Adverse childhood experiences, depressive symptoms, functional dependence, and physical activity: A moderated mediation model

Matthieu P. Boisgontier1, Dan Orsholits2,3, Martina von Arx2,3, Stefan Sieber2,3, Matthew W. Miller4,5, Delphine Courvoisiers, Maura D. Iversen7,9, Stéphane Cullati2,3,10,†, Boris Cheval11,†

ABSTRACT
Background: Adverse childhood experiences, depressive symptoms, and functional dependence are interrelated. However, the mechanisms underlying these associations remain unclear. The authors investigated the potential of depressive symptoms to mediate the effect of adverse childhood experiences on functional dependence in older age and whether physical activity moderated this mediation. Method: Data from 25,775 adults aged 62 (9) years from the Survey of Health Ageing and Retirement in Europe were used in adjusted linear mixed-effects models to test whether depressive symptoms mediated the associations between adverse childhood experiences and functional dependence in activities of daily living (ADL) and instrumental ADL (IADL) and whether physical activity moderated these mediations. Results: The results showed a graded association between the number of adverse childhood experiences (0 vs 1 and 0 vs ≥2) and the number of functional limitations in both ADL (bs = 0.040 and 0.067) and IADL (bs = 0.046 and 0.076). These associations were mediated by depressive symptoms. Physical activity reduced the effect of adverse childhood experiences on depressive symptoms (bs = −0.179 and −0.515) and tempered the effect of depressive symptoms on functional dependence both in ADL (b = −0.073) and IADL (b = −0.100). As a result of these reductions, the effect of adverse childhood experiences and depressive symptoms on functional dependence in ADL (Ps > .081) and IADL (Ps > .528) was nonsignificant in physically active participants. Conclusions: These findings suggest that, after age 50, engaging in physical activity more than once a week protects functional independence from the detrimental effects of adverse childhood experiences and depression. In inactive individuals, the detrimental effects of adverse childhood experiences on functional dependence are mediated by depressive symptoms.

Keywords: Activities of Daily Living, Depression, Disability, Exercise, Health, Mental Illness

Data and code sharing: The SHARE dataset is freely available at http://www.share-project.org/data-access.html. The scripts are available on the Zenodo open-access repository at https://doi.org/10.5281/zenodo.3768417

© The Author(s) 2020
Not the version of record. The version of record is available at http://dx.doi.org/10.1123/jpah.2019-0133
https://journals.humankinetics.com
INTRODUCTION

A recent systematic review has demonstrated that adverse childhood experiences, such as neglect and household dysfunction, were associated with twenty-three health outcomes (e.g., depressive symptoms, anxiety, physical inactivity, obesity). While these results highlight the pervasive harms that adverse childhood experiences place on multiple dimensions of health, they do not reveal the nature of the relations linking adverse childhood experiences and health outcomes. Assessing whether these relations are direct or indirect (i.e., explained by an intermediary variable) and whether they can be attenuated or eliminated through other factors would refine our understanding of the mechanisms underlying these relations.

Functional dependence is one of the health outcomes that has been associated with adverse childhood experiences. It is typically assessed through performance in activities of daily living (ADL) and instrumental activities of daily living (IADL), with ADL referring to more basic activities (e.g., walking, eating, bathing) than IADL (e.g., shopping, preparing meal, housekeeping). Older adults who perform these activities without limitations have life expectancies 5 years longer than those with functional limitations and are more satisfied with their life. New insights into the relationship linking adverse childhood experiences and functional dependence in aging could reveal new ways to increase life expectancy and well-being.

Depression, a mood disorder that causes a persistent feeling of sadness and loss of interest, may be critical in understanding the relations between adverse childhood experiences and functional dependence. Indeed, etiological models for depression consider stressful experiences, such as adverse childhood events, as a factor increasing the odds of depression. Recent results supported these models by showing a strong positive association between adverse childhood experiences and the probability of depressive symptoms in late adulthood, thereby supporting the theoretical link between adverse childhood experiences and depressive symptoms. Additionally, studies have shown an association between depression and functional dependence. The mechanisms underlying this association could lie in the main symptom of depression, the “lack of interest to all or most things,” which can potentially decrease the frequency an individual engages in ADL and IADL. In the long term, this decreased frequency could impact the ability to perform these activities, especially in aging, by further increasing the age-related decline of movement control such as postural balance and bimanual coordination.

