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Individual behavior at habitat edges may help
populations persist in moving habitats
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Abstract Moving-habitat models aim to characterize conditions for popula-
tion persistence under climate-change scenarios. Existing models do not incor-
porate individual-level movement behavior near habitat edges. These small-
scale details have recently been shown to be crucially important for large-scale
predictions of population spread and persistence in patchy landscapes. In this
work, we extend previous moving-habitat models by including individual move-
ment behavior. Our analysis shows that populations might be able to persist
under faster climate change than previous models predicted. We also find that
movement behavior at the trailing edge of the climatic niche is much more
important for population persistence than at the leading edge.
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1 Introduction1

As the earth’s climate is warming, the geographic locations of climatic niches2

for various species shift towards higher latitude and/or altitude. The affected3

This work was supported by an NSERC Discovery Grant (RGPIN-2016-0495) to FL.

Jane S. MacDonald
Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
Tel.: ++1 613 562 5800
Fax: ++1 613-562-5776
E-mail: jmacd142@uottawa.ca

Frithjof Lutscher
Department of Mathematics and Statistics, and Department of Biology, University of Ot-
tawa, Ottawa, ON, Canada
Tel.: ++1 613 562 5800 ext. 3510
Fax: ++1 613-562-5776
E-mail: flutsche@uottawa.ca



2 Jane S. MacDonald, Frithjof Lutscher

populations have to either adapt to new climatic conditions or move to new ge-4

ographic locations with their climatic niches (Walther et al., 2002). For species5

with limited dispersal capacity, it might be challenging to follow their climatic6

niche, in particular in northern latitudes where climate change is already ob-7

served and still predicted to manifest more drastically than elsewhere (IPCC8

Working Group I, 2007). Several mathematical models have explored the re-9

lationship between a population’s dispersal ability and growth capacity and10

the maximal movement speed of their climatic niche that still allows the pop-11

ulation to persist (Potapov and Lewis, 2004; Berestycki et al., 2009; Zhou and12

Kot, 2011; Harsch et al., 2014). We contribute to this body of knowledge by13

including a more detailed description of individual movement behavior into14

the model.15

The original model by Potapov and Lewis (2004) and virtually all related16

models since, conceptualize the suitable habitat of a species, as defined by17

appropriate climatic conditions, by a bounded interval on the real line, repre-18

senting latitudinal coordinates from the equator to the pole. Inside the suitable19

habitat, the population has a positive intrinsic growth rate, outside the pop-20

ulation declines. The bounded interval moves along the real line at constant21

speed to represent the movement of the climatic niche, hence the classifica-22

tion as ‘moving-habitat model’ (Harsch et al., 2017). A typical result is that23

if the speed of the climatic niche is small, then the population can persist,24

but if it is large, the population becomes extinct. In the simplest case, namely25

when there is no Allee effect, this result can be obtained from studying the26

stability properties of the trivial solution, i.e. the absence of a population.27

Among other aspects that previous studies consider are: the outcome of com-28

petition (Potapov and Lewis, 2004), the shape of the population distribution29

(Berestycki et al., 2009), the effect of different dispersal patterns and discrete30

generations (Zhou and Kot, 2011, 2013), impacts of stage structure in the pop-31

ulation (Harsch et al., 2014), the effects of a gradient in growth rate (Li et al.,32

2014), and the possibility of gap formation (Berestycki et al., 2014). Models33

with Allee effect were studied, numerically and analytically by Berestycki and34

Rossi (2008, 2009); Roques et al. (2008); Bouhour and Nadin (2015).35

Some, but not all, of the above mentioned models allow the movement36

behavior of individuals to depend on whether the individual is in suitable37

or unsuitable habitat. None of the models consider other behavior, such as38

habitat preference at an edge of a suitable patch. Yet, many empirical studies39

document different movement behavior in different habitat types as well as40

habitat preference and edge behavior of insects, birds, and mammals (Crone41

and Schultz, 2008). And recent theoretical work underlines the importance of42

including these details into reaction-diffusion models to obtain correct esti-43

mates for persistence conditions and spreading speeds (Maciel and Lutscher,44

2013, 2015; Lutscher and Musgrave, 2017). More importantly, as Maciel and45

Lutscher (2013) point out, even if there is no preference at a habitat edge, as46

long as the movement behavior on the two sides of the edge is different, the47

standard mathematical assumptions of continuity of density cease to hold. All48

previous moving habitat models make this assumption.49
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In this work, we generalize the (single-species) model by Potapov and Lewis50

(2004); Berestycki et al. (2009) to allow for differential movement behavior51

ahead and behind the suitable habitat, as well as habitat preference by in-52

dividuals. These aspects lead us to consider discontinuous density-matching53

conditions across the edges of the suitable habitat (Section 2). We analyze the54

persistence conditions by studying a corresponding eigenvalue problem (Sec-55

tion 3). We illustrate how the critical speed and/or the length of the moving56

habitat depend on model parameters, in particular on diffusion rates outside57

the suitable habitat and habitat preferences (Section 4). In the final part of58

this work (Section 5), we consider an approximation of the dominant eigen-59

value that determines population persistence in terms of residence times. Such60

an approximation was originally developed for symmetric problems (Cobbold61

and Lutscher, 2014), but the constant speed at which our habitat here moves62

introduces an asymmetry that makes the approximation fail. We find a more63

general method that improves the approximation in the symmetric case and64

allows an application to the asymmetric case.65

2 Model presentation66

Our model is a significant generalization of the model studied by Berestycki67

et al. (2009), which is a single-species version of the model by Potapov and68

Lewis (2004). Following these previous authors, we consider the population69

dynamics of a single species in an infinite, one-dimensional landscape. There70

is a suitable habitat patch of length L > 0 that moves along the real line with71

constant speed c ≥ 0, which corresponds to the velocity at which temperature72

isoclines move towards increasing latitude or altitude. We denote by u(x, t) the73

density of the population at time t > 0 and location x ∈ R, and by L1(t) = ct74

and L2(t) = L + ct the boundary of the suitable patch. Inside the suitable75

patch, the population grows logistically with intrinsic growth rate r and a76

constant coefficient for intraspecies competition, a. The diffusion constant is77

denoted by D. It is assumed that movement and growth happen on the same78

timescale. Thus, the equation in the suitable habitat is79

ut = Duxx + u(r − au), L1(t) < x < L2(t), (1)

where subscripts in t, x denote partial derivatives with respect to time and80

space, respectively.81

In the unsuitable habitats ahead and behind the suitable patch, the popu-82

lation dynamics are simply linear mortality and movement. We denote by m1,83

D1 and m2, D2 the mortality rate and diffusion coefficient to the left of L1(t)84

and to the right of L2(t), respectively. So, in the unsuitable habitats we have85

the equations86

ut = D1uxx −m1u, x < L1(t), (2)

ut = D2uxx −m2u, x > L2(t). (3)
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All population dynamics parameters are assumed positive.87

Finally, we need to impose matching conditions for the density and flux at88

each interface. We follow Ovaskainen and Cornell (2003); Maciel and Lutscher89

(2013), who derived such conditions from a random-walk model. We denote90

by α the probability with which an individual at the interface L1(t) decides91

to move into the suitable habitat, and by β the corresponding probability at92

L2(t). Then the matching conditions for the density across each interface are93

u(L+
1 (t), t) = kαu(L−1 (t), t), (4)

u(L−2 (t), t) = kβu(L+
2 (t), t), (5)

with94

kα =
α

1− α

√
D1

D
, kβ =

β

1− β

√
D2

D
. (6)

