
TAU  *

= isotype defining region
MAP2, MAP4 and tau bind to the extreme c-terminal region of both tubulin subunits (Fig. 5.) (Serrano et al., 1984; Aizawa et al., 1987; Maccioni et al., 1986, 1988). Tau also shows some affinity for the n-terminus of α-tubulin (Littauer et al., 1986). MAP1a and MAP1b interact with the same region as MAP2 and tau on β-tubulin (Serrano et al., 1985; Rivas et al., 1988; Cross et al., 1991). The region of tubulin binding to STOP has not been determined.

JUVENILE AND ADULT MAPS

Structural MAPs can be classified into two broad classes of MAPs based on the patterns of their expression during development. Juvenile MAPs are expressed at their highest levels during early development and then decrease or disappear in the adult (Fig. 6). These MAPs are considered to be involved in growth related functions during neuronal development. Adult MAPs are absent during early differentiation and found at their highest levels in the adult (Fig. 6). The increase in adult MAP expression is correlated with increased MT stability, suggesting that these MAPs are involved in the stabilization of MTs and in the transition of neurons from a growing state to their mature form (Matus, 1990a; 1990b).

STOP

STOP is a 952 aa polypeptide with a predicted molecular mass of 100.5 kD however, its apparent molecular mass as determined by SDS-PAGE is 145 kD. This aberrant migration is seen for all MAPs (see below). Several distinct regions exist on this protein (Fig. 7) (Bosc et al., 1996). At the n-terminus there is a proline rich region containing two putative SH3 binding domains. In the middle of the protein, there is a region of 5 repeats of 46 aa which are highly homologous to each other. Within this repeated region are 4 P-loop motifs which can bind ATP. At the c-terminus, there is another region of 28 imperfect repeats of 11 aa. The functions of these domains are not yet understood, although both repeat domains bear similarity to functional domains in other MAPs (see below). Although the pattern of expression of this MAP has not been determined in detail, it is expressed in many tissues including brain (Pirollet et al., 1988). STOP has been localized to MTs in neurons and the mitotic spindles of non-neuronal cells (Margolis and Job, 1994). STOP-bound MTs are resistant to cold
Figure 6

Expression patterns of MAPs in developing brain.
induced depolymerization, dilution and Ca\textsuperscript{2+} induced disassembly at room temperature (Margolis et al., 1986a; Pirollet et al., 1988; Margolis et al., 1990). These properties are inhibited by Ca\textsuperscript{2+} -calmodulin, which binds directly to STOP (Pirollet et al., 1988; 1992) and by arginylation at its n-terminus (Bongiovanni et al., 1994). Although STOP is able to protect MTs against cold-induced depolymerization, it does not interfere with MT dynamics at room temperature (Margolis et al., 1986b). STOP can move along MTs under normal physiological conditions, but when challenged by cold temperatures, it is immobilized on the MT. This may explain the bifunctional nature of STOP (Pabion et al., 1984; Margolis et al., 1986b). This ability of STOP to move along MTs may also play a role in MT dynamics at the kinetochore during mitosis (Garel et al., 1987).

MAP3

MAP3 is an approximately 180 kD protein that displays widespread expression in a variety of tissues (Huber and Matus, 1990). In brain, it is found in glia and axons where it colocalizes with MTs (Huber et al., 1985). Two forms of MAP3 (MAP3a and 3b) slightly different in size exist in brain (Huber et al., 1985). MAP3a is more prevalent in the late embryo and MAP3b is barely detectable. After birth, MAP3b increases until P10 when its levels are equal to MAP3a. MAP3a and 3b levels then drop dramatically and in the adult brain they are absent, except in Bergmann astroglia (Bernhardt et al., 1985; Reiderer and Matus, 1985) and regions of the brain where neuronal growth still persists (Tucker et al., 1988a). Although little is known about the function of this MAP, the expression of MAP3 during the neuronal differentiation of PC12 cells correlates with neurite outgrowth (Brugg and Matus, 1988). There is some evidence to suggest that MAP3 may be part of the MAP 4 family (Huber and Matus, 1990; Bulinski, 1994)

MAP4

MAP4 comprises MAPs previously identified as 190kD MAP, 210 kD MAP, HeLa MAP and 255kD MAP (Bulinski, 1994). MAP4 consists of several isoforms generated from a single gene by alternative splicing of the primary transcript (West et al., 1991). MAP4 is found in many tissues and cell lines where it associates with interphase MTs and mitotic spindles (Bulinski and Borisy, 1980a; 1980b; De Brabander et al., 1981; Olmsted et al.,
Figure 7

Schematic of microtubule-associated protein STOP. Numbers correspond to aa position.
= repeated aa sequences
= proline rich
= putative ATP binding site
= putative SH3 site
1986; Aizawa et al., 1990; Chapin et al., 1995). In brain, MAP4 distribution is limited to glial cells (Olmsted et al., 1986). MAP4 consists of several domains (Fig. 8). There is a region of 17 acidic repeats of 14 aa in the n-terminus of the protein which is thought to form a flexible, rod-like structure (West et al., 1991). In the c-terminus, there are 3-5 basic repeats of 18 aa (although repeat 2 appears degenerate) (Chapin et al., 1995). These repeats are flanked on the n-terminal side by two domains, a proline rich domain and a serine / proline rich domain (West et al., 1991).

During neuronal differentiation, MAP4 is expressed mainly in the late embryonic or early post-natal stages. Three forms, MAP4a, 4b and 4c (240-220 kD) have been identified in neurons. MAP4a and 4b are both present in the early embryo, with 4b appearing 4 days later in development. 4c is only detectable after birth and all MAP4 isoforms disappear as development progresses. (Olmsted et al., 1986). A muscle-specific MAP4 has also been characterized which contains a large insertion in its projection domain (Fig. 8) (Mangan and Olmsted, 1996). Four splice variants of MAP4 have been cloned that differ by the presence of 3, 4 or 5 basic repeats in their c-terminus (Fig. 8) (Chapin et al., 1995). The 5 repeat version is most abundant in lung, liver, kidney, spleen and testis and is the only form detectable in cell lines while the 3 repeat version is found only in heart, brain, skeletal muscle and lung. The 4 repeat MAP4 isoform appears to be brain specific. The relationship of these isoforms to MAP4 isoforms expressed during brain development is unknown at this time.

The MT binding region of MAP4 consists of the basic repeat domains and the serine / proline-rich domain flanking the repeats on the n-terminal side. The binding of MAP4 is markedly reduced in the absence of the serine / proline-rich domain and the successive deletion of the repeats also results in a successive decrease in MT binding. (Aizawa et al., 1991; Chapin and Bulinski, 1991; Olson et al., 1995). Additionally, removal of the acidic c-terminus weakens the binding of MAP4 to MTs (Olson et al., 1995). The serine / proline rich region and the basic repeats together increase the rate of MT assembly and stabilize MTs to drug-induced depolymerization. However, in the absence of the repeats, there is no stabilization and the MTs formed have an abnormal morphology (Aizawa et al., 1991, Olson et al., 1995). Although the projection region of MAP4 (from the n-terminus to the proline rich domain) does not directly bind to MTs (Aizawa et al., 1991), it does exert some influence on MT binding (Olson et al., 1995).
Figure 8

Schematic of MAP4 isoforms. Numbers represent aa position.
Muscle-specific MAP4

- B = cyclin B binding domain
- = basic repeat
- = acidic repeat
- = serine / proline rich domain
- = proline rich domain
- = projection domain insertion

Reference

Chapin et al., 1995
Aizawa et al., 1990
Chapin et al., 1995
West et al., 1991
Mangan and Olmstead, 1996
The binding of MAP4 to MTs is also inhibited by p110\textsuperscript{mark} phosphorylation (Illenberger et al., 1996).

Although Olson et al. (1995) have shown that GFP-MAP4 can stabilize MTs to drug-induced depolymerization, stable transfection of MAP4 into CHO cells causes no detectable change in MT organization or dynamics (Barlow et al., 1994). Antibody inhibition of MAP4-MT interactions has no detectable effect on MTs during either interphase or mitosis (Wang et al., 1996), suggesting MAP4's functions are redundant. Inhibition of muscle-specific MAP4 expression during muscle development has a disruptive effect on muscle differentiation. Normal myotube fusion does not occur and myoblasts contain abnormal myofibrils. Also, the MTs in these cells are disorganized (Mangan and Olmsted, 1996). MAP4 interacts with cyclin B at its proline rich domain. Although p34\textsuperscript{cdc2} / cyclin B phosphorylation of MAP4 has no effect on MT organization or dynamics, this interaction suggests a possible mechanism for targeting p34\textsuperscript{cdc2} kinase to MTs during the cell cycle (Ookata et al., 1995).

TAU

Tau isoforms are also generated by alternative splicing of the primary transcript from a single gene (Fig. 9) (Lee et al., 1988). In general, tau is restricted to axons in brain (Tucker et al., 1988; Dotti et al., 1987; Viereck et al., 1988). However, it can be detected in dendrites in some instances (Dotti et al., 1987; Papasozomenos and Binder, 1987). The axonal localization is thought to result from a localization of tau mRNA to the proximal axon and a selective stabilization of tau due to its binding to MTs only in axons (Litman et al., 1993; Kanai and Hirokawa, 1995; Hirokawa et al., 1996).

All tau isoforms share similar domain structures (Fig. 9), with 3 – 4 imperfect basic repeats of 18 aa near their c-terminus, flanked by a fifth but degenerate repeat on the c-terminal side, and a proline rich domain on the n-terminal side. Some isoforms also contain insertions in their n-terminal projection domain (Fig. 9) (Geodert and Jakes, 1990; Geodert et al., 1992). These isoforms can be classified into two groups: juvenile and adult isoforms. Juvenile tau is comprised of the three repeat (3R) isoforms. These are found at their highest levels in the early embryo and rapidly decline as maturation progresses (Kosik et al., 1989). However, juvenile isoforms are still expressed in the olfactory system, where neuronal growth persists in the adult (Veireck et al., 1989). The
Figure 9

Schematic of tau isoforms. Numbers indicate aa position.
Juvenile tau

1 1 3 4 352

381

410

Adult tau

1 1 2 3 4 383

412

PNS-specific tau

1 1 2 3 4 686

71783 110000 Goedert et al., 1992

<table>
<thead>
<tr>
<th>Predicted molecular weight</th>
<th>Observed molecular weight</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>36760</td>
<td>48000</td>
<td>Goedert and Jakes, 1990</td>
</tr>
<tr>
<td>39720</td>
<td>54000</td>
<td></td>
</tr>
<tr>
<td>42603</td>
<td>62000</td>
<td></td>
</tr>
<tr>
<td>40007</td>
<td>52000</td>
<td>Goedert and Jakes, 1990</td>
</tr>
<tr>
<td>42967</td>
<td>59000</td>
<td></td>
</tr>
<tr>
<td>45850</td>
<td>67000</td>
<td></td>
</tr>
</tbody>
</table>

* = basic repeat

= degenerate repeat (c-terminal flanking region)

= proline rich domain (n-terminal flanking region)

= projection domain insertions
four repeat (4R) adult isoforms are only detectable post-natally at which point their levels continually increase throughout development (Bahr et al., 1994; Oblinger and Kost, 1994). The mRNA levels for adult and juvenile tau mirror the protein levels seen during development (Kosik et al., 1989). In the central nervous system (CNS), juvenile and adult isoforms also display cell type-specific expression. 3R tau is detected in pyramidal and granule cells while 4R tau is found only in pyramidal cells (Goedert et al., 1989b). A large 4R tau isoform, characterized by a large insertion in the projection domain (Fig. 9), is expressed only in the adult peripheral nervous system (PNS) (Georgieff et al., 1991; Couchie et al., 1992; Goedert et al., 1992). The expression of this large tau isoform decreases during development (Oblinger et al., 1991).

Tau has also been detected in the nucleus of HeLa, LA-N-5 and CHO cells where it colocalizes with the nucleolar organizing region (Lu and Wood, 1993; Greenwood and Johnson, 1995; Thurston et al., 1996). Nuclear tau is encoded by a 2 kb transcript which is detectable in the frontal cortex of the brain (Andreadis et al., 1996; Wang et al., 1993). Microinjection of this tau form into CHO cells results in its transport into the nucleus (Lu and Wood, 1993). Thurston et al. (1996) have suggested that nuclear tau may function in ribosomal biogenesis and/or rRNA transcription.

The MT binding domain of tau consists of the basic repeats and flanking regions (Himmler et al., 1989; Gustke et al., 1994). The binding of tau to MTs is cooperative, with the affinity being much stronger in the presence of the flanking regions compared to the basic repeats alone (Kanai et al., 1992; Gustke et al., 1994). The basic repeats have also been reported to serve as an actin-binding region in vitro (Correas et al., 1990). The N-terminal projection domain is thought to act as a spacer between MTs (Chen et al., 1992; Frappier et al., 1994). The regulation of MT dynamics by tau is related to its MT binding domains. In the presence of both flanking domains and the basic repeats, there is a strong stabilization of MTs. Loss of any flanking region or repeat region leads to a reduction in stabilization (Leger et al., 1994; Trinczek et al., 1995). In the absence of the basic repeats, tau still binds MTs but its nucleating and stabilizing ability is lost (Gustke et al., 1994; Trinczek et al., 1995). The functions of these domains are also reflected in the differences between juvenile (3R) and adult (4R) tau. Adult tau is more efficient at binding and stabilizing MTs and forming processes in transfected cells than juvenile tau (Goedert and Jakes, 1990; Brandt and Lee, 1993;
Montejo de Garcini et al., 1994). The increased affinity of 4R tau is due to strong specific electrostatic interactions between tubulin and the 14 aa inter-repeat region that accompanies the inserted repeat in adult tau (Goode and Feinstein, 1994).

The function of tau has been heavily investigated. Several studies have shown that expression of tau in non-neuronal cell lines causes MT bundling and stabilization (Drubin and Kirschner, 1986; Kanai et al., 1989; Takemura et al., 1992; Barlow et al., 1994; Brandt and Lee, 1994) and formation of thin processes reminiscent of axons (Knops et al., 1991; Lo et al., 1993; Esmaili-Azad et al., 1994; Montejo de Garcini et al., 1994). MT bundles formed in vitro exhibit a random polarity orientation suggesting that the uniform orientation of MTs in axons is generated by some other mechanism (Brandt and Lee, 1994).

Inhibition of tau expression in neurons, either by the introduction of tau antisense oligodeoxynucleotides or tau antibodies, resulted in the retraction of growing neurites or the inhibition of further neurite growth (Cáceres and Kosik, 1990; Cáceres et al., 1992b; Shea and Beermann, 1994). Interestingly, the inhibition of tau expression after neurite specialization only affects axons, while dendrites continue to grow normally suggesting tau has a specific role in axonal specification (Cáceres et al., 1992b). Tau is also upregulated after axonal injury, indicating a role for tau in regeneration (Yin et al., 1995).

Some of these functions may be partially redundant in vivo as transgenic tau knockout mice show normal neuronal development with only a limited reduction in MT stability seen in small-caliber axons (Harada et al., 1994). Tau interactions may not be limited to MTs. In growing neurons, Black et al. (1996) have demonstrated an increasing gradient of tau concentration towards the growth cone that is weakly associated with MTs. Tau's presence in the growth cone may be due to an interaction with microfilaments (Di Tella et al., 1994; Knowles et al., 1994). Tau-actin interaction is inhibited by the binding of calmodulin (Lee and Wolff, 1984; Kotani et al., 1985).

Tau has been implicated in pathologies seen in Alzheimer's and liver disease. In Alzheimer neurons, tau self assembles into paired helical filaments (PHFs) which are an integral part of the neurofibrillary tangles found in the soma of these cells (Goedert et al., 1989a; for review see Mandelkow and Mandelkow, 1993; Goedert et al., 1994). Tau has also been detected in Mallory bodies of livers from alcoholics, implying a role for tau in liver dysfunction (Kenner et al., 1994).
Tau is posttranslationally modified by phosphorylation and glycation. Tau is phosphorylated by several kinases including cAMP-dependent protein kinase (pKA), Ca\(^{2+}\)-calmodulin-dependent protein kinase (CaMK), casein kinase I and II and glycogen synthase kinase-3 (GSK-3) (Pierre and Nuñez, 1983; Yamamoto et al., 1983; Steiner et al., 1990; Mandelkow et al., 1992). Developmentally, tau is most heavily phosphorylated early in development but this modification disappears rapidly as differentiation progresses (Goedert et al., 1993). Phosphorylation causes a change in the conformation of tau from a short, elastic form to a long stiff form (Hagestedt et al., 1989). Additionally, phosphorylation of tau within the flanking regions causes a decrease in its ability to stabilize MTs and phosphorylation within the basic repeats abolishes MT binding (Yamamoto et al., 1988; Trinczek et al., 1995). Glycation of tau has been shown to decrease MT binding and enhance the self-aggregation of tau in vitro (Ledesma et al., 1994). Interestingly, tau in PHFs is heavily phosphorylated and glycated (Lee et al., 1991; Goedert et al., 1993; Ledesma et al., 1994) and these modifications may contribute to the abnormal organization of tau in Alzheimer neurons.

MAP2

Like tau, MAP2 consists of a large family of isoforms generated from a single gene by alternative splicing of the primary transcript (Fig. 10) (Lewis et al., 1986; Garner and Matus, 1988; Papandrikkopoulou et al., 1989). All MAP2 isoforms share similar domain structure (see Fig. 10). They have 3 – 4 imperfect basic repeats of 18 aa near their c-terminus, flanked by a proline rich domain on the n-terminal side and a 5\(^{th}\) repeat on the c-terminal side which shows only partial similarity with the other repeats (Kindler et al., 1990; Doll et al., 1993; Ferralli et al., 1994; Kindler and Garner, 1994; Chung et al., 1996; Couchie et al., 1996; Kalcheva et al., 1997). They also contain several different insertions in their amino terminal projection domain that in the high-molecular weight forms contains a binding site for calmodulin (Kindler et al., 1990a). In the extreme n-terminus there is a binding domain for the RII regulatory subunit of type II cAMP-dependent protein kinase (PKA) (Rubino et al., 1989; Obar et al., 1989).

MAP2 isoforms are also developmentally regulated. The juvenile forms of MAP2, MAP2c and a variant of MAP2b (4R-2b, see Fig. 10), are expressed at their highest levels in the embryo and decrease as development progresses (Tucker et al.,
Figure 10

Schematic of MAP2 isoforms. Numbers indicate aa position.
Juvenile MAP2

Adult MAP2

Spinal cord-specific MAP2

<table>
<thead>
<tr>
<th>Predicted molecular weight</th>
<th>Observed molecular weight</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>49200</td>
<td>70000</td>
<td>Doll et al., 1990</td>
</tr>
<tr>
<td>nr</td>
<td>nr</td>
<td>Langkopf et al., 1994</td>
</tr>
<tr>
<td>nr</td>
<td>nr</td>
<td>Kindler and Garner, 1994</td>
</tr>
<tr>
<td>nr</td>
<td>74000</td>
<td>Kindler and Garner, 1994</td>
</tr>
<tr>
<td>199100</td>
<td>280000</td>
<td>Kindler et al., 1990</td>
</tr>
<tr>
<td>nr</td>
<td>288000</td>
<td>Chung et al., 1996</td>
</tr>
<tr>
<td>nr</td>
<td>nr</td>
<td>Kalcheva et al., 1997</td>
</tr>
<tr>
<td>nr</td>
<td>nr</td>
<td>Couchie et al., 1996</td>
</tr>
</tbody>
</table>

C = calmodulin binding domain

R = RII subunit binding domain

= basic repeat

= proline rich domain (n-terminal flanking region)

= degenerate repeat (c-terminal flanking region)

= projection domain insertions

nr = not reported
1988a; 1988c; Crandall and Fischer, 1989; Charrière-Bertrand et al., 1991; Kindler and Garner, 1994). However, MAP2c can be found in adult brain in areas where neuronal growth persists in the adult (Tucker et al., 1988b; Viereck et al., 1989). MAP2c is found in neurons where it is present in both axons and dendrites (Tucker et al., 1988a) and a variant of MAP2c is specifically expressed in fetal spinal cord (2c+8+13) (Kalcheva et al., 1997). The adult forms of MAP2 include several HMW-MAP2 forms, generally termed MAP2a and MAP2b, and a low molecular weight form, MAP2d. MAP2b is present throughout development where its expression is constant while MAP2a is absent early in development and its level increases as differentiation progresses (Binder et al., 1984; Przyborski and Cambray-Deakin, 1995). All HMW-MAP2 forms are restricted to dendrites. They are also found in post-synaptic densities and dendritic spines, regions of dendrites devoid of MTs (Cáceres et al., 1984; Niinobe et al., 1988; Tucker et al., 1988a; Viereck et al., 1988). The localization of MAP2a is more restricted than MAP2b. In the cerebellum, MAP2b is found in all cells while MAP2a is restricted to granule cells. In the retina, MAP2a is only found in ganglion cells while MAP2b is found in both amacrine and ganglion cells (Chung et al., 1996). Additionally, there are spinal cord-specific variants of MAP2a and 2b (2a+7a, 2b+7a) which localize to specific cell types in the lumbar region (Couchie et al., 1996; Kalcheva et al., 1997; Shafit-Zagardo et al., 1997). These variants are expressed much earlier during development in the spinal cord than in brain (Kalcheva et al., 1997). MAP2d is restricted to glial cells and it is found only at later developmental stages (Doll et al., 1993). In ND 7/23 cells, a novel splice variant of 4R-MAP2b (4R-2bΔRII) has been identified lacking the binding site for the RII subunit of PKA (Langkopf et al., 1994).

