Applications of Gold Catalysis for the Synthesis of Carbocycles

Alyson Poyser

Thesis submitted to the University of Ottawa
in partial fulfillment of the requirements for the
Master’s degree in Chemistry

Department of Chemistry and Biomolecular Sciences
Faculty of Science
University of Ottawa

© Alyson Poyser, Ottawa, Canada, 2020
Abstract

Terpenoid natural products are important synthetic targets due to their abundance and broad range of physiological activity. Herein, we report a method taking advantage of the divergent nature of gold(I)-catalyzed cyclization reactions to reach a range of complex polycycles.

Gold(I) complexes have been investigated to selectively modulate the regioselectivity of the cyclization reaction of a silyl enol ether onto a tethered alkyne. The resulting vinyl gold intermediates can then undergo a Prins-type cyclization or protodeauratation. The diene generated from the 6-endo-dig cyclization/protodeauratation can react in a subsequent Diels-Alder reaction, forming tri and tetracyclic products. Overall, three efficient one-pot sequences were developed to selectively synthesize carbocycles from a common starting material.

In addition, investigations into gold photoredox using dimeric catalyst [Au₂[μ-dppm]₂]X₂ were also carried out for the synthesis of cyclic molecules.
Acknowledgements

First and foremost, I would like to thank Prof. Louis Barriault for giving me the opportunity to complete my honours project, as well as my graduate studies in his research group. I would not have discovered my passion for research had I not been given this chance. Thank you for allowing me to pursue my personal goals and for giving me guidance throughout this entire process. I have learned so much from this experience and you are to thank for that.

I would also like to thank all of the faculty members and support staff I have had the chance to encounter and work with. Thank you, Josée Rouleau, Annette Campeau and Chloé Lagacé for handling the administrative side of everything and answering all of my questions. Thank you, Dr. Glenn Facey, for maintaining the NMR facilities, Dr. B. Gabidullin and Dr. J. Ovens for X-ray analyses, and Sharon Curtis for managing the mass spectroscopy centre. Finally, I would like to thank my committee members, Prof. Stephen Newman and Prof. Fabien Gagosz, for your time and valuable input on my work.

The last two years would not have been the same without everybody I met in the Barriault and Gagosz labs along the way. A special thank you to Huy for taking me under his wing during my honours project. You were an incredible mentor and I’m so glad to have been able to work on a project with you. Avery, Montse, André, Julie, Sam, Phil, Martin, Dominic, Terry, David and Victor, I consider myself very fortunate to
have worked alongside all of you. You’ve all become good friends and I wish you all
the best in your current and future endeavours.

Last but not least, I couldn’t thank my family and friends enough for all the
support they’ve given me. My parents, Jackie and Daniel, thank you for giving me so
many opportunities and encouraging me from a front row seat in everything that I do.
My sister, Alex, you’re always there when I need it, and you have reassured and
supported me through it all. Larry, you push me to be my best every single day and
none of this would have been the same without you by my side. I love you all and I am
so lucky to have you in my life.
Contribution statement

The project presented in chapter 2 was conducted under the supervision of Louis Barriault in collaboration with Huy Tran. Throughout the project, the synthesis of starting materials was shared between Huy Tran and I. In section 2.2.2, my contributions include the Co(III)-catalyzed Diels-Alder reaction optimization, solvent optimization of the gold(I)-catalyzed cyclization reaction and further investigations into the one-pot reactions. Dienophile optimization was shared with Huy Tran and he also completed all studies involving the gold(I) cyclization with the Diels-Alder product prepared with methyl vinyl ketone.

In chapter 2.2.3, Huy Tran completed catalyst and solvent optimizations, as well as control studies of the Diels-Alder reaction. He also carried out the ligand optimization for the gold-catalyzed cyclization reaction. The synthesis and optimization of Evan’s auxiliaries for the Diels-Alder reaction was completed in collaboration. I completed the solvent optimization of the Diels-Alder/cyclization sequence, along with the second Diels-Alder reaction studies and the complete one-pot sequences presented. I also participated in preparing the steroid-like carbocycles scope. Characterization of compounds that were synthesized by Huy Tran will not appear in this thesis.

From section 2.3, I carried out the catalyst optimization for the 6-endo-dig cyclization/Prins reaction. Both scopes were shared and the molecules prepared by myself are highlighted and included in the characterization chapter.

As for chapter 3, the project was conceived by Prof. Louis Barriault and the work presented was completed by myself.
Table of Contents

Abstract..ii

Acknowledgements..iii

Contribution Statement...v

Table of Contents..vi

List of Figures..ix

List of Schemes...x

List of Tables...xv

Abbreviations...xvi

Chapter 1. Gold catalysis..1

1.1 Properties of gold..1

1.2 Gold reactivity...2

 1.2.1 Mechanism of gold(I)-catalyzed nucleophilic additions...3

 1.2.2 Formation of C–C bonds...5

 1.2.3 Formation of C–X bonds..9

1.3 Binding of gold catalysts and ligand/counterion effects...14

1.4 Gold as a photocatalyst...16

1.5 Summary...17

1.6 References..18

Chapter 2. Divergent strategies for the formation of fused carbocycles..22

2.1 Introduction...22

 2.1.1 Introduction to terpenoids...22

 2.1.2 Previous work..29
2.1.3 Synthetic strategy...30
2.1.4 Substrate synthesis..33

2.2 Selective formation of tri and tetracyclic carbocycles.........................34
 2.2.1 Diels-Alder reactions...34
 2.2.2 Enal dienophiles...37
 2.2.3 Oxazolidinone dienophiles..50
 2.2.4 Chiral oxazolidinone dienophiles.....................................61
 2.2.5 Reaction scope...64

2.3 Selective formation of tricyclic terpenoids...66
 2.3.1 Diels-Alder/6-endo-dig cyclization/Prins reaction cascade........67
 2.3.2 Diels-Alder/5-exo-dig cyclization/Prins reaction cascade.........71

2.4 Conclusion..74
2.5 References...76

Chapter 3. Cyclization of enol ethers using gold photocatalysis.....................80
3.1 Introduction...80
 3.1.1 Photochemistry...80
 3.1.2 Photocatalysis...82
 3.1.3 Applications of gold photocatalysis....................................89
3.2 Initial investigations..99
3.3 Future work...106
3.4 Conclusion..108
3.5 References...109

Chapter 4. Conclusion...112
Chapter 5. Additional information

5.1 General information

5.2 Experimental procedure chapter 2

General procedure 1: Diene starting material

General procedure 2: Salen ligands

General procedure 3: Gold(I) catalysts

General procedure 4: Oxazolidinone dienophiles

General procedure 5: Diels-Alder / 6-end/endo-dig cyclization/Diels-Alder

General procedure 6: Diels-Alder / 6-end/endo-dig cyclization/Prins-type cyclization

General procedure 7: Diels-Alder / 5-exo-dig cyclization/Prins-type cyclization

5.3 Characterization data chapter 2

5.4 Experimental procedure chapter 3

General procedure 8: Preparation of starting material

5.5 Characterization data chapter 3

5.6 References

Spectra
List of Figures

Figure 1.1. Structures of natural products hyperforin and papuaforins A, B, and C...9

Figure 1.2. Components of bonding interactions of gold(I) catalysts with ligands and substrates...14

Figure 1.3. Common gold complex ligands in increasing π-donating ability........15

Figure 1.4. Counterions and their affinity to gold..16

Figure 1.5. Structure of dimeric gold complex [Au₂(µ-dppm)₂]X₂..........................16

Figure 2.1. Natural and synthetic steroids as medical treatments.........................23

Figure 2.2. Potential for applications of 5-exo-dig/ Prins cyclization methodology in total synthesis...44

Figure 2.3. Distorted square planar geometry of Copper(II)-BOX catalyst bound to an oxazolidinone substrate...50

Figure 2.4. Favored diene approach in accordance to R³ substituent bulk............52

Figure 2.5. Gold(I) catalyst ligand optimization and structure of VPhos..............55

Figure 2.6. Exo Diels-Alder selectivity from Gd(OTf)₃...61

Figure 3.1. Jablonski diagram...81

Figure 3.2. Potential photochemical processes of an excited molecule..............82

Figure 3.3. General photocatalytic transformation pathways............................83

Figure 3.4. Common organic and metal-based photocatalysts.............................84
List of Schemes

Scheme 1.1. First applications of gold catalysis...3

Scheme 1.2. Stages of gold catalysis..4

Scheme 1.3. Reaction pathways for the cycloisomerization of 1,6-enynes.........................6

Scheme 1.4. Optimized conditions for the formation of bicyclo[m.n.1]alkenone frameworks..7

Scheme 1.5. Alternative cyclization pathways..8

Scheme 1.6. Cyclization of acetylenic acids reported by Genêt and Michelet.............10

Scheme 1.7. Intramolecular cyclization of alkynediols..10

Scheme 1.8. General reaction scheme of the Au-catalyzed tandem furan formation and [4+3] cycloaddition for the synthesis of reported curcusones I and J.............................11

Scheme 1.9. Intramolecular hydroamination of alkynes...12

Scheme 1.10. First example of intermolecular alkyne hydroamination............................12

Scheme 1.11. 6-endo-dig cyclization/5-exo-trig cyclization/aromatization sequence in the protecting-group-free total syntheses of rhazinilam and rhazinicine.......................13

Scheme 2.1. Biosynthetic cyclization of squalene to lanosterol..24

Scheme 2.2. Cationic π-cyclization in Johnson’s synthesis of progesterone.....................24

Scheme 2.3. Synthesis of (±)-sophoradiol...25

Scheme 2.4. Total synthesis of dammarenediol II..26

Scheme 2.5. Enantioselective polyene cyclization by LBA catalysts...................................27

Scheme 2.6. Metal-catalyzed polycyclization strategies for the generation of steroidal frameworks..28

Scheme 2.7. Envisioned approach towards the synthesis of steroid scaffolds...............29

Scheme 2.8. Intramolecular gold-catalyzed cyclization of cyclic enol ether 2.10 to selectively afford products 2.11a and 2.11b...30
Scheme 2.9. Alternative products from the Gold(I) cyclization reaction..................31

Scheme 2.10. Gold(I) cyclization mechanism...32

Scheme 2.11. Synthetic scheme of one-pot reaction cascade....................................33

Scheme 2.12. Synthesis of linear enol ether starting material....................................34

Scheme 2.13. Diels-Alder reaction products between cyclopentadiene and quinone, identified by Otto Diels and Kurt Alder in 1928...35

Scheme 2.14. Endo and exo products formed in a Diels-Alder reaction between cyclopentadiene and maleic anhydride...35

Scheme 2.15. Diels-Alder reaction between anthracene and maleic anhydride...........36

Scheme 2.16. Diels-Alder reaction designed by Rawal generating 93-100% yields of product 2.32b...37

Scheme 2.17. One-pot reaction using [Me₃MeOtBuXPhosAuNCMe]SbF₆ catalyst.....42

Scheme 2.18. One-pot reactions using hydrogen bonding additives, 1H-Benzotriazole and Pyridine N-oxide..43

Scheme 2.19. One-pot reaction using Lewis acid co-catalysts Gd(OTf)₃ and In(OTf)₃...44

Scheme 2.20. Product distribution of gold(I)-catalyzed cyclization from diastereoisomeric mixture of cycloadduct 2.13d...45

Scheme 2.21. Cyclization product distribution from the exo and endo Diels-Alder products..46

Scheme 2.22. Proposed transition states for the Au(I)-catalyzed cyclization of (endo)-2.13d...47

Scheme 2.23. Transition state of the gold(I)-catalyzed cyclization to generate the trans-decalin...47

Scheme 2.24. Proposed transition states for the Au(I)-catalyzed cyclization of (exo)-2.13d...48
Scheme 2.25. Proposed transition states for the Au(I)-catalyzed cyclization of (endo)-2.13a

Scheme 2.26. Application of BOX ligand in a Diels-Alder reaction between cyclopentadiene and an oxazolidinone dienophile

Scheme 2.27. Diels-Alder reaction using achiral BOX ligand

Scheme 2.28. Diels-Alder/gold(I) cyclization/Diels-Alder one-pot reaction

Scheme 2.29. Transition states of exo Diels-Alder adducts with chiral oxazolidinone dienophiles

Scheme 2.30. Final Diels-Alder/gold(I) cyclization/Diels-Alder one-pot reaction

Scheme 2.31. Scope of Diels-Alder/6-endo-dig gold(I)-catalyzed cyclization/Diels-Alder one-pot cascade

Scheme 2.32. Divergent method to synthesize complex polycycles

Scheme 2.33. Catalytic cycle of Diels-Alder/6-endo-dig cyclization/Prins reaction cascade

Scheme 2.34. Diels-Alder/6-endo-dig cyclization/Prins cyclization one-pot sequence scope

Scheme 2.35. Catalytic cycle of Diels-Alder/5-exo-dig cyclization/Prins reaction cascade

Scheme 2.36. Diels-Alder/5-exo-dig cyclization/Prins cyclization one-pot sequence scope

Scheme 2.37. Divergent pathways for selective formation of complex polycycles

Scheme 3.1. Reaction scheme for the reductive dehalogenation of C–Cl and C–Br bonds

Scheme 3.2. Proposed photocatalytic cycle for reductive dehalogenation reaction

Scheme 3.3. Proposed photocatalytic mechanism for the formation of phenanthenes
Scheme 3.4. Proposed dual catalytic mechanism for the enantioselective α-cyanoalkylation of aldehydes

Scheme 3.5. Proposed photocatalytic reductive and oxidative quenching cycles

Scheme 3.6. Proposed photocatalytic mechanism for the cyclization of unactivated bromoalkanes

Scheme 3.7. Scope example for the cyclization of alkyl and arylbromides

Scheme 3.8. Functionalization of indoles via gold photoredox catalysis

Scheme 3.9. Proposed photocatalytic mechanism of indole functionalization via free-radical cyclization

Scheme 3.10. Photocatalyzed key radical cyclization step in the formal synthesis of (±)-triptolide

Scheme 3.11. Proposed mechanism of photocatalytic semipinacol rearrangement via [AuI–AuIII] intermediate

Scheme 3.12. General reaction scheme

Scheme 3.13. Proposed radical cyclization mechanism through AuIII intermediate

Scheme 3.14. Substrate synthesis

Scheme 3.15. Initial cyclization reaction studies

Scheme 3.16. Proposed photocatalytic mechanism through a reductive quenching cycle

Scheme 3.17. Cyclization reaction under a reductive quenching pathway

Scheme 3.18. Hydrolysis of silyl enol ether products to ketone

Scheme 3.19. Formation of bridged-ketone and spirocyclic scaffolds

Scheme 3.20. Suggested synthesis of silyl enol ethers and

Scheme 4.1. Divergent one-pot syntheses for the formation of complex polycyclic scaffolds
Scheme 4.2. Photocatalytic cyclization of 3.27b under a reductive quenching cycle

Scheme 5.1. Synthesis of terminal alkyne substrate

Scheme 5.2. Synthesis of ketone substrate

Scheme 5.3. Synthesis of linear diene substrate

Scheme 5.4. Synthesis of 2,6-dibromophenol silyl ethers

Scheme 5.5. Synthesis of 3-silylsubstituted salicylaldehydes

Scheme 5.6. Salen ligand synthesis from hydroxybenzaldehyde substrate

Scheme 5.7. Preparation of LAuCl complexes with phosphine ligands

Scheme 5.8. Preparation of LAuNCMeSbF_6 complexes with phosphine ligands

Scheme 5.9. Oxazolidinone dienophile synthesis

Scheme 5.10. One-pot reaction cascade for the synthesis of steroid scaffolds

Scheme 5.11. One-pot Diels-Alder/6-endo-dig cyclization/Prins cyclization sequence

Scheme 5.12. One-pot Diels-Alder/5-exo-dig cyclization/Prins cyclization sequence

Scheme 5.13. Synthesis of diene starting material 3.26
List of Tables

Table 2.1. Optimization of Diels-Alder Cobalt(III) catalyst and reaction conditions...38

Table 2.2. Diene and dienophile optimization for initial Diels-Alder reaction........40

Table 2.3. Solvent optimization of the gold(I)-catalyzed cyclization..................41

Table 2.4. Catalyst optimization for the initial Diels-Alder reaction..................53

Table 2.5. Diels-Alder/gold(I) cyclization sequence with chiral BOX ligand........56

Table 2.6. Second Diels-Alder reaction scope...58

Table 2.7. Control reactions of Diels-Alder reaction involving Lewis acid catalyst and BOX ligand...60

Table 2.8. Evans’ auxiliary optimization for Lewis acid-catalyzed Diels-Alder reaction..63

Table 2.9. Catalyst optimization of 6-endo-dig cyclization..............................68

Table 3.1. Optimization of photocatalytic cyclization of bromoalkanes..............92

Table 3.2. Diels-Alder reaction..103
Abbreviations

<p>| Ac | acetate |
| Ad | adamantyl |
| AIBN| 2,2’-azobisisobutyronitrile |
| AO | atomic orbital |
| Ar | aryl |
| Bn | benzyl |
| BOX | bis(oxazoline) |
| Bpy | 2,2'-bipyridine |
| CDCl$_3$ | deuterated chloroform |
| CFL | compact fluorescent light bulb |
| DABCO | 1,4-diazabicyclo[2.2.2]octane |
| DCE | dichloroethane |
| DCM | dichloromethane |
| DIBAL-H| diisobutylaluminum hydride |
| DIPEA| N,N-diisopropylethylamine |
| Dppm| bis(diphenylphosphino)methane |
| dr | diastereoisomeric excess |
| Dtbbpy| di-tert-butyl-2,2’-bipyridine |
| EDG | electron donating group |
| ee | enantiomeric excess |
| equiv| equivalents |
| Et | ethyl |
| EtOAc| ethyl acetate |
| EWG | electron withdrawing group |
| h | hours |
| HOMO| highest occupied molecular orbital |
| HRMS| high-resolution mass spectroscopy |
| iPr | isopropyl |
| IR | infrared |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC</td>
<td>intersystem crossing</td>
</tr>
<tr>
<td>LA</td>
<td>Lewis acid</td>
</tr>
<tr>
<td>LBA</td>
<td>Lewis acid and chiral Brønsted acid system</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest occupied molecular orbital</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>MeOAc</td>
<td>methyl acetate</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal to ligand charge transfer</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OTf</td>
<td>triflate</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Ppy</td>
<td>2-phenylpyridinate</td>
</tr>
<tr>
<td>RBF</td>
<td>round bottom flask</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>tBu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>tBuOH</td>
<td>tert-butanol</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>tri-isopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TS</td>
<td>transition state</td>
</tr>
<tr>
<td>UVA</td>
<td>ultraviolet A</td>
</tr>
</tbody>
</table>
Chapter 1. Gold Catalysis

1.1 Properties of gold

Gold has been valued for thousands of years and has been used for currency, jewellery and valuable art due to its high oxidation potential. The unusual inherent stability of gold led scientific researchers to believe that it had little to no synthetic utility, and these common misconceptions have unfortunately delayed the evolution of gold chemistry. It wasn't until the early 1990's when its potential for application in organic synthesis was uncovered, leading to increased awareness and attention from the scientific community.

The Schrodinger equation is a well-known tool to determine quantum mechanical behaviour of physical systems. Applied to chemistry, this equation can define the energy levels of atoms and can generate functions describing the probability of finding particles in a specific position. However, the Schrodinger equation cannot account for systems in which the velocity of electrons approaches the speed of light (c). This phenomenon occurs when the atomic nuclear charge (Z) of an element is elevated and increases in return the velocity and mass of electrons. Due to this drawback, British physicist, Paul Dirac, developed a new equation incorporating relativity. For the first time, quantum mechanics and the laws of special relativity were combined to describe particles in what we now call the Dirac equation. Properties resulting from this law are known as relativistic effects and provide clarity on the electronic structure and reactivity of elements. Gold, which has an atomic number of 79, is greatly affected by relativistic effects and derives from them its most
valued properties: strong π-Lewis acidity and the capability to stabilize neighbouring cations.²

An important distinction between the Schrödinger equation and the Dirac equation is the mass correction. An increase in velocity leads to an increase in mass of electrons, which has an inversely proportional relation to the Bohr radius. As Z increases, the atomic radius becomes smaller and the s and p orbitals contract, further shielding outer electrons from the nucleus. Due to this increase in shielding, the f and d orbitals experience less effective nuclear charge and expand.¹ The respective expansion and contraction of 6s and 5d orbitals are principally responsible for relativistic effects exhibited by gold complexes.² The contraction of the 6s orbital is responsible for the superior π-acidity of gold complexes, and the expansion of the 5d orbital can lead to backdonation of electron density and stabilization of carbocations.

1.2 Gold Reactivity

Ever since studies revealed the potential for gold in synthetic chemistry, an abundance of research has endeavoured to develop new chemical reactivity. It is a common misconception that gold-based catalysts are more expensive than other routinely used metals, such as palladium and ruthenium. In truth, the cost of a catalyst is often driven by the cost of the ligand, rather than the metal. Furthermore, gold catalysts are no more challenging to prepare. The ability of gold to tolerate acidic protons and oxygen allows for reactions to operate with high functional group
tolerance under mild conditions, such as ambient temperatures and in the presence of air and moisture.³

The first example of homogeneous gold catalysis was reported in 1986 by Ito and Hayashi for an asymmetric aldol reaction using a ferrocenylphosphine-gold(I) complex.⁴ Later, in 1998 and 2002, Teles and Tanaka respectively reported the first applications of gold catalysis towards the addition of alcohols and water to alkynes (Scheme 1.1).⁵,⁶ The use of gold(I) catalysts for the electrophilic activation of alkynes replaced the need for toxic metals, such as mercury, and played a key role in broadening the field of gold chemistry.

Scheme 1.1. First applications of gold catalysis.

1.2.1 Mechanism of gold(I)-catalyzed nucleophilic additions

Nucleophilic additions to gold-activated multiple bonds are the most common application of gold catalysis. Gold(I) is a soft Lewis acid that preferentially interacts with soft nucleophiles, such as π systems. This controlled reactivity has been applied to the activation of alkenes, allenes and alkynes. Gold is especially the metal of choice when it comes to alkyne-involved reactions, as it has the ability to chemoselectively
activate them in the presence of alkenes. The proposed explanation of the observed alkynophilicity is the lower in energy LUMO of Au-alkyne complexes when compared to Au-alkene complexes.\(^1\)

The first stage of gold-catalyzed nucleophilic addition reactions involves electrophilic activation of a C–C multiple bond (1.3a) by means of coordination of the gold catalyst (1.3b) (Scheme 1.2). Then, the addition of a nucleophile proceeds in an anti manner, leading to the formation of vinyl gold species 1.3c. Finally, the trans-alkenyl gold complex interacts with a proton through protodeauration to release the catalyst and desired product (1.3d). It is important to note that C–Au intermediates are not susceptible to β-hydride elimination, contributing to their selective reactivity.

Scheme 1.2. Stages of Gold Catalysis.

In 2012, Xu and Hammond studied ligand effects on the reaction steps of Au-catalyzed reactions.\(^7\) The authors found that electron poor ligands facilitate π-bond
activation by increasing the cationic nature of the gold species, thereby rendering it more electrophilic. In reactions between poorly activated substrates and weak nucleophiles, this activation step is expected to be rate determining and electron poor ligands are favorable. Protodeauration kinetics were also examined and a large influence was correlated between the ligands and the rate of the step. Sterically bulky and electron poor Ar₃P ligands seemed to decrease the rate of protodeauration, while electron rich phosphine ligands, as well as NHC ligands, led to increased rates.