Superscripts + and − denote the limit as x approaches the interface from the95

right and left, respectively. Please note that Maciel and Lutscher (2013) derive96

an alternative form of kα in which the fraction of the diffusion coefficients97

appears instead of their square root. We only consider the version with the98

square root here as the one without gave qualitatively similar results in Maciel99

and Lutscher (2013).100

To match the flux across an interface, we note that it consists of two com-101

ponents: individuals cross an interface either due to diffusive self-movement or102

due to the deterministic movement of the interface. To see this, we consider103

a simpler situation with only one interface denoted by L(t) = ct on the real104

line and with no population dynamics. Then the equations to the left of the105

interface are ut = D1uxx, and to the right of the interface we have ut = Duxx.106

Since there are no population dynamics, the total mass must be conserved, i.e.107

d

dt

∫
R
u(x, t)dx = 0. (7)

Under the assumption that u, ux → 0 as |x| → ∞ we calculate108

d

dt

∫
R
u(x, t)dx =

d

dt

(∫ ct

−∞
u(x, t)dx−

∫ ct

∞
u(x, t)dx

)
= cu(ct−, t) +

∫ ct

−∞
ut(x, t)dx− cu(ct+, t)−

∫ ct

∞
ut(x, t)dx

= cu(ct−, t) +

∫ ct

−∞
D1uxx(x, t)dx− cu(ct+, t)−

∫ ct

∞
Duxx(x, t)dx

= cu(ct−, t) +D1ux(ct−, t)− cu(ct+, t)−Dux(ct+, t).

Hence, the correct flux-matching condition is109
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D1ux(ct−, t) + cu(ct−, t) = Dux(ct+, t) + cu(ct+, t). (8)

Previous authors had only considered the diffusive component of the flux, but110

since they assumed that the density is continuous, their results are not affected111

by this oversight.112

All things considered, our model consists of the equations113



ut = Duxx + u(r − au), L1(t) < x < L2(t),

ut = D1uxx −m1u, x < L1(t),

ut = D2uxx −m2u, x > L2(t),

u(L+
1 (t), t) = kαu(L−1 (t), t), L1(t) = ct,

(Dux + cu)(L+
1 (t), t) = (D1ux + cu)(L−1 (t), t),

u(L−2 (t), t) = kβu(L+
2 (t), t), L2(t) = L0 + ct,

(Dux + cu)(L−2 (t), t) = (D2ux + cu)(L+
2 (t), t).

(9)

One difference between our and the previous models by Potapov and Lewis114

(2004); Berestycki et al. (2009) is that we allow the behavior ahead of the suit-115

able patch to differ from that behind the patch. The more important difference116

is that we include edge behavior from Maciel and Lutscher (2013), which di-117

rectly enters the matching conditions of the density. Since the movement of118

the habitat induces an advective component of the flux, the matching condi-119

tions of the flux contain the density (and not only its gradient). Hence, edge120

behavior also enters the flux matching conditions indirectly.121

To make this model somewhat more tractable, we introduce the change of122

variable x 7→ x− ct that fixes the domain to [0, L], but generates an advective123

term in the density. Then we non-dimensionalize the model and, using the124

same variable names for the non-dimensional quantities as before, arrive at125

the equations126



ut = uxx + cux + u(1− u), 0 < x < L,

ut = D1uxx + cux −m1u, x < 0,

ut = D2uxx + cux −m2u, x > L,

u(0+, t) = kαu(0−, t), (ux + cu)(0+, t) = (D1ux + cu)(0−, t),

u(L−, t) = kβu(L+, t), (ux + cu)(L−, t) = (D2ux + cu)(L+, t).

(10)

In this notation, we now have127

kα =
α

1− α
√
D1 and kβ =

β

1− β
√
D2. (11)

Our model presents an idealized case in which (i) the suitable and unsuit-128

able habitat are separated by a sharp edge, and (ii) organisms can detect the129

edge. In reality, we may see more gradual transition zones rather than sharp130
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edges, depending on the scale of investigation. Also, organisms may not easily131

or directly detect edges, in particular those that are determined by climate.132

For example, the tree line, the altitudinal or latitudinal climatic delineation133

of the habitat where trees are able to grow, looks like a sharp edge when134

traced on a map, and when seen from a distance on a mountain range. Up135

close however, tree density responds to micro-climate and often shows a more136

gradual transition zone rather than a sharp edge. Many bird species rely on137

trees for nest sites and adjust their movement behavior at edges (Creegan and138

Osborne, 2005) so that they are rarely found outside wooded areas. When139

viewed from afar, the density of these birds may then exhibit a sharp drop at140

the tree line. Up close, again, bird and nest density may decline more gradu-141

ally with tree density, and different bird species respond differently to forest142

edges (Kroodsma, 1984). Under a changing climate, the tree line will move.143

The birds will respond to multiple cues, climatic and otherwise, in multiple144

ways, but as long they rely on trees for nesting sites, they cannot move faster145

than the tree line, and hence might show a delayed response. While we believe146

that our model with a sharp edge and clear detectability can give important147

insights into population dynamics, future models should explore the effects of148

wider transition zones and/or indirect mechanism of detection.149

3 Stability analysis150

We focus our work on finding conditions under which a species can persist151

in the climate change scenario, and specifically on how movement behavior152

affects these persistence conditions. The population can persist if the zero153

steady-state is unstable. For that reason, we study the stability behavior of154

the trivial steady state of system (10).155

3.1 Linearizing at zero156

Linearizing the equations at u∗ = 0 and separating variables u(x, t) = T (t)X(x)157

gives the equations T (t) = eλtT (0) and158

X ′′ + cX ′ +X = λX, 0 < x < L, (12)

D1X
′′ + cX ′ −m1X = λX, x < 0, (13)

D2X
′′ + cX ′ −m2X = λX, x > L, (14)

with interface conditions159

X(0+) = kαX(0−), (X ′ + cX)(0+) = (D1X
′ + cX)(0−), (15)

X(L−) = kβX(L+), (X ′ + cX)(L−) = (D2X
′ + cX)(L+). (16)
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We now use a procedure originally employed by Ludwig et al. (1979) and160

since frequently used (Potapov and Lewis, 2004; Maciel and Lutscher, 2013)161

to reduce the problem on the infinite line to one on a bounded interval. For162

x /∈ (0, L) we have the characteristic polynomials163

Din
2
i + cni − (mi + λ) = 0, (17)

with roots164

n±i =
−c±

√
c2 + 4(mi + λ)Di

2Di
. (18)

We impose the condition that X → 0 as |x| → ∞ and assume |λ| � 1 is near165

the stability boundary λ = 0. Then we have n+i > 0 > n−i . Consequently,166

solutions outside the suitable habitat are of the form X(x) ∼ en
+
1 x for x <167

0, and X(x) ∼ en
−
2 x for x > L. In particular, they satisfy the differential168

equations X ′ = n+1 X for x < 0, and X ′ = n−2 X for x > L. These relations169

allow us to reduce the interface conditions to the boundary conditions170

X ′ + cX = γαX, at x = 0, (19)

X ′ + cX = γβX, at x = L, (20)

where171

γα =
D1n

+
1 + c

kα
, γβ =

D2n
−
2 + c

kβ
. (21)