MAP2 mRNA exists as either a 6 kb species encoding LMW isoforms or a 9 kb species encoding HMW isoforms (Garner and Matus, 1988). Messenger RNA levels for MAP2 isoforms generally reflect the levels of protein during development, except for MAP2a / 2b mRNA which, during the latter stages of development, decrease while MAP2a / 2b protein levels continue to increase. This is attributed to a sequestering of HMW-MAP2 on microtubules, preventing it from being degraded (Safei and Fischer, 1989a; Przyborski and Cambray-Deakin, 1995).

The specific localization of HMW-MAP2 isoforms in dendrites is thought to be due to mRNA targeting and differential turnover of MAP2 forms in axons and dendrites.
In situ hybridization has localized the mRNA for HMW-MAP2 to the cytoskeleton in dendrites (Gamer et al., 1988; Bruckenstein et al., 1990). HMW-MAP2 introduced by microinjection in spinal cord neurons is initially found in all processes but after 3 days, it is completely removed from the axon. (Okabe and Kirokawa, 1989) while MAP2c introduced by transfection is retained in both axons and dendrites (Meichsner et al., 1993). The dendritic sorting of HMW-MAP2 may be due in part to its association with MTs only in the dendrite (Okabe and Hirokawa, 1989; Kanai and Hirokawa, 1995). This might lead to a more rapid turnover of HMW-MAP2 in the axon. It has also been suggested that the larger projection domain of HMW-MAP2 prevents it from entering the axon (Kanai and Hirokawa, 1995). In transgenic mice overexpressing MAP2c, Marsden et al. (1996) observed that MAP2c was found only in dendrites. They have suggested that MAP2 may be transported into dendrites on – end proximal MTs, which are only found in dendrites.

The microtubule binding and bundling domains of MAP2 consist of the 3-4 imperfect basic repeats of 18 aa found in the c-terminus as well as domains flanking the basic repeats. The repeats are very similar to those found in MAP4 and tau (Lewis et al., 1988; Aizawa et al., 1989; Chapin and Bulinski, 1991). In fact, each individual repeat shares higher homology with the same repeat on the other MAP species than with the other repeats in its own MT binding domain (West et al., 1991; Ludin et al., 1996). The flanking region on the n-terminal side consists of the proline-rich domain and on the c-terminus contains a degenerate repeat (Doll et al., 1990; Lewis et al., 1989; Lewis and Cowan, 1990; Ferralli et al., 1994). While the role of the MAP2 flanking domains in MT binding does not appear to be as pronounced as in tau, they are required for bundling activity (Lewis et al., 1989, Ferralli et al., 1994). It appears that while the strength of MT binding increases with the number of repeats (Ferralli et al., 1994), only one repeat can bind at any one time (Coffey and Purich, 1995). Of these repeats, the 3rd repeat exhibits the greatest ability to bind and bundle MTs and to stimulate their assembly, suggesting that it is the most important (Joly et al., 1989; Joly and Purich, 1990; Ludin et al., 1996). The projection domain of MAP2, like that in tau, acts as a spacer between MTs (Chen et al., 1992). However, there is some evidence to suggest that the presence of the projection domain of MAP2 also influences MT interaction (Fellous et al., 1994). The effect of 3 versus 4 repeats on the binding and
bundling ability of MAP2 is unclear. While Doll et al. (1993) showed that the MT binding and bundling caused by either MAP2c or MAP2d is the same, it appears that the assembly rate of tubulin in the presence of MAP2d is twice that seen in the presence of MAP2c (Olesen, 1994). The bundling of MTs by MAP2 has been suggested to be caused by a dimerization of MAP2 molecules (Lewis and Cowan, 1990). The dimerization of MAP2c in vitro can occur (Wille et al., 1992) but does not appear to occur in vivo (Burgin et al., 1994). Another protein factor may act to link MAP2 molecules together (Lewis and Cowan, 1990; Chapin et al., 1991).

Although binding of MAP2 to tubulin has been well documented it also associates with actin and intermediate filaments (Hirokawa et al., 1988; Cunningham et al., 1997). The binding of MAP2 to actin occurs in the MT-binding region, but this interaction appears to be much weaker than the MAP2 – MT interaction (Sattilaro, 1986; Correas et al., 1990; Pedrotti et al., 1994a). Like tau-actin interactions, actin binding by MAP2 is inhibited by the interaction of calmodulin (Lee and Wolff, 1984; Kotani et al., 1985). Interestingly, MAP2d (4R) is capable of stabilizing actin microfilaments while MAP2c (3R) is not (Ferhat et al., 1996). The interaction of MAP2 with both vimentin and neurofilaments has been demonstrated in neuronal cells however, this interaction seems to be weaker than the MAP2-MT interaction (Bloom and Vallee, 1983; Hirokawa et al., 1988; Bigot and Hunt, 1991).

Several studies have shed light on MAP2 function. Expression of MAP2 forms in non-neuronal cells and association with MTs in vitro lead to stabilization and bundling of MTs (Lewis et al., 1988; Weisschar and Matus, 1993; Umeyama et al., 1993; Takemura et al., 1992; 1995; Gamblin et al., 1996). MAP2 can also induce process formation (Langkopf et al., 1995; LeClerc et al., 1996). HMW-MAP2 and MAP2c induce different processes in SF9 cells. MAP2c induces processes that are short, thin and have a uniform spacing and MT number similar to tau-induced processes. HMW-MAP2 induces processes that are thicker but with a proximo-distal taper with a reduced number of MTs compared to MAP2c (LeClerc et al., 1996). Although tau and MAP2 both stabilize and bundle MTs, there are differences in their effects. In SF9 cells, tau induces a single process while MAP2c induces multiple processes (LeClerc et al., 1993). In ND 7/23 cells, tau and MAP2c both induce MT bundles but only MAP2c induces process formation (Langkopf et al., 1995). This enhanced ability to induce
process formation is attributed to an increase in MT stiffness caused by MAP2 (Weisshaar et al., 1992; Dye et al., 1993; Edson et al., 1993). The polarity of bundles formed by MAP2c is uniform and MTs are aligned with their + ends distal to the nucleus (Umeyama et al., 1993; Takemura et al., 1995), while tau induced bundles display random MT polarity (Brandt and Lee, 1994).

Inhibition of MAP2 in cortical neurons using antisense oligonucleotides causes a reduction in the size and length of neurites. Within these neurites, MTs appear disorganized and are fewer in number (Sharma et al., 1994). In cultured cerebellar macroneurons, suppression of MAP2 leads to a complete inhibition of process formation (Cáceres et al., 1992a).

MAP2 is implicated in several diseases. It is found in neurofibrillary tangles in Alzheimer neurons (Kosik et al., 1988; Dammerman et al., 1989) and is markedly reduced in the hippocampus and entorhinal cortex in brains of schizophrenics (Arnold et al., 1991). MAP2 is also extremely sensitive to ischemia and it is lost from the hippocampus and other regions of the brain following occlusion of the carotid artery (Kitagawa et al., 1989, Ye et al., 1997). However, synthesis of the embryonic form of MAP2 (MAP2c) is upregulated following ischemia and in regenerating neurons following spinal cord transection (Saito et al., 1995; Yin et al., 1995).

MAP2 is heavily phosphorylated and can contain up to 50 mol of phosphate per mol of MAP2 in vivo (Tsuyama et al., 1986). MAP2 is phosphorylated by several kinases including PKA, CaMK, p110\textsuperscript{mapk}, mitogen-activated protein kinase (MAPK), and GSK-3 (Theurkauf and Vallee, 1983; Yamamoto et al., 1983; Adavi et al., 1985; Berling et al., 1994; Illenberger et al., 1996; Morishima-Kawashima and Kosik, 1996). During development, phosphorylation of MAP2 occurs concomitantly with dendritic extension in hippocampal neurons (Diez-Guerra and Avila, 1995). In general, phosphorylation of MAP2 decreases its affinity for MTs while dephosphorylation strengthens MT binding. This in turn serves to increase and decrease MT dynamics (Murthy and Flavin, 1983; Yamamoto et al., 1988; Illenberger et al., 1996). However, Brugg and Matus (1991) have demonstrated that the association of MAP2 with MTs is also regulated by the location of the phosphorylation on the MAP2 molecule. Phosphorylation also lowers the affinity of MAP2 for actin (Selden and Pollard, 1983; Sattilaro, 1986; Yamauchi and Fujisawa, 1988). This regulation of MAP2-MT / MAP2-actin interaction and MT
dynamics by phosphorylation is thought to be a mechanism involved in synaptic plasticity in neurons (Friedrich and Aszódi, 1991). Quillan and Halpain (1996) have shown a specific increase in phosphorylation of MAP2 following glutamate receptor activation and a specific decrease in MAP2 phosphorylation mediated by NMDA receptors. Additionally, exposure of dark reared kittens to light causes an increase in the in vivo phosphorylation of MAP2 concomitant with synaptic reorganization in the visual cortex (Aoki and Siekevitz, 1985).

MAP1

MAP1 consists of two closely related members based on charge and aa distribution, MAP1a and MAP1b, each being derived from its own unique gene (Fig. 11) (Garner et al., 1990). Historically, MAP1b has been identified as MAP1X, MAP5 and MAP1.2 (Calvert and Anderton, 1985; Riederer et al., 1985; Aletta et al., 1988) which were thought to be distinct proteins due to their differing mobility by SDS-PAGE. It has since been shown that these are the same proteins but that their mobilities differ because of differential phosphorylation (Harrison et al., 1993). MAP1a and 1b have predicted molecular masses of 299 and 255 kD respectively, but their apparent mobility as determined by SDS-PAGE is 350 and 330 kD (Noble et al., 1989; Langkopf et al., 1992). MAP1a and MAP1b share a similar domain structure (Fig. 11). In the n-terminus both MAPs contain several repeats of a basic KKE motif which are randomly spaced (11 in MAP1a, 21 in MAP1b). The regions flanking these repeats in MAP1a and 1b are also highly homologous (Noble et al., 1989; Langkopf et al., 1992). MAP1b has an additional repeat region in its c-terminus not found in MAP1a. This region consists of 12 imperfect acidic repeats of 15 aa (Noble et al., 1989). MAP1a and 1b are found in many tissues and cell lines where they are associated with MTs (Bloom et al., 1984a, 1984b; Tanaka et al., 1992). However, MAP1a and 1b expression is most prominent in brain (Bloom et al., 1985; Díaz-Nido and Avila, 1989; Fink et al., 1996). Both MAP1 forms are developmentally regulated. Analysis of MAP1a and MAP1b levels in whole brain extracts shows that MAP1a increases and MAP1b decreases during brain development (Riederer et al., 1986; Safei and Fischer, 1989b; Schoenfeld et al., 1989; Garner et al., 1990). In both cases, protein levels are mirrored by mRNA levels (Safei and Fischer, 1989b; Garner et al., 1990). The localization of MAP1a and 1b during
Figure 11

Schematic of MAP1a, MAP1b and associated LCs. Numbers indicate aa position.
MAP1a

MAP1b

<table>
<thead>
<tr>
<th>Predicted molecular weight</th>
<th>Observed molecular weight</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>299221</td>
<td>350000</td>
<td>Langkopf et al., 1992</td>
</tr>
<tr>
<td>255534</td>
<td>330000</td>
<td>Schoenfeld et al., 1989</td>
</tr>
<tr>
<td>16400</td>
<td>18000</td>
<td>Mann and Hammarback, 1994</td>
</tr>
</tbody>
</table>

= basic repeat
= flanking domains
= acidic repeat

= putative MT binding domain (Cravchik et al., 1994)
brain development is more complex (Tucker and Matus, 1988; McKerracher et al., 1989; Schoenfeld et al., 1989; Viereck et al., 1989). In the developing cerebellum, MAP1a is present at P5 in proximal dendrites and soma while MAP1b is found in axons and dendrites. As differentiation progresses, MAP1a is transiently expressed in axons and occupies both proximal and distal dendrites while MAP1b decreases in axons and is expressed at low levels in dendrites. In the olfactory bulb and retina, both MAP1a and 1b are expressed at high levels throughout development with MAP1a present in dendrites and MAP1b in axons. In the cortico-spinal tract, MAP1a is transiently expressed in axons and no MAP1b expression is detectable during development. In the hippocampus, MAP1a is found in dendrites throughout development while MAP1b, initially only in axons, is also found in dendrites by P20. Although the expression of MAP1a and 1b is primarily in neurons, they can also be detected in oligodendrocytes and astrocytes (Bloom et al., 1984b; Fischer et al., 1990). A MAP1b related antigen has also been localized to the centrosome (Domínguez et al., 1994).

The MT binding domain of MAP1b consists of both the basic repeats and the regions flanking these repeats (Noble et al., 1989). The affect of these regions on MT binding and stabilization is not known. The basic repeat region of MAP1b may form α-helices which are amphipathic in nature, one side being positively charged and the other negative (Avila, 1991). It has been suggested that MAP1b interacts with tubulin through the positively charged surfaces of these α-helices and negatively charged α-helices present in the c-terminus of tubulin (Avila, 1991). Although the MT binding site of MAP1a has not been well characterized, Cravchik et al. (1994) have suggested that the basic repeats in MAP1a do not bind MTs and that the MT binding domain is an acidic self-similar region in the middle of the protein (Fig. 11). MAP1a and 1b have also been shown to interact with actin (Asai et al., 1985, Fujii et al., 1993; Pedrotti et al., 1994b; Pedotti and Islam, 1996).

There are some insights into the function of MAP1a and 1b. MTs assembled in the presence of MAP1a or MAP1b show increased rates of assembly. The rates of assembly observed are higher than those observed for MAP2 (Pedotti and Islam, 1994b; 1995b). Interestingly, the rate of MT assembly is greater in the presence of MAP1b than MAP1a. The ability of MAP1b to stabilize MTs to drug-induced depolymerization in vitro is much weaker than MAP2 (Vandecandelaere et al., 1996).
The morphology of MTs is also affected by MAP1a and 1b. MTs assembled in the presence of MAP1a are short and straight while those assembled in the presence of MAP1b are long and “bendy” (Pedrotti et al., 1996a). In growing axons, MAP1b is concentrated distally, where MTs are most labile (Black et al., 1994). Overexpression of MAP1b in non-neuronal cells does not cause bundling of MTs as seen for MAP2 and tau but an increase in resistance to drug induced MT depolymerization and tubulin acetylation is noted (Takemura et al., 1992). However, the stabilization and acetylation of MTs in cells expressing MAP1b is weaker than in cells expressing MAP2c. Inhibition of MAP1b expression in cultured neurons using antisense oligodeoxynucleotides or microinjection of antibodies leads to the loss of neurite outgrowth (Brugg et al., 1993; Shea and Beermann, 1994). In adult brain, MAP1a and 1b are found in regions where growth and plasticity still occur (Tucker and Matus, 1988; Sato-Yoshitake et al., 1989; Viereck et al., 1990), suggesting they are essential for neuronal growth and in regenerating axons, the levels of MAP1b are upregulated (Fawcet et al., 1994; Tonge et al., 1996). The levels of MAP1a in regenerating axons do not change, but it is rapidly degraded from ganglion cells following axotomy (McKerracher et al., 1989; Fawcett et al., 1994) illustrating its importance in the maintenance of neuronal processes. It has also been shown that MAP1a and MAP1b are sensitive markers for neuronal injuries such as ischemia and seizures. In axons challenged by focal ischemia, the MAP1a and 1b staining in axons changes from a uniform distribution along the axon to an irregular, punctate staining (Fischer et al., 1995; Deware and Dawson, 1997). In MAP1b mutant transgenic mice, homozygotes for the MAP1b mutation are lethal. Heterozygotes have malformed dendrites that contain no MAP1b, demonstrating that MAP1b plays a role in normal development (Edelmann et al., 1996).

In tau deficient transgenic mice, MAP1a levels are elevated in small caliber axons where tau levels are reduced and the MTs in these cells are less resistant to drug induced depolymerization (Harada et al., 1994). This suggests that MAP1a cannot complement the MT stabilization induced by tau.

MAP 1a and 1b are both phosphorylated in vivo by casein kinase II and other as yet unidentified kinases (Díaz-Nido et al., 1988; Ulloa et al., 1993a; Fujii et al., 1996). The phosphorylation of MAP1a and 1b is regulated spatially and developmentally. Phosphorylated MAP1a is only detectable in late development (Schoenfeld et al., 1989;
Díaz-Nido et al., 1990). Two types of MAP1b phosphorylation can be distinguished by SDS-PAGE. Type I is probably catalyzed by casein kinase II and causes an upward shift in MAP1b's mobility by SDS-PAGE. Type II phosphorylation (probably catalyzed by a proline-directed kinase) has no effect on the mobility of SDS-PAGE (Ulloa et al., 1993a). Type I phosphorylation of MAP1b is highest early in development and disappears in the adult (Fischer and Romano-Clarke, 1990; Bush and Gordon-Weeks, 1994; Ulloa et al., 1993b) except in regions where neuronal growth continues (Nothias et al., 1996). Type I phosphorylation is also upregulated in regenerating axons (Bush et al., 1996; Tonge et al., 1996). Type II phosphorylated MAP1b is present throughout development (Ulloa et al., 1993b). Type I phosphorylated MAP1b is present exclusively in axons, and within the axon it is most heavily phosphorylated in the distal axon and growth cone (Sato-Yoshitake et al., 1990; Mansfield et al., 1992; Boyne et al., 1995). In contrast, mode II phosphorylated MAP1b can be found in axons, dendrites and the soma (Ulloa et al., 1993b). In the adult brain, MAP1a and 1b are most heavily phosphorylated in the corpus callosum while levels in other regions of the brain are lower (Díaz-Nido et al., 1990).

The effect of phosphorylation on the MT binding ability of MAP1a and 1b is opposite to that of MAP2. Phosphorylated MAP1a and MAP1b are preferentially bound to MTs while phosphorylated MAP2 is preferentially excluded (Díaz-Nido et al., 1990). Also, MAP1b interaction with actin is inhibited by phosphorylation (Pedrotti and Islam, 1996). Axons of Trembler mice show abnormal morphology, and also show reduced phosphorylation of MAP1a and MAP1b. This may link the phosphorylation state of MAP1a and 1b to normal neuronal development (Kirkpatrick and Brady, 1994).

MAP1 LIGHT CHAINS

MAP1a and MAP1b exist in a complex with three light chains (LC1 - LC3) with respective molecular weights of 34, 28 and 18 kD (Vallee and Davis, 1983; Kuznetsov et al., 1986; Kuznetsov and Gelfand, 1987; Schoenfeld et al., 1989). LC1 is encoded in the 3' end of the open reading frame of MAP1b (see Fig. 11) (Hammarback et al., 1991) and is thought to be cleaved during or after translation to yield a heavy chain (MAP1b) and LC1. Similarly, LC2 is encoded in the 3' end of the open reading frame of MAP1a and is probably produced by a similar mechanism (Langkopf et al., 1992). LC3 is
encoded by a separate gene and is expressed only in neurons where its expression increases during development (Mann and Hammarback, 1994; 1996). LC2 is found predominantly associated with MAP1a whereas LC1 and LC3 associate with both MAP1a and MAP1b (Schoenfeld et al., 1989; Pedrotti et al., 1995c). All three LCs associate at or near the MT binding domain of MAP1a and MAP1b (Kuznetsov et al., 1986; Schoenfeld et al., 1989). Although the exact stoichiometry is not known, the MAP1 heavy chains can bind more than one copy of a particular light chain (Schoenfeld et al., 1989). It is thought that the association of these light chains with MAP1a and MAP1b alters their ability to bind MTs and alter MT dynamics during development (Schoenfeld et al., 1989, Mann and Hammarback, 1996).

P19 EC CELLS AS A MODEL FOR NEURONAL DIFFERENTIATION

P19 EC cells were isolated from a teratocarcinoma generated by the grafting of a 7-day mouse embryo to the testis of a mouse (McBurney and Rogers, 1982). These cells can be cultured and remain undifferentiated when kept in an exponentially growing state. Unlike other embryonal carcinoma cell lines, which spontaneously differentiate when allowed to aggregate or grow at high densities, P19 EC cells undergo very little differentiation when cultured under these conditions (McBurney, 1993).

The developmental pathway of P19 EC cells can be controlled by the use of different morphogens. When P19 EC cells are incubated in the presence of 0.5 – 1% DMSO, they differentiate into cardiac muscle and incubation in 2-3% DMSO causes the formation of smooth muscle (McBurney et al., 1982). When incubated in the presence of 10^{-6}M RA, P19 EC cells differentiate in a mosaic culture composed of neurons, glia and fibroblast-like cells (Jones-Villeneuve et al., 1982). The neurons formed in this culture system express neuronal antigens found in brain and display similar morphology to neurons in vivo (McBurney et al., 1988).

The isotype composition, dynamics, and organization of MTs have been examined in P19 EC cells during RA-induced neuronal differentiation and all these parameters of MTs are similar to those seen in brain (Falconer et al., 1989; 1992; 1994; Laferrière and Brown, 1996). In addition, the developmentally regulated expression of HMW-MAP2, MAP2c and tau during the early stages of P19 EC cell differentiation mimic patterns seen in brain (Fig. 12) (Falconer et al., 1992; 1994). These studies
Figure 12

Expression of several cytoskeletal antigens during RA-induced, serum-free neuronal differentiation. From Falconer et al. (1994).
DAY 0  UNDIFFERENTIATED
STAGE 1  NEUROGENIC COMMITMENT
STAGE 2  NEURITE OUTGROWTH
STAGE 3  ELABORATION OF NEURITES
STAGE 4  MORPHOLOGICAL DIFFERENTIATION

MAP1B
detyrosinated α-tubulin
acetylated α-tubulin
MAP2C
β-III tubulin →PO₄ + glutamylation
juvenile tau
MAP2
adult tau
show that the RA-induced neuronal differentiation of P19 EC cells is a good *in vitro* model for neuronal differentiation *in vivo*. Recently, MacPherson and McBurney, (1995) have developed a serum-free method of differentiating P19 EC cells into neurons. Traditionally, P19 EC cells were differentiated in the presence of low concentrations of FCS (2-3%). The serum-free method uses a defined medium with no FCS to culture the cells following RA induction. One advantage of this new method are cultures containing larger proportions of neurons during differentiation. P19 EC neurons cultured using the serum-free method also live longer, making the investigation of more mature P19 EC neurons possible. P19 EC cells are also amenable to genetic manipulation by transfection (MacPherson and McBurney, 1995), making it an ideal cell system to investigate the function of MAPs and other cytoskeletal proteins during neuronal differentiation.