In sum, data support the effect of adverse childhood experiences on functional dependence and depressive symptoms as well as the effect of depressive symptoms on functional dependence, thereby suggesting that depressive symptoms could mediate the effect of adverse childhood experiences on functional dependence. However, to the best of our knowledge, no study has formally tested for this potential mechanism.
Understanding the mechanisms underlying the relation between adverse childhood experiences and health outcomes is important from a fundamental research perspective. Moreover, this knowledge could inform clinical and political decisions aiming at improving health. To address this point, we investigated whether protective factors could attenuate the relations linking adverse childhood experiences, depressive symptoms, and functional dependence. We focused on physical activity, a low-cost and safe factor shown to benefit healthy aging. Physical activity reduces the risk of developing depressive symptoms, attenuates the association between adverse childhood experiences and a measure of mental health that included depression, and decreases functional dependence. Therefore, physical activity could have a protective effect on functional dependence by attenuating the association between adverse childhood experiences and depressive symptoms, and between depressive symptoms and functional dependence.

This study aimed to examine whether depressive symptoms explain the effect of adverse childhood experiences on functional dependence in older age and whether physical activity can reduce this detrimental effect of adverse childhood experiences. We hypothesized that the effect of adverse childhood experiences on functional dependence is mediated by depressive symptoms (Figure 1). We also hypothesized that this mediation is moderated by physical activity, which means that effect of adverse childhood experiences on depressive symptoms and the effect of depressive symptoms on functional dependence are dependent on the self-reported level of physical activity.

**METHOD**

**Study population and design**

Our analyses used data from the Survey of Health, Ageing and Retirement in Europe (SHARE), a longitudinal (12 years: 2004-2015; 6 waves; data collection every 2 years), cross-national (14 European countries) study of adults aged 50 years or older. Functional dependence in ADL and IADL, depressive symptoms, and physical activity were assessed at the first, second, fourth, fifth, and sixth waves. Retrospective adverse childhood experiences were assessed at the third wave. We included data from participants aged 50 to 96 years, who participated in the third wave with at least one observation of ADL or IADL, depressive symptoms, and physical activity. Participants without information related to their childhood life history, depressive symptoms, physical activity or functional dependence were excluded. Relevant research ethics committees in the participating countries approved SHARE and all participants provided written informed consent.

**Variables**

The following variables are detailed in the Supplemental Material.

**Predictor: Adverse childhood experiences.** We combined the information of 6 indicators [child in care (living in a children's home or with a foster family), parental death (father, mother, or both), parental mental...
illness, parental drinking abuse, period of hunger, and property taken away] to compute a categorical variable of childhood adversity including three levels: 0, 1, and 2 or more adverse childhood experiences. This score combining different indicators was used to examine the effect of an unspecified exposure to adverse childhood experiences on depressive symptoms and functional dependence. Including each indicator would have overly complicated the models and could have weakened their accuracy due to the multicollinearity of adverse childhood experiences.

**Outcomes: Functional dependence.** To measure functional dependence, we used the number of functional dependencies in six ADL (dressing, walking, bathing, eating, getting in or out of bed, and using the toilet) and seven IADL (using a map, preparing a hot meal, shopping for groceries, making telephone calls, taking medication, gardening or doing housework, and managing money). Higher scores were indicative of higher functional dependence.

**Mediator: Depressive symptoms.** Depressive symptoms were measured using the EURO–D scale including 12 items: depressed mood, pessimism, wishing death, guilt, sleep, interest, irritability, appetite, fatigue, concentration, enjoyment, and tearfulness. Each item was scored 0 (symptom absent) or 1 (symptom present), generating an ordinal scale ranging from 0 to 12 with higher scores reflecting higher depressive symptoms.

**Moderator: Physical activity.** Participants who engaged in activities that require vigorous, moderate, or low level of energy more than once a week were classified as physically active and the other participants were classified as inactive. This strategy was used to reduce potential misclassification bias whereby physically active participants would be inaccurately categorized as physically inactive. Specifically, two items were used to assess the usual level of physical activity over a week. The first item assessed vigorous physical activity (“How often do you engage in vigorous physical activity, such as sports, heavy housework, or a job that involves physical labor?”). The second item assessed low to moderate physical activity (“How often do you engage in activities that require a low or moderate level of energy such as gardening, cleaning the car, or doing a walk?”). Participants answered by using a four-point scale (1 = more than once a week; 2 = once a week; 3 = one to three times a month; 4 = hardly ever or never). Participants who answered “1” to either or both items were classified as physically active. This variable was averaged over time to distinguish between physically active versus inactive participants over the whole study duration. This strategy simplified the models as they already involved depressive symptoms as a time-varying predictor.