One could, of course, combine the terms cX and γα,βX in the boundary172

conditions above. However, the expression X ′ + cX represents the flux across173

the boundary and γα,β are the proportionality factors. The analysis and in-174

terpretation of the results turn out easier if this physical fact is taken into175

account.176

Unfortunately, equation (12) together with (19)-(20) constitute a non-177

standard eigenvalue problem as the eigenvalue appears inside the boundary178

conditions through the dependency of n±i on λ. We circumvent this problem179

by generalizing a theorem from Potapov and Lewis (2004).180

3.2 Steady states and their stability181

To obtain a steady state of system (10), we set ut = 0. Just as in the previ-182

ous section, the resulting problem on the infinite line may be converted to a183

problem on a bounded domain with generalized boundary conditions in the184

form185
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
uxx + cux + u(1− u) = 0, 0 < x < L,

ux + cu = γα0 u, x = 0,

ux + cu = γβ0 u, x = L,

(22)

where186

γα0 =
c+
√
c2 + 4m1D1

2kα
and γβ0 =

c−
√
c2 + 4m2D2

2kβ
(23)

are obtained from γα,β by setting λ = 0.187

Following Potapov and Lewis (2004), we associate to this steady-state prob-188

lem the new time-dependent system189


ut = uxx + cux + u(1− u), 0 < x < L,

ux + cu = γα0 u, x = 0,

ux + cu = γβ0 u, x = L.

(24)

Non-stationary solutions to system (10) are not equivalent to those of system190

(24), but their stationary solutions coincide and are given by system (22). Due191

to this relation, we can study the effects of small perturbations away from192

stationary solutions of both systems. The following theorem is a generalization193

of Theorem 3.1 by Potapov and Lewis (2004).194

Theorem 1 (Stability) Let u∗(x) be a solution of system (22), then u∗(x) is195

a steady state solution for both (10) and (24). If u∗(x) is linearly stable for196

(10) then it is also linearly stable for (24) and vice versa.197

The proof of this theorem carries over from the proof by Potapov and Lewis198

(2004) with some modifications. We present it in the appendix for complete-199

ness. Instead, we point to the physical underpinning of the proof, which will200

also be important later in interpreting the results.201

The composite parameters γα,β that relate the flux at the boundary to202

the density have several important properties. Since γα > 0 > γβ , the bound-203

ary is ‘leaky’ i.e. the net flux is pointing outward, and the net flux increases204

with |γα,β |. This can be seen by considering the equation without population205

dynamics and integrating to obtain an equation for the total mass as206

d

dt

∫ L

0

u(x, t)dx = −(|γβ0 |u(L) + γα0 u(0)) < 0. (25)

It turns out that γα is monotone increasing in m1, λ, c and decreasing in D1207

and α. Similarly, |γβ | is monotone increasing in m2, λ and decreasing in β, but208

increasing in D2 and decreasing in c.209
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3.3 The Critical Patch-Size210

To calculate the critical patch-size for model (10), we calculate the stability211

conditions for system (24), as they are equivalent by the theorem above. We212

linearize system (24) at u = 0 and make the change of variable v = uecx.213

After separating variables, we obtain a regular Sturm-Liouville problem for214

the eigenfunction X with eigenvalue λ, namely215

X ′′ − cX ′ +X = λX, 0 < x < L, (26)

X ′ = γα0X, x = 0, (27)

X ′ = γβ0X, x = L. (28)

When λ = 0 the characteristic polynomial for equation (26) has the roots216

n±0 =
c

2
±
√
c2 − 4

2
. (29)

We consider two cases, depending on the sign of the radicand in (29).217

218

Case 1: A negative radicand219

When c < 2, the radicand in (29) is negative. This is the case considered in220

Berestycki et al. (2009); our treatment is similar. When λ = 0, the second-221

order problem in (26) is equivalent to222

X ′ = Y, Y ′ = X ′′ = −X + cY. (30)

A solution that satisfies the boundary conditions corresponds to a trajectory in223

the (X,Y )-phase plane that starts on the positively-sloped line Y = γα0X and224

reaches the negatively-sloped line Y = γβ0X in an x-interval of exactly length225

L. The origin of the system is an unstable focus with trajectories spiraling226

in the clockwise direction (see Figure 1). In particular, all trajectories that227

start at Y = γα0X will eventually reach the line Y = γβ0X. Hence, a critical228

patch-size exists.229

For an explicit expression of the critical patch-size, we write solutions of230

(26)-(28) in the form231

X(x) = e
c
2x
[
A1 cos(z0x) +A2 sin(z0x)

]
, with z0 =

√
4− c2

2
. (31)

From the boundary conditions, we obtain the defining equations for Ai as232


A1( c2 − γ

α
0 ) +A2z0 = 0

A1

[
( c2 − γ

β
0 ) cos(z0L)− z0 sin(z0L)

]
+A2

[
( c2 − γ

β
0 ) sin(z0L) + z0 cos(z0L)

]
= 0.

(32)
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Fig. 1 Phase portrait of (30) for c < 2. The origin is an unstable spiral. Every trajectory
that starts at Y = γα0 X reaches Y = γα0 X.

For a non-trivial solution, the determinant of the coefficient matrix of system233

(32) must be zero, which happens exactly if234

sin(z0L)

[
z20 +

( c
2
− γα0

)( c
2
− γβ0

)]
= cos(z0L)z0(γα0 − γ

β
0 ). (33)

Equivalently, we can write235

tan(z0L) =
z0(γα0 − γ

β
0 )

z20 +
(
c
2 − γ

α
0

)(
c
2 − γ

β
0

) , (34)

whenever the denominator is not zero. We can solve for the critical patch-size236

L∗ in terms of model parameters as237

L∗c<2 =
1

z0
arctan

 z0(γα0 − γ
β
0 )

z20 +
(
c
2 − γ

α
0

) (
c
2 − γ

β
0

)
 . (35)

Whenever L ≥ L∗c<2, the dominant eigenvalue λ is positive and the zero238

steady-state is unstable; when L < L∗c<2, then λ is negative and the state is239

stable.240

For numerical calculations, it is advantageous to evaluate condition (33) as241

to avoid erroneous results when the denominator in (35) becomes zero.242

243

Case 2: A positive radicand244

When c ≥ 2, the radicand is non-negative. The equations for the vector field245

in the phase plane are the same as in the previous case. With the assumption246

c ≥ 2, the eigenvalues σ± are real and positive with σ+ ≥ σ−. Thus, the origin247

is an unstable node. All trajectories will eventually increase to infinity along248

one of the directions given by the eigenvectors.249
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Fig. 2 Phase portrait for c ≥ 2. When γα0 > min{σ±}, no connection can exist between the
boundary conditions (left plot). When γα0 < σ±, such a connection exists. The small arrows
between the lines Y = X and Y = σ±X indicate that σ+ increases and σ− decreases in c.