**RATIONALE FOR EXPERIMENTS**

MAP1a is one of the most abundant MAPs in the adult brain yet little is known about its function. The correlation of its expression with increasing MT stability during brain development has led to the suggestion that MAP1a functions like other adult MAPs, such as HMW-MAP2 and tau, to stabilize MTs (Matus, 1990a; 1990b). However, the regional expression of MAP1a during brain development suggests that its postulated role as a MT stabilizer is too simplistic.

MAP1a is only transiently expressed during axonal formation (Schoenfeld et al., 1989) while MT stability continually increases (Black and Green, 1982). It is present in the olfactory bulb and retina throughout development (McKerracher et al., 1989; Schoenfeld et al., 1989) and these regions contain neurons which grow throughout development. Finally, dendrites, the primary location of MAP1a in the adult, can undergo plastic rearrangements, suggesting that MTs in these processes are more labile than those in axons (Frederich and Asódi, 1991). While these observations are not inconsistent with a stabilizing role for MAP1a, they suggest that it may function in neuronal growth, when MTs are more labile.

Little is known about the MAP1a-MT interaction or how LCs affect the ability of MAP1a to bind to or affect MT dynamics. Cravchik *et al.* (1994) have suggested that an acidic domain centrally located in MAP1a binds MTs. However, in MAP1b, a closely
related protein with similar charge and aa composition (Langkopf et al., 1992), the basic repeats and flanking domains are the MT binding region (Noble et al., 1989). In addition, all other MAP MT-binding domains contain repeats of basic aa.

Schoenfeld et al. (1989) and Pedrotti and Islam (1995a) have shown a preferential association of LC2 with MAP1a. MAP1a bound MTs are less dynamic than MAP1b-bound MTs (Pedrotti and Islam, 1994; 1995b) suggesting that LC2 may be required for MT-stabilization by MAP1a. LC3 is neuron specific and its expression in developing brain is correlated with increased MT stability (Mann and Hammarback, 1996). LC3 may also affect MT stability on MAP1a-bound MTs.

The goal of this thesis research was to answer questions about how MAP1a binds to MTs, how it effects MT organization and dynamics and how LCs effect the role it plays in the morphological development of neurons. The following hypotheses were proposed:

1. Does MAP1a expression in P19 EC cells increase during development?
2. Does MAP1a binds to MTs via its basic repeats and regions flanking these repeats?
3. Are MAP1a-associated MTs weakly stabilized?
4. Does the interaction of light chains, especially neuron-specific LC3, with MAP1a affect the stabilization of MTs mediated by MAP1a?
MATERIALS AND METHODS

EXPRESSION CONSTRUCTS

Three overlapping rat cDNA clones (p19a, p14 and p19) spanning the entire mRNA for MAP1a (Langkopf et al., 1992) were obtained from Drs A. Langkopf (Institut Jacques Monod, France) and Dr. R. Muller (University of Bremen, Germany). The cDNA for light chains 1, 2, and 3 (pCR3-LC1, pCR3-LC2 and pCR3-LC3) were obtained from Dr. J. Hammarback (Bowman Gray School of Medicine, NC). These cDNAs were used to make all expression constructs (Fig. 13). pKJ1ΔF-6myc and pPOP (a gift from Dr. M. McBurney, University of Ottawa) are pUC19-based vectors containing the constitutively active mouse phosphoglycerate kinase (PGK) promoter. This vector drives the efficient expression of proteins in undifferenitized P19 EC cells (Pratt et al., 1993; Morasutti et al., 1994; Skerjanc et al., 1994). PKJ1ΔF-6myc drives the expression of 6 repeats of a 9 aa epitope from the human c-myc protein (Fig. 14). These vectors were used to express proteins epitope tagged at the n-terminus (Fig. 15). When necessary, sequencing was performed to ensure all proteins were expressed in frame with the 6-myc tag, to confirm ligations, and to determine the location of in frame stop codons in the cDNA. All sequencing reactions were performed using the ABI Prism Dye Terminator Cycle Sequencing Kit (with AmpliTag DNA polymerase, FS) (Perkin Elmer). All sequencing reactions were cycled using a Perkin Elmer PCR machine and run on an ABI model 373A automated sequencer. PGK-MAP2cmyc was provided by C. Addison.

PGK-6myc

This is the unmodified pKJ1ΔF-6myc vector. It expresses the 6myc tag followed by a 25 aa tail (NSCSGPDPDLVLERPPRYSSDPCRN)

PGK-6mycN1a-1

A Nco I – Hind III fragment from clone p19a was blunt-end ligated into Sma I – Sac I cut pKJ1ΔF-6myc. This vector expresses the 6myc tag followed by 5 aa (NSCSP), followed by aa 1-281 from MAP1a terminating with a 6 aa tail (TDPCRN).
Figure 13

Schematic showing the cDNAs used in the design of expression constructs in this study. Nucleotide positions in the MAP1a cDNAs (p19, p14 and p19a) are according to Langkopf et al., 1992. Vectors containing the cDNA are indicated to the left of the cDNA and construct sizes to the right. Restriction sites used in construct synthesis are indicated.
Figure 14

Schematic showing the expression vectors used in the design of expression constructs. Sites used in construct synthesis are indicated.
PGK-6mycN1a-2

A Nco I – Apa I fragment from clone p19a was blunt-end ligated into Sma I – Sac I cut pKJ1ΔF-6myc. This vector expresses the 6myc tag, the NSCSP linker, aa 1-630 of MAP1a followed by a 6 aa tail (ADPCRN).

PGK-6mycN1a-3

A partial Nco I – Bam HI fragment (7800 bp) from PGK-6mycN1a-4 (see below) was blunt-ended and religated. The expressed protein contains the 6myc tag, a 7 aa linker (NSREFLH), aa 1-1310 of MAP1a and a 2 aa tail (IL).

PGK-6mycN1a-4

A Cla I – Bam HI fragment from PGK-6myc1a (see below) was blunt-end ligated into Sma I cut pPOP. The expressed protein contains the 6myc tag, a 7 aa linker (NSREFLH), aa 1-2016 of MAP1a and a 14 aa tail (RGSSRVDLQLFMIY).

PGK-6myc1a

A Nco I – Eco RI fragment from clone p19a was blunt-end ligated into Sma I – Hind III cut pKJ1ΔF-6myc. A partial Apa I fragment (1959 bp) from clone p14 was then ligated into this vector at the ApaI site. In to this vector a 6070 bp Eco RI – Eco RV fragment from clone p19 was blunt-end ligated into the Eco RV site. Finally a short oligonucleotide containing a Smal site (5’-AATTCCCGGG-3’, New England Biolabs) was inserted into the Eco RI site between the 6myc tag and the MAP1a cDNA to bring the cDNA for MAP1a into frame with the 6myc tag. The expressed protein contains the 6myc tag, a 7 aa linker (NSREFLH) and the full length cDNA for MAP1a. The predicted molecular weight for the tagged protein is based on the predicted molecular weight for the MAP1a heavy chain as reported in Langkopf et al., (1992).

PGK-6mycN1a-2ΔBR

PGK-6myc1a was digested with Xho I and Hae III to yield two fragments (1514 and 1223 bp). A 1357 bp fragment was PCR amplified from the 1514 bp fragment using the primers PCR-1 and PCR-2 (phosphorylated) (see appendix 3). A 279 bp fragment was PCR amplified from the 1223 bp fragment using the primers PCR-3.
(phosphorylated) and PCR-4. The 1357 and 279 bp PCR products were ligated and then further cut with Clal and Apa I. This fragment was ligated into Clal – Apa I cut pKJ1ΔF-6myc. Both strands of the entire PCR product were then completely sequenced to ensure the fidelity of the PCR reaction and to check the joint between the two PCR products. The expressed protein contains the 6myc tag, a 7aa linker (NSREFLH), aa 1-335 and 541-631 of MAP1a followed by a 29 aa tail (GGSTSSRAATAVEN-LIPYRENMYLGRLR).

PGK-6mycLC1

A 753 bp Nco I – Eco RI fragment from pCR3-LC1 was blunt end ligated into Sma I cut pKJ1ΔF-6myc. This vector expresses the 6myc tag, the NSCSP linker, aa 2215-2464 of rat MAP1b which corresponds to the region reported to be light chain 1 (Hammarback et al., 1991) and a 7 aa tail (KPNWGMH).

PGK-6mycLC2

A 666 bp Nco I – Eco RI fragment from pCR3-LC2 was blunt end ligated into Sma I cut pKJ1ΔF-6myc. This vector expressed the 6myc tag, the NSCSP linker, aa 2554-2774 of rat MAP1a which corresponds to the region reported to be light chain 2 (Langkopf et al., 1992).

PGK-6mycLC3

A 818bp Nde I – Eco RI fragment from pCR3-LC3 was blunt end ligated in to Sma I cut pKJ1ΔF-6myc. This vector expresses the 6myc tag, the NSCSP linker and the complete open reading frame of rat LC3 (Mann and Hammarback, 1994).

SCREENING OF BACTERIAL COLONIES

Ligation products were transformed by heat shock into chemically competent DH5αF’ E.coli (Hanahan, 1983). Transformed E.coli were then plated onto LB plates supplemented with 100 μg / ml of ampicillin (Sigma) and incubated ON at 37°C. Colonies were used to inoculate 5 ml cultures of T-broth (Maniatis et al, 1982) with ampicillin as above and grown ON at 250 rpm and 37°C. Plasmid DNA was harvested from each culture using the alkaline-lysis method (Maniatis et al,
Figure 15

Expression constructs used in this study. The full length cDNA and MAP1a protein are provided for comparison. * This molecular weight does not include LC2, see Materials and Methods.
MAP1a cDNA

MAP1a PROTEIN

MAP1a EXPRESSON CONSTRUCTS

PGK-6myc
PGK-6mycN1a-1
PGK-6mycN1a-2
PGK-6mycN1a-3
PGK-6mycN1a-4
PGK-6myc1a
PGK-6mycN1a-2aBR

LIGHT CHAIN EXPRESSON CONSTRUCTS

PGK-6mycLC1
PGK-6mycLC2
PGK-6mycLC3
1982) and screened by restriction digest. Positive clones were further purified using the Geneclean procedure (Bio 101) prior to sequencing.

**LARGE SCALE PRODUCTION OF PLASMID DNA FOR TRANSFECTION**

Plasmid DNA was transformed into competent DH5α F' E. coli as above. Colonies were used to inoculate 5 ml T-broth cultures as above. The following day, small cultures were diluted 1:100 in LB broth (500 ml) with ampicillin and grown ON as above. Plasmid DNA was harvested from large cultures using Qiagen megaprep silica resin columns (Qiagen), resuspended in ddH₂O and stored at −20°C. DNA concentration and purity was determined by absorbance at 260 and 280nm using a Genequant® spectrophotometer (Pharmacia).

**TISSUE CULTURE AND DRUG TREATMENTS**

P19 EC cells (McBurney and Rogers, 1982) and HeLa CCL-2 cells (ATCC) were kept semiconfluent in α-modified Eagle's minimal essential medium (α-MEM) (GIBCO BRL) supplemented with 10% FCS (Flow Labs), and antibiotics (Gibco). Cells were grown in a humidified incubator at 37°C and 5% CO₂ and passed every two days. To differentiate cells into neurons, the serum-free method of MacPherson and McBurney (1995) was used with some modifications. Cells were plated as a semiconfluent monolayer on 22 X 22mm glass coverslips (VWR) or 100 mm culture dishes (Corning) and allowed to recover for 24 h in α-MEM containing 10% FCS and antibiotics. The medium was then changed and supplemented with 10⁻⁶ M RA (SIGMA). 24 h later, the medium was replaced with a defined, serum free medium (without retinol). Half of the medium was changed each day until cells were ready for processing. Taxol (obtained from the National Cancer Institute) was kept as a 10 mM stock in DMSO at -20°C. This stock was then diluted to 10⁻⁶ M in α-MEM, 10% FCS and antibiotics to treat cell cultures for 24 h. Colchicine (SIGMA) was kept as a 1mg / ml stock in ddH₂O and diluted to 1µg/ml to treat cells.

**TRANSFECTION OF P19 AND HELO CELLS**

Expression vectors were introduced into P19 EC and HeLa cells by calcium phosphate mediated transfection (Chen and Okayama, 1987). For protein extraction,
cells were plated onto 100 / 60mm dishes (Corning) at 1.25 x10⁵ / 7.5X10⁴ cells / dish (P19 EC) or 2X10⁵ / 1X10⁵ cells / dish (HeLa) in 10 / 5ml of medium (see above). For microscopy, cells were plated onto 18 mm round cs (Corning) at 1.25 x10⁴ cells / cs (P19 EC) or 2X10⁴ cells / cs (HeLa) in 1 ml of media. Cells were allowed to settle for 24 h. 40 μg of DNA in 500 μl of 0.25 M CaCl₂ was then gently mixed with 500 μl 2X BES buffer (50 BES, pH 6.86, 280 mM NaCl, 1.5 mM Na₂HPO₄) to a final volume of 1 ml and allowed to sit for 20 min. The solution of calcium phosphate-DNA precipitate was then gently added to the cells (2 ml for 100 mm dishes, 1 ml for 60 mm dishes, 200 μl for cs) without removing the media and allowed to sit for 8 h in the incubator. The DNA solution was then aspirated and replaced with fresh medium. Cells were incubated a further 48 h before processing.

PROTEIN EXTRACTION

Cells were extracted by one of the following methods:

SDS-WHOLE CELL (Fig. 16)

This method was used for preparing extracts for SDS-PAGE and dot-blot analysis. Protein was extracted from cells using the method described in Drubin et al., (1985), but using higher concentrations of protease inhibitors in the extraction buffer. Dishes were rinsed briefly in rinse buffer (0.13 M NaCl, 2 mM KCl, 8 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.2) and then 250 – 500 μl of extraction buffer [25 mM Na₂HPO₄, pH 7.2, 400 mM NaCl, 0.5% (w/v) SDS, 40 μM benzamidine HCl (SIGMA), 4 mM PEFA (Centrachem), 1 mM 1,10-phenanthroline (Sigma), 40 μg / ml each of aprotinin, pepstatin A and leupeptin (all from Sigma)] was added, depending on the size of the dish. The viscous lysate was immediately scraped into an eppendorf tube and placed in a boiling water bath for 10 min and then spun for 10 min at 10000 rpm and 4°C. The supernatant was removed and stored at –80°C

WHOLE CELL EXTRACTION (Fig. 17)

This method was used for preparing extracts for in vitro assembly. Cells were rinsed briefly in cold MAB2 (0.1 M MES pH 6.4, 2.5 mM EGTA, 0.1 mM EDTA, 0.5 mM MgCl₂, Pedrotti et al., 1993) and then 250 – 500 μl of extraction buffer [MAB2 +
4 mM PEFA, 1 mM 1,10-phenanthroline and 40 μg/ml each of aprotinin, pepstatin A and leupeptin] was added. Cells were immediately scraped into an eppendorf and sonicated 15 sec at 94 W, then immediately spun for 10 min at 10000 rpm and 4°C. The supernatant was removed and stored at -80°C.

**SDS-POLYMER / SOLUBLE EXTRACTION (Fig. 18)**

This method was used for SDS-PAGE analysis of MAP1a. To prepare soluble and cytoskeletal (polymer) protein fractions, cells were briefly rinsed in RT PBS then extracted with 0.2% Triton X-100 in PEM [80 mM PIPES (Sigma), pH 6.8, 5 mM EGTA (SIGMA), 1 mM MgCl$_2$] containing the above protease inhibitors at RT for 2 min. The soluble fraction was removed from the dish, SDS added to 0.5% (w/v), and placed in a boiling water bath for 10 min. The sample was then centrifuged 10 min at 10000 rpm and 4°C, and the supernatant removed and stored at -80. The remaining cytoskeletal fraction was solubilized and stored as in the SDS-whole cell extraction.

**POLYMER / SOLUBLE EXTRACTION (Fig 19)**

This method was used to prepare extracts for tubulin and MAP analysis. Dishes were washed briefly with PEM at 37°C. Cells were then incubated for 5 min and 37°C in 250 – 500 μl of MSB [0.1 M MES, pH 6.75, 1 mM MgSO$_4$, 2 mM EDTA (SIGMA), 0.1 mM EGTA (SIGMA), 4 M glycerol, 0.5% Triton X-100 (Pierce), Joshi and Cleveland, 1989] with addition of 4 mM PEFA, and 40 μg / ml of aprotinin, pepstatin A and leupeptin. The extraction buffer was then pipetted from the dish and spun for 2 min at 10000 rpm at RT and the supernatant was removed. Then 250 – 500 μl of MDB [0.1 M MES (Boehringer), 1 mM MgSO$_4$, 10 mM CaCl$_2$, pH 6.9, 1 mM DTT (BRL) and 5 mM GTP (type IIS, Sigma), Thrower et al., 1991], including inhibitors as above, was added to the dish and the cells were scraped into the eppendorf containing the pellet from the soluble fraction. The cells were then sonicated 15 sec at 94 W using a Braun sonicator, incubated for 1 h on ice and spun 10 min at 10000 rpm and 4°C. The supernatant was removed and stored at -80°C.
Figure 16

Protocol for SDS-whole cell extraction.
briefly rinse cells in rinse buffer

add SDS-whole cell extraction buffer and immediately scrape into eppendorf

place eppendorf in boiling water bath for 10 min

spin 10 min at 10000 rpm and 4°C and keep supernatant
Figure 17

Protocol for whole cell extraction.
briefly rinse with cold MAB2

scrape cells in MAB2 into an eppendorf

sonicate extract

spin 10 min at 10000 rpm and 4°C and keep supernatant
Figure 18

Protocol for SDS-polymer /soluble extraction.
briefly rinse cells with PBS at RT

2 min extraction with 0.2% Triton X-100 in PEM at RT

remove solubilized proteins and add SDS to 0.5%

solubilize remaining cytoskeletal fraction as for SDS-whole cell extraction

spin 10 min at 10000 rpm and 4°C and keep supernatant

soluble fraction
cytoskeletal fraction
Figure 19

Protocol for polymer/soluble extraction.
untreated cells or cells treated with 1 mg/ml colchicine for 15 or 30 min

briefly rinse with PEM at 37°C

5 min extraction with 0.5% Triton X-100 in MSB at 37°C

remove solubilized proteins and spin 2 min at 10000 rpm and 4°C

remove remaining cytoskeletal fraction in MDB and add to pellet from soluble fraction

remove supernatant (soluble fraction)

sonicate polymer fraction and incubate 1 h on ice

spin 10 min at 10000 rpm and 4°C and keep supernatant (polymer fraction)
For all samples, protein concentrations were determined using the BCA protein assay (PIERCE) using BSA (PIERCE) as a standard diluted in ddH₂O. Controls were included using buffer alone.

CYCLING OF TUBULIN AND MAPS FROM BOVINE BRAIN (FIG 20)

This procedure is derived from Weingarten et al. (1975) and Collins and Vallee (1987). Two fresh adult bovine brains were obtained from the C.H. Thomas slaughter house (Nepean, Ontario) and kept submerged in ice water while the connective tissues and meninges were removed. The brains were then homogenized in a Waring blender for 45 sec in 70% (v/v) chilled MAB1 (0.1 M PIPES, pH 6.4, 1 mM EGTA, 1 mM MgCl₂, 4 M glycerol and 0.1 mM GTP) and transferred to pre-chilled centrifuge bottles. The homogenate was then spun 10 min at 18000 g and 4°C (10000 rpm using a Sorval GSA rotor). The supernatant was transferred to new, pre-chilled centrifuge tubes and spun 30 min at 36000g and 4°C (18000 rpm using a Sorval SS-34 rotor). To this supernatant (designated S1) GTP was added to a final concentration of 1.8 mM and then incubated 30 min and 37°C. The now viscous S1 extract was spun 30 min at 36000g and 37°C. The pellet was resuspended in chilled MAB1 (15% of the volume used to homogenize whole brain tissue) and homogenized in a Dounce homogenizer on ice for 30 – 40 min. This homogenate was then spun 30 min at 36000g and 4°C. The supernatant (designated S2) was again brought to 1.8 mM GTP and incubated 30 min and 37°C. After spinning this supernatant (as for S1), the pellet was resuspended in 7 ml of chilled MAB1 and homogenized as for the S1 pellet. The S2 homogenate was then spun 30 min at 36000g and 4°C. The resulting supernatant was designated S3. Protein concentrations of S1, S2 and S3 were determined using the BCA assay and aliquots stored at -80°C for further use.