**Covariates.** We considered age at baseline, wave, gender, country of residence, birth cohort, participant attrition during SHARE follow-up, childhood socioeconomic circumstances, and childhood health problems as covariates. All these variables were assessed only once and were used as time-invariant predictors.

**Statistical analyses**
**Mediation by depressive symptoms**

The mediation effect of depressive symptoms on the association between adverse childhood experiences and functional dependence was analyzed using linear mixed-effects models, which account for the nested structure of the data (e.g., multiple observations within a single participant), thereby providing accurate parameter estimates with acceptable type I error rates. The random structure encompassed random intercepts for participants and random linear slopes for waves at the level of participants. These random slopes estimated each participant's linear growth trajectory over the waves of the study (i.e., 12 years). The mediation was assessed using the component approach. In this approach, three models needed to be tested. Model 1 (Equation 1) tested the effect of adverse childhood experiences (time-invariant predictor) on functional dependence (time-varying outcome), adjusting for prior confounders (time-invariant predictors). This model included interaction terms between age at baseline and time (linear and quadratic) to adjust for the influence of age on the rate of increasing dependence over the waves. Waves were centred on the first wave of SHARE to estimate the main effects at the baseline assessment. Quadratic time accounted for potential accelerated rates of increasing functional dependence over the waves. Model 2 (Equation 2) tested the effect of adverse childhood experiences (time-invariant predictor) on depressive symptoms (time-varying outcome). In Model 3 (Equation 3), depressive symptoms (the potential mediator, time-varying predictor) and its interaction with waves (linear and quadratic) were added to Model 1.

**Functional Dependence**

\[
\text{Dependence}_{ij} = \beta_0 + \beta_1 \text{Age}_j + \beta_2 \text{Wave}_{ij} + \beta_3 (\text{Age}_j \times \text{Wave}_{ij}) + \beta_4 \text{Squared Wave}_{ij} + \beta_5 (\text{Age}_j \times \text{Squared Wave}_{ij}) + \beta_6 \text{Gender}_j + \beta_7 \text{Country}_j + \beta_8 \text{Birth Cohort}_j + \beta_9 \text{Attrition}_j + \beta_{10} \text{Childhood Socioeconomic Circumstances}_j + \beta_{11} \text{Childhood Health Problems}_j + \beta_{12} \text{Adverse Childhood Experience}_j + u_{0j} + u_{1j} \text{Wave}_{ij} + \epsilon_{ij}
\]

**Depression**

\[
\text{Depression}_{ij} = \beta_0 + \beta_1 \text{Age}_j + \beta_2 \text{Wave}_{ij} + \beta_3 (\text{Age}_j \times \text{Wave}_{ij}) + \beta_4 \text{Squared Wave}_{ij} + \beta_5 (\text{Age}_j \times \text{Squared Wave}_{ij}) + \beta_6 \text{Gender}_j + \beta_7 \text{Country}_j + \beta_8 \text{Birth Cohort}_j + \beta_9 \text{Attrition}_j + \beta_{10} \text{Childhood Socioeconomic Circumstances}_j + \beta_{11} \text{Childhood Health Problems}_j + \beta_{12} \text{Adverse Childhood Experience}_j + u_{0j} + u_{1j} \text{Wave}_{ij} + \epsilon_{ij}
\]
**Functional Dependence**

\[ F_{\text{Functiona Dependence}}_{ij} = \beta_0 + \beta_1 \text{Age}_{ij} + \beta_2 \text{Wave}_{ij} + \beta_3 (\text{Age}_{ij} \times \text{Wave}_{ij}) + \beta_4 \text{Squared Wave}_{ij} + \beta_5 (\text{Age}_{ij} \times \text{Squared Wave}_{ij}) + \beta_6 \text{Gender}_{ij} + \beta_7 \text{Country}_{ij} + \beta_8 \text{Birth Cohort}_{ij} + \beta_9 \text{Attrition}_{ij} + \beta_{10} \text{Childhood Socioeconomic Circumstances}_{ij} + \beta_{11} \text{Childhood Health Problems}_{ij} + \beta_{12} \text{Adverse Childhood Experience}_{ij} + \beta_{13} \text{Depressive Symptoms}_{ij} + u_{0j} + u_{1j} \text{Wave}_{ij} + \epsilon_{ij} \]

where \( F_{\text{Functiona Dependence}}_{ij} \) is the \( j \)th participant’s ADL or IADL dependence score on wave \( i \), the \( \beta \)s are the fixed effect coefficients, \( u_{0j} \) is the random intercept for the \( j \)th participant, \( u_{1j} \) is the random slope (varying across waves) for the \( j \)th participant, and \( \epsilon_{ij} \) is the error term.

