METABOLIC AND THERMAL RESPONSES TO SHORT-TERM, INTENSE COLD WATER ACCLIMATION PROTOCOL

by

Kyle Gordon

Thesis submitted to the University of Ottawa
In partial fulfillment of the requirements for the Master of Science Degree

Department of Human Kinetics
Faculty of Health Sciences
University of Ottawa

© Kyle Gordon, Ottawa, Canada, 2019
Master of Science Degree (2019)

University of Ottawa

(Human Kinetics)

Title: Metabolic and Thermal Responses to Short-term, Intense Cold Water Acclimation Protocol

Author: Kyle Edward Gordon, Honours B.Sc. (Health Sciences) Minor in Psychology

Thesis Supervisor: Dr. Francois Haman, Ph.D., Department of Human Kinetics, Faculty of Health Sciences, University of Ottawa
SUMMARY

Non-compensable cold exposure represents a potentially deadly threat to humans, as we lack highly specialized organs and mechanisms necessary to maintain our optimal core temperature of ~37°C. Repeated exposures to cold have been shown to induce protective physiological changes in cold responses through a process known as cold acclimatization (natural) or acclimation (in laboratory). The purpose of this thesis was to determine what physiological changes occur following an intense 7 day, 14°C cold water immersion acclimation protocol, during both non-compensable (Chapter 2) and compensable cold exposures (Chapter 3). This includes identifying changes in the contributions of the shivering (ST) and non-shivering (NST) thermogenic pathways to overall heat production. ST and NST changes were quantified via electromyography and indirect calorimetry, respectively.

This 7 day cold water acclimation protocol resulted in a decrease in cooling rate, a significant increase in mean esophageal core temperature, a decrease in peak heart rate following immersion, and increased thermal comfort from day 1 to day 7 of the 1h 14°C cold water immersions. Further to these findings, changes in ST and NST were measured pre- and post-acclimation with a standardized compensable cold protocol using a liquid conditioned suit (LCS) which lowered T_{skin} to 26°C for 2.5h. The cold acclimation protocol resulted in a ~38% decrease in mean shivering over the 2.5h without any change in thermogenic rate from pre- to post-cold acclimation. In addition, no significant difference in fuel selection was observed. These results indicate that the short, intense cold acclimation protocol did result in a substantial change in the contribution of ST and NST to total heat production which could increase cold tolerance by reducing involuntary muscle contractions during ST.
ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Dr. François Haman for taking me on as a master’s student and for being my supervisor. I can’t thank you enough for all your help, guidance and advice throughout this long process. A big thank you must go to both Hans Tinglestad and Denis Blondin for your input and instruction on techniques, data collection, data analysis and writing. I would also like to thank Dr. Éric Doucet and Dr. Kristi Adamo for being on my thesis committee and their feedback during the proposal, in the writing process, and invaluable contributions during the final review and defence. I would also like to thank my parents, Ted and Dorothy Gordon, for all they have done to support me and guide me throughout my life and university career, as well as all my brothers and friends who helped me by providing a social support network throughout my whole graduate experience. Finally, I want to acknowledge the birth of my daughter Mæve during this endeavour, who inspires me to continually improve, and lastly, to my beautiful wife Meagan, who has provided unparalleled support and encouragement, more than I could have ever hoped for, thank you for being on my side this whole time – this would not have happened without you.
TABLE OF CONTENTS

SUMMARY .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF ABBREVIATIONS .. vi

LIST OF TABLES AND FIGURES .. vii

CHAPTER 1: ... 1
 INTRODUCTION ... 1
 1.1. First line of defence: detecting changes in environmental temperature 2
 1.2. Reducing rate of H_{loss} .. 4
 1.3. Increasing thermogenic rate ... 5
 1.3.1. Shivering thermogenesis ... 5
 1.3.2. Nonshivering thermogenesis ... 6
 1.4. Cold shock response ... 12
 1.5. Classifying physiological changes ... 14
 SUMMARY AND PURPOSE OF INVESTIGATION ... 18

CHAPTER 2: ... 21
 INTRODUCTION ... 21
 MATERIALS AND METHODS .. 26
 RESULTS .. 30
 DISCUSSION .. 34
 CONCLUSION ... 39

CHAPTER 3: ... 40
 INTRODUCTION ... 40
 MATERIALS AND METHODS .. 44
 RESULTS .. 48
 DISCUSSION .. 53
 CONCLUSION ... 57

CHAPTER 4: ... 58
 REFERENCES ... 60

APPENDIX: JOURNAL ARTICLE PUBLICATION ... 67
LIST OF ABBREVIATIONS

AUC – Area under the curve
β3AR – Beta-3-Adrenergic Receptor
BAT – Brown adipose tissue
Ca²⁺ - Calcium
CHO – Carbohydrate
CSR – Cold shock response
CT – Computerized tomography
EE – Energy expenditure
EMG – Electromyography
Hₚrod – Whole-body heat production
H.loss – Whole body heat loss
kJ – Kilojoules
LCS – Liquid conditioned suit
MVC – Maximum voluntary contraction
NST – Nonshivering thermogenesis
RMS – Root mean squared
SEM – Standard Error of the Mean
SERCA – Sarcoplasmic/Endoplasmic Reticulum Ca²⁺-ATPase
T.skin – Skin temperature
T.core – Core temperature
T.eso – Esophageal temperature
T.rec – Rectal temperature
UCP1 – Uncoupling protein 1
VO₂ – Oxygen consumption
VCO₂ – Carbon dioxide production
LIST OF TABLES AND FIGURES

Tables:

Table 1: Participant characteristics measured prior to cold acclimation

Figures:

Figure 1: Cold water immersion acclimation. (A) Esophageal temperature (T_{eso}), (B) heart rate and (C) thermal sensation during an acute 14°C cold water immersion and during a rewarming period on Day 1 and Day 7 of the cold acclimation protocol. Values are means ± SEM.

Figure 2.1: Mean skin and water bath temperatures. Changes in mean skin temperature (T_{skin}, °C) and circulating water bath temperature (°C) measured during an acute cold exposure pre- (○) and post- (●) cold acclimation. Values are means ± SEM.

Figure 2.2: Thermogenic responses to acute cold exposure. Changes in rate of metabolic heat production (kJ·min$^{-1}$) and shivering intensity (%MVC) during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are means ± SEM.

Figure 2.3: Overview of heat production and shivering. (A) Area under the curve (AUC) heat production (kJ·150 min), (B) total shivering AUC (%MVC·150 min), (C) fuel selection by % contribution to total energy expenditure (EE), and (D) mean individual muscle total shivering by AUC (%MVC·150 min), during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are means ± SEM.
CHAPTER 1:
GENERAL INTRODUCTION
INTRODUCTION

As endothermic homeotherms, humans rely on thermoregulatory mechanisms to maintain a physiologically optimal \(~37^\circ C\) core temperature (\(T_{\text{core}}\)) (Stocks, Taylor, Tipton & Greenleaf, 2004). Humans are particularly maladapted to survive extreme or prolonged cold exposure relative to other mammals (Kaciuba-Uscilko & Greenleaf, 1989). There are many behavioural adaptations humans undertake to thermoregulate and avoid cold exposure, including staying indoors in climate-controlled environments and adding layers while outdoors. Maintaining thermal balance in the cold involves reducing heat lost to the environment and increasing whole-body heat production (\(H_{\text{prod}}\)) (Castellani & Young, 2016; Kaciuba-Uscilko & Greenleaf, 1989). Intentional repeated cold exposure have been shown to alter physiological responses, known as cold acclimation or acclimatization, and could potentially help improve odds of survival during an extreme, or prolonged cold exposure, by increasing \(H_{\text{prod}}\) or improving vasoconstrictive response to maintain \(T_{\text{core}}\) (Castellani & Young, 2016; Kaciuba-Uscilko & Greenleaf, 1989; Young, 1994). The following introduction will describe general concepts of cold response in humans including detecting changes in environmental temperature, reducing whole body heat loss (\(H_{\text{loss}}\)), increasing thermogenic rate, understanding the cold shock response and how to classify various responses to cold exposure.

1.1. First line of defence: detecting changes in environmental temperature

In the initial stages of temperature regulation, humans detect changes in environmental temperature through strategically situated thermoreceptors, beginning with cutaneous, or skin, thermoreceptors providing advanced warning. These will mediate the signalling required for a rapid thermoregulatory response if necessary, based on environmental temperature fluctuations (Nakamura & Morrison, 2011). When thermoregulatory mechanisms cannot balance heat lost to
the environment with heat produced by the body, T_{core} will begin to decrease, activating core thermoreceptors. This is described as a thermally non-compensable cold exposure.

Differentiating between these two types of thermoreceptors is important for understanding cold responses, as evidence has shown that physiological responses to cold exposure can be dependent on whether core thermoreceptors are activated, or a cold stimulus is solely impacting skin thermoreceptors (Imbeault, Mantha, Haman, 2012).

Depending on the intensity and duration of a cold exposure, outcomes will differ, and unprotected exposures will likely lead to hypothermia, cold injury, or death. There is a wide spectrum of physiological distress from minute pain in cold areas and a loss of dexterity, to freezing injury such as frostbite (Stocks, Taylor, Tipton, & Greenleaf, 2004). Cold impacts physiological responses as well, Stocks et al. (2004) discuss the negative side effects on muscles cooling from a temperature of 35.2 to 31.3°C, which can occur in just 15 min of resting in cold water at 27°C. These negative effects can include decreased enzyme activity, decreased blood perfusion, decreased acetylcholine and calcium (Ca^{2+}) release, and decreased conduction and action potential repolarization in the muscles. These impairments contribute to a \sim3% decrease in muscle power for each \sim1°C decrease in muscle temperature (Stocks, Taylor, Tipton & Greenleaf, 2004). Cold exposure of any type presents an immediate threat to humans that are not able to compensate metabolically, physiologically and/or behaviourally. H_{loss} to the environment is exacerbated depending on the medium of exposure, and heat conduction in water is \sim25 times greater than in air. What might be considered a very moderate cool water immersion of \sim28-30°C can even result in a stress on thermal homeostasis in humans. In extreme scenarios, such as ice water immersion, core H_{loss} can surpass \sim6°C/h, and can lead to death in as short as 45 min (Toner & McArdle, 1996).
Human physiological responses to cold exposure are based on maintaining a sensitive homeostasis in the body, balancing heat gained through normal metabolic processes and heat lost to the environment. Shivering, vasoconstriction, and non-shivering thermogenesis are among the mechanisms that are intended to minimize H\textsubscript{loss} and maximize H\textsubscript{prod} when cutaneous and T\textsubscript{core} receptors drop below a critical threshold. This threshold is defined by Toner & McArdle (1996) as the point at which there is a significant increase in oxygen consumption (VO\textsubscript{2}) or H\textsubscript{prod}. The critical temperature for cold exposure in humans is not surprisingly substantially higher in water than in air, ranging from ~30-34°C, depending on the individual (Toner & McArdle, 1996). Two general responses are initiated following a drop below the critical threshold in humans, including initiating cutaneous vasoconstrictive responses to reduce H\textsubscript{loss}, and upregulating thermogenic processes to increase H\textsubscript{prod}; all in order to maintain the desired T\textsubscript{core} of ~37°C (Eyolfson, Tikuisis, Xu, Weseen, & Giesbrecht, 2001; Kaciuba-Uscilko & Greenleaf, 1989; Stocks \textit{et al}., 2004).

1.2. Reducing rate of H\textsubscript{loss}

H\textsubscript{loss} can be reduced through whole-body cutaneous vasoconstriction, stimulated primarily as a reflex due to whole-body cooling which activates a neural signaling pathway through the preoptic area of the hypothalamus, in turn activating the sympathetic nervous system (SNS). Norepinephrine is the neurotransmitter secreted by signaling SNS nerves, responsible for ~60% of the cold-induced vasoconstriction in skin, while neuropeptide Y is the other neurotransmitter, accounting for another ~20 to 30% of vasculature constriction (Castellani & Young, 2016). By constricting peripheral vasculature, blood can be redirected more centrally, to deeper tissues, decreasing conductive H\textsubscript{loss} from skin to the environment, and increasing the insulative capacity of peripheral tissues. The shift of blood volume from peripheral vessels to the core also results in intrathoracic hypertension and increased cardiac output, which in turn will
lead to a decrease in heart rate (HR) (LeBlanc, 1962; Radomski & Boutelier, 1982; Stocks et al., 2004). While vasoconstriction has been shown to definitively reduce H_{loss}, another common belief is that higher body fat individuals have an innate insulative capacity which reduces H_{loss} to the environment. While some polar mammals are built to use fat as an insulative layer (Blix, 2016), humans are not as reliant on insulative organs. There remains some debate in the space, as research over several decades has been conflicting on the topic. Rennie et al. (1962) originally supported that fat tissue was correlated strongly to insulative capacity, with women proving to have higher insulative capacity than men. A follow-up study performed from Veicsteinas, Ferretti, & Rennie (1982) elaborated on this, showing that superficial shell insulation from fat was only ~10-15% of maximal shell insulation, implying that other vasoconstriction play a much more significant role, and fat was only a small contributor to insulative capacity. At rest, it has been shown that vasoconstricted muscle provided a more significant insulative capacity than fat tissues in the limbs (Veicsteinas, Ferretti & Rennie, 1982). Finally, research by van Ooijen et al. (2006) suggested that despite higher body fat, these individuals do not have an increased insulative capacity, and further elaborated that obesity may impair H_{prod} in humans during a mild cold exposure, creating a net negative effect in relation to surviving a cold exposure.

1.3. Increasing thermogenic rate

H_{prod} in mammals and humans is a term that encompasses a variety of pathways. Generally, H_{prod} is broken down into two primary divisions of thermogenic processes in the body, namely shivering thermogenesis (ST) and non-shivering thermogenesis (NST).