PHOSPHOCELLOULOSE PURIFICATION OF TUBULIN (FIG. 21)

(Weingarten et al., 1975; Lee et al., 1978) This procedure was used to provide a tubulin standard for the tubulin measurements performed in this study. A small volume of S3 (8 ml) was spun 20 min at 36000g and 4°C. The supernatant was then brought to 1.8 mM GTP and incubated 30 min and 37°C and then spun for
Figure 20

Protocol for cycling of tubulin and MAPs from bovine brain.
two fresh calf brains with meniges and connective tissue removed

homegenize 45 sec in chilled MAB1

spin 10 min at 18000g and 4°C

transfer supernatant and spin 30 min at 36000g and 4°C and keep supernatant (S1)

assemble tubulin in S1 supernatant 30 min at 37°C

spin 30 min at 36000g and 37°C and remove supernatant

homogenize pellet in chilled MAB1

spin 30 min at 36000g and 4°C and keep supernatant (S2)

assemble tubulin in S2 supernatant 30 min at 37°C

spin 30 min at 36000g and 37°C and remove supernatant

homogenize pellet in chilled MAB1

spin 30 min at 36000g and 4°C and keep supernatant (S3)
Figure 21

Protocol for phosphocellulose purification of tubulin.
assemble tubulin in S3 supernatant 30 min at 37°C

homogenize pellet in chilled MAB1

load S4 supernatant on to pre-equilibrated phosphocellulose column

dialyze overnight

spin S3 supernatant 30 min at 36000g and 4°C keep supernatant

spin 30 min at 36000g and 37°C and remove supernatant

spin 30 min at 36000g and 4°C and keep supernatant (S4)

collect eluate and pool tubulin containing fractions

dilute 1:1 in MAB1 (- glycerol)

spin 30 min at 36000g and 37°C and remove supernatant

assemble tubulin in supernatant 30 min at 37°C

spin 30 min at 36000g and 37°C and remove supernatant

homogenize pellet in chilled MAB1

spin 30 min at 36000g and 4°C and keep supernatant (S3)

concentrate sample using microconcentrator
30 min at 36000g at 37°C. The pellet was resuspended in 3.5 ml of MAB1 (-glycerol) on ice for 30 min and spun for 30 min at 36000g and 4°C. The supernatant (S4) was then loaded on to a phosphocellulose column (P-II, Whatman) pre-equilibrated with 5 column volumes of MAB (-glycerol) and eluted with MAB (-glycerol). The presence of tubulin in the collected fractions was analyzed by SDS-PAGE. Tubulin containing fractions were pooled and dialyzed overnight against 1 L of MAB1 (+8 M glycerol). The dialyzed tubulin was then diluted 1:1 with MAB1 (-glycerol) and spun for 20 min at 36000g and 4°C. The supernatant was brought to 1.8 mM GTP and 10 mM MgCl₂, incubated for 30 min and 37°C then spun 30 min at 36000g and 37°C. The resulting pellet was resuspended in MAB1 (-glycerol) and concentrated using a 30 kDa cutoff microconcentrator (Amicon). Protein concentration was determined using the BCA assay and aliquots were stored at -80°C.

**IN VITRO MAP BINDING ASSAY (FIG 22)**

Parts of this procedure are derived from the taxol-dependent purification of MAPs reported by Vallee (1982). 1 ml of S3 was brought to 1.8 mM GTP and 20 μm taxol, assembled for 30 min and 37°C and then spun 15 min at 36000g and 37°C (18000 rpm using a Sorval SS-20 rotor). The pellet was gently resuspended using a 1 ml pipetter in the same volume of MAB1 (+400 mM NaCl, 1.8 mM GTP and 20 μm taxol). The suspension was then spun for 15 min at 36000g and 37°C. The pellet was then resuspended in the same buffer and spun again as above. The supernatant was then spun through a 15% sucrose cushion in MAB1 (+1.8 mM GTP and 20 μm taxol) for 15 min at 36000g and 37°C. The pellet was then resuspended in MAB2 (+1.8 mM GTP and 20 μm taxol) and spun for 15 min at 36000g and 37°C. The pellet was then gently resuspended in MAB2 as above and to this suspension was added an equal volume of protein from transfected P19 EC cells, brought to 1.8 mM GTP and 20 μm taxol and incubated for 15 min and 37°C. The suspension was then spun 15 min at 36000g and 37°C. The resulting pellet was resuspended in MAB2 (+1.8 mM GTP and 20 μm taxol) and spun through a 15% sucrose cushion in MAB2 (+1.8 mM GTP and 20 μm taxol) for 15 min at 36000g and 37°C. The resulting pellet was resuspended in MAB2 (+1.8 mM GTP and 20 μm taxol)
Figure 22

Protocol for in vitro MAP binding assay. Steps are numbered for comparison with data in figures 43 and 44. Steps indicated with an * contain extracts from P19 EC cells expressing various MAP1a fragments.
1. Assemble S3 tubulin 30 min at 37°C in MAB1

2. Spin 15 min at 36000g and 37°C keep pellet

3. Resuspend microtubules in MAB2 + NaCl

4. Spin 15 min at 36000g and 37°C keep pellet

5. Resuspend microtubules in MAB2 + NaCl

6. Spin 15 min at 36000g and 37°C through sucrose cushion keep pellet

7. Resuspend microtubules in MAB1

8. Spin 15 min at 36000g and 37°C keep pellet

9. Resuspend microtubules in MAB1

10. Add transfected P19 extract containing MAP fragments incubate 15 min at 37°C

11. Spin 15 min at 36000g and 37°C keep supernatant

12. Resuspend microtubules in MAB1

13. Spin 15 min at 36000g and 37°C through sucrose cushion keep supernatant

14. Resuspend microtubules in MAB1

*
Samples were taken throughout the procedure to determine the presence or absence of MAPs by western blotting. Volumes used to resuspend pellets were adjusted throughout the procedure to account for loss of volume due to sampling. Samples were processed for negative staining transmission electron microscopy from the first assembly step and after each spin through sucrose to ensure that MTs remained polymerized.

**MICROAFFINITY PURIFICATION OF POLyclONAL ANTIBODIES**

LC1 and LC2 polyclonal antibodies (see below) were microaffinity purified as described in Xiang and MacRae (1995) prior to use.

10 µg / lane of S1 was separated by SDS-PAGE on 12% gels and transferred to nitrocellulose (NC, Schleicher & Schuell). 2 lanes of the blot were cut out and LC1 and LC2 were used to immunodetect light chains 1 and 2 by western blotting (see below). The location of these light chains was marked on the remaining blot and the region excised with a scalpel. The excised NC strips were washed 5 min in ddH₂O and then incubated in TBS-T [10 mM TRIS-HCl pH 7.4, 140 mM NaCl and 0.1% tween-20 (Sigma)] containing 5% skim milk (Carnation) for 2 h at RT. The strips were washed 3X10 min with TBS-T and then 1X5 min with TBS (without Tween 20). The blocked NC strips were then incubated in fresh TBS-T containing the antisera for light chain 1 or 2 diluted 1:500 for 3 h at RT with gentle agitation. The antibody solution was then decanted and the strips washed as above. NC-bound antibody was then eluted by washing 3X2 min in 350 µl of elution buffer (5 mM glycine, 500 mM NaCl, 0.5% tween-20, 100 µg / ml BSA, pH 1.8). The three eluted fractions were combined and neutralized with a 1 M TRIS solution.

**ANTIBODIES**

**ANTI-MAP1a**

Mouse monoclonal IgG₁ (clone 1A-1, Bloom et al., 1984) provided by Dr. R. Vallee, Worcester Foundation, Mass. and used at 1:500 for immunofluorescence microscopy and 1:1000 for immunoblotting.
ANTI-MAP1b
Mouse monoclonal IgG (clone 6D4) provided by Dr. L. Binder and used at 1:30 for microscopy and 1:300 for immunoblotting.

Mouse monoclonal IgG (clone 1B-4, Bloom et al., 1985) provided by Dr. R. Vallee and used at 1:1000 for immunoblotting

Anti-MAP2
Mouse monoclonal IgG [clone HM-2 (Sigma), Tucker et al., 1988] used at 1:400 for immunofluorescence microscopy and 1:1000 for immunoblotting.

ANTI-HMW-MAP2
Mouse monoclonal IgG (clone AP-14, Kalcheva et al., 1994) provided by Dr. L. Binder (Molecular Geriatrics Corp, IL) and used at 1:200 for immunofluorescence microscopy and 1:1000 for immunoblotting.

ANTI-TAU
Mouse monoclonal IgG (clone Tau-2, Papasosomenos and Binder, 1987) provided by Dr. L. Binder and used at 1:1000 for immunoblotting.

ANTI-LIGHT CHAIN 1
Rabbit polyclonal Ig (LC-1) provided by Dr. J. Hammarback. Affinity purified (P-LC1) and used undiluted for immunoblotting.

ANTI-LIGHT CHAIN 2
Rabbit polyclonal Ig (LC-2) provided by Dr. J. Hammarback. Affinity purified (P-LC2) and used undiluted for immunoblotting.

ANTI-LIGHT CHAIN 3
Rabbit polyclonal Ig (LC-3, Mann and Hammarback, 1994) provided by Dr. J. Hammarback and used at 1:1000 for immunoblotting.
ANTI-β-TUBULIN
Mouse monoclonal IgG [clone DM1B (Amersham), Blose et al., 1984], used at 1:1000 for immunoblotting.

ANTI-α-TUBULIN
Rat monoclonal IgG [clone YOL1/34 (Serotech), Kilmartin et al., 1982] used at 1:10 for immunofluorescence microscopy.

ANTI-βIII-TUBULIN
Mouse monoclonal IgG (clone TuJ1, Moody et al., 1989) provided by Dr. A. Frankfurter (University of Virginia, VA) and used at 1:50 for immunofluorescence microscopy and 1:500 for immunoblotting.

ANTI-ACETYLATED α-TUBULIN
Mouse monoclonal IgG [clone 6-11B-1 (Sigma) Piperno and Fuller, 1985] used at 1:100 for immunofluorescence microscopy and 1:1000 for immunoblotting.

ANTI-DETYROSINATED α-TUBULIN
Rabbit polyclonal Ig (anti-E, Xiang and MacRae, 1995) provided by Dr. T. MacRae (Dalhousie University, NB) and used at 1:250 for immunoblotting.

ANTI-6MYC TAG
Mouse monoclonal IgG (clone 9E10, Evan et al., 1985) provided by Dr. C. Garner (University of Alabama, AL) and used undiluted for immunofluorescence microscopy and diluted 1:1 for immunoblotting.

ANTI-MOUSE IgG
Polyclonal donkey IgG conjugated to CY3 (Jackson) used at 1:400 for immunofluorescence

Biotinylated polyclonal horse IgG (Vector) used at 1:1000 for immunoblotting.
Biotinylated polyclonal goat IgG (Amersham) used at 1:1000 for ELISA.

**ANTI-RAT IgG**
Polyclonal donkey IgG conjugated to CY2 (Jackson) used at 1:100 for immunofluorescence microscopy.

Polyclonal donkey IgG conjugated to FITC (Sigma) used at 1:150 for immunofluorescence microscopy.

**ANTI-RABBIT IgG**
Biotinylated polyclonal goat IgG (Dimension) used at 1:1000 for immunoblotting

**SDS-PAGE AND WESTERN BLOTTING**
Protein samples were diluted 1:1 in 2X sample buffer (Laemmli, 1970) and were placed in a boiling water bath for 5 min, loaded onto 7.5, 12 or 4 - 20% gradient polyacrylamide gels and separated using the BIORAD minigel apparatus. Proteins were electroblotted onto NC according to Towbin et al. (1979) and the NC blots were rinsed in PBS (130 mM NaCl, 5 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.4). Immunodetection of western blots was performed as follows: block ON in 5% skim milk (Carnation) in PBS and 4°C, 1 h incubation in primary antibody diluted in 2% skim milk in PBS, 1 h incubation in biotinylated secondary antibody in 2% skim milk in PBS, and 1 h incubation in biotinylated streptavidin-HRP (Amersham) diluted 1:5000 in PBS. A 3X5 min PBS wash was done between all antibody incubations (with 2% milk added between the primary and secondary). Antibody binding was detected by enhanced chemiluminescence (ECL) (Amersham) using Hyperfilm-ECL (Amersham). Except where noted, all steps were performed at room temperature. Exposed films were digitized at 400 dpi with a 12-bit dynamic range (interpolated to 8 bits) using a Hewlett-Packard 4c flatbed scanner. Digitized TIFF images were processed using Adobe Photoshop v4.0 and prepared for publication using Powerpoint 97 (Microsoft)
ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)

The method of Voller et al. (1979) was used with several modifications. Equal amounts of SDS-whole cell extracted protein were diluted 6 to 8-fold in PBS to give a final protein concentration of 0.3 μg / μl and 100 μl / well of this solution was dried overnight onto Xenobind (Xenopore) 96 well plates. Antibody incubations were as described for western blotting followed by biotinylated streptavidin-HRP diluted 1:750. Antibody binding was detected using colour development with o-phenylenediamine (SIGMA). Absorbance was read at 490 nm using a Ceres UV 900 HDI microplate reader. A standard curve for mAb 1A-1 was established using serial dilutions of S1 supernatant.

QUANTITATIVE DOT BLOTTING

Protein samples were diluted in PBS and 200 μl / well was passed through NC in a 96 well Minifold apparatus (Schleicher & Schuell) which had been pre-wetted with 200 μl / well of PBS. After the entire sample had been passed through the nitrocellulose by a gentle vacuum, an additional 400 μl of PBS / well was passed through the NC. The NC was then removed from the apparatus, rinsed briefly in PBS and then fixed for 10 min in transfer buffer (25 mM TRIS, 190 mM glycine, 20% (v/v) MeOH). The blot was then re-equilibrated in PBS and processed as for western blotting. The resulting films were scanned at 200 dpi as above. The chemiluminescent signal from each dot in the digitized image was quantified using SigmaGel v1.0 (Jandel Scientific). These values were then imported into Excel 97 (Microsoft) and Sigmaplot v4.0 (Jandel Scientific) for analysis. Standard curves for all primary antibodies used were established either with S1 supernatant or with PC-tubulin to ensure that sample measurements fell within the linear response of the antibody used.

CELL FIXATION

Cells plated on glass coverslips were briefly rinsed in PEM and fixed at room temperature by three different protocols:
METHANOL
Cells were immersed in MeOH at -20°C for 20 min. Coverslips were then re-equilibrated with 3 X 20 min PBS washes.

PRECIPITATION
(Stefanini et al., 1967) Coverslips were incubated for 1 h in Zamboni's fixative [14% picric acid (FISHER), 4% paraformaldehyde (JB EM Services Inc.) in 0.5 M Na₂HPO₄, 0.5 M NaH₂PO₄, pH 7.1] followed by a 3X5 min PBS wash, 5 min extraction with 0.5% Triton X-100 in PBS and a final 3X5 min PBS wash.

EXTRACTION / FIXATION
(Falconer et al., 1992) Coverslips were rinsed briefly in PEM followed by 2 min pre-extraction with 0.2% Triton X-100 in PEM followed by 10 min fixation with 3.7% formaldehyde (BDH), 0.25% glutaraldehyde (JB EM Services Inc.) and 0.5% Triton X-100 in PEM, followed by 3X5 min PBS wash.

CRYOSECTIONING
Newborn and adolescent (120 g) Sprague-Dawley male rats were anesthetized with a 0.088 ml / g intramuscular injection of Somnotol (MPC Pharmaceuticals). Rats were then perfused with 60 ml of PBS followed by 120 ml of fixative (see precipitation fixation method). Brains were removed, post-fixed for a further 90 min in the same fixative and then immersed in 10% sucrose (w / v) in PBS. After storage for at least 1 h at 4°C, sucrose-immersed brains were frozen using liquid CO₂ and 12 μm cryosections were taken at -14 to -19°C using a cryotome (Microm). Sections were mounted on coated cs (0.5% gelatin, 0.005% chromium potassium sulfate) and stored at -80°C.

IMMUNOFLUORESCENCE MICROSCOPY
Following fixation, samples were quenched 3X4 min in 1 mg / ml NaBH₄ (BDH) in PBS followed by a 3X5 min PBS wash. All antibody incubations were for 1 h in PBS at room temperature with 3X5 min PBS washes after each incubation. For all labeling,
sequential primary and secondary incubations were used. Samples were visualized by one of three following methods:

IMMUNOFLOUORESCENCE MICROSCOPY
Stained cells were visualized with a Zeiss Axophot epifluorescence microscope equipped with a 50 W Hg burner. Images were recorded on Ilford 400 ASA B&W film and printed on Ilford multigrade III paper. Prints were digitized at 400 dpi and processed and prepared for publication as above.

CONFOCAL IMMUNOFLOUORESCENCE MICROSCOPY
Stained cells were visualized through a 63X Plan Apochromat (NA 1.4) and 40X objective on a Leica Upright Confocal Laser Scanning Microscope equipped with a 50 mW Ar / Kr mixed gas laser. Serial optical sections were digitally recorded every 1µm in TIFF files 512 pixels X 512 pixels with an 8 bit dynamic range. The pinhole was adjusted so that the FWHM function yielded a section thickness no greater than 850 nm. Serial sections were processed using the simulated fluorescence algorithm which projects highlights and shadows on the image stack, emphasizing depth cues. TIFF images were processed and prepared for publication as above.

DIGITAL FLUORESCENCE MICROSCOPY
Stained cells were visualized on a Zeiss Universal epifluorescence microscope equipped with a 50 W Hg burner. Images were digitally recorded with a Hamamatsu integrating CCD camera using Metamorph v2.75 (Universal Imaging). TIFF images were processed and prepared for publication as above.

ELECTRON MICROSCOPY
Samples were fixed 1 min at 37°C in a equal volume of fixative (4% paraformaldehyde, 0.2% glutaraldehyde in MAB1 or MAB2, depending when the sample was taken). 5 µl of the sample was allowed to settle onto parlodion-coated 400 mesh copper grids (J.B. EM Services Inc) for 1 min. Grids were then washed with 5 drops of Photoflo solution [2 drops of Photoflo (Kodak) in 100 ml of ddH2O], 5 drops of ddH2O and then stained with 4 drops of 1% uranyl acetate. Samples were
then visualized on a Philips 201 transmission electron microscope. Images were recorded on KODAK Electron Image Film SO-163 and printed on Ilford multigrade III paper. Prints were digitized at 600 dpi and processed and prepared for publication as above.
EXPRESSION AND DISTRIBUTION OF MAPS IN DIFFERENTIATING P19 NEURONS

RESULTS

MAP EXPRESSION IN DIFFERENTIATING P19 NEURONS

To see if MAP expression patterns in differentiating P19 neurons matched those found in brain, the expression of MAP1b, MAP2 and tau was characterized, using βIII-tubulin to monitor neuronal differentiation. Figure 23 illustrates the time course of MAP expression during RA-induced P19 EC cell differentiation. Detection of MAP1b showed a single polypeptide at all stages that co-migrated with MAP1b from adult bovine brain. MAP1b was present in undifferentiated cells and during differentiation, MAP1b levels increased until day 6 after which its levels dropped. Three forms of LMW-MAP2 were detected during differentiation. The smallest form was first detected at day 4, reached its highest levels at day 8 and decreased afterwards. The intermediate form, while detectable at day 4, was less abundant than the smaller form. Its levels also increased, reaching a peak at day 10 and then declining. The largest form co-migrated with the single LMW-MAP2 form from adult bovine brain. It was first detectable at day 6, increased until day 10 and then dropped slightly afterwards. HMW-MAP2 was present as a single peptide that co-migrated with adult bovine HMW-MAP2. It was first detectable at day 6 and continually increased during differentiation. Two forms of tau were detected in P19 extracts. The smaller form was first detected at day 6 and increased steadily. The larger form co-migrated with the smallest tau form seen in adult bovine brain. It was detected at day 6, but was much lower in abundance than the smaller form and increased slightly during differentiation. βIII-tubulin was present as a single polypeptide that co-migrated with adult bovine βIII-tubulin. In undifferentiated cells βIII-tubulin was absent, but was first detected at day 4 after which its levels steadily increased.