1.2.2 Formation of C–C bonds

One of the most studied gold-catalyzed transformations for the creation of C–C bonds is the cycloisomerization of 1,n-enynes. In the past, metals such as palladium were used as electrophilic activators for enynes to undergo Alder-ene reactions. However, this is not applicable to gold as it is not as easily oxidized from gold(I) to gold(III). Accordingly, cycloisomerization of 1,6-enynes instead involves gold(I) coordination to alkyne 1.4 and formation of a (η²-alkyne)gold complex (Scheme 1.3). The electrophilically activated alkyne can then interact with the alkene and lead to cyclopropyl gold carbenes 1.5a and 1.6a, through a 5-exo-dig or 6-endo-dig pathway, respectively. These intermediates can be highly delocalized and can also be present as gold(I)-stabilized carbocations, due to poor π-backdonation from the gold(I). From here, various pathways can lead to a range of products.
Scheme 1.3. Reaction pathways for the cycloisomerization of 1,6-enynes.

From intermediate 1.5a, a 1,3-migration of the terminal carbon of the alkene, followed by a single bond cleavage, can lead to the formation of 1,3-diene 1.7c. Following a similar 1,3-migration, an intramolecular double cleavage rearrangement involving both the alkyne and alkene, followed by proton elimination and protodeauration, can generate diene 1.7a. A third product can also be formed by a single cleavage rearrangement, however the initial 1,3-migration involves the displacement of the internal alkene carbon. In addition, when the regioselectivity of the initial cyclization favors 6-endo-dig intermediate 1.6a, the possibility of generated
products is further increased. Bicyclic product 1.7d can be directly formed through protodemetalation. Alternatively, ring expansion of the cyclopropane intermediate forms (η²-cyclobutene)-gold(I) complex 1.6b, which can isomerize to produce cyclobutene 1.7e or precursor 1.6c through ring opening of the gold(I) complex. Over the years, different strategies have been employed to control the selectivity of these reactions.9,10 Modifications of the gold catalyst can largely affect the initial cyclization, and substrate design can affect the stability and reactivity of intermediates.

As an efficient approach to form C–C bonds, gold catalysis has established its place in total synthesis.11 In 2009, the Barriault group reported the development of a Au-catalyzed cyclization method to generate bicyclo[m.n.1]alkenone frameworks (Scheme 1.4).12 The synthetic strategy was focused on the affinity of phosphino gold(I) salts for alkyne moieties (1.8), targeting a 6-endo-dig cyclization pathway to generate the desired fused carbocyclic rings (1.9).

\[\text{Scheme 1.4. Optimized conditions for the formation of bicyclo[m.n.1]alkenone frameworks.} \]

The main challenge here was controlling the reactivity of the silyl enol ether towards the alkyne, rather than having the ester moiety cyclize in a 5-exo-dig manner, which could lead to bicycle 1.11 following hydrolysis. Then, cyclization
regioselectivity was important to avoid formation of the 5-exo-dig carbocyclic product 1.10 (Scheme 1.5).

![Scheme 1.5. Alternative cyclization pathways.](image)

Investigations of gold catalysts revealed the ability of phosphino ligands to govern the cyclization reactivity, favoring the 6-endo-dig pathway. Et₃P ligand greatly improved the conversion and selectivity from Ph₃P and varying the counterion also had an important effect on regioselectivity. Further optimization targeting Buchwald ligands uncovered JohnPhos as an optimal ligand, leading to 100% conversion with excellent selectivity. Moreover, this methodology was later employed in the total synthesis of hyperforin, and papuaforins A, B, and C (Figure 1.1).¹³
Figure 1.1. Structures of natural products hyperforin and papuaforins A, B, and C.

1.2.3 Formation of C-X bonds

Similar to the first examples of hydroalkoxylation achieved by Teles and Tanaka, a variety of heteronucleophile additions to multiple bonds have been developed. In 2006, Genêt and Michelet reported the first gold-catalyzed cyclization of acetylenic acids (Scheme 1.6). In general, previous methods for the addition of acids to alkynes required high temperatures, the incorporation of ligands or additives, and in some cases, Hg salts. The use of AuCl in acetonitrile realized exomethylene lactones in 90% yield (1.14b) at room temperature and in short reaction times. Ag(I) and Sc(III) were used in comparison and demonstrated the superiority of gold(I) by leading to respective product yields of 10% and 0%. The reaction conditions showed compatibility with a variety of substrate substituents, including ester, alkenyl, chloro, alkynyl, alcohol and protected alcohol moieties.
In 2009, Aponick and co-workers studied the intramolecular cyclization of alkynediols using PPh₃AuNTf₂, which was generated \textit{in situ} from PPh₃AuCl and AgNTf₂ (Scheme 1.7). Under mild conditions, the formation of highly substituted furans was performed in minutes. Catalyst loadings could be as low as 0.05\% to prompt the cyclization of the alcohol onto the alkyne, forming intermediate 1.15b and product 1.15c following the elimination of water.

A similar synthetic strategy as shown above was exploited to initiate a cascade cyclization reaction in the synthesis of the reported structures of curcusones I and J. Through a furan formation/ [4+3] cycloaddition sequence, the distinctive 5,7-fused ring system with an oxa-bridge was achieved (Scheme 1.8). The first heterocyclic ring was formed through a Au-catalyzed 5-\textit{endo-dig} cyclization of enyne alcohol 1.16. Buchwald ligands realized the desired transformation and optimal conditions.
involved a JohnPhosAuNTf₂ catalyst. Rapid isomerization of the cyclization product to furan intermediate \textbf{1.17a}, and allene activation by the Au(I) catalyst (\textbf{1.17b}), prompted subsequent [4+3] cycloaddition. Furthermore, the reaction cascade was completed on large scale (5 g, 46%). Unfortunately, spectral data of the final synthesized curcusone structures (\textbf{1.19a–b}) were not compatible with reported data for the natural products, which now remain ambiguous.

\textbf{Scheme 1.8. General reaction scheme of the Au-catalyzed tandem furan formation and [4+3] cycloaddition for the synthesis of reported curcusones I and J.}

Intramolecular hydroamination of alkynes was accomplished by Nozaki, Utimoto \textit{et al.} under mild conditions (\textbf{Scheme 1.9}).20, 21 Sodium tetrachloroauroate was chosen to prompt the cyclization of an amine onto a tethered alkyne. The initial enamine (\textbf{1.21a–b}) was formed through a 6-\textit{exo-dig} cyclization or a 5-\textit{exo-dig} cyclization, respectively from 5-alkynylamines (\textbf{1.20a}) or 4-alkynylamines (\textbf{1.20b}). Successive tautomerization delivered the thermodynamically favored imine products (\textbf{1.22a–b}).
Scheme 1.9. Intramolecular hydroamination of alkynes.

While the intramolecular alkyne hydroamination was well developed, it wasn’t until 2003 that Hayashi and Tanaka demonstrated the first application of an intermolecular alkyne hydroamination (Scheme 1.10). The formation of imines from anilines and alkynes was accomplished using catalyst loadings as low as 0.1%. Markovnikov regioselectivity was observed from reactions involving terminal alkynes.
Gold catalysis was also exploited for C–N bond formation in the protecting-group-free total syntheses of natural products rhazinilam and rhazinicine. A 6-endo-dig cyclization/5-exo-trig cyclization/aromatization sequence was accomplished under catalytic gold conditions to generate mutual alkaloid intermediate 1.27 (Scheme 1.11). Gold coordination to the alkyne moiety (1.25) triggered the initial 6-exo-dig cyclization, generating enamide intermediate 1.26a. The formation of oxocarbenium ion 1.26b under acidic conditions further prompted the 5-exo-trig cyclization of the enamide to form intermediate 1.26c. The latter spontaneously aromatized and desired product 1.27 was realized. The authors proposed that the use of microwave irradiation and acidic additive was especially necessary in the transformation of 1.25 due to the steric bulk of the quaternary center neighboring the alkyne. The cascade was also achieved on less substituted substrates solely in the presence of the gold(I) catalyst at 80°C.

Scheme 1.11. 6-endo-dig cyclization/5-exo-trig cyclization/aromatization sequence in the protecting-group-free total syntheses of rhazinilam and rhazinicine.
1.3 Gold catalyst binding model and ligand/counterion effects

It is apparent from transformations involving gold catalysis that the substrates and ligands have an indisputable effect on the efficiency and selectivity of the reactions. Many reaction pathways have been proposed to explain these differences, based mostly on gold-stabilized carbocations and gold carbene intermediates. In 2009, Toste and coworkers investigated these theories to better understand the true character of gold-substrate intermediates. When studying ligand effects, it is important to consider the components of the Au-ligand and Au-substrate bonds which can be depicted as three components, demonstrated in figure 1.2.

![Components of bonding interactions of gold(I) catalysts with ligands and substrates.](image)

First, the only vacant valence orbital on gold is the 6s AO which leads to a three-center-four-electron σ-hyperbond. However, this does not always equate to matching bond lengths, and increasing trans ligand σ-donation seemingly leads to decreased bond order between the Au center and the substrate. In addition, the π bond can be formed by electron donation from filled d-orbitals on the metal center into empty π-acceptor orbitals of the ligand and the substrate. Toste describes these gold intermediates as a continuum ranging between the singlet carbene and the metal-coordinated carbocation, suggesting these π-bonds are not mutually exclusive.
Consequently, electron density from the gold center is shared and the nature of the ligand can influence the scale (Figure 1.3). For example, highly π-acidic ligands will lead to stronger π-donation from the gold center to the ligand, and therefore stronger Au-stabilized carbocation reactivity.

![Figure 1.3. Common gold complex ligands in increasing π-donating ability.](image)

Further experiments were conducted to determine the effect of the substrate on the state of cationic gold intermediates. Experiments involving measurements of π-bond rotation energy barriers were conducted for different gold-carbene complexes to approximate their strength. Through computational methods, it was suggested that the reactivity was highly dependent on stabilization of the intermediate by substituents. For example, the presence of stabilizing oxygen atoms proximate to the carbocation can decrease the bond rotation energy barrier, suggesting these substrates may preferably react as cationic intermediates.

Counterion effects on gold catalyst reactivity have also been examined. In 2017, Xu and Hammond published their works and concluded that coordinating counterions with low dissociation energies generally exhibit high reactivity. This is
due to the lesser energy required to overcome Coulombic attractions and produce a charge separation between the gold and the counterion in the reaction’s transition state. In figure 1.4, counterions are listed by decreasing affinity to gold.

![Counterions and their affinity to gold](image)

Figure 1.4. Counterions and their affinity to gold.

1.4. Gold as a photocatalyst

The discovery of \([Au_2(\mu\text{-dppm})_2]Cl_2\) as a photocatalyst was significant, as photochemistry gained popularity as an efficient method for the formation of C–C bonds (Figure 1.5). The synthesis of dimeric Au(I) complexes was first described in 1977 by Schmidbaur.\(^{27}\) Although gold(I) has a [5d\(^{10}\)] closed-shell configuration and would only be expected to exhibit van der Waals interactions, studies demonstrated that there is a Au–Au interaction with similar strength to hydrogen bonding, between 20–50 kJ/mol.\(^{28}\)

![Structure of dimeric gold complex](image)

Figure 1.5. Structure of dimeric gold complex \([Au_2(\mu\text{-dppm})_2]X_2\).

The photophysical properties of dinuclear gold complexes were first reported in 1988 by Che et al., and have been further studied since.\(^{29–32}\) Investigations into
cationic species $[\text{Au}_2(\mu-\text{dppm})_2]^{2+}$ elucidated its capability to absorb light with an absorption maxima of 295 nm. Through transient absorption spectroscopy and computational experiments, it was found that the excitation of the cationic species involves the transition of an electron from the 5d_{z^2} anti-bonding orbital to a 6s/6p_z bonding orbital. The singlet excited state is not long lived, as it undergoes intersystem crossing within approximately 0.15 picoseconds to $^35s^*6p_s$. The Au–Au bond order, which was previously 0 in the ground state, then becomes 1 in the excited state and the relative interatomic distance decreases from 2.962 Å to 2.677 Å. The dimeric catalyst was described as having great potential for photocatalysis, as it possesses a lifetime of 850 nanoseconds in its triplet excited state and has the most negative reduction potential in comparison to other commonly used catalysts. These photophysical discoveries led to a better understanding of cationic gold dimers and attracted attention to their application in photochemistry. Further studies and applications will be explored in Chapter 3.

1.5 Summary

The literature has demonstrated various applications of gold catalysis, from the electrophilic activation of π systems to the photochemical properties of dimeric gold species. The fascinating reactivity of gold is namely due to its superior π-acidic properties and its ability to stabilize carbocations. The objective of this thesis is to demonstrate the prominence of gold catalysis through different applications under thermal and photochemical conditions.
1.6 References

Chapter 2. Divergent strategies for the formation of fused carbocycles

2.1 Introduction

From the development of synthetic methodologies, to the design of new molecular systems and the study of biological properties, natural product synthesis is a key research area that encompasses many fields of science. It has become a highlight in organic chemistry for many years, especially due to the importance of natural products and natural product-derived compounds in the pharmaceutical industry. The structural complexity of natural products has made them interesting targets for synthetic organic chemists, leading the modern field of chemistry in pursuit of highly selective and efficient methods.

2.1.1 Introduction to terpenoids

Terpenoids represent a large class of naturally derived products from terpene precursors. These compounds are highly relevant as they have a large range of biological activity. Steroids in particular are very effective because they often play a major role in cell signalling by coordinating basic cellular activity. They are commonly used for contraception, hormone replacement therapy, or as immunosuppressants for the treatments of diseases such as rheumatoid arthritis, asthma, skin diseases, allergies and cancer (Figure 2.1).
Figure 2.1. Natural and synthetic steroids as medical treatments.

In humans and animals, steroids are biochemically derived from lanosterol following the mevalonate pathway, an anabolic pathway using acetyl-CoA as a small building block to form polyolefins comprised of repeating isoprene units. Squalene, a 6-isoprene unit building block, undergoes an enzyme-catalyzed cyclization and skeletal rearrangement to create lanosterol (Scheme 2.1). In the 1950’s, Stork and Eschenmoser independently reported studies leading to important mechanistic and stereochemical clarification of polyolefin cyclization: both researchers suggesting that the stereoselectivity was controlled by the (E)-alkenes.
Inspired by Stork and Eschenmoser's work, Johnson played a major role in the synthesis of steroid scaffolds. He reported the renowned biomimetic synthesis of progesterone (2.3c) in 1971 through a cationic π-cyclization reaction cascade using trifluoroacetic acid (TFA) (Scheme 2.2). Additional steps from steroid framework 2.3b elegantly formed the natural product.

Similarly, Johnson achieved the first pentacyclic cyclization in the synthesis of (±)-sophoradiol (2.4f), generating 5 rings in a single polyolefin cyclization.
transformation (Scheme 2.3).38 The use of Lewis acid SnCl₄ led to unwanted elimination of HF, however TFA was able to generate the pentacyclic framework 2.4c without dehydrofluoronation. From this intermediate, (±)-sophoradiol was formed in 3 steps.

Scheme 2.3. Synthesis of (±)-sophoradiol.

Since then, a multitude of methods have been developed to form steroidal frameworks from linear precursors.39 Notably, Corey completed an enantioselective total synthesis of dammarenediol II (2.5d) in 1996 utilizing a similar biomimetic polyolefin cyclization strategy (Scheme 2.4).40 Starting compound 2.5a was prepared from the known enantioselective dihydroxylation of E,E-farnesyl acetate in 80% yield with 98:2 enantioselectivity. Further transformations eventually generated linear precursor 2.5b and a cyclization initiated by MeAlCl₂ generated framework 2.5c in 42% yield over 3 steps. Dammarenediol II was generated in a few steps from this intermediate.
Scheme 2.4. Total synthesis of dammarenediol II.

In 1999, Yamamoto achieved the first enantioselective polyolefin cyclization. With the objective of designing artificial geranyl and farnesyl cyclase replacements, a variety of binaphthyl derivatives comprised of a Lewis acid and Chiral Bronsted acid system (LBA) were prepared. Success was found in a BINOL•SnCl₄ complex (2.6a), which has the ability to induce asymmetric protonation of the isoprenyl moiety. As shown in scheme 2.5, high yields and moderate enantioselectivity were achieved. Corey further improved this method in 2012 by employing a bulkier Lewis acid, replacing SnCl₄ by SbCl₅. This generated stronger coordination between a modified BINOL derivative and the LA, leading to increased acidity and in return, 84% yield and 92% enantiotopic excess of product 2.7c.
Following these key studies in the development of polyene cyclizations, other methods employing metal-catalysis were developed to form complex polycyclic hydrocarbon structures. In 2017, Gagné and Geier reported the polycyclization of linear precursor 2.8b using a pincer-platinum(II) catalyst (2.8a) (Scheme 2.6). Pentanene 7 (2.8c) was formed as a single diastereoisomer in a 44% yield. Later that year, Echavarren and Rong published a similar study on the polycyclization of polyenynes by gold(I)-catalysis to form multiple C–C bonds of steroidal framework 2.9c and a variety of other substrates in a single transformation. The use of bulky biphenylphosphine ligands was the most successful and the scope was performed using gold(I) complex 2.9a.
More recently, the importance in the pharmaceutical industry of the synthetic methods mentioned above has declined due to semi-synthesis becoming a common strategy of choice to generate steroid-based products. Partial chemical synthesis from naturally abundant precursors isolated from microbial cell cultures and/or natural plant sources can be advantageous from a financial perspective, while facilitating the synthesis of very complex frameworks. Although this method does present many advantages, difficulties remain in the incorporation of substrate modifications to produce large libraries of complex polycyclic compounds. It is therefore important to focus on continuing the development of divergent strategies that allow for the formation of a multitude of products through simple reagent modifications.
The objective of this project was to develop a method for the formation of fused carbocycles by using a strategy that could easily incorporate modified building blocks. Our envisioned approach involves a linear precursor undergoing a [4+2] cycloaddition, followed by a 6-endo-dig cyclization to form an internal diene. The generated intermediate could subsequently undergo a second [4+2] cycloaddition to create a terpenoid scaffold (Scheme 2.7).

Scheme 2.7. Envisioned approach towards the synthesis of steroid scaffolds.

2.1.2 Previous work

The Barriault group has studied gold reactions and their application in total synthesis for many years. Gold(I)-catalyzed cyclizations have been reported in the literature, but strategies are still lacking when it comes to forming the 6-endo-dig cyclization product. As visited in the previous chapter, ligands have been shown to greatly modify the reactivity and selectivity of catalytic gold reactions. In 2001, our group developed a gold(I)-catalyzed carbocyclization where both the 5-exo-dig and 6-endo-dig products were selectively formed (Scheme 2.8). Me₄BuXPhos (L¹) demonstrated the strongest bias towards the 6-endo-dig pathway during optimization studies. In the presence of [L¹AuNCMe]SbF₆, 2.10 undergoes a carbocyclization by nucleophilic attack of the cyclic enol ether onto the internal alkyne. Overall yields ranged from 45–91% and good to excellent regioselectivity was attained to afford product 2.11a in up to >95:5 regioisomeric ratios (2.11a:2.11b).
Similarly, by using NHC ligand \(L^2 \), the 5-exo-dig cyclization pathway was favored, generating products 2.11\(\text{b} \) in 86–94\% yields with excellent regioselectivity. This method demonstrated the divergent regioselectivities that could be achieved through simple modifications of the gold catalyst.

![Scheme 2.8. Intramolecular gold-catalyzed cyclization of cyclic enol ether 2.10 to selectively afford products 2.11\(\text{a} \) and 2.11\(\text{b} \).](image)

2.1.3 Synthetic strategy

Inspired by the ability to selectively generate two cyclization products, our group envisioned a divergent synthetic method for the formation of terpenoid scaffolds (Scheme 2.9). First, designed precursor 2.13 could be formed through a Diels-Alder reaction from diene 2.12. Then, both 6-endo-dig and 5-exo-dig cyclizations could occur, leading respectively to dienes 2.17 and 2.16 following
protodeauration. Complex tricyclic scaffolds 2.14 and 2.15 can also be formed from a subsequent Prins-type cyclization following the initial cyclization reaction.

Scheme 2.9. Alternative products from the Gold(I) cyclization reaction.

The proposed gold cyclization mechanism begins with a gold(I) species coordinating the alkyne moiety of silyl enol ether 2.13 (Scheme 2.10). The resulting organogold complex 2.18a promotes an intramolecular nucleophilic attack from the silyl enol ether onto the internal alkyne, forming either the 6-endo-dig (2.18b) or the 5-exo-dig oxonium intermediates (2.18c). The targeted diene product 2.17, as well as bicyclic product 2.16, can subsequently be generated following proton elimination.
and protodeauration. Alternatively, either oxonium intermediate (2.18b or 2.18c) can undergo a Prins-type cyclization, forming an additional cycle and C–C bond. Tricyclic product 2.13 can be generated from a 1,2-H shift followed by elimination of the gold species of intermediate 2.19b. Finally, tricycle compound 2.14 can be formed following proton elimination and protodeauration of intermediate 2.20b.

Scheme 2.10. Gold(I) cyclization mechanism.

This project was completed in collaboration with Huy Tran, as we further envisioned a one-pot sequence for the formation of steroid scaffolds by taking advantage of the internal diene generated in cyclization product 2.17 (Scheme 2.11). Silyl enol ether 2.13 could be generated through a Diels-Alder reaction from a linear diene (2.12), followed by the 6-endo-dig cyclization to form 2.17. The generated
intermediate could subsequently undergo a second [4+2] cycloaddition to create terpenoid scaffold 2.12. This highly efficient synthetic strategy has the potential of forming 5 C–C bonds and controlling the stereoselectivity of up to 8 stereocenters in a single one-pot multistep reaction.

Scheme 2.11. Synthetic scheme of one-pot reaction cascade.

2.1.4 Substrate synthesis

The starting material of the one-pot synthesis is comprised of a diene tethered to an enyne moiety, designed to undergo the desired transformations. The formation of this scaffold followed a convergent synthesis from phosphonate 2.22 and 4-pentyn-1-al (2.23), the latter derived from the oxidation of 4-pentyn-1-ol (Scheme 2.12). A Horner-Wadsworth-Emmons transformation generated enone 2.24, which was subsequently converted to enyne 2.25 through a Sonogashira coupling reaction. Finally, a triisopropyl silyl protecting group was installed to the enone (2.25) to afford diene 2.12.
Scheme 2.12. Synthesis of linear enol ether starting material.