To examine whether depressive symptoms mediated the effect of adverse childhood experiences on functional dependence, four conditions must be met. In Equation 1, there must be a significant effect of adverse childhood experiences on functional dependence. In Equation 2, there must be a significant effect of adverse childhood experiences on depressive symptoms (i.e., first stage of the mediating process). In Equation 3, there must be an effect of depressive symptoms on functional dependence (i.e., second stage of the mediating process), controlling for the effect of adverse childhood experiences. Finally, in Equation 3, the residual effect of adverse childhood experiences on functional dependence should be smaller than the effect of adverse childhood experiences in Equation 1. This component approach to the assessment of mediation was preferred over the index approach, because the latter has shown a higher risk of false positives (Type I errors). The percentage of decrease in the effect of adverse childhood experiences on functional dependence between the models without (1) and with (3) the mediating variable was calculated as follows: \((b_{\text{model1}} - b_{\text{model3}}) \times (b_{\text{model1}})^{-1} \times 100\). These percentages provided an estimate of the proportional influence of the potential mediating variable (depressive symptoms) on the relation between adverse childhood experiences and functional dependence.

**Moderation by physical activity**

The moderating effect of physical activity on the direct and indirect association between adverse childhood experiences (time-invariant predictor) and functional dependence (time-varying outcome) was analyzed using three models. Adding an adverse childhood experiences \( \times \) physical activity (time-invariant predictor) interaction term in Equation 1 allowed the overall effect of adverse childhood experiences on functional dependence (Model 4) to be moderated by physical activity. Adding an adverse childhood experiences \( \times \) physical activity interaction term in Equation 2 allowed the effect of adverse childhood experiences \( \times \) physical activity interaction term in Equation 2 to be moderated by physical activity.
experiences on depressive symptoms (time-varying outcome) (Model 5) (i.e., first stage of the mediating processes) to be moderated by physical activity. Including interaction terms between depressive symptoms (time-varying predictor) and physical activity and between adverse childhood experiences and physical activity in Equation 3 allowed the effect of depressive symptoms (i.e., second stage of the mediating processes) and the residual effect of adverse childhood experiences on functional dependence (Model 6) to be moderated by physical activity.

RESULTS

Descriptive results

The dataset included a total of 25,775 participants aged 62±9 years (mean±SD), living in 14 European countries, with a depressive symptoms score of 2.3±2.2, 14,342 women (55.6%), 18,080 physically active participants (70.1%), 20,263 participants without adverse childhood experience (78.6%), 4,526 with 1 adverse childhood experience (17.6%), and 986 with 2 or more childhood adverse experiences (3.8%). The flow diagram is reported in Figure 2.

Effects of adverse childhood experiences on functional dependence

Mediation by depressive symptoms

ADL

Model 1 (Equation 1) showed a graded association between the number of adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and the number of functional limitations in ADL (bs = .040, .067; ps = 6×10⁻⁶; 1×10⁻⁴; 95% confidence intervals (95CIs) [.023, .057], [.033, .101], respectively; Figure 3, left panel). Model 2 (Equation 2) showed an association between the number of adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and the depressive symptoms score in older age (bs = .361, .599; ps < 2×10⁻¹⁶; 95CIs [.307, .415], [.492, .705], respectively; Figure 3, middle panel). Model 3 (Equation 3) showed that a larger depressive symptoms score was associated with a larger number of limitations in ADL (b = .057; p < 2×10⁻¹⁶; 95CIs [.055, .060]; Figure 3, right panel). Model 3 also showed that the graded association between the number of adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and the number of functional limitations in ADL became weaker with the addition of depressive symptoms (bs = .019, .033; ps = .023, .048; 95CIs [.003, .036], [2×10⁻⁴, .067], respectively; Figure 3, left panel). From model 1 to 3, these associations decreased by 51% (0 vs. 1 adverse childhood experience) and 50% (0 vs. ≥ 2 adverse childhood experiences). Taken together, these results demonstrate that depressive symptoms mediated the association between adverse childhood experiences and functional dependence in ADL.