1.3.1. Shivering thermogenesis
In humans, ST represents by far the majority of H_{prod} during cold exposure (Blondin, et al., 2014a; Kaciuba-Uscilko & Greenleaf, 1989) and involves sympathetic nervous stimulation of skeletal muscles, which causes asynchronous contractions, accomplishing no physical work, in turn releasing heat as a by-product. ST is immediately initiated when the skin temperature (T_{skin}) receptors detect a decrease in environmental temperature (Imbeault, Mantha, & Haman, 2013), although the intensity of the thermogenic response may be altered depending on T_{core} as well, and a low T_{core} will lead to a multiplicative effect on thermogenesis (Stocks et al., 2004). Using electromyography (EMG) on key muscle groups that have been previously identified as key shivering contributors such as: *pectoralis major*, *rectus abdominus*, and *vastus lateralis* (Haman, et al., 2004); muscle activation relative to baseline can be quantified, allowing a better understanding of the contribution of ST to H_{prod}. Based on muscle mass, it has been suggested that trunk muscles contribute ~85% of H_{prod} due to shivering (Bell, Tikuisis & Jacobs, 1992) and ST can increase metabolic rate by ~5 times resting levels (Eyolfson et al., 2001; Haman et al., 2006; Iampietro et al., 1960). Researchers have shown that during cold exposure, the bulk of glucose turnover, which is an indirect indicator of metabolic activation, is direct towards skeletal muscle (Blondin et al., 2015). ST is sustained primarily at the beginning of cold exposure by intramuscular stores of carbohydrates, which gradually changes to fat oxidation as shivering continues. The relatively low intensity of shivering and reliance on multiple fuel sources allows shivering to be sustained indefinitely (Haman, et al., 2004a; Haman, et al., 2004b).

1.3.2. Nonshivering thermogenesis

The other main division of thermogenesis is NST, which represents all processes in the human body that generate heat aside from ST. Consider that most every chemical reaction in the human body releases heat as a by-product, and that both the production, as well as the utilization
of ATP are inefficient processes, releasing heat as a by-product. Prior to more recent research into NST, there was little understanding or appreciation of mechanisms outside of ST for H_{prod} in man, illustrated by Iampietro et al (1960), which stated: “Input of heat, in the resting man, can only be augmented by shivering”. As research into H_{prod} in humans advanced, it became clear that regarding shivering as a sole source for H_{prod} neglected other significant mechanisms of H_{prod}. In particular, brown adipose tissue (BAT) and skeletal muscle Ca$^{2+}$ cycling have been examined more extensively for their contributions to H_{prod}.

The physiological significance of BAT has been well documented in mammals prior to the discovery of active BAT in humans. BAT provided mammals an evolutionary advantage to survive cold stress, during daily and seasonal temperature variation, and at our most vulnerable during infancy (Cannon & Nedergaard, 2004). The histological makeup of brown adipocytes in BAT shows dense packing of mitochondria containing with a specialized protein, uncoupling protein 1 (UCP1) in high prevalence. UCP1 works through a process in which the oxidative process in mitochondria is not coupled to ATP synthesis as it would typically be, but instead this potential energy is released as heat (Cannon & Nedergaard, 2004; J Nedergaard et al., 2001; Ouellet et al., 2012; Virtanen et al., 2009). Before a serendipitous discovery in 2007 and several influential studies released in 2009, it was believed that BAT was inactive in adult humans and not contributing to H_{prod} at rest or during cold exposure (Cypess et al., 2009; J Nedergaard, Bengtsson, & Cannon, 2007; Van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). In 2007, Nedergaard et al. demonstrated that using a standard test for tumours, several areas of unexpected glucose uptake could be detected. This study showed depots of active tissues in adult humans, focused primarily in the supraclavicular and paracervical areas (J Nedergaard et
al., 2007). Nedergaard et al. (2007) suggested that these symmetrical depots were likely
evidence of active BAT in adult humans.

Even more recent studies surrounding BAT have shown evidence for the concept of beige
or brite adipocytes. While classical BAT is made up solely of brown adipocytes, which dissipate
energy as heat and are required for NST, these recently identified brite adipose tissue depots are
a separate type of thermogenic cell (Wu et al., 2012). These depots contain a combination of
brown and white, hence the term ‘brite’. It is also sometimes referred to as beige adipose tissue,
based on its physical appearance (Keipert & Jastroch, 2014). Unique gene expression patterns
identify these adipocytes as being a separate entity from classic BAT (Okamatsu-Ogura et al.,
2013). This tissue is derived from seemingly white adipose tissue sites in a process known as
‘browning’. Many browning agents have been identified, but mainly cold stimulation, through
activation of the beta-3-adrenergic receptor (β3AR) by norepinephrine, will elicit a significant
increase in UCP1 expression in the mitochondria of this tissue (Nedergaard & Cannon, 2014;
Wu et al., 2012). Besides the thermogenic properties associated with BAT, one of the hallmarks
of brown and brite adipose tissue is its activation by cold exposure. Large variations in levels of
UCP1 expression and BAT volume have been identified between winter and summer months in
humans (Carey & Kingwell, 2013; Cypess et al., 2009). Experiments in mice show that these
brite adipose sites can go from minimal UCP1 in normothermic conditions to having comparable
amounts of UCP1 to classical BAT sites, the key protein for NST in a cold condition. In fact,
these studies have shown that NST is not solely dependent on pure BAT, but also brite adipose
sites, although BAT remains the main contributor (Keipert & Jastroch, 2014; Okamatsu-Ogura et
al., 2013). Many studies examining activation of NST do not go as far as to break down
individual contributions of brite and BAT, but rather both are viewed as one thermogenic organ, even though we are aware there is two uniquely identifiable tissue types.

Considerable research has gone into elucidating the pathways of BAT activation and subsequently how to naturally or artificially stimulate activation. It is well known that thermogenic tissue is innervated and critically controlled by neurons from the SNS, particularly the ventromedial hypothalamus, which plays a role in temperature sensing (Bartness, Vaughan, & Song, 2010; Chechi, Carpentier, & Richard, 2013; Cypess & Kahn, 2010; Nedergaard & Cannon, 2014). The current understanding of intracellular signalling pathways says BAT and beige adipose tissue thermogenesis is triggered by the release of norepinephrine from sympathetic nerve terminals which activate cellular β3ARs and in turn unleash a cascade of intracellular events which stimulate UCP1 synthesis, activity and overall adipocyte thermogenesis (Bartness et al., 2010). It has been suggested that these receptors may be the sole activator of BAT thermogenesis (Cypess et al., 2015), but other studies show white or brite adipose tissue may be able to sense temperature in a cell-autonomous fashion for activation of thermogenic response (Ye et al., 2013).

Further studies of BAT tissue by Blondin et al (2017) show that this tissue relies mostly on fatty acids from intracellular triglyceride to fuel the thermogenic activity of mitochondria. Blondin’s study further demonstrated that niacin-induced inhibition of lipolysis of these triglycerides suppresses BAT oxidative metabolism and glucose uptake, decreasing BAT thermogenesis. This decrease in BAT activity resulted in a reciprocal increase in shivering activity (via EMG), which again demonstrates the close physiological relationship of H$_{prod}$ mechanisms, BAT and ST during cold exposure in humans. Standardized quantification of H$_{loss}$ would further inform how overall H$_{prod}$ is manipulated with regards to changing BAT activity.
Skeletal muscle accounts for ~45-55% of body mass in humans, meaning muscle activation during physical activity, as well as during activities of daily living, can significantly alter H_{prod} in humans (Periasamy, Herrera, & Reis, 2017). With regards to H_{prod} during cold exposure, skeletal muscle is mainly considered as the most significant contributor to thermogenesis in humans, while BAT is often considered the sole or main specialized mechanism for NST. Despite these beliefs, researchers continue to pursue other areas of interest with regards to NST. In still developing field of muscle NST, Bal et al. (2012) demonstrated that skeletal muscle sarcoplasmic/endoplasmic reticulum Ca$^{2+}$ (SERCA)-based thermogenesis will compensate for BAT-deficient transgenic mice. Despite lacking BAT, the mice were able to adapt and compensate for the loss in H_{prod} via suspected muscle-based thermogenesis. Overall, this rodent study also showed that skeletal muscle based NST is upregulated as BAT activity is minimized. (Periasamy et al., 2017).

Skeletal muscle can be a contributor to NST via the activation of futile Ca$^{2+}$ cycling pathways, through SERCA ATPase. SERCA pumps are essential to controlling muscle contraction, maintaining normal cytosolic and intracellular Ca$^{2+}$ levels. Studies have previously examined how specialized heater organs in fish produce heat via continuous SERCA transport due to a constant ‘leak’ of Ca$^{2+}$ via ryanodine receptor 1. This process continually replenishes cystolic levels of Ca$^{2+}$, which are actively pumped back into sarcoplasmic reticulum (Bal et al., 2012; Periasamy et al., 2017). This is the same process previously identified in endothermic mammals SERCA-based NST. SERCA activity in muscles is regulated largely by sarcolipin, a small protein that has been identified as a regulator of the SERCA pump. Increases in sarcolipin levels can block Ca$^{2+}$ transport into sarcoplasmic reticulum, leading to SERCA uncoupling Ca$^{2+}$ transport from ATP-hydrolysis. Ultimately this means that Ca$^{2+}$ is released back into cytosol by
SERCA rather than crossing the membrane, and hydrolyzed ATP energy is released only as heat (Bal et al., 2012; Pant, Bal & Periasamy, 2016; Nowack, Giroud, Arnold, & Ruf, 2017).

SERCA-based thermogenesis in humans allows for skeletal muscle to contribute to human endothermy through a pathway independent of ST. In mammals where BAT is only found in insignificant quantities, or contributes minimally to NST, SERCA based NST in skeletal muscle may be responsible for much of the observed glucose uptake during cold exposure (Hanssen et al., 2015; Rowland, Bal, & Periasamy, 2015). These studies indicate that NST in humans may not solely dependent on BAT thermogenesis, and that skeletal muscle may be another significant contributor to H_{prod} during cold exposure.

It is important to realize that while primarily highlighting BAT, and SERCA in skeletal muscle, there is nothing to suggest there are not other processes that are contributing in a significant manner to H_{prod} in humans during cold exposure. NST is a universal term that encompasses all aspects of heat production in the human body outside of shivering. The specialized mechanisms observed in BAT and SERCA appear to be the two leading candidates as significant contributors to NST that can be modulated and upregulated during repeated cold exposures.

The actual process of measuring NST during any cold exposure is inherently challenging as both ST and NST are simultaneously contributing to H_{prod} (Gosselin & Haman, 2013; Jansky, 1973; van Marken Lichtenbelt & Daanen, 2003). To confound matters, increases in NST may also lead to decreases in ST, as shown by Cannon & Nedergaard (2011) in small mammals. As well, no direct method is currently available to quantify the independent contributions of NST to H_{prod}, but by combining several methods, we can create an accurate assessment of NST throughout a cold exposure. H_{prod} can be estimated by using indirect calorimetry which
calculates this based on VO\textsubscript{2}. As well, measurement of shivering intensity can be quantified via EMG. Using the EMG signal as a percent of maximal voluntary contraction (MVC) provides an unparalleled standard for evaluating changes in ST. Measurement of specific NST mechanisms can be done indirectly as well, as demonstrated by quantification of BAT activity using positron emission tomography/computerized tomography (PET/CT), which can measure glucose uptake through use of radioactive tracers. Multiple studies have repeatedly confirmed a positive correlation between increased BAT oxidative metabolism and increases in H\textsubscript{prod} (Ouellet \textit{et al.}, 2012; van der Lans \textit{et al.}, 2013; Yoneshiro \textit{et al.}, 2011). Indirect assessment of NST and ST contributions to H\textsubscript{prod} can be done by comparing levels of EMG activity pre- and post-acclimation when H\textsubscript{prod} is maintained between the two sessions using a standardized cold exposure. We can infer the relative contributions of NST and ST to H\textsubscript{prod} as a decrease in muscle activity as measured by EMG with the same total H\textsubscript{prod} suggests NST is increasing its relative heat contribution to H\textsubscript{prod}. This methodology is limited in that the exact mechanism of NST cannot be identified, and we can only theorize as to which of the cold induced NST mechanisms is increasing H\textsubscript{prod}, and to what extent they are doing so. As well, if H\textsubscript{loss} is not monitored and quantified, changes in vasoconstriction, core temperature, and heat retention may impact how results can be interpreted.

1.4. Cold shock response

During an intense, quick decrease in ambient temperature such as sudden cold water immersion, a ‘cold shock’ response (CSR) will be triggered. CSR is an immediate and severe threat for all individuals, driving a powerful response of the cardiovascular and respiratory systems. This includes gasping, hyperventilation, hypertension, as well as accelerated heart rate, know as tachycardia (Tipton, 1988; 1989), which represents a serious risk to individuals.
Ventilation can increase up to 5 times baseline levels during an intense cold immersion, which leads to a decrease in CO₂ which can eventually cause blood alkalosis (Wittmers & Savage, 2001). Tachycardia occurs, which may lead to a heart attack, and the reflex to gasp or inspire when falling into cold water has been deemed as a significant contributor to cold water drownings (Mekjavić, Prairie, Burke, & Lindborg, 1987). During prolonged exposure, cold water immersions eventually lead to bradycardia, which is a slowing of heart rate, despite the initial CSR which triggers a short spike in HR. Some of these CSR mechanisms may be related to mammalian evolutionary traits in humans. Leblanc, *et al.* (1975) conducted cold face tests among adults, immersing just the face in cold water. The results showed a marked decrease in HR, or bradycardia, a parasympathetic response, along with simultaneous increase in blood pressure, a sympathetic response. Leblanc’s paper suggested it may be due to the mammalian diving response, and cites research by Irving, Scholander & Grinnell (1941) on bradycardia in diving seals. Seals have a decreased HR during water immersion as a defense mechanism to hypothermia. The diving response is typically concomitant with intense vasoconstriction, and bradycardia reduces oxygen requirements while maintaining circulation to the heart and brain. This slowing of the HR and decrease in oxygen requirements from the mammalian diving reflex, or cold water exposure, is what makes inducing a mild hypothermia a standard of care for emergency room physicians when treating a patient after suffering cardiac arrest (Hypothermia after Cardiac Arrest Study Group, 2002). Cold water immersion has also been investigated as a method for sport recovery and is regularly used for this purpose. A review by Wilcock, Cronin and Hing (2006) examined cold-water immersion, or cryotherapy, as a recovery modality, and suggest a large part of this as a recovery is due to the perceived benefits of hydrostatic pressure in stimulating fluid movement, substrate movement from muscles and increased cardiac output.
As well, cold water specifically, as it induces vasoconstriction, decreases the inflammation response of any intense physical activity, helping to improve the rehabilitation process.