2.2 Selective formation of tri and tetracyclic carbocycles

2.2.1 Diels-Alder reactions

Diels-Alder reactions are [4+2] cycloadditions involving a conjugated diene and a dienophile. They are a well-known transformations that have had a large impact in the chemical world, advancing many total synthesis projects. The Diels-Alder reaction is favored by the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the reactants.\(^5\) Otto Diels and Kurt Alder were awarded the Nobel prize in 1950 for their advancements on the transformation published in 1928. From a reaction between cyclopentadiene and quinone, they identified the monoadduct (2.27a) and bis-adduct (2.27b) products from a [4+2] cycloaddition (Scheme 2.13).\(^6\)

Stereoselectivity of the Diels-Alder reaction is determined by the approach of the dienophile to the diene (Scheme 2.14). The resulting stereoisomers have been characterized as the endo and exo products. The endo product (2.29b) is generally the kinetic product, favored in intermolecular reactions when secondary orbital interactions can stabilize the transition state (2.29a). In contrast, the exo product (2.28b) is generally the thermodynamic product, favored in intramolecular Diels-Alder reactions where it is difficult for the molecule to force itself into a more stabilizing conformation.52

Scheme 2.14. Endo and exo products formed in a Diels-Alder reaction between cyclopentadiene and maleic anhydride.
A common strategy to increase Diels-Alder reactivity involves activation of the diene and dienophile to lower the energy gap between the HOMO and the LUMO. This can be done by an electron donating group (EDG) on a diene increasing the HOMO energy level, or an electron withdrawing group (EWG) on a dienophile decreasing the LUMO energy level.53 For instance, Lewis acids have demonstrated the ability to accelerate Diels-Alder reactions by complexing the dienophile and withdrawing electron density, thus activating the substrate. In 1960, aluminum trichloride was reported to increase the rate of reaction between anthracene and maleic anhydride by 5 orders of magnitude \textbf{(Scheme 2.15)}.54 The transformation resulted in quantitative yield of product \textbf{2.30} in 1.5 minutes with one equivalent of aluminum chloride. In other cases, the addition of a Lewis acid increased the rate of reaction and allowed for it to occur under mild conditions.

\textbf{Scheme 2.15. Diels-Alder reaction between anthracene and maleic anhydride in DCM.}

Synthetic efforts have led to many improvements of selective cycloaddition methods, notably the development of enantioselective strategies. These have been applied through a variety of approaches, such as the use of chiral catalysts and substrate-bound chiral auxiliaries. In 2002, Rawal published his findings on the application of Co(III)-salen complex \textbf{2.31a}55 as a catalyst for an enantioselective Diels-Alder reaction \textbf{(Scheme 2.16)}.56 In this example, the Diels-Alder reaction between methacrolein and diene \textbf{2.32a} generated cycloadduct \textbf{2.32b} in 93-100%
yield with an enantiomeric excess of 97–98%. With their designed method, catalyst loadings were reduced as low as 0.05 mol% and the reactions could be run at room temperature and under air atmosphere.

Scheme 2.16. Diels-Alder reaction designed by Rawal generating 93–100% yields of product 2.32b.

2.2.2 Enal dienophiles

Initial studies of the Diels-Alder reaction performed by coworker Huy Tran and myself were based on Rawal’s demonstration of the effectiveness of chiral cobalt(III) catalysts. The first optimization was performed using various cobalt(III) catalysts for the cycloaddition between diene 2.12a and methacrolein (Table 2.1).
Table 2.1. Optimization of Diels-Alder Cobalt(III) catalyst and reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Time (h)</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>dr (endo:exo)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBS (2.31b)</td>
<td>18</td>
<td>20</td>
<td>90</td>
<td>94:6</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>TBS (2.31b)</td>
<td>18</td>
<td>0</td>
<td>46</td>
<td>–</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>TBS (2.31b)</td>
<td>5 days</td>
<td>-20</td>
<td>56</td>
<td>90:10</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>TIPS (2.31c)</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>94:6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>TBDPS (2.31d)</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>93:7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Ad (2.31e)</td>
<td>18</td>
<td>20</td>
<td>degradation</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>tBu (2.31f)</td>
<td>18</td>
<td>20</td>
<td>62</td>
<td>91:9</td>
<td>35</td>
</tr>
</tbody>
</table>

1Reaction was carried out with solvent concentration of 1M.

In all cases, the experimental conditions favored the formation of the endo cycloadduct, generating silyl enol ether 2.13a in yields ranging from 19 to 90%. Unfortunately, only low to moderate enantioselectivity was achieved from these
reaction conditions. The Diels-Alder reaction employing catalyst \textbf{2.31b} resulted in the highest product yield of 90\% at room temperature with a dr of 94:6 (\textit{endo:exo}) and 27\% ee (entry 1). Lowering the temperature to 0\(^\circ\)C proved to be beneficial to obtain higher ee, but detrimental to the reaction yield (entry 2). Other Co(III) catalysts were examined without generating any substantial improvement (entries 4-6). Although the cycloaddition using \textbf{2.31f} led to the desired compound \textbf{2.13a} in good yield and moderate ee (entry 7), further experiments were conducted using \textbf{2.31b}, prioritizing the higher yield and dr.

Following catalyst optimization, experiments were completed with modifications of the diene and dienophile (\textbf{Table 2.2}). From the diene alterations, removal of the methyl group at position R\(^1\) led to decreased yields and selectivity. Methyl vinyl ketones was also attempted as an alternate dienophile, however the yields dropped drastically and desilylated starting material was being observed.
Table 2.2. Diene and dienophile optimization for initial Diels-Alder reaction.

![Diagram](image-url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Product</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>dr (endo:exo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.12a</td>
<td>Methacrolein</td>
<td>2.13a</td>
<td>20</td>
<td>90</td>
<td>94:6</td>
</tr>
<tr>
<td>2</td>
<td>2.12b</td>
<td>Methacrolein</td>
<td>2.13b</td>
<td>20</td>
<td>62</td>
<td>87:13</td>
</tr>
<tr>
<td>3</td>
<td>2.12a</td>
<td>Methacrolein</td>
<td>2.13a</td>
<td>40</td>
<td>62</td>
<td>83:17</td>
</tr>
<tr>
<td>4</td>
<td>2.12b</td>
<td>MVK</td>
<td>2.13c</td>
<td>20</td>
<td>21</td>
<td>61:39</td>
</tr>
<tr>
<td>5</td>
<td>2.12b</td>
<td>MVK¹</td>
<td>2.13d</td>
<td>20</td>
<td>30²</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2.12a</td>
<td>MVK¹</td>
<td>2.13d</td>
<td>20</td>
<td>15</td>
<td>82:18</td>
</tr>
</tbody>
</table>

¹ Methyl Vinyl Ketone was distilled prior to use.
² Desilylation of starting material observed.

The next step of the one-pot sequence was the gold-catalyzed cyclization to generate the 6-endo-dig product. First, multiple reactions were attempted using the Diels-Alder adduct 2.13b in the presence of various phosphine gold(I) catalysts and in acetone and methanol (10:1 v/v) at room temperature. Unfortunately, in all cases, these conditions led to degradation and our first hypothesis was that this was due to the methanol. It prompted us to examine bulkier alcohols with the anticipation of preventing degradation (Table 2.3). The solvent optimization was performed on substrate 2.13e with iso-propanol, tert-butanol and phenol (entries 2-4). In all cases,
these reactions catalyzed by [JohnPhosAuNCMe]SbF$_6$ gave tricycle 2.14a in yields ranging from 20–26\% via a 5-\textit{exo-dig} cyclization/ Prins cyclization sequence.

\textbf{Table 2.3. Solvent optimization of the gold(I)-catalyzed cyclization.}

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>NMR yield(^1) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeOH</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>iPr</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>tBuOH</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Phenol</td>
<td>22</td>
</tr>
</tbody>
</table>

\(^1\)NMR yields were determined using a mesitylene standard.

Forming the 6-\textit{endo-dig} cyclization product remained a challenge and JohnPhos was replaced by Me$_3$MeOtBuXPhos (L4) due to its bulkiness and more electron donating properties. However, applied to a one-pot sequence, the 5-\textit{endo-dig}/ Prins cyclization cascade product (2.14a) was again formed in 65\% yield (Scheme 2.17).
Scheme 2.17. One-pot reaction using [Me₂MeOtBuXPhosAuNCMe]SbF₆ catalyst.

Due to the difficulty obtaining the desired 6-endo-dig product, we attempted to modify the regioselectivity and prevent the Prins cyclization by increasing the reactivity and the rate of the protodeauration. In 2014, Xu and coworkers demonstrated that hydrogen bonding additives could increase reactivity when the limiting step was protodeauration, as long as weak bases, which also had low affinity for cationic gold complexes, were used.⁵⁷ Even so, they also found that incompatibility between the base and the reaction conditions could completely shut down the reactivity by inhibiting the formation of the gold-coordinated alkyne intermediate. This approach was attempted with our reaction using 1H-benzotriazole and pyridine N-oxide, but these were unsuccessful as no reaction progress was observed following the initial Diels-Alder reaction (Scheme 2.18).
The next strategy to modify the reactivity of our cyclization reaction was to use a Lewis acid co-catalyst with the gold(I) catalyst. This combination has revealed in reported literature to increase reactivity by giving rise to a gold complex with even stronger acidic properties. As a result, stronger binding of π-systems and promotion of the protodeauration step can be observed, however the absence of mechanistic understanding makes the effects difficult to predict. As demonstrated in scheme 2.19, we attempted using a combination of our gold catalyst with Lewis acids Gd(OTf)₃ and In(OTf)₃. Tricycle 2.14a was nonetheless generated in the one-pot reaction as we were unable to modify the reactivity to favour the 6-endo-dig cyclization product.
Scheme 2.19. **One-pot reaction using Lewis acid co-catalysts Gd(OTf)₃ and In(OTf)₃.**

At this point in time, the targeted 6-endo-dig cyclization product had not been formed from the initial Diels-Alder product using enal dienophiles. However, these one-pot reactions generated interesting tricyclic scaffolds through the 5-exo-dig/Prins cyclization cascade. This method maintains the potential of being applied to the synthesis of sesquiterpenoid natural products, as these 6-6-5 fused ring systems are present in many variations in nature (Figure 2.2).

Figure 2.2. Potential for applications of 5-exo-dig/Prins cyclization methodology in total synthesis.
While the investigations presented above were ongoing, co-worker Huy Tran explored the gold(I)-catalyzed cyclization reaction with Diels-Alder product \textbf{2.13d}, formed from the linear diene \textbf{2.12a} and methyl vinyl ketone. Interestingly, he found a distinct pattern of cyclization products generated from a diastereoisomeric mixture of \textbf{2.13d} (Scheme 2.20).

![Scheme 2.20. Product distribution of gold(I)-catalyzed cyclization from diastereoisomeric mixture of cycloadduct 2.13d.](image)

In fact, from this product distribution, we concluded that the \textit{exo} Diels-Alder product was leading solely to the 6-\textit{endo-dig} cyclization product (\textbf{2.17b}), while the \textit{endo} Diels-Alder product was being transformed into a 1:1 mixture of the 5-\textit{exo-dig} and 6-\textit{endo-dig} cyclization products (\textbf{2.17a}, \textbf{2.16a}) (Scheme 2.21). From these results, we realized the importance of the Diels-Alder product conformation and the influence it was having on the gold-catalyzed cyclization.
Scheme 2.21. Cyclization product distribution from the exo and endo Diels-Alder products.

To explain the reaction outcome, one can propose the mechanisms depicted in schemes 2.22–2.24. From the endo Diels-Alder product, one could imagine both 6-endo-dig and 5-exo-dig cyclization products being formed from two conformations (a and b) (Scheme 2.22). From here, the silyl enol ether can cyclize onto the Au-activated alkyne at either position to generate a 6 or 5 membered cycle. From a, the transition states are presented as TS1 and TS2 to generate the 6-endo-dig and 5-exo-dig products 2.34a and 2.34b, respectively. Transition states TS3 and TS4 can be ignored given the development of steric interactions between the axial ketone and the newly formed cycle.
It is also interesting to observe that the cis-junction is being formed, rather than the more usual and thermodynamically stable trans-junction. This could be explained by a highly disfavored transition state, which requires too much energy for proper orbital overlap (Scheme 2.23). Exclusive formation of the cis-junction further suggests that the cyclization is under kinetic control, highly reliant on the transition state energy barriers.
In the case of the \textit{exo} Diels-Alder product, the cyclization can occur from \textit{c} and \textit{d} (Scheme 2.24). A cursory inspection of these paths reveals that 1,3-diaxial interactions between the methyl and the methyl ketone at the transition state favor \textit{TS3/TS4} over \textit{TS1/TS2}. Furthermore, based on the exclusive formation of the 6-\textit{endo-dig} cyclization product 2.17b, one can propose that a better orbital alignment favors \textit{TS3} over \textit{TS4}.

Looking back at the Diels-Alder reaction involving a methacrolein dienophile, the generated silyl enol ether led to exclusive formation of the 5-\textit{exo-dig} cyclization product. In this case, it is clear that \textit{TS1} and \textit{TS2} demonstrated in scheme 2.25 are very high in energy due to both axial methyl groups. We could instead expect the product to be formed through conformation \textit{f}. The regioselectivity is most likely due to more favorable orbital alignment in \textit{TS4}, rather than \textit{TS3}.
Scheme 2.25. Proposed transition states for the Au(I)-catalyzed cyclization of (endo)-2.13a.

Typically, gold(I)-catalyzed cyclizations can be highly substrate dependent, and these reactions were no different. Nonetheless, we looked to target the formation of the exo Diels-Alder product in hopes of directing regioselectivity for the 6-endo-dig product. Moving forward, we began investigating oxazolidinone dienophiles.
2.2.3 Oxazolidinone dienophiles

Bis(oxazoline) (BOX) ligands have been widely used in various chemical reactions for asymmetric synthesis. These ligands are designed to bind to a metal through bidentate chelation, forming a distorted square planar complex with a second chelated substrate (Figure 2.3).59

![Figure 2.3](image)

\textit{Figure 2.3. Distorted square planar geometry of Copper(II)-BOX catalyst bound to an oxazolidinone substrate.}

Enantioselectivity in the Diels-Alder reaction is dictated by the face of approach of the dienophile to the diene. Chiral projections on the BOX ligand provoke steric interactions with the approaching diene, resulting in a preferential transition-state geometry where the diene has better access to the dienophile. C\textsubscript{2} symmetry of the BOX ligand also ensures that the orientation of the substrate in relation to the ligand will not affect the selectivity.60 Moreover, counterions of the [metal-BOX] catalyst can have a large impact on the outcome of the reaction. Weakly- or non-coordinating counterions can lead to a more cationic active catalyst, allowing for stronger coordination between the metal and the dienophile.61 Consequently, the reacting dienophile is held in a more rigid conformation for a better controlled cycloaddition.
In 1999, Evans and coworkers further explored the utility of the BOX ligand with imide dienophiles in Diels-Alder reactions.62 Demonstrated in scheme 2.26, the [4+2] cycloadditions with cyclopentadiene were directed by the catalyst and afforded yields ranging from 86\%–93\%. Excellent diastereoselectivity of 98:2 (\textit{endo:exo}) and enantiomeric excess of >98\% was achieved with 2.37b.

Scheme 2.26. Application of BOX ligand in a Diels-Alder reaction between cyclopentadiene and an oxazolidionone dienophile.

While the example above preferentially leads to the \textit{endo} Diels-Alder product, we hoped to achieve \textit{exo} selectivity due to the nature of our diene. We hypothesized that the \textit{exo} selectivity of the concerted [4+2] cycloaddition could be obtained by the diene approaching the dienophile to form the lowest energy transition state by decreasing steric hindrance. In fact, the chiral \textit{tert}-butyl group on the BOX ligand could hinder the \textit{endo} approach if the diene contains a bulky group (Figure 2.4).32 In the specific case of our diene, R3 is a bulky OTIPS substituent.
The first experiment based on Evan's work was carried out between our linear diene 2.12a and an oxazolidinone dienophile (2.38a) with chiral BOX ligand 2.37b and copper(II) triflate (Table 2.4, entry 1). These conditions proved to be successful as the desired Diels-Alder cycloadduct was obtained in 60% isolated yield, with a dr of 20:80 (endo:exo) and 72% ee. A catalyst optimization was then performed in collaboration with my colleague Huy Tran in which several metal triflates were examined. The use of Mg, Fe, Zn and Pd complexes generated poor to moderate yields of the desired Diels-Alder product and desilylation of starting material in some cases (entries 2-5). The use of Sc(III) triflate (entry 6) resulted in a yield of 70% and was the only metal to favor the endo product in a 70:30 ratio. To our delight, the use of other lanthanide complexes led to complete conversion of the diene after 18 hours, giving the exo-cycloadduct 2.13f in 81–88% isolated yields and high diastereoselectivity (entries 8–11). Unfortunately, the reaction did not operate in an enantioselective manner.

Figure 2.4. Favored diene approach in accordance to R^3 substituent bulk.
Table 2.4. Catalyst optimization for the initial Diels-Alder reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Metal triflate</th>
<th>NMR yield<sup>1</sup> (%)</th>
<th>dr (endo:exo)</th>
<th>ee% (exo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.13f 2.25a 2.12a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cu(II)</td>
<td>66 (60) 7 0</td>
<td>20:80</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>Mg(II)</td>
<td>10 3 77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Fe(III)</td>
<td>60 34 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Zn(II)</td>
<td>46 6 35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Pd(TFA)<sub>2</sub></td>
<td>8 36 38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Sc(III)</td>
<td>70 18 0</td>
<td>70:30</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>In(III)</td>
<td>20 41 31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Yb(III)</td>
<td>95 (81) trace</td>
<td>7:93</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Gd(III)</td>
<td>>95 (88) trace</td>
<td>7:93</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Eu(III)</td>
<td>>95 (82) trace</td>
<td>7:93</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Er(III)</td>
<td>94 (83) trace</td>
<td>7:93</td>
<td>-10</td>
</tr>
</tbody>
</table>

¹NMR yields were determined using a mesitylene standard

Following the catalyst optimization, attempts to induce enantioselectivity were put on hold and gadolinium(III) triflate was applied to further Diels-Alder reactions as the Lewis Acid. A solvent optimization was then performed by Huy Tran and showed that the reaction carried out in DCM and acetone obtained the highest
yields of 2.13f with a dr of >90:10. In DCM, the cycloaddition required 18 h for completion, compared to 5 h in acetone.

In collaboration with Huy Tran, an extensive study of the gold(I)-catalyzed 6-endo-dig carbocyclization was undertaken, where various ligands were screened (Figure 2.5). All cyclization reactions fully converted after 18 h. In general, ancillary ligands having bulky and electron rich aryl systems favored the 6-endo-dig cyclization pathway. It was found that Vphos ligand (L5) gave the highest yield (76%) of the desired 6-endo-dig cyclization product. Moreover, Me3MeOtBuXPhos (L4) produced the desired compound 2.17c in 63% yield and was the only ligand that did not lead to degradation.
Once the Diels-Alder and gold(I)-catalyzed cyclization optimizations were complete, we envisaged a one-pot Diels-Alder/gold-catalyzed cyclization sequence (Table 2.5).

Figure 2.5. Gold(I) catalyst ligand optimization and structure of VPhos.
Table 2.5. Diels-Alder/Gold(I) cyclization sequence with chiral BOX ligand.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Gd(OTf)$_3$ (mol%)</th>
<th>2.37b (mol%)</th>
<th>Time (h)</th>
<th>Au1 cat. (mol%)</th>
<th>NMR Yield1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>CHCl$_3$</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>362</td>
</tr>
<tr>
<td>3</td>
<td>Acetone</td>
<td>5</td>
<td>7.5</td>
<td>5 d</td>
<td>5</td>
<td>41</td>
</tr>
</tbody>
</table>

1 NMR yields were determined using a mesitylene standard
2 Isolated yield

The one-pot sequences presented above led to the formation of the desired 6-endo-dig cyclization product (2.17c), with an overall yield of 56% in DCM and methanol (10:1). The incorporation of MeOH is important in these reactions as it increases the rate of protodeauration, preventing the Prins-type cyclization from occurring. In chloroform, 2.17c was generated in 36% isolated yield. The ability to run the reactions in chloroform allows us to heat the mixtures in the final Diels-Alder step, allowing for reactivity between less activated substrates. Furthermore, elevated loadings of the ligand seemed to slow the Diels-Alder reaction, therefore the one-pot was attempted in acetone with smaller loadings of ligand and catalyst. This modification was done in order to decrease the reaction time of 5 days, however the
time of conversion did not change. Ensuing reactions were performed in DCM:MeOH (10:1 v/v).

Once we could access the 6-endo-dig cyclization product, the next step was to perform the second Diels-Alder reaction between diene 2.17c and activated dienophiles (Table 2.6). These experiments demonstrated good conversion using tetracyanoethylene (entry 1) and N-methylmaleimide (entry 2) with 77% and 81% yields, respectively. Although the reacting diene is not electron rich, both of these dienophiles are activated enough for the reaction to be completed at room temperature. In the case of 1,4-benzoquinone, no cycloaddition products were observed.
Table 2.6. Second Diels-Alder reaction scope.

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dienophile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield (%)</td>
<td>77%2 (2.21a)</td>
<td>81%2 (2.21b)</td>
<td>n.r.1</td>
</tr>
<tr>
<td>dr</td>
<td>>20:1</td>
<td>2.85:1</td>
<td>-</td>
</tr>
</tbody>
</table>

1n.r. = no reaction.
2 combined yield of diastereoisomers.

Prior to performing the complete one-pot reaction, the initial Diels-Alder reaction was carried out using achiral BOX ligand 2.37d, given that the chiral group did not induce an enantioselective process (Scheme 2.27). Under these conditions, the exo cycloadduct 2.13f was obtained in 72% yield (dr = 95:5).
A final three step one-pot reaction was completed with a non-chiral BOX ligand in the initial step, as shown below in scheme 2.28. Tetracyanoethylene was employed as the dienophile for the final step and the full sequence produced tricycle 2.21a in 26% isolated yield.

While I completed the first 3-step one-pot sequence, Huy Tran carried out control studies of the first Diels-Alder reaction (Table 2.7). Without the catalyst and the BOX ligand, the conversion of the reaction was very low and only 7% of product was generated (entry 2). The control reactions also revealed that the desired product was obtained in 81% yield in the absence of the BOX ligand and molecular sieves.
In the case where solely the BOX ligand was removed (entry 4), a 97% yield outcome confirmed that it had been having no effect on the reaction. However, molecular sieves were deemed important, preventing the starting material from desilylation and other degradation processes, and increasing the yield by 16% (entry 4).

Table 2.7. Control reactions of Diels-Alder reaction involving Lewis acid catalyst and BOX ligand.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Modification</th>
<th>NMR Yield (%)</th>
<th>dr (exo:endo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.13g 2.25c 2.12c Degradation</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No modification</td>
<td>92 3 2 3</td>
<td>95:5</td>
</tr>
<tr>
<td>2</td>
<td>No catalyst, no BOX ligand</td>
<td>7 0 84 9</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>No BOX ligand, no sieves</td>
<td>81 8 0 11</td>
<td>95:5</td>
</tr>
<tr>
<td>4</td>
<td>No BOX ligand</td>
<td>97 3 0 0</td>
<td>95:5</td>
</tr>
</tbody>
</table>

NMR yields were determined using a mesitylene standard.
Once we knew that the BOX ligand was unnecessary to achieve exo Diels-Alder selectivity, we concluded that the dr was influenced by the Gd(OTf)$_3$. In fact, it is possible that steric interactions between the bulky Lewis acid and substituents on the diene were enough to selectively facilitate the exo-cycloadduct formation (figure 2.6).

2.2.4 Chiral Oxazolidinone Dienophiles

After the removal of the BOX ligand from our reaction conditions, we began exploring the use of chiral oxazolidinones as a new approach to prepare enantiopure Diels-Alder products. The possible transition states of the two exo cycloadducts (exo 1, exo 2) are shown in scheme 2.29. The favored exo 1 adduct goes through a non-hindered top face approach between the diene and the most stable s-cis conformer of the oxazolidinone dienophile. The disfavored transition states involve the s-trans configuration of the dienophile (TS II, TS IV), destabilized by A(1,3) strain, and/or destabilization due to steric hindrance between the chiral auxiliary and the diene (TS II, TS III).
Scheme 2.29. Transition states of exo Diels-Alder adducts with chiral oxazolidinone dienophiles.