The localization of these MAPs and tubulin in differentiating culture was determined by immunofluorescence microscopy. Control experiments showed no non-specific 2° Ab interaction (Fig. 24). In undifferentiated cells fixed with methanol, MAP1b colocalized with MTs (Fig. 25a, a'). In undifferentiated cells fixed by precipitation, MAP1b colocalized with MTs but a diffuse cytoplasmic staining was also observed.
Expression of various MAPs during differentiation of P19 EC cells. SDS-whole cell extracts of differentiating P19 EC cells at days 0 to 12 following RA induction were separated by SDS-PAGE on 7.5% gels. MAPs and βIII-tubulin were immunodetected on western blots using monoclonal antibodies 6D4 (MAP1B), HM-2 (LMW- and HMW-MAP2), Tau-2 (juvenile and adult tau) and TuJ1 (βIII-tubulin). S1 denotes bovine brain extract as described in Materials and Methods.
Controls for non-specificity of secondary antibodies for MAP detection in differentiating P19 EC cells. Cells at day0 (a - a') and day 12 (b - b') were fixed by precipitation, quenched and then incubated with the secondary antibodies donkey anti-rat FITC (a, b) and donkey anti-mouse CY3 (a' - b'). Scale bar = 20μm.
Figure 25

Detection of tubulin (mAb YOL1/34, a – g) and MAP1b (mAb 6D4, a' – g') in differentiating P19 EC cells by double immunofluorescence microscopy. Cells at day 0 were fixed by methanol (a - a') and precipitation (b - b'). Differentiating cells were fixed by precipitation. MAP1b is present on MTs (a – a') and cytoplasmically (b – b') in undifferentiated cells. MAP1b is present in spontaneously forming aggregates by day 2 (c – c') and is found in growth cones and colocalized with MTs in neurites by day 4 (d – d'). MAP1b remains present in neurites at day 6 (e – e') and day 8 (f – f') however, MAP1b staining decreases by day 12 (g – g'). Scale bar for day 0 – 8 (f') = 20μm and for day 12 (g') = 100μm.
Figure 26

Detection of tubulin (mAb YOL1/34, a – f) and MAP2 (mAb HM-2, a’ – f’) in differentiating P19 EC cells by double immunofluorescence microscopy. Cells were fixed by precipitation. MAP2 is absent in undifferentiated cells (a – a’) but is detectable in spontaneously forming aggregates by day 2 (b – b’). By day 4 MAP2 is found in growth cones and colocalizes with MTs in neurites (c – c’). MAP2 remains present in neurites at day 6 (e – e’) and day 8 (f – f’) by day 12 (g – g’) MAP2 can be detected in all processes. Scale bar for day 0 – 8 (f’) = 20μm and for day 12 (g’) = 100μm
Detection of tubulin (mAb YOL1/34, a – f) and HMW-MAP2 (mAb AP14, a’ - f’) in differentiating P19 EC cells by double immunofluorescence microscopy. Cells were fixed by precipitation. HMW-MAP2 is absent in undifferentiated cells (a – a’) but is detectable in spontaneously forming aggregates by day 2 (b – b’). By day 4 HMW-MAP2 is restricted to proximal neurites where it colocalizes with MTs (c – c’). HMW-MAP2 is restricted to processes in aggregates at day 6 (e – e’) and day 8 (f – f’). By day 12 (g – g’) HMW-MAP2 staining is most prominent but is restricted to processes found in aggregates. Scale bar for day 0 – 8 (f’) = 20μm and for day 12 (g’) = 100μm
Figure 28

Detection of tubulin (mAb YOL1/34, a – f) and βIII-tubulin (mAb TuJ1, a’ - f’) in differentiating P19 EC cells by double immunofluorescence microscopy. Cells were fixed by precipitation. βIII-tubulin is absent in undifferentiated cells (a – a’) but is detectable in spontaneously forming aggregates by day 2 (b – b’). By day 4 βIII-tubulin is found in growth cones and colocalizes with MTs in neurites (c – c’). βIII-tubulin remains present in neurites at day 6 (e – e’) and day 8 (f – f’) by day 12 (g – g’) βIII-tubulin can be detected in all processes. Scale bar for day 0 – 8 (f’) = 20μm and for day 12 (g’) = 100μm. From Vaillant and Brown, 1995 (Figure 1).
(Fig. 25b, b'). 2 days after RA-induction, cells spontaneously formed aggregates and within these aggregates, cells could be detected that displayed more intense α-tubulin labeling. These were the first cells in which an elevated level of MAP1b was detected (Fig. 25c, c'). After 4 days of differentiation, neurites with growth cones were detected. MAP1b was detected uniformly along the neurite shaft and in the growth cone in all neurites (Fig. 25d, d'). Between day 4 and day 8 of differentiation, there was a large increase in the number of processes present in the cultures. These processes were stained in a punctate fashion by MAP1b (Fig. 25e – f'). By day 12 no new neurite growth could be detected, but there was a reorganization of individual processes into fascicles. MAP1b labeled all fascicles, but the intensity of MAP1b was reduced compared to day 6 and day 8 (Fig. 25g, g').

MAP2 was undetectable in undifferentiated cells (Fig. 26a, a') but by day 2, MAP2 positive cells could be detected within aggregates (Fig. 26b, b'). At day 4 MAP2 was detected uniformly along the entire neurite shaft, and was also present in the growth cone (Fig. 26c, c'). At day 8 MAP2 was present in all neurites, but labeling was punctate along the neurite shaft (Fig. 26d – e'). At day 12 all processes were MAP2 positive (Fig. 26f, f'). HMW-MAP2 was also absent in undifferentiated cells (Fig. 27a, a'), and was first detectable within aggregates (Fig. 27b, b') at day 2. However at day 4, HMW-MAP2 was most prevalent in proximal neurites, and was absent from growth cones (Fig. 27 c, c'). At day 6 and day 8 only a small proportion of cells were HMW-MAP2 positive, and these were restricted to aggregates (Fig. 27d – e'). By day 12 HMW-MAP2 labeling was most intense, but its restriction to aggregates was even more marked (Fig. 27f, f').

βIII-tubulin also undetectable in undifferentiated cells (Fig. 28a, a'), but was present in cells within aggregates at day 2 (Fig. 28b, b'). βIII-tubulin was detected in the entire neurite including the growth cone at day 4 (Fig. 28c, c'), and was present in all processes throughout differentiation (Fig. 28d – e'). Although more difficult to visualize, cell bodies within aggregates were also stained for βIII-tubulin. Almost all cells in the culture were βIII-tubulin positive by day 12.
MAP1A EXPRESSION IN UNDIFFERENTIATED P19 EC CELLS

Detection of MAP1a by immunofluorescence microscopy in undifferentiated cells was first attempted on cells fixed by methanol or precipitation (Fig. 29). In methanol-fixed cells, patchy immunoreactivity was observed in the nucleus. A diffuse cytoplasmic staining was observed in cells fixed by precipitation and no MT colocalization was observed. By confocal immunofluorescence microscopy of cells fixed by the extraction / fixation method, MAP1a was seen to colocalize with MTs in the mitotic spindle (Fig. 30b, b'). Faint MAP1a staining of MTs was detectable in the cytoplasm of some interphase cells, but in most cells it was not possible to see a definite colocalization (Fig. 30a, a'). A faint staining of the nucleus was also seen (Fig. 30a'). In an attempt to enhance the detection of MAP1a associated with MTs in interphase, cells were treated with 10^-6 M taxol for 24 h to induce microtubule bundles. In the treated cells intense MAP1a reactivity colocalized with taxol-induced MT bundles (Fig. 30c, c').

Western blotting of equal amounts of protein from SDS-whole cell, SDS-soluble and SDS-cytoskeletal fractions showed no effect of taxol treatment on MAP1a degradation (Fig. 31A, lanes 1-3). The partitioning of MAP1a into SDS-soluble and SDS-cytoskeletal fractions was identical in untreated and taxol-treated cells, with almost all the MAP1a present in the cytoskeletal fraction (Fig. 31A, lanes 4-7). To ensure that no MAP1a was lost due to precipitation from boiling, western blotting of the pellet fraction left after centrifugation was performed and showed no MAP1a was present in this fraction. ELISA showed no difference in the levels of MAP1a in SDS-whole cell protein in untreated cells, DMSO control cells and taxol treated cells (Fig. 31B) showing that taxol treatment did not increase the amount of MAP1a present in these cells.

MAP1A EXPRESSION IN DIFFERENTIATING P19 EC CELLS

After 4 days of RA-induced differentiation, MAP1a was seen in all growing neurites in the culture (Fig. 32a, a'). Labeling was observed uniformly along the entire neurite, colocalizing with MTs in the shaft of the neurite as well as in the proximal, but not in the distal, portions of the growth cones. At day 8, MAP1a was seen in all neurites (Fig. 32b, b') and in fascicles at day 12 (Fig. 32c, c'), although the intensity of
Figure 29

Detection of tubulin (mAb YOL 1/34, a – b) and MAP1A distribution (mAb 1A-1, a', b') in undifferentiated P19 EC cells by double immunofluorescence microscopy. Cells were fixed by methanol (a, a') and precipitation (b, b'). In cells fixed by methanol MAP1a does not colocalize with MTs but is present in aggregates within nuclei (a'). In cells fixed by precipitation, MAP1a displays a diffuse cytoplasmic staining which does not colocalize with MTs (b'). Scale bar = 20μm.
Figure 30

Detection of tubulin (mAb YOL1/34, a – c) and MAP1A (mAb 1A-1, a’ - c’) in undifferentiated P19 EC cells by confocal double immunofluorescence microscopy. Cells were fixed by extraction / fixation. A faint, non MT-colocalized cytoplasmic staining was detected in interphase cells (a – a’) but was colocalized with MTs in mitotic spindles ( b - b’) and in 10⁻⁶M taxol treated cells (c - c’). A faint nuclear MAP1a staining was observed in all cells (a’ - c’). Scale bar = 20μm. From Vaillant and Brown, 1995 (Figure 2).
Figure 31

MAP1A levels in undifferentiated cells. A) Protein extracts were separated by SDS-PAGE on 7.5% gels and MAP1A was immunodetected on western blots using mAb 1A-1. Lane 1: 30 µg of SDS-whole cell protein from untreated cells, lane 2: DMSO control cells and lane 3: 10⁻⁶M taxol-treated cells. Lane 4: 10 µg of untreated SDS-polymer and lane 5: SDS-soluble extracts. Lane 6: 10⁻⁶M taxol-treated polymer and lane 7: soluble extracts. B) Quantification of MAP1A levels by ELISA of 30 µg of the same whole cell protein extracts as in (A) from untreated cells (U), DMSO control cells (D) and taxol-treated cells (T) using mAb 1A-1. Error bars represent the standard error of the averages of three measurements from three independent experiments. Effects of DMSO and taxol on MAP1a levels were not significantly different from untreated MAP1a levels as judged by the Student's t-test. From Vaillant and Brown, 1995 (Figure 3).
Figure 32

Detection of tubulin (mAb YOL 1/34, a – c) and MAP1A (mAb 1A-1, a' - c') in differentiating P19 EC cells by confocal double immunofluorescence microscopy. Cells were fixed by extraction / fixation. At day 4, MAP1a colocalizes with MTs along the entire neurite shaft and in the proximal growth cone (a, a'). By day 8 (b, b') and day 12 (c, c') MAP1a is still present in all neurites but staining is weaker than at day 4. Nuclear staining of MAP1a was detected at all days (a' - c'). Scale bar = 20μm.

From Vaillant and Brown, 1995 (Figure 4).
Figure 33

MAP1A levels in differentiating P19 EC cells. 30μg of whole cell protein extract from cells at day 0 to 12 was separated by SDS-PAGE on 7.5% gels. MAP1A was immunodetected on western blots using mAb 1A-1. Results of 3 experiments are presented. From Vaillant and Brown, 1995 (Figure 5a).
Figure 34

Quantification of MAP1A levels in differentiating P19 EC cells. Detection of MAP1A by ELISA of 30μg of SDS-whole cell protein extract from cells at day 0 to 12 using mAb 1A-1. Results of 3 experiments are presented. Error bars represent the standard error of three measurements. * indicates values significantly different from day 0 (p < 0.05) as judged by the Student’s t-test. From Vaillant and Brown, 1995 (Figure 5b).
staining was reduced compared to day 4. The faint nuclear staining observed in undifferentiated cells was also seen in differentiated cells.

Western blots of of whole cell protein from differentiating P19 EC cell cultures revealed a single band of approximately 350 kDa representing MAP1a (Fig. 33). The intensity of this reactive band increased and appeared to reach a peak no later than day 8, after which it became less intense. Similar results were obtained using an ELISA assay (Fig. 34) to determine the relative amounts of MAP1a present during differentiation. As seen in Figures 33 and 34 some variability in MAP1a accumulation was observed among trials, however, the highest levels of MAP1a accumulation always coincided with the period of neurite growth as assessed by phase contrast microscopy of live cultures (data not shown).

DISCUSSION

MAP EXPRESSION IN DIFFERENTIATING P19 EC CELLS

The general patterns of MAP1b, MAP2, tau and βIII-tubulin expression in P19 EC cells are similar to the established time course of expression of these MAPs in brain (Frankfurter et al., 1986; Tucker and Matus, 1988; Kosik et al., 1989; Garner et al., 1990; Oblinger and Kost, 1994). The presence of βIII-tubulin in almost all cells indicates that a large majority of differentiating P19 EC cells is neuronal by day 12. This is in agreement with MacPherson and McBurney (1995) who report that in serum-free differentiated P19 EC cultures, 90% of the cells are neuronal.

The various LWM-MAP2 forms observed during differentiation might be due to post-translational modification by phosphorylation or alternative splicing. Kindler and Garner (1994) observed the presence of an alternatively spliced form of MAP2c, MAP2d which contains an extra basic repeat and has an apparent molecular weight 4 kDa higher than MAP2c. MAP2d is glial cell specific and is present only in later stages of development (Doll et al., 1993). In adult bovine brain only one LWM-MAP2 polypeptide was detected. Because MAP2c is a juvenile MAP and is largely absent in the adult (Crandall and Fischer, 1989) the single LWM-MAP2 form detected is probably MAP2d. The fact that that the largest form of LWM-MAP2 in differentiating P19 EC culture co-migrates with this single LWM-MAP2 form in adult bovine brain suggests that it is also MAP2d. This indicates the presence of glial
cells in differentiating P19 EC cells. This result is not surprising since the presence of glial cells in differentiating P19 EC cells has been previously noted (Jones-Villeneuve et al., 1982; Cadrin et al., 1988; Addison and Brown, unpublished data).

At day 12, neurites are present in fascicles that run between cell aggregates. These fascicles represent the bulk of processes in culture and contain βIII-tubulin and MAP2, indicating that they are neuronal. However, very few of these fascicles contain HMW-MAP2. The HMW-MAP2 present at day 12 is restricted to aggregates. HMW-MAP2 is found only in dendrites in developing brain (Tucker et al., 1988c; Viereck et al., 1988) while MAP2c is found in both axons and dendrites (Tucker et al., 1988b, Viereck et al., 1989). The differential localization of MAP2 and HMW-MAP2 at day 12 suggests that most of the processes observed at this time are axonal, with dendrites being confined to aggregates.

These observations demonstrate that serum-free differentiated P19 EC culture containing glial cells and a high proportion of neurons whose neurites undergo specialization into axons and dendrites. The similarities between MAP location and accumulation during developing P19 EC cells suggest that the underlying mechanisms responsible for neuronal morphogenesis in P19 EC cells and in brain are similar.

MAP1a IN UNDIFFERENTIATED P19 EC CELLS

Western blotting and immunofluorescence staining showed that MAP1a was expressed in undifferentiated P19 cells. These results agree with the observations of Bloom et al. (1984b) for a variety of other cell lines. The localization of MAP1a was dependent on the type of fixation used. Cells fixed by MeOH showed a sub-nuclear localization reminiscent of nucleoli while cells fixed by precipitation displayed a diffuse cytoplasmic localization. Fixation extraction of cells revealed a MT association in mitotic and taxol treated cells, and in interphase cells a weak diffuse nuclear staining was observed. The faint staining of MAP1a on interphase MTs in undifferentiated P19 cells might be due to extraction of the MAP1a by the detergent treatment for immunofluorescence staining, however the same protocol gave intense MAP1a staining of MTs in interphase 3T3 cells (data not shown). Bloom et al (1984b) also noted mitotic spindle and nuclear localization of MAP1a in HeLa cells. The fixation-
dependent localization in undifferentiated P19 EC cells suggests that MAP1a may also associate with cellular structures other than MTs. There is a precedent for nuclear MAPs. A tau isoform exists in the nucleolus and it may function in ribosomal biogenesis and rRNA transcription (Thurston et al., 1996).

The association of MAP1a with the mitotic spindle may be a reflection of a cell cycle-dependent increase in MAP1a synthesis as suggested by Bloom et al. (1984b). Alternatively, the increased immunofluorescence staining may result from the higher concentration of MTs in the spindle. The effects of taxol treatment on undifferentiated P19 cells supports this explanation. MTs in taxol-induced bundles stained intensely for MAP1a. Western blotting and ELISA showed that the increased detection of MAP1a was not due to an increase in the amount of MAP1a present in the taxol-treated cells or to a shift in the partitioning of MAP1a between the soluble and cytoskeletal fractions.

MAP1a IN DIFFERENTIATING P19 EC CELLS

The pattern of MAP1a accumulation in differentiating P19 EC cells peaks during the growth of neurons and falls as differentiation progresses. This pattern is different from the steadily increasing levels of MAP1a obtained from extracts of developing whole brain (Schoenfeld et al., 1989; Gamer et al., 1990. However, MAP1a levels in differentiating P19 EC cells are comparable to those in axons of the cerebellum and corticospinal tract during brain development (Schoenfeld et al., 1989). Since the majority of processes in differentiating P19 EC cells appear to be axonal (see above), this pattern of MAP1a expression may reflect an axon-specific profile.

The peak in MAP1a levels during neurite outgrowth and the presence of MAP1a in all neurites during the growth phase in these cultures suggests a growth-related function. The stability of MTs in differentiating P19 EC cultures increases during differentiation (Laferrière and Brown, 1996) even after the peak in MAP1a occurs. In vitro assembly studies have shown that MTs assembled with MAP1a are more dynamic than those assembled with MAP2 (Pedrotti and Islam, 1994). These observations suggest MAP1a is not a large contributor to the stabilization of MTs during the later stages of neuronal differentiation and that MAP1a functions to antagonize the MT stability induced by MAP2 and tau in mature neurons. The specific
localization of MAP1a in dendrites may play a role in the plasticity observed in these processes (Frederich and Asódi, 1991).
HETEROLOGOUS EXPRESSION OF MAP1a IN P19 EC and HeLa CELLS

RESULTS

EXPRESSION OF MAP1a FRAGMENTS IN P19 EC AND HeLa CELLS

All MAP1a fragments used in this study are shown in Figure 35. To ensure that all fragments were being expressed correctly, their expression was analyzed by western blotting using mAb 9E10 to detect myc tagged proteins. In P19 EC (Fig. 36A) and HeLa (Fig. 36B) cells all of the fragments displayed mobilities within 5-10 kDa of their predicted molecular weights, except for PGK-6myc1a, which had an apparent mobility of ~360 kDa (compared to its predicted size of 312 kDa). However, this is not unexpected since endogenous MAP1a migrates at ~350 kDa and has a predicted molecular weight of 299 kDa (Langkopf et al., 1992). The amounts of individual fragments decreased as the size of the fragments increased. The bands seen in all lanes (P19 and HeLa cells) at 118 and 70 kDa represent non-specific, get artifacts (data not shown) and immunoreactive bands from 52 – 30 KDa represent MAP1a fragment degredation. In HeLa cell extracts, endogenous human c-myc was detected by the 9E10 antibody (see Fig 35B *).

DETECTION OF MAP1a FRAGMENTS WITH mAb 1A-1

To see if any of the expressed fragments could be detected with mAb 1A-1, western blots from transfected P19 EC were probed with mAb 9E10 (Fig. 37A) and mAb 1A-1 (Fig. 37B). In all lanes, the endogenous MAP1a could be detected. A second band was detected in the extract from PGK-6mycN1a-4 transfected cells which displayed a mobility identical to the MAP1a fragment present (see Fig. 37A).

Confocal immunofluorescence microscopy was used to detect MAP1a in P19 EC and HeLa cells expressing 6myc1a. In all P19 EC cells, a weak diffuse staining was seen (Fig 38a’) which represents the normal staining pattern of endogenous MAP1a in undifferentiated cells. In P19 EC cells expressing 6myc1a, there was an increase in the signal compared to untransfected cells and MT colocalization was easily seen (Fig 38a’). In HeLa cells no MAP1a was detected, except in 6myc1a
**Figure 35**

Schematic showing the various MAP1a fragments used in this study. The cDNA (with important restriction enzymes and cDNA clones used) and the wildtype MAP1a protein are provided for comparison. The predicted molecular weights for each fragment are provided. *This predicted weight does not include LC2, see Materials and Methods.*
Figure 36

Detection of 6myc–tagged MAP1A fragments in transfected P19 EC (A) and HeLa (B) cells. 20μg (P19) or 10μg (HeLa) of transfected SDS-whole cell extracts were separated by SDS-PAGE on 12% gels. 6myc-tagged fragments were immunodetected on western blots using mAb 9E10. * Indicates endogenous human c-myc expression in HeLa cells. Molecular weight markers (MW) are in kD.
Figure 37

Detection of 6myc-tagged MAP1A fragments expressed in P19 EC cells. 20μg of transfected whole cell extracts were separated by SDS-PAGE on 7.5% gels. 6myc-tagged fragments were immunodetected on western blots using mAb 9E10 (A) and MAP1A was immunodetected using mAb 1A-1 (B). Molecular weight markers (MW) are in kD.
Figure 38

Detection of tubulin (mAb YOL1/34, a - b) and MAP1a (mAb 1A-1, a' - b') in 6myc1A expressing P19 EC (a, a') and HeLa cells (b, b') by confocal double immunofluorescence microscopy. Cells were fixed by the extraction / fixation method. Endogenous MAP1a is detected in P19 cells and 6myc1A expressing cells show a more intense staining that colocalizes with MTs (a, a'). In HeLa cells, no MAP1a is detected except in 6myc1A expressing cells, where it colocalizes with MTs (b, b'). Scale bar = 20μm
transfected cells where MAP1a colocalized with MTs (Fig. 38b'). This shows that the full length MAP1a was expressed in frame and suggests that MAP1a was in its native conformation in these cells.

ANALYSIS OF MYC-TAGGED MAP1a FRAGMENT BINDING

To determine which fragments of MAP1a bound to MTs, transfected P19 EC and HeLa cells were observed by confocal immunofluorescence microscopy. Cells were fixed by precipitation so that expression of myc-tagged MAP1a fragments could be monitored even if they did not bind MTs. The extraction fixation method was used to determine if a particular fragment was bound to MTs.

Cells expressing 6myc prepared by precipitation showed a diffuse myc staining in the cytoplasm (Fig. 39a', 40a'). The MTs in the transfected cells showed a normal cytoplasmic interphase organization and appeared identical to that of untransfected cells (Fig. 39a, 40a). Extraction fixation of cells expressing 6myc, showed no myc labeling (Fig. 39h', 40h') and similar results were obtained for cells expressing 6mycN1a-1 (Fig. 39b, b', i, i', 40b, b', i, i') showing that the tagged protein did not remain bound to MTs.