1.5. Classifying physiological changes

Acclimation, acclimatization and adaptation are terms used to describe changes in a system to better respond to a prolonged or repeated stress. In the case of human cold exposure, these three terms refer to how the physiological responses to cold exposure of vasoconstriction, ST and NST change following repeated stresses. Acclimation typically refers to controlled and regulated cold exposures in a laboratory setting; acclimatization refers to natural, outdoors, seasonal or otherwise unavoidable cold exposures. Adaptation is generally a term used to describe genetic predispositions from generations of evolution to confer favourable traits for thermoregulation (Kaciuba-Uscilko & Greenleaf, 1989). These terms have been used interchangeably throughout the academic literature, but for the purposes of this research, the above definitions will be used for reference.

Acclimatization to a natural cold northern environment has been demonstrated in Gaspé fishermen, who show an attenuated sympathetic and parasympathetic response to face and hand cold exposure, allowing for improved circulation during cold exposures (LeBlanc, 1962). A similar study by Leblanc et al., (1975) examined differences in response to cold hand and cold face tests between northern Indigenous populations, white males from southern Canada, and white males living in northern Canada. Their experimental results showed a spectrum of adaptation and acclimation, as Indigenous individuals showed a much smaller sympathetic-driven CSR, both blood pressure and HR remained close to baseline levels during cold stimulus, while white males from northern Canada had a larger increase in blood pressure, but a significantly smaller increase in blood pressure than those living in southern Canada, who
demonstrated the most significant shifts. Despite the divergence in sympathetic response, these
groups showed a similarly strong vagal, parasympathetic drive which presented as bradycardia.
Leblanc et al. (1975) suggested that the decreased sympathetic response observed in Indigenous
populations is related to acclimatization to the cold environment since a significant difference
was observed between white males living in the Arctic and those living in the south.

Cold acclimation is the process of repeating exposures to cold in a laboratory setting and
has a long history in the scientific literature. Studies have reported acclimation protocols that
have produced significant changes in the human physiological response to cold exposure. Davis
(1961) showed that an acclimation protocol involving sustained cold exposure for 8 h/day for 31
days, noticeably decreased shivering measured by electromyography (EMG), and these
physiological changes were recorded as early as 14 days into the protocol. Davis (1961) also
showed that VO$_2$, a direct correlate to metabolic rate and overall H$_{prod}$, remained the same pre-
to post-cold acclimation, an indicator that NST likely increased to compensate for decrease in H$_{prod}$
from muscle. Research by Blondin, et al. (2017) showed that a 4 week cold acclimation protocol
was able to elicit a decrease in whole-body shivering intensity of ~20%, measured via EMG. In
previous research (van Marken Lichtenbelt et al., 2009; Yoneshiro et al., 2011), subjective visual
measures or experimenter-led questioning were used to quantify shivering activity, but lack the
objectivity, standardization, and acute detail provided by EMG. This can lead to incorrect
assumptions of decreased shivering activity if not carefully supported with quantitative
methodology (Blondin et al., 2015).

With the increased interest in BAT in the past decade, recent research has shown that
cold acclimation can increase the volume of BAT depots in humans, as well as increase BAT
oxidative metabolism during a mild cold exposure. These results indicate an increased
contribution to \(H_{\text{prod}} \) via NST (Blondin et al., 2013; Blondin, et al., 2014; van der Lans et al., 2013). As mentioned above in detail, repeated cold exposures may also be one of the key approaches for stimulating the SNS and in turn leading to the ‘browning’ of white adipose tissues, increasing overall capacity of UCP1-mediated NST in humans (Cypess & Kahn, 2010; Nedergaard & Cannon, 2014). Increasing the activity of NST mechanism through cold acclimation can also have potential benefits beyond simply increased daily energy expenditure (EE) and increasing overall NST, but has been reported to increase insulin sensitivity in type 2 diabetes (Hanssen et al., 2015; van Marken Lichtenbelt et al., 2015).

It is well documented in the scientific literature that the human body will respond to cold exposures differently depending on the type, duration and intensity of exposure. Young et al. (1986) discusses three unique patterns of human response to repeated cold stresses. This was recently updated in a review by Castellani & Young (2016), which lays out the three distinct categories of changes in the human physiological responses to repeated cold exposures: habituation, metabolic acclimation, and insulative acclimation.

Habituation, also referred to as hypothemic acclimation, is characterized by blunted responses to cold exposure, including decreased shivering and vasoconstriction (Castellani & Young, 2016). This type of acclimation was also defined by Bittel (1992), who compared responses to a 1°C cold air stress test pre- and post- a 63 day journey to the North Pole. The study found that rectal temperature \((T_{\text{rec}}) \) was more susceptible to decreasing in a significant manner following the acclimatization provided by the 63 day trip. Similar observations were made in a pre- and post-acclimation study by Brazaitis et al., (2014) who looked at physiological response following 6 and 17 days of intermittent daily cold water immersion at 14°C. Following
6 days of this protocol of intermittent exposure, a hypothermic type of acclimation was evidenced by a lower T_{core}, and a quicker decrease in T_{core} over time, following acclimation.

Generally, metabolic changes have been observed in small non-hibernating mammals, characterized primarily by a specialized ability to increase H_{prod} when exposed to cold (Scholander, Hammel, Andersen & Loyning, 1958). In these small mammals, this is due to BAT stimulated via the norepinephrine sympathetic pathway (Kaciuba-Uscilko & Greenleaf, 1989). As discussed above, originally BAT was solely attributed to these small mammals, but we now know these specialized tissues exist in adult humans. Human research by Scholander, Hammel, Andersen, & Loyning (1958) demonstrated an average ~50-55% increase in 8 individuals’ H_{prod} following 6 weeks of outdoor cold exposure. This is a perfect example of how a metabolic acclimation effect would present itself. Similarly, Radomski & Boutelier (2001) identified metabolic acclimatization in individuals following 16 days in the Arctic. A generalized increase in overall H_{prod} among these individuals was identified following their Arctic expedition.

Finally, an insulative type of acclimation is described as improving an individual’s ability to effectively use peripheral tissues to decrease H_{loss} to the environment during cold exposure. This acclimation may present itself as a more intense, or efficient vasoconstrictive response, which leads to less blood flow to extremities, and therefore less H_{loss} to the environment. In an insulative acclimatized state, you may also observe a lower T_{skin} than in the non-acclimated state, which protects and maintains T_{core} with little to no increase in metabolic H_{prod} (Young et al., 1986). Although not directly quantified in the present study, an insulative response may be responsible for any observed increases in T_{core}.

Repeating cold exposures may be done in at a lower temperature for multiple hours over several weeks, or with shorter, more intense sessions, such as short half-hour cold water
immersion three or four times a week. Radomski & Boutelier (1982) suggest that the continuous acclimation process at a lower temperature will help induce a metabolic type of acclimation, while the intense, shorter duration will lead to insulative changes. Many studies over the years have examined the effect of cold water immersion on the physiological response of the human body. It is well known that H_{loss} in humans is much higher during cold water immersion than a cold air exposure due to the much greater conductive heat transfer of water. This means T_{rec}, or T_{core}, drops quicker and by a larger extent during cold water exposures than cold air exposures (Young et al., 1986), providing a more intense stimulus to skin and core thermoreceptors, and making some type of acclimation more likely, although responses vary among individuals.

SUMMARY AND PURPOSE OF INVESTIGATION

The human body is vulnerable to cold and relies on specific mechanisms to avoid critical and dangerous decreases in T_{core}. Depending on the modality of cold exposure, the severity, and the duration, H_{prod} via NST and ST is stimulated to prevent a critical decrease in body temperature to prevent cold injuries such as frostbite, hypothermia, muscle impairment, and potentially death. Repeated cold exposures or sustained environmental exposures have been shown to alter the human physiological response to cold stimuli, including changes to cardiovascular response, thermal comfort, as well as NST and ST mechanisms (Davis, 1961; Young et al., 1986; Brazaitis et al., 2014). Physiological changes stimulated via cold acclimation may help attenuate the negative effects of the CSR, including the gasp reflex and the tachycardia which both may pose life-threatening risks in cold water.

The purpose of my thesis is to investigate the effect of cold water immersion acclimation on reflex physiological responses and the relative contribution of NST and ST to total H_{prod} during a compensable cold exposure. This will be achieved through two overall objectives:
1) to quantify the effects of a 6 day, high-intensity, non-compensable cold acclimation protocol on thermal comfort as well as thermal and cardiovascular responses;

2) to quantify the effects of a 7 day, high-intensity, cold acclimation protocol on changes in relative contribution of NST and ST to total H_{prod} during an acute, compensable cold exposure. Specifically, we will look at: 1) quantifying changes in ST and H_{prod} during an acute compensable cold exposure at an intensity of ~ 1.5 times resting metabolic rate, before and after the 7 day cold acclimation protocol, and, 2) assess the changes in ST muscle recruitment pattern during the compensable cold exposure, including any change in onset of shivering.

I hypothesize that:

1) The non-compensable H_{loss} from cold water immersion during the cold acclimation protocol will: 1) induce changes in objective and subjective measures of cold tolerance via TCS and T_{core} response, and both measures will improve, increasing overall tolerance of the intense cold, and 2) core cooling rate and HR response will attenuate from day 1 to day 7.

2) During the acute, compensable cold exposure, ST will decrease while H_{prod} remains steady following the cold acclimation protocol, and recruitment pattern for ST will not change significantly, while intensity decreases during the acute cold exposure.

The aim of Chapter 2 is to quantify the changes of 6 repeated 1h cold water immersions on T_{core}, thermal comfort and HR using esophageal probes, subjective scales and a HR strap, respectively. Chapter 3 will quantify further physiological changes from the full 7 days of cold acclimation by examining ST and NST during a compensable, acute cold exposure, with the use
of EMG and indirect calorimetry. Finally, general conclusions are presented in Chapter 4, summarizing the observed changes in cardiovascular response, ST and NST following several days of a high-intensity, short-term, cold acclimation protocol.
CHAPTER 2:

CHANGES IN SUBJECTIVE AND OBJECTIVE MEASURES OF COLD TOLERANCE
DURING 7 DAY COLD-WATER IMMERSION ACCLIMATION PROTOCOL
INTRODUCTION

During a sudden intense cold exposure, the human body experiences the SNS ‘cold-shock’ response (CSR). In humans, the physiological changes associated with the CSR include: tachycardia, increased ventilatory rate, peripheral vasoconstriction and hypertension (Tipton, 1989). As well, cold exposures that are prolonged are associated with cold injuries including frostbite, loss of dexterity, and hypothermia. Any human involved in an unexpected, accidental or prolonged cold-water immersion is at serious, life-threatening risk, and this intense cold exposure contributes to 372,000 drownings worldwide (Barwood, et al., 2017). Consequently, a better understanding of all the physiological responses associated with cold exposures provides important information that can be used to help prevent cold related injuries, and deaths. Tipton (1989) reviewed CSR and cold-water immersion and identified that unlike other physiological ‘reflex’ responses, the CSR does not appear to serve a beneficial purpose. Tachycardia has been observed when individuals are immersed in cold-water within as little as 2-3 s of exposure. Subjects immersed in 10°C water have a mean increase in HR of ~20 beats·min⁻¹ greater than an individual in 27°C water. The initial responses to cold-water immersion were further examined in another study by Tipton, Eglin, and Golden (1998). Two groups underwent repeated 3 min immersions in 10°C water. Despite similar T_{skin} responses between groups, the group that was habituated to the cold exposure had a lower HR and respiratory rate. Based on their study design, Tipton et al. (1998) concluded that this was indicative of habituation to the cold-water shock response being centrally mediated.

Following the initial CSR, another physiological cold response mediated by the parasympathetic nervous system (PNS) is observed, known as the mammalian diving response. The diving response is characterized by bradycardia and vasoconstriction of the extremities.
These physiological responses are concurrent with an increase in H_{prod} to offset H_{loss} to the environment, which includes an increase in ST, the primary heat producing mechanism in the human body. Depending on the intensity of the exposure, NST mechanisms are also initiated to compensate for H_{loss} (van Ooijen, et al., 2005; Blondin, et al., 2014b). A non-compensable cold exposure is one where H_{prod} is less than H_{loss} to the environment, and H_{loss} cannot be offset by defense mechanisms, resulting in a net decrease in body temperature. Understanding these concepts allows for better understanding of the methodology for effective cold acclimation.

Cold-water provides a unique modality for cold acclimation, as the convective properties of water results in more rapid H_{loss}, and more substantial decline than during cold air exposure. This can more readily provide a non-compensable H_{loss} resulting in significant decreases in T_{core}, regardless of acclimation status. It is believed that a decrease in T_{core} will provide a strong stimulus for eliciting a physiological acclimation effect in participants undergoing repeated 1h cold-water immersions (Stocks, et al., 2004; Imbeault, Mantha & Haman, 2013). Non-compensable cold exposure may be most effective for altering the subjective and objective measures of cold tolerance (Blondin, et al., 2014; Sramek, et al., 2000) potentially through increased upregulation of NST mechanisms. This could downregulate the sympathetic-regulated CSR, while improving dexterity, maintaining T_{core}, as well as reducing the undesirable perceived cold sensations. This may improve overall outcomes, functionality in the cold and reduce drowning deaths related to sudden, accidental and unexpected cold-water immersions.