In the first quadrant below the line defined by Y = σ−X, the vector field250

has directions X ′ > 0 and Y ′ < 0. In the fourth quadrant, the direction of251

the X-component changes to X ′ < 0, but the direction in the Y -component252

remains the same. Hence, trajectories that start in the first quadrant below253

Y = σ−X, will eventually reach the axis Y = 0 with X > 0 and from there254

will eventually reach the line X = 0 with Y < 0.255

The steepness of the boundary condition Y = γα0X may be controlled by256

the parameter kα. Thus, for any fixed c ≥ 2, we can choose kα such that257

the boundary condition lies above or below the line Y = σ−X. The former258

condition does not allow for a trajectory starting on the line Y = γα0X to259

reach the line Y = γβ0X. As illustrated in the left plot figure 2, the path260

of a trajectory is obstructed by at least one of the eigenvectors. The latter261

condition does allow a trajectory to pass from one boundary condition to the262

other, see the right plot in figure 2.263

The necessary condition for the existence of a solution of the eigenvalue264

problem (26) - (28) is then265

γα0 =
c+
√
c2 + 4m1D1

2kα
< σ− =

c−
√
c2 − 4

2
. (36)

This condition can be formulated in terms of kα as266

kα > k̄α =
c+
√
c2 + 4m1D1

c−
√
c2 − 4

. (37)

We summarize these considerations in terms of the critical patch-size as fol-267

lows.268

Theorem 2 (Existence of a Critical Patch Size for c ≥ 2) For all c ≥ 2, there269

exists a critical value k̄α as in (37) such that for all kα > k̄α and kβ > 0 a270

finite critical patch-size L∗ = L∗(c, kα, kβ) exists.271
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For an explicit representation formula of L∗ in the case c ≥ 2, we write272

solutions to the linearized problem as273

X(x) = e
cx
2

[
A1 cosh(s0x) +A2 sinh(s0x)

]
, with s0 =

√
c2 − 4

2
. (38)

From the boundary conditions we obtain the linear system274


A1( c2 − γ

α
0 ) +A2s0 = 0

A1

[
( c2 − γ

β
0 ) cosh(s0L) + s0 sinh(s0L)

]
+A2

[
( c2 − γ

β
0 ) sinh(s0L) + s0 cosh(s0L)

]
= 0.

(39)

This system has a non-trivial solution under the condition275

sinh(s0L)

[
s20 +

(
γβ0 −

c

2

)(
c

2
− γα0

)]
= cosh(s0L)s0(γβ0 − γα0 ), (40)

or equivalently, if the denominator does not vanish,

tanh(s0L) =
s0(γβ0 − γα0 )

s20 +

(
γβ0 − c

2

)(
c
2 − γ

α
0

) . (41)

Accordingly, we obtain the representation formula for the critical patch276

size to be277

L∗c≥2 =
1

s0
arctanh

 s0(γβ0 − γα0 )

s20 +
(
γβ0 − c

2

) (
c
2 − γ

α
0

)
 . (42)

4 Illustrations278

4.1 The Critical Patch-Size for c < 2279

We begin by investigating the effects of the diffusion coefficients ahead (D1)280

and behind (D2) the suitable habitat. We assume that there is no habitat281

preference, i.e. α = β = 0.5, so that the discontinuity of the density across the282

interface is due only to a difference in diffusion rates.283

The critical patch-size decreases with D1 but increases with D2, as the284

two plots in figure 3 indicate. As noted earlier, γα0 decreases with D1 so that285

the flux out of the suitable patch decreases and hence the required length286

for persistence decreases. On the other hand, |γβ0 | increases with D2, i.e. the287

flux out of the suitable habitat increases, and consequently a larger domain is288

required for persistence.289
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Fig. 3 The critical patch-size L∗c<2 as a function of the parameter D1 (left plot) and D2

(right plot). Other parameters are mi = 1.4, Di = 2 and α = β = 0.5.

For a biological interpretation, we consider a randomly moving individual290

in the unsuitable habitat behind the trailing edge. If the interface moves fast291

(and away from the individual) and the individual moves slowly (randomly292

in both directions), then the individual will be further away from the suit-293

able habitat over time and hence less likely to reach it again. Similarly, if an294

individual ahead of the suitable patch moves slowly (and randomly) and the295

interface moves quickly (and towards the individual), then the individual is296

likely to be swept up by the interface and back in the suitable patch. Thus, the297

critical patch-size is largest for low diffusion rates behind the trailing edge and298

high diffusion rates ahead of the patch. Vice versa, in a fast moving climate299

niche, fast diffusion behind the trailing edge and slow diffusion ahead increase300

the likelihood of persistence.301

We also observe that the sensitivity of L∗c<2 with respect to Di, here defined
as ∣∣∣∣∂L∗c<2

∂Di

∣∣∣∣ , (43)

decreases in Di and increases in c. These observations can be explained by302

the boundary conditions as before. In particular, γα0 is monotone decreasing303

in D1 for each fixed c > 0 and approaches
√
m1 in the limit as D1 →∞. As a304

function of c, γα0 is increasing and the slope decreases with D1.305

Now we look at the effects of parameters α, β, which denote the probability306

that an individual at the left-hand or right-hand interface will choose to move307

into the suitable habitat. We set D1 = D2 = 1 so the discontinuity in density308

across an interface is due only to α, β 6= 0.5309

The critical patch-size L∗c<2 is a decreasing function of α, as is clear from310

figure 4 (left plot for β = 0.9, right plot for β = 0.1). Mathematically, as α311

increases to unity, kα increases to infinity, and γα decreases to zero. Hence,312

the net outward flux at the trailing edge vanishes and the critical patch-size313

decreases. Biologically, as individuals increase their preference for the suitable314

patch, they are highly unlikely to leave this patch. And if individuals stay in315

the patch, the population is much more likely to persist.316
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Fig. 4 L∗c<2 as a function of parameter α. Other parameters are set to mi = 1.4, Di = 1
and β = 0.9 (left plot) and β = 0.1 (right plot).

We note that L∗c<2 is more sensitive to changes in α when c is larger. For317

fixed c, however, the sensitivity with respect to α is greatest for intermediate318

values of α. We also note that L∗c<2 is a decreasing function of β (no plots319

provided).320

The somewhat surprising observation is that L∗c<2 is not monotone increas-321

ing in c (for fixed α). The curves corresponding to different values of c intersect322

as α increases. For large values of β, these intersections happen for very large323

values of α and are only barely visible. They are clearly visible for smaller324

values of β.325

To explain this observation, we note that the parameter c affects γα0 as326

well as γβ0 . Both values increase with c, but γα0 is positive and γβ0 is negative.327

Therefore, when |γα0 | is increasing, so is the net flux from the domain at x = 0;328

when |γβ0 | is decreasing then so is the net flux from the domain at x = L. The329

total loss from the domain is the sum of the losses through each interface. When330

β is large, the change in γβ0 with respect to c is minimal and the increase in γα0331

leads to the increased critical domain size. When β is small, the change in γβ0332

with respect to c is significant so that the critical patch-size decreases when α333

is fixed close to unity.334

For a biological interpretation, we consider an individual at the leading335

edge of the suitable habitat. If β is large, then this individual is highly likely336

to stay in the suitable habitat, no matter how fast the habitat moves. The loss337

of individuals from the suitable habitat happens at the trailing end where a338

faster speed incurs a higher loss so that the critical patch size increases with339

c. On the other hand, if β is small, then the individual at the leading edge is340

likely to leave the suitable patch. If the patch moves slowly, then the individual341

will move away and not return to the patch. If the patch moves fast, it is likely342

to catch up with the randomly moving individual and ‘scoop it up’ again.343

Even though the individual tries to leave (β small) it cannot get away from344

the patch (c large) and therefore is not lost from the domain. Consequently,345

the critical size is small.346
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Fig. 5 The left plot shows L∗c≥2 as a function of the parameter α. Model parameters are

set to be m1 = m2 = 1.4, D1 = 1.1, D2 = 2 and β = 0.9. The solid lines are the plot of
L∗c≥2 = L∗c≥2(α). The dashed lines are the critical value α = α∗. The right plot shows the

contours of α∗ in the c-D1-plane.