As shown in table 2.8, the Diels-Alder reaction was performed with various dienophiles in DCM and in the presence of Gd(OTf)₃. The chiral auxiliaries generated a range of selectivity, in which dienophile 2.38b gave the best diastereoisomeric ratio of 10:1. However, in this particular reaction, the yield of 2.13h was significantly reduced in comparison to 2.13h–k and a ratio of 1:1 between the product and desilylated starting material was also observed.
Table 2.8. Evans’ auxiliary optimization for Lewis acid-catalyzed Diels-Alder reaction.

![Reaction Scheme](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dienophile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMR Yield(^1) (%)</td>
<td>(37) (2.13h)</td>
<td>>95 (2.13i)</td>
<td>>95 (2.13j)</td>
<td>93 (2.13k)</td>
</tr>
<tr>
<td>dr (exo1:exo2)</td>
<td>10:1</td>
<td>2:1</td>
<td>3:1</td>
<td>6:1</td>
</tr>
</tbody>
</table>

\(^1\)NMR yields were determined using a mesitylene standard.

Unfortunately, reproducibility of our reactions became a concern upon removal of the BOX ligand (Table 2.8, entry 1). Previous reaction procedures involved stirring of the BOX ligand with gadolinium triflate and molecular sieves to ensure the removal of water and binding to the metal centre. After 3 hours, the dienophile and the diene were added to the reaction mixture. In the absence of the BOX ligand, the gadolinium was stirred with molecular sieves for 3 hours before the addition of the diene and dienophile. It was later hypothesized that the gadolinium, which was not bound to the oxazolidinone, was directly involved in the desilylation...
of the starting material, in competition with the Diels-Alder reaction. These results led to a modification of the procedure and the gadolinium triflate is now stirred with molecular sieves and the dienophile 2.38b for 3 hours, before the addition of the diene. Luckily, promising results were observed with this change and a one-pot reaction was successfully performed in the absence of BOX ligand (Scheme 2.30). An overall yield of 46% was achieved using tetracyanoethylene as the dienophile in the final Diels-Alder step, with a dr of >95:5.

Scheme 2.30. Final Diels-Alder/gold(I) cyclization/Diels-Alder one-pot reaction.

2.2.5 Reaction scope

With these optimized conditions in hand, a scope was performed on the reaction with various dienes and dienophiles (Scheme 2.31). Difficulties arose as we made modifications to the oxazolidinone dienophiles and only trans electron withdrawing substituents were tolerated. On the other hand, our method allowed for more variations of the diene substrate at R1. Substituting R3 with a more electron withdrawing OBn functionality led to excellent diastereoselectivity and supressed the formation of the Prins cyclization product. In the case of the terminal olefin, it was more difficult to prevent the formation of the Prins-type cyclization product, however
the 2nd Diels-Alder reaction became more efficient due to the diene being less substituted. Overall, a total of nine examples were performed with yields ranging from 33% to 52% over three steps and dr ranging from 3:1 to >95:5.

Combined isolated yield. Enantiopure product. Diastereomeric ratio of crude mixture.

Scheme 2.31. Scope of Diels-Alder/6-endo-dig gold(I)-catalyzed cyclization/Diels-Alder one-pot cascade.
2.3 Selective formation of tricyclic terpenoids

Following the completion of the tri and tetracycles scope, we decided to revisit the formation of tricyclic compounds through a Diels-Alder/gold(I) cyclization/Prins cyclization cascade. As demonstrated earlier, a Prins-type cyclization can occur following the initial gold(I)-catalyzed cyclization (Scheme 2.32). An important modification to note from the above methodology is the removal of methanol in the gold cyclization conditions, slowing the protodeauration step and allowing for the second cyclization to occur.

![Scheme 2.32. Divergent method to synthesize complex polycycles.](image-url)
2.3.1 Diels-Alder/6-endo-dig cyclization/Prins reaction cascade

The first reaction of the sequence is an intermolecular Diels-Alder reaction, followed by the 6-endo-dig cyclization and a Prins-type cyclization (Scheme 2.33). We hypothesized that the cycloadduct 2.13 would coordinate to the gold(I) catalyst to trigger a nucleophilic attack by the silyl enol ether onto the alkyne to form a second 6-membered ring through a 6-endo-dig cyclization process. The organogold species 2.18b could subsequently undergo a Prins-type cyclization to produce carbocation 2.19a. At this stage, product 2.15 could be generated through a 1,2-H shift followed by elimination of the gold species.

Scheme 2.33. Catalytic cycle of Diels-Alder/6-endo-dig cyclization/Prins reaction cascade.
We applied our Diels-Alder reaction conditions developed in chapter 2.2.2 and re-optimized the catalyst for the gold(I)-cyclization step in order to ensure high selectivity between the 5-exo-dig and 6-endo-dig cyclization products (Table 2.9). The optimization was completed using monosubstituted enyne diene 2.12c and dienophile 2.37a. A variety of phosphine ligands were screened and the best regioselectivity that we could obtain for the gold(I)-catalyzed cyclization was 2:1, favoring the 6-endo-dig pathway with [Me₄BuXPhosAuNCMe]SbF₆. This result was in line with results previously obtained by our group.

Table 2.9. Catalyst optimization of 6-endo-dig cyclization.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand (L)</th>
<th>NMR yield¹ (%), ² (%)</th>
<th>Regioselectivity (2.15b:2.14c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me₄BuXPhos</td>
<td>78</td>
<td>2:1</td>
</tr>
<tr>
<td>2</td>
<td>JackiePhos</td>
<td>40</td>
<td>1:1</td>
</tr>
<tr>
<td>3</td>
<td>BrettPhos</td>
<td>39</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>DavePhos</td>
<td>50</td>
<td>35:65</td>
</tr>
<tr>
<td>5</td>
<td>RuPhos</td>
<td>26</td>
<td>30:70</td>
</tr>
<tr>
<td>6</td>
<td>AlPhos</td>
<td>41</td>
<td>3:2</td>
</tr>
<tr>
<td>7</td>
<td>Cy-cBRIDP</td>
<td>24</td>
<td>1:2</td>
</tr>
</tbody>
</table>

¹NMR yields were determined using a mesitylene standard. ²Yields include mixture of 2.13b and 2.14c.
Following optimization of the reaction conditions, a variety of dienes and oxazolidinone dienophiles were examined (Scheme 2.34). The \textit{exo} Diels-Alder reaction proceeded with excellent diastereoselectivity. When it came to using disubstituted oxazolidinones, it was necessary that the additional functionality possessed electron-withdrawing properties for the initial Diels-Alder reaction to occur efficiently. The substitution of the terminal diene olefin had an important effect when it came to the regioselectivity of the cyclization reaction. The monosubstituted olefin led to poor regioselectivity of 2:1 favoring the \textit{6-endo-dig} and \textit{5-exo-dig} cyclization products (Table 2.9). However, once we studied di- and tri-substituted enynes, the regioselectivities highly improved, ranging from 6:1 to >95:5 selectivity in favor of the anticipated product. Notably, 2.15k was obtained using [JohnPhosAuNCMe]SbF₆ rather than the usual gold conditions which were not leading to product formation. 2.15h was also obtained from a different set of conditions, but interestingly, we were able to use the IPr ligand, which is the same ligand later used in the scope for the \textit{5-exo-dig} cyclization products. This demonstrates how strongly this particular substrate favors the \textit{6-endo-dig} cyclization and the extent to which these reactions can be substrate dependent.
Scheme 2.34. Diels-Alder/6-endo-dig cyclization/Prins cyclization one-pot sequence scope.
2.3.2 Diels-Alder/5-exo-dig cyclization/Prins reaction cascade

The next reaction sequence forming tricyclic compounds involved a Diels-Alder reaction followed by a 5-exo-dig cyclization and a Prins reaction. The mechanism is very similar to the previous cascade forming tricyclic products through a 6-endo-dig cyclization (Scheme 2.35). Once again, intermediate 2.13 is formed from the Diels-Alder reaction and undergoes a 5-exo-dig cyclization in the presence of a gold(I) catalyst. The organogold species 2.18c can subsequently undergo a Prins-type cyclization to form the resulting carbocation 2.20a. Proton elimination of resonating intermediate 2.20b, followed by protodeauration, leads to the expected tricycle 2.14 while regenerating the Au(I) catalyst.
Scheme 2.35. Catalytic cycle of Diels-Alder/5-exo-dig cyclization/Prins reaction cascade.

The scope was completed using our usual Diels-Alder reaction conditions and an [IPrAuNCMe]SbF$_6$ catalyst for the gold(I) transformation (Scheme 2.36). Similar to our previous methods results, the exo Diels-Alder reactions involving chiral oxazolidinone dienophiles led to excellent diastereoselectivity of $>95:5$. The greater limitations were in fact observed when it came to the diene substrates. Phenyl and methyl substituents at position R^1 lead to degradation during the gold-catalyzed cyclization, limiting our scope to the terminal olefin and the benzyl-substituted
substrates. Nevertheless, the scope was expanded by a large variety of dienophiles. *Endo* Diels-Alder product 2.14a and dehydro-Diels-Alder product 2.14i were both generated under thermal Diels-Alder reaction conditions, with excellent regioselectivity and diastereoselectivity.

Scheme 2.36. Diels-Alder/5-exo-dig cyclization/Prins cyclization one-pot sequence scope.
2.4. Conclusion

In summary, the divergence of gold(I)-catalyzed cyclizations has been utilized for the generation of complex polycyclic molecules through three different reactivity pathways (Scheme 2.37). From a starting diene, a Diels-Alder reaction leads to the formation of a silyl enol ether tethered to an alkyne which can undergo a gold(I)-catalyzed cyclization.

Scheme 2.37. Divergent pathways for selective formation of complex polycycles.
By controlling this second step of the reaction sequence, we are able to select the desired pathway to generate either tricyclic products 2.15 and 2.14, or diene intermediate 2.17 to undergo a second Diels-alder reaction and generate 2.21. From experimental studies, the diastereoselectivity of the initial Diels-Alder cycloadduct was deemed important. While unable to form the 6-endo-dig cyclization product from the endo-cycloadduct, the exo product led to the desired cyclized scaffold. Using [VPhosAuNCMe]SbF₆ and by incorporating MeOH in the reaction, 12 examples of tri and tetracycles were exhibited in a three-step one-pot reaction, with yields ranging from 33%-52% and dr between 3:1 and >95:5. This reactivity pathway allows for the formation of up to 5 C-C bonds, and the control of up to 8 stereocenters.

The Diels-Alder/gold-cyclization/Prins cyclization sequences were completed using an NHC IPr ligand and phosphine ligand Me₄BuXPhos to respectively favor the 5-exo-dig and the 6-endo-dig cyclization pathways. Both of these transformations led to the formation of three C-C bonds and the control of up to six stereocenters. Through ligand modification, we have demonstrated the ability to control three complex divergent reactivity pathways from an easily synthesized linear substrate.
2.5 References

Chapter 3. Cyclization of enol ethers using gold photocatalysis

3.1 Introduction

3.1.1 Photochemistry

Photochemistry plays an important role in chemical synthesis, giving scientists access to a breadth of reactions that would not otherwise be possible. These reactions involve the excitation of an electron from ultraviolet light, visible light or infrared radiation. The first law of photochemistry, also known as the Grotthuss-Draper law, states that light must be absorbed by a given molecule for a photochemical process to occur. The second law of photochemistry, the Stark-Einstein law, implicates that for every photon absorbed, a single molecule is activated to undergo a chemical process. These processes are well depicted by Jablonski diagrams, illustrating the pathways and electronic states of a molecule when it has reached an excited state.65

As demonstrated in figure 3.1, upon absorption of a photon, an electron of the excited molecule is promoted in a singlet state from the HOMO to a higher vibrational level of the LUMO, before settling to the most stable one (S1).66 This excited state has a short lifetime and will return to the singlet ground state (S0) by losing energy through various deactivation processes. The electron can first undergo fluorescence and return to the singlet ground state (S0) by emitting a photon. Alternatively, intersystem crossing (ISC) via a spin flip can lead the electron to a triplet-excited state (T1). From the triplet state, the electron can reach the S0 through phosphorescence (P) by emitting a photon, or through internal conversion by vibrational relaxation.
Phosphorescence is considered a longer process than fluorescence because it involves a spin flip to reach the singlet ground state. Accordingly, the triplet excited state has an increased lifetime.

The Jablonski diagram illustrates well the physicochemical processes that can occur when a molecule absorbs a photon. However, instead of returning to the singlet ground state following excitation, an excited molecule can also undergo a variety of photochemical transformations, as illustrated in figure 3.2.65
3.1.2 Photocatalysis

Photochemistry relies first and foremost on the absorption of photons by a molecule at a given wavelength to lead to the desired transformations. Due to the inability of the majority of organic substrates to absorb visible light, photocatalysts have been largely exploited as chromophores, initiating photochemical transformations in a second molecule.

A molecule in its excited state has an increased ability to act as a stronger reductant, as well as a stronger oxidant. Thus, the majority of photocatalytic processes undergo single electron transfer (SET) and can proceed through one of two pathways (Figure 3.3). In the reductive quenching cycle, the excited photocatalyst (PC*) receives an electron from a donor substrate (D). The now-reduced
photocatalyst can donate that electron to an acceptor species and regenerate the original active photocatalyst (PC).

![Diagram of photocatalytic transformation pathways](image)

Figure 3.3. General photocatalytic transformation pathways.

Alternatively, the oxidative quenching cycle involves the excited photocatalyst being oxidized by an acceptor. The photocatalyst is further regenerated after accepting an electron from a donor molecule. In all cases, redox potentials of the substrate and photocatalyst must be compatible and are extremely influential on whether the transformation will occur through an oxidative or a reductive quenching cycle.67

Photocatalysts have the ability to efficiently absorb light at longer wavelengths than most organic molecules. A large number of organic dyes, such as acridiniums and xanthenes, have been explored for this purpose, as well as metal-based catalysts, notably Ru(bpy)3Cl2 and fac-Ir(ppy)3 (Figure 3.4).68,69
Photocatalysis has many advantages, alongside its ability to generate original reactivity. Photocatalysts are able to realize redox neutral transformations, where the catalyst is employed both as a reductant and an oxidant at distinctive points in the reaction mechanism. This is a large improvement from other synthetic methods, which require stoichiometric quantities of a reductant and an oxidant, often incompatible with each other. Photocatalysis can also be applied under mild conditions and to avoid the use of highly toxic and/or reactive radical initiators. Catalyst loadings in most cases remain very low, near 1 mol% or less, and by-products are few due to the non-reactive nature of most organic reagents under visible light conditions.

In 2008, the group of Stephenson reported a reductive dehalogenation reaction using a ruthenium-based photocatalyst, improving on previous methods which involved toxic tin reagents.70, 71 The reduction of C–Br and C–Cl bonds was achieved within a scope of 10 examples with high yields and catalyst loadings of 2.5 mol%.
Scheme 3.1. Reaction scheme for the reductive dehalogenation of C–Cl and C–Br bonds.

Through a reductive quenching cycle, excited Ru(bpy)$_3^{2+}$ catalyst was quenched by DIPEA through an outer-sphere SET via a metal to ligand charge transfer (MLCT) excited state to generate an aminium cation radical and Ru(bpy)$_3^+$ (Scheme 3.2). Ru(bpy)$_3^+$ was then able to reduce halogenated substrate 3.2 to form a carbon-centered radical species (3.4), which subsequently underwent hydrogen atom transfer (HAT) with aminium cation radical species 3.5a, generating iPr$_2$EtN$^+$ and product 3.3.

Scheme 3.2. Proposed photocatalytic cycle for reductive dehalogenation reaction.
Zhou et al. proposed a photocatalytic mechanism for the formation of phenanthrenes via a visible light-induced [4+2] benzannulation using organic photocatalyst eosin Y (EYH₂) (Scheme 3.3). Initially, biaryl radical 3.8a and the radical cation of eosin Y (EYH²⁺) were generated through single electron transfer between the excited photocatalyst and diazonium salt 3.6. Addition of the biaryl radical onto an alkyne partner (3.7) generated vinylic radical species 3.8b, which subsequently underwent an intramolecular radical cyclization to generate intermediate 3.8c. Single electron oxidation of 3.8c by eosin Y radical cation regenerated the photocatalyst and cationic species 3.8d. Finally, phenanthrene product (3.9) was formed from the deprotonation of 3.8d.

Scheme 3.3. Proposed photocatalytic mechanism for the formation of phenanthrenes.
Dual catalytic systems have also been largely explored, where a catalyst that is not necessarily involved in the photochemical mechanism is incorporated into a photocatalytic system. In these methods, the photocatalyst will activate a substrate, while the second catalyst may be necessary to trigger reactivity of generated intermediates. A good example of this is the work completed by MacMillan for the enantioselective α-functionalization of aldehydes. Described in many reports, this reaction has been utilized for the addition of α-carbonyl, fluoroalkyl, α-cyanoalkyl, benzyl, and carbamoyl moieties. The proposed dual catalytic mechanism for the generation of β-cyanoaldehydes is presented in scheme 3.4. Condensation of the aldehyde substrate onto chiral secondary amine 3.12 will first form enamine 3.12a. The photoexcited state of the Ru(bpy)$_3^{2+}$ photocatalyst will quench with a sacrificial quantity of the enamine to form Ru(bpy)$_3^{+}$, which can thereafter reduce the bromonitrile species. The generated cyanoalkyl radical 3.11a is now able to couple with enamine 3.12a, leading to α-amino radical intermediate 3.12b. 3.12b which is capable of reducing Ru(bpy)$_3^{2+}$ and will form iminium ion 3.12c. Subsequent hydrolysis of the iminium intermediate will release α-cyanoalkylated aldehyde species 3.13 and regenerate the chiral secondary amine.
Scheme 3.4. Proposed dual catalytic mechanism for the enantioselective α-cyanoalkylation of aldehydes.
3.1.3 Applications of gold photocatalysis

Such as described in chapter 1.5, the Che group carried out a variety of experiments to demonstrate the unique photoluminescent properties of binuclear gold complexes. During their studies, they also completed quenching studies and discovered the ability of the photocatalyst to quench with organic halides. Ever since, a multitude of synthetic studies have been conducted with these catalysts, mainly focusing on substrates with carbon-halide bonds.

One of the most important factors to consider in photocatalysis is compatibility between the photocatalyst and the reacting substrate, determined by their redox potentials. Excited states of the more common Ru(bpy)$_3^{2+}$ and fac-Ir(ppy)$_3^{3+}$ catalysts have oxidation potentials of $-0.81V$ and $-1.73V$, respectively, and *[Au$_2$(μ-dppm)$_2$]$^{2+}$ has a potential of $-1.63V$. Organic halides, more specifically bromoalkanes, are noticeably challenging targets with reduction potentials ranging between $-1.9V$ and $-2.5V$. While they should not be able to engage with currently available photocatalysts, gold(I) dimeric catalysts have demonstrated the ability to quench with these unactivated substrates.

In collaboration with the group of Prof. Scaiano, we have proposed distinct mechanisms by which gold photoactive catalysts undergo photoexcitation. As previously visited, *[Au$_2$(μ-dppm)$_2$]$^{2+}$ is not excited through MLCT like most other catalysts. Instead, an electron is excited from the 5d$_{z^2}$ anti-bonding orbital to a 6s/6p$_z$ bonding orbital, thus allowing interaction with the 4pz orbital of the organohalide to
generate an inner-sphere exciplex. The exciplex then prompts the reductive cleavage of the bromoalkane and oxidative quenching of the catalyst. This mechanistic pathway engages new reactivity by allowing for the exciplex intermediate to interact with bromoalkanes possessing highly negative reduction potentials, which would otherwise be unachievable.

![Scheme 3.5](image)

Scheme 3.5. Proposed photocatalytic reductive and oxidative quenching cycles.

The mechanism of photochemical transformations involving gold(I) dimeric catalysts are similar to previously visited examples (Scheme 3.5). For the oxidative quenching cycle, an inner sphere exciplex is formed, triggering cleavage of the carbon-halide bond and oxidation of the excited catalyst to \([\text{Au}^1-\text{Au}^{II}]^{3+}\). The generated carbon centered radical can undergo radical reactions and subsequently reduce the \([\text{Au}^1-\text{Au}^{II}]^{3+}\) complex, regenerating the ground state dimeric Au(I) catalyst and alkyl functionalized product (where R= alkyl). The photocatalytic pathway can...
also go through a reductive quenching cycle, where the excited photocatalyst is reduced by a tertiary amine. Similarly to other trialkylamines, DIPEA has been shown to quench the [Au\(^{1}\)-Au\(^{1}\)]* complex at a rate of 2.7 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \text{ 78}, which is about ten times faster than the quenching with bromoalkanes. The generated [Au\(^{1}\)-Au\(^{0}\)]* complex is a strong reductant and can regenerate the ground-state photocatalyst and form a carbon-centered radical through single electron transfer with the bromoalkane. Further radical reactions can occur to form the desired products.

The first demonstration of this reactivity with unactivated alkyl bromides and aryl bromides was demonstrated by our group in 2013 for the cyclization of organobromide substrates.83 The reaction was optimized from bromoalkane \textbf{3.14a} for the formation of radical cyclization product \textbf{3.16a} (Table 3.1). Initially, the cyclization was completed in sunlight with a [Au\(_2\)(\(\mu\)-dppm)\(_2\)]X\(_2\) catalyst and varying counterions. From these first results (entries 1–3), they found that the difference in yield was not significant and further experiments were completed with the more robust and photostable [Au\(_2\)(\(\mu\)-dppm)\(_2\)]Cl\(_2\) complex. The absorption maxima of the dimeric gold catalyst is 295nm, however, it also absorbs UVA (315-400nm), allowing for the use of 365nm LEDs and avoiding dependence on weather conditions. Entry 4 shows the use of this new light source and, although the yield showed slight decline, it became a more reliable standard condition. Finally, interesting results that truly demonstrate the impact of this novel photocatalytic system are shown in entries 5–7, where commonly used catalysts are incapable of forming the cyclization product. The
Au(I) dimeric catalyst remarkably stands out from these results as the only catalyst capable of reducing unactivated C–Br bonds.

Table 3.1. Optimization of photocatalytic cyclization of bromoalkanes.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Light source</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Au₂(µ-dppm)₂]OTf (3.15a)</td>
<td>sunlight</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>[Au₂(µ-dppm)₂]SbF₆ (3.15b)</td>
<td>sunlight</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>[Au₂(µ-dppm)₂]Cl₂ (3.15c)</td>
<td>sunlight</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>[Au₂(µ-dppm)₂]Cl₂ (3.15c)</td>
<td>UVA (315–400 nm)</td>
<td>74</td>
</tr>
<tr>
<td>5¹</td>
<td>[Ru(bpy)₃Cl₂] (3.1c)</td>
<td>23 W CFL/LEDs</td>
<td>s.m.</td>
</tr>
<tr>
<td>6¹</td>
<td>[Ir(ppy)₂(dtbbpy)]PF₆ (3.1e)</td>
<td>23 W CFL/LEDs</td>
<td>s.m.</td>
</tr>
<tr>
<td>7¹</td>
<td>fac-[Ir(ppy)₃] (3.15d)</td>
<td>23 W CFL/LEDs</td>
<td><5</td>
</tr>
</tbody>
</table>

¹Reaction mixtures were stirred for 36 hours. bpy = 2,2'-bipyridyl, dtbbpy = di-tert-butyl-2,2'-bipyridine, ppy = 2-phenylpyridinate, s.m. = starting material.