IADL
Model 1 showed a graded association between the number of adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and the number of functional limitations in ADL (β = .046, .076; p = 2 × 10^-5, 4 × 10^-4; 95CIs [.025, .067], [.034, .117], respectively; Figure 3, left panel). Model 2 was the same as for ADL (Figure 3, middle panel). Model 3 showed that a larger depressive symptoms score was associated with a larger number of limitations in IADL (β = .085; p < 2 × 10^-16; 95CIs [.082, .087]; Figure 3, right panel). Model 3 also showed that the graded association between the number of adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and the number of functional limitations in IADL became non-significant with the addition of depressive symptoms (β = .016, .027; p = .119, .184; 95CIs [-.004, .036], [-.013, .067], respectively; Figure 3, left panel). From model 1 to 3, these associations decreased by 65% (0 vs. 1 adverse childhood experience) and 64% (0 vs. ≥ 2 adverse childhood experiences). Taken together, these results demonstrate that depressive symptoms mediated the association between adverse childhood experiences and functional dependence in IADL.

**Moderation by physical activity**

**ADL**

Model 4 showed a graded moderation of the association between adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and functional dependence in ADL by physical activity (β = -.060, -.135; p = .001, 2 × 10^-4; 95CIs [-.096, -.024], [-.207, -.063], respectively; Figure 4, upper-left panel). Model 5 showed a graded moderation of the association between adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and depressive symptoms by physical activity (β = -.179, -.515; p = .002, 9 × 10^-4; 95CIs [-.292, -.065], [-.742, -.288], respectively; Figure 4, upper-right panel). Model 6 showed a moderation of the association between depressive symptoms and functional dependence in ADL by physical activity (β = -.073; p < 2 × 10^-16; 95CIs [-.077, -.069]; Figure 4, lower-right panel). Figure 4 illustrates that the effects of adverse childhood experiences (upper-left panel) and depressive symptoms (lower-right panel) on functional dependence in ADL (purple in the figure) were not significant in physically active participants (p > .081) as the 95% confidence interval crossed the zero line. Model 6 also showed that the graded moderation of the association between adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and functional dependence in ADL by physical activity became non-significant (β = -.018, -.055; p = .306, .116; 95CIs [-.053, .016], [.124, .014], respectively; Figure 4, lower-left panel and Figure 5A). From model 4 to 6, these associations decreased by 70% (0 vs. 1 adverse childhood experience) and 59% (0 vs. ≥ 2 adverse childhood experiences). Taken together these results demonstrate a moderated mediation (Muller et al., 2015; Figure 5A).

**IADL**

Model 4 showed a graded moderation of the association between adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and functional dependence in IADL by physical activity (β = -.109, -.227; p = 1 × 10^-6, 4 × 10^-7;
95CIs [-.153, -.065], [-.315, -.140], respectively; Figure 4, upper-left panel). Model 5 was the same as for ADL (Figure 4, upper-right panel). Model 6 showed a moderation of the association between depressive symptoms and functional dependence in IADL by physical activity (b = -.100; p < 2×10⁻¹⁶; 95CIs [-.106, -.095]; Figure 4, lower-right panel). Figure 4 illustrates that the effects of adverse childhood experiences (upper-left panel) and depressive symptoms (lower-right panel) on functional dependence in IADL (orange in the figure) were not significant in physically active participants (p.s > .528). Model 6 also showed that the graded moderation of the association between adverse childhood experiences (0 vs. 1; 0 vs. ≥ 2) and functional dependence in IADL by physical activity became weaker (bs = -.052, -.114; ps = .014, .007; 95CIs [-.197, -.010], [-.093, -.032], respectively; Figure 4, lower-left panel and Figure 5B). From model 4 to 6, these associations decreased by 53% (0 vs. 1 adverse childhood experience) and 50% (0 vs. ≥ 2 adverse childhood experiences). Taken together these results demonstrate a moderated mediation (Muller et al., 2015; Figure 5B).

**DISCUSSION**

**Main findings**

We consistently showed the same pattern of results based on sophisticated statistical analyses suited to examine, for the first time, a potential mechanism of moderated mediation between adverse childhood experiences, depressive symptoms, functional dependence, and physical activity. This study uncovered three main findings. For the first time, we show that depressive symptoms mediate the effect of adverse childhood experiences on functional dependence (ADL and IADL) in aging. Second, results showed that physical activity reduced the effect of adverse childhood experiences on depressive symptoms and on the residual effect on IADL. Third, results revealed that adverse childhood experiences were not (directly or indirectly) associated with functional dependence in physically active individuals.