4.2 The Critical Patch-Size for c ≥ 2347

When c ≥ 2, the critical patch size is finite only if the condition in (37) holds,348

i.e. if349

kα >
c+
√
c2 + 4m1D1

c−
√
c2 − 4

. (44)

This inequality can be re-written as a lower bound for α as350

α > α∗ =
I

I + 1
, with I =

c+
√
c2 + 4m1D1√

D1(c−
√
c2 − 4)

. (45)

As expected from the previous section, the critical patch-size L∗c≥2 is a351

decreasing function of α, please see figure 5. The explanation is the same as352

before: as α increases, fewer individuals leave the domain at the trailing edge,353

and therefore the population requires less space to persist. As α approaches α∗354

(indicated by the dashed line) from above, the critical patch-size approaches355

infinity. The surprising result that the critical patch-size is not an increasing356

function of the speed with which the patch moves arises here as well. The357

curves for different values of c intersect.358

The critical value α∗ increases in c andm1 but decreases inD1. The contour359

plot in Figure 5 reveals that α∗ is, in general, more sensitive to c than to D1,360

except near the critical values c = 2 and D1 = 0. As c approaches 2, the361

critical value approaches362

α∗|c=2 =
1 +
√

1 +m1D1

1 +
√

1 +m1D1 +
√
D1

.

In Figure 5, this value is α∗|c=2 ≈ 0.7121.363

As before, we note that L∗c≥2 is more sensitive to changes in α when c364

is larger and less so when α is larger. Thus, as the speed of climate change365
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Fig. 6 The critical patch-size L∗c≥2 as a function of the parameter D1 (left plot) and D2

(right plot). In the left plot, we have α = 0.8; on the right α = 0.9021. Other parameters
are m1 = 1 (left plot), m1 = 1.4 (right plot), m2 = 1.4, Di = 1 and β = 0.5.

increases, it becomes increasingly important for individuals to detect the trail-366

ing edge of the suitable habitat and to adjust their movement behavior. If the367

patch is moving fast, individuals that leave the patch at the trailing edge have368

only a very small chance to ever catch up again. Hence, persistence is possible369

only if individuals do not leave the patch in the first place.370

Just like in the case c < 2 before (see Figure 3), the critical patch size for371

c ≥ 2 is an increasing function of the diffusion rate ahead of the leading edge372

(D2) and a decreasing function of the diffusion rate behind the trailing edge373

(D1), as can be seen in Figure 6. In fact, when c ≥ 2, there is a lower threshold374

value D∗1 below which the population cannot persist. This threshold is deter-375

mined from condition (37), similarly to the threshold α∗ in (45). Condition376

(37) can be written as377

√
D1

c+
√
c2 + 4m1D1

>
1− α

α(c−
√
c2 − 4)

.

The left-hand side is an increasing function of D1. The threshold D∗1 is reached378

when the inequality is an equality. Since the expression on the left-hand side379

is bounded above by 1/
√

2m1, we can also formulate a threshold in terms of380

mortality behind the trailing edge as381

m1 <
1

4

(
α(c−

√
c2 − 4)

1− α

)2

.

5 Approximations382

Since the stability conditions of the trivial steady-state are so important for383

the fate of the population, it is desirable to have various measures and approx-384

imations for the dominant eigenvalue that determines stability. Such approx-385

imations are particularly helpful if they can be evaluated from different and386
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probably independent data sets or experiments. Cobbold and Lutscher (2014)387

developed a framework that allows one to relate the dominant eigenvalue to388

the mean occupancy time, i.e. the mean time that an individual spends in a389

given domain. Biologically, the relation between occupancy time and persis-390

tence is relatively simple: on average, an individual has to spend enough time391

in the domain to produce at least one offspring for the population to persist.392

Mathematically, the question is what the correct average is in a spatial model.393

The work by Cobbold and Lutscher (2014) treats this question for symmetric394

dispersal processes, but does not work well for the asymmetric dispersal that395

we have in model (10) due to the advective term. We briefly review the ap-396

proach by Cobbold and Lutscher (2014) and then derive a novel formula that397

provides an improved approximation in the symmetric case and that works (to398

some extent) for asymmetric dispersal.399

We work with the associated system in (24), since the theory by Cobbold400

and Lutscher (2014) is developed for bounded domains and since the stability401

behavior is the same as in (10). We linearize the equation and write the result402

as403

ut =M[u] + ru, (46)

with (scaled) growth rate r = 1, whereM consists of the differential operator404

M[u](x) = uxx + cux, x ∈ Ω = [0, L], (47)

and flux boundary conditions405

ux(0) + cu(0) = γα0 u(0), ux(L) + cu(L) = γβ0 u(L). (48)

The dominant eigenvalue of M is negative since the total density is de-406

creasing, see (25). We denote it as −ν (with ν > 0) and the corresponding407

(positive) eigenfunction as φ.408

The trivial solution of (46) is unstable if ν < r = 1. Note that ν measures409

the loss rate of individuals due to movement out of the domain and r = 1410

is the growth rate. Hence, the persistence condition simply states that the411

reproduction rate has to be higher than the loss rate.412

We want to relate ν to the mean occupancy time. We write M∗ for the413

adjoint operator of M with respect to the standard inner product414

〈f, g〉 =

∫
Ω

f(x)g(x)dx. (49)

Its dominant eigenvalue is also −ν; we denote the eigenfunction by ψ.415

We denote the fundamental solution of (46), i.e. the solution with initial416

condition given by the Dirac distribution u(0, x) = δ(x − y), by G(x, y, t).417

As in Cobbold and Lutscher (2014), we can express the probability that an418

individual initially located at y ∈ Ω is still in the domain at time t as419

S(y, t) =

∫
Ω

G(x, y, t)dx. (50)
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The first passage probability F (y, t), defined as the probability that an indi-420

vidual with initial location y ∈ Ω leaves Ω at time t, satisfies the equation421 ∫ t

0

F (y, t)dt = 1− S(y, t). (51)

With this, we can define the mean first passage time from initial location y ∈ Ω422

as423

T (y) =

∫ ∞
0

tF (y, t)dt =

∫ ∞
0

∫
Ω

G(x, y, t)dxdt, (52)

Strictly speaking, the mean first passage time is the time until the individual424

first leaves the domain. In our case, the boundary conditions take into account425

that the individual may leave and return several times during its lifetime. We426

therefore call this quantity the mean occupancy time. For a detailed discussion427

about this subtle difference, please see Cobbold and Lutscher (2014),428

To calculate the mean occupancy time, it helps to introduce the occupancy-429

time density430

B(x, y) =

∫ ∞
0

G(x, y, t)dt, (53)

which satisfies the equation MB = −δ, the Dirac distribution. We calculate431

∫
Ω

B(x, y)dx = T (y) = −
∫
Ω

T (x)MB(·, y)dx = −
∫
Ω

B(x, y)M∗Tdx. (54)

Hence, T can be obtained from solving M∗T = −1 in Ω.432

With this notation, we can explain how the dominant eigenvalue of M433

is related to the spatial average of T and why this relation is only correct if434

movement is symmetric, i.e. if G(x, y, t) = G(y, x, t). We denote the spatial435

average of the eigenfunction φ by φ̄ =
∫
Ω
φ(x)dx/|Ω|. By definition, φ satisfies436

φ(x)e−νt =

∫
Ω

G(x, y, t)φ(y)dy = φ̄

∫
Ω

G(x, y, t)dy+

∫
Ω

G(x, y, t)(φ̄−φ(y))dy.