In this reaction, trialkylamine DIPEA acts as an electron donor to reduce the active photocatalyst (Scheme 3.6). The formation of a strongly reducing [Au¹–Au⁰⁺] complex then allows for reductive cleavage of the organobromide C–Br bond. The generated carbon-centered radical (3.17a) can subsequently cyclize in a 5-exo-trig fashion, leading to radical intermediate 3.17b. The corresponding product (3.16a) is furnished following HAT from the solvent, DIPEA, or formic acid, added in some examples to accelerate the quenching process.
Scheme 3.6. Proposed photocatalytic mechanism for the cyclization of unactivated bromoalkanes.

As shown by a limited portion of the completed scope, this method allowed for the cyclization of unactivated alkyl bromide substrates (Scheme 3.7). Biaryl substrates were included and generated polycyclic products (3.16e) in excellent yields. Bromoaniline was also completely reduced under these reaction conditions with the addition of formic acid (3.16g).
Later in 2015, the Barriault group reported the functionalization of indoles, photocatalyzed by \([\text{Au}_2(\mu\text{-dppm})_2]\text{Cl}_2\) via a free-radical cyclization mechanism (Scheme 3.8)\(^{84}\). Like most photocatalytic methods, this reaction overcomes the need for toxic and highly reactive reagents by using stable catalysts and additives under mild conditions. Functionalized indoles were formed in very high yields and a variety of substituents were tolerated at the C\(^3\) position, such as aryl groups and EWGs.
Scheme 3.8. Functionalization of indoles via gold photoredox catalysis.

This gold photoredox reaction differs mechanistically from the previous method because it undergoes an oxidative quenching cycle. The incorporation of trialkylamine bases led to undesired reactivity, thus the replacement by inorganic bases was crucial to achieving higher selectivity and yields for the desired product.
As shown in scheme 3.9, the excited dimeric gold(I) catalyst is oxidatively quenched by the bromoalkane substrate. The formation of a rather nucleophilic radical (3.20a) can then lead to intramolecular cyclization onto a heteroarene acceptor, generating a carbon-centered radical intermediate (3.20b). The latter can subsequently lose an electron to the [Au^I–Au^II] complex to complete the catalytic cycle by regenerating the ground-state catalyst. Loss of a proton via deprotonation by an inorganic base, in this case Na_2CO_3, leads to the desired product 3.19a.

A few years into the application of these gold(I) dimeric photocatalysts to synthetic methods, an intramolecular photoredox arylation using [Au_2(μ-dppm)_2]Cl_2...
was exploited for the short formal synthesis of \((\pm)\)-triptolide (3.21c) (Scheme 3.10).85 In 2016, the Barriault lab reported the synthesis containing a key radical cyclization step to generate two C–C bonds and the desired polycyclic framework.

![Scheme 3.10. Photocatalyzed key radical cyclization step in the formal synthesis of \((\pm)\)-triptolide.](image)

Studies were initially conducted targeting a reductive quenching pathway, however, due to the complexity and reactivity of the substrate, the formation of byproducts was hindering the success of the reaction. Following multiple attempts using trialkylamine bases, the use of inorganic base \(\text{Na}_2\text{CO}_3\) was evaluated on a test-substrate and successfully led to the desired cyclization product in good yield.

Building on the studies completed in our lab, a slightly different approach was taken to complete an alkylative semipinacol rearrangement method. Following recent reports of the transformation being accessed via photoredox methods, a photocatalytic system was designed using gold as the catalyst (Scheme 3.11).86 As previously visited, an alkylbromide (3.23) can form an inner sphere exciplex with the gold excited catalyst (3.25a) and trigger an oxidative quenching pathway to generate a \([\text{Au}^{1-}\text{Au}^{II}]^{3+}\) species (3.25b) and a carbon-centered radical (3.23b). What differs in this mechanism is the addition of the radical to the \([\text{Au}^{1-}\text{Au}^{II}]^{3+}\) complex. This would
result in a [AuI–AuIII–R]* intermediate (3.25c) which can coordinate to a \(\alpha\)-styrenyl substituted alcohol. Lewis acid activation of the substrate would trigger a semipinacol rearrangement via ligand exchange to the gold(II) center (3.25e). Reductive elimination would finally generate the ground state catalyst and lead to a functionalized cyclic ketone (3.24). The use of a sub-stoichiometric quantity of a DABCO additive was justified by the potential of it resuscitating Au intermediates that may have degraded.

Scheme 3.11. Proposed mechanism of photocatalytic semipinacol rearrangement via [AuI–AuIII] intermediate.
3.2 Initial investigations

The objective of this project was to apply the photocatalytic method demonstrated in the alkylation semipinacol rearrangement developed by our group. This project would allow continued exploration of this newly discovered process through an intramolecular cyclization between unactivated C–Br bonds and enol ethers. The general reaction scheme of the transformation is demonstrated in **scheme 3.12**. Enol ether 3.27 would be formed through a Diels-Alder reaction, controlling the installation of up to three stereocenters, and would then be submitted to photoredox conditions to form cyclization product 3.28.

![Scheme 3.12. General reaction scheme.](image)

Traditionally, radical cyclizations were often completed using a radical initiator, such as AIBN. These initiators do not require light activation and are most often paired with hydrogen atom donor tributyltin hydride. However, in cases where the desired reactivity pathway is slow, premature reduction of the generated radical by the organostannane can lead to unwanted products. The interaction between alkyl radicals and tin hydride occurs with a rate constant of about $2 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ at room temperature, which is about 1000 times faster than we can expect the 6-exo-trig cyclization to occur, with a rate constant around $6 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$.\(^{66}\)
The proposed mechanism of the gold-catalyzed photoredox cyclization involves the excitation of the gold dimeric catalyst to its excited state (Scheme 3.13). The formation of an inner sphere exciplex with the bromoalkane moiety of the Diels-Alder product triggers oxidative quenching of the excited catalyst, generating a Au(I)–Au(II)–Br complex and alkyl radical 3.29a. Addition of the latter to the Au(II) center forms a Lewis acidic Au(III) complex 3.29b, which simultaneously coordinates to the silyl enol ether moiety. Nucleophilic addition of the silyl enol ether to the Au(III) center then leads to intermediate 3.29c, which can subsequently undergo reductive elimination to generate ketone product 3.28.
The starting material for this method consists of a diene tethered to a bromoalkane, to undergo the Diels-Alder reaction and participate in the radical cyclization. The formation of this scaffold followed a convergent synthesis from diethyl (2-oxopropyl)phosphonate and ethyl 5-bromovalerate (Scheme 3.14). The latter was first reduced to 5-bromopentanal (3.30) using DIBAL-H, before undergoing a Horner-Wadsworth-Emmons transformation in a second step to
generate ketone 3.31. Finally, a triisopropyl silyl protecting group was installed to the enone to afford diene starting material 3.26.

![Scheme 3.14. Substrate synthesis.](image-url)

Initial studies for the Diels-Alder reaction were conducted using the TIPS-protected diene substrate. Experiments were completed under CoIII-catalyzed conditions, based on the method discussed in Chapter 2. These reactions led to a major *endo* Diels-Alder product with a dr of 6:1 in 88% yield (*Table 3.2*). The Diels-Alder reaction was also attempted under thermal conditions, leading to a 5:1 dr in 91% yield.
Table 3.2. Diels-Alder reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>dr (endo:exo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.31b</td>
<td>DCM</td>
<td>20</td>
<td>18</td>
<td>88</td>
<td>6:1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>DCE</td>
<td>60</td>
<td>3</td>
<td>91</td>
<td>5:1</td>
</tr>
</tbody>
</table>

Once the silyl enol ether formed, the radical cyclization was attempted under conditions to prompt the Au¹/Au³ redox cycle. Gold dimeric catalysts with both Cl and NTf₂ counterions were attempted in various solvents, such as toluene, acetonitrile, benzene, dimethylformamide and tetrahydrofuran (Scheme 3.15).

Scheme 3.15. Initial cyclization reaction studies.
In all cases, degradation was observed along with the formation of desilylated starting material. At this point, it was unknown whether premature desilylation of the starting material by the gold catalyst was preventing the cyclization, or whether the starting material was simply not converting to product and was being degraded over time. The addition of inorganic bases, such as \(\text{Na}_2\text{CO}_3 \) and \(\text{K}_2\text{CO}_3 \), was attempted to ensure no acidic intermediates were being formed and shutting down the reactivity, however this led to no significant change. Due to the bulkiness of the silyl protecting group, it was hypothesized that the formation of the \(\text{Au}^{\text{III}} \) intermediate was too hindered. In response, the starting material was synthesized using a smaller silyl-protecting agent, TBS. Unfortunately, these modifications did not lead to any improvements when it came to the photochemical reaction. Following a series of unsuccessful reactions, I was unable to generate the desired product through the oxidative quenching cycle.

While our initial objective to utilize a \(\text{Au}^{\text{III}} \) intermediate was unsuccessful, the addition of a trialkylamine base to our reaction conditions would allow us to form the desired product through the reductive quenching cycle. In this case, DIPEA, which quenches ten times faster with the excited catalyst than the bromoalkane, would reduce the active gold species to a \([\text{Au}^1\text{–Au}^0]\) complex (Scheme 3.16). Reduction of the bromoalkane substrate by the catalyst generates alkyl radical 3.29a, which can cyclize and form oxonium ion 3.29e by donating an electron from intermediate 3.29d to the DIPEA radical cation. Deprotonation and/or loss of the silyl protecting group from a bromine ion can lead to various bicycles.
Scheme 3.16. Proposed photocatalytic mechanism through a reductive quenching cycle.

The transformation was attempted under reductive quenching conditions with 1.1 equivalents of DIPEA in acetonitrile for 18 hours (Scheme 3.17). The disappearance of the bromine and silyl enol ether alkene peaks by NMR, paired with the creation of a new alkene peak, seemed to point to successful product formation in a mixture of diastereoisomers. While the products have not been fully separated and characterized, mass spectroscopy data of the products suggests that \(3.32c\) was formed under the reaction conditions.
3.17 Cyclization reaction under a reductive quenching pathway.

3.3 Future work

The cyclization reaction appeared to lead to multiple diastereoisomers of 3.32a and 3.32b, which were difficult to separate. To continue this project, hydrolysis of the silyl protecting-group following the cyclization may be necessary to converge the silyl enol ether products to ketone 3.28, as demonstrated in scheme 3.18. Under acidic conditions, we could also expect isomerization of the ring junction to generate the more stable trans-decalin 3.33. The presence of only two diastereoisomers would facilitate the optimization process, which would involve investigations into the solvent, molarity, catalyst counterion, trialkylamine base and reagent equivalents.

Once established, this method could be applied to a large scope of substrates. Some interesting examples are demonstrated in scheme 3.19, where the cyclization
of silyl enol ether 3.34 could lead to bridged-ketone 3.35, and spirocycle 3.37 could be formed upon ring formation from 3.36.

![Chemical structure](image)

Scheme 3.19. Formation of bridged-ketone and spirocyclic scaffolds.

Both of these silyl enol ether substrates can be formed in few steps from commercially available ethyl 2-oxocyclohexanecarboxylate (Scheme 3.20). A suggested synthesis first involves the alkylation of the keto ester, generating alkyl bromide 3.37. Subsequent protection chemistry can lead to target silyl enol ether 3.34. Additionally, methylation of the keto ester prior to alkylation can generate alkyl bromide 3.38b, which can be similarly transformed to silyl enol ether 3.36.
3.4. Conclusion

While this project remains in the development phase, it shows good potential for becoming an efficient method to generate C–C bonds between enol ethers and unactivated alkyl bromides. The initially proposed mechanism to obtain cyclized products through a AuIII intermediate was not successful, however further investigations suggest that a reductive quenching pathway is a promising alternative.
3.5 References

Chapter 4. Conclusion

The work presented in this dissertation concentrates on applications of gold catalysis by controlling divergent reactivity pathways, as well as developing new synthetic methods. The first project presented in chapter 2, conducted in collaboration with Huy Tran, put forward our efforts towards the development of one-pot syntheses for the formation of complex polycyclic scaffolds. The divergent nature of gold(I)-catalyzed cyclizations allows access to a range of products, but the challenge to select for a specific pathway remains. Through catalyst modifications, we have successfully developed three one-pot sequences to generate carbocycles 2.14, 2.15 and 2.21 from a diene substrate (2.12) prepared in 4 linear steps.

Scheme 4.1. Divergent one-pot syntheses for the formation of complex polycyclic scaffolds.
The initial forays into the use of dimeric gold photocatalysis for the intramolecular cyclization of \(3.27b\) were disseminated in chapter 3. The first objective was to obtain the desired product through an oxidative quenching pathway involving a \(\text{Au}^{\text{III}}\) intermediate, however this approach did not produce the desired product. Further investigations involving a reductive quenching cycle suggest that to obtain \(3.32c\) additional studies under these new conditions will be required.

Scheme 4.2. Photocatalytic cyclization of \(3.27b\) under a reductive quenching cycle.
Chapter 5. Additional information

5.1 General information

All reactions were performed under argon atmosphere in flame-dried glassware equipped with a magnetic stir bar and capped with a rubber septum, unless otherwise indicated. All commercial reagents were used without further purification, unless otherwise noted. Reactions were monitored by thin layer chromatography (TLC) analysis of reaction aliquots. TLC plates were viewed under UV light and stained with permanganate, vanillin or p-anisaldehyde staining solutions. Proton nuclear magnetic resonance (\(^1\)H NMR) spectra were recorded on a Bruker AMX 400 MHz at room temperature. NMR samples were dissolved in chloroform-\(d\), unless specified otherwise, and chemicals shifts are reported in ppm from ppm relative to the residual non-deuterated solvent. Carbon nuclear magnetic resonance (\(^{13}\)C NMR) spectra were also recorded on the Bruker AMX 400 MHz at 101 MHz and room temperature. HRMS were obtained on a Kratos Analytical Concept instrument (University of Ottawa Mass Spectrum Centre).
5.2 Experimental procedure chapter 2

General procedure 1: Diene starting material

General Procedure 1a:

Scheme 5.1. *Synthesis of terminal alkyne substrate.*

Adopted from literature procedure.\(^{87}\)

To a solution of phosphonate 2.22 in THF (115 ml) was added a solution of potassium carbonate (22.0 g, 160 mmol) in water (57 ml), and crude aldehyde 2.23. The mixture was heated at 80°C overnight with vigorous stirring. The product was extracted with ethyl acetate (3x50 ml), and the combined organic layers were dried over sodium sulfate and evaporated. The residue was diluted with DMF (250 ml) and added to an extraction funnel. Then, aq. sat. sodium bisulfite (250 ml) was added and shaken for 30 s. The mixture was then extracted with hexanes (250 ml x 3). The combined organic layers were dried (Na\(_2\)SO\(_4\)), filtered, and concentrated *in vacuo* to give a crude product which was separated via flash chromatography (5–10% EtOAc in hexanes) to give ketone 2.24.

General Procedure 1b:

Scheme 5.2. *Synthesis of ketone substrate.*
A flame-dried reaction flask was equipped with a magnetic stir bar and charged with 2.24 (18.2 mmol) in THF (125 ml), followed by Copper(I) Iodide (1.8 mmol) and an amine base (91 mmol). Then, vinyl bromide in THF (1.0 M, 54.6 ml) and palladium tetrakis (0.9 mmol) were added to the solution and stirred overnight. The reaction mixture was filtered through a sintered glass funnel and the mother liquor was collected and evaporated. The residue was then diluted with EtOAc and washed with sat. NH₄Cl. The combined organic layers were dried with Na₂SO₄ and concentrated in vacuo. The crude was filtered through celite (x 3) and a silica plug (x 3) before purification by flash column chromatography, eluted with EtOAc in hexanes to yield 2.25.

General Procedure 1c:

![Scheme 5.3. Synthesis of linear diene substrate.](image)

To a flame-dried RBF under argon was added 2.25 (2.55 mmol), DCM (12.75 ml) and triethylamine (5.09 mmol). Then, TIPS(OTf) (2.55 mmol) was added at 0°C. The mixture was stirred at 0°C for 1 h, then quenched with sat. NaHCO₃. The layers were separated and the organic phase collected. The aqueous phase was back-extracted with DCM. Combined organic layers were dried with MgSO₄, filtered, and concentrated in vacuo. The crude product was added to a basicified silica gel column and eluted with 1% TEA in hexanes, yielding 2.12.
General Procedure 2: Salen ligand synthesis

General Procedure 2a:

![Scheme 5.4. Synthesis of 2,6-dibromophenol silyl ethers.](image)

A solution of 2,6-dibromo-4-tert-butylphenol in THF (1.0 M) was cooled in an ice-bath and treated with triethylamine (1.2 equiv) followed by the dropwise addition of chlorotrimethylsilane (1.1 equiv). The ice-bath was removed and the mixture was allowed to warm up to room temperature over 2 h. The solvent was removed in vacuo and the residue diluted with hexanes. The mixture was then filtered over Celite® and the filtrate was concentrated to afford the silyl ether products as clear, colorless oils.

General Procedure 2b:

![Scheme 5.5. Synthesis of 3-silylsubstituted salicylaldehydes.](image)

A solution of 2,6-dibromophenol silyl ether 2.31s2 (1.50 mmol) in Et2O (3.0 ml) was cooled to $-78 \, ^\circ\text{C}$ and treated dropwise with tBuLi (1.7 M in pentane, 3.53 ml, 6.00 mmol). The reaction mixture was stirred for 1.5 h while warming to $0 \, ^\circ\text{C}$, and another 0.5 h at $0 \, ^\circ\text{C}$. The mixture was then re-cooled to $-78 \, ^\circ\text{C}$ prior to the addition of DMF.
(0.465 ml, 6.00 mmol), all at once. The reaction mixture was subsequently stirred for 1 h while warming to 0 °C and then quenched with saturated aq. NH₄Cl (5.0 ml) and diluted with Et₂O (75 ml). The layers were separated, and the organic layer was washed with H₂O (2 x 15 ml) and brine (25 ml), dried (MgSO₄), and concentrated in vacuo to afford the crude salicylaldehyde. Flash chromatography (silica gel, EtOAc/hexanes) afforded the pure salicylaldehyde 2.31s3.

General Procedure 2c:

Scheme 5.6. Salen ligand synthesis from hydroxybenzaldehyde substrate.

Synthesized according to literature procedure.⁸⁸

A mixture of (1R,2R)-(+-)-1,2-diaminocyclohexane L-tartrate (0.171 mmol) and K₂CO₃ (0.342 mmol) was dissolved in water (0.170 ml). This solution was added to 2.31s3 (1.026 mmol) dissolved in EtOH (3.39 ml). The resulting yellow suspension was heated to 100°C for 2 h, after which 0.7 ml water was added while hot. The reaction mixture was cooled to room temperature and the yellow precipitate was collected by filtration, yielding 2.31s4.
General procedure 3: Gold(I) catalysts

General procedure 3a:

\[
\begin{align*}
L^x & \xrightarrow{\text{AuCl DMS (1 equiv)}} \text{DCM (0.08M) rt, 4 h}} \quad [L^x\text{AuCl}] \\
& \quad \text{Scheme 5.7. Preparation of LAuCl complexes with phosphine ligands.}
\end{align*}
\]

To a suspension of \(L_x\) (0.2 mmol) in DCM (2.58 ml) was added AuCl DMS complex (0.2 mmol). The mixture was stirred at room temperature for 4 h, then filtered through cotton and the solvent was removed in vacuo to yield a crude solid. The crude was added to a silica gel plug and eluted with EtOAc in hexanes to yield \([L^x\text{AuCl}]\).

General Procedure 3b:

\[
\begin{align*}
[L^x\text{AuCl}] & \xrightarrow{\text{AgSbF}_6 (1 \text{ equiv})} \text{MeCN (0.1M) rt, 4.5 h}} \quad [L^x\text{AuNCMe}]\text{SbF}_6 \\
& \quad \text{Scheme 5.8. Preparation of \(Lx\text{AuNCMeSbF}_6\) complexes with phosphine ligands.}
\end{align*}
\]

To a flame-dried reaction vial under argon was added \([L^x\text{AuCl}]\) (0.146 mmol), MeCN (1.46 ml) and AgSbF\(_6\) (0.146 mmol). The mixture was stirred at room temperature for 4.5 h, then filtered through celite. The solution was concentrated in vacuo and eluted on a silica plug to yield \([L^x\text{AuNCMe}]\text{SbF}_6\).
General Procedure 4: Oxazolidinone dienophiles

Scheme 5.9. Oxazolidinone dienophile synthesis.

Synthesized via modified literature procedure. To a round-bottomed flask was added acrylic acid (1 eq.), DCM (0.4M), 2-chloro-1-methylpyridin-1-ium iodide (1.2 eq.), oxazolidin-2-one (1.1 eq.), then, triethylamine (2.4 eq.). The mixture was stirred at room temperature for 48–72 hours. The solvent was evaporated, then diluted with EtOAc, and the resulting precipitates were filtered and washed with EtOAc. The mother liquor was evaporated, giving a crude product, which was purified by flash chromatography, yielding oxazolidinone dienophile 2.38.

General procedure 5: Diels-Alder/6-endo-dig cyclization/Diels-Alder

Scheme 5.10. One-pot reaction cascade for the synthesis of steroid scaffolds.

To a capped 4 mL oven dried reaction vial was added oxazolidinone dienophile 2.38 (0.300 mmol, 2 eq.), gadolinium(III) trifluoromethanesulfonate (9.1 mg, 0.015 mmol, 10 mol%), DCM (0.750 ml, 0.200M) and 4Å MS (38 mg, 250 mg/mm). The mixture
was stirred for 3h at room temperature. Then, diene 2.12 (0.150 mmol) was added. The mixture was stirred at room temperature for 18 h.

Then, to the mixture was added MeOH (0.075 ml) and [VPhosAuNCMe]SbF₆ (7.2 mg, 7.50 µmol, 5 mol%). The mixture was stirred at room temperature for 6 h.

Then, a dienophile (0.300 mmol, 2 eq.) was added. The mixture was stirred at room temperature or 50 °C for 18–48 h. The mixture was dry packed in silica, evaporated, and separated by flash chromatography, yielding 2.21.

General procedure 6: Diels-Alder/6-endo-dig cyclization/Prins-type cyclization

Scheme 5.11. One-pot Diels-Alder/6-endo-dig cyclization/Prins cyclization sequence.

To a capped 4 mL oven dried reaction vial was added oxazolidinone dienophile 2.38 (0.165 mmol, 1.1 equiv), gadolinium(III) trifluoromethanesulfonate (9.1 mg, 0.015 mmol, 10 mol%), DCM (0.750 ml, 0.200M) and 4Å MS (38 mg, 250mg/mmol). The mixture was stirred for 3h at room temperature. Then, diene 2.12 (0.150 mmol) was added. The mixture was stirred at room temperature for 18 h.

Then, to the mixture added [Me₄BuXPhosAuNCMe]SbF₆ (7.2 mg, 7.50 µmol, 5 mol%). The mixture was stirred at room temperature for 24–48 h. The mixture was dry packed in silica, evaporated, and separated by flash chromatography, yielding a mixture of regioisomers with 2.15 as the major product.
General procedure 7: Diels-Alder/5-exo-dig cyclization/Prins-type cyclization

Scheme 5.12. One-pot Diels-Alder/5-exo-dig cyclization/Prins cyclization sequence.