**Comparison with previous studies**

Our results showing that adverse childhood experiences are associated with functional dependence is consistent with previous literature. The effect of adverse childhood experiences is consistent with etiological models for depressive symptoms considering stressful experiences as factors increasing the odds of depressive symptoms and with previous results showing an association between adverse childhood experiences and the probability of depressive symptoms. The effect of depressive symptoms on functional dependence supports previous studies showing an association between depressive symptoms and functional dependence. The protective effect of physical activity is in line with multiple studies, especially those showing that physical activity reduces the risk of developing depressive symptoms, attenuates the relation between adverse childhood experiences and mental health, and decreases
functional dependence. Our results demonstrate that all these effects can be included in a single and meaningful moderated mediation framework.

**Strengths and limitations**

This study has many strengths. The sample is large and includes non-institutionalized older adults from multiple European countries. Moreover, we used validated measures of depressive symptoms (EURO-D) and functional dependence. However, potential limitations should be noted. First, our results were based on self-reported measures of physical activity, which creates the potential for misclassification bias. However, the potential inaccuracy of these self-reports is unlikely to explain the associations observed in this study. Moreover, the scale lacked granularity, which prevented the assessment of specific physical activity levels that are associated with health benefits, such as the 30 minutes of moderate-to-vigorous physical activity intensity five times per week. Second, there is the potential for recall bias as adverse childhood experiences were based on self-reports. Yet, the validity of these self-reports has been demonstrated. Third, although two widely validated measures of functional dependence were used and revealed consistent results, these measures were self-reported. Future studies should investigate whether our results apply to objective indicators of functional dependence (e.g., walking speed, chair stand, balance). Fourth, the adverse childhood experiences reflected poverty and parental dysfunction, but did not include maltreatment or witnessing maltreatment. Fifth, other prominent factors in the pathways from adverse childhood experiences to depressive symptoms and to functional dependence, such as adulthood poverty, isolation, or adversities, stand as other potential hypotheses that were not tested here. Sixth, the dichotomized measure of physical activity provided in SHARE may have provided relatively low statistical power for the analysis, i.e., limited ability to discern differences among groups. Seventh, the score used to assess adversity during childhood combined different adverse childhood experiences. Future studies should examine how each type of childhood adversity is related to functional independence and depressive symptoms. When comparing the strength of these specific associations, the prevalence of each adverse childhood experience should be controlled for to avoid reporting spurious associations resulting from statistical power differences rather than true differences.

**Conclusion**

This study reports two main results. The first result suggests that the relation between adverse childhood experiences and functional dependence at an older age is explained by depressive symptoms. Therefore, public policies aiming to improve functional dependence in older adults should not only focus on the physical factors (e.g., muscle strength, joint range of motion, cardiovascular fitness). Psychological factors, such as depressive disorders, deserve as much focus as the physical factors as they are as likely to increase
functional dependence. The second result suggests that physical activity tempers the strength of the mediated relation and that older adults engaging in physical activity more than once a week are protected from the detrimental effects of adverse childhood experiences and depression on their functional independence. Therefore, these results support previous results demonstrating the importance of physical activity in alleviating depressive disorders\textsuperscript{19,22} and in improving functional independence\textsuperscript{21}. Therefore, actions from public policies aiming to increase the engagement in physical activity over the lifespan should be further supported.

Acknowledgements
This work was supported by the Swiss National Centre of Competence in Research “LIVES – Overcoming vulnerability: Life course perspectives” and the Swiss National Science Foundation (SNSF; 51NF40-160590). This article uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4, 5, and 6 (DOIs: 10.6103/SHARE.w1.600, 10.6103/SHARE.w2.600, 10.6103/SHARE.w3.600, 10.6103/SHARE.w4.600, 10.6103/SHARE.w5.600, 10.6103/SHARE.w6.600). The SHARE data collection was primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), and FP7 (SHARE-PREP: no.211909, SHARE-LEAP: no.227822, SHARE M4: no.261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the U.S. National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C), and from various national funding sources is gratefully acknowledged (see www.share-project.org). BC is supported by an Ambizione grant (PZ00P1_180040) from the Swiss National Science Foundation (SNSF).