(55)
If we assume that the eigenfunction is reasonably close to its spatial average,437

we can neglect the last term. Since ν > 0, we can integrate the equality with438

respect to time and obtain439

1

ν

φ(x)

φ̄
≈
∫ ∞
0

∫
Ω

G(x, y, t)dydt =

∫
Ω

B(x, y)dy =

∫
Ω

B(y, x)dy = T (x).

(56)
The second last equality only holds if the movement process is symmetric.440

Now we take averages on both sides and find441
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1

ν
≈ T =

1

|Ω|

∫
Ω

T (x)dx. (57)

The following three ideas and observations allow us to improve the approxi-442

mation above in such a way that it also extends to asymmetric dispersal. First,443

even though the assumption of a uniform distribution of the initial location of444

the individual in the averaging formula in (57) may be parsimonious, it does445

not seem to be the best. For example, with hostile boundary conditions, the446

assumption has a particularly large error at the boundary. Instead, at least at447

small population densities, the distribution is closer to the eigenfunction than448

to the constant. Secondly, for the dominant eigenfunction φ we have449

ν〈T, φ〉 = 〈T, νφ〉 = −〈T,Mφ〉 = −〈M∗T, φ〉 = 〈1, φ〉. (58)

Therefore, the weighted average of T with weight function φ gives exactly the450

absolute value of the inverse of the eigenvalue:451

T
φ

: =

∫
Ω
T (x)φ(x)dx∫
Ω
φ(x)dx

=
〈T, φ〉
〈1, φ〉

=
1

ν
(59)

Note that in this notation, the expression in (57) is simply T = T
1
.452

Finally, the derivation in (56) suggests that φ is approximated (up to a453

constant) by454

R(x) =

∫
Ω

B(x, y)dy. (60)

Putting everything together, we suggest that ν is well approximated by the455

inverse of the weighted mean456

ν ≈ 1

T
R
, where T

R
=
〈T,R〉
〈1, R〉

=

∫
Ω
T (x)R(x)dx∫
Ω
R(x)dx

. (61)

Function R can be obtained by solving the equation MR = −1 in Ω.457

Ballyk et al. (1998) derived the interpretation of 1/ν as the mean residence458

time in a different way directly from the decay rate of the corresponding eigen-459

function. Our expression in (59) clarifies that this mean is a weighted mean of460

exit times with weight function equal to the dominant eigenfunction.461

5.1 The case of hostile exterior462

We return to our moving habitat model and apply the expression in (61)463

to approximate the persistence condition and demonstrate the validity of the464

formula as well as its limits. In general, the expressions are difficult to compute,465

but in a special case, all the formulas are relatively simple, namely when the466

unsuitable patches are completely hostile (i.e. mi → ∞) or, equivalently, if467

individuals at the boundary always leave the suitable patch (i.e. α = β = 0).468

Then we have469
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M[u] = uxx + cux, u(0) = u(L) = 0, (62)

and find the dominant eigenvalue and eigenfunction to be470

−ν = −π
2

L2
− c2

4
, φ(x) = e−cx/2 sin(πx/L). (63)

The adjoint operator M∗ is the same as M with c replaced by −c. Ac-471

cordingly, the dominant eigenfunction ψ is the same as φ with c replaced by472

−c.473

The mean occupancy time in this case is the same as the mean first passage474

time. It satisfies the equation475

T ′′ − cT ′ = −1, T (0) = T (L) = 0, (64)

as derived above. Alternatively, the equation for T can be derived from a476

random walk approach in a moving habitat in a similar fashion as McKenzie477

et al. (2009) derived it for a stationary habitat, see Appendix B.478

The explicit expression for T (x) is479

T (x) =
1

c2
(1− ecx) (T0 + c) +

x

c
, T0 =

L+ 1−ecL
c

1− ecL
. (65)

The equation and explicit expression for R(x) are the same as for T with c480

replaced by −c.481

The two plots in Figure 7 demonstrate the validity of the approximation.482

The panel on the left compares the spatial shape of the eigenfunction ψ with483

the weight function R, both scaled to have identical average equal to unity.484

The functions φ and T are mirror symmetric images of ψ and R with respect485

to x 7→ L − x. The panel on the right shows that the approximation of the486

eigenvalue ν using the weighted average as in (61) is much better than the487

uniform approximation from (57), at least when c is small enough. When c488

becomes much larger, the eigenfunctions become more and more skewed, and489

the approximation R(x) ∼ φ(x) becomes increasingly worse so that none of490

the approximations work any more.491

5.2 The case of boundary behavior492

We come back to the case with general boundary conditions, where the eigen-493

value problem is494

M[u] = uxx + cux = −νu, with

{
u′ + cu = γα0 u, x = 0

u′ + cu = γβ0 u, x = L.
(66)

The eigenvalues are given implicitly by the equation495

tan(zL) =
z(γα0 − γ

β
0 )

z2 + (γα0 − c/2)(γβ0 − c/2)
, z =

1

2

√
c2 − 4ν



Edge behavior and moving habitats 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

R(x)

φ(x)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
9

10

11

12

13

14

15

16

17

c

uniform
approximation

eigenvalue

weighted
approximation

Fig. 7 Comparison of the approximations for the eigenfunction and the dominant eigenvalue
for the case of hostile boundary conditions. Left plot: Function R(x) approximates the
eigenfunction φ(x) for c = 2. Right plot: when c is small enough, the true eigenvalue ν from
(63) (solid) is approximated much better by the inverse of the weighted average in (61)
(dashed) than by the uniform average in (57) (dash-dot). In both plots L = 1.

and the corresponding eigenfunctions are496

φ(x) = e−cx/2(cos(zx) +B sin(zx)), B =
γα0 − c/2

z
.

The function R can be calculated from MR = −1 as497

R(x) = −ζ1
c
e−cx − x

c
+ ζ2, (67)

with498

ζ1 =
1 + c(γα0 − c)ζ2

γα0
and ζ2 =

γα0 (1 + L(c− γβ0 ))− γβ0 e−cL

γα0 c(c− γ
β
0 ) + c(γα0 − c)γ

β
0 e
−cL

. (68)

The adjoint operator is not simply obtained by replacing c with −c. Stan-499

dard calculations give500

M∗[u] = uxx − cux, with

{
u′ = γα0 u, x = 0

u′ = γβ0 u, x = L.
(69)

The function T that satisfies M∗T = −1 is then501

T (x) =
k1
c
ecx +

x

c
+ k2, (70)

with502

k1 =
cγα0 k2 − 1

c− γα0
and k2 =

(γβ0L− 1)(c− γα0 ) + ecL(c− γβ0 )

γα0 ce
cL(c− γβ0 ) + cγβ0 (γα0 − c)

. (71)