6mycN1a-2 expressing cells prepared by precipitation showed diffuse cytoplasmic staining, similar to 6myc and 6mycN1a-1 (Fig. 39c', 40c'). MTs in these cells were also unaffected (Fig. 39c, 40c). However, extraction fixation of 6mycN1a-2 expressing cells showed the myc tag colocalized with MTs (Fig. 39j, j', 40j, j'). Similar results were obtained for cells expressing 6mycN1a-3 (Fig 39d, d', k, k', 40d, d', k, k') 6mycN1a-4 (Fig. 39e, e', l, l', 40e, e', l, l'), 6myc1a (Fig. 39f, f', m, m', 40f, f', m, m') and 6mycN1a-2ΔBR (Fig. 39g, g', n, n', 40g, g', n, n') showing that all of these fragments bound to MTs and that the MT distribution was unchanged compared to untransfected cells. These results are summarized in Table 1.

In a few P19 EC cells expressing high levels of the 6myc1a, as judged by the intensity of myc labeling, process outgrowth was observed (Fig. 41). No process outgrowth was observed in transfected HeLa cells with any of the fragments of MAP1a.
Figure 39

Detection of tubulin (YOL 1/34, a – n) and 6myc tagged MAP1A fragments (mAb 9E10, a' - n') in transfected P19 EC cells by confocal double immunofluorescence microscopy. Cells were fixed by precipitation (a - g') or by extraction / fixation (h - n'). 6myc and 6mycN1a-1 were present following precipitation (a, a'; b, b') but absent after extraction / fixation (h, h'; i, i'), 6mycN1a-2 was present after precipitation (c, c'), but was also found colocalized with MTs following extraction / fixation (j, j'). Behavior similar to 6mycN1a-2 was observed for 6mycN1a-3 (d, d', k, k'), 6mycN1a-4 (e, e', l, l'), 6myc1a (f, f', m, m') and 6mycN1a-2ΔBR (g, g', n, n'). Scale bar = 20μm.
Figure 40

Detection of tubulin (YOL 1/34, a – n) and 6myc tagged MAP1A fragments (mAb 9E10, a’ - n’) in transfected HeLa cells by confocal double immunofluorescence microscopy. Cells were fixed by precipitation (a - g’) or by extraction / fixation (h - n’). 6myc and 6mycN1a-1 were present following precipitation (a, a’; b, b’) but absent after extraction / fixation (h, h’; i, i’), 6mycN1a-2 was present after precipitation (c, c’), but was also found colocalized with MTs following extraction / fixation (i, j’). Behavior similar to 6mycN1a-2 was observed for 6mycN1a-3 (d, d’, k, k’), 6mycN1a-4 (e, e’, l, l’), 6myc1a (f, f’, m, m’) and 6mycN1a-2ΔBR (g, g’, n, n’). Scale bar = 20μm.
Figure 41

Confocal immunofluorescence microscopy of process outgrowth in 6myc1a expressing P19 EC cells. Cells were fixed by extraction / fixation. Tubulin was detected using mAb YOL1/34 (a) and 6myc1a was detected using mAb 9E10 (a'). Scale bar = 20μm.
TAXOL TREATMENT OF TRANSFECTED P19 EC CELLS

To see if the lack of detection of the 6myc tag and 6mycN1a-1 was due to low levels of fragments present after extraction / fixation, transfected P19 EC cells were treated with taxol to induce MT bundles. This has been shown to enhance the detection of low levels of MAP1a in undifferentiated P19 EC cells by concentrating the MT-bound protein (see previous section).

The MTs in taxol-treated cells were arrayed in thick bundles running through the cytoplasm (Fig. 42a, b). MT-associated 6myc or 6mycN1a-1 after extraction / fixation of taxol treated, transfected cells was never observed (Fig. 42a’, b’). As expected, extraction / fixation of cells expressing 6mycN1a-2 showed myc labeling which colocalized with the MT bundles present (Fig. 42c, c’). Similar results were obtained for 6mycN1a-3 (Fig. 42d, d’), 6mycN1a-4 (Fig. 42e, e’), 6myc1a (Fig. 42f, f’) and 6mycN1a-2ΔBR (Fig. 42g, g’).

IN VITRO MT BINDING OF MAP FRAGMENTS

To confirm the microscopic analysis of MAP fragment binding, an assay was devised to test the binding of MAP fragments to assembled MTs in vitro (see Materials and Methods and Fig. 22). In this procedure, two different sulfonate buffers were used (MAB1 and MAB2). Pedrotti et al., 1993 showed that PIPES buffer (MAB1) resulted in loss of MAP1a from microtubules while MES buffer (MAB2) retained MAP1a bound to MTs. These buffers were used in succession to first remove as much endogenous MAP1a as possible and then, after exogenous fragments were added, keep all MAP1a present (exogenous and endogenous) bound to MTs. Immunoblot analysis indicated that tubulin was present throughout the procedure (Fig. 43A) and TEM showed this tubulin was assembled into MTs (Fig. 43c, d, e). Endogenous MAP1a, although at very high levels after the first assembly step (Fig. 43B, lane1), was mostly removed by the salt washes (Fig 43B, lanes 2 – 7). A small amount of MAP1a remained bound to MTs at the end of the procedure (Fig. 43B, lanes 9 - 14).

6myc and 6mycN1a-1 were absent from MTs following the final sucrose wash while6mycN1a-2, 6mycN1a-3 and 6mycN1a-2ΔBR were bound (Fig. 44, lane 14).
Detection of tubulin (YOL 1/34, a – g) and 6myc tagged MAP1A fragments (mAb 9E10, a’ - g’) in transfected, taxol treated P19 EC cells by confocal double immunofluorescence microscopy. Cells were fixed by extraction / fixation. 6myc and 6mycN1a-1 were not detectable after extraction / fixation (a, a’; b, b’) but 6mycN1a-2 was colocalized with MTs (c, c’). Behavior similar to 6mycN1a-2 was observed for 6mycN1a-3 (d, d’), 6mycN1a-4 (e, e’), 6myc1a (f, f’) and 6mycN1a-2ΔBR (g, g’). Scale bar = 20μm.
Figure 43

In vitro MAP binding assay. Equal volumes of sample were taken from each step during the protocol (see Materials and Methods) and separated by SDS-PAGE on 12% (A) or 7.5% (B) gels. Immunodetection of tubulin with DM1B (A) or MAP1a with 1A-1 (B) on western blots shows the prevalence of tubulin and MAP1a during the procedure. Whole cell extracts from P19 EC cells expressing myc-tagged MAP1a fragments were added to MTs at step 10. Samples were negatively stained for transmission electron microscopy at steps 1 (c), 7 (d) and 14 (e) to show the presence of intact MTs throughout the entire procedure. Scale bar = 100nm. Figure 22 is reproduced here to facilitate comparison. * Steps that contain transfected P19 EC cell extract.
1. Assemble S3 tubulin 30 min at 37°C in MAB1

2. Spin 15 min at 36000g and 37°C, keep pellet

3. Resuspend microtubules in MAB2 + NaCl

4. Spin 15 min at 36000g and 37°C, keep pellet

5. Resuspend microtubules in MAB2 + NaCl

6. Spin 15 min at 36000g and 37°C through sucrose cushion, keep pellet

7. Resuspend microtubules in MAB1

8. Spin 15 min at 36000g and 37°C, keep pellet

9. Resuspend microtubules in MAB1

10. Add transfected P19 extract containing MAP fragments, incubate 15 min at 37°C

11. Spin 15 min at 36000g and 37°C, keep supernatant

12. Resuspend microtubules in MAB1

13. Spin 15 min at 36000g and 37°C through sucrose cushion, keep supernatant

14. Resuspend microtubules in MAB1
In vitro MAP binding assay. Equal volumes of sample were taken from steps 10 to 14 during the protocol (see materials and methods) and separated by SDS-PAGE on 12% or 7.5 gels. Immunodetection of myc-tagged MAP1A fragments (using mAb 9E10) on western blots shows the presence or absence of fragments at each step sampled. Molecular weight markers (MW) are in kD.
TABLE 1. Summary of MAP1A fragment transfection experiments.

<table>
<thead>
<tr>
<th>MAP1A FRAGMENT</th>
<th>P19 EC Cells</th>
<th>HeLa Cells</th>
<th>Binds MTs in vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present in cytoplasm</td>
<td>MT colocalization</td>
<td>Present in cytoplasm</td>
</tr>
<tr>
<td>6myc</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>6mycN1A-1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>6mycN1A-2</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6mycN1A-3</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6mycN1A-4</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6myc1A</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6mycN1A-2ΔBR</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

ND = not determined
6mycN1a-4 and 6mycN1a were not analyzed due to the very low levels of tagged protein available from culture extracts. These results are summarized in Table 1.

COLCHICINE TREATMENT OF TRANSFECTED P19 EC CELLS

Transfected P19 EC cells were treated with colchicine to ensure that the pattern of myc labeling in cells prepared by extraction / fixation was really due to an association with MTs and not with other cytoskeletal components, and also to see if the colchicine stability of MTs was altered by any of the MAP1a fragments. As a positive control, P19 EC cells were transfected with PGK-MAP2cmyc (provided by C. Addison). MAP2c is a juvenile form of MAP2 and, like HMW-MAP2, also has MT bundling and stabilizing abilities (Weissharr et al., 1992).

MAP2cmyc expressing cells showed the presence of thick bundles of MTs in the cytoplasm (Fig. 45a.). The myc labeling was found colocalized with these bundles (Fig. 45a'). After 15min of colchicine treatment, the MTs in the untransfected cells were partially depolymerized. In MAP2cmyc transfected cells, some of the unbundled MTs began to depolymerize, but the bundled MTs appeared unaffected (Fig. 45b, b'). After 30min of colchicine treatment almost all MTs were completely depolymerized, except for the MAP2cmyc bundled MTs that remained polymerized (Fig. 45c, c')

Untreated cells expressing 6mycN1a-2 show a normal distribution of MTs compared to untransfected cells. (Fig. 45d, d'). After 15min of colchicine, the MTs in transfected cells displayed some depolymerization but appeared to be slightly more resistant to colchicine than the MTs in untransfected cells (Fig. 45e, e'). After 30min of colchicine treatment, no myc labelling was seen colocalized with MTs. In a few cells, a weak, diffuse cytoplasmic staining was observed, but myc labeling was never colocalized with other cytoplasmic structures. In these samples, almost all MTs were completely depolymerized with the exception of midbodies and MTs closest to to the microtubule organizing center. (Fig. 45f, f'). Similar results were obtained for cells expressing 6mycN1a-3 (Fig. 45g-i'). In 6mycN1a-2ΔBR expressing cells, an increase in resistance to colchicine-induced MT disassembly was not detectable (Fig. 45j-l').
Figure 45

Detection of tubulin (mAb YOL 1/34, a – l) and myc-tagged MAPs (mAb 9E10, a’ - l’) in transfected, colchicine-treated P19 EC cells by digital immunofluorescence microscopy. Cells were untreated (left column), treated for 15 min (middle column) or treated for 30 min (right column) with 1 mg/ml colchicine and then fixed by extraction / fixation. MTs in MAP2cmyc expressing cells were resistant to colchicine even after 30 min of colchicine treatment (a - c’). 6mycN1a-2 and 6mycN1a-3 expressing cells were detected in untreated cells (d – d’; g – g’). MTs showed a slight resistance after 15 min of treatment compared to untransfected cells (e – e’; h – h’), and no MAP1a fragment expressing cells were detected after 30 min of colchicine(f – f’, i – i’). MTs in 6mycN1a-2ΔBR expressing cells did not display any detectable colchicine resistance (j – l’). Scale bar = 40 µm.
EFFECT OF MAP1a FRAGMENTS ON α-TUBULIN MODIFICATIONS

To test the effect of MAP1a fragments on MT dynamics, the extent of α-tubulin acetylation and detyrosination was determined in transfected cultures by quantitative dot blotting. These posttranslational modifications of tubulin have been shown to be biochemical markers of MTs that have a decreased rate of turnover (Li and Black, 1996). As positive controls, levels of α-tubulin acetylation and detyrosination were also determined in cultures expressing MAP2cmyc and in cultures treated with $10^{-6}$M taxol.

The levels of acetylation and detyrosination were normalized to levels found in untransfected cells (Fig. 46 a, b). There was a marked increase in acetylation and detyrosination in cultures expressing 6myc1a. However, the amounts observed were less than that for MAP2cmyc-expressing and taxol-treated cultures. There were marked decreases in acetylation and detyrosination in cultures expressing 6mycN1a-4 and 6mycN1a-2ΔBR. The effects of 6mycN1a-2 and 6mycN1a-3 were not considered important, as the levels of acetylation and detyrosination were similar to 6mycN1a-1 and 6myc, which do not bind MTs.

By normalizing the amounts of acetylation and detyrosination to the amount of myc-tagged fragment bound to MTs, the effect of each fragment on acetylation and detyrosination can be compared on a per molecule basis (Fig. 46c, d). 6mycN1a-4 markedly reduced the acetylation and detyrosination of MTs compared to the other fragments. 6myc1a markedly enhanced the acetylation and detyrosination of MTs. 6mycN1a-3 also enhanced acetylation and detyrosination but its affect was weaker than 6myc1a. Finally, while 6mycN1a-2ΔBR-bound MTs had the lowest levels of acetylation and detyrosination it appeared to have a similar effect per molecule as 6mycN1a-2. Analysis of the levels of myc tagged fragments bound to MTs showed that there was a notable increase in the amount of MT-bound 6mycN1a-2ΔBR compared to the other fragments, including 6myc1a (Fig. 46E). This increased binding was not due to differential expression of different fragments as the proportion of 6mycN1a-2ΔBR bound to MTs was also significantly greater than all other fragments (Fig. 46F).
Figure 46

Effect of MAP1a fragments on α-tubulin modifications in P19 EC cells. The relative levels of acetylation (mAb 6-11B-1, A - C) and deacetylation (pAb anti-E, B – D) were analyzed in polymer extracts from transfected P19 EC cells by quantitative dot blotting (n=3). Quantification of myc tagged fragments in polymer and soluble extracts was performed using mAb 9E10. A and B represent the relative levels of acetylation and deacetylation per µg of tubulin. C and D represent the relative levels of acetylation and deacetylation for equivalent amounts of myc-tagged fragments per µg of tubulin. E represents the amounts of MT-bound myc-tagged fragment per µg of tubulin and F is fraction of total myc tag present that is bound to MTs. Error bars represent the standard errors of the averages of three measurements from three independent experiments.
DISCUSSION

EXPRESSION OF MYC TAGGED MAP1a FRAGMENTS

All fragments (with the exception of 6myc1a) ran within 5 - 10 kDa of their predicted molecular weights. For 6myc1a, the apparent mobility (360 kDa) was close to the mobility of endogenous MAP1a (350 kDa, Langkopf et al., 1992), given the extra 12 kDa present in the 6myc tag. This shows that the termination of translation was occurring as predicted for all the fragments. A decrease was observed in the amounts of myc tagged MAP1a fragments as their size increased, suggesting either that transfection of larger plasmids is less efficient or that expression of larger proteins is less efficient. This was consistent with microscopic observations showing that for the smaller fragments (6myc, 6mycN1a-1, 6mycN1a-2 and 6mycN1a-2ΔBR), 20 - 30% of the cells on a coverslip expressed the myc tag; whereas for the larger fragments (6mycN1a-4 and 6myc1a), only 5 - 10 expressing cells were visible on a cs (data not shown). The detection of MAP1a fragments with 1A-1 showed that the epitope for 1A-1 lies within aa 1310-2016 of MAP1a. This is in agreement with Schoenfeld et al. (1989) who failed to detect N-terminal MT-binding fragments of MAP1a with 1A-1.

MT BINDING OF MYC TAGGED MAP1a FRAGMENTS

In both P19 EC and HeLa cells the 6myc tag was expressed but did not bind to MTs, even in taxol-treated cells, demonstrating that this was a good tag for these studies. 6mycN1a-1 also did not bind MTs demonstrating that aa 1 - 281 of MAP1a were not sufficient for MT binding. 6mycN1a-2 did bind to MTs, suggesting that aa 282-630 of MAP1a are involved in MT binding. Removal of the basic repeats from 6mycN1a-2 (6mycN1a-2ΔBR) did not noticeably affect its ability to bind to MTs indicating the presence of MT binding domain(s) contained within aa 281-355 or aa 451-630 or both. Langkopf et al., (1992) have reported a region of protein similarity flanking the basic repeat domain in MAP1a and MAP1b. In MAP1b, these flanking domains bind MTs (Noble et al., 1989). We also observed that larger fragments of MAP1a, 6mycN1a-3 and 6mycN1a-4, and the full length MAP1a (6myc1a) also bound to MTs. The morphology of MTs in cells expressing all MAP1a fragments was not detectable altered compared to untransfected cells. The ability of these fragments to
bind MTs *in vitro* was identical, except for 6mycN1a-4 and 6myc1a, which could not be tested *in vitro* due to the low levels of expression of these fragments (see above).

These results do not agree with those of Cravchik *et al.*, (1994) who, by microscopy of transfected HeLa cells, failed to detect a MAP1a fragment consisting of aa 1 - ~1300 of MAP1a (identical to 6mycN1a-3) bound to MTs. They also showed that a region near the middle of MAP1a (aa 1307-1606) consisting of self-similar acidic elements was the MT binding domain and that this domain induced the reorganization of normal interphase MTs into short-perinuclear MTs. In this study, the MAP1a fragments containing this region, 6mycN1a-4 and 6myc1a, bound to MTs but did not result in any of the rearrangements seen in their study. We suggest that this acidic domain, while having the capacity to bind MTs, is not a part of MAP1a which normally participates in binding. It may be folded inside the polypeptide, possibly participating in a structural aspect of MAP1a’s projection domain. The presence of acidic repeats has been documented in STOP, MAP4 and MAP1b. These acidic domains are thought to form α-helices which contribute to the long rod shape of the protein (Noble *et al.*, 1989; West *et al.*, 1991 Bosc *et al.*, 1996).

In a few P19 EC cells expressing large amounts 6myc1a, we observed the formation of processes, indicating that MAP1a can induce process outgrowth. This observation is consistent with a role for MAP1a in neuronal growth.

**EFFECT OF MAP1a FRAGMENTS ON COLCHICINE STABILITY OF MTs**

In P19 EC cells expressing 6mycN1a-2, 6mycN1a-3, a slight increase in resistance to colchicine-induced MT depolymerization compared to untransfected cells was observed after 15 min. However, after 30 min, no MAP1a fragments could be detected in association with the few MTs left intact. In contrast, cells expressing MAP2cmyc displayed bundled arrays of MTs that were resistant to depolymerization even after 30 min of treatment. These data suggest that while MAP1a may have some stabilizing ability, it is small in comparison to MAP2c and probably more similar to MAP1b. In MAP1b transfected cells MTs were also stabilized, but to a lesser extent than in cells transfected with MAP2c (Takemura *et al.*, 1992). These results are also consistent with those of Pedrotti and Islam (1994) who showed that the rates of
association and dissociation of dimers onto and from MT polymer were 2-3 times higher for MAP1a than for MAP2.

EFFECT OF MAP1a FRAGMENTS ON ACETYLAITION AND DETYROSINATION

MTs in 6myc1a-expressing cells showed increases in acetylation and deetyrosination that were greater than any MAP1a fragment, but these levels of acetylation and deetyrosination were still smaller than in cells expressing MAP2cmyc. This suggests that overexpression of MAP1a induces MTs that turn over more slowly than in untransfected cells, but more rapidly than in MAP2cmyc expressing cells. These observations are also in agreement with the in vitro results of Pedrotti et al. (1994) (see above). Similar results were obtained for MAP1b by Takemura et al. (1992) who showed an increase in acetylation of MTs in MAP1b transfected cells but that the acetylation induced by MAP2c was stronger. The increase in acetylation and deetyrosination seen for 6myc1a may be because the open reading frame in PGK-6myc1a also contains the LC2 sequence. This LC would be present in substoichiometric amounts in cultures expressing MAP1a fragments because LC2 is not present in the constructs transfected. This LC may serve to allow the proper folding of the MAP1a polypeptide so that it has normal activity in affecting MT dynamics or may be required to be present at the MT-binding domain for stabilizing activity.

6mycN1a-4, although bound to MTs, significantly reduced the acetylation and deetyrosination of MTs. On a per molecule basis, the acetylation and deetyrosination of MTs bound by 6mycN1a-4 were much lower than MTs bound by any other fragment. It is possible that this fragment is folded aberrantly during translation and that this abnormal folding, while allowing the molecule to bind to MTs, acts to destabilize the MT lattice, resulting in more rapid turnover of MTs bound by this fragment.

The changes in acetylation and deetyrosination induced by 6mycN1a-2 and 6mycN1a-3 could not be considered significant because they were less than or equal to changes induced by 6mycN1a-1. Because 6mycN1a-1 could not be detected associated with MTs either microscopically or in vitro, the changes in acetylation and deetyrosination observed with this fragment were assumed to be an increase attributable to some aspect of MAP1a fragment transfection other than MT-binding.
Acetylation and detyrosination induced by 6mycN1a-1 were treated as baselines for comparison with other fragments. However, the expression of 6mycN1a-2 and 6mycN1a-3 appeared to slightly increase the stability of MTs to colchicine-induced depolymerization. Although colchicine treatment of 6mycN1a-4 and 6myc1a transfected cells was attempted, the extremely small number of transfected cells present made it impossible to determine the effect of these fragments on colchicine stability. The colchicine stability induced by 6myc1a might be greater than that induced by 6myc N1a-1 or 6mycN1a-2.

REGULATION OF MAP1a AFFINITY FOR MTs.