Competing interests
All authors declare no conflict of interest.

Author contributions
MPB conceived the study. SS managed the data. MPB, BC analyzed the data. MPB, BC drafted the manuscript. DO prepared the code to make it suitable for open repositories. BC, MPB, SC reviewed the manuscript. All authors contributed to the improvement of the first and revised versions of the manuscript.

Ethical approval
This study was part of the SHARE study, approved by the relevant research ethics committees in the participating countries, and all participants provided written informed consent.

Transparency
The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported, that no important aspects of the study have been omitted, and that any discrepancies from the study as planned have been explained.

REFERENCES


Table 1. Participants' characteristics as a function of the number of adverse childhood experiences (ACE) at baseline. The baseline characteristics for adverse childhood experiences and covariates are based on the participants included in the model testing for instrumental activities of daily living (IADL). SD, standard deviation. P-values are based on ANOVAs and chi-square tests for continuous and categorical variables, respectively, testing the effect of adverse childhood experiences (0 vs. 1 vs. ≥ 2) on these variables.
Figure captions

Figure 1. Framework of the moderated mediation model.

Figure 2. Flow diagram. SHARE = Survey of Health, Ageing and Retirement in Europe, ADL = activities of daily living, IADL = instrumental activities of daily living, ACE = adverse childhood experiences.

Figure 3. Main effects and 95% confidence interval demonstrating that depressive symptoms mediate the association between adverse childhood experiences and functional dependence in activities of daily living (ADL; orange) and instrumental activities of daily living (IADL; purple). Solid lines illustrate the effect of adverse childhood experiences when the mediator (depressive symptoms) is not in the equation (total effect). Dashed lines illustrate the effect of adverse childhood experiences when the variable depressive symptoms is in the equation (residual effect).

Figure 4. Conditional b coefficients and 95% confidence interval as a function of physical activity. The upper-left panel illustrates how physical activity moderates the total effect of adverse childhood experiences (0 vs. 1 and 0 vs. ≥ 2 ACEs) on functional dependence. The upper-right panel illustrates how physical activity moderates the first stage of the mediation by depressive symptoms. The lower-left panel illustrates the absence of moderation by physical activity on the residual effect of adverse childhood
experiences on activities of daily living (ADL) and the moderation effect on this effect on instrumental activities of daily living (IADL). The lower-right panel illustrates how physical activity moderates the second stage of the mediation. Functional dependence in ADL and IADL are in orange and purple, respectively. Physically inactive and active participants are illustrated by filled and empty circles, respectively. Of note, the effects of adverse childhood experiences (upper-left panel) and depressive symptoms (lower-right panel) on functional dependence are not significant in physically active participants as the 95% confidence interval crossed the zero line.

Figure 5. **Moderated mediation of the effect of adverse childhood experiences on functional dependence in activities of daily living (A) and instrumental activities of daily living (B).** b-values in brackets are the coefficients when the mediator is not in the equation (total effect). βs not in brackets are the coefficients when the mediator (depressive symptoms) is in the equation (residual effect). *** p < .001; ** p < .01; * p < .05; NS p ≥ .05
<table>
<thead>
<tr>
<th>Table 1.</th>
<th>No ACE (n = 20256)</th>
<th>1 ACE (n = 4526)</th>
<th>≥ 2 ACEs (n = 986)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Functional dependence in ADL</strong> (mean [range]; SD)</td>
<td>0.22 [0-6]; 0.74</td>
<td>0.28 [0-6]; 0.88</td>
<td>0.30 [0-5]; 0.85</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Functional dependence in IADL</strong> (mean [range]; SD)</td>
<td>0.14 [0-7]; 0.59</td>
<td>0.19 [0-7]; 0.7</td>
<td>0.20 [0-7]; 0.65</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Depressive symptoms</strong> (mean [range]; SD)</td>
<td>2.18 [0-12]; 2.16</td>
<td>2.61 [0-12]; 2.38</td>
<td>2.80 [0-11]; 2.42</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Physical activity</strong> (n; % of physically active)</td>
<td>14311; 71.0</td>
<td>3071; 67.9</td>
<td>695; 70.5</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Gender</strong> (n; % of women)</td>
<td>11341; 56.0</td>
<td>2462; 54.4</td>
<td>534; 54.2</td>
<td>.095</td>
</tr>
<tr>
<td><strong>Years of age at baseline</strong> (mean [range]; SD)</td>
<td>62.4 [50-93]; 9.2</td>
<td>63.7 [50-89]; 8.9</td>
<td>64.8 [50-85]; 8.3</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Country</strong> (n; %)</td>
<td>2074; 10.2</td>
<td>466; 10.3</td>
<td>78; 7.9</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Belgium</td>
<td>2074; 10.2</td>
<td>466; 10.3</td>
<td>78; 7.9</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Austria</td>
<td>653; 3.2</td>
<td>165; 3.6</td>
<td>65; 6.6</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Denmark</td>
<td>1540; 7.6</td>
<td>377; 8.3</td>
<td>78; 7.9</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>France</td>
<td>1659; 8.2</td>
<td>432; 9.5</td>
<td>83; 8.4</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Germany</td>
<td>1201; 5.9</td>
<td>392; 8.7</td>
<td>158; 16.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Greece</td>
<td>2350; 11.6</td>
<td>376; 8.3</td>
<td>50; 5.1</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Italy</td>
<td>1847; 9.1</td>
<td>462; 10.2</td>
<td>90; 9.1</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1724; 8.5</td>
<td>252; 5.6</td>
<td>48; 4.9</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Spain</td>
<td>1563; 7.7</td>
<td>420; 9.3</td>
<td>112; 11.4</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Sweden</td>
<td>1431; 7.1</td>
<td>278; 6.1</td>
<td>66; 6.7</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Switzerland</td>
<td>965; 4.8</td>
<td>213; 4.7</td>
<td>50; 5.1</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1364; 6.7</td>
<td>255; 5.6</td>
<td>31; 3.1</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Ireland</td>
<td>509; 2.5</td>
<td>90; 2.0</td>
<td>10; 1.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Poland</td>
<td>1376; 6.8</td>
<td>348; 7.7</td>
<td>67; 6.8</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Birth cohort</strong> (n; %)</td>
<td>9322; 46.0</td>
<td>1637; 36.2</td>
<td>276; 28.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>After 1945</td>
<td>9322; 46.0</td>
<td>1637; 36.2</td>
<td>276; 28.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Between 1939 and 1945</td>
<td>4580; 22.6</td>
<td>1107; 24.5</td>
<td>273; 27.7</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Between 1929 and 1938</td>
<td>4360; 21.5</td>
<td>1342; 29.7</td>
<td>355; 36.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Between 1919 and 1928</td>
<td>1994; 9.8</td>
<td>440; 9.7</td>
<td>82; 8.3</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Attrition</strong> (n; % of total)</td>
<td>13956; 68.9</td>
<td>3319; 73.3</td>
<td>776; 78.7</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>No drop out</td>
<td>13956; 68.9</td>
<td>3319; 73.3</td>
<td>776; 78.7</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Drop out</td>
<td>4455; 22.0</td>
<td>804; 17.8</td>
<td>149; 15.1</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Death</td>
<td>1845; 9.1</td>
<td>403; 8.9</td>
<td>61; 6.2</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Childhood socioeconomic circumstances</strong> (n; %)</td>
<td>3542; 17.5</td>
<td>1083; 23.9</td>
<td>272; 27.6</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Most disadvantaged</td>
<td>3542; 17.5</td>
<td>1083; 23.9</td>
<td>272; 27.6</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Disadvantaged</td>
<td>5050; 24.9</td>
<td>1178; 26.0</td>
<td>290; 29.4</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Middle</td>
<td>6666; 32.9</td>
<td>1299; 28.7</td>
<td>260; 26.4</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Advanced</td>
<td>3837; 18.9</td>
<td>723; 16.0</td>
<td>125; 12.7</td>
<td>&lt; .001</td>
</tr>
<tr>
<td>Most advanced</td>
<td>1161; 5.7</td>
<td>243; 5.4</td>
<td>39; 4.0</td>
<td>&lt; .001</td>
</tr>
<tr>
<td><strong>Childhood health problems</strong> (n; %)</td>
<td>4878; 24.1</td>
<td>1295; 28.6</td>
<td>334; 33.9</td>
<td>&lt; .001</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Effect of ACE on Functional Dependence
Total Effect (Model 4)

Effect of ACE on Depressive Symptoms
Mediation Stage 1 (Model 5)

Effect of ACE on Functional Dependence
Residual Effect (Model 6)

Effect of Depressive Symptoms on Functional Dependence - Mediation Stage 2 (Model 6)
Figure 5.