To a capped 4 mL oven dried reaction vial was added oxazolidinone dienophile 2.38 (0.165 mmol, 1.1 eq.), gadolinium(III) trifluoromethanesulfonate (9.1 mg, 0.015 mmol, 10 mol%), DCM (0.750 ml, 0.200M) and 4Å MS (38 mg, 250mg/mmol). The mixture was stirred for 3 h at room temperature. Then, diene 2.12 (0.150 mmol) was added. The mixture was stirred at room temperature for 18 h.

Then, to the mixture added [IPrAuNCMe]SbF₆ (7.2 mg, 7.50 µmol, 5 mol%). The mixture was stirred at room temperature for 24–48 h. The mixture was dry packed in silica, evaporated, and separated by flash chromatography, yielding a mixture of regioisomers with 2.14 as the major product.
5.3. Characterization data chapter 2

Diene 2.12a
Synthesized according to general procedure 1c using ketone 2.25a in >95% yield (1.173 g).

\[\text{Diene 2.12a} \]

Synthesized according to general procedure 1c using ketone 2.25a in >95% yield (1.173 g).

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.39–7.26 (m, 5H), 6.85 (d, \text{J} = 16.2 \text{ Hz, 1H}), 6.23–6.17 (m, 1H), 6.13 (dt, \text{J} = 16.2, 2.1 \text{ Hz, 1H}), 4.41 (d, \text{J} = 1.4 \text{ Hz, 1H}), 4.30–4.26 (m, 1H), 2.50–2.37 (m, 4H), 1.79 (d, \text{J} = 1.2 \text{ Hz, 3H}), 1.31–1.19 (m, 3H), 1.11 (d, \text{J} = 7.2 \text{ Hz, 18H}); \]

\[\text{13C NMR (101 MHz, CDCl}_3\text{)} \delta 157.6, 140.2, 136.8, 132.2, 128.8, 128.4, 126.5, 126.2, 109.0, 92.5, 90.6, 80.2, 27.9, 20.0, 18.3, 13.6, 13.0; \]

\[\text{IR (neat, cm}^{-1}\text{): 2945.6, 2865.6, 2364.2, 2342.2, 1712.1, 1667.8; \text{HRMS (EI): m/z calc'd for C}_{26}\text{H}_{38}\text{OSi [M}^+\text{] = 394.2692, found mass = 394.2698.} \]

Diene 2.12b
Synthesized according to general procedure 1c from ketone 2.25b in 85% yield (2.875 g).

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 6.14 (dt, \text{J} = 15.2, 6.7 \text{ Hz, 1H}), 5.93 (dq, \text{J} = 15.2, 1.1 \text{ Hz, 1H}), 5.76 (ddt, \text{J} = 17.5, 11.0, 2.1 \text{ Hz, 1H}), 5.53 (dd, \text{J} = 17.6, 2.3 \text{ Hz, 1H}), 5.36 (dd, \text{J} = 11.0, 2.3 \text{ Hz, 1H}), 4.23 (d, \text{J} = 21.0 \text{ Hz, 2H}), 2.45–2.24 (m, 4H), 1.32–1.18 (m, 3H), 1.11 (d, \text{J} = 7.4 \text{ Hz, 18H}); \]

\[\text{13C NMR (101 MHz, CDCl}_3\text{)} \delta 155.2, 129.5, 129.2, 125.6, 117.7, \]
93.8, 90.2, 80.0, 31.4, 19.7, 18.2, 12.9; **IR** (neat, cm⁻¹): 2948, 2869, 1579, 1297; **HRMS** (EI): m/z calc’d for C_{19}H_{32}OSi [M⁺] = 304.2222, found mass = 304.2243.

Diene 2.12c
Synthesized according to **general procedure 1c** from ketone 2.25c in 90% yield (0.226 g).

¹H NMR (400 MHz, CDCl₃) δ 6.16 (tt, J = 5.7, 3.1 Hz, 1H), 5.81–5.68 (m, 1H), 5.53 (dd, J = 17.5, 2.3 Hz, 1H), 5.37 (dd, J = 11.0, 2.3 Hz, 1H), 4.39 (d, J = 1.3 Hz, 1H), 4.27 (t, J = 1.0 Hz, 1H), 2.42–2.33 (m, 4H), 1.77 (d, J = 1.1 Hz, 3H), 1.29–1.18 (m, 3H), 1.10 (d, J = 7.1 Hz, 18H); **¹³C NMR** (101 MHz, CDCl₃) δ 157.6, 132.2, 126.5, 125.7, 117.7, 90.7, 90.6, 79.7, 27.8, 19.7, 18.3, 13.6, 13.0; **IR** (neat, cm⁻¹): 2945.1, 2866.8, 1587.3; **HRMS** (EI): m/z calc’d for C_{20}H_{34}OSi [M⁺] = 318.2379, found mass = 318.2380.

Diene 2.12d
Synthesized according to **general procedure 1c** from ketone 2.25d in 92% yield (0.283 g).

¹H NMR (400 MHz, CDCl₃) δ 7.39–7.28 (m, 5H), 6.20–6.04 (m, 2H), 5.72 (dq, J = 15.8, 2.0 Hz, 1H), 4.51 (s, 2H), 4.33 (dd, J = 50.9, 1.3 Hz, 2H), 4.05 (dd, J = 5.7, 1.7 Hz, 2H), 2.38 (d, J = 3.8 Hz, 4H), 1.78 (d, J = 1.2 Hz, 3H), 1.34–1.16 (m, 3H), 1.10 (d, J = 7.1 Hz, 18H); **¹³C NMR** (101 MHz, CDCl₃) δ 157.5, 138.2, 138.1, 128.5, 127.8, 127.8, 126.5,
112.7, 90.8, 90.6, 78.8, 72.2, 70.0, 27.9, 19.8, 18.3, 13.6, 13.0; IR (neat, cm⁻¹): 2945.1, 2864.1, 1463.87; HRMS (EI): m/z calc’d for C₂₈H₄₂O₂Si [M⁺] = 438.2954, found mass = 438.2961.

Diene 2.12e
Synthesized according to general procedure 1c from ketone 2.25e in 80% yield (0.257 g).

¹H NMR (400 MHz, CDCl₃) δ 6.18 – 6.07 (m, 1H), 5.81 (qq, J = 7.0, 1.5 Hz, 1H), 4.39 (d, J = 1.4 Hz, 1H), 4.28 – 4.21 (m, 1H), 2.36 (d, J = 3.4 Hz, 4H), 1.77 (d, J = 1.2 Hz, 3H), 1.74 (quint, J = 1.2 Hz, 3H), 1.65 (dq, J = 7.1, 1.2 Hz, 3H), 1.28 – 1.19 (m, 3H), 1.10 (d, J = 7.2 Hz, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 132.1, 131.0, 126.7, 118.9, 90.5, 85.8, 83.9, 28.2, 19.6, 18.3, 17., 14.05, 13.6, 13.0; IR (neat, cm⁻¹): 2945.0, 2870.7, 1595.1, 1462.1; HRMS (EI): m/z calc’d for C₂₂H₃₈OSi [M⁺] = 346.2692, found [M⁺] = 346.2701.

Silyl enol ether 2.13a
To an oven dried reaction tube was added diene 2.12a (0.15 mmol), methacrolein (0.75 mmol), Co(III) catalyst 2.31b (1 mol%) and DCM (2M). The reaction mixture was stirred overnight at room temperature and the solvent evaporated in vacuo. The crude product was purified by flash chromatography to yield 2.13a in 90% yield (0.062 g).
1H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.42–7.27 (m, 5H), 6.87 (d, J = 16.2 Hz, 1H), 6.15 (dt, J = 16.2, 2.2 Hz, 1H), 2.38 (m, 2H), 2.19–2.08 (m, 3H), 1.91 (dt, J = 13.9, 9.1 Hz, 1H), 1.76 (quint, J = 2.2 Hz, 3H), 1.66–1.48 (m, 3H), 1.17–1.05 (m, 24H); **13C NMR** (101 MHz, CDCl₃) δ 206.2, 143.4, 140.4, 136.6, 128.8, 128.4, 126.2, 111.55, 108.72, 92.23, 80.70, 48.70, 45.07, 32.34, 26.57, 24.08, 19.71, 19.32, 18.26, 18.24, 16.86, 13.34; **IR** (neat, cm⁻¹): 2942.8, 2865.8, 1723.6, 1459.0, 1317.7, 1215.9, 1177.0, 951.4, 911.2, 882.7, 746.7, 688.1, 679.3; **HRMS** (EI): m/z calc’d for C₃₀H₄₄O₂Si [M]⁺ = 464.3111, found [M]⁺ = 464.3126.

Silyl enol ether 2.13e

To an oven dried reaction tube was added diene 2.12c (0.15 mmol), methacrolein (0.75 mmol), Co(III) catalyst 2.31b (1 mol%) and DCM (2M). The reaction mixture was stirred overnight at room temperature and the solvent evaporated in vacuo. The crude product was purified by flash chromatography to yield 2.13e in 62% yield (0.036 g).

1H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 5.76 (ddt, J = 17.5, 11.0, 2.1 Hz, 1H), 5.55 (dd, J = 17.5, 2.2 Hz, 1H), 5.38 (dd, J = 11.0, 2.3 Hz, 1H), 2.30 (qd, J = 7.4, 2.2 Hz, 2H), 2.17–2.09 (m, 3H), 1.88 (dt, J = 13.8, 9.2 Hz, 1H), 1.72 (t, J = 1.9 Hz, 3H), 1.62–1.48 (m, 3H), 1.18–1.02 (m, 24H); **13C NMR** (101 MHz, CDCl₃) δ 206.2, 143.4, 126.0, 117.6, 111.5, 90.5, 80.3, 48.7, 45.0, 32.2, 26.6, 24.1, 19.4, 19.3, 18.2, 18.2, 16.8, 13.3; **IR** (neat, cm⁻¹): 2942.3, 2895.6, 2866.2, 1724.0, 1677.3, 1461.2; **HRMS** (EI): m/z calc’d for C₂₄H₄₀O₂Si [M]⁺ = 388.2798, found mass = 388.2773.
Silyl enol ether (rac-2.13f)

To oven dried reaction tube was added gadolinium(III) triflate (0.013 mmol), DCM (0.380 ml), 4Å MS (32 mg, 250mg/1mmol), and oxazolidinone dienophile **2.38a** (0.253 mmol). The mixture was stirred for 3 h at room temperature. Then, a solution of diene **2.12a** (0.127 mmol) in DCM (0.127 ml) was added via syringe. The mixture was then stirred at 20 °C for 18h. The mixture was filtered through celite and evaporated. The crude residue was purified by flash chromatography, yielding **rac-2.13f** in 88% yield (0.061 g) as a 95:5 *exo:endo* Diels-Alder cycloadduct mixture.

1H NMR (400 MHz, CDCl3) 6 7.37–7.18 (m, 5H), 6.83 (d, J = 16.2 Hz, 1H), 6.12 (dt, J = 16.2, 2.3 Hz, 1H), 4.40–4.28 (m, 2H), 4.08–3.91 (m, 2H), 3.74 (ddd, J = 9.2, 7.6, 3.3 Hz, 1H), 2.78–2.68 (m, 1H), 2.35–2.18 (m, 3H), 2.14–2.03 (m, 1H), 2.03–1.92 (m, 1H), 1.79–1.65 (m, 3H), 1.66 (s, 3H), 1.18–1.01 (m, 21H); **13C NMR** (101 MHz, CDCl3) δ 175.6, 153.3, 144.8, 140.2, 136.6, 128.8, 128.4, 126.2, 111.3, 108.9, 93.2, 79.9, 61.95, 43.0, 41.6, 39.8, 31.1, 29.5, 25.7, 18.2, 16.1, 14.2, 13.3; **IR** (neat, cm⁻¹): 2943.5, 2865.3, 2209.2, 1774.7, 1697.6, 1383.1, 1175.5; **HRMS** (EI): m/z calc’d for C₃₂H₄₅NO₄Si [M]+ = 535.3118, found [M]+ = 535.3088.
Silyl enol ether 2.13g

To oven dried reaction tube was added gadolinium(III) triflate (0.015 mmol), DCM (0.450 ml), 4Å MS (32 mg, 250mg/1mmol) and oxazolidinone dienophile 2.38a (0.30 mmol). The mixture was stirred for 3h at room temperature. Then, a solution of diene 2.12c (0.15 mmol) in DCM (0.15 ml) was added via syringe. The mixture was then stirred at room temperature for 18 h. The mixture was filtered through celite and evaporated. The crude residue was purified by flash chromatography, yielding 2.13g in 93% yield (0.064 g) as a 95:5 exo:endo mixture.

1H NMR (400 MHz, CDCl$_3$) δ 5.76 (ddt, J = 17.6, 11.0, 2.1 Hz, 1H), 5.53 (dd, J = 17.5, 2.3 Hz, 1H), 5.36 (dd, J = 11.0, 2.3 Hz, 1H), 4.41 (t, J = 8.1 Hz, 2H), 4.09 – 3.95 (m, 2H), 3.72 (ddd, J = 9.3, 7.6, 3.4 Hz, 1H), 2.71 (s, 1H), 2.31 – 2.17 (m, 3H), 2.09 (dt, J = 16.3, 5.0, 1.4 Hz, 2H), 1.97 (dt, J = 12.6, 5.3, 3.4 Hz, 1H), 1.71 (m, 2H), 1.65 (s, 3H), 1.15 – 1.03 (m, 21H); 13C NMR (101 MHz, CDCl$_3$) δ 175.6, 153.3, 144.8, 125.7, 117.7, 111.3, 91.4, 79.5, 62.0, 43.0, 41.6, 39.8, 31.1, 29.4, 25.7, 18.2, 15.7, 14.2, 13.3; IR: 2943.6, 2865.9, 1774.5, 1697.7, 1383.2, 1351.2, 1240.4, 1194.2, 1175.9; HRMS (EI) m/z calculated for C$_{26}$H$_{41}$NO$_4$Si [M]$^+$ = 459.2805, found [M]$^+$ = 459.2787.
Silyl enol ether 2.13h

To oven dried reaction tube was added gadolinium(III) triflate (0.015 mmol), DCM (0.450 ml), 4Å MS (32 mg, 250mg/1mmol) and oxazolidinone dienophile 2.38b (0.300 mmol). The mixture was stirred for 3h at room temperature. Then, a solution of diene 2.12c (0.15 mmol) in DCM (0.15 ml) was added via syringe. The mixture was then stirred at room temperature for 18 h. The mixture was filtered through celite and evaporated. The crude residue was purified by flash chromatography, yielding 2.13g in 84% yield (0.062 g) as a 95:5 exo:endo mixture.

\(^{1}H\) NMR (400 MHz, CDCl\(_{3}\)) \(\delta\) 5.74 (ddt, \(J = 17.6, 11.0, 2.1\) Hz, 1H), 5.50 (dd, \(J = 17.5, 2.3\) Hz, 1H), 5.33 (dd, \(J = 11.0, 2.3\) Hz, 1H), 4.46 (dd, \(J = 7.7, 1.9\) Hz, 1H), 4.30–4.16 (m, 2H), 3.81 (td, \(J = 6.9, 3.8\) Hz, 1H), 2.65 (q, \(J = 5.6\) Hz, 1H), 2.45–2.34 (m, 1H), 2.34–2.22 (m, 2H), 2.22–2.10 (m, 1H), 1.86 (dt, \(J = 12.5, 6.2, 3.7\) Hz, 1H), 1.76 (ddd, \(J = 13.1, 6.1, 2.6\) Hz, 3H), 1.63 (s, 3H), 1.07 (d, \(J = 5.4\) Hz, 21H), 0.91 (s, 9H); \(^{13}C\) NMR (101 MHz, CDCl\(_{3}\)) \(\delta\) 175.6, 154.3, 144.8, 125.3, 117.7, 110.4, 91.2, 79.3, 64.99, 60.8, 41.3, 41.0, 35.7, 32.0, 28.5, 25.6, 23.7, 18.1, 16.1, 14.5, 13.2; IR (neat, cm\(^{-1}\)): 2945.5, 2867.1, 1777.7, 1706.2, 1381.8, 1216.4, 1176.1; HRMS (EI): m/z calc’d for C\(_{30}\)H\(_{40}\)NO\(_{4}\)Si [M]\(^{+}\) = 515.3431, found [M]\(^{+}\) = 515.3415.
Tricycle 2.14a
To a capped 4 mL oven dried reaction vial was added diene 2.12c (0.150 mmol, 0.048 g), methacrolein (0.750 mmol, 0.062 mL) and DCE (0.750 mL, 0.200M). The mixture was heated to 100 °C for 18 h. Then, [JohnPhosAuNCMe]SbF$_6$ was added to the mixture (5.8 mg, 7.50 µmol, 5 mol%). The mixture was stirred at room temperature for 24 h, and then purified according to column chromatography, yielding 53% of (0.031 g) 2.14a as a 12:1 mixture of diastereoisomers as a colourless oil.

1H NMR (400 MHz, CDCl$_3$) δ 9.48 (s, 1H), 6.12 (dd, $J = 9.7$, 3.0 Hz, 1H), 5.72–5.63 (m, 1H), 5.38 (s, 1H), 2.68–2.56 (m, 2H), 2.34 (dd, $J = 17.3$, 3.1 Hz, 1H), 2.18–2.06 (m, 2H), 1.84–1.75 (m, 2H), 1.54 (dd, $J = 10.9$, 3.7 Hz, 1H), 1.42 (dd, $J = 11.5$, 3.7 Hz, 1H), 1.11 (d, $J = 4.2$ Hz, 21H), 1.07 (s, 3H), 0.99 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 205.5, 149.6, 128.7, 123.6, 122.2, 74.6, 54.7, 52.8, 46.2, 39.4, 31.8, 31.8, 27.0, 25.0, 19.6, 18.7, 18.7, 13.9; IR (neat, cm$^{-1}$): 2941.9, 2865.1, 1712.7, 1449.9; HRMS (El): m/z calc’d for C$_{24}$H$_{40}$O$_2$Si [M]$^+$ = 388.2798, found [M]$^+$ = 388.2816.

Tricycle 2.14c
Synthesized according to general procedure 7 using oxazolidinone dienophile 2.38a and diene 2.12c, reacting for 24 h during the gold cyclization, yielding 64% (0.044g) of a 5:1 5-exo-dig (2.14c): 6-endo-dig mixture as a white foam.
1H NMR (400 MHz, CDCl$_3$) δ 6.19–6.11 (m, 1H), 5.68–5.59 (m, 1H), 5.42–5.36 (m, 1H), 4.42–4.32 (m, 2H), 4.09–3.94 (m, 2H), 3.54–3.42 (m, 1H), 2.70–2.56 (m, 3H), 2.09 (dd, J = 17.6, 5.9 Hz, 1H), 1.87–1.46 (m, 5H), 1.14–1.02 (m, 21H); 13C NMR (101 MHz, CDCl$_3$) δ 176.2, 152.9, 147.5, 127.0, 122.3, 76.6, 74.1, 61.6, 52.4, 44.9, 43.8, 42.9, 39.0, 37.3, 34.6, 23.1, 19.7, 18.5, 18.4, 13.7; IR (neat, cm$^{-1}$): 2943.0, 2867.4, 1778.0, 1698.5, 1385.8, 1107.2, 1055.6; HRMS (EI): m/z calc’d for C$_{23}$H$_{34}$NO$_4$Si [M-iPr]$^+$ = 416.2257, found [M-iPr]$^+$ = 416.2230.

Tricycle 2.14h

Synthesized according to general procedure 7 using dienophile 2.38h and diene 2.12c, reacting for 48 h during the gold cyclization, yielding 33% (0.045 g) a 5:4 mixture of diastereoisomers (2.14h = major) as a white foam.

Major Diastereoisomer:

1H NMR (400 MHz, CDCl$_3$) δ 6.15 (dd, J = 9.6, 2.9 Hz, 1H), 5.66–5.57 (m, 1H), 5.38 (s, 1H), 3.63 (s, 3H), 2.91–2.83 (m, 1H), 2.83–2.73 (m, 2H), 2.61–2.52 (m, 1H), 2.46 (dt, J = 19.2, 8.8 Hz, 1H), 2.29 (dd, J = 15.1, 9.9 Hz, 1H), 2.26–2.12 (m, 2H), 2.07 (dt, J = 22.0, 3.8 Hz, 1H), 2.03–1.92 (m, 1H), 1.86–1.77 (m, 1H), 1.36 (dd, J = 15.4, 4.2 Hz, 1H), 1.17–1.09 (m, 24H); 13C NMR (101 MHz, CDCl$_3$) δ 211.9, 170.5, 147.2, 127.4, 123.4, 123.4, 75.4, 63.6, 52.5, 52.4, 44.4, 39.8, 38.0, 35.2, 34.9, 34.2, 27.9, 21.1, 19.4, 19.0, 15.0; IR (neat, cm$^{-1}$): 2944.7, 2867.6, 1759.2, 1728.6; HRMS (EI): m/z calc’d for C$_{27}$H$_{42}$O$_4$Si [M-iPr]$^+$ = 415.2305, found mass = 415.2315.
Minor Diastereoisomer:

1H NMR (400 MHz, CDCl$_3$) δ 6.08 (dd, J = 9.6, 3.0 Hz, 1H), 5.58–5.48 (m, 2H), 3.70 (s, 3H), 3.39 (dd, J = 17.0, 3.4 Hz, 1H), 3.09 (dt, J = 11.8, 6.1 Hz, 1H), 2.70–2.60 (m, 2H), 2.58–2.47 (m, 1H), 2.30–2.07 (m, 3H), 1.91 (dddd, J = 13.0, 10.9, 9.7, 6.2 Hz, 1H), 1.52–1.45 (m, 1H), 1.44–1.40 (m, 2H), 1.12 (d, J = 2.8 Hz, 2H), 1.07 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 213.2, 172.7, 144.7, 127.1, 125.5, 122.4, 74.0, 61.0, 52.6, 52.6, 49.3, 39.0, 36.9, 36.3, 35.9, 31.3, 24.3, 19.6, 18.5, 18.4, 13.7; IR (neat, cm$^{-1}$): 2941.9, 2865.9, 2359.4, 1754.3, 1729.1, 1463.1; HRMS (EI): m/z calc'd for C$_{24}$H$_{35}$O$_4$Si [M-iPr]$^+$ = 415.2305, found mass = 415.2321.

![Tricycle 2.15a](image-url)

Tricycle 2.15a

Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38a and diene 2.12a, reacting for 24 h during the gold cyclization, and yielding 76% (0.061 g) of a 12:1 6-endo-dig (2.15a): 5-exo-dig mixture as a white foam.