The plots in Figures 8 and 9 illustrate the goodness of fit for the approxi-503

mation via the weighted average and the gain compared to the uniform average504

for the eigenfunction and eigenvalue in two cases. Instead of the eigenvalue,505
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Fig. 9 Comparison of the approximations for the eigenfunction and the mean occupancy
time for the case of general boundary conditions for large α. Left plot: Function R(x)
approximates the eigenfunction φ(x) for c = 1.9. Right plot: Mean occupancy time 1/ν
(solid) and its uniform (dash-dot) and weighted (dashed) average approximations. In both
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we plot its inverse, the mean occupancy time. When α is relatively small, the506

eigenfunction φ as well as function R are hump shaped as in Figure 8. On the507

other hand, if α is large, then both functions can be monotone decreasing as508

in Figure 9. Formally, the reason is that for these parameter values, we have509

γα0 < c and R′(0) = (γα0 − c)R(0) < 0. Intuitively, the advective term will510

push individuals towards the trailing boundary, and if α is large, then indi-511

viduals rarely leave the domain, so that the population is concentrating near512

the trailing edge. When α is large enough, we see that the mean occupancy513

time (and equivalently the dominant eigenvalue) are not monotone in c. We514

had seen earlier that the critical domain-size need not be monotone in c.515

6 Discussion516

The effects of climate change are visible in many ecosystems around the world.517

One such change is that optimal climatic conditions for many species shift to518

higher latitudes and/or altitudes. From a conservation perspective, one then519
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needs to ask the question of whether a species can “keep pace with a shift-520

ing climate” (Berestycki et al., 2009). In their model, these authors let the521

growth conditions shift in space at a constant speed, but assume that individ-522

ual dispersal is independent of growth and climatic conditions. These assump-523

tions fit particularly for passively dispersed species, for example through wind-524

borne seeds. Active dispersers, on the other hand, can adjust their movement525

behavior to local conditions. A reasonable strategy would be to have small526

dispersal rates in good habitats (exploitation) and higher dispersal rates in527

less favourable environments (exploration). Potapov and Lewis (2004) in their528

moving-habitat model allowed for such a difference in dispersal rates between529

the suitable and unsuitable habitat. They assumed that dispersal ahead and530

behind the moving patch is identical. We argue that the conditions ahead and531

behind the moving suitable patch could be quite different (e.g. cooler ahead532

and warmer behind), so that dispersal behaviour could differ between these533

two regions. Furthermore, mortality rates could differ between these two re-534

gions as abiotic (e.g. climatic) and biotic (e.g. competition, predation) factors535

would differ. We allowed for these differences in our model.536

More importantly, we included edge behavior in our model. Edge behavior537

is well documented for many taxa. Our approach is based on recent mod-538

els for random walks near interfaces (Ovaskainen and Cornell, 2003; Maciel539

and Lutscher, 2013), but differs from these earlier papers in that our suit-540

able patch is mobile. The population density in our model is not necessarily541

continuous across an interface between the suitable and unsuitable regions.542

Relatively abrupt changes of observed densities are observed in various taxa543

and are used as a basis for habitat suitability models and for projections of544

future species ranges (Leroux et al., 2013). In our model, this discontinuity545

appears from either of two factors: habitat preference and difference in diffu-546

sion rates. In that sense, some of the qualitative results in Potapov and Lewis547

(2004) should be revisited. We also clarified that the population flux across a548

moving boundary consists of two components, not only of the diffusive flux of549

individual movement.550

Having all these individual-level details in our model allows us to tease551

apart the different influence of the different parameters and processes. In the552

classical minimal patch-size problem on an immobile patch (Skellam, 1951;553

Kierstead and Slobodkin, 1953), the population is more likely to persist when554

the growth rate is higher and the domain is longer, but less likely when dif-555

fusion is higher. For spatial spread, on the other hand, diffusion and growth556

rate are both positively related to invasion speed. On a moving-habitat model,557

we have a combination of critical patch-size and spread problems (Zhou and558

Kot, 2011). Clearly, an increase in growth rate and patch size or a decrease559

in mortality rates helps the population persist, and diffusion inside the suit-560

able patch decreases the likelihood of persistence. Higher diffusion in front of561

the suitable patch marginally increases the critical patch-size whereas higher562

diffusion behind the suitable patch can considerably decrease these habitat563

requirements. Strong preference for the suitable habitat patch can obviously564
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decrease the size requirement, but it turns out that preference at the trailing565

edge is much more important than at the leading edge.566

Arguably the most surprising results of our investigation are with respect567

to the speed of the climatic niche. We found that a population may persist568

for speeds faster than the threshold speed that previous authors had found,569

provided the movement rates behind the trailing edge are high and/or the570

preference for the suitable patch is high. We also found that the critical patch-571

size is not necessarily monotone with respect to the speed of the climatic niche.572

While a faster moving patch ‘scoops up’ more individuals that dispersed ahead,573

it also loses more individuals behind. The net effect of these two processes can574

change sign.575

Moving-habitat models are mathematically closely related to models for576

stream ecosystems (Pachepsky et al., 2005), where the habitat is fixed and577

the flow of water induces an advective term as long as the organism is not578

fully able to actively swim against the current. Our work could inspire similar579

research for population dynamics in streams, but the mechanisms underlying580

individual behavior would have to be carefully checked. For example, if an581

organism is a passive swimmer (so that the equations apply), the process of582

how it could change its behavior at boundaries of favourable habitat is not583

obvious (so that our interface conditions may not apply).584

While edges of immobile habitats can be quite abrupt in many natural and585

human-managed landscapes, it is less likely that moving, climate-induced edges586

are equally sharp. Especially since climatic conditions around the long-term587

trend vary considerably between years, we expect more gradual transitions be-588

tween suitable and unsuitable regions. We assumed that edges were localized589

and could be perceived by the organism. The more realistic assumption would590

be a more gradual transition. A first model in this spirit of environmental591

gradients was proposed and analyzed by Li et al. (2014). They considered a592

smooth monotone function representing habitat quality changing from nega-593

tive to positive at the trailing edge of the species range (see also Hu and Zou594

(2017)). A habitat quality function that includes the leading and the trailing595

edge would have to be hump-shaped. Such a model was proposed in discrete596

time and without the effects of climate change by Latore et al. (1999) and597

then revisited and put into the moving-habitat context, in a stochastic setting598

by Zhou and Fagan (2017). However, these models assume that the movement599

of organisms is unbiased and unaffected by habitat or climatic conditions.600

Habitat-dependent movement could be included as a taxis term. This addi-601

tion would make model analysis considerably more difficult. We believe that602

our model is a simplified first but useful and informative step in analyzing603

mechanisms that can help or hinder a population in keeping up with climate604

change.605

In addition to or instead of behavioral responses, organisms may also evolve606

and adapt to changes in climatic conditions. The early landmark paper in this607

direction is by Pease et al. (1989) who model the spatial density and mean608

trait value along a spatial gradient. More recently, the question of how shift-609

ing habitats affect genetic diversity was studied by Garnier and Lewis (2016)610
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with a reaction-diffusion model with shifting climate envelope. Their model is611

somewhat similar to ours but does not include boundary behavior or changes612

in diffusion rates. The authors conclude that fast moving habitats diminish613

diversity. It is conceivable that the same type of movement and boundary be-614

havior that allows a population to persist at higher speeds in our model would615

preserve higher diversity in their setting.616

There are numerous mathematical challenges arising from our work, most617

notably the generalization of the analytical results regarding eigenvalues and618

asymptotic behavior of the model on the real line by Berestycki et al. (2009)619

to our extended model. Similarly, including competition (Potapov and Lewis,620

2004) and an Allee effect (Roques et al., 2008) would be challenging en-621

deavours. Finally, a consumer-resource model could elucidate how a resource622

(e.g. vegetation) moves in response to climate change and what the emerging623

edges of the suitable patch of a consumer (e.g. herbivore) look like, before624

determining conditions under which the consumer persists in the system.625
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A Proof of Theorem 1.722