Glaser (1950) provided early evidence that physiological changes to cold environments does occur in humans, despite the lack of definitive science prior to 1950. Their research project identified how acclimatization alters blood circulation, and their early trials showed that 3 days in a moderately cold environment led to a lesser drop in T_{skin} and T_{rec}, leading to higher levels of
comfort. Davis (1961) expanded research into cold acclimation by looking at the effect of a 31 day environmental cold exposure among a group of young men who were living outdoors with minimal layers of clothing in an attempt to elicit changes in physiological response to a cold air stress test (CAST). Davis (1961) examined the ST and NST contributions via EMG and H_{prod} calculations, respectively, and identified a significant decrease in shivering activity pre- and post-acclimation. Recently, Blondin et al. (2017) conducted a 4 week cold acclimation study which demonstrated that whole-body shivering intensity decreases from pre- to post-acclimation, following up on previous research that demonstrated increases in BAT activity and NST overall, using proven cold acclimation protocols (Blondin et al., 2015). Similar studies from van der Lans et al. (2013) ran cold acclimation without water immersion as well and focused on changes in NST. They found that 10 consecutive days of cold exposure significantly increased NST, through recruitment of brown fat, as evaluated with PET/CT.

Several other studies specifically used intense cold-water as the modality of choice for cold acclimation. Radomski and Boutelier (1982) conducted a study with 9 days of daily cold-water immersion for 20-40 min at 15°C. They found that following cold acclimation, participants had no elevation in overall H_{prod}, and a simultaneous decrease in T_{rec} during cold exposures. They concluded this was evidence of a hypothermic type of acclimation, known as habituation, which blunts the initial physiological responses of the CSR. These results also corroborate research from Young et al. (1986), where participants were also acclimatized via cold-water immersions. Their study included 5 immersions a week, for 5 consecutive weeks, at 18°C for 90 min. They showed a decrease in T_{rec} during a standardized cold air stress test from pre- to post-cold acclimation, again concluding a habituation type of acclimation response occurred. A third similar cold acclimation protocol was employed by Brazaitis et al. (2014),
where participants were immersed in a 14°C bath for 17 total sessions over 20 days. Participants were kept in the water until T_{rec} reached 35.5°C, or for a total immersion period of 2h. This protocol was intermittent in nature, and involved the participant leaving the bath at 20 min intervals for a duration of 10 min. Again, a hypothermic type of acclimation was said to be observed, as cooling rate increased along with the number of cold acclimation sessions.

The overall objective of the current chapter is to quantify changes in cold tolerance, as well as physiological and subjective changes in human cold response following an intense, 6 day cold acclimation protocol. Specifically, cold tolerance will be measured objectively via core temperature and subjectively via a thermal comfort scale. We believe that cold tolerance will be highly variable as quantified by objective changes in T_{eso} and subjective evaluations of thermal comfort. We expect cold tolerance on day 7 will have improved over the course of 6 full days of acclimation, in both measures. The second specific objective of this chapter is to quantify changes in cooling rate and HR response to cold-water immersion. It is expected that on day 7, following the 6 days of cold-water immersion, these responses will become attenuated. We predict that core cooling rate, based on T_{eso} will decrease, and the tachycardia that is normally observed from the CSR of cold-water immersion will also decrease, as has been observed in individuals who become habituated to cold exposures.
MATERIALS AND METHODS

Subjects

Seven healthy, non-acclimatized adult males volunteered for this study. The study protocol was approved by the Health Sciences Ethics Committee of the University of Ottawa, done in accordance with the Declaration of Helsinki. All participants filled out a health questionnaire and gave informed consent for their participation. Exclusion criteria included cold or heat acclimated/exposed participants (ex. Outdoor workers), age outside of 18 to 35 years, smokers and anyone using dietary supplements or stimulants. Anthropometric measurements (height, weight), body fat as measured by hydrostatic weighing and VO2max (CSEP treadmill protocol) were taken before the first experimental session (Table 2.1). During the 7 day cold-water immersion, no restriction was placed on participants’ diets, although participants were asked to refrain from alcohol throughout the trial and caffeine prior to cold acclimation sessions. Participants were also advised to maintain their physical activity routines, although they were asked to avoid exercising before and up to 2h following each cold-water immersion.

Cold Acclimation Design

Each of the non-cold acclimatized men participated in a 7 day cold acclimation protocol consisting of a cold-water exposure lasting 1h/day. All the acclimation sessions were conducted in a laboratory at Montpetit Hall at the University of Ottawa. On these days, participants were encouraged to arrive as early as possible, typically between 0700 and 1000. Participants changed into swim trunks and were outfitted with a Polar HR monitor (Polar Electro Canada, QC) and neoprene gloves and boots. Baseline measures of HR, blood pressure (BP), tympanic and esophageal (Teso) temperatures, as well as thermal comfort scale ratings were taken. To begin, participants submerged themselves up to their clavicles in a 14°C cold-water bath. Bath
temperature was maintained by adding ice every 10-15 min to return the bath to 14°C. \(T_{\text{core}} \) was monitored and recorded every 5 min, as described below. Once 1h was complete, or \(T_{\text{core}} \) reached 35°C, participants exited the water, were dried immediately and helped into dry clothing. Participants were wrapped in blankets and provided warm headwear but were otherwise given time to rewarm through their own physiological processes. After a minimum of 15 min, and a significant rise in \(T_{\text{core}} \) (as assessed by either tympanic or esophageal probe), participants were stripped of all equipment and could leave the laboratory.

Core temperature

\(T_{\text{core}} \) can be measured with different techniques, commonly: ear (tympanic), esophageal, or rectal. During the 1h cold-water immersions was monitored using two different methods. As a safety precaution to avoid \(T_{\text{core}} \) dropping below our lower cut-off of 35°C, a medical grade tympanic thermometer (Tyco Kendall Genius™ 2 Infrared Thermometer, Tyco International, Ireland) was used in both the left and right ear prior to entry into the cold-water bath, and subsequently at 5 min intervals throughout the entire 1h cold-water immersion, or until \(T_{\text{core}} \) reached 35°C.

During day 1 and day 7, in addition to the tympanic infrared thermometer, a Mon-a-therm™ General Purpose Temperature Probe (Mallinckrodt, Thames, UK) was inserted nasally to measure \(T_{\text{eso}} \). While \(T_{\text{rec}} \) is frequently used in acclimation studies (O’Brien, et al., 2000; Young et al., 1986; Bittel, 1992), esophageal can provide a sensitive measure of core organs, as it is placed more centrally in the thoracic cavity, ~30 cm down the esophagus.
Core cooling rate was calculated based off T_{core} measurements obtained via tympanic thermometer and esophageal probe. Change in T_{core} ($\Delta{}^\circ\text{C}$) was divided by elapsed time (in min) for every 5 min segment of the cold-water immersion.

Heart Rate

HR was collected using a Polar Electro wrist watch which remotely recorded HR per one second from a HR strap worn directly over the sternum, just below the pectoral muscles, on the participants skin and would submerge with the participant. HR was recorded once 5 min before cold-water immersions, and continuously throughout the 1h immersion, as well as a minimum of 15 min post-immersion. Mean values for HR were calculated using the second-by-second recordings provided for each cold acclimation session to calculate a mean value for each 5 min interval.

Thermal Comfort Scale

Each day, prior to immersion in the cold-water bath, as well as at 5 min intervals throughout the 1h cold-water immersion, participants were asked to rate their thermal comfort and perception of the cold-water stimulus using a categorical +4 (very hot) to -4 (very cold) scale (Fanger, 1970), to assess subjective perception of cold intensity before and after acclimation. Only 5 participants had subjective ratings of perceived cold recorded for all 7 days of the cold-water immersions.

Statistical analysis

Data are expressed as the mean ± SEM. Changes in 1h mean values of T_{eso}, HR, and TCS ratings were analyzed using a two-tailed paired Student’s t test to determine significant
differences in physiological responses between day 1 and day 7 of cold-water immersion. Cooling rate was calculated based on the change in T_{eso} over each 5 min interval, and a mean value, as well as peak cooling, were compared between day 1 and day 7 of cold-water immersion. Statistical differences were considered significant when $p \leq 0.05$. Analyses were performed using either Microsoft Excel 2016 (Microsoft Corporation, WA, USA) or SPSS, version 22 (IBM, NY, USA).
RESULTS

Cold-water immersions

Seven participants completed 7 days of cold water immersions, 1h/day, in the 14°C water bath. Of the 49 total 1h cold-water immersions conducted during this study, only three individual sessions (2 participants) had to be terminated before completion of the full 1h cold-water immersion due to T_{core} dropping below 35°C. None of these early terminations occurred on day 1 or day 7.

Core temperature

Mean T_{core}, as measured by esophageal probe (T_{eso}), during the 1h cold-water immersion increased from 36.6 ± 0.2°C to 36.9 ± 0.1°C ($p<0.0005$), from day 1 to day 7 of the acclimation protocol. The results are illustrated in figure 1. Based on tympanic measurements collected throughout the 7 days of cold water immersion, a daily decrement in T_{core} was induced during every 1h water immersion.

Cooling Rate

Mean cooling rate was calculated based on change in T_{core} across the 1h cold acclimation (Δ°C/min). Results show that there was no difference between mean cooling rate among participants from a mean of -0.014 ± 0.008 °C·min$^{-1}$ to -0.011 ± 0.012 °C·min$^{-1}$ on day 1 and day 7, respectively. This equated to a mean decrease in T_{core} from start to finish of the 1h cold-water immersion of 0.81°C ± 0.55°C and 0.67°C ± 0.75°C on day 1 and day 7 ($p = 0.15$).

Peak cooling rate was calculated based on the change in T_{core} during each 5 min segment. Peak cooling was -0.043 °C·min$^{-1}$ on day 1 and -0.034 °C·min$^{-1}$ on day 7. No difference was observed in cooling rate from day 1 to day 7.
Heart Rate

Figure 1 shows participant mean HR through the entirety of the 1h cold acclimation decreased significantly from 76.9 ± 5.9 b·min⁻¹ to 73.4 ± 6.2 b·min⁻¹ (p=0.002) from day 1 to day 7 of cold-water acclimation.

Mean HR following initial immersion, which illustrates changes to the initial CSR, at the 5 min mark in the cold water on day 1 was 87.8 ± 6.0 b·min⁻¹ while day 7, was significantly lower at 76.5 ± 8.3 b·min⁻¹ (p < 0.005).

Thermal Comfort Scale

Five participants completed the thermal comfort scale on all 7 days of cold-water immersion, on a scale from +4 (very hot) to -4 (very cold), with mean TCS for the duration of the 1h immersion increasing from -2.82 ± 1.00 to -2.24 ± 1.02 (p<0.05) from day 1 to day 7 of cold. This value is based off mean TCS scores for only 5 participants for each 5 min segment. At no point during the 1h immersion does TCS cold score on day 7 exceed the self-reported cold score on day 1 at the same relative time point.
Table 2.1 Participant characteristics measured pre cold acclimation

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td>Age (years)</td>
<td>24.1 ± 1.5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178.2 ± 8.4</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>82.2 ± 4.9</td>
</tr>
<tr>
<td>BSA* (m²)</td>
<td>1.98 ± 0.08</td>
</tr>
<tr>
<td>VO₂max (ml·kg⁻¹·min⁻¹)</td>
<td>57.0 ± 7.7</td>
</tr>
<tr>
<td>HRmax (b·min⁻¹)</td>
<td>194.5 ± 1.4</td>
</tr>
<tr>
<td>Siri Body Fat (%)</td>
<td>15.7 ± 2.3</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM

BSA, Body surface area; VO₂max, maximal oxygen consumption during CSEP treadmill protocol; HRmax, maximal heart rate during treadmill protocol.
Figure 1. Cold water immersion acclimation. (A) T_{eso}, (B) heart rate and (C) thermal sensation during an acute $14^\circ C$ cold water immersion and during a rewarming period on Day 1 and Day 7 of the cold acclimation protocol. Values are means ± SEM.
DISCUSSION

The cold acclimation protocol used in this study showed significant changes in physiological responses in just 6 days of 1h cold-water immersions at 14°C. This includes an increase in mean T_{eso} during cold-water immersion from day 1 to day 7, as well as a significant increase in mean thermal comfort rating and a significant decrease in mean HR during the first 5 min of immersion. These results indicate that physiological responses to cold exposure such as core temperature, thermal comfort, and heart rate can be attenuated to different degrees through repeated cold water immersions.

The CSR has been documented during intense cold exposures such as cold-water immersion, and represents a risk to survival, as evidenced by the number of drownings associated with the negative physiological responses observed (Barwood et al., 2017; Tipton, 1989). Our study shows that a relatively short and intense (6 day, 1h, at 14°C) exposure protocol induces cold acclimation in young male participants. Objective and subjective measures of cold tolerance among participants during the final 1h 14°C water immersion showed improvement in resilience to the cold. Previous cold acclimation protocols have been based on weeks of repetition at moderate temperatures to achieve physiological changes, and a short-term, high intensity protocol with natural rewarming had not been sufficiently evaluated for its potential to acclimate adults to cold. Attenuation of CSR has been demonstrated following cold acclimation that involves a decrease in both T_{core} and T_{skin} in humans. This includes an increase in sympathetic nervous activity, characterized by increased norepinephrine circulation, but an opposing decrease in tachycardia and ventilatory response during the initial immersion of cold-water (Castellani & Young, 2016; Golden & Tipton, 1988; O’Brien et al., 2000; Tipton et al., 2013). Many previous cold-water acclimation protocols involved longer duration immersions,
with numerous sessions. Young et al (1986) involved 5 weeks of immersions at 18°C for 5 days per week. O’Brien et al. (2000) also used a cold-water immersion acclimation protocol of 5 weeks, with daily 1h immersions, but at 20°C. Jansky et al. (1995) allowed for more rest during each week, with 3 cold water acclimations at 14°C for 1h each week, for 4 to 6 weeks. Another unique factor for our acclimations was the rewarming protocol for each participant following cold water immersion. While studies by Tipton et al. (2013) and Golden & Tipton (1988) involving cold water as the modality for acclimation, sustained for upwards of 90 min, they also finish by rapidly rewarming participants in water at 40°C back to pre-immersion T_core. The current acclimation protocol allowed for unassisted rewarming relying solely on thermogenic processes, blankets and clothing to rewarm. Rewarming times varied between individuals, and participants reported anecdotally that shivering lasting up to several hours post-immersion. This was intentional to allow for a prolonged cold stimulus beyond the 1h exposure, which we hypothesized would contribute to a stronger physiological acclimation response. It was the belief in designing this study that an esophageal probe is more likely to accurately reflect the temperature of critical organs in the thoracic cavity such as the heart and lungs. Tympanic and T_rec, while representative, are more indirect and can be more susceptible to variation due to environmental factors and vasoconstriction as they are more distal from core organs. Most reviewed cold acclimation protocols used measurements of T_rec, which may be a limitation to other studies.

Core temperature changes

Cold-water immersion is known to provide a strong cold stimulus, as the human body is unable to compensate for the heat lost to the environment (water). We observed a significant decrease from initial T_eso to the end of cold immersion at 1h everyday throughout our
acclimation protocol. The changes from day 1 to day 7 of the study show that there can be a change in physiological response to this cold exposure. In particular, the T_{eso} recorded shows that mean T_{eso} is sustained at a higher temperature on day 7 relative to day 1. A difference was found between mean T_{eso} on day 1 and day 7. As well, the mean onset of decrease in T_{eso} observed during individual cold-water immersions was delayed, and while T_{eso} dropped below baseline value after only 25 min on day 1, T_{core} did not drop below baseline levels until the measurement at 35 min on the final day, day 7.

This result is opposite from reported values of T_{core} during CAST from Young et al. (1986), who found a decrease in T_{core} following several weeks of cold water acclimations, although this value was obtained via T_{rec} measurement. T_{rec} was lower during their standardized cold exposure following multiple days of cold-water acclimation, explained as a habituation response, which allowed for a delayed onset of ST. This decrease in T_{rec} during cold exposure following water acclimation was also supported by research from O’Brien et al. (2000), and Brazitis et al. (2014), who also reported a lower T_{core}, measured rectally following acclimation. It was suggested that acclimation led to a delayed metabolic response, and less intense vasoconstrictor response since the body was habituated to the cold. This delayed response and habituation could lead to a dangerous decrease in body temperature, and hypothermia. This may be due to increased whole-body insulative capacity, as well as hypothermic or habituation responses. A combination of insulative and hypothermic acclimation was observed by Brazaitis et al. (2014) after 16 days of acclimation, although the acclimation stimulus used for their study was less intense than the protocol in this study. Collectively, this provides strong evidence for a regional cooling model in humans following acclimation that could improve survival outcomes or comfort by maintaining optimal body temperature around key organs for longer.
Cooling rate

There is no difference in cooling rate (°C·min⁻¹) from the first day of cold immersion, to the final day (Day 7), when T_{eso} was again collected. Despite no statistical significance, it also demonstrated how there was a decrease in the overall rate of T_{core} cooling, as measured by the esophageal probe. This is again contrary to what has been observed in similar cold acclimation protocols that measure T_{core} rectally. Brazaitis *et al.* (2014) reported an increase in cooling rate through 17 days of cold acclimation sessions in 14°C water. In the study, they hypothesize that the observed decrease in T_{rec} following 6 days of acclimation is an example of a habituation response, which has been typically characterized as more likely to lead to hypothermia, as H_{loss} is accelerated due to a decline in the vasoconstrictive response. The results of the current study show that T_{eso} does not follow the same pattern in T_{core} changes as previously reported in the scientific literature.

Thermal comfort scale (TCS)

An improved thermal comfort rating during cold exposure was also observed following 6 days of water immersions. Mean TCS score during the full 1h immersion increased from -2.8 to -2.2 (p < 0.05). This subjective measure shows that acclimation decreases discomfort and cold sensation. Improvements in cold sensation have been previously reported as well following other cold acclimation protocols (Brazaitis, 2014; van der Lans *et al.*, 2013). This is likely an impact of the habituation response that occurs, and a decreased response from the adrenal hormones during a cold exposure.

Heart rate response

Observations of HR throughout all 7 days of cold water immersion showed a strong attenuation of the CSR, driven by the SNS that also elicits tachycardia. A significant decrease
was observed in mean HR across the whole 1h immersion, from 76.9 b·min⁻¹ to 73.4 b·min⁻¹ as well as at the 5 min mark of immersion, which decreased significantly from a mean 87.8 b·min⁻¹ on day 1 of acclimation to a mean 76.5 b·min⁻¹ on day 7. Tipton (1989), in describing the CSR, discusses how habituation through repeated exposures to intense cold can decrease the SNS response and increase the parasympathetic response, which leads to a decreased HR. This was also supported by research from Mäkinen et al. (2008) that showed a significantly lower increase in norepinephrine during cold exposure following 10 days of cold acclimation, suggesting less activation of the SNS and subsequent decreased HR response. This type of change in HR has been commonly observed following cold acclinations (Brazaitis, et al., 2014; Young et al., 1986). It is important to also consider other confounding factors that may play a role in HR. Research has shown that anxiety can inhibit habituation to cold exposure and increase heart rate despite cold acclimation. This is likely due to the involvement of the frontal and prefrontal cortices of the brain in both habituation-type acclimations as well as in anxiety (Barwood et al., 2017), and this inhibition may influence how acclimated individuals respond physiologically to an unexpected cold water immersion.
CONCLUSION

Together, all these results are consistent with an increased cold-induced habituation, or hypothermic-type response that is also concurrent with an insulative type of acclimation (Young et al., 1986; Castellani & Young, 2016). The cold acclimation protocol employed was sufficient to elicit changes in the reflex physiological responses of participants. The increase in T_{core}, the decrease in HR upon immersion and throughout the 1h immersion, as well as the decrease in subjective cold sensation, all indicate the success of cold acclimation. We did not quantify the changes in metabolic H_{prod} or H_{loss} throughout the 7 day cold acclimation protocol, therefore the exact mechanisms or processes responsible for the observed changes are not clear. Despite this, given the results observed, it follows that the 6 days of successive cold immersions at 14°C improved either H_{prod} or insulative capacity. The increase in thermal comfort, in conjunction with the higher T_{core} indicates a habituation to the cold exposure. This suggests that cold tolerance increased following cold acclimation, as hypothesized. Furthermore, while cooling rate did not change in a significant manner, we were able to identify that mean HR immediately following immersion decreased following cold acclimation. This provides evidence of an attenuation of the sympathetic response to intense cold, which is another trademark physiological response of cold habituation, which was expected following 6 days of cold acclimation. More broadly, while it is unclear how these laboratory results could translate into a real, life-threatening situation, this provides evidence that cold acclimation could theoretically help reduce the negative physiological effects of the CSR, and potentially increase survival in dangerous, cold situations.
CHAPTER 3:
CHANGES IN HEAT PRODUCTION DURING A STANDARDIZED ACUTE COLD EXPOSURE PRE- AND POST COLD ACCLIMATION
INTRODUCTION

During a mild cold exposure, the initial response is detected in the skin, as cutaneous thermoreceptors depolarize and initiate a SNS response via the pre-optic area of the brain, even without a decrease in T_{core} (Imbeault et al., 2013). This stimulus triggers the release of norepinephrine via the hypothalamus which in turn leads to activation of heat producing pathways, as well as a vasoconstrictive response within the peripheral vasculature. Vasoconstriction is observed in the peripheral tissue which pushes blood into deeper veins and arteries, increasing pressure, cardiac output and stroke volume, leading to a decrease in heart rate (Stocks et al., 2004). Simultaneously, mild cold exposure will increase EE through H_{prod}, specifically the two divisions of metabolic H_{prod}; ST and NST (Blondin et al., 2014).

ST is accepted as the primary contributor to H_{prod} in humans, and is stimulated quickly upon decrease in ambient temperature as detected by skin thermoreceptors, even during a mild cold exposure (Imbeault et al., 2013). A close correlation between shivering intensity and VO$_2$ as measured by indirect calorimetry, previously led researchers to believe that all metabolic H_{prod} necessary to maintain homeostasis came from ST (Bell, Tikuisis & Jacobs, 1992; Iampietro, et al. 1960). This was before the discovery of active BAT in adults, as it was believed humans had only a minimal capacity for NST, although humans do rely on BAT during infancy due to a lack of shivering capacity (Kaciuba-Uscilko & Greenleaf, 1989; Nedergaard; Bengtsson & Cannon, 2007). While not relied on primarily for thermogenesis during a net negative heat exchange with the environment, NST mechanisms have been shown to contribute in a significant manner to H_{prod} during mild cold exposure. The contribution of NST was originally identified in other mammals, particularly in cold exposed rats, and thoroughly reviewed in the past. Research by Hardy (1961) reported on the physiology of temperature regulation, and further work by Himms-
Hagen (1984) focused solely on NST, and BAT in mammals. Both reviews summarized how the process of increasing H_{prod} in response to cold exposure was identified as a sympathetically mediated process with increases in circulating catecholamines immediately following cold exposure.

BAT is an NST tissue and was recently identified as physiological present and relevant in adult humans (Nedergaard, Bengtsson, & Cannon, 2007). The tissue incorporates a unique protein, UCP1, in high quantities which releases potential energy in mitochondria purely as heat (Cannon & Nedergaard, 2004; Nedergaard et al., 2001; Ouellet et al., 2012; Virtanen et al., 2009). BAT is activated by cold exposure, sensing increases in norepinephrine from SNS activation (Bartness, Vaughan, & Song, 2010; Chechi, Carpentier, & Richard, 2013; Cypess & Kahn, 2010; Nedergaard & Cannon, 2014) and BAT has been shown to be impacted by acclimation status. Skeletal muscle has also been a focus of research examining H_{prod}, but primarily as a contractile organ (ST) and not for NST. More recent advances show not only H_{prod} through the contraction of muscle fibers (ST), but meaningful contributions via NST mechanisms, specifically sarcoplasmic endoplasmic reticulum Ca$^{2+}$ ATPase (SERCA). SERCA works to transport cystolic Ca$^{2+}$ into the muscle lumen during the contraction-relaxation process, which costs ATP, with heat as a by-product (Bal et al., 2012; Pant, Bal & Periasamy, 2016; Nowack, Giroud, Arnold, & Ruf, 2017). Bal et al. (2012) demonstrated that SERCA-based thermogenesis will compensate for the loss of BAT in genetically modified mice.

Research into cold acclimation has shown throughout the year that contributions of ST and NST mechanisms to H_{prod} can be altered. Davis (1961) demonstrated that shivering activity decreases following acclimatization, though H_{prod} remains the same, implying changes in the relative contributions of ST and NST. Similarly and more recently, Blondin et al., (2017)
showed a ~21% decrease in total shivering intensity during a sustained cold exposure from pre-to post- 4 week cold acclimation. This acclimation protocol simultaneously showed that metabolically active BAT tissue increased in volume by ~45%, and cold-induced BAT oxidative metabolism increased by ~182%, demonstrating that NST can upregulate when ST decreases. Similar studies by van der Lans et al (2013) showed an increase in NST through recruitment of BAT, and through the ‘browning’ of white adipocytes to present more UCP1 in their makeup. Their research showed an increase by 37% in BAT volume following cold acclimation. These studies show that both ST and NST pathways can be modulated following cold acclimation, although it is unknown if the short-term, intense, 7 day cold water immersion acclimation protocol employed in the present study will have an observable effect on relative contributions of ST and NST, and to what extent.

The overall objective of this chapter is to quantify thermogenesis and the relative contributions of NST and ST to H_{prod} during an acute, compensable cold exposure, following 7 days of cold acclimation. Specifically, we will look at: 1) quantifying changes in ST and H_{prod} during an acute compensable cold exposure at an intensity of ~1.5 times resting metabolic rate, before and after the 7 day cold acclimation protocol, and, 2) assess the changes in ST muscle recruitment pattern during the compensable cold exposure, including any change in onset of ST. It is hypothesized that: 1) ST will decrease while H_{prod} remains steady following the cold acclimation protocol, and 2) recruitment pattern for ST will remain the same, while intensity decreases throughout the acute cold exposure.
MATERIALS AND METHODS

Subjects

The same group of participants as described in Chapter 2 were used in this current chapter as well, to further quantify the effects of the cold acclimation protocol on heat production and shivering during a mild cold exposure. All 7 individuals participated in the mild cold exposure pre- and post-cold acclimation. Rather than a non-compensable cold exposure that elicited intense physiological responses as was used during acclimation (Chapter 2), this acute exposure was longer and milder, allowing for quantification of normal physiological responses to cold exposure and the ST and NST contributions to H_{prod} when core temperature did not drop.

Cold acclimation protocol

The cold acclimation design was described in detail in Chapter 2. It involved 7 days of cold water immersion for 1h at 14°C between the two mild cold exposures.

Mild cold exposure protocol

Acute cold experimental sessions wearing a liquid-conditioned suit (LCS) that allowed for clamping T_{skin} at 26°C were conducted immediately before and after the 7 day cold acclimation to assess muscle-specific ST and H_{prod}. Each acute cold experimental session started between 0700 and 0930, following a 24h period with no strenuous physical activity, caffeine or alcohol consumption. The evening before the test, participants were provided with a standardized meal (2489 kJ or 595 kcal; 55% CHO, 21% fat, 24% protein) and subjects were asked to arrive at the laboratory following a 12-14h fast. Upon arrival subjects changed into either undergarments or shorts. They were then instrumented with T_{skin} sensors and surface electromyography (EMG) electrodes. Participants were then instructed to complete a series of
muscle contractions to measure maximal voluntary contractions (MVC) of each muscle being measured for shivering activity. Participants would then don the LCS and be asked to void their bladders. Subjects would then lay reclined for 1h in ambient conditions (23-25°C) for baseline measures. Following this, the LCS would be perfused with cold water, initially -10°C to accelerate T\textsubscript{skin} reaching the target of 26°C. Water temperature was regulated using feedback from T\textsubscript{skin} and a custom designed MATLAB (Mathworks, Natick, MA, USA) program along with a temperature and flow controlled circulation bath, to maintain subject T\textsubscript{skin} at 26°C throughout the 2.5h exposure. Thermal responses, including tympanic temperature; shivering activity; H\textsubscript{prod} and fuel selection were measured during baseline and throughout the 2.5h of LCS cold exposure.

Thermal responses

T\textsubscript{core} was measured at regular intervals throughout the acute cold using a medical grade tympanic thermometer. Mean T\textsubscript{skin} during the 2.5h acute cold exposure was monitored continuously using heat flux transducers fixed to the skin (area-weighted equation from twelve sites: forehead, chest, biceps, forearm, abdomen, lower and upper back, front and back calf, quadriceps, hamstrings and hand) (Haman, *et al.*, 2004; Dubois & Dubois, 1916).

T\textsubscript{skin} during both the pre- and post-cold acclimation sessions was clamped at 26.0°C. To achieve this, we used a feedback system controlling the circulation water bath. At the beginning of the session, -10°C water was perfused in the LCS, which facilitated a quick drop in T\textsubscript{skin} to 26.0°C. The 12 sites weighted T\textsubscript{skin} provided feedback through the temperature sensors to the computer and on to the water bath, allowing for continual warming or cooling of the circulating
water, to best maintain a continuous exposure of 26.0°C T_{skin}, which was achieved quickly and maintained continuously throughout the 2.5h mild cold exposure.

Metabolic measures and Heat production

H_{prod} and fuel selection were quantified by indirect calorimetry using a Field Metabolic System, a flow-through open circuit respirometry system (Sable Systems, Las Vegas, USA) measuring VO$_2$ and carbon dioxide production (VCO$_2$). The following equations were used to calculate total carbohydrate (CHO$_{\text{ox}}$) and lipid (FAT$_{\text{ox}}$) oxidation rates:

\[
(1) \quad \text{CHO}_{\text{ox}} \text{ (g·min}^{-1} \text{)} = 4.59 \text{VCO}_2 \text{ (l·min}^{-1} \text{)} - 3.23 \text{VO}_2 \text{ (l·min}^{-1} \text{)}
\]
\[
(2) \quad \text{FAT}_{\text{ox}} \text{ (g·min}^{-1} \text{)} = -1.70 \text{VCO}_2 \text{ (l·min}^{-1} \text{)} + 1.70 \text{VO}_2 \text{ (l·min}^{-1} \text{)}
\]

The values of VCO$_2$ (l·min$^{-1}$) and VO$_2$ (l·min$^{-1}$) were corrected for the volumes of O$_2$ and CO$_2$ corresponding to protein oxidation (1.010 and 0.843 l·g$^{-1}$, respectively). Protein oxidation was estimated at 66 mg/min based on previously published urinary urea extraction measurements (Haman, Legault, and Weber, 2004; Haman et al., 2002).

Composition of inspired (ambient) and expired (canopy) air, barometric pressure, and water vapor were measured using a Field Metabolic System, an open circuit respirometry system (Sable Systems, Las Vegas, USA). Flow rate through the canopy was regulated using a mass flow pump (Flow generator, Sable Systems, Las Vegas, USA).

Substrate oxidation calculations for CHO and lipids from non-protein. Protein oxidation was assumed to contribute 12.5% of H_{prod} during both baseline and cold as previously observed by Haman et al (Haman, Legault, Weber, 2004). Vallerand & Jacobs (1989) found that there is no increase in protein oxidation during a mild cold exposure.
Shivering intensity

Shivering activity was measuring using a wireless EMG system (Delsys Myomonitor III, USA). EMG surface electrodes were placed on 4 muscles: *m. trapezius superior* (TRA), *m. pectoralis major* (PEC), *m. rectus femoris* (RF), and *m. vastus lateralis* (VL). Each skin site was prepared using 3M Red Dot Trace Prep (3M Canada, London, ON, Canada) and ethanol swabs (Alcohol Prep Pad, Dukal Corporation). The EMG electrodes were placed on the right side of the body, directly over each muscle belly, parallel to muscle fibers. This was marked with an indelible skin marker to allow consistent placement between experimental sessions. Raw EMG signals were collected at 1000Hz, filtered to remove spectral components below 20Hz and above 500Hz, as well as 60 Hz contamination from related harmonics, using custom-designed MATLAB algorithms (Mathworks, Natick, MA, USA). Shivering activity of the 4 individual muscles was measured for 10 min during baseline and continuously throughout the acute cold exposure. Participants were encouraged and reminded to minimize voluntary muscle activity during recording periods.

Shivering intensity of individual muscles was determined from root-mean-square (RMS) values calculated from raw EMG signals using a 50 ms overlapping window (50%). Baseline RMS values (5 min average measured prior to cold exposure) are subtracted from the shivering RMS values and the RMS values obtained from MVCs. Shivering intensity was normalized to RMS MVC.

Statistical analysis

Data are expressed as the mean ± SEM. A paired Student’s *t* test was used to compare between acute cold experimental sessions (pre v post cold acclimation), as well as from start to finish of
cold acclimation (day 1 v day 7). Analyses were performed using either Microsoft Excel 2016 (Microsoft Corporation, WA, USA) or Prism, version 6.00 (GraphPad, San Diego, CA, USA).

RESULTS

Thermal Responses

There was no significant difference in mean tympanic temperature during the mild cold exposure from pre- to post- cold acclimation sessions (p>0.05, NS). \(T_{\text{skin}} \) during mild cold was clamped at 26.06°C ± 0.02°C and 26.09°C ± 0.01°C for the pre- and post-acclimation sessions, respectively. Mean bath temperature during the 2.5h exposure did not change between day 1 and day 7.

Heat Production

Pre- to post-cold acclimation \(H_{\text{prod}} \) values are shown in Fig. 3.2 and 3.3. Area under the curve (AUC) was calculated using Riemann’s midpoint sum to estimate \(H_{\text{prod}} \) throughout the entire 2.5h acute cold exposure. There was no significant difference (p=0.28) in changes in mean \(H_{\text{prod}} \) AUC from pre-cold (1304.2 ± 77.81 kJ), to post-cold acclimation (1226.9 ± 102.7 kJ). No significant difference in metabolic fuel selection means or AUC were observed during the 2.5h acute cold exposure (p=0.88).

Shivering Response

Changes in shivering intensity during the mild cold are shown in Figure 2.2 and 3.3. Shivering intensity increased throughout the mild cold exposure in both pre- and post-acclimation conditions. AUC was calculated using Riemann’s midpoint sum to estimate shivering intensity (%MVC) throughout the entire 2.5h acute cold exposure. There was a significant difference in mean AUC shivering intensity (p<0.005), which decreased by 38% from
pre- (214 ± 9 %MVC x 150 min) to post-cold acclimation (134 ± 12 %MVC x 150 min).

Significant differences in AUC from pre- to post-cold acclimation were found in individual muscles (p<0.005), including the trapezius (234 ± 85 to 167 ± 73 %MVC x 150 min), pectoralis (338 ± 83 to 209 ± 57 %MVC x 150 min), the rectus femoris (122.5 ± 30 to 58 ± 17 %MVC x 150 min). No significant difference was seen in AUC pre- to post-acclimation in the vastus lateralis (p=0.09).
Figure 2.1. Mean skin and water bath temperatures. Changes in mean skin temperature (T_{skin}, °C) and circulating water bath temperature (T_{bath}, °C) measured during an acute cold exposure pre- (○) and post- (●) cold acclimation. Values are means ± SEM.
Figure 2.2. Thermogenic responses to acute cold exposure. Changes in rate of metabolic heat production (kJ·min⁻¹) and shivering intensity (%MVC) during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are means ± SEM.

*Significant difference in AUC for shivering intensity, p < 0.05.
Figure 2.3. Overview of heat production and shivering (A) Area under the curve (AUC) heat production (kJ·150 min), (B) total shivering AUC (%MVC·150 min), (C) fuel selection by % contribution to total energy expenditure (EE), and (D) mean individual muscle total shivering by AUC (%MVC·150 min), during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are means ± SEM. * Pre- vs. post-cold significant difference, p < 0.05.
DISCUSSION

This study provides evidence that NST can increase, leading to reduced ST following just 7 days of cold acclimation in 14°C water. We observed a decrease in AUC shivering, as well as mean shivering intensity during the 2.5h mild cold pre-to post-cold acclimation, while \(H_{prod} \) was maintained. While not directly quantifying NST activity, this provides the indirect evidence that NST mechanisms upregulated to maintain \(H_{prod} \) when ST decreased. Reducing ST during cold exposure, while maintain \(H_{prod} \), may provide a survival advantage by reducing the discomfort of involuntary muscle contractions and its effects on locomotion and dexterity (Meigal, 2002).

Thermal Responses

Clamping the cold stimulus during the 2.5h LCS exposure based on a \(T_{skin} \) of 26°C was meant to provide a standardized and reproducible cold exposure for pre- and post-acclimation. Our results showed that we were able to reproduce the stimulus between both acute cold sessions. The decrease in \(T_{skin} \) to 26°C was not so intense to decrease \(T_{core} \), which did not change significantly during either pre- or post-cold 2.5h acute cold exposures. We did observe a significant increase in \(H_{prod} \) from start to finish of both acute cold sessions, which can be attributed to cold induced ST and NST activation.

Heat production

\(T_{core} \) was monitored throughout the duration of the acute cold exposure, with simultaneous quantification of \(H_{prod} \) via indirect calorimetry and ST indirectly via EMG. \(H_{prod} \) during cold exposure includes the increase observed via ST and NST, naturally initiated to prevent decreases in body temperature. Previous studies have observed a significant increase in metabolic heat production via ST, reaching up to 5 times metabolic rate (Eyolfson, et al. 2001).
By quantifying H_{prod} from pre- to post-acclimation, we observed that no significant change occurred overall, and H_{prod} increased on a similar trajectory during the 2.5h pre- and post-cold acclimation acute cold LCS exposures. With no observed change in heat production following acclimation, and a significant decrease in ST of ~40%, it is necessary to evaluate NST contributions to human H_{prod} following acclimation.

Nonshivering Thermogenesis (NST)

As discussed previously, in mammals, thermogenic BAT is known as the greatest contributor to total NST. Following a cold acclimation protocol consisting of 10°C exposure for 2h for 4 weeks (5 days/week) using a LCS, Blondin *et al.*, (2017) showed that a ~20% decrease of ST was associated with a ~45% increase in BAT volume and a ~2.2-fold increase in its metabolic activity. Unfortunately, in the present study, changes in BAT volume and metabolic activity were not assessed and therefore, the potential role of BAT in reducing ST by ~40% remains undetermined. Previously, studies have shown that NST that can increase through repeated mild-cold exposure in humans by increasing BAT thermogenesis (Blondin *et al.*, 2014; Blondin *et al.*, 2017a; Blondin *et al.*, 2017b). Despite increasing BAT volume by 45% and its thermogenic capacity by 150-182% in these previous studies, there was no observed effect on fuel selection in the current study. It is possible that the thermogenic contribution of BAT increased in this study but did not impact fuel selection when exposed to a mild acute cold. Due to the relatively small size of BAT (<1% of body weight in humans) (van der Lans *et al.*, 2014; Blondin *et al.*, 2014) and generally low thermogenic contribution (<1% of H_{prod}) (U Din *et al.*, 2016), it is more probable that another source of NST, or a combination of sources is responsible for the improved thermal comfort and reduced body cooling during the acclimation in cold-water and the increased NST during the acute mild cold sessions wearing the LCS.
One of these other sources is skeletal muscle, and it constitutes another important target for cold-induced NST as muscle accounts for 42% of total body weight (Kim et al., 2002). Studies have shown that acute cold exposure increases proton leak in muscle, which functions as a form of NST (Wijers et al., 2008; Blondin et al., 2017a). The increased association between shivering intensity and cold-induced thermogenesis previously described following a 4 week mild cold acclimation, was previously attributed to a potential whole-body improvement in the coupling of oxidative phosphorylation across skeletal muscles (Blondin et al., 2017a). As there was no change to the strength of the relationship post-acclimation during our standardized acute cold exposure, this may indicate that perhaps proton leak was not abolished in the present study. Finally, in contracting muscles, cytosolic Ca\(^{2+}\) levels rapidly increase and sarcoplasmic reticulum SERCA must pump Ca\(^{2+}\) back into the SR to maintain its store, accounting for 24-58\% of tissue metabolic rate in contracting muscles in rodents (Rolfe & Brown, 1997). This Ca\(^{2+}\) release is critical for muscle contractions during shivering, but in cold-acclimated rodents Ca\(^{2+}\) leaks into the cytosol via ryanodine receptors leading to excessive activation of SERCA to pump Ca\(^{2+}\) back into the SR, generating heat in the process (Bal et al., 2012). With humans possessing significantly greater levels of the SERCA regulatory proteins (Babu et al., 2007) compared to rodents and relying to a greater extent on skeletal muscle to produce heat, this thermogenic mechanism could be significant in humans and serve as a form of NST following cold acclimation. Further investigations are required to determine the contribution of these skeletal muscle-derived thermogenic processes following such a cold acclimation.

In summary, we have demonstrated that 7 days of cold water immersion can decrease shivering intensity by ~40\%, nearly double what we previously described in response to a 4 week compensable cold acclimation. The decreased shivering intensity for the same H_{prod} in
response to a mild acute cold exposure, suggests a significant increase in the contribution of NST following 7 days of cold water immersion. This had no effect on whole-body fuel selection, which suggests that the source of NST must rely on a similar fuel mixture to produce this heat. Although several studies have examined the effects of repeated cold exposure on H_{prod} in humans, few have ever simultaneously quantified the contribution of shivering and by extension the contribution of NST to this heat production.
CONCLUSION

Our study confirms that NST can be substantially modulated and decrease ST contribution to H_{prod} following a 7 day cold acclimation protocol in 14°C water. As in other mammals, such a reduction in ST during cold exposure provides a survival advantage by reducing the discomfort of involuntary muscle contractions and its effects on dexterity and voluntary movements. However, it remains that identifying the exact mechanisms involved in increasing NST during acute cold exposure or following cold acclimation is particularly difficult at the tissue or at the whole-body level and was not within the scope of this study. This study not only fills a gap to improve our understanding of the physiological and metabolic responses to chronic cold, but it also provides critical information to develop strategies to improve human survival and tolerance in cold climates. Further work studying this subject is necessary to understand the thermogenic processes that may be modulated under such a short but intense cold acclimation and determine the minimal acclimation duration and cooling temperature required to elicit similar metabolic changes.
CHAPTER 4:
GENERAL CONCLUSION
Results from Chapter 2 and 3 show that reflex physiological responses to cold water can be attenuated following 7 days of cold acclimation. It was also observed that this cold acclimation was able to alter the contribution of ST and NST to overall H_{prod} during acute cold exposure. Future research in this area should continue to explore the effect of cold water acclimation on physiological heat production mechanisms. Specifically, it would be beneficial to understand which NST mechanisms increase heat production and to what extent they are able to upregulate activity. Accurate measurement of heat production via BAT and skeletal muscle mechanisms would help to better understand the pathways through which cold water exposure alters cold response physiology. It will be important to continue further research in cold water acclimation with various age groups, body types, and between genders to fully understand potential physiological and confounding factors that may influence thermoregulation. From a practical standpoint, it is important to understand how this research may be applied in a real-world setting. Measuring changes in dexterity and fine motor skills pre- and post-acclimation could answer some fundamental questions on how useful acclimation may be for translating to jobs with regular cold exposure. In terms of survival, understanding how acclimatized individuals differ in terms of surviving extended cold exposures may be valuable. Does a decreased shivering rate decrease glycogen depletion and maintain muscle glycogen reserves for a longer period of time? Or does a true survival scenario offset and potential benefits from a laboratory-induced acclimation? There are many possible avenues to better understanding acclimation and cold physiology in human populations, with many important questions. Future work in the field of cold and cold survival will help us understand what limits human functionality and survival in the cold.
REFERENCES

Blondin DP, Daoud A, Taylor T, Tingelstad HC, Bezaire V, Richard D, Carpentier AC,

Keipert, S., Jastroch, M. Brite/beige fat and UCP1 – is it thermogenesis? Biochimica et Biophysica Acta – Bioenergetics. 1847(7):1075-1082.

APPENDIX: JOURNAL ARTICLE PUBLICATION

Attached is the published article, “Seven days of cold acclimation substantially reduces shivering intensity and increases non-shivering thermogenesis in adult humans.”

Citation:

RESEARCH ARTICLE | Passive Properties of Muscle

Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans

Kyle Gordon,1 Denis P. Blondin,2 Brian J. Friesen,1 Hans Christian Tingelstad,1 Glen P. Kenny,1 and François Haman1

1Faculty of Health Sciences, University of Ottawa, Ottawa, Canada; and 2Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada

Submitted 24 December 2018; accepted in final form 17 March 2019

Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol 126: 1598–1606, 2019. First published March 21, 2019; doi:10.1152/japplphysiol.01133.2018.—Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% (P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplant the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation.

NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.

INTRODUCTION

Humans exposed to a cold environment rely on the recruitment of heat-conserving and heat-producing cold-defense responses to limit and counteract the heat lost to the surrounding environment. In nonexercising humans, metabolic heat production (Hprod) is sustained by the combined activation of nonshivering thermogenesis (NST) and shivering thermogenesis (ST). Both brown adipose tissue (BAT) (22, 29) and skeletal muscle proton leak (3, 31) have been identified as significant contributors to NST during acute cold exposure in lean, young, unacclimated individuals. However, ST remains the predominant form of heat production in cold-exposed adult humans. The recruitment of ST, in particular, can affect thermal comfort and work performance in the cold by impairing gross and fine neuromuscular performance and coordination (9, 21), ultimately impacting the odds of survival. Consequently, over several decades, investigators have attempted to identify a cold acclimation protocol that could help elicit significant changes in thermoregulatory, metabolic, and neuromuscular responses as a means of improving thermal comfort and work performance in the cold (9, 32).

Despite the breadth of research examining the effects of repeated cold exposure on the thermoregulatory responses to an acute cold, only two studies have quantified the effects of cold acclimation on changes in ST in young healthy humans. In 1961, Davis showed that 31 days of cold air exposure (~12°C, 8 h/day) resulted in an ~80% reduction in ST and ~15% reduction in whole body Hprod in healthy men previously acclimatized to summer conditions (seasonal average of ~20–30°C (10). More than five decades later, Blondin et al. (3) showed that 4 wk of daily compensable cold exposure in unacclimatized men using a liquid conditioned suit (LCS) (for 2 h/day at 10°C, 5 days/wk) was sufficient to elicit a ~20% decrease in ST response for the same given Hprod. In addition, by combining isotopic and nuclear imaging methods in these same individuals, the authors also showed that BAT volume and thermogenic capacity increased following cold acclimation by 45% and 182%, respectively, and concomitantly reduced skeletal muscle proton leak (3). Although these results are promising as a means of improving cold tolerance, identifying a cold acclimation protocol that can shorten the time required...
to increase the relative contribution of NST to total H_{prod} but reduce that of ST would be particularly valuable in this field of physiology.

Therefore, the purpose of this study was to determine whether a short-duration, high-intensity cold acclimation would reduce the contribution of ST to total H_{prod} for the same absolute cold stress. More specifically, we quantified whether seven consecutive days of 14°C water immersion for 1 h, resulting in a maximum of 2°C decrease in core temperature, would result in a significant decrease in ST and improve thermal sensation between a preacclimation compared with a postacclimation acute cold exposure at the same given H_{prod}. In 1996, Young (32) suggested that the greatest metabolic effects resulting from repeated cold exposure would require a sufficiently uncompensable cold exposure stimulus that would result in a decrease in core temperature. By using such a cold acclimation approach, we predict will result in a greater cold-induced stimulation of nonshivering thermogenic pathways and reduce the contribution of shivering to total heat production, compared with what was previously shown from a compensable cold acclimation protocol (3).

METHODS

Participants

Seven healthy, nonacclimatized adult males between the ages of 20 and 29 yr old volunteered for this study, which was performed in accordance with the Declaration of Helsinki and approved by the Health Sciences Ethics Committee of the University of Ottawa. All participants filled out the Physical Activity Readiness Questionnaire (PAR-Q+) and gave written informed consent before their participation. Individuals that were cold or heat acclimatized, taking any medications or dietary supplements, or who had known metabolic, respiratory, or cardiovascular disease were excluded.

Body height, mass, surface area, and density, as well as maximal oxygen consumption (V_{O2max}) were measured during the screening session. Body height was measured using an eye-level physician stadiometer (model 2391; Detecto Scale Company, Webb City, MO), while body mass was measured using a digital weight scale (model CBY150X; Mettler Toledo) with a high-performance weighing terminal (model IN560; Mettler Toledo). Measurements of body height and mass were subsequently used to calculate body surface area (11). Body density was measured using the hydrostatic weighing technique and used to estimate body fat percentage (27). Maximal oxygen consumption (V_{O2max}) was determined by incremental treadmill exercise to volitional fatigue. Breath-by-breath oxygen consumption was measured by an automated indirect calorimetry system (Medgraphics Ultima, Medical Graphics, St. Paul, MN), and V_{O2max} was taken as the highest average oxygen consumption recorded over 30 s (Table 1).

Cold Acclimation

Volunteers participated in a 7-day cold acclimation protocol consisting of daily cold water immersions lasting no more than 1 h a day. On these days, participants arrived between 0700 and 1000 to begin the water immersions. They changed into swim trunks and were fitted with a heart rate monitor (V800 watch with H7 earlink, Polar Electro Oy, Kempele, Finland), neoprene gloves, and boots. After baseline measures, participants were submerged up to their clavicles in a 14°C circulated cold water bath. Bath temperature was maintained by adding ice every 10–15 min. On days 1 and 7, esophageal temperature (T_{es}) was measured using a pediatric thermocouple probe of ~2-mm diameter (Mon-a-therm general purpose, Mallinckrodt Medical, St.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
</tr>
<tr>
<td>Age, yr</td>
<td>24 (4)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>178.2 (8.4)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>82.2 (12.9)</td>
</tr>
<tr>
<td>BSA, m²</td>
<td>1.98 (0.19)</td>
</tr>
<tr>
<td>V_{O2max}, ml·kg⁻¹·min⁻¹</td>
<td>57.0 (7.7)</td>
</tr>
<tr>
<td>HRmax, beats·min⁻¹</td>
<td>195 (3)</td>
</tr>
<tr>
<td>Body fat%, %</td>
<td>15.7 (5.6)</td>
</tr>
</tbody>
</table>

Data are expressed as means (SD). BSA, body surface area; HRmax, maximal heart rate during treadmill protocol; V_{O2max}, maximal oxygen consumption.

Louis, MO) inserted ~40 cm past the entrance of the nostril and confirmed every 5 min with aural canal temperature measurement (T_{aural}, Welch Allyn Braun ThermoScan Pro 6000; Braun, Kronberg, Germany). On days 2–6 of the cold water immersion acclimation, only T_{aural} was used to monitor changes in core temperature, to reduce the discomfort for participants. Once the 1-h immersion was completed or the core temperature reached 35.0°C (T_{es} for days 1 and 7, T_{aural} for days 2–6), participants exited the bath, were dried, and passively warmed before changing into warm clothing.

Preacclimation and Postacclimation Acute Cold Exposure

Acute cold experimental sessions were conducted the day before and the morning immediately following the 7-day cold acclimation (day 8) using a LCS combined with a mean skin temperature (T_{skin}) clamping system set at 26°C for the duration of the cold exposure, as described previously (8). These sessions were started between 0700 and 0930, following a 24-h period, with no strenuous physical activity, caffeine, or alcohol consumption. The evening before the test, participants were provided with a standardized meal (2489 kJ or 595 kcal; 55% CHO, 21% fat, 24% protein), and subjects were asked to arrive at the laboratory following a 12–14-h fast. Upon arrival, subjects changed into undergarments and were then instrumented with T-type (copper/constantan) thermocouples integrated into heat flow sensors (Concept Engineering, Old Saybrook, CT) and surface electromyography electrodes (Myomonitor, Delsys, Natick, MA). Participants were then instructed to complete a series of muscle contractions to measure maximal voluntary contractions (MVC) of the muscles being measured for shivering activity. Participants were then fitted with the LCS and asked to void their bladders. Subjects then lay reclined for 60 min in ambient conditions (23–25°C), following which, baseline measures were taken. Thereafter, the LCS was perfused with cold water, initially at −10°C to accelerate T_{skin} reaching the target of 26°C. Water temperature was regulated as described previously using feedback from skin temperature sensors and a custom-designed program along with a temperature and flow-controlled circulation bath, to maintain subject skin temperature at 26°C throughout the 150-min exposure (8) (Fig. 2B). Thermal responses, including tympanic temperature, shivering activity, and metabolic rate were continually measured during baseline and throughout the 150 min of cold exposure.

Thermal responses. Core temperature during the mild acute cold exposures was measured from T_{aural}. Mean T_{skin} during the 150-min acute cold exposure was monitored continuously using heat flux sensors fixed to the skin (using area-weighted equation from 12 sites (weighting) (18): forehead (7%), chest (9.5%), biceps (9%), forearm (7%), abdomen (9.5%), lower back (9.5%), upper back (9.5), front calf (8.5%), back calf (7.5%), quadriceps (9.5%), hamstrings (9.5%), and hand (4%)], and maintained around 26.0°C.

Metabolic measures and heat production. Whole body metabolic rate and fuel selection were quantified continuously by indirect calorimetry using a Field Metabolic System, a flow-through open
circuit respirometry system (Sable Systems, Las Vegas, NV) measuring oxygen consumption (\(\text{VO}_2\)) and carbon dioxide production (\(\text{VCO}_2\)). Carbohydrate and lipid utilization rates were calculated using the following Eqs. 1 and 2:

\[
\text{CHO}_{\text{rat}}(\text{g/min}) = 4.59\text{VCO}_2(\text{l/min}) - 3.23\text{V}_2(\text{l/min}) \quad (1)
\]

\[
\text{FAT}_{\text{rat}}(\text{g/min}) = -1.70\text{VCO}_2(\text{l/min}) + 1.70\text{V}_2(\text{l/min}) \quad (2)
\]

where \(\text{VCO}_2\) (l/min) and \(\text{V}_2\) (l/min) were corrected for the volumes of \(\text{O}_2\) and \(\text{CO}_2\) corresponding to protein oxidation (1.010 and 0.843 l/g, respectively). Protein oxidation was estimated at 66 mg/min (14 –16).

Statistical Analysis

A repeated-measures ANOVA was used to analyze acclimation- and temperature-related differences in thermal responses (\(T_{\text{skin}}\), \(T_{\text{water}}\), and \(T_{\text{water}}\) temperature), metabolic responses (\(\text{H}_{\text{prod}}\), \(\text{CHO}_{\text{prod}}\), and \(\text{FAT}_{\text{prod}}\)), EMG activity (shivering intensity) over time (\(T_{\text{prod}}\) and \(T_{\text{prod}}\) activity), and thermal sensation over the 60 min by asking the subjects to identify their perception of the environment in four categories (from 1 being the coldest and warmest ever experienced, respectively, to 0 feeling neither cold nor warm). This is a modification of the scale described previously (23).

Preacclimation and Postacclimation Acute Cold Exposure

Thermal responses. A computer-controlled system set at a \(T_{\text{skin}}\) of 26°C (SD 0.1) was used to standardize the stimulus for \(\text{H}_{\text{prod}}\) pre- and post-cold acclimation. The resulting changes in \(\text{H}_{\text{prod}}\) and \(\text{H}_{\text{prod}}\) were compared before and after cold acclimation (Fig. 2). By design, \(T_{\text{skin}}\) fell significantly during cold exposure, stabilizing at 26.1°C (SD 0.04) before and 26.0°C (SD 0.08) after the cold acclimation (Fig. 2A). Water temperature circulating through the suit increased progressively, from −6.2°C (SD 0.8) °C at the start of cooling and stabilizing at 14.9°C (SD 2.5) by the end of cold exposure preacclimation and from −6.8°C (SD 1.2) to 15.0°C (SD 2.6) postacclimation (Fig. 2B). There was no difference in starting (\(P = 0.32\)) or steady-state water temperature (\(P = 0.89\)).

Heat production and fuel selection. Changes in \(\text{H}_{\text{prod}}\) pre- to post-cold acclimation are shown in Fig. 3. Time course and total heat production (as area under the curve, AUC) were the same before and after cold acclimation (Fig. 3A, A and C, effect of time \(P < 0.0001\)). The \(\text{H}_{\text{prod}}\) increased on average 1.54-fold from 6.3 kJ/min (SD 0.3) [304 ml O\(_2\)/min (SD 35)] at baseline to 10.2 kJ/min (SD 1.4) [482 ml O\(_2\)/min (SD 67)] in the last 30 min in the cold before acclimation and from 6.2 kJ/min (SD 0.3) [292 ml O\(_2\)/min (SD 39)] at baseline to 9.6 kJ/min (SD 2.6) [458 ml O\(_2\)/min (SD 125)] in the last 30 min in the cold after acclimation (Fig. 3A, \(P < 0.0001\)). The AUC for \(\text{H}_{\text{prod}}\) or the total amount of heat produced, averaged 1304 kJ·150 min (SD 205) before cold acclimation and 1227 kJ·150 min (SD 272) after cold acclimation (Fig. 3C, \(P = 0.28\)). Similarly, as shown in Fig. 4, there was no significant difference in CHO and lipid use (rate or AUC) during the 150 min in the cold. Total CHO utilization over the 150 min averaged 35.6 g (SD 11.7) [580 kJ (SD 191) and 51% \(\text{H}_{\text{prod}}\) (SD 11)] before cold acclimation and 34.8 g (SD 12.4) [568 kJ (202) and 44% \(\text{H}_{\text{prod}}\) (SD 8)] after cold acclimation (\(P = 0.88\)). Total lipid utilization over 150 min averaged 13.6 kJ (SD 2.4) [553 kJ (SD 98) and 38% \(\text{H}_{\text{prod}}\) (SD 12)] before cold acclimation and 12.0 g (SD 4.3) [488 kJ (SD 176) and 43% \(\text{H}_{\text{prod}}\) (SD 9)] after cold acclimation (\(P = 0.37\)).
Shivering response. Changes in shivering intensity during the mild cold are shown in Fig. 3. Shivering intensity increased throughout the mild cold exposure in both preacclimation and postacclimation conditions (Fig. 3B; P < 0.001). Total shivering intensity (AUC) decreased by 36% (SD 20) from 205% MVC·150 min (SD 92) preacclimation to 132% MVC·150 min (SD 85) postacclimation (P < 0.003). This postacclimation decrease in shivering activity occurred primarily in the musculus pectoralis [2.3% MVC (SD 1.5) to 1.5% MVC (SD 1.2), P < 0.001] (Fig. 5A). There was no association between the acclimation-induced change in total heat production and shivering intensity (r = 0.07; P = 0.88) (Fig. 5B). There was a strong association observed between cold-induced thermogenesis and shivering intensity both preacclimation and postacclimation (r = 0.84 preacclimation versus r = 0.84 postacclimation, P < 0.0001) (Figs. 5A and C). The slopes of the regression lines were not different preacclimation compared with postacclimation (1.6 kJ·min⁻¹·%MVC⁻¹ preacclimation versus 1.9 kJ·min⁻¹·%MVC⁻¹ postacclimation; P = 0.31).

DISCUSSION

Previous investigations have shown that daily mild cold exposure can increase the thermogenic contribution of NST and decrease ST within 10–20 days (3, 10). In one instance, ST was reduced by 50% within 10 days of daily cold air exposure (10). Others, however, have posited that the greatest metabolic effects resulting from a cold-acclimation protocol would likely require a daily stimulus sufficiently cold or long enough in duration to elicit a decrease in core temperature (32). We show that during an individualized acute cold exposure designed to elicit a ~1.5-fold increase in metabolic rate both before and after the cold acclimation, ST is 36% lower following a 7-day cold water immersion acclimation protocol (Fig. 5). This observation confirms that NST can be increased substantially by as little as 7 days of cold exposure and can compensate for any decreases in ST to maintain thermogenesis. Together, these observations exemplify the important metabolic flexibility of humans to sustain H˙prod under compensable cold conditions using various thermogenic mechanisms (3) and confirm that changes in the contribution of NST can occur even with only a week of daily cold water immersion.

Seven-Day Cold Water Immersion Acclimation Protocol

When compared with heat acclimation, far less is known on the capacity of humans to modify thermoregulatory processes in response to repeated cold exposure. Following up on our previous cold acclimation work (3, 5, 8), we opted to use in this study an uncompensable cold acclimation protocol consisting of 7 days of 14°C water immersion in an attempt to induce faster and larger increases in the contribution of NST to total H˙prod than previously obtained from a milder cold acclimation. As such, the present 7-day cold acclimation protocol was designed to induce daily decreases in core temperature of ~1°C (1.2 (SD 0.8) on day 1 and 0.7°C (SD 0.7) on day 7), resulting in intense shivering during the water immersion and the subsequent passive rewarming after the immersion (17, 25). Although the cooling stimulus was colder than our previous compensable cold acclimations, which used 10°C water immersion.
throughout the 7-day cold-water immersion protocol. Consequently, the exact processes responsible for the reduced rate of body core cooling remain unknown. However, these results appear to suggest a potential blunted sympathetic response upon entering the cold water and that NST, likely from skeletal muscles, was significantly upregulated to support a greater thermogenic rate. This increased thermogenic response would be consistent with a “metabolic” acclimation phenotype that would be anticipated from an uncompensable cold acclimation protocol (32).

Contribution of ST and NST Following Intense 7-Day Cold Acclimation

Quantifying the relative contribution of ST and NST to total \dot{H}_{prod} during cold exposure in humans presents a number of important challenges (see topical review in Ref. 4). The greatest challenge relates to the fact that whole body NST cannot be quantified directly because it involves all cold-induced stimulation of thermogenic processes in various cells of the body that are not linked to muscle contractions. For this reason, we can typically only qualitatively assess modifications in NST based on changes in whole body ST activity at the same given H_{prod} (3, 5, 12). To achieve this objective, we elected to use a liquid-cooled suit coupled with a computer-controlled chiller to clamp T_{skin} and associated changes in H_{prod} during an acute cold exposure before and after cold acclimation. Using this method, we clamped average T_{skin} at 26°C to achieve the same time course and overall ~1.6-fold increase in H_{prod} before and after cold acclimation (Fig. 3A). Under these standardized conditions, we showed that whole body ST was reduced by ~40% after the cold acclimation protocol when compared with responses measured before the cold acclimation (Fig. 3D). This change can be explained by a combined slower progressive rise in ST and a more than ~30% reduction in average ST intensity measured in the last 30 min of cold exposure (Fig. 3). This large reduction of ST at the same H_{prod} clearly indicates that cold acclimation resulted in a major stimulation in NST processes. This has significant implications for cold endurance, tolerance and ultimately, survival. Whether such significant changes in the recruitment of NST processes can be accomplished with a shorter similar acclimation protocol or slightly longer but milder cold-water immersion is also of importance. This 7-day cold acclimation protocol was selected to account for what we believed would be the minimum amount required to observe physiologically relevant differences in H_{prod} and ST, based on the only other cold acclimation protocol to examine these outcomes simultaneously using moderate cold exposure (10). It is important to note that changes in shivering intensity observed in the present study may be specific to conditions where increases in heat loss induced by cold exposure may be matched by increases in H_{prod}, termed compensable cold exposure. It is unclear whether these changes in thermogenic responses would also be observed during uncompensable cold exposure such as cold-water immersion.

Of great interest is also the effects of a cold acclimation and associated reduction in ST on the reliance on CHO to fuel heat production (13). Previous work has shown that muscle glycogen accounts for ~80–85% of all the glucose required to sustain total CHO oxidation, at cold exposures eliciting a
metabolic heat production that is 2.0 to 3.5 times above basal levels (13). Therefore, we were interested in determining whether the ~40% decrease in shivering intensity following cold acclimation found here could preserve the limited CHO reserves, which despite its significant reliance in the cold only represent ~1% of total energy reserves (7). Fuel selection can be modified by recruiting different muscle groups, different subpopulations of muscle fibers within the same muscle, and different metabolic pathways within the same muscle fibers. Here, we show that shivering intensity was reduced in all muscles examined following cold acclimation, but decreased most significantly in the pectoralis, falling by 35% (Fig. 5).

Interestingly, this overall reduction in ST and increase in NST did not modify absolute rates and relative contribution of CHO and lipid to total \(H_{\text{prod}} \) during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Percent change in heat production (B) and shivering intensity (F) from before to after cold acclimation for each participant. Values are expressed as means ± SD (n = 7 men). Repeated-measures ANOVA with Bonferroni post hoc test. **** \(P < 0.0001 \) vs. Time = 0 min. #### \(P < 0.0001 \) vs. preacclimation. Student’s t-test used in D.

Contribution of Various Tissues and Mechanisms to NST

Our study confirms that NST can increase substantially to reduce ST following a 7-day cold acclimation in 14°C water. As in other mammals, such a reduction in ST during cold exposure confers a survival advantage by reducing the discomfort of involuntary muscle contractions and its effects on locomotion and motor control (9, 21). However, identification of the exact tissues and mechanisms involved in increasing NST during acute cold exposure or following cold acclimation is particularly difficult at the tissue and/or whole body level. Previously, we have shown that one source of NST that can increase through repeated mild-cold exposure in humans is BAT thermogenesis (3, 5, 8). Despite increasing BAT volume by 45% and its thermogenic capacity by 150–182% in these previous studies, this had no effect on fuel selection. Therefore, it is possible that the thermogenic contribution of BAT increased in the present study but did not impact fuel selection when exposed to a mild acute cold. Given its small relative size (<1% of body weight in humans) (6, 30) and thermogenic contribution (<1% of whole body heat production) (29), it is more probable that another source of NST is responsible for the improved thermal sensation and reduced body core cooling in the cold water immersion and the increased NST in the acute mild cold.

Skeletal muscles constitute another important target for cold-induced NST, as it accounts for 42% of total body weight...
We and others have shown that acute cold exposure increases proton leak in the vastus lateralis (3, 31), another source of NST, but 4 wk of mild daily cold exposure abolishes this response (3). In addition, in contracting muscles cytosolic Ca\(^{2+}\) levels rapidly increase, and sarco(endo)plasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) must pump Ca\(^{2+}\) back into the SR to maintain its store, accounting for ~24–58% of tissue metabolic rate in contracting muscles in rodents (26). This Ca\(^{2+}\) release is critical for muscle contractions during shivering, but in cold-acclimated rodents, calcium leaks into the cytosol via ryanodine receptors, leading to excessive activation of SERCA to pump Ca\(^{2+}\) back into the SR, generating heat in the process (2). With humans possessing significantly greater levels of the SERCA regulatory proteins (1) compared with rodents and relying to a greater extent on skeletal muscle to produce heat, this thermogenic mechanism could likely be quite significant in humans and serve as a form of NST following cold acclimation. Further investigations are required to determine the contribution of these skeletal muscle-derived thermogenic processes in such a cold acclimation.

Fig. 4. Substrate utilization. Changes in rate of carbohydrate (CHO) (A), lipid oxidation (B), total carbohydrate (C), and lipid oxidation (D) during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are expressed as means ± SD (n = 7 men). Repeated-measures ANOVA with Bonferroni post hoc test. ***P < 0.001, **P < 0.01 vs. Time = 0 min.

Fig. 5. Muscle recruitment pattern contribution of ST to heat production. A: differences in shivering intensity for trapezius (TR), pectoralis (PM), rectus femoris (RF), and vastus lateralis (VL) during an acute cold exposure at a mean skin temperature of 26°C before and after cold acclimation. Values are expressed as means ± SD (n = 7 men). Repeated-measures ANOVA with Bonferroni post hoc test. B: relationship between acclimation-induced change in total heat production and total shivering intensity (difference between preacclimation and postacclimation total heat production and shivering intensity) in men exposed to an acute cold. Relationship between cold-induced changes in heat production and shivering intensity in men exposed to a cold eliciting a mean skin temperature of 26°C for 150 min before (C) and following a 7-day (D) 14°C cold-water immersion acclimation protocol. Values presented are from five sampling intervals during cold exposure (time = 30, 60, 90, 120, and 150 min) from all subjects.
In summary, we have demonstrated that seven consecutive days of cold-water immersion can decrease shivering intensity by 36%, nearly double what we previously described in response to a 4-wk compensable cold acclimation. The decreased shivering intensity for the same whole body heat production in response to a mild acute cold exposure, suggests a significant increase in the contribution of NST following 7 days of cold water immersion. This had no effect on whole body fuel selection, which suggests that the source of NST must rely on a similar fuel mixture to produce this heat. Although several studies have examined the effects of repeated cold exposure on whole body heat production in humans, few have ever simultaneously quantified the contribution of shivering and by extension the contribution of NST to this heat production. This not only fills a critical gap to improve our understanding of the physiological and metabolic responses to chronic cold, but it also provides critical information to develop strategies to improve human survival and tolerance in cold climates. With the growing naval traffic expected in arctic regions as a result of the exploration of natural resources, research, military operations, tourism, and expansion of shipping lanes for cargo ships, there is an increase in occupational exposure to cold and increased risk for ship groundings. The grounding of naval vessels poses several risks, as survivors may be required to wait 5–7 days before being rescued. In addition, there remain critical knowledge gaps in our understanding of the cold acclimation responses in vulnerable populations, such as the elderly or individuals with impaired motor function, as well as in individuals originating from warm climates, which clearly need to be addressed in future studies. Consequently, further work is necessary to understand the thermogenic processes that may be modulated under such a short, but intense, cold acclimation and determine the minimal acclimation duration and cooling temperature required to elicit metabolic changes that may be critical for survival and performance in cold environments.

ACKNOWLEDGMENTS

The authors would like to thank the participants of this study for their commitment and collaboration.

GRANTS

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC Canada) to FH (RGPin/2016-05291).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