1H NMR (400 MHz, CDCl$_3$) δ 7.32–7.18 (m, 5H), 6.22 (dd, J = 9.9, 2.8 Hz, 1H), 5.70–5.62 (m, 1H), 5.49–5.43 (m, 1H), 4.39 (t, J = 8.3 Hz, 2H), 4.26–4.22 (m, 1H), 4.10–3.94 (m, 2H), 3.59 (td, J = 11.6, 3.3 Hz, 1H), 2.56 (dq, J = 18.9, 2.7 Hz, 1H), 2.34 (dd, J = 11.7, 5.9 Hz, 1H), 2.00 (td, J = 14.1, 3.9 Hz, 1H), 1.81 (dd, J = 19.4, 5.9 Hz, 1H), 1.68–1.51 (m, 2H), 1.30 (s, 3H), 1.15–1.08 (m, 1H), 1.05–0.95 (m, 21H); 13C NMR (101 MHz, CDCl$_3$) δ 176.5, 153.1, 144.3, 139.3, 130.5, 127.9, 126.9, 126.9, 126.9, 126.1, 123.3, 87.8, 61.9, 59.1, 50.6, 43.3, 42.9, 36.5, 31.9, 28.1, 25.7, 19.9, 18.8, 14.3; IR (neat, cm$^{-1}$): 2966.9, 2944.5, 2866.7, 1777.9, 1697.5, 1387.9, 1239.3, 1131.2; HRMS (EI): m/z calc'd for C$_{32}$H$_{45}$NO$_4$Si [M]$^+$ = 535.3118, found [M]$^+$ = 535.3112.
Tricycle 2.15b
Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38a and diene 2.12c, reacting for 24 h during the gold cyclization, yielding 55% (0.038 g) of a 2:1 6-endo-dig (2.15b): 5-exo-dig mixture as a white foam.

1H NMR (400 MHz, CDCl$_3$) δ 6.15 (dd, $J = 9.9$, 2.9 Hz, 1H), 5.63–5.53 (m, 1H), 5.40–5.33 (m, 1H), 4.38 (t, $J = 8.1$ Hz, 2H), 4.10–3.93 (m, 3H), 3.58–3.44 (m, 1H), 2.74–2.64 (m, 1H), 2.24 (dd, $J = 11.7$, 5.9 Hz, 1H), 2.14 (dd, $J = 15.6$, 3.6 Hz, 1H), 1.97–1.85 (m, 1H), 1.83–1.74 (m, 2H), 1.67–1.59 (m, 2H), 1.13–1.05 (m, 24H); 13C NMR (101 MHz, CDCl$_3$) δ 176.6, 153.1, 144.7, 126.4, 123.4, 121.4, 82.5, 61.9, 49.4, 44.6, 43.2, 42.9, 36.5, 36.4, 28.0, 26.1, 20.8, 18.6, 18.5, 13.6; IR (neat, cm$^{-1}$): 2943.7, 2866.9, 1777.7, 1698.1, 1389.2, 1221.6; HRMS (El): m/z calc’d for C$_{23}$H$_{34}$NO$_4$Si [M-iPr]$^+$ = 416.2257, found [M-iPr]$^+$ = 416.2282.

Tricycle 2.15c
Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38g and diene 2.12a, reacting for 24 h during the gold cyclization, yielding 49% (0.044g) of 2.15c as the sole isomer, and as a white foam.
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.29 (tt, \(J = 15.1, 7.1\) Hz, 5H), 6.27 (dd, \(J = 9.8, 2.8\) Hz, 1H), 5.79–5.64 (m, 1H), 5.47 (s, 1H), 4.41 (ddd, \(J = 9.4, 7.4, 2.9\) Hz, 2H), 4.31 (s, 1H), 4.23 (t, \(J = 11.4\) Hz, 1H), 4.14–3.95 (m, 2H), 2.89–2.74 (m, 1H), 2.60–2.49 (m, 1H), 2.32 (dd, \(J = 11.6, 5.9\) Hz, 1H), 2.06 (t, \(J = 13.8\) Hz, 1H), 1.78 (dd, \(J = 19.2, 5.9\) Hz, 1H), 1.44–1.35 (m, 1H), 1.30 (s, 3H), 1.11–0.97 (m, 21H); \(^1\)HNMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.32–7.18 (m, 5H), 6.22 (dd, \(J = 9.8, 2.7\) Hz, 1H), 5.76–5.66 (m, 1H), 5.45–5.38 (m, 1H), 4.45–4.31 (m, 2H), 4.28–4.23 (m, 1H), 4.23–4.14 (m, 1H), 4.07–3.98 (m, 2H), 3.49 (s, 3H), 3.06 (ddd, \(J = 13.7, 11.1, 2.6\) Hz, 1H), 2.56–2.44 (m, 1H), 2.19 (dd, \(J = 11.8, 5.8\) Hz, 1H), 2.05 (t, \(J = 13.9\) Hz, 1H), 1.83 (dd, \(J = 19.1, 5.9\) Hz, 1H), 1.49 (dd, \(J = 14.3, 2.6\) Hz, 1H), 1.26 (s, 3H), 1.17–1.06 (m, 3H), 1.05–0.97 (m, 18H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 177.5, 175.1, 153.2, 143.7, 138.6, 130.5, 128.0, 127.2, 127.1, 125.9, 122.8, 87.9, 61.7, 59.1, 52.1, 50.9, 43.4, 43.1, 42.4, 39.4, 34.6, 27.2, 19.6, 18.8, 18.7, 13.9; IR (neat, cm\(^{-1}\)): 2943.6, 2867.3, 1781.3, 1733.9, 1696.1, 1388.4; HRMS (EI): m/z calc’d for C\(_{34}\)H\(_{47}\)NO\(_6\)Si [M\(^+\)] = 593.3173, found [M\(^+\)] = 593.3190.

Tricycle 2.15f

Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38f and diene 2.12a, reacting for 24 h during the gold cyclization, yielding 57\% (0.051 g) of a 6:1 6-endo-dig (2.15f): 5-exo-dig mixture as a white foam.
Tricycle 2.15g

Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38f and diene 2.12c, reacting for 24 h during the gold cyclization, yielding 42% (0.042 g) of a 2:1 6-endo-dig (2.15g): 5-exo-dig mixture as a white foam.

\[^1H \text{NMR} \quad (400 \text{ MHz, CDCl}_3) \delta 6.18 \text{ (dd, } J = 9.9, 2.8 \text{ Hz, } 1\text{H}), 5.70–5.62 \text{ (m, } 1\text{H}), 5.35 \text{ (s, } 1\text{H}), 4.39 \text{ (td, } J = 8.0, 5.9 \text{ Hz, } 2\text{H}), 4.04 \text{ (t, } J = 8.1 \text{ Hz, } 2\text{H}), 3.59 \text{ (s, } 3\text{H}), 3.12 \text{ (ddd, } J = 13.8, 11.2, 3.0 \text{ Hz, } 1\text{H}), 2.74 \text{ (d, } J = 15.7 \text{ Hz, } 1\text{H}), 2.51–2.39 \text{ (m, } 1\text{H}), 2.23–2.09 \text{ (m, } 3\text{H}), 1.95 \text{ (t, } J = 13.7 \text{ Hz, } 1\text{H}), 1.81 \text{ (dd, } J = 19.1, 5.8 \text{ Hz, } 1\text{H}), 1.73–1.57 \text{ (m, } 1\text{H}), 1.16–1.10 \text{ (m, } 21\text{H}), 1.09 \text{ (s, } 3\text{H}); ^{13}C \text{NMR} \quad (151 \text{ MHz, CDCl}_3) \delta 177.5, 175.1, 153.2, 144.2, 126.8, 122.9, 121.0, 82.6, 61.7, 52.0, 49.5, 44.3, 43.1, 42.4, 39.4, 38.8, 27.2, 20.5, 18.6, 18.5, 13.5, 13.5; IR \quad (\text{neat, cm}^{-1}): 2942.9, 2867.0, 2359.2, 2342.2, 1781.5, 1732.1, 1691.6, 1386.1; \text{HRMS (EI)}: \text{m/z calc'd for C}_{25}\text{H}_{36}\text{NO}_6\text{Si [M-iPr]}^+ = 474.2312, \text{found [M-iPr]}^+ = 474.2317.\]

Tricycle 2.15i

Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38f and diene 2.12d, reacting for 24 h during the gold cyclization, yielding 55% (0.040 g) of an 8:1 6-endo-dig (2.15i): 5-exo-dig mixture as a white foam.
1H NMR (400 MHz, CDCl$_3$) δ 7.40–7.26 (m, 5H), 6.18 (dd, $J = 9.9, 2.7$ Hz, 1H), 5.74–5.59 (m, 1H), 5.47 (s, 1H), 4.60 (d, $J = 12.1$ Hz, 1H), 4.46 (d, $J = 12.1$ Hz, 1H), 4.39 (td, $J = 8.1, 5.7$ Hz, 2H), 4.15–4.06 (m, 1H), 4.03 (t, $J = 8.1$ Hz, 2H), 3.74 (dd, $J = 8.4, 3.3$ Hz, 1H), 3.58 (s, 3H), 3.32 (dd, $J = 10.1, 8.4$ Hz, 1H), 3.20 (d, $J = 10.0$ Hz, 1H), 3.06 (ddd, $J = 12.7, 11.1, 3.4$ Hz, 1H), 2.44 (dd, $J = 19.4, 5.7$ Hz, 1H), 2.11 (dd, $J = 11.7, 5.8$ Hz, 1H), 1.96–1.75 (m, 3H), 1.12–1.03 (m, 24H); **13C NMR** (101 MHz, CDCl$_3$) δ 174.9, 153.2, 143.2, 138.4, 128.5, 128.0, 127.8, 126.9, 123.4, 122.8, 84.4, 73.7, 71.6, 66.6, 52.5, 52.1, 50.4, 43.1, 42.2, 39.2, 34.3, 27.1, 20.1, 18.7, 18.6, 13.8; **IR** (neat, cm$^{-1}$): 2963.9, 2867.2, 1738.7, 1780.6, 1734.3, 1696.7, 1388.1; **HRMS** (EI): m/z calc’d for C$_{33}$H$_{44}$NO$_7$Si [M-iPr]$^+$ = 594.2887, found [M-iPr]$^+$ = 594.2884.

Tricycle 2.15j

Synthesized according to **general procedure 6** using oxazolidinone dienophile 2.38a and diene 2.12e, reacting for 24 h during the gold cyclization, yielding 39% (0.028 g) of 2.15j as the sole isomer and as a white foam.

1H NMR (400 MHz, CDCl$_3$) δ 6.24 (dd, $J = 10.0, 2.8$ Hz, 1H), 5.57–5.46 (m, 1H), 4.38 (t, $J = 8.1$ Hz, 2H), 4.10–3.94 (m, 2H), 3.50–3.38 (m, 1H), 2.97–2.87 (m, 1H), 2.55–2.42 (m, 1H), 2.24 (dd, $J = 11.7, 6.0$ Hz, 1H), 1.76 (dd, $J = 19.3, 5.9$ Hz, 1H), 1.72–1.52 (m, 4H), 1.61 (s, 3H), 1.15–1.05 (m, 21H), 1.06 (s, 3H), 1.00 (d, $J = 7.3$ Hz, 3H); **13C NMR** (101 MHz, CDCl$_3$) δ 176.7, 153.1, 135.3, 132.5, 124.3, 120.9, 84.4, 61.9, 49.5, 49.1, 43.3, 42.9, 36.5, 31.5, 28.0, 26.0, 20.1, 18.8, 14.0, 11.7, 10.5; **IR** (neat, cm$^{-1}$): 2966.8, 2945.3, 2867.2, 1777.2, 1697.7, 1389.0; **HRMS** (EI): m/z calc’d for C$_{28}$H$_{45}$NO$_4$Si [M]$^+$ = 487.3118, found [M]$^+$ = 487.3092.
Tricycle 2.15l

Synthesized according to general procedure 6 using oxazolidinone dienophile 2.38a and diene 2.12d, reacting for 24 h during the gold cyclization, yielding 55% (0.048 g) of a 6:1 6-endo-dig (2.15l): 5-exo-dig mixture as a white foam.

1H NMR (400 MHz, CDCl$_3$) δ 7.40–7.24 (m, 5H), 6.15 (dd, $J = 9.9, 2.8$ Hz, 1H), 5.63–5.54 (m, 1H), 5.51–5.46 (m, 1H), 4.59 (d, $J = 12.0$ Hz, 1H), 4.45 (d, $J = 12.1$ Hz, 1H), 4.37 (t, $J = 8.1$ Hz, 2H), 4.09–3.92 (m, 2H), 3.70 (dd, $J = 8.4, 3.3$ Hz, 1H), 3.47 (td, $J = 11.4, 3.3$ Hz, 1H), 3.31 (dd, $J = 10.4, 8.4$ Hz, 1H), 3.21–3.11 (m, 1H), 2.54–2.42 (m, 1H), 2.24 (dd, $J = 11.7, 5.8$ Hz, 1H), 1.85 (td, $J = 13.4, 3.8$ Hz, 1H), 1.82–1.71 (m, 1H), 1.68–1.51 (m, 2H), 1.50–1.40 (m, 1H), 1.12 (s, 3H), 1.10–0.98 (m, 21H); 13C NMR (101 MHz, CDCl$_3$) δ 176.4, 153.1, 143.7, 138.4, 128.5, 128.1, 127.8, 126.6, 123.7, 123.4, 84.7, 73.7, 68.8, 61.9, 52.6, 50.3, 43.1, 42.9, 36.3, 31.7, 27.9, 25.8, 20.3, 18.7, 18.7, 13.8; IR (neat, cm$^{-1}$): 2944.5, 2866.7, 1777.6, 1697.7, 1389.0; HRMS (El): m/z calc’d for C$_{31}$H$_{42}$NO$_5$Si [M-iPr]$^+$ = 536.2832, found [M-iPr]$^+$ = 536.2804.
To an oven dried reaction tube was added silyl enol ether 2.13f (0.15 mmol), [VPhosAuNCMe]SbF$_6$ (7.50 µmol, 5 mol%), MeOH (0.075 ml) and DCM (0.75 ml, 0.2M). The mixture was stirred at room temperature for 6 h. The crude mixture was dry packed in silica, evaporated, and separated by flash chromatography, yielding 2.17c in 76% (0.042 g) yield.

1H NMR (400MHz, CDCl$_3$) $\delta = 7.35$–7.20 (m, 4 H), 7.20–7.12 (m, 1 H), 6.50 (d, $J = 16.4$ Hz, 1 H), 6.38 (d, $J = 16.4$ Hz, 1 H), 6.06–6.01 (m, 1 H), 4.40 (t, $J = 8.1$ Hz, 2 H), 4.34 (dt, $J = 3.9$, 11.8 Hz, 1 H), 4.06–3.95 (m, 2 H), 2.65–2.53 (m, 1 H), 2.37 (td, $J = 3.1$, 11.4 Hz, 1 H), 2.34–2.15 (m, 4 H), 1.93–1.81 (m, 1 H), 1.78–1.64 (m, 1 H), 1.52 - 1.42 (m, 1 H), 1.40 (s, 3 H); 13C NMR (101MHz, CDCl$_3$) $\delta = 214.1$, 175.0, 153.2, 137.3, 137.1, 128.5, 128.2, 127.9, 127.4, 127.1, 126.3, 61.9, 52.1, 45.0, 42.8, 39.8, 38.9, 31.0, 23.0, 22.0, 20.8; IR (neat, cm$^{-1}$): 2968.5, 2926.0, 2871.0, 1774.2, 1702.4, 1386.2; HRMS (El): m/z calc’d for C$_{23}$H$_{25}$NO$_4$ [M]$^+$ =379.1784, found [M]$^+$ =379.1764.
Tricycle 2.21a

In a capped 4 mL oven dried reaction vial, tetracyanoethylene (2 equiv) was added to diene 2.17c in DCE (0.2M). The mixture was stirred at 60°C overnight and purified by flash chromatography. Tetracycle 2.21a was formed in 73% yield (0.054 g).

1H NMR (400 MHz, CDCl3) δ 7.58–7.36 (m, 5H), 5.73 (t, J = 1.9 Hz, 1H), 4.54 (td, J = 8.8, 2.5 Hz, 2H), 4.40 (t, J = 2.1 Hz, 1H), 4.25–4.14 (m, 1H), 4.03 (ddd, J = 11.1, 8.3, 6.4 Hz, 1H), 3.70–3.62 (m, 1H), 3.26–3.03 (m, 2H), 2.48–2.30 (m, 5H), 2.27–2.13 (m, 2H), 1.82–1.65 (m, 1H), 1.45 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 211.6, 176.1, 153.3, 140.6, 133.8, 130.2, 129.6, 129.4, 120.1, 111.3, 111.0, 110.1, 62.3, 56.4, 49.1, 46.8, 43.7, 43.1, 42.8, 42.1, 42.0, 35.6, 31.7, 29.8, 23.1, 22.0; IR (neat, cm⁻¹): 2967.7, 2921.4, 2854.0, 2364.0, 2360.3, 1774.7, 1698.3, 1388.1, 1362.5, 1250.1, 1221.0; HRMS (ESI): m/z calc’d for C29H25N5O4Na [M+Na] = 530.1804, found [M+Na] = 530.1792.

Tetracycle 2.21b

In a capped 4 mL oven dried reaction vial, N-methylmaleimide (2 equiv) was added to diene 2.17c in DCE (0.2M). The mixture was stirred at 60°C overnight and purified by flash chromatography. Tetracycle 2.21b was formed in 79% yield (0.056 g).
Tricycle 2.21c

Synthesized according to general procedure 5 using oxazolidinone dienophile 2.38b and diene 2.12a for the first DA step, and tetracyanoethylene and reacting at room temperature for 18 h for the final DA step, yielding 46% (0.039 g) of 2.21c as a sole diastereoisomer and as an off-white solid.

1H NMR (400 MHz, CDCl₃) δ = 7.56 – 7.38 (m, 5H), 7.39 – 7.25 (m, 2H), 5.79 (dd, J = 7.7, 1.6 Hz, 1H), 4.44 – 4.35 (m, 2H), 4.31 (dd, J = 9.4, 7.7 Hz, 1H), 3.61 – 3.51 (m, 1H), 3.29 – 3.11 (m, 2H), 2.63 – 2.52 (m, 1H), 2.47 – 2.29 (m, 4H), 2.31 – 2.10 (m, 2H), 1.79 – 1.66 (m, 1H), 1.53 (s, 3H), 1.03 (s, 9H); **13C NMR** (101 MHz, CDCl₃) δ = 211.6, 175.9, 154.7, 140.7, 133.7, 130.2, 129.5, 129.4, 120.1, 111.2, 111.0, 110.1, 110.0, 65.8, 61.8, 56.2, 49.0, 46.8, 43.6, 42.8, 42.0, 35.8, 35.7, 31.2, 29.4, 25.9, 24.7, 23.9, 23.3; **IR** (neat, cm⁻¹): 2949.0, 2364.5, 1774.2, 1698.4, 1386.7, 1220.4; **HRMS (ESI):** m/z calc’d for C₂₉H₃₀N₂O₆ [M⁺] = 490.2104, found [M⁺] = 490.2096.
2925.7, 2361.7, 2339.8, 1774.3, 1707.6; **LRMS** (APCI-): calc’d for C_{33}H_{32}N_{5}O_{3} [M-H]^+ = 562.2, found [M-H]^+ = 562.3; **Optical Rotation**: [α]_{d}^{24} = +139° (c 0.2, DCM).

Tetracycle 2.21e
Synthesized according to **general procedure 5** using oxazolidinone dienophile 2.38b and diene 2.12d for the first DA step, and using 4-Phenyl-1,2,4-triazoline-3,5-dione and reacting at room temperature for 18 h for the final DA step, yielding 39% of **2.21e** as a sole diastereoisomer and as a white foam.

1H NMR (400 MHz, CDCl₃) δ 7.52–7.41 (m, 4H), 7.39–7.23 (m, 6H), 5.81–5.75 (m, 1H), 4.77–4.69 (m, 1H), 4.63–4.49 (m, 3H), 4.39–4.24 (m, 3H), 3.92 (dd, J = 9.8, 5.0 Hz, 1H), 3.79 (dd, J = 9.8, 6.0 Hz, 1H), 3.53–3.47 (m, 1H), 3.24–3.11 (m, 1H), 2.73 (dq, J = 12.0, 3.8 Hz, 1H), 2.53–2.43 (m, 1H), 2.42–2.29 (m, 2H), 2.28–2.11 (m, 2H), 1.80–1.64 (m, 1H), 1.62–1.47 (m, 1H), 1.52 (s, 3H), 1.00 (s, 9H); **13C NMR** (101 MHz, CDCl₃) δ 212.3, 176.5, 154.9, 151.7, 151.1, 139.5, 137.9, 131.5, 129.2, 128.6, 128.1, 127.9, 127.6, 125.7, 118.2, 73.4, 69.9, 65.8, 61.9, 55.7, 54.6, 53.4, 49.4, 42.3, 36.0, 35.8, 31.6, 29.7, 26.0, 23.8, 23.6; **IR** (neat, cm⁻¹): 2962.4, 2859.4, 2360.0, 1777.1, 1708.7, 1420.7; **HRMS** (EI): m/z calc’d for C_{37}H_{43}N_{4}O_{7} [M]^+ = 654.3053, found [M]^+ = 654.3075; **Optical Rotation**: [α]_{d}^{24} = +11° (c 0.4, DCM).
Tetracycle 2.21i

Synthesized according to general procedure 5 using oxazolidinone dienophile 2.38f and diene 2.12d for the first DA step, and using N-methylmaleimide and reacting at 50°C for 48 h for the final DA step, yielding 43% (0.038 g) of 2.21i as a 9:1 mixture of diastereoisomers and as a white foam.