We deenote by u∗(x) a non-negative, stationary solution for systems (10) and (24). Then the723

linearized equations of these two systems inside the interval (0, L) are identical. We present724

the proof in two cases.725

Case 1: c = 0.726

When c = 0, the systems are governed by an elliptic, self-adjoint operator and consequently727

are known to have a principal eigenvalue that admits a positive eigenfunction (Cantrell and728

Cosner, 2003). The eigenvalue problem associated to the linearized system of (24) is729


vxx − g(x)v = λv, 0 < x < L,

vx − γα0 v = 0, x = 0,

vx − γβ0 v = 0, x = L,

(72)

where g(x) = 2u∗(x)− 1, γα0 =
√
m1D1
kα

and γβ0 = −
√
m2D2

kβ
.730

The eigenvalue problem corresponding to (10) is731
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

vxx − g(x)v = λv, 0 < x < L,

D1vxx −m1v = λv, x < 0,

D2vxx −m2v = λv, x > L

v(0+) = kαv(0−), vx(0+) = D1vx(0−)

v(L−) = kβv(L+), vx(L−) = D2vx(L+).

(73)

Consider the auxiliary quasi-eigenvalue problem corresponding to (73)
vxx − g(x)v = λv, 0 < x < L,

D1vxx −m1v = lv, x < 0,

D2vxx −m2v = lv, x > L,

(74)

with parameter l > max(−m1,−m2) and interface conditions as in (73). The advantage
of introducing the parameter l is that upon using the same technique seen previously, (74)
can be reduced to a system on a bounded domain, while excluding λ from the boundary
conditions. The resulting system is{

vxx − g(x)v = λv, 0 < x < L,

vx +B(x)u = 0 x = 0, L,
(75)

where

B(x) =

−D1ñ
+(l)

kα
, at x = 0,

−D2ñ
−(l)

kβ
, at x = L,

(76)

and ñ+(l) =
√
m1+l
D1

and ñ−(l) = −
√
m2+l
D2

. Corollary 2.2 in Cantrell and Cosner (2003)732

states that the principal eigenvalue of (75) is a continuous and decreasing function of |B|733

and therefore also of l. We denote this eigenvalue as λ(l).734

1. Suppose that the principle eigenvalue λA of (72) is positive. The function σ(l) = λ(l)− l735

is continuously decreasing. We show that there exists some lB such that 0 < lB < λA736

and σ(lB) = 0. First, taking l = 0 reduces (75) to (72). Thus σ(0) = λ(0) = λA. Second,737

for l = λA, we find σ(λA) = λ(λA) − λA < λ(0) − λA = 0. Hence, σ(0) > 0 > σ(λA).738

By the intermediate value theorem we have some lB with σ(lB) = 0, which implies739

λ(lB) = lB . Thus for l = lB system (74) is identical to (73) and hence there exists a740

positive eigenvalue lB of (73).741

2. Now suppose that system (73) has a positive principal eigenvalue λB > 0. Taking742

l = λB implies that (75) has at least one positive eigenvalue, namely λB , in particular,743

its principal eigenvalue is then also positive. As λ(l) is a decreasing function of l, we744

claim that λA is also positive. Indeed, λA = λ(0) > λ(lB) ≥ λB > 0.745

Case 2: c > 0.746

When c is non-zero, the operator governing these equations is no longer self-adjoint, but747

we can transform the system into a self-adjoint one by following chapter 2 of Cantrell and748

Cosner (2003).749

The two eigenvalues to compare are750


vxx + cvx − g(x)v = λv, 0 < x < L,

vx + cv = γα0 v, x = 0,

vx + cv = γβ0 v, x = L,

(77)

and751
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

vxx + cvx − g(x)v = λv, 0 < x < L,

D1vxx + cvx −m1v = lv, x < 0,

D2vxx + cvx −m2v = lv, x > L,

v(0+) = kαv(0−), (vx + cv)(0+) = (D1vx + cv)(0−),

v(L−) = kβv(L+), (vx + cv)(L−) = (D2vx + cv)(L+).

(78)

The latter is equivalent to the eigenvalue problem on the bounded domain752


vxx + cvx − g(x)v = λv, 0 < x < L,

vx + cv = γα(l)v, x = 0,

vx + cv = γβ(l)v, x = L,

(79)

with753

γα(l) =
D1n1(l)+ + c

kα
, γβ =

D2n
−
2 (l) + c

kβ
, and n±i (l) =

−c±
√
c2 + 4(mi + l)Di

2Di
.

The change of variable w = vecx removes the advective term in the boundary conditions.754

Systems (77) and (79) become755


wxx − cwx − g(x)w = λw, 0 < x < L,

wx = γα0 w, x = 0,

wx = γβ0w, x = L,

(80)

and756


wxx − cwx − g(x)w = λw, 0 < x < L,

wx = γα(l)w, x = 0,

wx = γβ(l)w, x = L.

(81)

Next, to remove the advective term in the interval (0, L), we multiply the differential equa-
tion by e−cx and note that

(e−cxwx)x = e−cxwxx − ce−cxwx = e−cx(wxx − cwx).

Thus, we obtain the two systems757


(e−cxwx)x − g(x)e−cxw = λe−cxw, 0 < x < L,

e−cxwx − γα0 e−cxw = 0, x = 0,

e−cxwx − γβ0 e−cxw = 0, x = L,

(82)

and758


(e−cxwx)x − g(x)e−cxw = λe−cxw, 0 < x < L,

e−cxwx − γα(l)e−cxw = 0, x = 0,

e−cxwx − γβ(l)e−cxw = 0, x = L.

(83)

Since e−cx is strictly positive, systems (82) and (83) are governed by an elliptic, self-759

adjoint operator so that the theory from Case 1 can be applied.760
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B Derivation of the equation for T (x)761

We give a derivation of the equation for the mean first passage time function T (x) from a762

random walk by adapting the approach in McKenzie et al. (2009) to the moving habitat.763

The suitable habitat at time t is the interval [ct, L+ ct]. We assume hostile boundaries,764

i.e. individuals at the boundary leave the suitable habitat. We denote by T (x, t) the average765

time that an individual located at position x at time t takes to reach the boundary and by766

p the probability that the individual moves distance δ either left or right during a time step767

of length τ.768

The master equation describes how T changes from one time step to the next as769

T (x, t) = τ +
p

2
T (x− δ, t+ τ) +

p

2
T (x+ δ, t+ τ) + (1− p)T (x, t+ τ). (84)

Since the habitat moves distance cτ in one time step, we have T (·, t + τ) = T (· − cτ, t).770

Inserting this relation into the above equation and expanding the terms in Taylor series771

with respect to x, gives772

T = τ + T + cτT ′ + p
δ2

2
T ′′ +O(δ3, τ2). (85)

Now we cancel T , divide by τ and take the parabolic limit D = limδ,τ
pδ2

2τ
to arrive at the773

equation DT ′′ + cT ′ = −1.774