6mycN1a-2 and 6mycN1a-2ΔBR appeared to have the same effect per molecule of fragment on acetylation and detyrosination. However, there was a decrease in the levels of these modifications per unit length of 6mycN1a-2ΔBR bound MTs compared with 6mycN1a-2. This suggests that these MTs turn over more rapidly. This is consistent with the lack of colchicine resistance of MTs in 6mycN1a-2ΔBR transfected cells. More 6mycN1a-2ΔBR was bound per unit length of MT than any other fragment. The increase in levels of MT-bound 6mycN1a-2ΔBR was not due to differential expression of fragments as the fraction of total fragment bound was much greater for 6mycN1a-2ΔBR when compared to all other fragments. MT bound 6mycN1a-2ΔBR may have a greater affinity for MTs than other fragments, allowing it to more efficiently compete for MT binding with endogenous MAP1a than other fragments. This competition would cause the loss of enough endogenous MAP1a from the MT to lose its stabilizing activity. The increase in MT-bound 6mycN1a-2ΔBR compared to other fragments appears to be due to a greater affinity for MTs than other fragments. This suggests that the MT-binding regions that flank the basic repeats have a high affinity for MTs. This affinity may be modulated by the presence of the basic repeats. This kind of co-operativity has already been demonstrated for tau, where the regions flanking the basic repeats have greater MT binding ability than in the presence of the basic repeats (Gustke et al., 1994), and for MAP4 (Aizawa et al., 1991).

The data presented here show that MAP1a is similar to MAP1b in terms of its stabilizing ability in comparison with MAP2 and that the mechanism of MAP1a binding to MTs may be similar to that of tau.
CONCLUDING REMARKS

FUNCTION OF MAP1A DURING NEURONAL DIFFERENTIATION

The expression patterns of MAP1b, MAP2 and tau in RA-induced, serum-free neuronal differentiation of P19 EC cells reflect the expression patterns of MAPs seen in brain (Binder et al., 1984; Tucker et al., 1988c; Kosik et al., 1989; Garner et al., 1990; Oblinger and Kost, 1994). In the case of MAP2 and tau, a shift from juvenile forms to adult forms was detected. This shift is considered integral to the development of more stable populations of MTs and to axonal and dendritic specialization in developing brain (Caceres et al., 1984; Tucker et al., 1988a; Goedert and Jakes, 1990). In addition, the differential localization of MAP2 and HMW-MAP2 in developing P19 EC cultures suggested that neurites were specializing into dendrites and axons and that most of the processes seen in these cultures were axonal in nature.

The pattern of MAP1a expression in P19 EC cells is similar to the axonal expression of MAP1a during brain development (Schoenfeld et al., 1989). The apparent conflict between the patterns of MAP1a expression obtained from whole brain extracts and in differentiating P19 EC cells can be reconciled if the majority of MAP1a in whole brain extracts is derived from dendrites. The work of Schoenfeld et al. (1989) supports this hypothesis as they showed that throughout brain development, MAP1A is primarily found in dendrites.

A MT binding domain of MAP1A is contained within aa 281-335 and / or aa 451-630. These regions are similar to regions flanking the basic repeats in MAP1b (Langkopf et al., 1992) which can bind MTs (Noble et al., 1989). MAP1a also contains 11 repeats of the basic consensus sequence KKE that is also present in MAP1b. These basic repeats in MAP1b can bind MTs (Noble et al., 1989) which suggests that this domain in MAP1a is also capable of binding to MTs. If the basic repeats in MAP1a can bind MTs, they may modulate the affinity of MAP1a for MTs. This interaction would be similar to the interactions of MT binding domains in tau, whose flanking regions demonstrate a higher affinity for MTs in the absence of the basic repeats (Gustke et al., 1994).
The effects of MAP1a and MAP2 on acetylation, dehydroxylation, and colchicine-stability of MTs from this study and in vitro assembly results from Pedrotti and Islam (1994) shows that MAP1a stabilizes MTs, but is much less effective in stabilizing MTs compared to MAP2. Additionally, overexpression of MAP1a in P19 EC cells induces process outgrowth. This suggests that MAP1A-bound MTs are stable enough to support process outgrowth, but are still moderately dynamic so that growth is not inhibited.

LCs may contribute to these stabilizing properties of MAP1a. LC2 is preferentially bound to MAP1a (Schoenfeld et al., 1989; Pedrotti and Islam, 1995a) and MTs appear more dynamic in the presence of MAP1b than MAP1a (Pedrotti and Islam, 1994a, 1995b). These observations suggest the increased ability of MAP1a to stabilize MTs compared to MAP1b may be due to the association of LC2 with MAP1a. Pedrotti and Islam (1994) noted that MAP1a purified from adult brain could stabilize MTs, but that this stabilization was weaker than that induced by MAP2. Overexpression of MAP1a in undifferentiated P19 EC cells demonstrated the same intermediate effect on MT stability compared with the MT stabilization seen in untransfected and MAP2-expressing cells. LC3 is present in whole cell extracts from undifferentiated cells but it is not found in the polymer fraction, indicating that MAP1a in undifferentiated P19 EC cells does not associate with LC3. This suggests that LC3 does not influence the ability of MAP1a to stabilize MTs. LC3 may serve to increase the affinity of MAP1a for MTs so that it can remain MT-associated in adult neurons. In differentiating P19 EC cells, the peak of MAP1a expression during differentiation coincides with a gradual reduction in the density of MAP1a present on MTs in these cells. However, the levels of MT-bound LC3 continually increase during development. This indicates that the association of LC3 with MAP1a increases during development. This increase in association of LC3 with MAP1a during differentiation may serve to increase the MT-affinity of MAP1a. Schoenfeld et al. (1989) have shown that more than one of a particular LC molecule can associate with MAP1a. Shiomiura and Hirokawa (1987) have demonstrated the colocalization of MAP1a and MAP2 on neuronal MTs and in maturing brain, MAP1a is only found in dendrites (Schoenfeld et al., 1989). The MAP1a present during the later stages of P19 EC cell differentiation may represent a stable population of MAP1a associated
with many LC3 molecules, allowing it to successfully compete with MAP2 for MT binding sites in dendrites. If MAP1a is a weak stabilizer, but can compete with MAP2 for MT-binding sites, it would reduce the MT stability in dendrites by preventing the saturation of MTs by MAP2. This may also reflect the situation seen in neurons in vivo, as mature axons, deficient in MAP1a, are far less plastic than dendrites. This then begs the question: what is the role of MAP1a in dendrites? These structures have been shown to be plastic and respond morphologically in response to stimulation (Aoki and Siekevitz, 1985). MAP1a may contribute to this synaptic plasticity by preventing strong stabilizers (i.e. HMW-MAP2) from saturating dendritic MTs and reducing the plastic capabilities of dendritic MTs.

A MODEL FOR TEMPORAL AND SPATIAL REGULATION OF MT DYNAMICS BY MAPs DURING NEURONAL DEVELOPMENT

The interaction of MAPs with MTs during neuronal differentiation is very complex. Four aspects of MAPs which regulate neuronal morphogenesis and neuronal connections in the adult are developmental regulation, subcellular localization, the ability of a particular MAP species to stabilize MTs, and the effect of developmentally regulated posttranslational modifications on MAP-mediated MT stabilization. A model for MAP interactions during neuronal development is presented in figure 47. During differentiation, MAP1a and MAP2c are upregulated in both the dendrite and axon in immature neurons (Crandall and Fischer, 1989; Schoenfeld et al., 1989). Both these MAPs can stabilize MTs, but MAP2c is much more efficient than MAP1a (Pedrotti and Islam, 1994). The combination of these two MAPs would yield MTs that are stable enough to support efficient process outgrowth, but still dynamic enough to allow further elongation. MAP1b, MAP3 and juvenile tau are primarily found in the immature axon (Huber et al., 1985; Kosik et al., 1989; Schoenfeld et al., 1989). MAP1b has very little stabilizing ability at this stage and is present primarily in the growing distal axon and growth cone where it is most highly phosphorylated (Sato-Yoshitake et al., 1990; Boyne et al., 1995). As phosphorylated MAP1b binds MTs more efficiently (Díaz-Nido et al., 1990), this specific phosphorylation may serve to promote efficient MAP1b association with MTs and prevent stabilization only in areas where active growth is occurring. Juvenile tau
is phosphorylated early in development (Goedert et al., 1993), displays the same gradient as MAP1B in immature axons, and is weakly associated with MTs (Black et al., 1996). The high level of tau phosphorylation present in early development may prevent MT-association of tau, allowing it to interact with actin and regulate microfilament dynamics in the growth cone. Additionally, phosphorylated MAP1b may be able to efficiently compete with phosphorylated tau for MT binding, preventing strong stabilization of MTs in actively growing regions of the neurite.

As maturation of neurons progresses changes occur in the subcellular localization of MAPs, as well as in the expression of adult MAP isoforms by developmentally regulated alternative splicing, that alter the characteristics of maturing neurons. MAP1a continues to be upregulated in dendrites, but is lost from axons (Schoenfeld et al., 1989). MAP2c is lost from both axons and dendrites and is replaced by HMW-MAP2, but only in the dendrite (Tucker et al., 1988c). A small amount of MAP1b can also be found in maturing dendrites (Schoenfeld et al., 1989). The combination of these MAPs might yield populations of MTs that function to maintain dendritic organization in the adult, but are capable of supporting the plastic reorganizations that are seen in dendrites. In maturing axons, MAP3, juvenile tau and MAP1b are lost and are replaced by adult tau (Huber et al., 1985; Gamer et al., 1990; Oblinger and Kost, 1994). Adult tau is a stronger stabilizer that juvenile tau (Montejo de Garcini et al., 1994) and, due to the low levels of tau phosphorylation at this stage of development (Goedert et al., 1993), tau efficiently binds MTs and acts in the absence of MAPs “antagonistic” to its function (MAP1a and 1b) to produce a population of very stable MTs in the axon. It is interesting to note that the plasticity of axons may also be related to their inter-MT spacing. In mature dendrites, only MAPs with large projection domains are present, while in the axons MAPs have smaller projection domains. These serve to produce MTs which in dendrites are spaced further apart in than in axons. This spacing may have an impact on the structural characteristics of the MT cytoskeleton in axons and dendrites. MT bundles having large spacers would be more able to flex and bend than MT bundles with smaller spacings. The MAP composition seen in immature neurons is retained in regions of the brain where neuronal growth is known to persist. Additionally, the recapitulation of immature MAP expression occurs in regenerating neurons. These
Figure 47.

A model for the role of MAPs in axonal and dendritic development in brain.
DENDRITES

UNDIFFERENTIATED CELL
IMMATURE NEURON
MATURE NEURON

AXONS
observations argue that the combinations of MAPs present in the immature neuron are essential for proper neuronal growth.

THE BIOCHEMISTRY OF THE MAP-MT INTERACTION

Data from this study and others reveals several patterns in the MT-binding domains of all MAPs. All contain two regions which bind MTs, a domain of basic repeats and a domain flanking these repeats (Aizawa et al., 1991; Lewis et al., 1988; Noble et al., 1989; Gustke et al., 1994). The MT-binding of MAP4 and tau is weakest with only the basic repeats, stronger with both flanking and repeat regions and strongest with only the flanking regions (Aizawa et al., 1991; Gustke et al., 1994). The weaker affinity for MAP1a with only the flanking regions compared to that in the presence of the basic repeats is consistent with this pattern. Additionally, although these flanking regions exhibit strong MT interactions, the normal function of the MAP is lost in the absence of the basic repeats (Aizawa et al., 1991; Trinczek et al., 1995), suggesting that in these MAPs, the basic repeats are important for normal MAP function. Gustke et al. (1994) have suggested a model for tau-MT interactions where the flanking regions serve as "jaws" forming the initial, high affinity MT-interaction, followed by a secondary interaction by the basic repeats. This mechanism may apply to all MAPs, with the flanking regions serving to target the MAPs to the MT surface and the basic repeats functioning as a "lock and key" mechanism which modulates the conformation of the tubulin molecule.

All MAPs interact at the c-terminus of β-tubulin (Littauer et al., 1986; Aizawa et al., 1987; Cross et al., 1991) and this region is also involved in GTP binding (Burns and Farell, 1996). The basic repeats might affect the conformation of this region of the tubulin molecule, perhaps regulating GTP hydrolysis and MT disassembly. It is interesting to note that a correlation exists between the effect of a MAP on MT dynamics and the organization of its basic repeats. Stabilizing MAPs such as MAP2, tau and MAP4 all contain 3 – 5 basic repeats of 18 aa which are highly conserved among these MAP species (Lewis et al., 1988; Aizawa et al., 1989; Chapin and Bulinski, 1991). Weak stabilizers, like MAP1a and MAP1b, have small basic repeats of a KKE motif that is much more numerous (11 in MAP1a, 21 in MAP1b) (Noble et al., 1989; Langkopf et al., 1992). It is possible that the nature of
the basic repeats determines the conformation of the c-terminus of β-tubulin and hence the effect of a particular MAP on MT dynamics.

FUTURE PROSPECTS

THE BASIC REPEATS OF MAP1a

The obvious missing link in the data presented in this thesis is the absence of data for the basic repeats alone binding to MTs. Although analogous repeats can bind MTs in MAP1b this question still remains to be answered for MAP1a. PCR-amplification of the region of MAP1a containing the basic repeats and its insertion into a plasmid vector has been accomplished. However, this fragment is highly unstable when inserted into plasmid vectors and despite numerous attempts using a variety of strategies, only one successful insertion into pKJ1DF-6myc was obtained and this was out of frame. Attempts to insert small oligonucleotide linkers to bring the cDNA for the basic repeats in frame with the tag only resulted in the loss of all or part of the insert. Perhaps PCR-based ligation protocols will allow the successful insertion of this fragment into the expression vector and allow characterization of its effects on MTs.

Additionally, a deletion mutant of full length MAP1a in which only the basic repeats were deleted would be informative in determining domain function of MAP1a.

REAL TIME MT DYNAMICS OF MAP1a-BOUND MTs.

A direct measure of the real time MT dynamics (assembly, disassembly, catastrophe, rescue) in the presence of MAP1a and MAP1a fragments would allow for a more detailed assessment of the effects of individual domains. This could be done in vivo by establishing permanently transfected cell lines expressing MAP1a or MAP1a fragments. HeLa cells would be an ideal cell line, as they contain no endogenous MAP1a. MAP1a tagged with green fluorescent protein (GFP) would allow live monitoring of MAP1a expressing cells. The visualization of GFP-MAP1a localization in permanently transfected cells would demonstrate the MT binding of MAP1a in vivo. A comparison of MT dynamics could be made in cells expressing different fragments of MAP1a. These values could be correlated with MT dynamics.
in untransfected cells by monitoring MT behaviour in cells microinjected with rhodamine labeled tubulin.

The effect of MAP1a and MAP1a fragments on MT dynamics could also be monitored in vitro by purifying MAP1a and MAP1a fragments expressed either in yeast, or in SF9 cells using the baculovirus system. The effects of these fragments on the dynamics of MTs assembled from phosphocellulose-purified tubulin could be monitored by differential interference contrast microscopy and turbidometry.

ANALYSIS OF MAP1a FUNCTION IN VIVO

Transgenic tau knockout mice, MAP1b mutant transgenic mice, and MAP2c overexpressing mice have been made. Analysis of the tau and MAP1b mice has hinted at MAP1a function, but no MAP1a transgenic mice have been made to date. Transgenic mice where MAP1a is knocked out or is missing the MT binding domain could reveal the in vivo function of this protein. Analysis of MAP1a knockout mice, particularly focusing on dendritic formation and plasticity would be a direct test of the above model for MAP1a function. MAP1a function could also be addressed in differentiating P19 EC cells by using the α1-tubulin promoter to drive over expression of MAP1a or inhibit expression by driving production of antisense mRNA for MAP1a. This promoter has been shown to drive developmentally upregulated, neuronal-specific expression in P19 EC cells (Rogers et al., 1995).

MAP1a / LC INTERACTIONS

LC1 and LC2 have been prepared that are tagged at the amino terminus with the hemagglutinin (HA) tag (Field et al., 1988) however, due to time constraints, the LC3 construct was not completed and experiments were not conducted with these proteins. The HA tag is only 9 aa and only 1/10th the size of the 6myc tag. It has been used successfully to tag the c-terminus of tubulin (Gonzalez-Garay and Cabral, 1995). This should preclude any steric or folding inhibition of normal LC function that could be occurring with the 6myc tag. It will also allow the detection of both LCs and myc-tagged MAP1a fragments in cotransfected cells. The transfection of P19 and HeLa cells with LCs should be repeated with HA-tagged LCs. Cotransfection experiments could also be performed with HA-tagged LCs and myc-tagged MAP1a
fragments. The interaction of LCs and MAP1a could also be tested in vitro using the MAP-binding assay developed. Results from these experiments could begin to answer many questions including:

1. Where are the binding site(s) for LCs?
2. Does LC2 allow MAP1a to stabilize MTs?
3. Does LC3 increase the affinity of MAP1a for MTs?
4. Is LC processing required for LC association.

Finally, the full-length n-terminal myc-tagged MAP1a could be tagged at the c-terminus with the HA-tag. This would allow the direct analysis of MAP1a/LC2 processing. For example, the presence of the pre-processed polypeptide (containing both tags) could be determined by western blotting with mAb 9E10 and a HA-tag Ab. Processing of this polypeptide could be monitored by the presence of separate, HA-tagged LC2 and myc-tagged MAP1a.
APPENDIX 1 – CHARACTERIZATION OF MAP1b mAb 6D4

The monoclonal IgG 6D4 was provided by Dr. L. Binder who in a personal communication suggested it was specific for MAP1b. However, aside from western blotting, no characterization of this mAb had been conducted. Before using this antibody to detect MAP1b, we characterized it by a variety of methods to ensure that it specifically recognized MAP1b and this recognition was not inhibited nor dependent on phosphorylation of MAP1b.

The first step was to localize 6D4 immunoreactivity (IR) in cryosections of post-natal and adolescent rat brain by immunofluorescence microscopy. In the neo-natal rat, regions of the presumptive cerebellum, spinal Tr trigeminal nerve, and facial nucleus all displayed intense IR, but at this stage of development no recognizable cellular structures could be discerned, preventing a specific localization from being determined (Fig. 48). In the adolescent rat brain, cerebellar organization more typical of a mature organism was seen. 6D4 IR was observed in Purkinje cell bodies and dendrites, in the molecular layer, and in parallel fibers (axons) (Fig 49 b, d). In a cross section of the spinal Tr trigeminal nerve, many axons were present and these displayed intense 6D4 IR (Fig. 49c). In the facial nucleus, 6D4 IR was observed in cell bodies and in neurites (Fig. 49e). In the granule cell layer of the cochlear nuclei (primarily axonal), 6D4 IR was observed in the mossy fibers (Fig. 49f).

Immunodetection of western blots of twice cycled bovine brain MT preparations (S3) by 6D4 revealed a single polypeptide of approximately 330 kDa. This polypeptide was smaller than the 350 kDa MAP1a polypeptide detected with mAb 1A-1 (Fig. 50A). Antigen profiles were then compared between 6D4 and 1B-4, a MAP1b specific antibody that is insensitive to MAP1b phosphorylation (Bloom et al., 1985). Western blotting revealed identical patterns of 6D4 and 1B-4 IR was identical. A single 330 kDa polypeptide was observed which increased in abundance during differentiation, peaked between day 4 and day 6, and then dropped in abundance during the later stages of differentiation (Fig. 50B). Quantitative dot blotting also showed that the relative amounts of the 6D4 antigen and the 1B-4 antigen during differentiation were virtually identical (Fig. 51).
Figure 48

Detection of 6D4 immunoreactivity in neo-natal rat brain cryosections by immunofluorescence microscopy. a) 2° Ab control, b) presumptive cerebellum (low mag.), c) presumptive spinal tr trigeminal nerve, d) presumptive cerebellum (high mag.), e) presumptive facial nucleus. Scale bars = 80μm.
Figure 49

Detection of 6D4 immunoreactivity in adolescent (120g) rat brain cryosections by immunofluorescence microscopy.  a) 2° Ab control, b) cerebellum (low mag.), c) spinal tr trigeminal nerve, d) cerebellum (high mag.), e) facial nucleus, f) granule cell layer of cochlear nucleus.  Scale bars = 80μm.
Figure 50

Characterization of 6D4 IR by western blotting. A) 2X cycled bovine brain MT (S3) extract was separated on a 4-15% gradient gel. Western blots were probed with 6D4. Immunodetection of MAP1A using mAb 1A-1 is provided for comparison. B) SDS-whole cell extracts from day 0 to 12 of differentiating P19 EC cells were separated on 7.5% gels. Western blots were probed with 6D4. Immunodetection of MAP1B using mAb 1B-4 is provided for comparison.
**Figure 51**

Comparison of 6D4 and 1B-4 IR in differentiating P19 EC cells. Levels of the 6D4 antigen in SDS-whole cell extracts of day 0 to 12 from differentiating P19 EC cells were determined by quantitative dot blotting. Levels of MAP1b using mAb 1B-4 are provided for comparison. Error bars represent the standard error of the averages of three measurements from three independent experiments.
The 6D4 IR in rat brain demonstrates that 6D4 antigen is present early in development and is present in both axons and dendrites. The 6D4 IR in post-natal and developing brain resembles MAP1b localization in the developing brain (Schoenfeld et al., 1989). The 6D4 antigen is a 330 kDa polypeptide that associates with MTs through 2 cycles of assembly and disassembly of MTs, indicating that it is a MAP. It is identical to the 1B-4 antigen in apparent molecular weight and expression in differentiating P19 EC cells, indicating that it is MAP1b. Additionally, the similar profile of 6D4 compared with that of 1B-4 in differentiating P19 EC cells suggests that the 6D4 antibody is not sensitive to phosphorylation. This characterization establishes that mAb 6D4 recognizes MAP1b independent of phosphorylation.
APPENDIX 2- HETEROLOGOUS EXPRESSION OF MAP1 LIGHT CHAINS

INTRODUCTION

MAP1 components (MAP1a and MAP1b) normally present in developing brain are composed of one heavy chain (traditionally known as MAP1a or MAP1b) and several light chains. The three different light chains (see introduction) associate at or near the MT-binding domains of the heavy chains. Due to their close proximity to the MT-binding domain, it has been suggested that these light chains play a role in either binding MAP1a or MAP1b to MTs or in modulating the effects of MAP1a and MAP1b on MT dynamics. This appendix includes preliminary experiments on light chain characterization and function. How light chains may impact MAP1 function during neuronal development is discussed.

RESULTS

EXPRESSION OF LC3 IN DIFFERENTIATING P19 EC CELLS

The expression of LC3 was compared with its heavy chains (MAP1a and MAP1b) in differentiating P19 EC cells. MAP1a, MAP1b and βIII-tubulin displayed the same patterns as previously described in this study. MAP1a and 1b levels rose to a peak at day 4 to 6 and fell with further differentiation. βIII-tubulin was undetectable in undifferentiated cells, but the amounts of βIII-tubulin present steadily increased during differentiation. In contrast to MAP1a and 1b, LC3 was detectable at low levels in undifferentiated cells and steadily increased during differentiation (Fig. 52A). Analysis of the relative levels of these four antigens by quantitative dot blotting confirmed these results. Peak levels of MAP1a and MAP1b occurred between day 4 and day 6 while LC3 and βIII-tubulin peaked much later. A drop in LC3 and βIII-tubulin levels was observed at day 12 (Fig. 52B).

MT STABILITY AND MT-BOUND MAPS

The resistance to depolymerization induced by colchicine was used as an indirect test for MT dynamics during differentiation. Absolute tubulin levels were determined by quantitative dot blotting of polymer extracts from differentiating P19
Figure 52

Accumulation of LC3 and its heavy chains during differentiation of P19 EC cells. A) SDS-whole cell extracts of cells from day 0 to 12 were separated by SDS-PAGE on 7.5 (MAP1a and 1b) and 15% (LC3 and βIII-tubulin) gels. MAPs were immunodetected on western blots using mAbs 1A-1 (MAP1a), 6D4 (MAP1b), LC3 (light chain 3) and TuJ1 (βIII-tubulin). B) Levels of MAP1a, MAP1b light chain 3 and βIII-tubulin in SDS-whole cell protein from day 0 to 12 were determined by quantitative dot blotting using the mAbs as described above. βIII-tubulin levels are provided for comparison. Error bars represent the standard error of the averages of three measurements from three independent experiments. Relative protein levels at days 2-8 (MAP1a), 2-12 (MAP1b), 4-12 (LC3) and 6-12 (βIII-tubulin) were significantly different from day 0 values (p < 0.05) as determined by the Student’s t-test.
Figure 53

Colchicine stability of MTs during differentiation of P19 EC cells. Absolute tubulin levels per μg of total cellular protein in polymer were determined by quantitative dot blotting with mAb DM1B using phosphocellulose-purified tubulin as a standard. Extracts were taken from differentiating P19 EC cells from day 0 to 12 that were either untreated, treated for 15 min or treated for 30 min with 1mg / ml of colchicine (see graph legend). Error bars represent the standard error of three measurements.
EC cells, using phosphocellulose-purified tubulin as a standard. Differentiating cultures were either untreated or treated for 15 or 30 min with 1 mg/ml of colchicine.

As shown in Figure 53, undifferentiated P19 EC cells had a relatively small amount of polymerized tubulin that was almost completely depolymerized after 30 min of colchicine treatment. There was a slight increase in polymerized tubulin levels by day 2, but no significant increase in colchicine resistance was observed. By day 4 there was a large increase in tubulin levels in polymer and these MTs were more resistant to colchicine-induced depolymerization. Tubulin polymer levels continued to increase by day 6 and day 8, but no increase in the colchicine resistance was observed compared to day 4. However, by day 10 almost all the MTs present were resistant to colchicine-induced depolymerization. At day 12, the amount of polymerized tubulin was similar to day 10, but these MTs appeared to be less resistant to colchicine than at day 10.

The relative levels of MAP1a, MAP1b, MAP2 (HMW + LMW MAP2), LC3 and βIII-tubulin associated with total polymerized tubulin during differentiation were determined by quantitative dot blotting (Fig. 54). The amounts of βIII-tubulin incorporated into MTs continually increased during development. The levels of MT-bound MAP1a closely resembled the pattern of accumulation measured in whole cell extracts (Fig. 34), peaking at day 4 to day 6. MT-bound MAP1b was present in undifferentiated cells, but 2 days after induction there was a large decrease in the amount of MT-bound MAP1b. By day 4, there was a very large increase in MT-bound MAP1b that dropped by day 6 and MAP1b was not detectable at later days of differentiation. A small amount of MT-bound MAP2 was detected in undifferentiated cells, but none was detected by day 2. By day 4 there was a large increase in MT-bound MAP2 and the levels of MT-bound MAP2 increased to peak at day 8. MT-bound LC3 was undetectable at day 0 and day 2. From day 4 onwards the amounts of LC3 bound to MTs exhibited a biphasic pattern, with a small peak at day 6 followed by a much larger peak at day 12.

To compare the composition of MAPs along MTs, the relative levels of MT-bound MAPs (and βIII-tubulin) per unit length of MT (μg of polymerized tubulin) were calculated. These values were obtained by dividing the relative levels of MT-bound MAPs per μg of polymer protein by the amount tubulin present per μg of polymer
Figure 54

Levels of MT-bound MAPs and βIII-tubulin in differentiating P19 EC cells. Total levels of βIII-tubulin (mAb TuJ1), MAP1a (mAb 1A-1), MAP1b (mAb 6D4), MAP2 (LMW- + HMW-MAP2, mAb HM-2) and LC3 (pAb LC3) associated with polymerized MTs per μg of total cellular protein in differentiating P19 EC cells were determined by quantitative dot blotting. Error bars represent the standard error of the averages of three measurements from three independent experiments.
Figure 55

Density of MT-bound MAPs and βIII-tubulin in differentiating P19 EC cells. Levels of βIII-tubulin, MAP1a, MAP1b, MAP2 and LC3 associated per μg of polymerized tubulin in differentiating P19 EC cells were calculated by dividing levels of the above proteins associated with total polymerized tubulin by the amount of tubulin present per μg of whole cell protein for each time point analyzed. Error bars represent the standard error of the averages of three measurements from three independent experiments.
protein from cells that had not been treated with colchicine (Fig. 55). The incorporation of βIII-tubulin per unit MT length increased as differentiation progressed. The levels of MAP1a per unit MT length were highest in undifferentiated cells, but continually decreased during differentiation until day 6, after which levels remained constant. MAP1b levels dropped even more dramatically than MAP1a during differentiation, with a sharp drop by day 2 followed by a slight increase by day 4 and by day 8 MT-bound MAP1b was undetectable. MT-bound MAP2 was detected in undifferentiated cells but was barely detectable by day 2. At day 4 there was a large increase in MT-bound MAP2. The amount of MT-bound MAP2 dropped significantly by day 6, increased slightly by day 8 and then dropped slightly by days 10 and 12. No MT-bound LC3 was detectable in undifferentiated cells, however MTs did have some bound LC3 by day 2. The amounts of MT-bound LC3 per unit MT length peaked at day 4 and then its presence on MTs decreased after day 4 until day 8. By day 10 MT-bound LC3 levels were equivalent to levels observed at day 4 and by day 12 there was a much larger amount of MT-bound LC3 per unit MT length than at any other day.

EXPRESSION OF LCs IN UNDIFFERENTIATED P19 EC AND HELA CELLS

To determine if LCs had any effect on MT organization, myc-tagged LCs were expressed in undifferentiated P19 EC and HeLa cells. PAbs raised against native LC1, 2 and 3 were used to detect LCs. Two of these pAbs, LC1 and LC2, had to be affinity purified to reduce non-specific interactions. The effect of affinity purification on the specificity of these pAbs is demonstrated in Figure 56. LC1 and LC2 were detected using either affinity purified (P-LC1, P-LC2) or unpurified (LC1, LC2) pAbs. Affinity purification removed almost all the non-specific reactivity from the serum. P-LC1 recognized a single 31 kDa polypeptide and P-LC2 recognized a single 27 kDa polypeptide. These apparent molecular masses are similar to those published for LC1 and LC2 (Kuznetsov et al., 1987; Schoenfeld et al., 1989).

The expression of various myc-tagged LC constructs (Fig. 57) was analyzed by SDS-PAGE (Fig. 58). In transfected P19 EC and HeLa cells the apparent molecular mass of all myc tagged fragments closely approximated their predicted molecular mass (Fig. 58*). 6mycLC1 and 6mycLC2 could also be detected by P-
Figure 56

Affinity purification of pAbs LC1 and LC2. SDS-whole cell extracts from undifferentiated P19 EC cells were separated by SDS-PAGE on 12% gels. Light chains were detected on western blots with anti-LC1, purified anti-LC1, anti-LC2 and purified anti-LC2. Molecular weight markers (MW) are in kD.
Figure 57

Schematic showing the various 6myc-tagged LC expression constructs used in this study. The predicted molecular weights for each fragment are provided in kD.
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGK-6mycLC1</td>
<td>45.185</td>
</tr>
<tr>
<td>PGK-6mycLC2</td>
<td>40.71</td>
</tr>
<tr>
<td>PGK-6mycLC3</td>
<td>31.64</td>
</tr>
</tbody>
</table>
Figure 58

Expression of 6myc – tagged LCs in transfected P19 EC and HeLa cells. 20µg (P19) or 10µg (HeLa) of transfected whole cell extracts were separated by SDS-PAGE on 12% gels. 6myc-tagged LCs (*) were immunodetected on western blots using mAb 9E10. Endogenous LC expression (arrows) was detected using microaffinity purified pAbs anti-LC1 and anti-LC2 and pAb anti-LC3
Figure 59

Localization of tubulin (YOL1/34, a – l) and 6myc tagged LCs (mAb 9E10, a’ – l’) in transfected P19 EC (a – f’) and HeLa cells (g – l’) by digital immunofluorescence microscopy. Cells were fixed by precipitation (a – c’, g – l’) or by extraction / fixation (d – f’, j – l’). LCs expressed were LC1 (left column), LC2 (middle column) and LC3 (right column). Scale bar = 20μm.
LC1 and P-LC2, but 6mycLC3 was not detected by LC3. P-LC1 and P-LC2 also
detected endogenous LC1 and LC2 (Fig. 58, arrows). No LC2 was detected in HeLa
cells. No endogenous LC3 was detected in either cell line.

The effect of expression of myc-tagged LCs on MT organization was
characterized by digital immunofluorescence microscopy. In transfected P19 EC cells
fixed by precipitation, 6mycLC1, 6mycLC2 and 6mycLC3 were detected in the
cytoplasm of expressing cells (Fig. 59a, b, c). No MT colocalization was observed
and MTs in transfected cells had a similar distribution to MTs in untransfected cells
(Fig. 59a - c). Exogenously expressed LCs were never detected in transfected cells
prepared by extraction / fixation (Fig. 59d – f). These results were duplicated in
HeLa cells (Fig. 59g – l).

DISCUSSION

EXPRESSION OF LC3 IN DIFFERENTIATING P19 EC CELLS

The peak levels of MAP1a and 1b were observed during day 4 to 6 while the
peak levels of LC3 occurred later in differentiation. Mann et al. (1996) also showed
that the amount of LC3 increased during embryonic brain development. This
suggests that the amount of LC3 bound to either MAP1a or MAP1b increases as
differentiation increases. The increase in LC3 levels in differentiating P19 EC cells
occurs concomitantly with an increase in MT stability, suggesting LC3 has its
greatest effect on the role of MAP1a or MAP1b in MT dynamics during the later
stages of differentiation when MTs are most stable.

MT STABILITY AND MT-BOUND MAPS

The profile of total polymerized tubulin, incorporation of βIII-tubulin into MTs,
and MT stability in differentiating P19 EC cells is similar to that reported by Laferrière
and Brown (1996). A comparison of the levels of MAP1a and 1b in SDS-whole cell
extracts with the levels in total MT polymer, indicates that most of the MAP1a
present during differentiation is MT-bound while most or all of the MAP1b present is
not MT-associated after day 4. The peak in MAP1a levels in SDS-whole cell
extracts is concomitant with the large increase in polymerized tubulin seen during
the growth phase of differentiation. This suggests that there is some mechanism
acting to regulate the levels of MAP1a present on MTs during differentiation. It is possible that MAP1a expression is regulated by feedback inhibition in which cytosolic MAP1a prevents further synthesis of MAP1a. The increase in MT polymer would sequester MAP1a from the cytoplasm and this may stimulate increased MAP1a synthesis. Removal of MAP1a from MTs (perhaps by competition with other MAPs) would result in increased concentrations of cytosolic MAP1a, preventing further synthesis. Because the majority of MAP1a appears in the MT-bound fraction both in undifferentiated cells and in differentiating cells, the threshold for this feedback inhibition may be low.

The MAP1a peak seen during the growth phase is probably required to keep appropriate amounts of MAP1a bound to MTs so that they function properly during this period. The peak in bound MAP2 followed by lower, but similar levels from day 6 onward are probably due to the different expression patterns of HMW and LMW forms of MAP2 during differentiation. LMW-forms are present early in differentiation and then decrease later in differentiation while HMW-MAP2 continually increases during differentiation. LC3 associates with both MAP1a and 1b (Schoenfeld et al., 1989). The biphasic pattern of MT-bound LC3 might be due to a loss of MT-bound MAP1b during early differentiation. The high levels of MT-bound LC3 later in differentiation probably represent LC3 associated with MAP1a. From this, it follows that the LC3 composition of MAP1a steadily increases during development.

**LC3 FUNCTION**

The steady increase in LC3 associated with MAP1a during differentiation is concomitant with an increase in MT stability. This might suggest that LC3 increases the ability of MAP1a to stabilize MTs. However, Pedrotti et al. (1994) showed that native MAP1a purified from adult brain has a weaker effect on MT dynamics compared to MAP2 and the MAP1a used in those experiments presumably was associated with LC3. We have shown that the LC3 present in undifferentiated P19 EC cells is not MT-bound while the majority of MAP1a is present in the cytoskeletal fraction (bound to MTs). This indicates that LC3 is incapable of associating with either MAP1a or 1b in undifferentiated cells. Overexpression of MAP1a fragments in the undifferentiated cells had a similar effect on MT dynamics compared to MAP2 as
obtained in vitro by Pedrotti et al. (1994) using LC3-associated MAP1a. This suggests the MT-stabilizing properties of MAP1a are not affected by LC3. LC3 might serve to increase the affinity of MAP1a and MAP1b for MTs. However, MAP1b in differentiating P19 EC cells, which presumably contains increasing amounts of LC3, is lost from MTs during later stages of differentiation. The dissociation of MAP1b from adult brain (also presumably LC3-associated) from MTs in the presence of MAP2 is greater than MAP1a (Pedrotti and Islam, 1993), suggesting that LC3-bound MAP1b is more weakly associated with MTs than LC3-bound MAP1a. LC3 may serve to increase the affinity of MAP1b for MTs during the early growth phase (day 2 – 4) of differentiation when MAP2 is present at low levels. MAP1a is found in the adult brain primarily in dendrites where it colocalizes with MAP2 on the same MTs (Shiomura and Hirokawa, 1987; Schoenfeld et al., 1989). LC3 association with MAP1a may increase the affinity of MAP1a for MTs so that it is capable of competing with MAP2 for binding sites on mature neuronal MTs.

EXPRESSION OF LCs IN UNDIFFERENTIATED P19 EC AND HELA CELLS

While all three myc-tagged LCs could be detected in cells fixed by precipitation, none could be detected in untreated and taxol-treated cells (data not shown) prepared by the extraction / fixation method. In cells fixed by precipitation and in taxol-treated, extraction / fixation prepared cells, the respective MT colocalizations of MAP1b and 1a were observed. The fact the LC colocalization with MTs was not observed under either of these conditions suggests that exogenously expressed LCs can not associate with MAP1a or MAP1b. It is possible that the myc tag interfered with normal heavy chain / light chain interactions. Alternatively, it is possible that the region of the nascent MAP1 polypeptide containing LC1 or LC2 interacts with the heavy chain region prior to the processing event that results in the formation of endogenous LC1 and LC2 from the MAP1a/LC2 and MAP1b/LC1 polypeptides. Exogenously introduced LC1 or LC2 might not be competent to associate with heavy chains because it has already been “processed”. LC3 could be detected in undifferentiated cultures, but no MT bound LC3 was detectable. Because LC3 is neuron specific, the association of LC3 with MAP1a or MAP1b (and
thus with MTs) might require neuronal-specific factors that are not present in undifferentiated cells.

NEURONAL-SPECIFIC ANTIGENS IN UNDIFFERENTIATED P19 EC CELLS

In undifferentiated P19 EC cells, we observed the presence of low levels of neuron-specific MAP2, LC3 and βIII-tubulin bound to MTs. 2 days after RA-induction, MT-bound MAP2 and LC3 were undetectable, but then both increased by day 4. MAP1b also exhibited a large decrease 2 days after RA-induction, but then also increased by day 4. The presence of neuron-specific proteins could be the result of very low levels of spontaneous differentiation occurring in undifferentiated cultures. The drop in expression of these proteins suggests that undifferentiated P19 EC cells are actually in a state of quasi-differentiation, aberrantly expressing neuronal proteins at very low levels. Induction of differentiation by RA might correct the regulation of expression of these neuronal proteins (including MAP1b) so that they follow the patterns of expression required for normal neurite growth and maturation. The absence of a drop in MAP1a levels following RA-induction suggests this MAP is required during the early stages of differentiation, perhaps to initiate process outgrowth.
APPENDIX 3 – OLIGONUCLEOTIDES USED IN THIS STUDY
### TABLE 2. List of oligonucleotides used for sequencing.

<table>
<thead>
<tr>
<th>OLIGONUCLEOTIDE</th>
<th>OLIGONUCLEOTIDE SEQUENCE (5'-3')</th>
<th>POSITION ON MAP1A cDNA</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLIGO-1</td>
<td>CTCTGGGGCTGAGGTCGAGA</td>
<td>2283</td>
<td>sequence Apa I joint</td>
</tr>
<tr>
<td>OLIGO-2</td>
<td>AGGTCAAGGGGGGATGGGCA</td>
<td>501</td>
<td>sequence Nco I joint</td>
</tr>
<tr>
<td>OLIGO-3</td>
<td>CCCTGTGTGGGCTCTGGAATA</td>
<td>4479</td>
<td>sequence Eco RV joint</td>
</tr>
<tr>
<td>OLIGO-4</td>
<td>TACTGAGAAGATTGTCGTTG</td>
<td>1227</td>
<td>sequence Hind III joint</td>
</tr>
<tr>
<td>OLIGO-6</td>
<td>GAGAGCTTGGGCGACTCTACC</td>
<td>NA</td>
<td>check translation frame with 6myc tag</td>
</tr>
<tr>
<td>PCR-1</td>
<td>CGACGGTATCGTAAAGCTATG</td>
<td>NA</td>
<td>construction of PGK-6mycN1A-2ΔBR</td>
</tr>
<tr>
<td>PCR-2</td>
<td>GCAGGACGCTGCTCAGGCTGTCG</td>
<td>985</td>
<td>&quot;</td>
</tr>
<tr>
<td>PCR-3</td>
<td>GAGAGGTTGCGCCGTTGAA</td>
<td>1625</td>
<td>&quot;</td>
</tr>
<tr>
<td>PCR-4</td>
<td>GTGAGGCGGCAAGCTTTCTCTTC</td>
<td>2338</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-1</td>
<td>TGGCAGTGAGGCGGAGAAGA</td>
<td>257</td>
<td>sequence PGK-6mycN1A-2ΔBR</td>
</tr>
<tr>
<td>SEQ-2</td>
<td>CAGTGGGAGTTGCGGTTCCACAAAA</td>
<td>557</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-3</td>
<td>AGCTGTGAGGCCGAGCTTTCG</td>
<td>845</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-4</td>
<td>GTTGAAAGGAGGAGAAAGAGGA</td>
<td>1761</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-5</td>
<td>GGTAACCTTGTCCGCTTGGCACCCA</td>
<td>NA</td>
<td>ensure proper translational termination in constructs where necessary</td>
</tr>
<tr>
<td>SEQ-6</td>
<td>GCAGGGAGTGGTTGCTCACC</td>
<td>1681</td>
<td>sequence PGK-6mycN1A-2ΔBR</td>
</tr>
<tr>
<td>SEQ-7</td>
<td>CAGAGCAGTGGGATGGGAGGCTAG</td>
<td>750</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-8</td>
<td>CGTGGAGGAGGCCGAGAGAGGAGTG</td>
<td>503</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-9</td>
<td>ACAGGAAAGGAGGAGGAGGAGTCC</td>
<td>164</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-10</td>
<td>GGTGAGGTCGCCCAAGCTTCTC</td>
<td>NA</td>
<td>&quot;</td>
</tr>
<tr>
<td>SEQ-11</td>
<td>CCCGGCATTCTCGGACGCCTC</td>
<td>NA</td>
<td>&quot;</td>
</tr>
</tbody>
</table>
Figure 60

MAP showing locations of the various oligonucleotides used in this study.
REFERENCES


relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9: 3539-3544.


Tsuyama, S., Branblett, G.T., Huang, K.P. and Flavin, M. 1986. Calcium / phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases. J. Biol. Chem. 261: 4110-4116.


linkages between glutamyl units revealed by monoreactive polyclonal antibodies. *Biol. Cell* 81: 11-16