1H NMR (400 MHz, CDCl$_3$) δ 7.32 (d, J = 3.4 Hz, 4H), 7.29–7.25 (m, 1H), 5.17 (t, J = 3.3 Hz, 1H), 4.62–4.36 (m, 5H), 4.13–4.01 (m, 2H), 3.97 (dd, J = 9.2, 7.2 Hz, 1H), 3.71 (dd, J = 9.2, 7.9 Hz, 1H), 3.61 (s, 3H), 3.17 (dd, J = 8.5, 6.1 Hz, 1H), 3.09 (td, J = 10.9, 5.5 Hz, 1H), 3.05 (s, 1H), 2.84 (t, J = 14.1 Hz, 1H), 2.82 (s, 3H), 2.72 (d, J = 6.8 Hz, 1H), 2.66 (dd, J = 14.2, 4.3 Hz, 1H), 2.58–2.43 (m, 2H), 2.14 (m, J = 11.2, 3.6 Hz, 2H), 2.02–1.92 (m, 1H), 1.41 (ddd, J = 13.6, 7.0, 3.4 Hz, 1H), 1.04 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 207.7, 178.4, 176.9, 175.0, 172.0, 153.7, 141.3, 138.1, 128.3, 127.8, 127.6, 126.4, 73.3, 69.9, 61.8, 52.5, 52.3, 46.2, 45.9, 44.3, 42.9, 42.4, 41.3, 38.8, 37.5, 31.4, 24.4, 23.9, 21.0, 18.5; IR (neat, cm$^{-1}$): 2928.3, 1776.8, 1697.1, 1385.1, 1219.6; HRMS (ESI): m/z calc’d for C$_{32}$H$_{36}$N$_2$O$_9$Na [M+Na] = 615.2318, found [M+Na] = 615.2329.
Tricycle 2.21k
Synthesized according to general procedure 5 using oxazolidinone dienophile 2.38b and diene 2.12c for the first DA step, and using dimethyl fumarate and reacting at 50°C for 48 hours for the final DA step, yielding 37% (0.029 g) of 2.21k as a 3:1 mixture of diastereoisomers and as a white foam.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 5.45\) (dt, \(J = 5.2, 2.2\) Hz, 1H), \(4.48\) (dd, \(J = 7.6, 1.6\) Hz, 1H), \(4.32\) (dd, \(J = 9.3, 1.6\) Hz, 1H), \(4.24\) (dd, \(J = 9.3, 7.6\) Hz, 1H), \(3.91\) (q, \(J = 6.6\) Hz, 1H), \(3.70\) (s, 3H), \(3.66\) (s, 3H), \(2.99\) (td, \(J = 11.7, 5.4\) Hz, 1H), \(2.72-2.60\) (m, 2H), \(2.55-2.41\) (m, 2H), \(2.40\) (dd, \(J = 11.7, 10.1\) Hz, 1H), \(2.35-2.28\) (m, 1H), \(2.19\) (dddd, \(J = 17.9, 11.7, 4.0, 2.3\) Hz, 1H), \(2.04\) (qd, \(J = 8.6, 7.4, 3.6\) Hz, 2H), \(1.98-1.86\) (m, 1H), \(1.49\) (dddt, \(J = 13.7, 10.7, 6.7\) Hz, 1H), \(1.37\) (s, 3H), \(1.36-1.23\) (m, 2H), \(0.97\) (s, 9H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 211.5, 176.1, 174.9, 174.8, 154.6, 139.9, 121.3, 65.5, 61.7, 54.2, 52.1, 52.0, 50.1, 45.9, 44.1, 41.9, 37.0, 36.6, 36.0, 28.7, 27.9, 27.0, 26.3, 26.0, 25.1; IR (neat, cm\(^{-1}\)): 2956.4, 2875.3, 1778.6, 1736.2, 1702.1; HRMS (ESI): m/z calc’d for C\(_{27}\)H\(_{37}\)NO\(_8\)Na [M+Na] = 526.2417, found [M+Na] = 526.2437; Optical Rotation: \([\alpha]_d^{24} = +19^\circ\) (c 0.17, DCM).

diethyl (3-oxobutan-2-yl)phosphonate 2.22a
Synthesized according to literature procedure.\(^87\)
Spectral data in accordance with reported literature.\(^90\)
pent-4-yn-1-ol 2.23
Adopted from literature procedure.87

To a flame-dried round-bottom flask under argon was added PCC (29.1 g, 135 mmol), 1 PCC mass equivalent of silica gel (29 g), and DCM (400 ml). Then pent-4-yn-1-ol (8.37 ml, 90 mmol) in DCM (200 ml) was added via addition funnel over 30 min and stirred at room temperature for 1h. The reaction mixture was filtered through a silica plug (~200 ml) and was eluded with DCM. The filtrate was collected and carefully rotary evaporated (low bath temperature at ~35°C), yielding crude 2.23 as a clear oil, which was used without further purification. Spectral data in accordance with reported literature.89

Terminal alkyne 2.24a
Synthesized according to general procedure 1a in 32\% yield (4.91 g) over three steps. Characterized according to reported literature.87

Terminal alkyne 2.24b
Synthesized according to general procedure 1a 71\% (2.34 g) yield over two steps. Characterized according to reported literature.87
Enone 2.25a
Synthesized according to general procedure 1b from 2.24a (1.50 g, 11.0 mmol), diisopropylamine (6.17 ml, 44.1 mmol), 2-bromovinylbenzene (4.74 g, 25.9 mmol), and Pd(PPh₃)₄ (0.318 g, 2.5 mol%) yielding 2.25a in 74% (1.94 g).

1H NMR (400 MHz, CDCl₃) δ 7.39 – 7.21 (m, 5H), 6.87 (d, $J = 16.2$ Hz, 1H), 6.68 (tt, $J = 5.6$, 1.3 Hz, 1H), 6.14 (dt, $J = 16.3$, 2.0 Hz, 1H), 2.56–2.47 (m, 4H), 2.33 (s, 3H), 1.83–1.78 (m, 3H); 13C NMR (101 MHz, CDCl₃) δ 199.7, 141.1, 140.7, 138.7, 136.4, 128.7, 128.5, 126.1, 108.4, 91.1, 80.7, 28.4, 25.5, 19.1, 11.4; IR (neat, cm⁻¹): 3027.0, 2962.1, 2924.8, 1664.7; HRMS (EI): m/z calc’d for C₁₇H₁₈O [M]$^+$ = 238.1358, found [M]$^+$ = 238.1325.

Enone 2.25b
Synthesized according to general procedure 1b from 2.24b (2.477 g, 16.22 mmol), diisopropylamine (11.37 ml, 81 mmol), vinyl bromide 1.0 M in THF (48.7 ml, 48.7 mmol), and Pd(PPh₃)₄ (0.937 g, 5 mol%) as a clear oil in 69% yield (1.655 g).

1H NMR (400 MHz, CDCl₃) δ 6.89–6.72 (m, 1H), 6.13 (dt, $J = 16.0$, 1.4 Hz, 1H), 5.76 (ddt, $J = 17.5$, 11.0, 1.9 Hz, 1H), 5.62–5.47 (m, 1H), 5.40 (dd, $J = 11.0$, 2.2 Hz, 1H), 2.52–2.41 (m, 4H), 2.26 (s, 3H); 13C NMR (101 MHz, CDCl₃) δ 198.6, 145.8, 132.3, 126.4, 117.4, 89.0, 80.6, 31.6, 27.1, 18.5; IR (neat, cm⁻¹): 2920.0, 1671.1, 1626.1; HRMS (EI): m/z calc’d for C₁₀H₁₂O [M-H]$^+$ = 147.0810, found [M-H]$^+$ = 147.0825.
Enone 2.25c
Synthesized according to general procedure 1b from 2.24a (0.300 g, 2.20 mmol), diisopropylamine (1.54 ml, 11.0 mmol), vinyl bromide 1M in THF (6.61 ml, 6.61 mmol), and Pd(PPh₃)₄ (0.064 g, 2.5 mol%) as an orange oil in 63% yield (0.226 g).

¹H NMR (400 MHz, CDCl₃) δ 6.71–6.61 (m, 1H), 5.77 (ddt, J = 17.5, 11.0, 2.1 Hz, 1H), 5.56 (dd, J = 17.5, 2.2 Hz, 1H), 5.41 (dd, J = 11.0, 2.2 Hz, 1H), 2.53–2.44 (m, 4H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 141.1, 138.9, 126.3, 117.4, 89.4, 80.3, 28.4, 25.6, 18.8, 11.4; IR (neat, cm⁻¹): 2924.0, 1665.7; HRMS (EI): m/z calc’d for C₁₁H₁₃O [M-H]⁺ = 161.0961, found [M-H]⁺ = 161.0968.

Enone 2.25d
Synthesized according to general procedure 1b from 2.24a (0.219 g, 1.61 mmol), diisopropylamine (1.12 ml, 44.1 mmol), (E)-(((3-bromoallyl)oxy)methyl)benzene (0.729 g, 3.21 mmol), and Pd(PPh₃)₄ (0.093 g, 2.5 mol%) as a clear oil in 57% yield (0.260 g).

¹H NMR (400 MHz, CDCl₃) δ 7.40–7.25 (m, 5H), 6.69 – 6.63 (m, 1H), 6.14 (dt, J = 15.9, 5.6 Hz, 1H), 5.78–5.71 (m, 1H), 4.52 (s, 2H), 4.05 (dd, J = 5.6, 1.7 Hz, 2H), 2.53–2.45 (m, 4H), 2.32 (s, 3H), 1.83–1.77 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 141.2, 138.8, 138.7, 138.2, 128.6, 127.8, 127.8, 112.1, 89.5, 79.5, 72.4, 70.0, 28.4, 25.6, 18.9, 11.5; IR (neat, cm⁻¹): 2927.4, 2360.6, 2341.3, 1666.9; HRMS (ESI): m/z calc’d for C₁₉H₂₂O₂Na [M+Na]⁺ = 305.1517, found [M+Na]⁺ = 305.1519.
Enone 2.25e

Synthesized according to general procedure 1b from ketone 2.24a (0.150 g, 1.10 mmol), diethylamine (0.570 ml, 5.50 mmol), (E)-2-Bromo-2-butene (0.340 ml, 3.30 mmol), and Pd(PPh₃)₄ (0.064 g, 5 mol%) as an orange oil in 30% yield (0.063 g).

¹H NMR (400 MHz, CDCl₃) δ 6.69–6.59 (m, 1H), 5.78 (m, 1H), 2.43 (d, J = 3.3 Hz, 4H), 2.28 (s, 3H), 1.79–1.72 (m, 3H), 1.74–1.68 (m, 3H), 1.62 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 141.5, 138.6, 131.4, 118.5, 84.6, 84.5, 28.6, 25.5, 18.7, 17.1, 14.0, 11.3; IR (neat, cm⁻¹): 2920.6, 2858.9, 1667.1, 1644.2, 1432.0; HRMS (EI): m/z calc’d for C₁₂H₁₅O [M-H-Me]+ = 175.1117, found [M-H-Me]+ = 175.1108

2.31s1

Synthesized according to literature procedure.⁹⁰
Spectral data in accordance with reported literature.⁹¹

2.31s2b

Synthesized according to general procedure 2a. Used directly in general procedure 2b for the formation of salicylaldehyde 2.31s3b.
2.31s2c
Synthesized according to general procedure 2a in 82% yield (3.08 g).
Spectral data in accordance with reported literature.88

2.31s2d
Synthesized according to general procedure 2a. Used directly in general procedure 2b for the formation of salicylaldehyde 2.31s3d.

2.31s2e
Synthesized according to literature procedure.91
Spectral data in accordance with reported literature.92

2.31s3b
Synthesized according to general procedure 2b in 49% yield over 2 steps (1.26 g).
Spectral data in accordance with reported literature.88
2.31s3c
Synthesized according to **general procedure 2b** in 62% yield (1.38 g). Spectral data in accordance with reported literature.\(^{88}\)

2.31s3d
Synthesized according to **general procedure 2b** in 31% yield over 2 steps (1.05 g). Spectral data in accordance with reported literature.\(^{88}\)

2.31s3e
Synthesized and characterized according to reported literature.\(^{92}\)

Silyl salen ligand 2.31s4b
Synthesized in accordance to **general procedure 2c** in 79% yield (0.461 g). Spectral data in accordance with reported literature.\(^{88}\)
Silyl salen ligand 2.31s4c
Synthesized in accordance to general procedure 2c in 93% yield (0.416 g).
Spectral data in accordance with reported literature.88

Silyl salen ligand 2.31s4d
Synthesized in accordance to general procedure 2c in 76% yield (0.333 g).
Spectral data in accordance with reported literature.88

Adamantyl salen ligand 2.31s4e
Synthesized in accordance to general procedure 2c in 67% yield (0.183 g).
Spectral data in accordance with reported literature.95
Chiral BOX ligand 2.37b
Synthesized and characterized according to reported literature.96

Achiral BOX ligand 2.37d
Synthesized and characterized according to reported literature.97

Dienophile 2.38a
Synthesized and characterized according to reported literature.98-99

Dienophile 2.38b
Synthesized and characterized according to reported literature.100

Dienophile 2.38f
Synthesized according to \textbf{general procedure 4} from mono-methyl fumarate (15.4 mmol), and reacting for 48 h, in 90\% yield (2.76 g).
Spectral data in accordance with reported literature.98
Dienophile 2.38g
Synthesized according to general procedure 4 from (E)-4,4,4-trifluorobut-2-enoic acid (1.43 mmol) and reacting for 72 h, in 76% yield (0.228 g).
Spectral data in accordance with reported literature.101

Dienophile 2.38h
Synthesized and characterized according to reported literature.102

\[[L^2\text{AuNCMe}]\text{SbF}_6 \quad (L^2 = \text{IPr}) \]
Synthesized and characterized according to reported literature.103

L5\text{AuCl} \quad (L^5 = \text{VPhos})
Synthesized according to general procedure 3a in >95% yield (0.390 g).

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.54–7.38 (m, 3H), 7.35 (d, \(J = 1.7 \) Hz, 1H), 7.31 (ddd, \(J = 6.8, \ 3.3, \ 1.6 \) Hz, 1H), 6.77 (d, \(J = 1.7 \) Hz, 1H), 3.61 (s, 3H), 2.41 (q, \(J = 11.6, 11.1 \) Hz, 1H), 2.16–1.93 (m, 4H), 1.91–1.61 (m, 8H), 1.43 (s, 9H), 1.43–1.23 (m, 6H), 1.15 (s, 12H);
\textbf{13C NMR} (101 MHz, CDCl$_3$) δ 156.2, 152.4, 147.7, 146.5, 146.4, 134.2, 134.1, 131.3, 131.2, 129.9, 129.9, 128.9, 128.3, 126.8, 126.7, 125.6, 125.6, 119.2, 104.8, 55.0, 53.4, 38.2, 37.9, 37.3, 35.2, 34.0, 34.0, 33.7, 33.5, 31.6, 31.2, 31.2, 29.8, 29.8, 27.9, 27.8, 27.5, 27.4, 27.0, 27.0, 26.7, 26.6, 26.4, 26.2, 26.0, 25.6, 25.6. (The observed complexity is due to the P–C splitting.); \textbf{31P NMR} (121 MHz, CDCl$_3$) δ 34.43; \textbf{IR} (neat, cm$^{-1}$): 2929.4, 2854.3, 2360.7, 2342.3; \textbf{HRMS} (ESI): m/z calc’d for C$_{33}$H$_{49}$AuOP $[M-Cl]^+$ = 689.3206, found $[M-Cl]^+$ = 689.3187.

\[\text{[L}^5\text{AuNCMe]}\text{SbF}_6 \quad (L^5 = \text{VPhos}) \]

Synthesized according to \textbf{general procedure 3b} in 78% yield (1.75 g) as a white solid.

\textbf{1H NMR} (600 MHz, CDCl$_3$) δ 7.49–7.42 (m, 3H), 7.26 (d, J = 1.7 Hz, 1H), 7.22 (ddd, J = 7.8, 4.1, 1.8 Hz, 1H), 6.78 (d, J = 1.7 Hz, 1H), 3.58 (s, 3H), 2.47–2.37 (m, 1H), 2.31 (s, 3H), 2.06–1.90 (m, 4H), 1.90–1.77 (m, 3H), 1.77–1.70 (m, 1H), 1.70–1.56 (m, 3H), 1.58–1.46 (m, 1H), 1.42–1.24 (m, 14H), 1.21–1.07 (m, 4H), 1.05 (s, 9H); \textbf{13C NMR} (151 MHz, CDCl$_3$) δ 156.9, 152.7, 148.8, 145.7, 145.6, 134.2, 134.2, 131.3, 131.3, 131.0, 127.7, 127.6, 126.5, 126.1, 126.0, 126.0, 119.6, 118.6, 105.3, 55.3, 38.4, 38.2, 37.6, 35.4, 34.4, 34.3, 33.8, 33.7, 33.6, 33.5, 31.8, 31.6, 31.6, 30.4, 27.9, 27.8, 27.4, 27.4, 27.0, 26.9, 26.7, 26.6, 26.4, 26.3, 25.8, 25.5, 2.7. (The observed complexity is due to the P–C splitting.); \textbf{31P NMR} (121 MHz, CDCl$_3$) δ 31.60; \textbf{IR} (neat, cm$^{-1}$): 2934.2, 2858.0, 1602.3, 1560.5, 1450.3, 1405.1; \textbf{HRMS} (ESI) m/z calc’d for C$_{35}$H$_{52}$AuNOP $[M-SbF_6]^+$ = 730.3452, found $[M-SbF_6]^+$ = 730.3474.
5.4 General procedures chapter 3

General procedure 8: Synthesis of alkyl bromide starting material

\[
\begin{align*}
\text{3.31} & \quad \xrightarrow{R_3\text{Si-OTf, Et}_3\text{N, DCM, 0}^{\circ}\text{C}} \quad \text{3.26}
\end{align*}
\]

Scheme 5.13. Synthesis of diene starting material 3.26.

To a flame-dried RBF under argon was added 3.31 (2.5 mmol), DCM (12.5 ml) and triethylamine (5.0 mmol). Then, R₃SiOTf (2.5 mmol) was added at 0°C. The mixture was stirred at 0°C for 1 h, then quenched with sat. NaHCO₃. The layers were separated and the organic phase collected. The aqueous phase was back-extracted with DCM. Combined organic layers were dried with MgSO₄, filtered, and concentrated *in vacuo*. The crude product was added to a basicified silica gel column and eluted with 1% TEA in hexanes, yielding 3.26.
5.5 Characterization chapter 3

Aldehyde 3.30
Adopted from literature procedure.\(^{104}\)
DIBAL-H (25\% w/w in hexanes, 62.5 mmol) was added dropwise to a solution of ethyl 5-bromovalerate (50 mmol) in PhMe (250 ml) at -78\(^{\circ}\)C. The reaction remained at -78\(^{\circ}\)C and was stirred for 2 h before being quenched by addition of aq. HCl (5\%). The mixture was allowed to warm to rt and stirred vigorously for 1 h. The layers were separated and the organic phase was washed with water, dried (MgSO\(_4\)) and concentrated in vacuo. The crude aldehyde was used in the next step without further purification. Spectral data in accordance with reported literature.\(^{105}\)

Enone 3.31
Adopted from literature procedure.\(^{87}\)
To a solution of diethyl (2-oxopropyl)phosphonate in THF (115 ml) was added a solution of potassium carbonate (22.0 g, 160 mmol) in water (57 ml), and crude 5-bromopentanal (3.30). The mixture was then heated overnight at 80\(^{\circ}\)C with vigorous stirring. The product was extracted with ethyl acetate, and the combined organic layers were dried over sodium sulfate and evaporated. The crude product was purified by flash chromatography isolating enone 3.31 in 80\% yield (0.512 g).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.75 (dt, \(J = 15.5, 6.8\) Hz, 1H), 6.06 (ddd, \(J = 15.9, 2.3, 1.3\) Hz, 1H), 3.39 (t, \(J = 6.7\) Hz, 2H), 2.28 – 2.19 (m, 5H), 1.86 (quint, \(J = 6.6\) Hz, 2H), 1.61 (quint, \(J = 7.4\) Hz, 2H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 198.46, 147.20, 131.75, 33.26, 32.12, 31.52, 27.02, 26.63; IR (neat, cm\(^{-1}\)): 3005.1, 2937.2, 2863.3, 1697.4, 1671.8,
1671.5, 1625.8, 1359.6, 1251.7, 976.3, 732.4; **HRMS (EI):** m/z calc’d for C₈H₁₃BrO [M⁺]= 204.0150, found mass 204.0153.

![Diene 3.26a](image)

Diene 3.26a
Prepared according to **general procedure 8** in >95% yield (3.376 g).

¹H NMR (400 MHz, CDCl₃) δ 6.04 (dt, J = 15.2, 6.9 Hz, 1H), 5.88 (dt, J = 15.2, 1.4 Hz, 1H), 4.20 (d, J = 20.4 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 2.14 (qd, J = 7.2, 1.3 Hz, 2H), 1.88 (dt, J = 14.8, 6.8 Hz, 2H), 1.56 (quint, J = 7.5 Hz, 2H), 1.29 – 1.18 (m, 3H), 1.11 (d, J = 7.2 Hz, 18H); **¹³C NMR (101 MHz, CDCl₃)** δ 155.3, 130.7, 128.7, 93.4, 33.8, 32.4, 31.3, 27.8, 18.2, 13.0; **IR (neat, cm⁻¹):** 2942.7, 2893.7, 2866.5, 1589.0, 1463.4, 677.5; **HRMS (EI):** m/z calc’d for C₁₇H₃₉BrOSi [M⁺]= 360.1484, found mass = 360.1497.

![Diene 3.26b](image)

Diene 3.26b
Prepared according to **general procedure 8** in 87% yield (1.81 g).

¹H NMR (400 MHz, CDCl₃) δ 6.02 – 5.84 (m, 2H), 4.24 – 4.18 (m, 2H), 3.41 (t, J = 6.8 Hz, 2H), 2.13 (quint, J = 7.1 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.60 – 1.50 (m, 2H), 0.97 (s, 9H), 0.17 (s, 6H); **¹³C NMR (101 MHz, CDCl₃)** δ 155.1, 130.8, 128.6, 94.3, 33.8, 32.4, 31.3, 27.8, 26.0, 18.5, -4.5; **IR (neat, cm⁻¹):** 2930.2, 2857.5, 1591.8, 692.0; **HRMS (EI):** m/z calc’d for C₁₄H₂₇BrOSi [M⁺]= 318.1015, found mass 318.1006.
Silyl enol ether 3.27a

To an oven dried reaction tube was added diene 3.26a (0.2 mmol), methacrolein (1 mmol), Co(III) catalyst 2.31b (0.002 mmol, 1 mol%) and DCM (2M). The reaction mixture was stirred overnight at room temperature and the solvent evaporated in vacuo. The crude product was purified by flash chromatography to yield 3.27a in 88% yield (0.076 g), dr 6:1 (endo:exo).

1H NMR (400 MHz, CDCl$_3$) δ 9.64 (s, 1H), 4.92 (d, J = 3.9 Hz, 1H), 3.38 (tq, J = 5.9, 3.1 Hz, 2H), 2.18–2.04 (m, 3H), 1.94–1.73 (m, 4H), 1.57 (tt, J = 15.7, 8.5 Hz, 2H), 1.46–1.28 (m, 2H), 1.26–1.11 (m, 3H), 1.11–0.99 (m, 21H); 13C NMR (101 MHz, CDCl$_3$) δ 206.6, 150.6, 104.2, 47.5, 41.3, 33.7, 32.8, 32.1, 27.3, 26.7, 26.4, 20.0, 18.1, 12.8; IR (neat, cm$^{-1}$): 2943.8, 2866.6, 1774.8, 1702.4, 677.3; HRMS (ESI) m/z calcd for C$_{21}$H$_{39}$BrO$_2$SiNa [M+Na] = 453.1800, found mass = 453.1777.

Silyl enol ether 3.27b

To an oven dried reaction tube was added diene 3.26b (0.2 mmol), methacrolein (1 mmol), Co(III) catalyst 2.31b (0.002 mmol, 1 mol%) and DCM (2M). The reaction mixture was stirred overnight at room temperature and the solvent evaporated in vacuo. The crude product was purified by flash chromatography to yield 3.27b in 84% yield (0.065 g), dr 5:1 (endo:exo).

1H NMR (400 MHz, CDCl$_3$) δ 9.64 (s, 1H), 4.96 – 4.87 (m, 1H), 3.39 (tq, J = 7.3, 3.2 Hz, 2H), 2.15–1.97 (m, 3H), 1.94–1.73 (m, 3H), 1.57 (m, 2H), 1.44–1.31 (m, 2H), 1.27–1.14
(m, 1H), 1.08 (d, J = 4.5 Hz, 3H), 0.93–0.87 (m, 9H), 0.13 (d, J = 5.1 Hz, 6H); \(^{13}\text{C NMR}\) (101 MHz, CDCl\(_3\)) \(\delta\) 206.5, 150.5, 105.5, 47.5, 41.3, 33.7, 32.8, 32.0, 27.3, 26.7, 26.5, 25.8, 20.0, 18.1, -4.2; \(\text{IR (neat, cm}^{-1}\)): 2930.0, 2929.7, 2857.2, 1723.6, 1664.8j, 682.3; \(\text{HRMS (EI): m/z calc'd for C}_{14}\text{H}_{24}\text{BrO}_2\text{Si [M-tBu]= 331.0729, found mass 331.0754.}\)

\[
\begin{align*}
\text{[Au}_2(\mu\text{-dppm})_2\text{]}\text{Cl}_2
\end{align*}
\]
Synthesized and characterized according to reported literature.\(^{106}\)

\[
\begin{align*}
\text{[Au}_2(\mu\text{-dppm})_2\text{]}\text{NTf}_2
\end{align*}
\]
Synthesized and characterized according to reported literature.\(^{106}\)
5.6 References:

