New Approaches for the Treatment of Triple Negative Breast Cancer

Andrew Sulaiman

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry

Department of Biochemistry, Microbiology and Immunology

Faculty of Medicine

University of Ottawa

© Andrew Sulaiman, Ottawa, Canada, 2019
Abstract

Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer to current treatments and accounts disproportionately for the majority of breast cancer-related deaths. Research has not yet identified specific therapies for TNBC and chemotherapy remains the conventional therapy in the clinic. While conventional chemotherapy regimens have demonstrated success at reducing bulk tumor burden, they have been shown to enrich cancer stem cells (CSCs). CSCs promote chemoresistance, metastasis, heterogeneous tumor regeneration and disease relapse. Owing to tumor plasticity and the conversion between CSC and non-CSC subpopulations development of a strategy capable of inhibiting both non-CSC and CSC subpopulations is crucial for TNBC therapy. In this compilation of my main research projects, several new approaches for the treatment of TNBC were identified which target not only the bulk tumor population but also the CSC populations residing within the tumor:

1. Co-suppression of Wnt, HDAC, and ESR1 using clinically relevant low-dose inhibitors effectively repressed both bulk and CSC subpopulations and converted CSCs to non-CSCs in TNBC cells.

2. Co-inhibition of mTORC1, HDAC, and ESR1 was capable of reducing both bulk and CSC subpopulations as well as the conversion of fractionated non-CSC to CSCs in in a human TNBC xenograft model and hampered tumorigenesis following treatment.

3. Inhibition of Wnt and YAP retarded tumor growth of TNBC cells in either epithelial or mesenchymal states, and both CD44\textsubscript{high}/CD24\textsubscript{low} and ALDH+ CSC subpopulations were diminished in a human xenograft model reducing tumorigenicity following treatment.
Acknowledgments

I would like to thank Dr. Lisheng Wang for his guidance, support and encouragement throughout the entirety of my graduate studies. When I arrived at Dr. Wang’s lab for my MSc, he was the ideal mentor. He was thorough and informative; however, he was also laid back, supportive and encouraging. Dr. Wang pushed me to work hard, aim high and he is the driving force behind the accomplishments throughout my graduate studies. He always encouraged me to develop my own ideas on project and granted me independence and responsibility in the lab which proved to be invaluable. Personally, I could not envision myself working with any other supervisor and his tutelage greatly assisted my development as a researcher and passion for science.

I would also like to thank my Thesis Advisory Committee members Dr. Christina Addison and Dr. Tommy Alain. Their feedback, guidance and insight into my research as it was developing helped shape my research into what it is.

I would like to thank all of the colleagues I have worked together with over the last four years. The conversations and insights helped quicken long days and made coming in on the weekends a bit better. In particular, I would like to thank Dr. Li Li and Dr. Deyong Jia, for their help getting me established in the lab, listening to my ideas and giving me great feedback and career advice. I would also like to thank my undergraduate students whom I had the privilege to mentor and supervise during my PhD. These students contributed greatly to my research, taught me how to lead a research group and seeing them develop into young scientists was its own reward.
Most importantly, I would like to thank my family: my father Raymond, my mother Tara, my two brothers Steven and Brandon and my cat Ari who supported me unconditionally and encouraged me to reach my goals. A special thank you to Sarah McGarry who has been with me from the beginning of this journey and has been my rock during graduate school. Without the support, and encouragement from all of you, I would not be where I am today. Thank you all for everything.
Authorizations

First Author Publications:

Chapter 1:

2. Andrew Sulaiman and Lisheng Wang. Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. *Oncotarget*, 2017; 8(68): 113269–113281 Published under a Creative Commons Attribution (CC BY 3.0) License: https://creativecommons.org/licenses/by/3.0/

Chapter 2:

Chapter 3:

4. Andrew Sulaiman, Sarah McGarry, Sara El-Sahli, Ka Mien Lam, Jason Chambers, Shelby Kaczmarek, Li Li, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Co-inhibition of mTORC1, HDAC and ESR1α Regards the Growth of Triple Negative Breast Cancer and Suppresses Cancer Stem Cells. *Cell Death and Disease* 2018; 9(8): 815 doi: 10.1038/s41419-018-0811-7). Published under a Creative Commons Attribution (CC BY) License: https://creativecommons.org/licenses/by/4.0/deed.ast
Chapter 4:

5. **Andrew Sulaiman**, Sarah McGarry, Li Li, Deyong Jia, Sarah Ooi, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Dual inhibition of Wnt and YAP signaling retards the growth of both mesenchymal and epithelial TNBC. *Molecular Oncology*, 2018; 12(4):423-440. Published under a Creative Commons Attribution (CC BY) License: https://creativecommons.org/licenses/by/4.0/deed.ast

Chapter 5:

Table of Contents

Abstract ... ii
Acknowledgments .. iii
Authorizations ... v
List of Figures ... xii
List of Tables .. xv
List of Abbreviations .. xvi
Chapter 1: Introduction/Background .. 1
1.1 Breast Cancer .. 2
1.2 Breast Cancer Classifications ... 2
1.3 Breast Cancer Sub-Types .. 3
1.4 Prognosis ... 5
1.5 Breast Cancer Treatment ... 5
1.6 Cancer Stem Cells .. 7
1.7 CSCs and Metastasis .. 8
 Abstract ... 8
 Introduction ... 9
 A General Overview of Classical EMT/MET and Their Regulators .. 12
 From Classical EMT/MET to the Hybrid EMT/MET Model ... 15
 Hybrid E/M and Clinical Relevance .. 17
 Investigation of Hybrid E/M with Improved Methodologies ... 22
1.8 Chemotherapies and CSC Enrichment .. 25
1.9 E/M States of Breast Cancer CSCs ... 27
1.10 Wnt and CSCs .. 28
1.11 YAP and CSCs .. 30
1.12 Clinical Translatable Models to Study TNBC ... 32
 Abstract ... 33
 Introduction ... 34
 The limitations of cell lines in preclinical research ... 36
 The importance of using patients tumors as models for preclincial research 41
 Patient-derived xenograft models ... 44
 PDX models and nanomedicine ... 50

vii
Chapter 2: Both bulk and CSC subpopulations in TNBC are susceptible to Wnt, HDAC and ERα co-inhibition

Preface..54

Abstract...55

1. Introduction ..56

2. Methods and Materials: ...58

2.1 Cell culture and reagents ..58

2.2 Lentiviral transduction ...58

2.3 Flow cytometry analysis ...59

2.4 Fractionation of CSC and non-CSC subpopulations from breast cancer cells...59

2.5 Western blotting ...60

2.6 Quantitative real-time PCR (qPCR) ..60

2.7 Cell viability analysis ..60

2.8 Clinical database analysis ...61

2.9 Primary breast cancer cells ...61

2.11 Statistical analyses ..62

3. Results: ...62

3.1. Upregulated Wnt and HDAC signaling in the patients with invasive breast cancer is associated with decreased expression of ESR1 and PGR proteins and poor survival ...62

3.2. Combinations of Wnt, HDAC and estrogen inhibitors upregulate ESRI expression and effectively repress CSC populations in TNBC cells ...65

3.3. VBT effectively promotes the conversion of CSCs to non-CSCs while enhancing apoptosis of both bulk and CSC populations in the fractionated TNBC cells ..67

3.4. Combinational VBT treatment effectively inhibits the growth of patients’ TNBC cells and reduces the CSC subpopulation ...70

4. Discussion: ...72

Chapter 3: Co-inhibition of mTORC1, HDAC and ESR1α Retards the Growth of Triple Negative Breast Cancer and Suppresses Cancer Stem Cells ...78

Preface..79

Abstract...80

1. Introduction ..81

2. Materials and methods ...83

2.1 Cell culture and reagents ..83
Chapter 4: Dual inhibition of Wnt and YAP signaling retards the growth of triple negative breast cancer in both mesenchymal and epithelial states ... 115

Preface .. 116

Abstract .. 117

1. Introduction .. 118

2. Materials and methods ... 120
 2.1 Cell culture and reagents .. 120
 2.2 Tet-ON inducible gene expression of E-cadherin 121
 2.3 Primary normal mammary and breast cancer tissue fragments 121
 2.4 Flow cytometry analysis ... 122
 2.5 Soft agar colony formation .. 122
 2.6 Western blot analysis .. 123
 2.7 Quantitative real-time PCR .. 123
 2.8 siRNA knockdown .. 124

3. Results ... 88
 3.1. Tumor samples from TNBC patients express higher level of mTORC1
 and HDAC than those of non-TNBC patients and are associated with
 decreased ESR1 expression and reduced survival rate 89
 3.2. Combination of mTORC1, HDAC and ESR1 inhibitors restores
 ESR1 expression, suppresses rapamycin-induced 4E-BP1 upregulation,
 and inhibit TNBC cell viability .. 93
 3.4. VRT combination inhibits both non-CSC and CSC populations in
 the fractionated TNBC cells ... 96
 3.5. VRT combination treatment retards tumor growth and inhibits CSC
 subpopulation and tumorigenesis in vivo .. 99
 3.6. TNBC patients’ tumors express similar levels of mTORC1 and HDAC
 to TNBC cell lines and VRT combination inhibits the growth of
 patients’ TNBC bulk and CSC populations ... 101

4. Discussion .. 104
2.9 Lentiviral transduction of short hairpin RNA, generation of transgenic Wnt Reporter 7xTCF-eGFP cell lines and β-catenin/TCF-eGFP reporter assays .. 124
2.10 Cell viability assays .. 125
2.11 ICG-001 and simvastatin concentrations selected for the in vitro experiments according to the pharmacological studies reported previously .. 125
2.12 Xenograft tumor growth ... 126
2.13 Secondary transplantation of nude mouse model .. 127
2.14 Clinical database analysis and statistical analysis .. 127

3. Results ... 128
3.1 Epithelial TNBC cells exhibit reduced YAP but increased Wnt/β-catenin signaling 128
3.2 Epithelial and mesenchymal TNBC cells associate with distinct CSC properties 130
3.3 Dual knockdown of Wnt and YAP inhibits mesenchymal and epithelial bulk and CSC subpopulations .. 132
3.4 Combination of ICG-001 and simvastatin treatment inhibits epithelial and mesenchymal TNBC bulk and CSC populations in vitro .. 135
3.5 Clinical TNBC patients’ samples exhibit epithelial-like phenotypes and dual inhibition of Wnt and YAP signaling suppresses both bulk and CSC populations .. 137
3.6 Dual inhibition of Wnt and YAP signaling is capable of retarding tumor growth and inhibits CSC subpopulations and tumorigenesis in vivo .. 140
3.7 Low expression of CTNNB1 and YAP1 genes correlate with low expression of CD44+ and ALDH1A1+ genes and improved survival in breast cancer patients ... 143

4. Discussion .. 144

Chapter 5: Co-Targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy ... 153

Preface .. 154
Abstract ... 155

1.0 Introduction .. 155

2.0 Materials and Methods .. 158
2.1 Cell culture and reagents ... 158
Synthesis and Characterization of NPs ... 159
2.2 DAPI staining and fluorescence microscopy ... 159
2.3 Flow cytometry analysis ... 160
2.4 Cell viability assays ... 161
2.5 Luciferase Assay ... 161
2.6 Xenograft tumor growth ... 162
2.7 IVIS Analysis ..162
2.8 MRI Analysis ..162

3.0 Results ...163

3.1 Dual-drug delivery PV-NP platforms ...163
3.2 PV-NPs are capable of simultaneously inhibiting NF-kB, YAP and Wnt signaling activities and concurrently suppressing both mesenchymal and epithelial CSCs in TNBC ..167
3.3 TNBC PDX vasculature is EPR-active and PDX tumors accumulate NPs.170
3.4 PV-NPs retard TNBC PDX tumor growth and suppress CSC populations173

4.0 Discussion: ..175

Chapter 6: Summary ...185

Rights and Permissions ...189

Curriculum Vitae ..194

References..198
List of Figures

Chapter 1

Figure 1.0: A schematic diagram of Hybrid E/M and classical EMT/MET CSCs. ..12
Figure 1.1: A schematic diagram of Hybrid E/M signalling and stemness acquisition.21
Figure 1.3: The main differences between PDX and Cell Line Xenografts for Preclinical Research.41
Supplementary Figure 1.0: Schematic of TNBC Tumor Fragment Insertion Procedure in NOD-SCID Mice. ..52

Chapter 2

Figure 1. Upregulated Wnt and HDAC signaling in patients with invasive breast cancer is associated with
decreased expression of ESR1 and PGR proteins and poor survival ..64
Figure 2. Combinations of Wnt, HDAC and estrogen inhibition upregulate ESR1 expression and effectively
repress CSC population in TNBC cells ..66
Figure 3. VBT effectively promotes the conversion of CSCs to non-CSCs in the fractionated TNBC cells
while enhancing apoptosis of both bulk and CSC populations ..69
Figure 4. Combinational VBT treatment effectively inhibits the growth of patients’ TNBC cells and reduces
CSC subpopulation ..71
Supplemental Figure 1. Upregulation of HDAC genes and Wnt target genes is inversely correlated with
downregulation of ESR1 gene. ...75
Supplemental Figure 2. VBT effectively prevents the conversion of non-CSCs to CSCs in the fractionated
three non-CSC subpopulations ..76
Supplemental Figure 3. Dual valproic acid and tamoxifen treatment exhibits moderate Effects77

Chapter 3

Figure 1. Gene expression levels of mTORC1 and HDAC are higher in TNBC tumor than in normal breast
tissues and luminal A/B breast cancer. ...91
Figure 2. The expression levels of mTORC1 and HDAC are inversely associated with ESR1 and PGR in
patients with invasive breast cancer and in TNBC cells ...93
Figure 3: Co-inhibition of mTORC1, ESR1α and HDACs restores ESR1 expression in TNBC cells and
suppresses the expression of pRSP6, p4E-BP1, HDAC and the growth of TNBC cells96
Figure 4: The gene expressions of mTORC1 and HDACs are higher in TNBC CSCs than non-CSCs; co-
inhibition of mTORC1, ESR1 and HDACs suppresses the growth of both CSC and non-CSC subpopulations
and promotes the conversion of CSCs to non-CSCs. ...98
Figure 5: Co-inhibition of mTORC1, ESR1 and HDACs retards tumor growth and reduces CSCs and
tumorigenesis in vivo ...101
Figure 6: The expression levels of mTORC1 and HDAC are higher in TNBC cell lines and TNBC patient
tumors; Co-inhibition of mTORC1, ESR1α and HDACs reduces the viability of patient tumors' fragments
and CSCs ..103
Supplemental Figure 1: Kaplan-Meier survival curve for patients with invasive breast cancer with
upregulated mTORC1 or HDAC in tumor samples ...107
Supplemental Figure 2: Combinational inhibition of mTORC1, ESR1 and HDAC using rapamycin, valproic acid and tamoxifen suppresses CSCs in TNBC cells.. 108

Supplemental Figure 3: S6RP knockdown in combination with valproic acid and tamoxifen inhibits CSCs in TNBC cells. .. 109

Supplemental Figure 4: Rapamycin in combination with valproic acid and tamoxifen reduces CSC enrichment in the fractionated non-CSC subpopulations... 111

Supplemental Figure 5: Rapamycin in combination with valproic acid and tamoxifen reduces CSC conversion from non-CSC in the fractionated CSCs and non-CSC subpopulations 112

Supplemental Figure 6: Treatment with rapamycin in combination with valproic acid and tamoxifen in vivo reduces CSCs in TNBC tumors in vivo. ... 113

Supplemental Figure 7: Co-inhibition of mTORC1, ESR1 and HDACs retards tumor tumorigenesis in vivo. .. 114

Chapter 4

Figure 1. Epithelial-like, not mesenchymal-like TNBC cells, exhibit upregulated Wnt and downregulated YAP signaling.. 129

Figure 2. Epithelial-like and Mesenchymal-like TNBC cells display distinct CSC properties. 132

Figure 3. Dual knockdown of Wnt and YAP inhibits mesenchymal and epithelial bulk and CSC subpopulations. ... 134

Figure 4. Dual inhibition of YAP and Wnt signaling with small molecules suppresses both mesenchymal- and epithelial-like bulk and CSC populations.. 137

Figure 5: Dual inhibition of YAP and Wnt signaling with small molecules effectively inhibits TNBC patients’ bulk and CSCs.. 140

Figure 6. Combination therapy with YAP and Wnt small molecule inhibitors effectively retards tumor growth and reduces CSC enrichment and tumorigenesis in vivo; low expression of CTNNB1 and YAP1 genes correlates with low expression of CD44+ and ALDH1A1+ genes in patients’ tumor samples while inversely correlates with improved survival in breast cancer patients.. 143

Supplemental Figure 1: Overexpression of E-cadherin in mesenchymal-like MDA-MB-231 TNBC cells resulted in an epithelial-like phenotype... 147

Supplemental Figure 2: 7xTCF-eGFP Wnt reporter activity upon E-cadherin knockdown in SUM 149-PT cells. ... 147

Supplemental Figure 3: CTNNB1 and YAP1 knockdown efficacy in mesenchymal-like (Ctrl) and epithelial-like (E-cad+) MDA-MB-231 TNBC cells.. 148

Supplemental Figure 4: Suppression of Wnt and pluripotency-related genes after treatment with ICG-001 and simvastatin in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 TNBC cells....... 149

Supplemental Figure 5: Dual inhibition of YAP and Wnt signaling suppresses both mesenchymal and epithelial-like bulk and CSC populations in epithelial-like SUM149-PT TNBC cells...................... 150

Supplemental Figure 6: Western blot analysis of patient TNBC tumor fragment in comparison to MDA-MB-231 cell line .. 151
Supplemental Figure 7: Kaplan-Meier curves for overall survival of the patients with low levels of Wnt (CTNNB1) or YAP (YAP1) protein expression in cancer samples... 152

Chapter 5

Figure 1. A schematic representation of PV-NPs’ effects on TNBC PDX tumors................................. 165
Figure 2. NP characterization and in vitro uptake.. 166
Figure 3. NP-encapsulated verteporfin is capable of simultaneously suppressing NF-kB, Wnt and YAP as well as concurrently inhibiting both mesenchymal and epithelial CSC subpopulations in vitro......... 170
Figure 4: In vivo NP bio-distribution and accumulation within TNBC PDX tumors................................. 172
Figure 5: Efficacy of paclitaxel and verteporfin co-loaded NPs in the treatment of TNBC PDX tumors. ... 174

Supplemental Figure S1: The hydrodynamic size of co-encapsulated V-NP, P-NPs or PV-NPs in FBS
versus water. .. 177
Supplemental Figure S2: The DLS size distribution of P-NPs, V-NPs and PV-NPs 178
Supplemental Figure S3: The release profile for Verteporfin and Paclitaxel over a time course 178
Supplemental Figure S4:.. 179
Supplemental Figure S5: Alamar Blue viability analysis .. 180
Supplemental Figure S6: Tabulated flow cytometry analysis of ALDH+ CSCs in TNBC PDX HCI-002
tumor fragments... 181
Supplemental Figure S7.. 182
Supplemental Figure S8.. 183
Supplemental Figure S9.. 184
List of Tables

Table 1.1: List of ongoing clinical trials using PDX models. ... 49
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4E-BP1</td>
<td>4E (eIF4E)-binding protein 1</td>
</tr>
<tr>
<td>ALDH</td>
<td>aldehyde dehydrogenase</td>
</tr>
<tr>
<td>CD24</td>
<td>cluster of differentiation 24</td>
</tr>
<tr>
<td>CD44</td>
<td>hyaluronic acid receptor</td>
</tr>
<tr>
<td>CSC</td>
<td>cancer stem cell</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>Catenin Beta 1</td>
</tr>
<tr>
<td>DEAB</td>
<td>N,N-diethylaminobenzaldehyde</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic Light Scattering</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>E/M</td>
<td>Epithelial/Mesenchymal</td>
</tr>
<tr>
<td>EMT</td>
<td>epithelial to mesenchymal transition</td>
</tr>
<tr>
<td>EPR</td>
<td>Enhanced permeability and retention effect</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen Receptor</td>
</tr>
<tr>
<td>ERBB2/HER2</td>
<td>human epidermal growth factor receptor type 2</td>
</tr>
<tr>
<td>ESR1</td>
<td>estrogen receptor alpha</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorter</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone Acetyltransferase</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>Hybrid E/M</td>
<td>Hybrid Epithelial/Mesenchymal</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin 8</td>
</tr>
<tr>
<td>IVIS</td>
<td>in vivo imaging system</td>
</tr>
<tr>
<td>MET</td>
<td>mesenchymal to epithelial transition</td>
</tr>
</tbody>
</table>
MRI magnetic resonance imaging
mTORC1 mammalian target of rapamycin complex 1
MTT 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide
NCS Newborn Calf Serum
NF-kB kappa-light-chain-enhancer of activated B cells
NOD-SCID Non-obese Diabetic/Severe combined immunodeficiency
NP Nanoparticle
NSG NOD-SCID gamma
PDX patient-derived xenograft
PGR progesterone receptor
P-NPs Paclitaxel encapsulated Nanoparticles
PP2A protein phosphatase 2
PR Progesterone Receptor
PV-NPs Verteporfin and Paclitaxel encapsulated Nanoparticles
Rap Rapamycin
S6K1 Ribosomal protein S6 kinase beta-1
S6RP S6 ribosomal protein
shRNA short hairpin RNA
siRNA short interfering RNA
Tam tamoxifen
TCGA The Cancer Genome Atlas
TGF-β Transforming growth factor beta
TNBC triple negative breast cancer
TNF-α Tumor necrosis factor alpha
VBT Valproic Acid, BC21 and Tamoxifen
V-NPs Verteporfin encapsulated Nanoparticles
VPA valproic acid
VRT Valproic Acid, Rapamycin and Tamoxifen
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNT</td>
<td>Wingless/Integrated</td>
</tr>
<tr>
<td>YAP</td>
<td>Yes-associated protein</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction/Background

1.1 Breast Cancer

Cancer remains an epidemic throughout the world. According to Statistics Canada, in 2016, cancer was the number one leading cause of death, exceeding both heart disease and cerebrovascular disease (Appendix 3, Statistics Canada, 2016). Currently, one in two Canadians are projected to develop cancer within their lifetime with one in four Canadians expected to die from cancer (Canadian Cancer Statistics, 2018).

A study by GLOBOCAN demonstrated that worldwide there was an estimated 14.1 million new cancer cases and 8.2 million cancer deaths in 2012 (Ferlay et al., 2015). When GLOBOCAN repeated their study in 2018, it was found that the numbers increased to 18.1 million new cancer cases and 9.6 million cancer deaths throughout the world (Bray et al., 2018).

Breast Cancer is the most frequently diagnosed and a leading cause of cancer-related deaths amongst women throughout the world (Bray et al., 2018). In 2018, it was demonstrated that there were 2,088,849 new breast cancer cases and 626,679 breast cancer mortalities in that year alone (Bray et al., 2018). With such numbers, it is no surprise that breast cancer accounts for 1 in 4 cancer cases amongst the female population worldwide (Bray et al., 2018).

1.2 Breast Cancer Classifications

Within normal breast tissues, there exists lobules and ducts. Lobules are glands which are responsible for milk production. These glands are connected to the nipple via ducts which facilitate milk transportation. Approximately 80% of breast cancers are invasive ductal carcinoma and ~10% of breast cancers are invasive lobular carcinomas. The remaining 10% are comprised of: micropapillary (invasive ductal carcinoma which grow as high density masses surrounded by clear spaces), inflammatory (invasive ductal carcinoma which is capable of eliciting an immune
response and is characterized as being highly aggressive), medullary (undifferentiated cells with a syncytial growth pattern and an absence of glandular components), tubular (invasive ductal carcinoma with well differentiated tumor cells growing in small round tubules of epithelial cells), and mucinous (invasive ductal carcinoma surrounded by mucin) (Dieci et al., 2014; Vincent-Salomon et al., 2007) breast cancers.

1.3 Breast Cancer Sub-Types

Breast cancer can be further classified via the presence/absence of the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor receptor-2 (HER-2) protein. The ER (α and β) are stimulated by oestrogens; but can also act independently in the absence of oestrogens (Thomas and Gustafsson, 2011). Once activated, the ER can affect gene transcription (directly and indirectly), impacting proliferation, anti-apoptosis and cell cycle regulation (Frasor et al., 2003). The function of PR (α versus β) are convoluted. Progesterone acts as a potent mitogen, mediates mammary gland stem cell self-renewal and stimulates proliferation of breast cancer through PR signalling (Daniel et al., 2011; Joshi et al., 2010). PR is a target gene of ER transcription (and is positively correlated with ER expression) and there is a large overlap between ER and PR regulated genes (Daniel et al., 2011).

HER-2 is a type I transmembrane growth factor receptor in the same family as the epithelial growth factor receptor (HER-1). Upon activation, HER-2 will dimerize and promote a phosphorylation cascade, activating a wide variety of signal pathways such as: MAPK, STAT, P13K/Akt and NF-κβ which will in turn promote proliferation, disease progression and metastasis (Hou et al., 2003; Moasser, 2007; Roy and Perez, 2009). The majority of breast cancer patients are positive for ER (56%), PR (49%) and negative for HER-2 (84.4%)(Inwald et al., 2015). Based
on the presence/absence of these markers, breast cancers can be divided into the following sub-types.

Luminal A breast cancer is defined as possessing ER and PR whilst being negative for HER-2 (Inic et al., 2014). Luminal B breast cancer is positive for ER and may be positive or negative for PR. Additionally, Luminal B breast cancer may be positive or negative for HER-2 (Inic et al., 2014) and proliferates at a greater rate (high Ki-67 levels) compared to Luminal A. There has been evidence supporting the existence of a Luminal C breast cancer sub-type (Sørlie et al., 2001). This proposed sub-type possesses ER expression; however, its gene expression displays similarities with HER-2/basal breast cancers despite not possessing HER-2 (Sørlie et al., 2001). HER-2 positive breast cancer is negative for ER and PR but is positive for HER-2 (Prat and Perou, 2011).

Triple negative breast cancer (TNBC) is described as being negative for ER, PR and HER-2. It is typically referred to as basal-like and is characterized by its gene signature (cytokeratins 5, 6, and 17 gene expression), aggressiveness and risk of recurrence. Importantly, around 71% of TNBC are basal-like with the remaining resembling Luminal A, ER+, PR+/− and HER-2- sub-types (Badve et al., 2011; Prat et al., 2013). Reasons for these differences include tumor heterogeneity, the location from which the sample was attained and even potential misdiagnosis.

An additional classification amongst breast cancer is via claudin-low status. Claudin-low status is determined via the lack of expression of tight-junctions, and diminished epithelial and adhesional gene expression (low E-cadherin, claudin-3, claudin-4 and claudin-7 gene expression) (Dias et al., 2017). As claudin-low tumors are mainly found within TNBC samples, this has been used to sub-divide TNBC (Perou, 2011). A phenotype claudin-low TNBC exhibits is increased stemness, and metastatic potential via epithelial to mesenchymal transition (Dias et al., 2017).
1.4 Prognosis

Prognosis of those with breast cancer varies widely due to patient heterogeneity, tumor grade, disease stage and sub-type of breast cancer. A report by Zuo et al demonstrated that for patients with stage 1, 2, 3 or 4 breast cancer, the 5 year overall survival rate was 96.5%, 91.6%, 74.8% and 40.7% respectively (Zuo et al., 2017). When grouped by sub-type, Shen et al reported that for women over 50 years of age, the 5 year disease free survival for Luminal A breast cancer was 95.7%, for Luminal B patients it was 92.4% (HER-2 negative), for Luminal B patients with HER-2 expression it was 94.8%, for HER-2 positive patients it was 82% and for TNBC patients it was 53.3% (Shen et al., 2016).

Additionally, it was found that the frequency for distant metastasis amongst the breast cancer sub-types was 81.1% for TNBC, 66.7% for HER-2 positive, 52.2% for Luminal A, 50.0% for Luminal B (HER-2 negative), and 33.3% for Luminal B (HER-2 positive) (Shen et al., 2016). In TNBC patients who have suffered a metastasis, the overall 12 month survival rate was 37% if the cancer metastasized to the bone, 29% if metastasize to a solid organ or 19% if it metastasized to multiple sites (Morante et al., 2018). These results highlight the poor clinical outcomes associated with TNBC in comparison to the other breast cancer subtypes due to the aggressiveness, high risk of recurrence and capacity to metastasize.

1.5 Breast Cancer Treatment

TNBC accounts for ~15% of all breast cancers but is associated with a disproportionately worsened prognosis in comparison with other subtypes. One of the associated reasons behind this divergent prognosis is the treatment options available for TNBC. For all breast cancer sub-types, surgery is the primary option for invasive carcinomas. The surgical options include breast
conservation surgery (Lumpectomy), partial or complete mastectomy. Following surgery, radiotherapy may be recommended. Following breast conservation surgery, whole breast radiotherapy is commonly prescribed. For patients who have undergone a mastectomy, radiation to the chest wall or regional lymph nodes is recommended if the tumor was greater than 5 cm in size or if an aggressive phenotype was demonstrated (Zhang et al., 2012).

Following surgery in addition to or instead of radiotherapy, endocrine or chemotherapy may be recommended. For ER+ breast cancers, the selective estrogen receptor mimic (SERM), tamoxifen can bind to and inhibit ER function, preventing breast cancer growth (Dutertre et al., 2000). These effects are magnified in premenopausal women through ovarian function ablation via oophorectomy or treatment with Gonadotrophin-releasing hormone analogues (to prevent estradiol production) (Prowell et al., 2004). For post-menopausal women, aromatase inhibitors (such as Anastrozole) would be recommended to prevent estradiol production from non-ovarian sources.

HER-2 positive breast cancers are treated with monoclonal antibodies such as Herceptin, which specifically bind to the HER-2 receptor (Smith et al., 2007). Upon the binding of Herceptin, HER-2+ breast cancers undergo cell cycle arrest and apoptosis is promoted. Herceptin can be used in conjunction with non-anthracycline chemotherapies such as docetaxel/carboplatin/trastuzumab to increase efficacy (Nabholtz et al., 2001).

For TNBC patients, there is no specific treatment regimen to combat this disease. As such, non-specific chemotherapeutics in the anthracyclin family (such as doxorubicin), the taxane family (such as paclitaxel) and/or other chemotherapeutic agents (such as cyclophosphamide, and/or 5-flurouracil) are prescribed (Isakoff, 2010).
1.6 Cancer Stem Cells

There has been a strong body of evidence linking the growth and progression of breast cancers to a small subset of cells within the tumors known as cancer stem cells (CSCs) (Economopoulou et al., 2012; Gong et al., 2010; Reuben et al., 2011). CSCs have the ability to differentiate, self-renew and give rise to new tumors of origin in vivo. They also exhibit stem cell-like properties, such as asymmetric division and quiescence. The CSC theory hypothesizes that within the tumor, there exists a cellular hierarchy with CSCs at the apex. Through their differentiation and self-renewing capabilities, CSCs generate both non-CSC (bulk) and CSC populations which drive chemotherapeutic resistance, tumor progression, metastasis and disease relapse.

A well-known study reported by Al Hajj et al demonstrated that the CD44+/CD24- subpopulation fractionated from breast cancer patients exhibited a greater than 100-fold increase in tumorigenicity (ability to form tumors) compared to unsorted cells. This landmark study, characterized the CD44+/CD24- CSC population in breast cancer and highlighted the existence of tumorigenic CSCs (Al-Hajj et al., 2003).

ALDH (Aldehyde Dehydrogenase) is frequently used as a marker of hematopoietic stem cells (Kastan et al., 1990). ALDH is comprised of 19 isomers and functions in ester hydrolysis and oxidizing aldehydes to carboxylic acids. This enzyme plays an important function in cellular detoxification after exposure to chemotherapeutic agents (eg. cyclophosphamide) providing apoptotic resistance (Marcato et al., 2011). It has been found that CSCs can be identified by high ALDH expression in a wide variety of cancers including breast cancer (Ma and Allan, 2011). In
breast cancer, fractionated ALDH+ cells are capable of forming tumors with as little as 500 cells (Ginestier et al., 2007).

While other breast cancer CSC markers exist (such as CD133, EpCAM, CD90, etc) the above markers are the most characterized and are frequently used in the field.

1.7 CSCs and Metastasis

The following review, for which I am the first author, was published in the Journal of Biomedical Research and will discuss CD44+/CD24-, ALDH+ CSCs, their phenotypic states and how they mediate metastasis in breast cancer via epithelial to mesenchymal transition (EMT) and vice-versa. It will also introduce the hybrid EMT concept as a model for metastasis.

AS wrote the manuscript and created the figures. LW and ZY provided feedback, critiques and edited the article.
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymal-like cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal (E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.

Introduction

Metastasis is a process through which cancer cells dissociate from the primary tumor site, invade the surrounding tissue, hijack the circulation as a means of transport, and ultimately reconstitute the tumor at a secondary site. This process constitutes over 90% of cancer-associated deaths despite significant advances in cancer treatment (Gupta and Massague, 2006). Epithelial-mesenchymal transition (EMT) is critical during embryo development and organogenesis. Aberrant activation of EMT is thought to promote tumor dissociation, migration, and cancer stem cell enrichment in multiple forms of cancer (Friedl and Wolf, 2003; Garg, 2013; Steinestel et al., 2014; Tan et al., 2014). These mesenchymal-like tumor cells migrate from the tumor front, through the basement membrane and into circulation where they are referred to as circulating tumor cells.
(CTCs) (Cristofanilli et al., 2005). A small number of CTCs display cancer stem cell (CSC) features such as immune evasion, invasiveness, tumorigenicity, and resistance to different treatments (Yang et al., 2015). Once the CSCs reach a suitable secondary tumor site, they undergo a reverse process, mesenchymal-epithelial transition (MET), halting migration and allowing reconstitution of tumor at the secondary site (Figure 1.0A) (Gunasinghe et al., 2012; Yao et al., 2011).

This classic and simplified view of metastasis, during past several decades, has geared research towards targeting the migrating mesenchymal cancer cells (Creighton et al., 2010; Davis et al., 2014; Huang et al., 2013; Sokol et al., 2005; Tojo et al., 2005; Vazquez-Martin et al., 2010). However, controversy has surrounded this model (Chui, 2013; Fischer et al., 2015; Iwanami et al., 2014; Tarin et al., 2005; Zheng et al., 2015) which does not take into consideration of cellular plasticity, the tumorigenicity of epithelial cells, the full extent of tumor niches involved in EMT induction, the possibility of co-migration of both epithelial and mesenchymal cells, and hybrid epithelial-mesenchymal (E/M) tumor cells (Figure 1.0B). By addressing these deficiencies, a new model may lead to novel strategies to treat cancer metastasis and progression.
Figure 1.0: A schematic diagram of Hybrid E/M and classical EMT/MET CSCs. (A) The classic EMT/MET model of metastasis which was coined in 1976 (Hay, 1968). Mesenchymal CSCs are transformed from epithelial state through an EMT process. They then migrate outside the primary tumor, pass through the basement membrane and enter circulation. When mesenchymal CSCs reach a suitable secondary site prior to development of a new tumor, they undergo MET to regain an epithelial CSC phenotype for tumor development. (B) The hybrid E/M CSCs begun gaining traction from 2006 onwards (Lee et al., 2006). These hybrid CSCs migrate from the primary tumor alone or in clusters together with epithelial or mesenchymal tumor CSCs by crossing the basement membrane to enter circulation system and then relocate to a suitable secondary tumor site. The secondary tumor may develop from the hybrid E/M CSCs, epithelial tumor CSCs present in the cluster or mesenchymal CSCs that undergo MET.

A General Overview of Classical EMT/MET and Their Regulators

The classical EMT process in cancer encompasses the gradual remodeling of epithelial-like tumor cells towards a mesenchymal-like phenotype. Mesenchymal traits include the repression of epithelial markers, enrichment of mesenchymal markers, enrichment of the CD44high/CD24low CSC population, absence of cellular polarity due to the re-arrangement of actin cytoskeleton and re-distribution of adhesion molecules, individualistic migration, and resistance to apoptosis (do Nascimento Gonçalves et al., 2016; Kong et al., 2016; Lamouille et al., 2014; Ma et al., 2015a; Ma et al., 2016; Moreno-Bueno et al., 2008). Epithelial traits on the other hand, are opposite to the mesenchymal traits and exhibit some additional features such as enriched ALDH+ CSC subpopulation and collective migration (Das et al., 2015; Liu et al., 2014; Yauch et al., 2005).

In literature, EMT is commonly characterized by decreased E-cadherin expression. E-cadherin binds to neighbouring cadherins through its extracellular domain, mediating cell-cell adhesion, preventing tumor cell migration and \textit{in vivo} dissemination/invasiveness (Frixen et al., 1991; Vleminckx et al., 1991). The intracellular domain of E-cadherin binds to β-Catenin (an effector of Wnt signalling), preventing the nuclear translocation of β-catenin and β-catenin/T-cell
factor (TCF)-mediated transactivation, impeding Wnt signalling and acquisition of mesenchymal traits (Li and Mattingly, 2008; Orsulic et al., 1999). In addition to E-cadherin repression, the mesenchymal markers vimentin and N-cadherin are upregulated and EMT transcription factors (EMT-TF), such as SNAIL, SLUG, ZEB and TWIST are also upregulated. These transcription factors inhibit the epithelial phenotypes of the tumor cells while promoting acquisition of the mesenchymal phenotype through a plethora of incompletely defined mechanisms, including microRNA networks (Zhang et al., 2010), protein stabilization (Diaz et al., 2014), gene expression (Minafra et al., 2014), epigenetic/chromatin modification (Kiesslich et al., 2013) and long non-coding RNA regulation (Xu et al., 2016b). SNAIL and SLUG both inhibit E-cadherin expression, promoting β-catenin nuclear translocation and subsequent Wnt pathway upregulation (Bolós et al., 2003; Cano et al., 2000). In addition, they promote the formation of the β-catenin–TCF4 transcription complex which binds to the TGF-β3 gene promoter and promoting its expression which in turn further stimulates Wnt signalling through LEF1 gene expression, ultimately enhancing acquisition of mesenchymal traits (Medici et al., 2008; Nishita et al., 2000). TGF-β signalling also stimulates zinc finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2) which bind to phosphorylated receptor-activated Smads (Gregory et al., 2011) and various transcription factors as well as histone acetyltransferases such as p300 and p/CAF, leading to epigenetic modification of gene expression (Postigo et al., 2003). Similarly, TWIST affects a large number of transcriptional processes, overrides oncogene-induces senescence and represses E-cadherin while promoting N-cadherin expression (Montserrat et al., 2011; Vesuna et al., 2008). TWIST is notably activated through hypoxia-inducible factor 1α under intratumoral hypoxic conditions (Yang et al., 2008), a trait associated with chemotherapy resistance (Song et al., 2006). These
EMT-TFs may work together through overlapping and distinct molecular mechanisms to regulate a complex network in tumor cells to control epithelial versus mesenchymal plasticity.

In addition, various biological processes such as inflammation within the tumor microenvironment mediate EMT. When breast epithelial cells, adjacent to the tumor, were exposed to inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) for 2-3 weeks, ZEB1 and SNAIL (two major EMT transcription factors) were significantly upregulated (Leibovich-Rivkin et al., 2013). The exposed breast epithelial cells then displayed upregulated matrix metalloproteinases (MMPs, capable of degrading the basement membrane to facilitate tumor cell migration) (Bernhard et al., 1994; Pei and Weiss, 1996) and increased migratory/invasive capabilities, suggesting that tumor microenvironment influences plasticity and tumor cell dissemination by promoting EMT (Leibovich-Rivkin et al., 2013).

More recently, mesenchymal stem cells (MSC) from human adipose tissue have been shown to produce soluble factors after exposure to interferon-γ (IFN-γ) or TNF-α to enhance the malignancy of the MCF-7 breast cancer cells and shift the cells towards a mesenchymal phenotype with the increased migration capacity, enhanced vimentin expression and decreased E-cadherin expression (Trivanović et al., 2016).

It has been found that bacteria can influence the tumor microenvironment and promote EMT. When gastric cancer cells were exposed to H. pylori-infected MSC supernatant enriched with IL-6 (interleukin-6), IL-8 and platelet-derived growth factor-β cytokines, a mesenchymal phenotype was induced, characterized by increased migration, N-cadherin and vimentin expression while decreased E-cadherin expression (Zhang et al., 2016).
Paracrine/autocrine signalling within the tumor in response to chemotherapy has also been associated with EMT promotion. IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1) cytokines along with NF-κB/IκBa and STAT3 (Signal transducer and activator of transcription 3) were found to be upregulated in triple negative breast cancer cells after exposure to commonly prescribed chemotherapeutics, leading to upregulation of stem cell-associated gene and protein expression, enrichment of CD44_{high}/CD24_{low} cancer stem-like cells, and enhanced tumorigenicity in nude mice (Jia et al., 2016).

Together, identification of signalling pathways and factors capable of regulating EMT has been the focus of considerable research during the past several decades in hopes that through prevention of EMT-mediated migration, tumor metastasis would have been halted (Creighton et al., 2010; Davis et al., 2014; Huang et al., 2013; Sokol et al., 2005; Tojo et al., 2005; Vazquez-Martin et al., 2010).

From Classical EMT/MET to the Hybrid EMT/MET Model

There is a plethora of literature in regards to EMT, tumor dissemination and migration through the surrounding tissue into the bloodstream and other organs. However, proof of MET at a metastatic site from a re-localized mesenchymal CTC has not yet been proved, challenging the classical EMT/MET theory regarding mesenchymal to epithelial conversion in the secondary tumor site (Bastid, 2012). Additional arguments against classical EMT theory in metastasis and clinical applicability are the methodologies used and data generated from transgenic mice (Terao et al., 2011), xenograft implantation (Yoshida et al., 2014), and in vitro petri dish work (Yoshida et al., 2014). These experimental results are seemingly incompatible with pathological observations obtained from patients’ tissues (Ledford, 2011). Some tumors even exhibit opposite characteristics based on EMT/MET markers. For instance, in prostate cancer, secondary tumors
with highly metastatic potential were found to possess a glandular appearance indicative of epithelial morphology (Rubin et al., 2000). A similar phenotype is displayed in ovarian cancer which possesses elevated E-cadherin expression and an epithelial phenotype yet is highly metastatic (Christiansen and Rajasekaran, 2006; Park et al., 2016; Scotton et al., 2001; Yang et al., 2016).

To tackle the clinical applicability of EMT, lineage tracing is required. Recent reports addressed this issue by generating a mesenchymal promoter (vimentin or fibroblast specific protein-1)-induced Cre-mediated fluorescent marker in breast and lung cancer (Fischer et al., 2015). The cells would irreversibly gain fluorescence in vivo upon induction of a mesenchymal phenotype through EMT. The mice spawned breast adenocarcinoma, which predominantly exhibited an epithelial phenotype based on E-cadherin expression and lacked of vimentin and fluorescence expression. Lung metastasis developed spontaneously in the mouse models, which exhibited no change in fluorescence, indicating the same epithelial phenotype within the secondary tumor (confirmed via E-cadherin upregulation and vimentin repression), demonstrating that tumor cells did not activate the mesenchymal-specific promoter or undergo EMT during metastasis (Fischer et al., 2015).

Additionally, another study developed a genetically engineered mouse model to delete SNAIL or TWIST through Cre-mediation in pancreatic ductal adenocarcinoma (PDAC) (Zheng et al., 2015). Significantly, this deletion supressed ZEB2 and enhanced E-cadherin expression in PDAC. Lineage tracing by determining the amount of yellow fluorescent protein-tagged CTCs in the control versus SNAIL or TWIST-deletion groups showed that tumor-forming potential and metastatic capacity were not affected. These results indicate that suppression of EMT-TF in PDAC
mouse models did not impede tumor invasion, metastasis or dissemination when tumor cells exhibit an epithelial phenotype (Zheng et al., 2015).

The aforementioned studies challenge the classical EMT model in metastasis and tumor dissemination, suggesting that EMT does not correlate with tumor dissemination and metastasis and that tumor cells with epithelial phenotypes expressing high level of E-cadherin can undergo metastasis and form secondary tumors. Although these studies use one or two core EMT related genes or EMT-TF and possibly simplify EMT processes, the findings support an incomplete, partial or hybrid EMT model to explain metastasis without losing epithelial properties and the formation of secondary tumor without interconvertible epithelial to mesenchymal transitions.

Hybrid E/M and Clinical Relevance

EMT is currently characterized according to the upregulated mesenchymal and repressed epithelial markers in combination with functional tests for tumor cell migration and dissemination. It is assumed that cells undergoing EMT completely switch from the epithelial to the mesenchymal phenotypes. Increasing experimental evidence, however, suggests that this switch is not a single binary decision, but rather proceeds along a spectrum, allowing for cells to express partial epithelial and mesenchymal (E/M) phenotypes and possess both E/M functionality (Christiansen and Rajasekaran, 2006; Jolly et al., 2015a; Rhim et al., 2012).

Indeed, hybrid E/M states (i.e. exhibiting both epithelial and mesenchymal characteristics) have been observed in breast, brain, lung, renal, prostate and pancreatic cancers (Andriani et al., 2016; Grosse-Wilde et al., 2015; Jeevan et al., 2016; Rhim et al., 2012; Ruscetti et al., 2015; Sampson et al., 2014). Moreover, the hybrid E/M tumor cells display elevated CSC properties and patients show poor survival in comparison to EMT or MET phenotypes, possibly through synergy
between adhesion, proliferation and migration in the E/M state (Jolly et al., 2015a). In breast,
prostate and lung cancer patients, CTCs with E/M markers were found to migrate into blood as
clusters (Danila et al., 2007; Jansson et al., 2016; Yoon et al., 2011; Zhang et al., 2013a). This
collective migration would reduce anoikis and increase the chances of successful migration to a
suitable secondary tumor location (Fu et al., 2016). These attributes may explain why clustered
CTCs exhibit a 50-fold increase in metastatic potential (Aceto et al., 2014). Hence, a better
understanding of E/M properties may be key to development of an effective therapeutic strategy
to control metastasis and disease relapse (Figure 1.0B).

Literature, however, has put the stability of the hybrid E/M tumor phenotype into question.
Are these E/M tumor cells stable or is hybrid E/M tumor phenotype a fluctuating transition?
Previously, E/M tumor cells were considered metastable and incapable of maintaining their E/M
properties. The hybrid phenotype was thought merely a placeholder along the pathway of complete
EMT or MET conversion. Recently, studies using prostate, lung and breast cancer have illustrated
that this duel E/M phenotype, mediated through OVOL (OVO-like proteins) transcription, can be
maintained for the extended periods of time (Jia et al., 2015; Jolly et al., 2016). OVOL are a series
of transcription factors (originally found through mathematical models) which play a critical role
in maintaining the E/M prostate CTCs through regulation of miR-200/ZEB and miR-34/SNAIL
pathways. OVOL expression led to decreased EMT signalling induced by factors such as TGF-β,
and promoted a stable shift towards the epithelial and hybrid E/M phenotype (Jia et al., 2015).

Additional mathematical modeling has identified that GRHL2 and miR-145 can also
stabilize the hybrid E/M phenotype (Jolly et al., 2016). Hybrid E/M lung cancer cells were able to
be maintained through GRHL2, OVOL2 and miR-145 expression that act as stabilizing factors to
inhibit themselves and the ZEB/miR-200 network. Knocking down miR-145 or GRHL2 led to
destabilization of the E/M phenotype, driving the cells towards complete EMT induced by SNAIL (Jolly et al., 2016).

Other reports have also emphasized the importance of the miR-34/SNAIL and the miR-200/ZEB regulatory networks (Lu et al., 2013a). Mechanistic modeling has shown that SNAIL is able to inhibit miR-200 while ZEB is able to inhibit miR-34. As such, miR-34/SNAIL activation drives ZEB expression while inhibiting miR-200 leads to three states: high miR-200/low ZEB, low miR-200/high ZEB or medium miR-200/medium ZEB (Lu et al., 2013a). These states are associated with epithelial, mesenchymal or hybrid phenotypes, respectively. E/M stabilizing factors OVOL, GRHL2 and miR-145 couple with this network, prevent ZEB signalling and promote miR-200, which inhibits complete EMT while pushing cells towards an epithelial and hybrid E/M phenotype (Jia et al., 2015; Jolly et al., 2016; Lu et al., 2013a).

Signalling pathways also affect the balance of miR-200/ZEB. For instance, NF-κB drives the LIN28/let-7 axis (Jolly et al., 2015b) and LIN28 inhibits let-7 which in turn inhibits ZEB (Jolly et al., 2015b), whereas Let-7 and miR-200 inhibit LIN-28 and bridge two networks (Jolly et al., 2015b). It has been found that low LIN-28 and high let-7 correlated with an epithelial phenotype while high LIN-28 mediated Let-7 inhibition and pushed cells towards a mesenchymal phenotype (Jolly et al., 2015b). The hybrid E/M phenotype displayed intermediate expression of LIN28 and let-7 (Jolly et al., 2015b). Additionally, the LIN-28/let-7 axis regulates stemness through OCT4 expression (Jolly et al., 2014). An outline of hybrid E/M signalling and stemness acquisition is depicted in Figure 1.1.

Further studies have shown that the acquisition of stemness can be modulated in mesenchymal, epithelial and hybrid E/M. For instance, OVOL enhanced hybrid E/M stemness while reducing mesenchymal stemness (Jolly et al., 2015b). On the contrary, OVOL repression
exerted an opposite effect, enhancing mesenchymal while diminishing epithelial and hybrid E/M stemness (Jolly et al., 2014; Jolly et al., 2015b). It would be interesting to determine whether or not the Wnt, Akt, YAP, and/or other signaling pathways, known in EMT/MET regulation and stemness, are involved in the miR-200/ZEB and/or LIN28/let-7 axis and associated with hybrid E/M formation, and/or involved in acquisition of stemness properties.
Figure 1.1: A schematic diagram of Hybrid E/M signalling and stemness acquisition. The acquisition of mesenchymal traits is associated with increased ZEB signalling. ZEB feed-forwarding signalling inhibits miR-200 and leads to the expression of mesenchymal markers such as N-cadherin and vimentin while repressing epithelial associated markers such as E-cadherin. Snail upregulates ZEB while inhibiting miR-34. In addition, Snail is stimulated by many signal pathways including NF-κβ, Wnt, c-Myc and HIF1-α. LIN-28 is also associated with the acquisition of mesenchymal traits. LIN-28 inhibits Let-7, increasing ZEB expression while also promoting OCT-4 and enhancing stemness. The acquisition of epithelial traits is associated with high levels of miR-200 and miR-34 which repress ZEB and Snail respectively. MiR-200 also represses LIN-28 signalling, promoting Let-7 expression to further repress ZEB and promote OCT-4 and other stemness feature. Additionally, miR-200 inhibits LIN-28 to increase Let-7 expression, ultimately repressing mesenchymal while promoting epithelial phenotypes. The hybrid E/M phenotype is associated with intermediate signalling between miR-200/ZEB, miR-34/Snail and Let-7/LIN28 axes, which is associated with intermediate OCT-4 expression and the greatest stemness potential. OVOL, GRHL2, and miR-145 are hybrid E/M modulators, stabilizing the hybrid E/M phenotype, inhibiting ZEB signalling and complete EMT. These stabilizers also promote hybrid E/M stemness.
Investigation of Hybrid E/M with Improved Methodologies

Studying hybrid E/M cancer cells proves to be challenging since these cells possess both epithelial and mesenchymal markers and functions. *In vitro* cell culture may produce inconsistent results due to artificial selection of monoculture from thriving cell sublines. Moreover, lack of microenvironment, extracellular matrix and three dimensions add to the discrepancy between *in vitro* and *in vivo* results. However, advances in the development of *in vitro* 3D cell culture systems have led to new discoveries in regards to cancer cell plasticity between epithelial, mesenchymal, and hybrid E/M states.

Recently, co-culture of mammary EpH4 epithelial cells with a bio-engineered 3D matrix composed of solid alginate hydrogel with adhesive RGD (Arg-Gly-Asp) peptides replicated a 3D microenvironment, leading to normal epithelial morphogenesis and producing acini-like structures, native to mammary tissue (Bidarra et al., 2015). TGFβ1 was then used to promote EMT where mesenchymal cells were generated, but upon removal of TGFβ1, the cells switched to the hybrid E/M phenotype instead of an epithelial state. Notably, these hybrid cells displayed increased proliferative and tumorigenic capabilities and an aggressive phenotype (Bidarra et al., 2015).

The usage of microfluidic co-culture systems for tumor microenvironment emulation has also been demonstrated to be an effective methodology for analysis of epithelial/mesenchymal/hybrid traits (Aref et al., 2013; Kim et al., 2016; Soon et al.; Wang, 2016). This platform can analyze cancer cells in an extracellular matrix and assess proliferation, dissemination and migration in real time. Activators/repressors can be introduced into the co-culture system to stimulate epithelial or mesenchymal phenotypes, and thus enable cellular communication to mimic *in vivo* processes. With further innovation, this system may be invaluable.
for further investigation of epithelial/mesenchymal and hybrid E/M characters in real time using lineage tracing with promoter-induced fluorescent proteins as described above.

Marker analysis may also be a useful tool for hybrid E/M research. Besides the dual epithelial and mesenchymal gene and protein expression, P-cadherin has been gaining traction as a hybrid E/M marker (Jolly et al., 2016; Plutoni et al., 2016a; Plutoni et al., 2016b). P-cadherin is associated with poor prognosis in breast, oral squamous, bladder, pancreatic and ovarian cancers (Ko and Naora, 2014; Li et al., 2016; Sakamoto et al., 2015; Vieira et al., 2012; Wang et al., 2014). It interferes with epithelial adhesion and promotes migration and metastasis through MMP upregulation, cell polarization, cdc42 (cell division control protein 42 homolog) activation, and its own cleavage (Mar et al., 2014; Plutoni et al., 2016a; Plutoni et al., 2016b; Ribeiro and Paredes, 2015). Importantly, P-cadherin-promoted migration is through collective but not individual cell movement in both epithelial and mesenchymal cancer cells, mimicking the hybrid E/M phenotype (Jolly et al., 2016; Plutoni et al., 2016a; Plutoni et al., 2016b).

CD44^{high}/CD24^{low}/ALDH^{high} markers may also be employed for the identification of hybrid E/M CSCs. CD44^{high}/CD24^{low} subpopulation are commonly enriched in mesenchymal-like cancer cells while ALDH^{high} is enriched in epithelial-like cancer cells (Mi and Xing, 2015; Paholak et al., 2016). It has been shown in vivo in breast cancer that the ALDH^{high} subpopulation resides internally while the CD44^{high}/CD24^{low} tumor population lies at the tumor edge and is prone for tumor dissemination and metastasis (Liu et al., 2014a). The CD44^{high}/CD24^{low}/ALDH^{high} subpopulation in multiple breast cancer cell lines exhibited the enhanced proliferative, tumorigenic, migration, adhesive and metastatic potentials both in vitro and in vivo (Croker et al., 2009; Ginestier et al., 2007; Liu et al., 2014a; Zhang and Rosen, 2015). Moreover, the CD44^{high}/CD24^{low}/ALDH^{high} subpopulation is able to generate tumors with as few as 20 cells
(Ginestier et al., 2007). This is consistent with the clinical data where $\text{ALDH}^{\text{high}/\text{CD44}^{\text{high}}}$ is frequently found in patients with breast cancer and associated with increased tumor growth, disease progression, metastasis, and worsened prognosis despite radiotherapy, endocrine therapy, or chemotherapy (Croker and Allan, 2012; Ginestier et al., 2007; Qiu et al., 2016). From the current literature, it seems that the $\text{CD44}^{\text{high}/\text{CD24}^{\text{low}}/\text{ALDH}^{\text{high}}}$ may be used for the detection of hybrid E/M CSCs.

In conclusion, while much progress has been made, targeting either epithelial or mesenchymal cancer cells seems insufficient due to cancer cell plasticity and the existence of hybrid E/M phenotype. Targeting both bulk and CSC subpopulations of epithelial, mesenchymal and hybrid E/M may be crucial for the development of clinically viable treatments to reduce resistance, relapse and metastasis.

-End of Review Article-
1.8 Chemotherapies and CSC Enrichment

For the treatment of TNBC, due to the lack of specific therapies, chemotherapeutic and radiotherapeutic approaches are commonly prescribed. While radiotherapy and chemotherapy may be effective against the bulk TNBC tumor population; there has been contrasting evidence regarding their efficacy on CSCs.

It has been found that breast cancer CD44+/CD24- CSCs are resistant to radiotherapy compared to the bulk tumor population (Han and Crowe, 2009; Phillips et al., 2006). Additionally, radiation exposure increased the phosphorylation of H2AX (H2A histone family member X) and Notch-1 expression which promoted an increased in CSC enrichment following treatment (Phillips et al., 2006).

Additionally, it has been reported that Paclitaxel, Doxorubicin and 5-Florouracil, (commonly prescribed chemotherapeutic agents for the treatment of TNBC) promote cytokine (IL-6, IL-8 and MCP-1) secretion within the tumor microenvironment which activates the inflammatory STAT3, Wnt/β-catenin, and NF-kB signalling pathways (Jia et al., 2017; Jia et al., 2016). This creates a feed-forward loop leading to further cytokine secretion (TNF-α, IL-17, CSF2, CCL2, IFN-γ, IL-1β, etc) which stimulates additional inflammation and promotes immunosuppression, alters the epigenetics of the tumor cells, stimulates tumor proliferation, increases metastatic potential, promotes hypoxia, promotes survival amongst the tumor population and enriches for the CSC population following treatment (D’Ignazio et al., 2017; Finger and Giaccia, 2010; Jia et al., 2017; Zhang et al., 2017).

Jia et al assessed tumorigencity following short-term Paclitaxel treatment using a serial dilution assay. In this assay, following short-term treatment, the original tumor was extracted, dissociated into single cell suspension, cancer cells were counted and subsequently re-implanted.
into a new mouse at serially diluted numbers. The ability of the treated versus untreated tumors to form novel tumors at serially diluted concentrations were then assessed. It was demonstrated using 100,000 MDA MB-231 TNBC cells following treatment, that control (DMSO treated) cells were not able to generate any tumors (0/3, three representing the total amount of attempts to form a tumor) (Jia et al, 2017). In contrast, MDA MB-231 tumors previously treated with paclitaxel formed tumors 3/3 times (100%) upon injection of 100,000 cells into the mammary fat pad of athymic mice (Jia et al, 2017). When Paclitaxel treatment was combined with an agent to inhibit Paclitaxel-induced NF-kB signalling (Reparixin) the tumorigenicity was reduced to a frequency of 1/3 times (33%) (Jia et al., 2017). This paper highlighted the potency of paclitaxel, a frontline chemotherapeutic agent for the treatment of TNBC, to stimulate CSC enrichment and induce chemoresistance and tumorigenicity following treatment. However, this paper also demonstrated the potency of specific signal pathway inhibition to alleviate paclitaxel-mediated effects (Jia et al., 2017).

Other papers have reported similar findings on CD44+/CD24− and ALDH+ CSC enrichment and tumorigenicity following chemotherapeutic treatment (Reynolds et al., 2017; Thakur and Ray, 2017; Yin et al., 2017; Zhou et al., 2018; Zhuang et al., 2012). This issue of chemotherapeutic CSC enrichment is present in other cancer models as well. Abubaker et al demonstrated in ovarian cancer that while short term chemotherapeutic treatment effetely targeted bulk tumor cells, due to the enrichment of CSCs following treatment, when the chemotherapy treated HEY ovarian cancer tumors were isolated and implanted into new mice, these mice displayed increased tumor burden compared to mice implanted with vehicle treated cells (Abubaker et al, 2013). Additionally, these chemotherapy-treated cells possessed increased proliferative, stem-like and metastatic properties (Abubaker et al., 2013). These findings highlight the failure of chemotherapy to target the CSC
populations in different cancer models and highlights the detrimental effect chemotherapeutic exposure has in regards to CSC enrichment.

These reports demonstrate chemotherapeutic effectiveness at shrinking the initial breast cancer tumor; however, a consequence of these treatments is the promotion of an inflammatory, stressful, hypoxic microenvironment which in turn, promotes CSC enrichment. This may explain the high rates of relapse, metastasis and overall poor prognosis in TNBC following interventional treatment. It has been demonstrated in a meta analysis on 898 breast cancer patients that CD44+/CD24− and ALDH+ breast cancers are associated with poorer overall patient survival (Zhou et al., 2010). As such, chemotherapy induced CSC enrichment presents a negative consequence and barrier against long-term patient survival.

1.9 Epithelial/Mesenchymal States of Breast Cancer CSCs

Accumulating evidence suggests that breast CSCs are a major barrier preventing patient disease free survival (Al-Hajj et al., 2003; Gupta et al., 2009a; Hemmati et al., 2003; Kreso and Dick, 2014; Lapidot et al., 1994; Valent et al., 2012; Visvader and Lindeman, 2012). Conventional interventions, such as radiation and chemotherapy, may eliminate the bulk of the tumor but are ineffective against breast CSCs which have an exceptional capacity to survive, self-renew, and advance the malignancy (Al-Hajj et al., 2003; Gupta et al., 2009a; Hemmati et al., 2003; Kreso and Dick, 2014; Lapidot et al., 1994; Valent et al., 2012; Visvader and Lindeman, 2012). However, there exists two states of breast CSCs, demarcated by E-cadherin expression; mesenchymal CD44+/CD24− and epithelial ALDH+ CSCs (Beerling et al., 2016; Liu et al., 2014; Tsuji et al., 2008).
The mesenchymal-like state is associated with expression of mesenchymal markers (e.g. vimentin, N-cadherin), loss of epithelial markers (e.g. E-cadherin) quiescence, and an enhanced invasive capacity. Conversely, the epithelial-like state is associated with the expression of epithelial markers, establishment of cell polarity, and extensive self-renewal and proliferation (Liu et al., 2014). In addition, CSCs also display a cellular plasticity that enables them to transition between epithelial-like and mesenchymal-like states (Beerling et al., 2016; Tam and Weinberg, 2013). While the mesenchymal-like state may be important for cancer cell dissemination, reversal to epithelial-like state seems to be necessary for efficient metastatic colonization (Brabletz, 2012). Consequently, the transition between these two states in breast CSCs have been considered to facilitate breast cancer growth, tumor dissemination and cancer relapse. Due to the differences within these populations, approaches which focus on only one CSC population may spare or enrich the neglected epithelial-like or mesenchymal-like CSC population, promoting resistance, CSC interconversion and relapse.

Current research must focus on targeting both epithelial-like and mesenchymal-like CSC specific signalling and preventing chemotherapeutically induced CSC enrichment in order to improve TNBC treatment efficacy and long-term patient prognosis.

1.10 Wnt and CSCs

In brief, in the absence of Wnt signalling, the destruction complex (consisting of GSK3-β, Axin-2, APC and CK1α) binds to β-Catenin in the cytoplasm, phosphorylates β-Catenin, marks it for ubiquitination by β-TrCP and subsequent destruction (Zhan et al., 2017). Canonical Wnt signalling involves Wnt ligands binding to the LRP5/LRP6/Frizzled co-receptor which promotes the phosphorylation of LRP5/6 via CK1α and GSK3-β (Zhan et al., 2017). Dishevelled is recruited
which in turn binds to Axin-2 and inhibits GSK3-β (Zhan et al., 2017). The inhibition of the destruction complex allows β-Catenin to translocate into the nucleus, where it associates with LEF/TCF transcription factors to stimulate Wnt dependant gene expression (Zhan et al., 2017). Additionally, β-Catenin may associate with p300 or CBP histone modifying proteins to affect the epigenetics of the cell.

Wnt signalling is highly activated in basal-like breast cancers (overexpressed in 50% of patients) and is associated with poorer patient prognosis (Khramtsov et al., 2010; Lin et al., 2000). Wnt signalling is critical for stem cell self-renewal and is associated with CSC development and enrichment. Wnt signaling has also been demonstrated to facilitate the conversion of adult cells to pluripotent stem cells highlighting its importance in stem cell/CSC regulation (Chen et al., 2010; Huang et al., 2015; Li et al., 2010; Redmer et al., 2011).

Zeng and Nusse et al, demonstrated using the Axin2-lacZ Wnt reporter system in a mouse model, that there was high levels of Wnt activity within the basal membrane of the mammary ducts which were hypothesized to be mammary stem cells (Zeng and Nusse, 2010). The mammary glands were then cleared and lacZ+/Lin−/CD24+/CD29high mammary stem cells were inserted into the cleared ducts. It was found that the inserted mammary stem cells were able to generate mammary glands with only 50 cells at a frequency of 11 times out of 16 attempts. In comparison lacZ−/Lin−/CD24+/CD29high mammary stem cell transplants only reconstituted the mammary gland 5 times out of 16 attempts (Zeng and Nusse, 2010). Such findings demonstrated the importance of Wnt signalling within the mammary gland and mammary stem cells.

Shackleton et al, demonstrated similar findings; however, used a MMTV-wnt-1 mouse lineage (prone to developing tumors due to high Wnt signalling) and found increased levels of Lin−/CD24+/CD29high mammary stem cells within the mammary glands (Shackleton et al., 2006).
Additionally it was found that when 25 Lin/CD24+/CD29high MMTV-wnt-1 mammary stem cells were transplanted into the inguinal glands cleared of endogenous epithelial, there was dramatic hyperplastic outgrowths observed at five weeks post-transplantation (Shackleton \textit{et al.}, 2006). Together this report highlights the importance of Wnt signalling in mammary stem cells, breast CSCs and breast cancer development.

Multiple reports have demonstrated that upon Wnt ablation, CSCs in breast cancer differentiate and are sensitive to apoptosis (El Helou \textit{et al.}, 2017; Li \textit{et al.}, 2018; Petrelli \textit{et al.}, 2015; Xu \textit{et al.}, 2016a). As such, targeting Wnt signalling may be a prime target for the inhibition of TNBC CSCs.

1.11 YAP and CSCs

YAP (Yes Associated Protein) signalling is a part of the Hippo pathway which controls cell growth, organ size, apoptosis and self-renewal (Ehmer and Sage, 2016). When Hippo signalling is active, mediated by a variety of stimuli such as cell contact and adhesional junctions, MST1/2 kinases associate with SAV1 and PDK1 to activate LATS1/2 kinases (Ehmer and Sage, 2016; Fan \textit{et al.}, 2013a). These kinases in turn phosphorylate YAP in the cytoplasm, preventing it from translocating into the nucleus and marking it for protein degradation (Ehmer and Sage, 2016). Upon YAP activation via extracellular signalling, endogenous stimulation and/or mechanotransduction, PDK1 is recruited to the plasma membrane which prevents the activation of the MST1/2/SAV1 complex and subsequent LATS1/2 activation. This prevents YAP phosphorylation and allows for its translocation into the nucleus where it associates with the TEAD1-4 transcription factors which mediate YAP gene expression (Ehmer and Sage, 2016; Fan \textit{et al.}, 2013a).
Aberrant YAP expression has been closely associated with cancer development and progression (Yu et al., 2015; Zhang et al., 2015). In TNBC it has been found that YAP signalling confers resistance to radiotherapy and upon YAP inhibition, TNBC can be sensitized to DNA damage (Andrade et al., 2017). Additionally, YAP signalling has been found to stimulate breast cancer with proliferative, migratory and invasive properties (Lamar et al., 2012). It has been demonstrated that when YAP was transfected into the non-tumorigenic human mammary cell line (MCF-10a), the cells lost cell to cell contact, grew in a scattered patterns, formed invasive spheroids and demonstrated apoptotic resistance (Overholtzer et al., 2006). Additionally, their invasive properties were amplified and their colony forming potential was greatly amplified (Overholtzer et al., 2006).

YAP was found to positively correlate with the expression of OCT4, SOX2 and NANOG genes in human pluripotent stem cells (Johnson and Halder, 2014). These pluripotency factors have been closely associated with the regulation of self-renewal versus differentiation in stem cells/progenitors. These factors are also associated with tumorigenesis and mediate breast CSC enrichment (Kim et al., 2015; Beltran et al., 2011; Lu et al., 2013b; Noh et al., 2012; Vazquez-Martin et al., 2013).

Moreover, Kim et al found that YAP was highly expressed in TNBC basal-like breast cancers and imparted mammary stem cell signature gene expression and the secretion of IL-6, IL-8 and CXCL1 cytokines (Kim et al., 2015). Moreover, the authors transfected 4T1 (a murine TNBC cell line) cells with a retrovirus to overexpress YAP, and performed a serial dilution assay where YAP overexpressing cells were implanted into BALB/c mice. It was found that YAP overexpressing 4T1 TNBC cells were capable of forming a tumor with as little as 10 cells (Kim et al., 2015).
Recently, YAP/TAZ signalling through the Hippo pathway has emerged as a potent regulator of Wnt signalling (Azzolin et al., 2014; Beyer et al., 2013; Ohgushi et al., 2015). YAP/TAZ incorporates into the β-catenin destruction complex and is a mediator of β-catenin degradation (Azzolin et al., 2014; Imajo et al., 2012). Conversely, increased E-cadherin, cell density or activated Akt has been shown to suppress YAP/TAZ (Basu et al., 2003; Benham-Pyle et al., 2015; Fan et al., 2013b; Imajo et al., 2012; Kim et al., 2011b; Li et al., 2013). Although YAP is closely associated with cancer (Yu et al., 2015), functional interactions between YAP, epithelial/mesenchymal status, and Wnt in breast cancer cells is still unclear.

1.12 Clinically Translatable Models to Study TNBC

The following review, for which I am the first author, was published in Oncotarget and will discuss pre-clinical models, and the need to adapt patient derived xenograft models (PDX) for clinically translatable findings.

Andrew Sulaiman and Lisheng Wang. Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget, 2017; 8(68): 113269–113281 Published under a Creative Commons Attribution (CC BY) License.

AS wrote the manuscript and created the figures. LW provided feedback, critiques and edited the article.
ABSTRACT

Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer and disproportionately accounts for the majority of breast cancer related deaths. Effective treatment of this disease remains an unmet medical need. Over the past several decades, TNBC cell lines have been used as the foundation for drug development and disease modeling. However, ever-mounting research demonstrates striking differences between cell lines and clinical TNBC tumors, disconnecting bench research and actual clinical responses. In this review, we discuss the limitations of cell lines and the importance of using patients’ tumors for translational research, and highlight the usage of patient-derived xenograft (PDXs) models that have emerged as a clinically relevant platform for preclinical studies. PDX tumors possess tumor heterogeneity with similar cellular, molecular, genetic and epigenetic properties akin to those found within patients’ tumors. Moreover, PDX and clinical tumors possess abnormal vasculature with higher blood vessel permeability, a feature that is not always demonstrated in *in vivo* cell line xenografts. Development of clinically relevant, novel drug-nanoparticles capable of accumulating in PDX tumors through the enhanced permeability and retention effect in tumor vasculature may lead to new and effective TNBC treatments.
INTRODUCTION

Breast cancer remains a leading cause of death in women throughout the world. Triple negative breast cancer (TNBC) accounts for only 15-20% of all breast cancer, but is disproportionately associated with the majority of breast cancer related deaths (Anders and Carey, 2009). Chemotherapy is currently the mainstay of systemic medical treatment for TNBC. However, it is associated with severe off-target tissue toxicity, rapid drug-resistance, and enrichment of cancer stem cells (Gómez-Miragaya et al., 2017; Jia et al., 2016). As such, development of targeted therapies for TNBC is an unmet medical need.

Over past several decades, in vitro and in vivo preclinical research commonly uses over 27 TNBC cancer cell lines to study cancer pathogenesis, disease advancement, and drug effectiveness. However, a growing disconnection between results generated using TNBC cell lines and clinical trials has been observed. A recent example is the in vitro and in vivo results of PARP inhibitor veliparib. Veliparib is an oral inhibitor of Poly (ADP-Ribose) Polymerase (PARP) 1 and 2, which enhances the activity of DNA damaging agents in DNA repair to promote apoptosis. In vitro, veliparib is capable of suppressing the expression of Snail which promotes epithelial to mesenchymal transition, tumor metastasis and drug resistance. It also sensitizes the MDA-MB-231 TNBC cell line to chemotherapeutic drug doxorubicin, resulting in increased apoptosis (Mariano et al., 2015). In vivo, veliparib sensitizes MDA-MB-231 tumor to TMZ (temozolomide, an alkylating agent) in a SCID (severe combined immune deficiency) mouse model (Palma et al., 2009). The effectiveness of other therapeutic combinations with veliparib has also been demonstrated in vivo xenograft mouse models using cancer cell lines (Palma et al., 2009; Shelton et al., 2013).
The clinical trials, however, failed to demonstrate the efficacy of veliparib in combination with a DNA damaging agent for the treatment of breast cancer including TNBC. The phase II clinical trial (NCT01506609) recruited 193 metastatic breast cancer patients treated with either the placebo or veliparib in a combination of carboplatin and paclitaxel. Progression-free survival in the control group (chemotherapeutic drugs alone) was 12.3 (9.3–14.5) months compared to the 14.1 (11.5–16.2) months in the combination group, showing statistically insignificant difference (p value = 0.231) (Han et al., 2017; Isakoff et al., 2017a). Overall survival in the control was 25.0 (18.1–34.8) months and the combination of veliparib and chemotherapy was 28.5 (22.4– not reported results), which was insignificant (p value = 0.148) (Han et al., 2017). Despite these results, veliparib in combination with paclitaxel and carboplatin followed by doxorubicin and cyclophosphamide advanced into phase III clinical trials (NCT02032277) for the treatment of TNBC (Geyer et al., 2017). 634 TNBC patients were involved in the study and treated with veliparib or placebo in combination with paclitaxel and carboplatin followed by doxorubicin and cyclophosphamide. There was no significant difference in the efficacy of treatment (53.2% veliparib + chemotherapy vs 57.5% placebo + chemotherapy, p = 0.36) (Geyer et al., 2017). This recent failure is by no means a rarity as many similar results have been reported (Flinn et al., 2016; Sinha, 2014; Soria et al., 2015; Taplin et al., 2017; Wakelee et al., 2015). This highlights the disconnection between cell lines in vitro and in vivo preclinical research and human clinical trials. The translational disparity led to the US National Cancer Institute halting the usage of 60 human cancer cell lines for drug-screening in 2016 and recommending to use patient derived xenograft (PDX) for future research. Appropriate models used in preclinical/translational studies may bridge the divide (Ledford, 2016). In this regard, PDXs have shone as clinically relevant models in
comparison to breast cancer cell lines due to their ability to represent the original tumor’s biology and retain the original tumor’s architecture and organization (Williams et al., 2013).

THE LIMITATIONS OF CELL LINES IN PRECLINICAL RESEARCH

Breast cancer cell lines used for conventional analysis were originally harvested and generated from patient tumor samples after in vitro culture for years or decades. The deviations observed are thought to arise through selection of specific populations and changes over time to promote adaptation to artificial culture environments. Breast cancer cell lines are capable of growing indefinitely and undergoing freezing-thawing cycles for several decades. It has been demonstrated that breast cancer cell lines possess a moderately high mutation frequency in comparison to patient tumors. Over many in vitro passages, these mutations can accumulate, possibly making the cells differ dramatically from their starting source (Briske-Anderson et al., 1997; Jiang et al., 2016; Osborne et al., 1987; Wenger et al., 2004). Additionally, these mutations can promote certain traits which provide a survival benefit for in vitro growth in a plastic dish. This would promote clonal selection for the fittest subpopulations (Pastrana, 2012). Continuous propagation of cells in a petri dish would also result in accumulating epigenetic alterations (Nestor et al., 2015). It has been demonstrated that human cancer cell lines possess altered methylation patterns after culture (Varley et al., 2013). Altered DNA methylation affects gene and protein expressions, subsequently impacting signal pathways and therapeutic responses. Additional reports have shown that DNA methylation differs dramatically between cancer cell lines in comparison to patient tumors, making epigenetic studies using cell lines discordance with clinical settings (Houshdaran et al., 2010; Poirier et al., 2015).
One example was the expression of ER/PR/HER-2 receptors in two TNBC tumors after culture for 150 passages. Originally, these receptors were all absent in the primary tumors harvested from the TNBC patients (Kamalidehghan et al., 2012). Miller et al also recently showed that there were almost no overlaps in gene expression between glioblastoma samples grown in mice and cultured on a dish after 2-3 weeks, suggesting a marked modification of tumor biological features after short-term culture in petri dishes (Miller et al., 2017).

This dramatic deviance is largely associated with the disruption of the original tumor structure and microenvironment which is comprised of a heterogeneous mixture of different subpopulations of tumor cells, macrophages, fibroblasts, endothelial cells, stromal cells, the extracellular matrix, etc. (Balkwill et al., 2012; Binnemars-Postma et al., 2017). Cancer cell lines do not represent these heterogeneous components. Rather, during initial harvesting and culturing, subpopulations adapted better for in vitro petri dish environment (e.g. cancer associated fibroblast cells) are commonly selected for, overtaking the other tumor cells and resulting in a relative homogenous population overtime (Nishikata et al., 2013; Speirs et al., 1998; Wang et al., 2001). Culture methodologies which inhibit fibroblastic growth and promote epithelial proliferation, still fall victim to one dominant tumor subpopulation (Janik et al., 2016; Wang et al., 2001). This artificial selection makes the therapies developed highly effective on a particular cell subtype rather than the whole homogenous tumor and its extracellular matrix and tumor microenvironment, which disconnects the bench results from the clinical trials. In vivo studies, human breast cancer cell lines are commonly mixed with matrigel and injected into mouse mammary pad to resemble the clinical settings. However, in addition to the aforementioned limitations, this sudden influx of cancerous cells bypasses the early development of a tumor in the patient and skips over the formation of the tumor microenvironment (Mullen et al., 1996; Vargo-Gogola and Rosen, 2007).
This may in part, explain the divergence between the high frequency of bone metastasis for patient with breast cancer (~70% of all breast metastasis) and the very low frequency of spontaneous metastasis of breast cancer cell line implanted in the mammary fat pad (Coleman and Rubens, 1987; Lelekakis et al., 1999; Simmons et al., 2015). As such, to mimic bone metastasis, breast cancer cell lines must be injected either via intracardiac, tail vein or intra-osseous, or specialized cell lines must be utilized (Fantozzi and Christofori, 2006; Kang et al., 2003; Lelekakis et al., 1999; Thibaudeau et al., 2014). Additionally, the monocultured breast cancer cell lines do not include factors commonly dysregulated in the tumor such as hypoxia, inflammation, vascularity, stromal cells, immune cell infiltration, and aberrant signalling pathways (Prasetyanti and Medema, 2017). These factors work together to regulate tumor microenvironment, tumor growth and metastasis. As such, translatable research requires a breast cancer model freshly isolated from the patient without disturbing tumor structures to encompass all of these factors and retain tumor heterogeneity and microenvironment (Figure 1.3).
<table>
<thead>
<tr>
<th>Disadvantages</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- High mutation frequency</td>
<td>- Easy to culture</td>
</tr>
<tr>
<td>- In vitro artificial selection</td>
<td>- Clinical response concordance</td>
</tr>
<tr>
<td>- Loss of tumor heterogeneity</td>
<td>- Retention of tumor architecture</td>
</tr>
<tr>
<td>- Loss of tumor architecture</td>
<td>- Retention of tumor heterogeneity</td>
</tr>
<tr>
<td>- Abberant in vivo stromal signalling</td>
<td>- Strong genome/proteasome/transcriptome concordance</td>
</tr>
<tr>
<td>- Clinical response discordance</td>
<td>with original tumor</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages of PDX</td>
<td>Advantages of PDX</td>
</tr>
<tr>
<td>- Costly and technical challenges</td>
<td>- Costly and technical challenges</td>
</tr>
<tr>
<td>- Low PDX take and growth rates</td>
<td>- Low PDX take and growth rates</td>
</tr>
<tr>
<td>depending on initial tumor phenotype</td>
<td>depending on initial tumor phenotype</td>
</tr>
<tr>
<td>- Only 4-5 passages recommended</td>
<td>- Only 4-5 passages recommended</td>
</tr>
</tbody>
</table>

Legend:
- Normal Tissue
- Cancer Stem Cell
- Tumor Subpopulation
- Innate Immune Cells
- Adaptive Immune Cells
- Fibroblast
- Vasculature
- Extracellular Matrix
Figure 1.3: The main differences between PDX and Cell Line Xenografts for Preclinical Research. *In vitro* culture of patient samples leads to a loss of tumor architecture and heterogeneity. The resultant adherent tumor cells are subject to culture selection and adaptation to artificial conditions, leading to the generation of a subpopulation of cell line from the original patient’s tumor containing multiple cell types and subpopulations. Subsequent *in vitro* and *in vivo* experiments performed using a subpopulation of cells may result in discrepancy between breast cell lines and clinical observations and clinical trials. In contrast, implanting breast tumor immediately after harvest from patients into an immune deficient mouse model can preserve tumor heterogeneity, architecture and stromal and extracellular components. After *in vivo* expansion, the PDX tumors retain original tumor properties for up to 4-5 passages. In sharp contrast to cancer cell line xenografts, drug responses of PDX models are consistent with patients, making PDX model an invaluable tool for translational research.
THE IMPORTANCE OF USING PATIENTS TUMORS AS MODELS FOR PRECLINICAL RESEARCH

Considerable observations obtained from patients’ tumors cannot be mimicked by using breast cancer cell lines. Acerbi et al recently demonstrated that crosstalk between the extracellular matrix and inflammation promotes invasion in 20 breast cancer patient biopsies (Acerbi et al., 2015). Increased amounts of collagen were deposited within invasive breast cancer. Furthermore, the collagen was thicker, underwent a linear reorganization in the stroma of the invasive lesions, associated with increased mechano-signalling and increased stromal stiffness. The invasive edge of the tumors possessed the greatest stromal stiffness illustrating regional stromal heterogeneity. This stiffness at the tumor edge was caused by accumulating activated macrophages and increased TGF-β activity, suggesting a crosstalk between macrophage accumulation, stromal stiffness and tumor invasion. TNBC patient tumors possessed the greatest stromal stiffness, macrophage accumulation, and TGF-β activation at the tumor front compared to the other breast cancer subtypes. Additionally, TNBC exhibited increased YAP (Yes-associated protein) signalling that correlated with stromal stiffness, tumor aggression and invasion. YAP is a mechanically activated signaling pathway that is associated with cancer stem cells (CSCs) and poor patient prognosis (Cordenonsi et al., 2011; Kim et al., 2015a; Xu et al., 2010b). This study highlights the multifaceted interplay between tumor cells, the extra cellular matrix and the immune system, which cannot be modeled by the cultured breast cancer cell lines and their xenografts.

Using patients’ tumor samples, Liu et al, demonstrated that there exist two pools of CSCs within the breast cancer. A mesenchymal, migratory CD44⁺/CD24⁻ CSC subpopulation exists at the tumor edge, while an epithelial, proliferative ALDH⁺ CSC subpopulation resides within the tumor core. Moreover, interconversion (plasticity) between the fractionated two CSC
subpopulations was observed, and both epithelial and mesenchymal CSCs were responsible for metastasis and tumor reconstitution at a secondary location. Controversially, \textit{in vivo} xenograft analyses of breast cancer cell lines were unable to demonstrate ALDH\(^+\) or CD44\(^+\)/CD24\(^-\) CSC localization patterns or determine a positive correlation between the frequency of CD44\(^+\)/CD24\(^-\) CSCs and tumor metastasis as observed in patients with breast cancer (Liu \textit{et al.}, 2014c; Sheridan \textit{et al.}, 2006).

Recent reports demonstrated that a hybrid epithelial/mesenchymal CD44\(^+\)/CD24\(^-\)/ALDH\(^+\) CSC subpopulation is more tumorigenic than its pure counterpart, although its role in metastasis and secondary tumor formation remains to be elaborated (Shao \textit{et al.}, 2016; Shiraishi \textit{et al.}, 2017; Sulaiman \textit{et al.}, 2017a). Using patients’ metastatic breast cancer pleural effusions, Shiraishi \textit{et al} demonstrated that CD44\(^+\)/CD24\(^-\)/ALDH\(^+\) CSCs possessed a greater hypoxic response to hypoxia inducible factor (HIF-1\(\alpha\)) signalling (Shiraishi \textit{et al.}, 2017). This response in turn promoted an epithelial to mesenchymal transition through the inhibition of E-cadherin and stimulation of Notch-1, Jagged-1, TGF-\(\beta\), Slug and Snail, which enhanced metastasis and secondary tumor formation \textit{in vivo}. Interestingly, CD44\(^+\)/CD24\(^-\)/ALDH\(^-\) CSCs in contrast, did not undergo EMT upon hypoxia. Instead, hypoxia induced HIF-1\(\alpha\) to bind directly to the ALDH1A1 promoter, which converted CD44\(^+\)/CD24\(^-\)/ALDH\(^-\) CSCs into CD44\(^+\)/CD24\(^-\)/ALDH\(^+\) CSCs. The newly converted ALDH\(^+\) cells expressed angiogenic genes rather than EMT-related genes and were able to generate pulmonary metastasis (Shiraishi \textit{et al.}, 2017). In comparison to patient tumors, breast cancer cell lines differentially expressed ALDH, CD44 and/or CD24, making interpretation of experimental result difficult (Ricardo \textit{et al.}, 2011a). These studies further highlight the importance of using patients’ tumor samples over breast cancer cell lines for the studies of inter/intra tumor interactions, CSC localization and plasticity, tumor heterogeneity and metastasis in translational
PATIENT-DERIVED XENOGRAFT MODELS

While fresh patients’ tumors are a great model for cancer research, their availability, quantity and quality are limiting factors for widespread usage (Tentler et al., 2012). Patient-derived xenograft (PDX) models become an excellent alternative and are readily available for researchers. The PDX models are generated through the transplantation of patients’ tumor tissues into an immunocompromised mouse (Du et al., 2016). The implanted tumors are expanded and serially passaged in mice. PDX procedures exclude tissue dissociation and *in vitro* culture, which prevents cell adaptation to artificial culture system, clonal selection, and homogeneity (Figure 1.3) (Daniel et al., 2009).

Another advantage of the PDX model over cell lines is the preservation of the original tumor architecture and organization such as vasculature and stromal components (Williams et al., 2013). This is thought to represent the original tumor’s biology and retain the interactions between the tumor and its microenvironment (Choi et al., 2014; Williams et al., 2013). PDX models also retain intra/inter-tumor heterogeneity, gene expression, single nucleotide polymorphisms, copy number variants and chromosomal architecture of the original tumors (Bertotti et al., 2011; Choi et al., 2014; Daniel et al., 2009; DeRose et al., 2011; Jin et al., 2010; McEvoy et al., 2012; Williams et al., 2013).

The ability of the PDX models to simulate *in vivo* patients’ tumors may explain the strong correlation between PDX models and actual patient responses (Berger et al., 1990; Gao et al., 2015; Julien et al., 2012; Owonikoko et al., 2016). Zhang *et al* demonstrated this through
implanting a series of human breast tumor tissues into the mammary fat pad of immunodeficient mice (Zhang et al., 2013b). The tumor growth was correlated with tumor grade and the absence of estrogen (ER)/progesterone (PR) expression. After successful engraftment and growth, it was found that all PDXs retained the primary tumors’ histologic phenotypes. PDXs were also evaluated at the transcriptome, proteasome, and genome levels across multiple generations, and all closely resembling the original tumors (Zhang et al., 2013b). Moreover, in a close resemblance to actual breast cancer progression, 48% of PDX tumors exhibited pulmonary metastasis after implantation into mammary fat pad. More importantly, clinical relevance was compared by assessing PDX response to the same treatment regime that had been used in the same patients giving rise to the PDX. Of 13 PDX tumors, 12 (92%) showed the same response as did patients to the chemotherapeutic drugs such as doxorubicin, paclitaxel or dasatinib amongst others, illustrating a high correlation between patients and PDX models (Zhang et al., 2013b).

In another report, Marangoni et al implanted 200 breast adenocarcinoma samples into the fat pad of athymic mice and stably generated 22 PDXs. They demonstrated that high breast grade tumors were superior to lower grade counterparts for engraftment and growth. Again, the original patient tumor histology, genomic rearrangements, chromosomal amplifications, and gene expression profiles were preserved in PDXs. Spontaneous metastasis was observed in 10/22 PDXs (45%), which also exhibited similar histology to the original tumors. Similar responses to chemotherapy (e.g. docetaxel/5-flurouracil/trastuzumab) between patients and their PDXs were also demonstrated in five out of seven cases (Marangoni et al., 2007; Whittle et al., 2015).

PDX models also retain the epigenetic patterns of the original patient tumor. Guilhamon et al demonstrated that in osteosarcoma and colon cancer, methylation profiles of PDXs were well preserved compared to the primary patient tumor with only 2.7% of CpG sites undergoing a major
methylation shift in PDXs (Guilhamon et al., 2014). The second passage of PDXs showed only 0.07% of alternations in CpG methylation sites in comparison to the first passage (Guilhamon et al., 2014). Tomar et al. also demonstrated that only 0.66-1.17% of CpGs were significantly altered after 3 passages compared to the original patient tumor in high-grade serious ovarian cancer PDXs (Tomar et al., 2016). While chemotherapy did not alter the DNA methylation pattern, treatment with decitabine (a demethylation agent) significantly demethylated 10.6% CpG sites and inhibited in vivo PDX tumor growth. Together, these studies suggest the epigenetic stability of PDX models and their suitability for epigenetic studies in comparison to cancer cells lines (Tomar et al., 2016).

Short-term ex vivo cultured PDXs have also been used for pre-clinical high-throughput drug screening. Bruma et al. showed that all PDX tumor tissues they tested could be successfully cultured ex vivo for a short period of time (n=27). These short-term ex vivo cultured PDX tissues retained tissue architecture, molecular and genetic features of in vivo PDXs. Of 40 ex vivo cultured PDX tissues used for drug screening, 33 (82.5%) were verified by in vivo PDX models, suggesting that ex vivo cultured PDX tissues can be used for high-throughput preclinical drug screening (Bruna et al., 2016).

The predictive power of PDX models has led to the development of co-clinical trials, where patients and mice implanted with PDX tumors developed from the patient will be treated simultaneously or retrospectively. This allows for validation of the PDX results generated, determination of factors affecting drug response/efficacy/resistance, and reduction of side-effects (Hidalgo et al., 2014). These personalized approaches are currently being investigated for various cancer types in multiple ongoing clinical trials (Byrne et al., 2017). One particular ongoing co-clinical trial for the treatment of TNBC is to study the effects of neoadjuvant docetaxel in combination with carboplatin in patients with stage 2-3 TNBC who have not achieved a pathologic
complete response due to chemotherapeutic resistance (NCT02124902) (Ademuyiwa et al., 2016). The PDX models in this study will be developed simultaneously to determine chemotherapeutic response between patients, PDX take rates and to identify signatures of chemotherapy resistance and response (Ademuyiwa et al., 2016). Table 1.1 summarizes current active clinical trials using both PDX models and patients, investigating mechanisms underlying tumor progression, metastasis, and drug response and resistance.

Despite these advantages, PDX models are not perfect (Advantages/Disadvantages being summarized in Figure 1.3). The growth rate of PDX models are very slow compared to cell culture and xenografts generated using cancer cell lines. PDX will take around 4-8 months for the development of a preclinical research specimen (Hidalgo et al., 2014; Paez-Ribes et al., 2016). Low engraftment rate persists as a critical challenge for PDX models. It was reported that TNBC possessed 53.8% of engraftment compared to 15.6% for hormone receptor positive breast cancer (McAuliffe et al., 2015). However, the established PDX samples exhibit over 90% engraftment rate despite low success for the primary PDX. The considerable established PDX samples that have been well characterized are currently available from research institutes or companies. The growth rate in each PDX mouse can also be highly variable depending on the quality and location of the tissues prepared from the same tumor.

Additionally, passaging the PDX samples in mice requires more resources, time and expertise in comparison to cell lines. Long-term passaging of PDX samples also affects PDX characteristics. Pearson et al demonstrated that PDXs of human head and neck squamous cell carcinoma increased their growth rate and displayed histopathological features of a higher tumor grade after prolonged in vivo passages (Pearson et al., 2016). To avoid deviations, it is recommended to use low passages (less than 5 passages). McAuliffe et al showed that high
passages of breast cancer PDX exhibited some aberrations in P13K/mTOR signalling, an abrupt loss of human DNA in the PDX tumor and an increase in murine DNA. This was followed by the spontaneous generation of murine mammary adenocarcinoma (McAuliffe et al., 2015). Additionally, after 3-5 passages, the tumor stroma has been found to be replaced by the host mouse stroma which could influence stromal signalling, tumor rigidity, macrophage infiltration, autocrine and paracrine signalling, possibly deviating PDX from the original patients’ tumors (Hidalgo et al., 2014).

Another limitation for current PDX models and for cancer cell line-xenografts is the requirement for the tumor to be implanted into an immunodeficient mouse for tumor engraftment and growth. Due to the lack of immune system, the PDX model is not practical for immunological research. New PDX models have been proposed to address these issues by humanizing the immune deficient mice (e.g. JAX NSG). The human immune system will be generated through early transplantation of human hematopoietic stem cells into immunodeficient mice, followed by PDX implantation. This model will allow for assessment of immuno-tumor interactions in PDX (Simpson-Abelson et al., 2008). This advancement can finally allow for the studies of human chimeric antigen receptor T cell, anti-PDL/PDL-1 and CTLA-4 in a PDX model.
Table 1.1: List of ongoing clinical trials using PDX models.

<table>
<thead>
<tr>
<th>Title</th>
<th>Recruitment</th>
<th>Conditions</th>
<th>NCT Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onco4D(TM) Biodynamic Chemotherapy Selection for Breast Cancer Patients</td>
<td>Recruiting</td>
<td>Breast Cancer</td>
<td>NCT03164863</td>
</tr>
<tr>
<td>Estrogen Receptor-Positive Breast Cancer Patient-Derived Xenografts</td>
<td>Recruiting</td>
<td>Breast Cancer, Colorectal</td>
<td>NCT02752893</td>
</tr>
<tr>
<td>Personalized Patient Derived Xenograft (pPDX) Modeling to Test Drug Response in Matching Host</td>
<td>Enrolling by invitation</td>
<td>Neoplasms, Colorectal Cancer, Breast Cancer</td>
<td>NCT02732860</td>
</tr>
<tr>
<td>Tissue Procurement Protocol for Patients Undergoing Treatment for Early-Stage Breast Cancer</td>
<td>Recruiting</td>
<td>Breast Cancer</td>
<td>NCT02455882</td>
</tr>
<tr>
<td>Patient-derived Xenograft (PDX) Modeling of Treatment Response for Triple Negative Breast Cancer</td>
<td>Recruiting</td>
<td>Triple Negative Breast Cancer</td>
<td>NCT02247037</td>
</tr>
<tr>
<td>Neoadjuvant Treatment of Triple Negative Breast Cancer Patients With Docetaxel and Carboplatin to Assess Anti-tumor Activity</td>
<td>Recruiting</td>
<td>Triple Negative Breast Neoplasms</td>
<td>NCT02124902</td>
</tr>
</tbody>
</table>
PDX MODELS AND NANOMEDICINE

Different from that in normal vascular system, the presence of endothelial gaps and transcellular holes in tumors increases blood vessel leakiness (Hashizume et al., 2000). It is also found that tumor vasculature lacks vascular hierarchy, and possesses architectural abnormalities (heterogeneous, disorganized, branched/overlapped, and/or loosely connected) that resist blood flow and promote the extravascular erythrocyte accumulation (blood lakes) (Baluk et al., 2005; Hashizume et al., 2000; Hlushchuk et al., 2016; Less et al., 1991). This in turn promotes improper nutrient translocation to the tumor and insufficient metabolite clearance, resulting in ischemia, hypoxia, acidic tumor environment, and necrosis. Increased HIF-1 in tumor further enhances abnormal angiogenesis and tumor growth (Forsythe et al., 1996; Hlushchuk et al., 2016).

PDX models have been demonstrated to be capable of representing human tumor angiogenesis (DeRose et al., 2011). The tumor vasculature comprised of human endothelial cells has been shown to mirror the donor patients’ tumor angiogenesis up to 35 days after implantation (Rofstad et al., 2016; Tentler et al., 2012). In contrast, cancer cell line xenografts exhibit different vasculature from patients’ tumors, leading to contradictory effectiveness in angiogenic therapy (Drevs et al., 2000; Hecht et al., 2011; Lieu et al., 2013). Since angiogenesis is not only regulated by human tumor cells but also by human stromal cells and extracellular matrix, this might be a possible cause for the discrepancy as cancer cell line xenografts lacking the components of human stromal cells and human extracellular matrix (Garber, 2002; Jain et al., 2006; Montecinos et al., 2012).

Abnormal tumor vasculature plays a key role in nanoparticle-based therapy. Nanotechnology applications in cancer have revolutionized the landscape of cancer drug development by their uniquely appealing features, such as improved blood circulation, higher
tumor accumulation and reduced toxicities leading to higher therapeutic index. Upon systemic administration, therapeutic nanoparticles have been shown to accumulate in tumors as a result of a multitude of biological processes involving mainly leaky tumor vasculature, poor lymphatic drainage and other minor events as well as enhanced permeability, and retention properties of the nanoparticle itself (Bertrand et al., 2014; Guo et al., 2013; McDonald et al., 1999; Miao and Huang, 2015; Min et al., 2012; Shi et al., 2017). As such, considerable nanomedicine based therapies are undergoing clinical trials today (Bobo et al., 2016).

One of challenges for nanoparticle-based therapy is to determine treatment efficacy using a model system that resembles patients’ tumor. PDX as a model meets this requirement. It has been demonstrated that PDX TNBC models are highly vascularized in comparison to cell line xenografts, resembling original patients’ tumors (Pham et al., 2016). Although this field is advancing rapidly, specificity of nanoparticle-drug accumulation within TNBC PDX tumor as opposed to surrounding tissues and other organs due to enhanced permeability and retention effect has yet to be investigated. Using PDX model to determine the therapeutic efficacy of nanomedicine will provide novel, translatable and tangible approaches for the clinical treatment of TNBC patients.

To conclude, a hierarchy of patient tumors, in vivo PDX and short-term ex vivo cultured PDX tissues have been depicted with their respective overlapping or distinctive features (Figure 1.3). Since the development of PDX TNBC models is crucial for experimentation, we have included the procedures for the expansion/generation of PDX in NOD-SCID mice (supplemental Information) (DeRose et al., 2013).
Supplementary Figure 1.0: Schematic of TNBC Tumor Fragment Insertion Procedure in NOD-SCID Mice. An incision below last nipple is made and scissors is placed inside to expand the pocket between the skin and abdominal wall through inverse cutting motions. Once the pocket is large enough and around the above mammary fat pad, the tumor is inserted firmly to the end of the pocket and wound clips close the incision. To the right is an image of the environment the tumor is growing after the procedure.

-End of Review Article-
1.13 Research Rational

The overall goal of my research was to explore novel, clinically translatable therapeutic approaches for the treatment of TNBC and its CSC populations.

1.14 Hypothesis

Combinational suppression of several key targets will effectively target TBNC CD44$^+$/CD24$^-$ and ALDH$^+$ CSC populations as well as the bulk tumor populations leading to an effective, clinically translatable approach for the treatment.
Chapter 2: Both bulk and CSC subpopulations in TNBC are susceptible to Wnt, HDAC and ERα co-inhibition
Preface

The following chapter consists of a research article for which I am the primary author. The article was published in FEBS Letters.

AS and LW developed the concept and designed experimental outline. AS preformed FACS, clinical sample culture/experiments, transfections/knockdowns, data interpretation and bioinformatics analysis. AS, BS, LK and SM carried out experiments and data acquisition. LW, CA and XL provided conceptual advice. AA, CN, CA, JD were responsible for clinical sample acquisition and experiment design. AS wrote the manuscript and compiled the figures. AS, XL and LW critically revised and edited the manuscript.
Abstract

Development of targeted therapies for triple-negative breast cancer (TNBC, a more aggressive subtype) is an unmet medical need. We analyzed data from 887 patients with invasive breast cancer and observed that increased Wnt and HDAC activities are associated with ESR1 and PGR repression, poor survival and increased relapse. Such a trend was found to be magnified in cancer stem cell (CSC) subpopulation in TNBC cell lines. Co-suppression of Wnt, HDAC and ESR1 using clinically relevant low-dose inhibitors effectively repressed both bulk and CSC subpopulations and converted CSC to non-CSCs in TNBC cells without affecting MCF-10A mammary epithelial cells.

1. Introduction

Breast cancer is one of the leading causes of cancer-related deaths in women throughout the world (Siegel et al., 2016). The triple negative breast cancer (TNBC) subtype, characterised by tumors that that lack expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2), accounts for only 15-20% of all breast cancers but disproportionately accounts for the majority of breast cancer related deaths. TNBC remains the most difficult subtype of breast cancer to treat. TNBC patients are also prone to recurrence between the first and third years post treatment with majority of deaths within the first five years post therapy (Dent et al., 2007; Rakha et al., 2008).

Development of targeted therapies for TNBC is an unmet medical need. Routinely used chemotherapy regimens have unfortunately been shown to enrich cancer stem cells (CSCs) (Jia et al., 2016; Samanta et al., 2014). These CSCs (commonly identified as CD44high/+//CD24low/- subset)
retain the ability to self-renew and reconstitute the heterogeneous tumor leading to drug resistance, metastasis, and disease relapse (D’Amico et al., 2013; McDermott and Wicha, 2010; Opyrchal et al., 2014; Perrone et al., 2012).

While targeting CSCs has been increasingly considered crucial for successful treatment and improved prognosis (Abdullah and Chow, 2013; Cufi et al., 2011; Luo et al., 2015; Nami et al., 2016), reducing/preventing their conversion from non-CSC subpopulations becomes equally important owing to cancer cell plasticity (Chaffer et al., 2011; Liu et al., 2014). As such, a combinational therapy capable of targeting both bulk and CSC populations and converting CSCs to non-CSCs would be an ideal strategy. Recently, combination pharmacologic therapies have been proposed as one of the most promising strategies in breast cancer studies (Ziauddin et al., 2014). Thus, we evaluated the combination of dual inhibition of Wnt and HDAC to determine its potency at targeting both bulk and CSC TNBC cells.

After analyzing gene expression profiles of 887 patients with invasive breast cancer, we found that Wnt and HDAC overexpression correlated with a significant reduction in ESR1 and PGR protein expression, poor survivability and increased risk of relapse. Through our own experiments we furtherly found that TNBC CSCs exhibit lower ESR1 and PGR expression than non-CSCs. Accordingly, duel inhibitions of Wnt using BC21 (a small molecule repressing TCF4, the downstream effector of the Wnt signaling pathway) and HDAC using valproic acid (VPA, a pan HDAC inhibitor), but neither alone, were able to upregulate gene expression of ESR1 in TNBC cells. As a result, tamoxifen was included in the combinational treatment and we found that co-suppression of Wnt, HDAC and ESR1 using clinically relevant low-dose inhibitors effectively repressed both bulk and CSC subpopulations. Moreover, the combinational treatment converted CSC to non-CSCs in TNBC cells without affecting the MCF-10A mammary epithelial cells. Part
of these results was verified by using clinical samples from TNBC patients. These findings may lead to a tangible approach to target both bulk and CSC TNBC populations in a clinical setting.

2. Methods and Materials:

2.1 Cell culture and reagents

The breast cancer cell line SUM149-PT was obtained from Asterand (Detroit, MI, USA) and cultured in Hams F-12 medium supplemented with 5 μg/ml insulin, 10 mM HEPES, 1 μg/ml hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA), 1% penicillin/streptomycin, and 5% of fetal bovine serum (FBS, HyClone, Logan, UT, USA). The MDA-MB-231 breast cancer cell line was purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA), maintained in DMEM-F12 media supplemented with 10% FBS and 1% penicillin/streptomycin. Immortalized human breast epithelial cell line MCF-10A was purchased from ATCC and maintained in DMEM-F12 media supplemented with 10% Horse Serum, 20 ng/ml epithelial growth factor (RD Systems, Minneapolis, MN, USA), 0.5 μg/ml hydrocortisone, 10 μg/ml insulin, 100 ng/ml Cholera Toxin (Sigma-Aldrich) and 1% penicillin/streptomycin. Cells were cultured at 37°C in a 5% CO2 incubator. BC21 was purchased from Calbiochem, tamoxifen and valproic acid from Sigma-Aldrich.

2.2 Lentiviral transduction

pLKO.1 puro shRNA β-catenin was a gift from Bob Weinberg (Addgene plasmid # 18803) and scrambled shRNA was a gift from David Sabatini (Addgene plasmid # 1864) (Onder et al., 2008; Sarbassov et al., 2005). Lentiviral production was carried out as described previously (Jia et al., 2016a). Briefly, 10-cm dishes were seeded with 6x10^6 293T cells per dish overnight before
transfection. For two dishes, 8 µg of the shRNA β-catenin or scrambled shRNA vector, 5.4 µg of the psPax2 envelope plasmid, 3.6 µg of the packaging plasmid (pMD2.G) were used. The medium was replaced overnight, and lentiviral supernatant was harvested after 48 hours, filtered through a 0.45 µm PES filter, and concentrated with Lenti-X concentrator (Clontech) according to the manufacturer’s instruction. For viral infection, when MDA-MB-231 cells in 6-well plate reached 40-50% confluence, 1 ml of concentrated lentiviral supernatant and 8 µg/ml of polybrene were added for 24h, followed by puromycin (2 µg/ml) selection for 14 days. The stable cell lines were maintained in the presence of 0.5 µg/ml puromycin.

2.3 Flow cytometry analysis

Cells were dissociated with 0.05% of trypsin, filtered through a 0.4mm mesh, and suspended in PBS supplemented with 2% FBS and 2 mM EDTA (FACS buffer). 1 µl of mouse IgG solution (1 mg/ml) was added and incubated for 5 minutes on ice. Appropriate antibodies were then added and incubated for 30 minutes on ice according to the manufacturer’s instructions. The cells were washed twice, re-suspended in 1× Binding Buffer (eBioscience, San Diego, CA, USA), and incubated with Annexin-V (eBioscience) for 15 minutes at room-temperature. Finally, the cells were re-suspended in 200 µL FACS buffer in the presence of 1 µl of 7-aminoactinomycin D (7AAD). Antibodies used were anti-CD44-APC, anti-CD24-PE (BD Pharmingen). Appropriate fluorochrome-conjugated isotype matched antibodies were used as negative controls. Flow cytometry was performed on a Cyan-ADP 9 and the BD Fortessa. Data was analyzed with Flowjo software (Ashland, OR, USA).

2.4 Fractionation of CSC and non-CSC subpopulations from breast cancer cells

CSCs and the bulk populations were separated based on CD44high+/CD24low− expression in MDA-MB-231 cells. After antibody staining, four sub-populations were analyzed and sorted by
MoFlo Astrios Sorter (Beckman Coulter). Isolation gates, including histogram markers and dot plot quadrants were chosen based on negative controls. Purity (>90%) was determined after sorting.

2.5 Western blotting

Cells were detached and lysed with lysis buffer supplemented with protease inhibitors (Roche). After quantification of the protein concentrations using a Bio-Rad DC protein assay kit (Bio-Rad, Hercules, CA, USA), samples were normalized and de-natured. The samples were separated by 8% SDS-PAGE gel followed by transference to a PVDF membrane. Protein was identified by incubation with primary antibodies followed by horseradish peroxidase-conjugated secondary antibodies and an enhanced chemiluminescence solution (Pierce, Thermo Scientific, USA). Antibodies used in this study include: anti-β-catenin (Clone 14, cat610153, 1:1000) from BD (Mississauga, ON, Canada), anti-active β-catenin (Clone 8E7, cat05665, 1:1000) from Millipore (Billerica, MA, USA), and anti-α-tubulin monoclonal antibody (T9026, 1:500) from Sigma-Aldrich (St. Louis, MO, USA).

2.6 Quantitative real-time PCR (qPCR)

Total RNAs were extracted using RNeasy kit (QIAGEN) and real-time qPCR analysis was performed using the Bio-Rad MyiQ (Bio-Rad, USA). The reaction conditions were: one cycle at 95°C for 20 seconds followed by 45 cycles at 95°C for three seconds and annealing at 60°C for 30 seconds. Results were normalized to the housekeeping gene 18S ribosomal RNA (18S). Relative gene expression was calculated using the 2^ΔΔCT method and compared to the expression of appropriate controls. The primers used are listed in Table 1.

2.7 Cell viability analysis
Cells were seeded into 12 well plates (1.5×10^4 cells/well). After 120 hours of treatment, 10% MTT reagent (tetrazolium, 5mg/ml) was added and incubated for 4 hours. The supernatant was removed, followed by addition of 600 μl DMSO to dissolve formazan crystals. Absorbance was measured at 570 nm.

Alamar blue viability analysis was performed by incubation with 10% alamar blue reagent (Thermo Fisher Scientific) for 4 hours. Fluorescence was measured at 560 nm excitation and 590 nm emission.

2.8 Clinical database analysis

2.9 Primary breast cancer cells

Primary breast cancer tissues/cells were obtained from two TNBC patients with approval of the Ottawa Health Science Network Research Ethics Board and cultured in DMEM-F12 medium supplemented with 10% FBS, 1% penicillin/streptomycin, 1 μg/ml insulin, 0.5 ng/ml hydrocortisol and 3 ng/ml epidermal growth factor. Primary breast cancer cells were treated with
the same concentrations of inhibitors as used in the breast cancer cell lines, followed by a viability assay and flow cytometric analysis.

2.11 Statistical analyses

Data are expressed as mean ± Standard Deviation (SD) unless specified elsewhere. Statistical significance was determined using a Student’s t test or ANOVA wherever appropriate. Results were considered significant when \(p < 0.05 \), \(< 0.01 \), or \(< 0.001 \).

3. Results:

3.1. Upregulated Wnt and HDAC signaling in the patients with invasive breast cancer is associated with decreased expression of ESR1 and PGR proteins and poor survival

Determining overexpressed genes/proteins in breast cancer is a primary step towards the development of novel targeted therapies for TNBC. We analyzed different pathways followed by considerable in vitro experiments, eventually focusing on Wnt, HDAC, and ESR1. After analysing 887 patients with invasive breast cancer using TCGA datasets through cBioPortal (Cerami et al., 2012; Gao et al., 2013), we found that Wnt target genes (upregulation of \(CTNNB1 \), \(TCF3 \), \(TCF4 \), \(AXIN2 \), \(CD44 \), \(MYC \), \(WNT3A \), \(SOX2 \), \(SOX9 \), \(EGFR \), \(HNF1A \), \(MMP7 \) and downregulation of \(CDH1 \) and \(GSK3β \) (Dandekar et al., 2014; Dey et al., 2013; Hu and Li, 2010; Wu et al., 2012; Yano et al., 2005; Yi et al., 2011)) were inversely correlated with the expression of ESR1, PGR proteins and ERBB2 proteins (Figure 1A). While Wnt upregulation in TNBC is well documented, its involvement in ESR1 repression remains convoluted. As such, we looked at other factors including HDACs that have been shown to mediate Wnt function and also play a role in ESR1 repression (Fortunati et al., 2010; Ng and Littman, 2016). As revealed in Figure 1B, when HDACs (HDAC
1, 2, 4, 6, 9 and 11) were upregulated, ESR1 and PGR but not ERBB2 proteins were repressed. Consistently, ESR1 gene expression was also found to be inversely correlated with the upregulation of individual HDAC or Wnt gene (supplemental Figure 1A and 1B, respectively).

Furthermore, if both Wnt and HDAC target genes, but neither alone, were upregulated, a decrease in the median month’s survival and an increase in the number of relapsed cases were observed (Figure 1C-D). Interestingly, HDAC inhibition has been demonstrated to upregulate Wnt signaling pathway (Debeb et al., 2012), hence it may stimulate Wnt inhibition-induced ESR1 suppression as indicated in Figure 1A. As such, dual inhibition of Wnt and HDAC might be necessary for the upregulation of ESR1 protein expression in TNBC and subsequent sensitization to endocrine therapies (e.g tamoxifen) (Kala and Tollefsbol, 2016).

Since breast CSCs have been attributed to disease recurrence, we further determined the differences between TNBC CSCs and non-CSCs with regards to Wnt signaling and ESR1 and PGR gene expression. We fractionated TNBC MDA-MB-231 CSC (CD44^{high}/CD24^{low})/CD24^{low}/ and non-CSC subpopulations, followed by qPCR analysis. In comparison to bulk populations, CSCs expressed lower levels of ESR1 and PGR genes but higher level of Axin-2 (an indicator for increased Wnt signalling, Figure 1E), which is in agreement with a previous report (Harrison et al., 2013). Consistently, CSC marker genes were also highly expressed in CSC subpopulation, including CD44, OCT-4, and c-MYC (Figure 1 F). CD44 has been implicated in treatment resistance (Hiscox et al., 2012) while OCT-4 and c-MYC are associated with enhanced tumor malignancy in breast cancer (Hassiotou et al., 2013; Lavialle et al., 1988). This suggests an inverse correlation between CSC tumorigenicity and ESR1 and PGR expression in TNBC cells. Since antiestrogen is the first-line treatment of choice for ESR1+ patients and has excellent efficacy-to-toxicity ratio, we
reasoned that dual inhibition of Wnt and HDAC might upregulate \textit{ESR1} expression, re-sensitize TNBC cells to antiestrogen treatment, and suppress both bulk and CSC populations.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Upregulated Wnt and HDAC signaling in patients with invasive breast cancer is associated with decreased expression of \textit{ESR1} and PGR proteins and poor survival. (A) Protein Expression (RRPA) of ESR1, PGR and ERBB in the patients’ samples with overexpression of Wnt target genes versus the unaltered counterpart (Ctrl: control, n = 887 patients with invasive breast cancer, \textit{***p} < 0.001). (B) Protein Expression (RRPA) of ESR1, PGR and ERBB2 in the patients’ samples with overexpression of HDAC target genes versus the unaltered counterpart (Ctrl: control, n = 887 patients with invasive breast cancer, \textit{***p} < 0.001). (C) Kaplan-Meier curve for overall survival of the patients with overexpression of Wnt and HDAC signalling (red curve) in comparison to those without overexpression (blue curve, n = 885, \textit{p} < 0.05, log-rank test). (D) Disease Free Survival Kaplan-Meier curve charting the patient relapse rate over time with overexpression of Wnt and HDAC signalling (red curve) in comparison to those without overexpression (blue curve, n = 808, \textit{p} < 0.05, log-rank test). (E) Quantitative real-time PCR analysis of the expression of ESR1, PGR, ERBB2, and the Wnt target gene Axin-2 in the fractionated MDA-MB-231 bulk and CSC (CD44+/CD24-) populations after normalization with housekeeping gene 18S. (F) Quantitative real-time PCR analysis of the expression of CSC-associated genes (OCT-4, \textit{c}-Myc, CD44) in the fractionated MDA MB-231 bulk and CSC (CD44+/CD24-) populations after normalization with 18S. Data represent means ± SD for D and E, n = 3; \textit{*p} < 0.05, \textit{**p} < 0.01.}
\end{figure}
3.2. Combinations of Wnt, HDAC and estrogen inhibitors upregulate ESR1 expression and effectively repress CSC populations in TNBC cells

To determine whether Wnt, HDAC and estrogen inhibition are effective against CSC populations in TNBC, we suppressed Wnt signaling through shRNA knockdown of β-catenin (Behrens et al., 1996) (Figure 2A) and suppressed HDAC and ESR1 using small molecules. In accordance with the patient data, dual inhibition of Wnt and HDAC (with 250 µM VPA), but neither alone, upregulated ESR1 gene expression in TNBC cells (Figure 2B), providing a rationale for the combinational use of Wnt, HDAC and ESR1 inhibitors. We therefore included the estrogen receptor modulator tamoxifen (used commonly in the treatment of ESR1+ breast cancer (Jordan, 1997)) in the combination. As expected, shRNA knockdown of β-catenin together with VPA and tamoxifen (1 µM) significantly decreased CSC populations in MDA-MB-231 TNBC cells (Figure 2C and 2D).

For potential clinical application, we replaced shRNA β-catenin with a Wnt inhibitor, BC21 which displayed similar potency to the shRNA β-catenin knockdown in regards to the inhibition of Axin-2 gene expression (Figure 2E). Consistently, 250 µM VPA and 0.5 µM BC21 treatment in the absence or presence of 1 µM tamoxifen (abbreviated as VB and VBT, respectively) led to ESR1 upregulation in TNBC cells (Figure 2F). Specifically, VBT, but not other combinations, significantly reduced the living CSC populations by up to 95% in comparison to the control in MDA-MB-231 TNBC cells and elicited similar effect in the SUM149-PT cells (an inflammatory TNBC cell line) (Figure 2G-H and Supplemental Figure 2A). To exclude nonspecific toxicity of the combination treatment, immortalized non-tumorigenic breast epithelial MCF-10A cells were treated with VBT. Significantly, cell viability of MCF10A was not affected by inhibitors individually or in combination (Figure 2I). Notably, tamoxifen and VPA used in our
experiments are clinically relevant and BC21 is approximately 1/6 of the IC$_{50}$ recommended (Daniel et al., 2004). Collectively, these data suggest that the combination of Wnt, HDAC and ESR1 inhibitors can be considered as a new therapeutic approach to upregulate ESR1 expression and suppress both bulk and CSC populations in TNBC.

Figure 2. Combinations of Wnt, HDAC and estrogen inhibition upregulate ESR1 expression and effectively repress CSC population in TNBC cells. (A) Representative western blot depicting β-catenin expression in MDA-MB-231 cells after β-catenin shRNA (shβ-Cat) knockdown in comparison to the scrambled shRNA control (Ctrl). (B) Quantitative real-time PCR analysis depicting the gene expression of ESR1 in MDA-MB-231 cells 48 hours after exposure to the following treatments: scrambled control (S), Shβ-catenin alone (Shβ), Shβ-catenin + tamoxifen (Shβ+T, 1μM), Shβ-catenin+ VPA (250μM, Shβ+V) or shβ-catenin+ VPA + tamoxifen (Shβ+VT). (C) Representative flow cytometric data of the CSC (CD44+/CD24-) subpopulation in MDAMB-231 cells, 48 hours after exposure to the treatments described in B. (D) Relative living CSC (CD44+/CD24-/7-AAD-/Annexin-V-) in MDA-MB-231 cells 48 hours after exposure to the treatments as described in B. (E) Quantitative real-time PCR analysis depicting the gene expression of Axin-2 in MDA-MB-231 cells 48 hours after treatment as described in B. (F) Quantitative real-time PCR analysis depicting the gene expression of ESR1 in MDA-MB-231 cells 48 hours after exposure to DMSO (D, vehicle), Wnt/TCF4 inhibitor BC21 (B, 0.5 μM), tamoxifen (T, 1 μM), VPA (V, 250 μM), VPA+BC21 (VB) or VPA+BC21+tamoxifen (VBT). (G) Relative
living CSC (CD44+/CD24-/7-AAD-/Annexin-V-) in TNBC MDA MB-231 and SUM 149-PT cell lines 120 hours after treatments as described in F. (H) Representative flow cytometric data of CSC (CD44+/CD24-) subpopulation in MDA-MB-231 cells 120 hours after treatments as described in F. (I) Combinations of different inhibitors do not affect MCF-10 viability 120 hours after treatments as described in F. Data represent means ± SD, n = 3 for all figures; *p < 0.05, **p <0.01.

3.3. VBT effectively promotes the conversion of CSCs to non-CSCs while enhancing apoptosis of both bulk and CSC populations in the fractionated TNBC cells

The CSC subset (CD44^{high+/+}/CD24^{low/-}) in breast cancer has been shown to be able to generate tumors in mice with as few as 100 cells in comparison to other non-CSC subpopulations that required tens of thousands (Al-Hajj et al., 2003). Hence, shifting the population away from CSCs will be an important strategy for effective treatment.

To assess the conversion between non-CSCs to CSCs, we fractionated MDA-MB-231 cells into its CSC (CD44+/CD24+) and three non-CSC subpopulations (CD44+/CD24+, CD44-/CD24+ and CD44-/CD24- (Al-Hajj et al., 2003) with >90% purity. In agreement with a previous report (Liu et al., 2014) we found that the fractionated TNBC subpopulations were able to gradually reconstitute the CSC subpopulation after prolonged culture, suggesting that blockade of conversion from non-CSCs to CSCs is crucial in tumor control.

To determine whether VBT treatment is capable of inhibiting the conversion of non-CSCs to CSCs, we exposed the fractionated cells to individual and combinational treatments for 120 hours, after which the total live cells was counted and the reconstituted TNBC population’s enrichment of each subpopulations based on CD44 and CD24 expression was determined (illustrated in Figure 3A). Significantly, VBT treatment diminished cell viability in all fractionated sub-populations (Figure 3B and Supplemental Figure 2B). To determine whether apoptosis contributed to the reduced viability, we analyzed the cells by flow cytometry after Annexin-V and
7-AAD staining. Indeed, VBT significantly enhanced apoptosis in all fractionated subpopulations, including the CSC subset of MDA MB-231 cells (Figure 3C and Supplemental Figure 2D) and SUM 149-PT cells (data not shown).

CSC enrichment was then determined through CD44+/CD24- population frequency analysis after VBT exposure for 120 hours in each of the fractionated sub-populations. It was found that within all fractionated sub-populations, after exposure to VBT, the CSC population was drastically diminished (Figure 3D-E and Supplemental Figure 2C and 2E). Furthermore, analyzing the frequency of the other 3 non-CSC sub-populations after exposure to VBT in each fractionated sub-population illustrated that non-CSC populations were enriched in surviving cells, suggesting a halt in CSC conversion (Figure 3F and Supplementary Figure 3A-C).

Collectively, these data suggest that the combinational treatment with VBT is an effective approach to target TNBC via preventing the conversion of non-CSCs to CSCs and promoting apoptosis of both bulk and CSC populations.
Figure 3. VBT effectively promotes the conversion of CSCs to non-CSCs in the fractionated TNBC cells while enhancing apoptosis of both bulk and CSC populations (A) MDA MB-231 TNBC cells were fractionated into its CSC (CD44+/CD24-) and non-CSC subpopulations based on CD44 and CD24 expression. The fractionated cells were then exposed to the different treatments for 120 hours, followed by flow cytometric reanalysis to determine the reconstitution of CSC and non-CSC subpopulations. (B) Fractionated MDA MB-231 subpopulations (based on CD44/CD24 expression) were exposed for 120 hours to the following reagents: DMSO (D, vehicle), BC21 (B, 0.5 μM), tamoxifen (T, 1 μM), VPA (V, 250 μM), VPA+BC21 (VB) and VPA+BC21+tamoxifen (VBT). After treatment, cell viability was assessed by trypan-blue exclusion assay. (C) VBT treatment enhances apoptosis of both CSC and non-CSC subpopulations in TNBC cells. Apoptosis (Annexin V+/7AAD+) in each fractionated MDA-MB-231 subpopulations was determined by flow cytometry after 120 hours of treatments as described in B. (D) Relative living CSCs (CD44+/CD24-/7AAD-/Annexin-V-) in each fractionated MDA-MB-231 subpopulation after 120 hours of treatments as described in B (vehicle treatment as controls). (E) Representative flow cytometric data of the CSC (CD44+/CD24-) subpopulation in the fractionated MDA-MB-231 cells after 120 hours of treatments as described in B. (F) Fractionated MDA-MB-231 subpopulations (based on CD44/CD24 expression) were exposed for 120 hours to different reagents as described in B. After treatment cell viability was assessed by trypan-blue exclusion assay, and the proportion of each subpopulation was determined by flow cytometry based on CD44/CD24 expression. The total number of cells in each subpopulation was calculated by viable cell number × percentage of each subpopulation. Data represent means ± SD and n = 3 for Figure 3A-3F; *p < 0.05, **p < 0.01.
3.4. Combinational VBT treatment effectively inhibits the growth of patients’ TNBC cells and reduces the CSC subpopulation

To further verify the above findings, we obtained two clinical samples (named CRDCA and SEM-1) from patients with TNBC. The primary patients’ tissues/cells were cultured, followed by treatment with inhibitors individually or in combination for 144 hours. Alamar blue viability analysis depicted the effectiveness of VBT treatment in comparison to other treatments in CRDCA and SEM-1 (Figure 4A). Representative flow cytometric analysis of the CSC population showed that VBT treatment markedly reduced CSCs in CRDCA and SEM-1 (Figure 4B-C). These data indicate the potency of combing the inhibition of Wnt, HDAC and ESR1 in TNBC treatment. It may lead to the development of an effective intervention to reduce metastasis and disease relapse, warranting further studies.
Figure 4. Combinational VBT treatment effectively inhibits the growth of patients’ TNBC cells and reduces CSC subpopulation. (A) Alamar blue viability analysis of two primary patients’ TNBC cells (CRDCA and SEM-1 samples) after 144 hours of exposure to: DMSO (D, vehicle), BC21 (D, 0.5 μM), tamoxifen (T, 1μM), VPA (V, 250 μM), VPA+BC21 (VB) and VPA+BC21+tamoxifen (VBT). Data represent means ± SD, n = 3 repeats; *p < 0.05, **p < 0.01. (B) Representative flow cytometric data showing percentages of CSC (CD44+/CD24-) subpopulation in primary TNBC samples (patient CRDCA samples) after 120 hours of treatments as described in A. (C) Representative flow cytometric data showing percentages of CSC (CD44+/CD24-) subpopulation in primary TNBC samples (patient SEM-1 samples) after 120 hours of treatments as described in A.
4. Discussion:

Antiestrogens (e.g. tamoxifen) are safe and effective choices for ESR1+ breast cancer patients. It has been found that epigenetic modifications such as histone deacetylation suppress ESR1 expression and promote breast cancer progression (Kawai et al., 2003; Rhodes et al., 2012). HDACs interact with ESR1 at multiple levels of the ESR1 pathway. HDAC inhibition through trichostatin A has been demonstrated to upregulate ESR1 gene expression in ESR1-negative breast cancer in response to tamoxifen (Jang et al., 2004). Additionally, the HDAC inhibitor entinostat restores ESR1 expression and enzymatic activity of aromatase in ESR1-negative breast cancer cells in a dose dependant manner, both in *in vitro* and *in vivo* (Sabnis et al., 2011).

However, some inconsistent results do not support the role of HDAC inhibition in the upregulation of ESR1 expression in breast cancer (de Cremoux et al., 2015; Fortunati et al., 2010; Sabnis et al., 2011; Stark et al., 2013; Yang et al., 2000). Our results with primary TNBC samples support this inconsistency with VPA increasing CSC enrichment in SEM-1 but decreasing CSC enrichment in CRDCA when exposed alone. This may be associated with an upregulation of Wnt signalling upon exposure to HDAC inhibitors such as VPA and trichostatin A in certain patient samples. Trichostatin A and VPA have been reported to activate Wnt signalling in HepG2 liver carcinoma and Neuro 2A cells (Phiel et al., 2001; Shi et al., 2014). This is also demonstrated in breast cancer cell lines where HDAC inhibitors have been found to upregulate β-catien expression leading to increased Wnt signaling (Debeb et al., 2012).

In this report, after analyzing 410 patients with invasive breast cancer, we found that upregulation of either Wnt or HDAC target genes inversely correlates with lower ESR1 protein expression. Since inhibition of HDACs has been shown to upregulate Wnt signaling, inconsistent findings regarding HDAC inhibition and ESR1 upregulation in TNBC may be associated with the
status of Wnt activation. In certain circumstances, HDAC inhibition-induced Wnt activation may result in ESR1 suppression. Indeed, dual inhibition of Wnt (β-catenin shRNA knockdown or using a small molecule) and HDACs, led to an increase in ESR1 gene expression in TNBC cells (Figures 2B and 2F). This observation is supported by the functional and physical interaction between Wnt and ESR1 as previously reported (Kouzmenko et al., 2004). ESR1 and β-catenin were found to be precipitated within the same immunocomplexes and show genetic interaction in vitro and in vivo using a transgenic Drosophila model system (Kouzmenko et al., 2004). Taken together, previous reports and this study support the rationale for VBT combination in the treatment of TNBC.

Importantly, VBT used in clinically relevant dosages is capable of inhibiting both bulk and CSC subpopulations (Figures 2 and 3). The presence of tamoxifen, in combination with Wnt and HDAC inhibitors, is significant at effectively suppressing the CSC population in TNBC cells (Figure 2 and 3). This may be mediated by the upregulation of ESR1 expression after dual inhibition of Wnt and HDAC pathways as tamoxifen alone was ineffective.

In addition, we also revealed that VBT combination facilitated the conversion of CSCs to non-CSC subpopulations (Figure 3). Plasticity between CSCs and non-CSCs has been well recognized (Chaffer et al., 2011; Liu et al., 2014). Thus, blockade of CSC conversion from non-CSCs is equally important for eventual eradication of CSCs to reduce disease recurrence. In this study, we fractionated the TNBC MDA-MB-231 cells into four subpopulations to determine whether VBT treatment is able to prevent CSC development from other fractionated non-CSC subpopulations. The results indicate that VBT combination suppresses CSC enrichment by inhibiting cell growth (MTT and/or Alamar blue assays), promoting apoptosis (flow cytometry analysis), and facilitating conversion of CSCs to non-CSCs. This provides a cellular mechanism
underlying the effectiveness of VBT treatment in TNBC cells. We further verified our findings with two clinical TNBC samples (Figure 4). Since VPA and tamoxifen have been commonly used in clinic and the Wnt inhibitor ICG-001 has recently been approved by the FDA for clinical trial testing, our study may lead to a new avenue in TNBC treatment.
Supplemental Figure 1. Upregulation of HDAC genes and Wnt target genes is inversely correlated with downregulation of ESR1 gene. (A) Inverse correlations between the expression of HDAC genes (x-axis) and ESR1 gene (y-axis). TCGA microarray database, patient with invasive breast cancer, n = 887, *p < 0.05, ***p < 0.001. Orange dots indicate mutation, R = Pearson coefficient. (B) Inverse correlations between the expression of Wnt target genes (x-axis) and ESR1 gene (y-axis). TCGA microarray database, patient with invasive breast cancer, n = 887, *p < 0.05, ***p < 0.001. Orange dots indicate mutation, R = Pearson coefficient.
Supplemental Figure 2. VBT effectively prevents the conversion of non-CSCs to CSCs in the fractionated three non-CSC subpopulations (A-C) The fractionated three non-CSC subpopulations from MDA-MB-231 (based on CD44/CD24 expression) were exposed for 120 hours to the reagents as described in Figure 2B. After treatment, cell viability was assessed by trypan-blue exclusion assay, and the CSC and non-CSC subpopulations were determined by flow cytometry. The total number of cells in each subpopulation was calculated by viable cell number × percentage of each subpopulation. Data represent means ± SD, n = 3 for all figures; *p < 0.05, **p < 0.01.
Supplemental Figure 3. Dual valproic acid and tamoxifen treatment exhibits moderate effects

(A) Representative flow cytometric data. MDA-MB-231 cells were treated with valproic acid (250 μM) and tamoxifen (1 μM) (VT) for 120 hours, CSC (CD44+/CD24-) and non-CSC subpopulations were analyzed. (B) The fractionated MDA-MB-231 subpopulations (based on CD44/CD24 expression) were treated with vehicle or valproic acid (250 μM) + tamoxifen (1 μM) (VT) for 120 hours, followed by trypan-blue exclusion assay. Data represent means ± SD, n = 3; *p < 0.05. (C) Dual valproic acid and tamoxifen treatment moderately inhibits living CSCs in the fractionated CSC and CD24+/CD44- subpopulations. The fractionated MDA-MB-231 cells were treated with vehicle or valproic acid (250 μM) + tamoxifen (1 μM) (VT) for 120 hours, followed by flow cytometric analysis of relative living CSC subpopulations (CD44+/CD24-). Data represent means ± SD, n = 3; *p < 0.05, *** p < 0.001 (D) VT moderately enhances apoptosis of CD24+/CD44- subpopulation (non-CSCs). Apoptosis (Annexin V+/7AAD+) of fractionated MDA-MB-231 cells were determined by flow cytometry after 120 hours of treatments as described in B. Data represent means ± SD, n = 3; *p < 0.05.
Chapter 3: Co-inhibition of mTORC1, HDAC and ESR1α Retards the Growth of Triple Negative Breast Cancer and Suppresses Cancer Stem Cells
Preface

The following Chapter consists of a research article for which I am the primary author. The article was published in Cell Death and Disease.

Andrew Sulaiman, Sarah McGarry, Sara El-Sahli, Ka Mien Lam, Jason Chambers, Shelby Kaczmarek, Li Li, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Co-inhibition of mTORC1, HDAC and ESR1α Regards the Growth of Triple Negative Breast Cancer and Suppresses Cancer Stem Cells. Cell Death and Disease 2018; 9(8): 815 doi: 10.1038/s41419-018-0811-7). Published under a Creative Commons Attribution (CC BY) License.

AS and LW developed the concept and designed experimental outline. AS preformed in vivo experiments, serial dilution, FACS, clinical sample culture/experiments, transfections/knockdowns, data interpretation and bioinformatics analysis. AS, SM, SE, KL, JC and SK carried out experiments and data acquisition. LW, LL, CA, ZY, GJ, HS, XL and SG provided conceptual advice. AA, CN, CA, JD were responsible for clinical sample acquisition and experiment design. AS wrote the manuscript and compiled the figures. AS, XL, ZY and LW critically revised and edited the manuscript.
Abstract

Triple negative breast cancer (TNBC) is the most refractory subtype of breast cancer. It causes the majority of breast cancer-related deaths, which has been largely associated with the plasticity of tumor cells and persistence of cancer stem cells (CSCs). Conventional chemotherapeutics enrich CSCs and lead to drug resistance and disease relapse. Development of a strategy capable of inhibiting both bulk and CSC populations is an unmet medical need. Inhibitors against estrogen receptor 1, HDACs or mTOR have been studied in the treatment of TNBC; however, the results are inconsistent. In this work, we found that patient TNBC samples expressed high levels of mTORC1 and HDAC genes in comparison to luminal breast cancer samples. Furthermore, co-inhibition of mTORC1 and HDAC with rapamycin and valproic acid, but neither alone, reproducibly promoted ESR1 expression in TNBC cells. In combination with tamoxifen (inhibiting ESR1), both S6RP phosphorylation and rapamycin-induced 4E-BP1 upregulation in TNBC bulk cells was inhibited. We further showed that fractionated CSCs expressed higher levels of mTORC1 and HDAC than non-CSCs. As a result, co-inhibition of mTORC1, HDAC and ESR1 was capable of reducing both bulk and CSC subpopulations as well as the conversion of fractionated non-CSC to CSCs in TNBC cells. These observations were partially recapitulated with the cultured tumor fragments from TNBC patients. Furthermore, co-administration of rapamycin, valproic acid and tamoxifen retarded tumor growth and reduced CD44^{high}/CD24^{low/-} CSCs in a human TNBC xenograft model, and hampered tumorigenesis after secondary transplantation. Since the drugs tested are commonly used in clinic, this study provides a new therapeutic strategy and a strong rationale for clinical evaluation of these combinations for the treatment of patients with TNBC.
1. Introduction

Breast cancer is one of the leading causes of cancer-related deaths in women throughout the world (Siegel et al., 2016). The triple negative breast cancer (TNBC) subtype is characterized as being negative for the estrogen receptor 1 (ESR1), progesterone receptor (PGR), and human epidermal growth factor receptor type 2 (HER2). TNBC patients have high rates of recurrence between the first and third year of treatment, with the majority of deaths occurring within the first five years (Dent et al., 2007; Rakha et al., 2008). It is one of the most difficult subtypes of breast cancer to treat and disproportionately causes the majority of breast cancer related deaths (Liedtke et al., 2008).

Because of the lack of specific targets, chemotherapy regiments are a mainstay for TNBC treatment. Chemotherapeutics, however, have been shown to enrich cancer stem cells (CSCs) in TNBC (Abdullah and Chow, 2013; Jia et al., 2017; Jia et al., 2016). These CSCs (e.g. CD44high/CD24$^{low/-}$ subpopulation) have been shown to regenerate the heterogeneous tumor in vivo, promoting chemoresistance, and disease relapse (Jia et al., 2017; Sulaiman et al., 2017a). Due to tumor plasticity and the conversion between CSC and non-CSC subpopulations (Liu et al., 2014; Sulaiman et al., 2018b; Sulaiman et al., 2016a; Sulaiman and Wang, 2017), development of a strategy capable of inhibiting both non-CSC and CSC subpopulations is crucial for TNBC therapy (Chaffer et al., 2011).

Given the excellent efficacy-to-toxicity ratio of anti-ESR1 treatment, functional reactivation of ESR1 by inhibition of P13K/Akt/mTORC1 signalling or HDAC to sensitize TNBC to endocrine therapy has been explored, but with inconsistent results and undefined mechanisms (Wang et al., 2016a).
The P13K (phosphoinositide 3 kinase)/Akt/mTORC1 (mammalian target of rapamycin) pathway is commonly activated in breast cancer. For example, PTEN, the negative regulator of P13K, is mutated at a frequency of 44% in luminal and 67% in TNBC (Lee et al., 2015), leading to both endocrine and chemotherapeutic resistance (Cavazzoni et al., 2012; Ramaswamy et al., 2012; Singel et al., 2014). It has been shown that P13K/Akt/mTORC1 activation induces estrogen-independent ESR1 signalling to promote endocrine resistance (Papломата et al., 2013). P13K/Akt/mTORC1 activation also affects the epigenetic regulation of the chromatin. It modifies histone methylation, acetylation and ubiquitination, resulting in the aberrant silencing/repression of various genes (Huang and Chen, 2005; Spangle et al., 2016; Xu et al., 2012). However, using mTORC1 inhibitors alone failed in the treatment of several types of tumor (Abraham and Gibbons, 2007; LoPiccolo et al., 2008; Wander et al., 2011). This has been attributed to incomplete inhibition of mTORC1. mTORC1 signalling consists of S6RP phosphorylation and 4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1) phosphorylation that stimulates cap-dependent translation. Rapamycin demonstrates a high affinity of inhibition towards S6K1 phosphorylation but it induces 4EBP1-phosphorylation within 6-hours of treatment, allowing for cap-dependent translation and mTORC1 signalling (Choo et al., 2008). As such, suppressing both S6RP and 4E-BP1 phosphorylation is required for a viable mTORC1 inhibition.

HDACs have been shown to epigenetically suppress ESR1 (Ellison-Zelski et al., 2009; Rasti et al., 2012). As such, HDAC inhibitors have been tested to promote ESR1 re-expression in TNBC. Preclinical studies have shown that various HDAC inhibitors (e.g. PCI-24781, trichostatin A, valproic acid and vorinostat) in combination with tamoxifen (a selective estrogen receptor modulator) lead to endocrine sensitivity and increased cell death of breast cancer. However, these results are controversial with undefined mechanisms (de Cremoux et al., 2015; Jang et al., 2004;
In this study, we observed that tumor samples from TNBC patients expressed higher levels of mTORC1 and HDAC genes than those from non-TNBC luminal breast cancer. The fractionated TNBC CSC subpopulation expressed higher levels of mTORC1 and HDAC mRNA than non-CSCs. Accordingly, the combination of low dose of rapamycin (repressing mTORC1/S6RP) and valproic acid (a pan HDAC inhibitor) restored ESR1 expression; the combination of rapamycin, valproic acid and tamoxifen suppressed both S6RP and 4E-BP1 phosphorylation, and effectively repressed both bulk and CSC subpopulations in TNBC. Furthermore, in a human xenograft model, three inhibitors in combination effectively attenuated TNBC tumor burden, diminished the CD44high/CD24low CSC subpopulation and reduced tumorigenesis after secondary transplantation. Combination pharmacologic therapies have been proposed as one of the most promising strategies in breast cancer studies (Ziauddin et al., 2014). These findings suggest that co-inhibition of mTORC1, HDAC and ESR1 can be considered as a tangible approach to target both TNBC bulk and CSC populations in a clinical setting.

2. Materials and methods

2.1 Cell culture and reagents

SUM149-PT breast cancer cells were obtained from Asterand (Detroit, MI, USA) and cultured in Hams F-12 media (Mediatech, Manassas, VA, USA) containing 5% FBS, 5 μg/ml insulin, 1 μg/ml hydrocortisone, 10 mM HEPES and 1% penicillin/streptomycin. MDA-MB-231 breast cancer cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in DMEM-F12 media supplemented with 10% Fetal bovine serum (FBS, HyClone, Logan, UT, USA) and 1% penicillin/streptomycin. Cells were cultured at 37 °C in a 5% CO\textsubscript{2}
incubator. Tamoxifen was purchased from CalBiotech (El Cajon, CA, USA), rapamycin from Caymen Chemicals (Ann Arbor, Michigan, USA) and valproic acid from Sigma (Oakville, ON, Canada). Insulin, hydrocortisone, HEPES, and bovine serum albumin were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2 Breast cancer tissue and patient-derived xenograft fragments

Tumor tissues from 3 TNBC patients undergoing routine surgical procedures were obtained. The protocol was approved by The Ottawa Hospital Research Ethics Board (Protocol# 20120559-01H). Approximately 2 mm cores were obtained using a sterile biopsy punch that was further sliced with a scalpel to obtain approximately 2 × 1 mm tumor slices (Dayekh et al., 2014; Sulaiman et al., 2018b; Sulaiman et al., 2016). The slices were randomized and three slices were placed into each well of 24-well plate and cultured in DMEM-F12 medium supplemented with 10% FBS, 1% penicillin/streptomycin, 1 µg/ml insulin, 0.5 ng/ml hydrocortisol and 3 ng/ml epidermal growth factor. These primary tissue fragments were treated with the same concentrations of inhibitors as described in the figures, followed by a viability assay and flow cytometric analysis. The TNBC patient-derived xenograft sample HCI-001 was obtained from University of Utah and cultured in the same conditions as the clinical samples.

2.3 Flow cytometry analysis

Dissociated cancer cells were filtered through a 4 µm strainer and suspended in PBS supplemented with 2% FBS and 2 mM EDTA (FACS buffer) as previously described (Sulaiman et al., 2016). 1 µL of mouse IgG (1 mg/mL) was added and incubated at 4 °C for 10 minutes. The cells were then
re-suspended in 1× binding buffer and anti-CD44 (APC) in combination with anti-CD24 (PE) (BD, Mississauga, ON, Canada) antibodies were added according to the manufacturer’s instructions. The cells were washed twice with FACS buffer and 7-aminoactinomycin D (7-AAD, eBioscience, San Diego, CA) and Annexin-V/PE-Cy7 (eBioscience) was added and incubated for 15 minutes at room temperature to assess dead and apoptotic cells. Flow cytometry was performed on a Cyan-ADP 9 and the BD LSRFortessa. Data was analyzed with FlowJo software (Ashland, OR, USA).

2.4 Fractionation of CSC and non-CSC subpopulations from breast cancer cells

CSCs and the bulk populations were separated based on CD44^{high+/+}/CD24^{low/-} expression in MDA-MB-231 cells (Sulaiman et al., 2016). After antibody staining, four sub-populations were analyzed and sorted by MoFlo Astrios Sorter (Beckman Coulter). Isolation gates, including histogram markers and dot plot quadrants were chosen based on negative controls. Purity (>90%) was determined after sorting.

2.5 Western blot analysis

Cells were harvested, washed with PBS and lysed with lysis buffer supplemented with protease inhibitors (Roche, Steinte-Agathe-Nord, QC, Canada). Protein concentrations were determined using a Bio-Rad DC protein assay kit (Bio-Rad, Hercules, CA, USA) and samples were then normalized. The samples were loaded into an 8-10% polyacrylamide gel and separated by SDS-PAGE followed by transference to a PVDF membrane. Proteins were identified by incubation with primary antibodies followed by horseradish peroxidase-conjugated secondary antibodies and an enhanced chemiluminescence solution (Pierce, Thermo Scientific, Waltham, MA, USA). Antibodies used in this study include: anti-phosphorylated S6 Ribosomal Protein (1:1000, Cat:
anti-S6 Ribosomal Protein (8E2) monoclonal antibody (1:1000, Cat: 2217S, Cell Signaling), anti-4E-EBP1 (1:1000, Cat: 9452S, Cell Signaling), anti-phosphorylated 4E-BP1 (1:1000, Cat: 2855S, Cell Signaling), anti-acetylated Histone 3 (1:1000, Cat: 4243S, Cell Signaling), anti-Histone 3 1:1000, Cat: 9715S, Cell Signaling), anti-ESR1α (1:1000, Cat: MCA1799T, Bio Rad, CA, USA) and anti-α-tubulin monoclonal antibody (1:500, Cat: T9026, Sigma-Aldrich, St. Louis, MO, USA).

2.6 Quantitative real-time PCR

Total RNAs were extracted using RNeasy kit (QIAGEN) and real-time qPCR (RT-qPCR) analysis was performed using Bio-Rad MyiQ (Bio-Rad, Hercules, CA, USA) as previously described (Sulaiman et al., 2018b; Sulaiman et al., 2016). The conditions for RT-qPCR reactions were: one cycle at 95 °C for 20 seconds followed by 45 cycles at 95 °C for three seconds and annealing at 60 °C for 30 seconds. Results were normalized to the housekeeping gene 18S ribosomal RNA (18S) or GAPDH. Relative expression level of genes from different groups were calculated with the 2ΔΔCT method and compared with the expression level of appropriate control cells. Specific primer sequences for individual genes are listed in Supplemental Table S1.

2.7 siRNA knockdown

siRNAs for S6RP (#AM16708) and the Silencer Select Negative Control #1 siRNA (Scramble, #4390843) were purchased from Thermo Scientific (Waltham, MA, USA) as SMARTpools. For siRNA transfections, cells were transfected with oligoes using Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. After transfection, efficiency was determined through Western blot or RT-qPCR.
2.8 Cell viability assays

Cells were seeded into 12 well plates (1.5×10^4 cells/well). After 120 hours of treatment, Alamar blue viability analysis was performed by incubation with 10% Alamar blue reagent (Thermo Fisher Scientific) for 4 hours. Fluorescence was measured at 560 nm excitation and 590 nm emission. Cell viability was also determined through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 5 mg/ml) staining after incubation for 4 hours. Absorbance was measured at 570 nm.

2.9 Xenograft tumor growth

Athymic nude mice were obtained from Charles River Laboratories. The SUM149-PT or MDA-MB-231 breast cancer cells were mixed in 1:1 ratio with Matrigel and injected under aseptic conditions into the mammary fat pads (n = 4 for each group, 2.5 × 10^6 cells per fat pad). When the tumor reached a mean diameter of ~3 mm, mice were randomly divided into two groups and intraperitoneally injected daily with the vehicle (DMSO), or valproic acid (300 mg/kg/day) + rapamycin (1.5 mg/kg/day) + tamoxifen (0.4 mg/kg/day) for 20 days. At the end of treatment, mice were humanely euthanized and tumors were harvested for further analyses and secondary transplantation.

2.10 Secondary transplantation to assess cancer initiating capacity

Tumors were minced using a scalpel and incubated in antibiotic-free DMEM media containing collagenase/hyaluronidase (STEMCELL Technologies, #07912) at 37 °C. Dissociated single cells were collected every 15 minutes while tumor fragments were digested further to obtain single cells (Sulaiman et al., 2018b). Afterwards, the cells were passed through a 40 μM nylon mesh. The dissociated tumor cells were inoculated into one of the mammary fat pads at a concentration of
10^5, 10^4, 10^3, or 10^2 cells from the original tumors. Tumor growth and size were measured after 6 weeks of growth.

2.11 Clinical database analysis and statistical analysis

Breast cancer datasets from the Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) were analyzed with cBioportal (http://www.cbioportal.org/index.do) (Cerami et al., 2012; Gao et al., 2013). High expression of HDAC gene was defined as mRNA expression levels greater than 2.5 standard deviations above the mean. High expression of mTORC1 gene was defined as mRNA levels greater than 2 standard deviations above the mean. Expression data and Kaplan-Meir survival curves were generated using datasets compiled by August 2017 from the following Database IDs (529 patients): mTORC1 and HDAC gene enrichment: http://bit.ly/2wgwyhy, mTORC1 gene enrichment: http://bit.ly/2wh8Mlz and HDAC gene enrichment: http://bit.ly/2whb97U.

Gene Expression Omnibus2R database was used to analyze a dataset (Dataset: GSE65216) to compare TNBC cell lines to 55 TNBC patient samples https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE65216&platform=GPL570. For all clinical database data, the log rank test was performed to determine whether observed differences between groups were statistically significant. Statistical significance was determined via adjusted P values using Benjamini and Hochberg false discovery rate method by default. Results were considered significant when * p < 0.05, ** p < 0.01, or *** p < 0.001.

3. Results
3.1. Tumor samples from TNBC patients express higher level of mTORC1 and HDAC than those of non-TNBC patients and are associated with decreased ESR1 expression and reduced survival rate.

To determine the correlation between HDAC, mTORC1, and ESR1 in TNBC patients, we analyzed normal mammary tissue, TNBC and luminal breast cancers (ESR1 positive), using samples from 55 TNBC, 59 luminal A/B breast cancer, and 11 normal breast tissues (gene omnibus2R platform, Dataset: GSE65216, Accessed November 1 2017 (Barrett et al., 2012; Edgar et al., 2002; Maire et al., 2013a; Maire et al., 2013b; Maubant et al., 2015). The data was obtained by transcriptome analysis (Affymetrix Human Genome U133 Plus 2.0 Array, GPL570). We found that TNBC samples expressed higher levels of mTORC1 and HDAC mRNAs than normal breast tissue (Figure 1A) and luminal A/B samples (Figure 1B). These results suggest that patients with TNBC might be sensitive to HDAC and mTORC1 inhibition.

We further analysed a TCGA dataset containing 529 patients with invasive breast cancer (cBioportal) (Cerami et al., 2012; Gao et al., 2013), and found that the expression of HDAC protein was inversely correlated with the expression of ESR1 and PGR proteins. In contrast, the expression of HDAC protein was positively correlated with the expression of mTORC1-related S6RP and EIF4EBP1 proteins (Figure 2A and 2B, Dataset ID: http://bit.ly/2whb97U). Also, elevated mTORC1 gene expression negatively associated with low levels of ESR1 and PGR gene expression, while elevated HDAC protein expression positively associated with elevated HDAC gene expression (Figure 2C and 2D, Dataset ID: http://bit.ly/2wh8Mlz). Additionally, patients with low expression levels of both mTORC1 and HDAC mRNAs in their tumor samples exhibited an increased survival rate (Figure 2E, Database ID: http://bit.ly/2wgwyhy, Supplemental Figure 1A).

The trend observed in clinical datasets was also seen in breast cancer cell lines. Both HDAC
and mTORC1 gene expressions were higher in MDA-MB-231 TNBC cells than in luminal ESR1+ MCF-7 breast cancer cells (Figure 2F-G). Accordingly, combination of 250 µM valproic acid (a pan-HDAC inhibitor) and 5 nM rapamycin (mTORC1 inhibitor), but neither alone, increased ESR1 gene expression in TNBC cells (Figure 2H).
Figure 1. Gene expression levels of mTORC1 and HDAC are higher in TNBC tumor than in normal breast tissues and luminal A/B breast cancer. (A) The relative expression levels (A.U arbitrary unit) of mTORC1 and HDAC genes in 55 TNBC patient tumors and 11 normal breast tissue samples were compared using the NCBI Gene Expression Omnibus (GEO2R). The GSE65216 samples were analyzed with the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570). (B) The relative expression levels (A.U: arbitrary unit) of mTORC1 and HDAC genes in 55 TNBC patient tumors and 59 luminal A/B breast cancer samples were compared using the NCBI Gene Expression Omnibus (GEO2R). The GSE65216 samples were analyzed with the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570)
A. Protein Expression

- ESR1
- PGR
- ERBB2 (HER-2)

Fold:
- High Unalt HDAC
- High HDAC
- Unalt HDAC

B. Protein Expression

- RPS6
- EIF4EBP1

Fold:
- High Unalt HDAC
- High HDAC
- Unalt HDAC

C. Gene Expression

- ESR1
- PGR
- ERBB2 (HER-2)

Fold:
- High Unalt mTORC1
- High mTORC1
- Unalt mTORC1

D. Gene Expression

- HDAC1
- HDAC2
- HDAC10

Fold:
- High Unalt mTORC1
- High mTORC1
- Unalt mTORC1

E. Survival Analysis

- mTORC1 + HDAC Expression
- Total Cases: 276, 251
- Deceased: 51, 32
- Median Months Survival: 127.2, 140.1

F. Relative mRNA Levels

- MDA MB-231 (TNBC)
- MCF-7 (Non-TNBC)

- HDAC1
- HDAC2
- HDAC3
- HDAC5
- HDAC6
- HDAC7
- HDAC8

G. Relative mRNA Levels

- RPSSKB1
- RPSSKB2
- EIF4EBP1

H. Relative mRNA Levels

- ESR1
- D
- R
- T
- V
- VR

- * p < 0.05
- ** p < 0.01
- *** p < 0.001
Figure 2. The expression levels of mTORC1 and HDAC are inversely associated with ESR1 and PGR in patients with invasive breast cancer and in TNBC cells. (A) Low expression (RRPA) of ESR1, PGR, and ERBB2 proteins in patients’ tumors inversely associated with high expression of HDAC target genes (HDAC1, HDAC2, HDAC3, HDAC4, and HDAC10) in comparison to their unaltered counterparts (Ctrl: control, n = 892 patients with invasive breast cancer, ***p < 0.001). (B) High expression (RRPA) of S6RP and EIF4EBP1 proteins in patients’ tumors positively associated with high expression of HDAC target genes (HDAC1, HDAC2, HDAC3, HDAC4, and HDA6) in comparison to their unaltered counterparts (Ctrl: control, n = 892 patients with invasive breast cancer, ***p < 0.001). (C) Low expression (Microarray) of ESR1, PGR, and ERBB2 in patients’ tumors inversely associated with high expression of mTORC1 target genes (MTOR, MYC, CTSD, LDHA, MLST8, SCDP1, ACOX1, CPT1A, LSS, NRF1, TWIST1, SNAI1, TWIST2, and S6RPKB2) in comparison to their unaltered counterparts (Ctrl: control, n = 892 patients with invasive breast cancer, ***p < 0.001). (D) High expression (Microarray) of HDAC target genes (HDAC1, HDAC2, and HDAC3) in patients’ tumors positively associated with high expression of mTORC1 target genes (see above) in comparison to their unaltered counterparts (Ctrl: control, n = 825 patients with invasive breast cancer, ***p < 0.001). (E) Kaplan–Meier survival curve for overall survival of the patients with high levels of mTORC1 and HDAC gene expression in cancer samples (red curve) in comparison to patients with unaltered expression (blue curve). N = 527, *p < 0.05, log-rank test. (F-G) RT-qPCR analysis and comparison of relative mRNA levels of HDAC genes (HDAC1, HDAC2, HDAC3, HDAC5, HDAC6, HDAC7, and HDAC8) and mTORC1 (RPS6KB1, RPS6KB2, and EIF4EBP1) genes between TNBC MDA-MB-231 and non-TNBC luminal breast cancer MCF-7 cell lines. (H) RT-qPCR analysis of the expression of ESR1 gene expression in TNBC MDA-MB-231 cells after treatment with DMSO (D) vehicle control, rapamycin (R, 5 nM), tamoxifen (T, 1 μM), valproic acid (V, 250 μM), or the combination of valproic acid and rapamycin (VR) for 120 h. mRNA levels are relative to the cells treated with DMSO vehicle control.

3.2. Combination of mTORC1, HDAC and ESR1 inhibitors restores ESR1 expression, suppresses rapamycin-induced 4E-BP1 upregulation, and inhibit TNBC cell viability

Rapamycin has been reported to partially inhibit mTORC1 signalling as it ineffectively inhibits 4E-BP1 phosphorylation (Livingstone and Bidinosti, 2012). Indeed, siRNA knockdown of S6RP or 5 nM rapamycin effectively suppressed S6RP phosphorylation but upregulated 4E-BP1 phosphorylation (Figure 3A-B).

It has been shown that 4E-BP1 phosphorylation can be robustly stimulated by 17β-estradiol but inhibited by tamoxifen (Akama and McEwen, 2003; Friedrichs et al., 2004). Suppressing HDACs has also been demonstrated to inhibit 4E-BP1 phosphorylation in a preclinical study
(Miyai et al., 2014). As such, we sought to determine whether HDAC and tamoxifen together could inhibit 4E-BP1 as well as rapamycin-induced 4E-BP1 upregulation when in combination with rapamycin, leading to a complete mTORC1 inhibition. As expected, siRNA knockdown of S6RP in combination with 250 µM valproic acid and 1 µM tamoxifen effectively suppressed both S6RP and 4E-BP1 phosphorylation (Figure 3C). Additionally, we found that the combination of 250 µM valproic acid and 1 µM tamoxifen, but neither alone, reproducibly restored ESR1 protein expression in TNBC cells (Figure 3D).

For potential clinical application, we replaced S6RP siRNA with 5 nM rapamycin that showed a similar potency to siRNA knockdown in reducing S6RP phosphorylation. Consistently, 5 nM rapamycin, 250 µM valproic acid and 1 µM tamoxifen (thereafter as VRT combination) restored ESR1 protein expression and inhibited both phosphorylated S6RP and 4E-BP1 proteins in TNBC cells (Figure 3D and 3E). VRT combination also reduced cell viability of SUM149-PT and MDA-MB-231 TNBC cells (Figure 3G-H). Notably, concentrations of tamoxifen, valproic acid and rapamycin used in these experiments were clinically relevant, suggesting a tangible therapeutic approach to restore ESR1, inhibit mTORC1, and kill TNBC cells.
Figure 3: Co-inhibition of mTORC1, ESR1α and HDACs restores ESR1 expression in TNBC cells and suppresses the expression of pRSP6, p4E-BP1, HDAC and the growth of TNBC cells. (A) Representative western blot depicting S6RP and 4E-BP1 expression in MDA-MB-231 cells after knockdown of S6 ribosomal protein (siS6RP) in comparison to the scramble (Scr) control. (B) Representative western blot depicting S6RP and 4E-BP1 expression in MDA-MB-231 cells after rapamycin treatment (5nM) in comparison to the vehicle (DMSO) control. (C) Representative western blot depicting S6RP, 4E-BP1, acetylated Histone H3, and ESR1 protein expression in MDA-MB-231 cells after knockdown of S6 ribosomal protein (siS6RP) in combination with valproic acid (VPA, 250 µM), and/or tamoxifen (Tam, 1 µM) for 48 hours. VT: VPA+Tam. (D) Representative western blot depicting ESR1 expression in MDA-MB-231 cells after combinational treatment with DMSO (D), rapamycin (R, 5 nM), valproic acid (V, 250 µm), tamoxifen (T, 1 µm), valproic acid and tamoxifen (VT) or valproic acid, rapamycin and tamoxifen (VRT) for 48 hours. (E) Representative western blot depicting S6RP, 4E-BP1, Histone H3 and ESR1 protein expression in MDA-MB-231 cells after combinational treatment with DMSO (D), rapamycin (R, 5 nM), valproic acid (V, 250 µm), tamoxifen (T, 1 µm), valproic acid and tamoxifen (VT) or valproic acid, rapamycin and tamoxifen (VRT) for 48 hours. (F) Schematic depicting the proposed model for the combinational treatment (VRT). Rapamycin (Rap) effectively inhibits S6RP phosphorylation but upregulates 4E-BP1 phosphorylation, incapable of completely inhibiting mTORC1. Valproic acid inhibits HDAC expression and in combination with tamoxifen (VT) restores ESR1 expression and suppresses 4E-BP1 phosphorylation without affecting S6RP phosphorylation. Combination of VRT promotes ESR1 expression and H3 acetylation (i.e. suppressing HDAC), and suppresses both S6RP and 4E-BP1 (i.e. complete inhibition of mTORC1). (G-H) MTT viability analysis of SUM149-PT cells and MDA-MB-231 cells after 120 hours of exposure to vehicle (DMSO, D), rapamycin (R, 5 nM), valproic acid (V, 250 µM), tamoxifen (T, 1 µM), valproic acid and tamoxifen (VT) or valproic acid, rapamycin and tamoxifen (VRT). Data represents means ± SD, n = 3 for Figure 3A-H; * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. VRT combination inhibits both non-CSC and CSC populations in the fractionated TNBC cells

The CSC subset (characterized by CD44high/CD24low/—) has been associated with chemoresistance and disease relapse. CSCs were capable of generating new tumors in mice with as few as 100 cells in comparison to non-CSC cells that required tens of thousands of cells (Al-Hajj et al., 2003). In addition, chemotherapeutic drugs enriched CSCs after treatment. Thus, the ability to inhibit both CSCs and non-CSCs and to reduce the conversion of non-CSCs to CSCs is instrumental for an effective treatment.

We fractionated MDA-MB-231 cells into CSC (based on CD44high/CD24low/- expression)
and three non-CSC subpopulations (CD44high/CD24high, CD44low/CD24high and CD44low/CD24low) with >90% purity. RT-qPCR analysis revealed that HDAC and mTORC1 related genes were expressed higher in CSCs than in non-CSCs (Figure 4A-B). Significantly, VRT combination reduced the CSC subpopulation in MDA-MB-231 and SUM149-PT TNBC cells (Figure 4C-D, Supplemental Figure 2A). We further verified these results using siRNA knockdown of S6RP in combination with valproic acid and tamoxifen, showing a similar trend (Supplemental Figure 3A-B).

VRT combination treatment reduced viability of all four fractionated subpopulations (i.e. CSCs and non-CSCs, Figure 4E & 4F). We counted the total cell number and analyzed the percentage of each subpopulation within each fractionated subset based on CD44 and CD24 expression using flow cytometry after 120-hour of treatment with VRT. Significantly, VRT combination treatment not only reduced living CSCs in each fractionated subpopulation but also diminished viability of non-CSCs in each subpopulation (Figure 4G, Supplemental Figure 2B). Furthermore, the remaining cells within each fractionated subpopulation after VRT combination treatment were shifted away from a CSC phenotype to non-CSC subpopulations (e.g. CD24high/CD44low, CD24low/CD44low or CD24high/CD44high, Figure 4H and Supplemental Figure 4A-C). To estimate the conversion, we normalized the living cells after treatment and graphed the percentage of each subpopulation against total population (taken as 100%). There was an increase in non-CSC subsets than the CSC subset after VRT combination treatment in the fractionated subpopulations based on CD44/CD24 marker expression (Supplemental Figure 5A-D). These data suggest that VRT combination treatment is an effective approach to target TNBC CSC subpopulation.
Figure 4: The gene expressions of mTORC1 and HDACs are higher in TNBC CSCs than non-CSCs; co-inhibition of mTORC1, ESR1 and HDACs suppresses the growth of both CSC and non-CSC subpopulations and promotes the conversion of CSCs to non-CSCs. (A-B) RT-qPCR analysis of the expression of HDAC and mTORC1 genes in fractionated MDA-MB-231 CSCs (CD44high+/CD24low−/−) and non-CSC populations after normalization with house-keeping gene 18S. (C-D) Flow cytometric analysis of CD44high+/CD24low−/− CSC subpopulation in SUM149-PT and MDA-MB-231 cells after 120 hours of exposure to vehicle (DMSO), rapamycin (R, 5 nM), valproic acid (V, 250 µM), tamoxifen (T, 1 µM) or the combination of rapamycin, valproic acid and tamoxifen (VRT). (E) MDA-MB-231 cells were fractionated into CSC (CD44high+/CD24low−/−) and non-CSC subpopulations based on CD44 and CD24 expression. Fractionated cells were exposed to vehicle (DMSO), rapamycin (5 nM), valproic acid (250 µM) and tamoxifen (1 µM) for 120 hours. After treatment, fractionated cells were reanalyzed by flow cytometry to determine CSC and non-CSC subpopulations. (F) Fractionated MDA-MB-231 CSC and non-CSC subpopulations were treated as described in E. Cell viability was assessed by trypan-blue exclusion assays. (G) Relative living CSCs (CD44high+/CD24low−/− and negative for both 7AAD and Annexin-V staining) in each fractionated MDA-MB-231 subpopulation after treatments as described in E. (H) Fractionated MDA-MB-231 cells were treated as described in E. After
assessment of cell viability with trypan-blue, the proportion of each subpopulation was determined by flow cytometry based on CD44 and CD24 expression. The total number of cells in each subpopulation was calculated: total viable cell number \(\times \) the percentage of each subpopulation. Data represents means \(\pm \) SD and \(n = 3 \) for Figure 4A-H; * \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \).

3.5. VRT combination treatment retards tumor growth and inhibits CSC subpopulation and tumorigenesis in vivo

We next determined the efficacy of VRT combination treatment in vivo. Since the combinations of valproic acid and rapamycin, or valproic acid and tamoxifen showed less in vitro potent in inhibition of both CSCs and non-CSCs in comparison to VRT (data not shown), they were not included in the in vivo experiments. MDA-MB-231 and SUM149-PT TNBC cells were injected into the mammary fat pad of athymic mice. When tumor reached a mean diameter of 3 mm, mice were randomized into two groups and injected intraperitoneally with either vehicle (DMSO) or combination of valproic acid (300 mg/kg/day), rapamycin (1.5 mg/kg/day) and tamoxifen (0.4 mg/kg/day) for 20 days. As expected, VRT combination reduced tumor burden in both MDA-MB-231 and SUM149-PT tumors (Figure 5A-B).

At the end of the VRT combination treatment, we harvested and dissociated the tumors and assessed the CD44\(^{\text{high/+}}/\text{CD24}^{\text{low/-}}\) subpopulation using flow cytometry. VRT combination treatment reduced CD44\(^{\text{high/+}}/\text{CD24}^{\text{low/-}}\) CSC subpopulations in both MDA-MB-231 and SUM149-PT tumors in vivo (Figure 5C-D, Supplemental Figure 6).

To determine if VRT combination inhibits tumor-initiating potential, we performed secondary transplantation. We serially diluted tumor cells containing various percentage of CD44\(^{\text{high/+}}/\text{CD24}^{\text{low/-}}\) isolated from the primary tumors, and transplanted them into athymic nude mice for 6 weeks without further treatment. Tumor cells from mice receiving VRT combination
treatment exhibited diminished tumor-initiating capacity in comparison to the vehicle control (Figure 5E and Supplemental Figure 7). Thus, VRT combination reduced tumor burden, suppressed CSCs and tumorigenesis.
Figure 5: Co-inhibition of mTORC1, ESR1 and HDACs retards tumor growth and reduces CSCs and tumorigenesis in vivo. (A-B) MDA-MB-231 or SUM149-PT TNBC cells were injected into the mammary fat pads of athymic nude mice (2.5 × 10⁶ cells per fat pad). When the tumors reached a mean diameter of 3mm, mice were randomly divided into two groups and intraperitoneally injected daily with vehicle (DMSO), or VRT combination (valproic acid, 300 mg/kg/day; rapamycin, 1.5 mg/kg/day and tamoxifen, 0.4 mg/kg/day) for 20 days. The tumors were harvested, photographed and weighed. Data represents means ± SD, n = 4, * p < 0.05. Scale bar = 0.5 cm. (C-D) Flow cytometric analysis of the CD44^{high}/CD24^{low}-CSC subpopulation in SUM149-PT and MDA-MB-231 cells dissociated from tumors after 20 days of treatment with the vehicle (DMSO) or VRT combination as described in A-B. Data represents means ± SD, n = 3, * p < 0.05, *** p < 0.001. (E) MDA-MB-231 tumors from A-B were dissociated into single cell suspension and re-transplanted into the mammary fat pads of new athymic mice in serial dilutions (10⁵, 10⁴, 10³, 10² cells per mammary pad per injection). Tumor formation was observed for 6 weeks. Data represents means ± SD, n = 3 * p < 0.05.

3.6. TNBC patients’ tumors express similar levels of mTORC1 and HDAC to TNBC cell lines and VRT combination inhibits the growth of patients’ TNBC bulk and CSC populations.

In comparison to TNBC cell lines (10 samples), 55 primary TNBC patient samples expressed similar levels of mTORC1 and HDAC2 and HDAC4 (omnibus2R platform Dataset: GSE65216, Accessed November 1 2017 (Barrett et al., 2012; Edgar et al., 2002; Maire et al., 2013a; Maire et al., 2013b; Maubant et al., 2015), Figures 6A-B). VRT combination treatment suppressed viability of primary TNBC patients’ tumor slices (CRDCA, SEM-1 and ARI-1) and a patient-derived xenograft tumor slices (HCI-001) (Figure 6C)(DeRose et al., 2011). Furthermore, VRT combination treatment reduced CD44^{high}/CD24^{low}-CSC subpopulation (Figure 6D-E). Together, these results indicate that co-inhibition of mTORC1, HDAC and ESR1 can be considered as a potential treatment for patients with TNBC.
Figure 6: The expression levels of mTORC1 and HDAC are higher in TNBC cell lines and TNBC patient tumors; Co-inhibition of mTORC1, ESR1α and HDACs reduces the viability of patient tumors’ fragments and CSCs. (A-B) The expression of mTORC1 and HDAC genes in 10 TNBC Cell Lines and 55 TNBC patient samples were compared using the NCBI Gene Expression Omnibus (GEO2R). The GSE65216 samples were analyzed with the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570). (C) Alamar blue viability analysis of 3 primary TNBC patient fragments (CRDCA, SEM-1 and ARI-1) and 1 patient derived xenograft fragment (HCI-001). TNBC fragments were cultured and treated for 144 hours with vehicle (DMSO, D), rapamycin (5 nM, R), tamoxifen (1 µM, T), valproic acid (250 µM, V), or VRT combination. (D) Representative flow cytometric data showing percentages of CSC (CD44^{high/+/CD24^{low/-}}) subpopulation in patient-derived xenograft TNBC fragments after treatments as described in C. (E) Relative living CSCs (CD44^{+/high/CD24^{low/low} and also negative for 7AAD and Annexin-V) in TNBC patient tumor fragments after treatment as described in C.
4. Discussion

Anti-estrogen therapies have been used for the treatment of ESR1-postive breast cancers owing to its excellent efficacy-to-toxicity ratio. Since TNBC does not possess targetable markers, functional activation of ESR1 expression, via inhibition of HDACs and mTORC1 to render TNBC sensitive to endocrine treatment, has been an attractive approach (Davies et al., 2013; Petrelli et al., 2013; Wilcken et al., 2003).

HDACs interact with and repress ESR1 at multiple levels along the ESR1 pathway (Ellison-Zelski et al., 2009; Rasti et al., 2012). A HDAC inhibitor Z-ligustilide was shown to restore ESR1 protein expression in ESR1 negative breast cancer lines, re-sensitizing cells to tamoxifen (Ma et al., 2017). Treatment with HDAC inhibitor Trichostatin A was shown to restore ESR1 gene and protein expression in ESR1-negative breast cancer (Yang et al., 2000). The HDAC inhibitor vorinostat was also tested to upregulate ESR1 in TNBC cells (Stark et al., 2013).

However, contrasting results showed that HDAC inhibition does not induce ESR1 gene expression in TNBC and even repress ESR1 in luminal breast cancer under certain conditions (de Cremoux et al., 2015; Noh et al., 2016). We also found that HDACs’ inhibitor valproic acid alone was not able to restore ESR1 protein expression in TNBC cells. However, valproic acid in combination with the mTORC1 inhibitor rapamycin reproducibly enhanced ESR1 protein expression in TNBC cells. By analysis of clinical datasets, we found that TNBC expressed high levels of HDAC and mTORC1 in comparison to non-TNBC luminal breast cancers. Additionally, the level of mTORC1 expression is positively correlated with that of HDAC expression in TNBC patients’ samples. Thus, repressed ESR1 in TNBC could be partially attributable to dual activation of mTORC1 and HDACs.
HDAC5 has been shown to co-precipitate with regulatory-associated protein of mTOR (Raptor); HDAC5 inhibition promotes raptor acetylation, subsequently inhibiting mTORC1 signalling (Ma et al., 2015b). Conversely, PI3K/Akt/mTOR regulates HDAC3 phosphorylation, promoting its activity (Wang et al., 2015). This suggests that mTORC1 facilitates HDAC expression and vice versa, providing a rationale for using valproic acid and rapamycin to promote histone H3 acetylation and ESR1 re-expression, as shown in this report.

Previous studies showed that inhibition of PI3K/Akt/mTORC1 signalling alone was ineffective in sensitizing ESR1-positive or ESR1-negative breast cancer to endocrine therapy (Wang et al., 2016a). The ineffectiveness of mTORC1 inhibitors in tumor treatment (Abraham and Gibbons, 2007; LoPiccolo et al., 2008; Wander et al., 2011) and in functional reactivation of ESR1 may be related to incomplete inhibition of 4E-BP1 phosphorylation, because rapamycin was known to potently inhibit phosphorylation of S6RP but not that of 4E-BP1 (Choo et al., 2008; Ducker et al., 2014; Jiang et al., 2001; Livingstone and Bidinosti, 2012). Thus, inhibition of 4E-BP1 phosphorylation by rapamycin was transient (within 6 hours) and afterwards became resistant to rapamycin treatment (Choo et al., 2008). As a result, cap-dependant translation via mTORC1 signalling can be maintained in the presence of rapamycin. Consistently, retrospective studies of 93 breast cancer patients showed that elevated 4E-BP1 protein was associated with a poor response to endocrine treatment (Karthik et al., 2015, Karlsson et al., 2013).

In this report, we found that the combination of valproic acid and tamoxifen is capable of inhibition of 4E-BP1 phosphorylation, which is associated with functional restoration of ESR1 TNBC. It has been reported that HDAC2 promotes eIF4E/4E-BP1 signalling and cap-dependant translation (Xu et al., 2010a), which can be inhibited by valproic acid. Similarly, tamoxifen has been found to inhibit 4E-BP1 in a MDA-MB-231 tumor xenograft through an ER-independent
mechanism (Scandlyn et al., 2008). Tamoxifen has also been shown to modify histone activity (Liu and Bagchi, 2004; Pasqualini et al., 1983). It is of note that treatment with tamoxifen alone or in combination with rapamycin resulted in enhanced 4E-BP1 phosphorylation in ESR1-positive breast cancer cell lines (Karthik et al., 2015). Mechanisms by which tamoxifen plus valproic acid (HDAC inhibitor), but not tamoxifen plus rapamycin (mTORC1 inhibitor), could effectively prevent 4E-BP1 phosphorylation and restore functional ESR1 expression remain to be further defined.

Cancer cell plasticity (Chaffer et al., 2011; Liu et al., 2014) is a big challenge. For an effective treatment, both CSC and non-CSC subpopulations should be concurrently targeted as bulk cancer cells (i.e. non-CSCs) are capable of converting into CSCs under certain conditions (Liu et al., 2014; Ning et al., 2016). It has been reported that CSCs from patient tumor samples express high levels of S6RP and 4E-BP1 proteins (Karlsson et al., 2013; Karthik et al., 2015). We also observed that the fractionated CD44^{high+/+}/CD24^{low/-} CSCs expressed higher levels of S6RP and 4E-BP1 genes than their non-CSC counterparts. It seems that inhibition of both S6RP and 4E-BP1 in breast cancer is required for the suppression of CSCs. VRT combination treatment simultaneously inhibits both S6RP and 4E-BP1 and functionally activates ESR1 expression to re-sensitize TNBC cells for endocrine therapy. This might be one of underlying mechanisms by which VRT combination treatment suppresses the growth of both TNBC CSCs and non-CSCs, thus reducing CSC enrichment from the fractionated non-CSC subpopulations.

In vivo, VRT combination treatment is also able to reduce tumor burden, inhibit CSCs and diminish tumorigenicity after secondary transplantation. As valproic acid, tamoxifen and rapamycin have been commonly used in the clinic, this study may lead to a new, clinically translatable approach for TNBC treatment.

106
Supplemental Figure 1: Kaplan-Meier survival curve for patients with invasive breast cancer with upregulated mTORC1 or HDAC in tumor samples. (A-B) Kaplan-Meier survival curve for survival of the patients with high level expression of mTORC1 or HDAC genes in cancer samples (red curve) in comparison to the patients with unaltered expression (blue curve). N = 527, * p < 0.05, log-rank test.
Supplemental Figure 2: Combinational inhibition of mTORC1, ESR1 and HDAC using rapamycin, valproic acid and tamoxifen suppresses CSCs in TNBC cells. (A) Representative flow cytometric data showing percentages of CSC (CD44^{high}/CD24^{low}) subpopulation in MDA-MB-231 cells after 120 hours of treatment with vehicle (DMSO), valproic acid (250 µM, VPA), rapamycin (5 nM, Rap), tamoxifen (1 µM, T) or VT (VPA+T), or VRT (VPA+Rap+T) combination. (B) Representative flow cytometric analysis of CD44^{high}/CD24^{low} CSC subpopulation in the fractionated CD44^{high+/+/}CD24^{low-/} MDA-MB-231 cells after 120 hours of treatments as described in A.
Supplemental Figure 3: S6RP knockdown in combination with valproic acid and tamoxifen inhibits CSCs in TNBC cells. (A-B) Representative and tabulated flow cytometric data showing percentages of CSC (CD44<sup>high+/+CD24^{low/-}) subpopulation in MDA-MB-231 cells after 72 hours of treatment with scramble control, siRNA knockdown of S6RP in combination with tamoxifen (1 μM, T) and valproic acid (250 μM, VPA).
Supplemental Figure 4: Rapamycin in combination with valproic acid and tamoxifen reduces CSC enrichment in the fractionated non-CSC subpopulations. (A-C) Fractionated MDA-MB-231 non-CSC subpopulations were exposed for 120 hours to vehicle, valproic acid (250 µM, VPA), rapamycin (5 nM, Rap), and tamoxifen (1 µM, T). After treatment, cell viability was determined by trypan-blue exclusion assay and the proportion of each non-CSC and CSC subpopulations was determined by flow cytometry based on CD44 and CD24 expression. The total number of cells in each subpopulation was calculated using total viable cell numbers \times percentage of each subpopulation.
Supplemental Figure 5: Rapamycin in combination with valproic acid and tamoxifen reduces CSC conversion from non-CSC in the fractionated CSCs and non-CSC subpopulations. (A-D) Fractionated MDA-MB-231 CSC and non-CSC subpopulations were exposed for 120 hours to VRT combination as described in Figure 4. After treatment, cell viability was assessed by trypan-blue exclusion assay and the proportion of each CSC and non-CSC subpopulation was determined by flow cytometry based on CD44 and CD24 expression. The total number of cells in each subpopulation was calculated using viable cell number × percentage of each subpopulation. The populations were then normalized to estimate the reconstitution of CSC from each non-CSC subpopulation after VRT combination treatment.
Supplemental Figure 6: Treatment with rapamycin in combination with valproic acid and tamoxifen in vivo reduces CSCs in TNBC tumors in vivo. (A-B) Representative flow cytometric data showing percentages of CSC (CD44\textsuperscript{high+/CD24low-) subpopulation in dissociated cells from MDA-MB-231 and SUM 149-PT tumors after 20 days of treatment with the vehicle (DMSO) or VRT combination as described in Figure 5.
Supplemental Figure 7: Co-inhibition of mTORC1, ESR1 and HDACs retards tumor tumorigenesis in vivo. (A) SUM 149-PT tumors from Figure 5 were dissociated into single cell suspension and re-transplanted into the mammary fat pads of new athymic mice in serial dilutions (10^5, 10^4, 10^3, 10^2 cells per mammary pad per injection). Tumor formation was observed for 6 weeks.
Chapter 4: Dual inhibition of Wnt and YAP signaling retards the growth of triple negative breast cancer in both mesenchymal and epithelial states
Preface

The following Chapter consists of a research article for which I am the primary author. The article was published in Molecular Oncology.

Andrew Sulaiman, Sarah McGarry, Li Li, Deyong Jia, Sarah Ooi, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Dual inhibition of Wnt and YAP signaling retards the growth of both mesenchymal and epithelial TNBC. *Molecular Oncology*, 2018; 12(4):423-440. Published under a Creative Commons Attribution (CC BY) License.

AS and LW conceived and designed the study. AS preformed bioninformatics analysis, data analysis, FACS, serial dilution and transfections/knockdowns. AS, SM, LL, DJ, and SO performed the *in vitro* experiments. SO created the E-cadherin+ MDA MB-231 cell line. AS and SM performed the *in vivo* experiments. AS, SM, and SO analyzed the data. AS drafted the manuscript and created the figures. LW, CA, JD, SG, and ZY edited the manuscript. AA and CN provided clinical samples for the study. CA, JD, ZY, GJ, HS, YS, SG, and XL provided valuable suggestions and assisted in troubleshooting the experiments. AS, LW, XL, ZY, GJ, HS, CA, YS, and SG conceived or designed the experiments. All authors approved the final version of the manuscript.
Abstract

Triple negative breast cancer (TNBC), the most refractory subtype of breast cancer to current treatments, accounts disproportionately for the majority of breast cancer related deaths. This is largely due to cancer plasticity and the development of cancer stem cells (CSCs). Recently, distinct yet interconvertible mesenchymal-like and epithelial-like states have been revealed in breast CSCs. Thus, strategies capable of simultaneously inhibiting bulk and CSC populations in both mesenchymal and epithelial states have yet to be developed. Wnt/β-catenin and Hippo/YAP pathways are crucial in tumorigenesis, but importantly also possess tumor suppressor functions in certain contexts. One possibility is that TNBC cells in epithelial or mesenchymal state may differently affect Wnt/β-catenin and Hippo/YAP signaling and CSC phenotypes. In this report, we found that YAP signaling and CD44high/CD24low CSCs were upregulated while Wnt/β-catenin signaling and ALDH+ CSCs were downregulated in mesenchymal-like TNBC cells, and vice-versa in their epithelial-like counterparts. Dual knockdown of YAP and Wnt/β-catenin, but neither alone, was required for effective suppression of both CD44high/CD24low and ALDH+ CSC populations in mesenchymal and epithelial TNBC cells. These observations were confirmed with cultured tumor fragments prepared from TNBC patients after treatment with Wnt inhibitor ICG-001 and YAP inhibitor simvastatin. In addition, a clinical database showed that decreased gene expression of Wnt and YAP was positively correlated with decreased ALDH and CD44 expression in patients’ samples while increased patient survival. Furthermore, tumor growth of TNBC cells in either epithelial or mesenchymal state was retarded, and both CD44high/CD24low and ALDH+ CSC subpopulations were diminished in a human xenograft model after dual administration of ICG-001 and simvastatin. Tumorigenicity was also hampered after secondary transplantation. These data suggest a new therapeutic strategy for TNBC via dual Wnt and YAP inhibition.
1. Introduction

Breast cancer remains a leading cause of death in women worldwide (Siegel et al., 2016). Triple negative breast cancer (TNBC) accounts for 15-20% of all breast cancer, but is disproportionately associated with the majority of breast cancer related deaths (Anders and Carey, 2009; Bauer et al., 2007). Chemotherapy is currently the mainstay of systemic medical treatment for TNBC, and is associated with severe normal tissue toxicity, rapid drug-resistance, cancer stem cell (CSC) enrichment, and disease relapse (Jia et al., 2016). Hence, development of effective treatments for TNBC is an important unmet medical need.

Tumor plasticity is thought to drive metastasis and tumor relapse (Beerling et al., 2016). E-cadherin is an epithelial marker and an indicator for epithelial to mesenchymal transition (EMT) and its reverse process, MET (Liu et al., 2014). Epithelial breast CSCs are capable of converting into the mesenchymal CSC subpopulations through EMT and vice versa through MET, which drives metastasis and tumor relapse (Liu et al., 2014). Tumor cells in vivo may be able to transiently and reversibly switch between mesenchymal and epithelial states, a process that has been mentioned as epithelial-mesenchymal plasticity (Beerling et al., 2016). As such, inhibiting one CSC subpopulation may lead to tumor reconstitution by the other CSC subpopulation. While targeting bulk and both CSC subpopulations is clearly desirable for effective TNBC treatment, mechanistic insights and therapeutic approaches remain elusive (Angeloni et al., 2015).

Wnt/β-catenin signaling has been demonstrated to contribute to breast tumorigenesis and CSC plasticity (Anastas and Moon, 2013; Green et al., 2013; Thorpe et al., 2015). β-catenin stabilization and nuclear translocation is essential for Wnt signaling. β-catenin also acts as an adaptor that links to the cytoplasmic tail of E-cadherin to mediate cell-cell adhesion (Nelson and Nusse, 2004). The E-cadherin/β-catenin complex has been demonstrated to maintain epithelial
properties and facilitates self-renewal of human embryonic stem cells (Chen et al., 2010; Huang et al., 2015; Li et al., 2010; Redmer et al., 2011; Tian et al., 2011). The intracellular domain of E-cadherin sequesters β-catenin to suppress Wnt signaling. Loss of E-cadherin-mediated cell-cell contact during epithelial-mesenchymal transition promotes Wnt signaling (Jeanes et al., 2008; Serrano-Gomez et al., 2016). However, roles of Wnt signaling in breast cancer remain incompletely understood as it has been shown to either fuel or repress cancer depending on yet to be determined molecular mechanisms (Rodriguez et al., 2012; Tell et al., 2006).

Over the past few years, Yes-associated protein (YAP), a downstream effector/transducer of the Hippo pathway, has emerged as a promising anticancer target although it also exhibits a tumor suppressor function in certain diseases (Moroishi et al., 2015). YAP has recently been shown to incorporate into the β-catenin destruction complex to orchestrate Wnt signaling (Azzolin et al., 2014). YAP drives cell cycle entry in an E-cadherin and β-catenin-dependent manner (Benham-Pyle et al., 2015) and functions as a mediator of organogenesis and tumorigenesis by stimulating cell proliferation (Yu et al., 2015; Zhang et al., 2015). Importantly, YAP is also regulated by E-cadherin (Benham-Pyle et al., 2015). In TNBC cells, E-cadherin homophillic binding at cell surface impedes the nuclear localization of YAP that is important for the biological activities of YAP (Kim et al., 2011a). Additionally, α-catenin, a common binding partner of E-cadherin which strengthens cellular adhesion has been demonstrated to bind and sequester YAP in the cytoplasm (Schlegelmilch et al., 2011). However, it is unknown whether epithelial-mesenchymal plasticity in cancer affects Wnt and YAP signaling and CSC phenotypes. A strategy for therapeutic blockage of Wnt and YAP to treat TNBC in both epithelial and mesenchymal states remains largely unexploited.
In this study, we demonstrated that YAP signaling was upregulated in mesenchymal-like TNBC with enriched $CD44^{\text{high}}/CD24^{\text{low}}$ CSC subpopulation while Wnt/β-catenin was upregulated in epithelial-like TNBC with enriched ALDH+ CSC subpopulation. Importantly, the mesenchymal and epithelial TNBC exhibited disparate responses to Wnt and YAP inhibition and only dual inhibition is capable of effectively suppressing both $CD44^{\text{high}}/CD24^{\text{low}}$ and ALDH+ CSC populations. These findings were corroborated by using patient tumor samples and clinical databases. Furthermore, in a human xenograft model, dual inhibition of Wnt with ICG-001 and YAP with simvastatin effectively attenuated both mesenchymal and epithelial TNBC tumor burden, diminished both $CD44^{\text{high}}/CD24^{\text{low}}$ and ALDH+ CSC subpopulations, and reduced tumorigenicity after secondary transplantation. These results suggest that Wnt and YAP signaling are dynamically changed during EMT/MET interconversion and dual inhibition using FDA-approved drugs can be a viable approach for the treatment of TNBC.

2. Materials and methods

2.1 Cell culture and reagents

MDA-MB-231 breast cancer cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in DMEM-F12 media supplemented with 10% Fetal bovine serum (FBS, HyClone, Logan, UT, USA) and 1% penicillin/streptomycin. SUM149 breast cancer cells were obtained from Asteand (Detroit, MI, USA) and cultured in Hams F-12 media (Mediatech, Manassas, VA, USA) containing 5% FBS, 5 μg/ml insulin, 1 μg/ml hydrocortisone, 10 mM HEPES and 1% penicillin/streptomycin. Cells were cultured at 37°C in a 5% CO2 incubator. ICG-001 was purchased from CalBiotech (El Cajon, CA, USA), simvastatin from
Caymen Chemicals (Ann Arbor, Michigan, USA). Insulin, hydrocortisone, HEPES, and bovine serum albumin were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2 Tet-ON inducible gene expression of E-cadherin

MDA-MB-231 E-cadherinhigh cells (epithelial-like, Epi) were generated using a lentiviral vector (pLVX-Tight-Puro, Clontech) containing an E-cadherin gene insert, and control MDA-MB-231 E-cadherinlow cells (mesenchymal-like, Mes) were generated using an empty lentiviral vector of pLVX-Tight-Puro. Stable clones were selected after 3 days using G418 (Clontech) and puromycin dihydrochloride (Thermo Fisher) at a concentration of 1000 µg/mL and 1 µg/mL respectively for 14 days. For maintenance, 250 µg/mL of G418 and 0.25 µg/mL of puromycin were added in the culture medium. E-cadherin expression was activated by adding 1 µg/mL doxycycline hydrochloride (Thermo Fisher) to the cell culture every 2-3 days. E-cadherin levels were examined following RNA extraction by RT-qPCR and protein levels by western blotting.

2.3 Primary normal mammary and breast cancer tissue fragments

Surgical tissues from 3 TNBC patients undergoing routine surgical procedures were obtained and used in the experiments. The protocol was approved by The Ottawa Hospital Research Ethics Board (Protocol# 20120559-01H). Normal mammary tissues or areas containing tumor were identified by gross pathologic examinations. Approximately 2-mm cores were obtained using a sterile biopsy punch that was further sliced with a scalpel to obtain approximately 2 × 1-mm tumor slices (Dayekh \textit{et al.}, 2014; Sulaiman \textit{et al.}, 2016). The slices were randomized and three slices were placed into each well of 24-well plate and cultured in DMEM-F12 medium supplemented with 10% FBS, 1% penicillin/streptomycin, 1 µg/ml insulin, 0.5 ng/ml hydrocortisol and 3 ng/ml
epidermal growth factor. These primary tissue fragments were treated with the same concentrations of inhibitors as used in the breast cancer cell lines, followed by a viability assay and flow cytometric analysis. The patient-derived xenograft sample HCI-001 was obtained from University of Utah and cultured in the same conditions as clinical samples.

2.4 Flow cytometry analysis

Dissociated cancer cells were filtered through a 4µm strainer and suspended in PBS supplemented with 2% FBS and 2mM EDTA. 1uL of mouse IgG (1mg/mL) was added and incubated at 4°C for 10 minutes. Afterwards, the cells were resuspended in 1x binding buffer (eBioscience, San Diego, CA, USA) and incubated with Annexin-V (eBioscience) for 15 minutes at room temperature. Antibodies were added according to the manufacturer’s instructions. Apoptosis was determined using Annexin-V-PE-Cy7 Apoptosis Detection Kit (eBioscience). ALDH activity was determined using ALDEFLUOR (Stem-cell Technologies, Vancouver) with a DEAB control. Anti-CD44 (APC) and anti-CD24 (PE) (BD Pharmingen) antibodies were used. Lastly, the cells were washed twice with additional ALDEFLUOR assay buffer and 7-aminoactinomycin D (7-AAD, eBioscience, San Diego, CA) was added to exclude dead cells. Flow cytometry was performed on a Cyan-ADP 9 and the BD LSRFortessa. Data was analyzed with FlowJo software (Ashland, OR, USA).

2.5 Soft agar colony formation

In a 12-well plate, the base layer consisted of 0.6% agarose gel containing DMEM/F12 media. The cell layer consisted of 0.35% agarose gel containing DMEM/F12 media and 5x10^3 MDA-MB-231 cells. Plates were incubated at 37°C in 5% CO₂ for 21 days. Cell viability was then determined
through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 1 mg/ml) staining. Colonies were then counted (>100 μm in diameter). All experiments were performed in triplicate, and data are presented as means ± SD.

2.6 Western blot analysis

Cells were harvested, washed with PBS and lysed with lysis buffer supplemented with protease inhibitors (Roche). After the protein concentrations were determined using a Bio-Rad DC protein assay kit (Bio-Rad, Hercules, CA, USA), samples were then normalized and de-natured. The samples were then loaded into an 8% polyacrylamide gel and separated by SDS-PAGE followed by transference to a PVDF membrane. Proteins were identified by incubation with primary antibodies followed by horseradish peroxidase-conjugated secondary antibodies and an enhanced chemiluminescence solution (Pierce, Thermo Scientific, USA). Antibodies used in this study include: anti-YAP1 (1:1000, Cat: 4912, Cell Signaling, Cambridge, USA), anti-CD44 (8E2) monoclonal antibody (1:1000, Cat: 5640, Cell Signaling), anti-ALDH1A1 (1:1000, Cat: ab105920, Abcam, Toronto, ON, Canada), anti-Klf4 (1:1000, Cat: ab72543, Abcam), anti-β-catenin (1:1000, Cat: 610153, Clone 14, BD, Mississauga, ON, Canada), anti-active β-catenin (1:500, Cat: 05665, Clone 8E7, Millipore, Billerica, MA, USA), and anti-α-tubulin monoclonal antibody (1:500, Cat: T9026, Sigma-Aldrich, St. Louis, MO, USA).

2.7 Quantitative real-time PCR

Total RNAs were extracted using RNeasy kit (QIAGEN) and real-time qPCR (RT-qPCR) analysis was performed using Bio-Rad MyiQ (Bio-Rad, USA) as previously described (Sulaiman et al., 2016). The conditions for RT-qPCR reactions were: one cycle at 95°C for 20 seconds followed by
45 cycles at 95°C for three seconds and annealing at 60°C for 30 seconds. Results were normalized to the housekeeping gene 18S ribosomal RNA (18S) or GAPDH. Relative expression level of genes from different groups were calculated with the $2^{\Delta\Delta CT}$ method and compared with the expression level of appropriate control cells. Specific primer sequences for individual genes are listed in Supplemental Table S1.

2.8 siRNA knockdown

siRNAs for E-cadherin (#4392420), β-catenin and the Silencer Select Negative Control #1 siRNA (Scramble, #4390843) were purchased from Thermo Scientific (Dharmacon, USA) as SMARTpools. YAP1 silencer® select siRNA was also purchased from Thermo Scientific (ID: s20368). For siRNA transfections, cells were transfected with these oligoes using Lipofectamine RNAiMAX reagent (Invitrogen) according to the manufacturer’s instructions. After transfection, efficiency was determined through Western blot or RT-qPCR.

2.9 Lentiviral transduction of short hairpin RNA, generation of transgenic Wnt Reporter 7xTCF-eGFP cell lines and β-catenin/TCF-eGFP reporter assays

pLKO.1 puro shRNA β-catenin was a gift from Bob Weinberg (Addgene plasmid # 18803), shYAP1 was a gift from William Hahn (Addgene plasmid # 42540), and scrambled shRNA was a gift from David Sabatini (Addgene plasmid 1864) (Onder et al., 2008; Rosenbluh et al., 2012; Sarbassov et al., 2005). β-catenin/TCF/LEF dependent reporter plasmid (7xTcf-eGFP//SV40-PuroR, 7TGP) containing seven Tcf/Lef-binding sites and a puromycin resistance gene was a gift from Dr. Nusse (Addgene plasmid 24305). Lentiviral production was carried out as previously described (Jia et al., 2016; Sulaiman et al., 2016). 10-cm dishes were seeded with
6×10^6 293T cells overnight. Afterwards, 8 µg of lentivirus vector, 5.4 µg of the psPax2 envelope plasmid, 3.6 µg of the packaging plasmid (pMD2.G) were used. The medium was replaced overnight, and after 48 hours, the lentiviral supernatant was harvested, filtered through a 0.45 µm PES filter, and concentrated with Lenti-X concentrator (Clontech) according to the manufacturer’s instruction. When SUM 149-PT cells or Mes- or Epi-MDA-MB-231 cells in 6-well plates reached 40-50% confluence, 1 ml of concentrated lentiviral supernatant and 8 µg/ml of polybrene were added for 24h, followed by puromycin selection. The expression levels of TCF-eGFP were determined by flow cytometry.

2.10 Cell viability assays

Cells were seeded into 12 well plates (1.5×10^4 cells/well). After 120 hours of treatment, Alamar blue viability analysis was performed by incubation with 10% Alamar blue reagent (Thermo Fisher Scientific) for 4 hours. Fluorescence was measured at 560 nm excitation and 590 nm emission. Cell viability was also determined through 3-(4,5-dimethylthiazol-2-yi)-2,5-diphenyl tetrazolium bromide (MTT, 1 mg/ml) staining after incubation for 4 hours. Absorbance was measured at 570nm.

2.11 ICG-001 and simvastatin concentrations selected for the in vitro experiments according to the pharmacological studies reported previously

The inhibitor concentrations used in this study for in vitro experiments were selected according to the published pharmacological studies. In a phase I clinical trial, 18 patients were given a continuous infusion of the ICG-001/PRI-724 for 7 days with dose escalations from 40 to 1280 mg/m²/day (El-Khoueiry et al., 2013). One patient developed dose limiting toxicity of
hyperbilirubinemia. The recommended phase 2 dose for ICG-001/PRI-724 was 905 mg/m² based on the incidence of adverse events at 1280 mg/m² and the plateau in pharmaceutical kinetic parameters (El-Khoueiry et al., 2013). The median Cmax and AUC 0-t for C-82 at 905 mg/m²/day were 887 ng/mL and 262787 h*ng/mL. Median elimination T ½ was 7.35 h (El-Khoueiry et al., 2013). In another clinical study, up to 160 mg/m²/day of ICG-001/PRI-724 was used for a continuous intravenous infusion over six cycles of 1 week followed by 1 week off. No adverse effects were observed for 40 mg/m²/day group (with a maximum blood concentration of 692 ± 418 ng/mL) (Kimura et al., 2017). Accordingly, 2.5 µM ICG-001 (= 1372 ng/ml, molecular weight of ICG-001/PRI-724: 568.683) was chosen for in vitro experiments in this study, which is close to the recommended maximum blood concentration.

Simvastatin is a FDA-approved drug that has been widely used for the treatment of Hypercholesterolemia with up to 80 mg of an oral dosage per day. When taking 20 mg of simvastatin, patient’s blood concentration could achieve 28 ng/mL with a half-life of 5.5 hours (Tao et al., 2016). Oral intake of 40 mg simvastatin was used in another study, resulting in a maximum blood concentration of 34 ng/mL (Bellosta et al., 2004). Accordingly, 100 nM (= 41.86 ng/mL) of simvastatin (molecular weight = 418.566) was chosen for our in vitro experiments.

2.12 Xenograft tumor growth

Athymic nude mice were obtained from Charles River Laboratories. The MDA-MB-231 breast cancer cells were mixed 1:1 with Matrigel and injected under aseptic conditions into the mammary fat pads (n = 4 for each group, 2 × 10⁶ cells per fat pad). When the tumor reached a mean diameter of ~3 mm, mice were intraperitoneally injected daily with the vehicle, ICG-001 (100 mg/kg/day), simvastatin (5 mg/kg/day), or both for 15 days. At the end of drug treatment, mice were humanely
euthanized and tumors were harvested for further analyses and secondary transplantation.

2.13 Secondary transplantation of nude mouse model

Tumors were minced using a scalpel and incubated in DMEM media containing collagenase/hyaluronidase (STEMCELL Technologies, #07912) at 37 °C for 60 minutes. Afterwards the solution was passed through a 40-µM nylon mesh for the creation of a single cell solution. The treated tumors were inoculated into one of the mammary fat pads at a concentration of 10^5, 10^4, 10^3, or 10^2 cells from the original tumors. Tumor growth and size were measured after 6 weeks of growth.

2.14 Clinical database analysis and statistical analysis

Breast cancer datasets from the Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/), Nature Communications 2016 (Pereira et al., 2016), Nature 2012 (Network, 2012) and METABRIC (http://molonc.bccrc.ca/aparicio-lab/research/metabric/) were used and analyzed with cBioportal (http://www.cbiomap.org/index.do). CTNNB1 and YAP1 gene repression was defined as mRNA expression levels less than 3 standard deviations below the mean and protein repression was defined as being below the mean. Expression data and Kaplan-Meir survival curves were generated using the datasets compiled by May 2017 from the following Database IDs: CTNNB1 and YAP1 gene repression (2509 patients): http://bit.ly/2hTTYOW, CTNNB1 and YAP1 protein repression (887 patients): http://bit.ly/2jNmlGE. CTNNB1, YAP1 and CDH1 protein analysis (410 patients): http://bit.ly/2pHz5xx. Additionally, the Gene Expression Omnibus2R database was used to analyze a dataset (Dataset: GSE45827) to compare the MDA-MB-231 cell line to 41 TNBC patient samples https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE45827. For
all clinical database data, the log rank test was performed to determine whether observed differences between groups were statistically significant. Data are expressed as means ± Standard Deviation (SD) or Standard Error (SE). Statistical significance was determined using ANOVA or Student's t test. Results were considered significant when * $p < 0.05$, ** $p < 0.01$, or *** $p < 0.001$.

3. Results

3.1 Epithelial TNBC cells exhibit reduced YAP but increased Wnt/β-catenin signaling.

E-cadherin has been used routinely to demarcate epithelial or mesenchymal states (Beerling et al., 2016; Liu et al., 2014; Tsuji et al., 2008). Re-expression of E-cadherin in E-cadherin negative mesenchymal-like MDA-MB-231 TNBC cells resulted in an epithelial-like phenotype (Figure 1A and Figure S1: downregulation of a set of mesenchymal genes N-CADHERIN, SNAIL, SLUG, ZEB1, and ZEB2 and upregulation of a set of epithelial genes E-CADHERIN, KERATIN 13, KERATIN 15 and DSP). Notably, Wnt target genes ($TCF4$, LEF1 and AXIN2, Figure 1B) were upregulated in E-cad+ MDA MB-231 cells while YAP target genes ($CTFG$, ANKRD1, and CYR61, Figure 1C) were downregulated. This was corroborated by increased active β-catenin and diminished YAP1 protein expression (Figure 1D). Increased Wnt activity in epithelial-like TNBC cells was also confirmed using a 7×TCF-eGFP Wnt reporter that contains seven TCF/LEF consensus binding sites upstream of a promoter expressing GFP (Figure 1E) (Fuerer and Nusse, 2010). Consistently, siRNA knockdown of E-cadherin in epithelial-like SUM 149 cells (an E-cadherin$^\text{high}$ inflammatory TNBC line) led to a mesenchymal-like morphology (Figure 1F), an increase in YAP expression and a decrease in active β-catenin protein corroborated by the
diminished 7xTCF-eGFP Wnt reporter activity (Figure 1G and Figure S2). Thus, an epithelial phenotype inhibits YAP while promoting Wnt signaling in TNBC.

Figure 1. Epithelial-like, not mesenchymal-like TNBC cells, exhibit upregulated Wnt and downregulated YAP signaling. (A) RT-qPCR analysis of mesenchymal associated genes N-CADHERIN, SNAIL, SLUG, ZEB1, and ZEB2 as well as E-CADHERIN (CDH1) in epithelial-like MDA-MB-231 cells (Epi, generated by overexpression of E-cadherin) and in mesenchymal-like control MDA-MB-231 cells (Mes). (B) RT-qPCR analysis of Wnt target genes TCF4, LEF1, and AXIN2 in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. (C) RT-qPCR
analysis of YAP target genes CTGF, ANKRD1, and CYR61 in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. (D) Representative western blot of E-cadherin, YAP1 and β-catenin expression in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. (E) Bright-field and fluorescence images of mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after transfection of the 7xTCF-eGFP reporter, scale bar = 100 µm. White squares on bright-field images are enlarged in the bottom panels. The brightness and contrast are adjusted for seeing the shape of the cells, scale bar = 20 µm. (F) Representative phase contrast images of epithelial TNBC SUM 149-PT cells 48 hours after siRNA knockdown of E-cadherin, scale bar = 50 µm. (G) Representative western blot depicting E-cadherin, YAP1 and β-catenin (total β-catenin and non-phosphorylated at Ser33/37/Thr41 for active β-catenin) expression in epithelial-like (Epi) and mesenchymal-like (Mes) SUM 149-PT cells 48 hours after siRNA E-cadherin knockdown (siE-cad). Data represent means ± SE, n = 3 for all figures; *p < 0.05, **p < 0.01, ***p < 0.001.

3.2 Epithelial and mesenchymal TNBC cells associate with distinct CSC properties.

The existence of interconvertible mesenchymal and epithelial populations and CSCs in breast cancer has been associated with drug resistance, metastasis and diminished survival (Charafe-Jauffret et al., 2010; Li et al., 2008; Liu et al., 2014; Ricardo et al., 2011; Tiran et al., 2017; Yan et al., 2016). We therefore asked whether conversion between mesenchymal and epithelial phenotypes in TNBC also displayed different CSC phenotypes. Indeed, mesenchymal MDA-MB-231 cells contained substantial CD44high/CD24low but almost undetectable ALDH+CSCs. After conversion to an epithelial phenotype, E-cad+ MDA-MB-231 cells possessed abundant ALDH+CSCs with diminished CD44high/CD24low CSCs (Figure 2A-B, flow cytometry). Consistently, western blot showed increased ALDH and diminished CD44 and pluripotency marker Klf4 after MET (Figure 2C). High expression of Klf4 in breast mesenchymal cells has been associated with metastasis, CSC self-renewal, and tumorigenicity (Okuda et al., 2013; Yu et al., 2011). A similar trend was also seen after partial knockdown of E-cadherin in epithelial SUM149 TNBC cell line (Figure 2D-F). Epithelial CSCs have been associated with enhanced proliferative properties (Liu et al., 2014a). Indeed, more colonies were observed in epithelial TNBC cells in comparison to mesenchymal counterparts as determined by an in vitro colony forming assay (Figure 2G). It seems
that epithelial and mesenchymal TNBC cells associate with distinct CSC properties.
Figure 2. Epithelial-like and Mesenchymal-like TNBC cells display distinct CSC properties. (A-B) Flow cytometric analysis of CD44high/CD24low and ALDH+ CSC subpopulations in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells (generated by overexpression of E-cadherin in mesenchymal-like MDA-MB-231 cells). Insets within flow cytometric plots depict isotype controls for CD44/CD24 (A), or DEAB control (B) for ALDH. (C) Representative western blot depicting pluripotency related proteins: Klf4, CD44 and ALDH in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. (D-E) Flow cytometric analysis of CD44high/CD24low and ALDH+ CSC subpopulations in the epithelial-like SUM 149-PT cells (Epi, Scrambled) and mesenchymal-like (Mes, 48 hours after knockdown with siE-cadherin, siE-cad). Insets within flow cytometric plots depict isotype controls for CD44/CD24 (A), or DEAB control (B) for ALDH. (F) Representative western blot depicting pluripotency related proteins: Klf4, CD44 and ALDH in epithelial-like SUM 149-PT cells (Epi, Scrambled, transfected with scrambled oligoes) and mesenchymal-like (Mes, 48 hours after transfection with siRNA E-cadherin, siE-cad). (G) Soft agar colony formation assay to evaluate colony forming potential of mesenchymal-like (Mes) and epithelial-like (Epi, overexpression of E-cadherin) MDA-MB-231 cells (5000 cells/well). Cells were seeded in soft agar and cultured for 21 days and colonies were counted after staining with MTT for viability. Scale bar = 100 µm. Data represent means ± SD, n = 3 for all figures; * p < 0.05, **p < 0.01, *** p<0.001.

3.3 Dual knockdown of Wnt and YAP inhibits mesenchymal and epithelial bulk and CSC subpopulations.

We then investigated whether dual knockdown of Wnt and YAP leads to inhibition of both epithelial and mesenchymal bulk and CSC subpopulations. In epithelial TNBC, Wnt reporter assays showed that β-catenin knockdown (i.e. Wnt inhibition), but not YAP knockdown, effectively repressed Wnt signaling, equivalent to dual knockdown (Figure 3A). In mesenchymal TNBC cells, however, knockdown of either β-catenin or YAP only moderately suppressed Wnt signaling, whereas dual knockdown exhibited higher efficacy (Figure 3A). Interestingly, β-catenin knockdown (Figure S3 showing knockdown efficiency) inhibited the expression of YAP target genes in epithelial TNBC cells but upregulated the expression of YAP target genes in their mesenchymal counterparts (Figure 3B). Unexpectedly, while siRNA knockdown of YAP1 effectively inhibited CD44high/CD24low CSC subpopulation in mesenchymal TNBC, it increased
ALDH+ CSCs in epithelial TNBC cells. In contrast, siRNA knockdown of β-catenin was more effective in inhibiting ALDH+ CSCs in an epithelial state but less effective in suppressing CD44high/CD24low CSCs in a mesenchymal state. These data suggest that Wnt and YAP inhibition alone exhibits differential effects on mesenchymal and epithelial CSCs. As a result, dual knockdown of Wnt and YAP was a more effective approach to inhibit both CD44high/CD24low and ALDH+ CSC subpopulations in both mesenchymal and epithelial states (Figure 3C-D).
Figure 3. Dual knockdown of Wnt and YAP inhibits mesenchymal and epithelial bulk and CSC subpopulations. (A) Representative flow cytometric analysis of 7xTCF-eGFP Wnt reporter activity (MFI: median fluorescent intensity) in mesenchymal-like (Mes) and epithelial-like (Epi, overexpression of E-cadherin) MDA-MB-231 cells 48 hours after siRNA knockdown of β-catenin and/or YAP1. Cells were exposed to 3µM CHIR99021 (CHIR, a GSK3 inhibitor activating Wnt
signaling) and compared to scrambled + DMSO vehicle and scrambled + CHIR99021 controls.

(B) RT-qPCR analysis of YAP target genes: CTGF, ANKRDL, and CYR61 after β-catenin and/or YAP1 siRNA knockdown in mesenchymal-like (Mes) or epithetical-like (Epi) MDA-MB-231 cells. Data represent means ± SE.

(C-D) Flow cytometric analysis of the CD44$^{\text{high}}$/CD24$^{\text{low}}$ and ALDH$^+$ CSC subpopulations in the mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after shRNA knockdown of β-catenin and/or YAP1. Insets within flow cytometric plots depict DEAB control for ALDH baseline determination. Data represent means ± SD; n = 3 for all figures; * $p < 0.05$, **$p < 0.01$, ***$p < 0.001$, in comparison to the indicated or scrambled groups.

3.4 Combination of ICG-001 and simvastatin treatment inhibits epithelial and mesenchymal TNBC bulk and CSC populations in vitro.

To determine the effect of small molecules on dual inhibition of Wnt and YAP signaling in TNBC cells, we used the FDA-approved ICG-001/PRI-724 (a Wnt inhibitor) and simvastatin (inhibiting YAP signaling revealed in 2014 (Wang et al., 2014) in addition to other targets). Like that observed in β-catenin knockdown experiments, ICG-001 treatment decreased Wnt activity effectively in epithelial TNBC cells (Figure 4A), and upregulated YAP target genes in mesenchymal TNBC cells (Figure 4B). Combination of ICG-001 and simvastatin treatment was able to suppress both Wnt and YAP signaling, reduce cell viability, and promote apoptosis in both mesenchymal and epithelial TNBC cells (Figure 4C-D, Figure S4A and S5A). Flow cytometric analysis showed that the combination treatment also diminished both mesenchymal CD44$^{\text{high}}$/CD24$^{\text{low}}$ and epithelial ALDH$^+$ CSC subpopulations compared to vehicle and single inhibitors (Figure 4F-G, Figure S4B and Figure S5B-S5C), highlighting the necessity of dual Wnt and YAP suppression. Additionally, normal mammary cells from patient breast tissue were not significantly affected by the combination treatment (Figure 4E). Hence, the dual inhibition of Wnt and YAP signaling can be an effective approach to halt the growth of epithelial and mesenchymal TNBC cells in vitro.
Figure 4. Dual inhibition of YAP and Wnt signaling with small molecules suppresses both mesenchymal- and epithelial-like bulk and CSC populations. (A) Representative flow cytometric analysis of 7xTCF-eGFP Wnt reporter activity in mesenchymal-like (Mes) and epithelial-like (Epi, overexpression of E-cadherin) MDA-MB-231 cells after 48 hours of treatment with the vehicle (DMSO), ICG-001 (5 µM) and/or simvastatin (100 nM). Cells were exposed to 2-3µM CHIR99021 (CHIR, a GSK3 inhibitor activating Wnt signaling) and compared to vehicle control +/- CHIR99021. (B) RT-qPCR analysis of YAP target genes (CTGF, ANKRD1, and CYR61) 48 hours after treatment with vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. Data represent means ± SE. (C) MTT viability analysis of mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after 120 hours of exposure to vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM). (D) Flow cytometry analysis of apoptosis (Annexin V+/7AAD+) of mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after 120 hours of exposure to vehicle (DMSO) or ICG-001 (2.5 µM) and/or simvastatin (100 nM). (E-F) Flow cytometric analysis of CD44^{high}/CD24^{low} and ALDH+ CSCs after 120 hours of exposure to ICG-001 (2.5 µM) and simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. Insets within flow cytometric analysis depict DEAB control for ALDH baseline determination. Data represent means ± SD; n = 3 for all figures; * p < 0.05, **p < 0.01, *** p<0.001, in comparison to the indicated groups or vehicle control.

3.5 Clinical TNBC patients’ samples exhibit epithelial-like phenotypes and dual inhibition of Wnt and YAP signaling suppresses both bulk and CSC populations.

In comparison to mesenchymal MDA-MB-231 cell line, almost all 41 primary TNBC tumors (omnibus2R, Dataset:GSE45827, Accessed July 14 2017 (Barrett et al., 2013)) showed increased expression of E-cadherin (CDH1) and Wnt target gene TCF4 but decreased YAP target gene AXL (Figure 5A). Likewise, primary TNBC patients’ tumor samples (CRDCA, SEM-1 and ARI-1) also showed increased expression of E-cadherin, active β-catenin, and ALDH but decreased expression of YAP and CD44 (Figure 5C, Figure S6). It seems that patients’ TNBC samples exhibit a more epithelial-like phenotype in comparison to the mesenchymal-like MDA-MB-231 TNBC cell line. In addition, the E-cadherin protein levels were positively correlated with β-catenin expression in
410 breast cancer patients’ tumor samples (Figure 5B, cBioportal) (Network, 2012), consistent with the data obtained from TNBC cell lines in Figure 1.

We then treated three patients’ tumor fragments and one patient-derived-xenograft (PDX) fragment (DeRose et al., 2011) with Wnt and/or YAP inhibitors. In all TNBC patients’ samples, dual inhibition of Wnt and YAP reduced cell viability (Figure 5D), and inhibited both CD44\text{high}/CD24\text{low} and ALDH\text{+} CSC subpopulations than single inhibition alone (Figure E-H).
Figure 5: Duel inhibition of YAP and Wnt signaling with small molecules effectively inhibits TNBC patients’ bulk and CSCs. (A) Wnt and YAP target genes (TCF4 and AXL respectively) and E-cadherin (CDH1) was detected in 41 TNBC patient samples and mesenchymal-like MDA-MB-231 cell line using Affymetrix U133 Plus 2.0 transcriptome analysis Chips (n = 41 patients, *p < 0.05, **p < 0.01, ***p < 0.001). (B) Positive Pearson correlation between CDH1 and CTNNB1 in protein expression (RPPA) in 410 invasive breast cancer patients’ samples (*p < 0.05). (C) Representative western blot depicting β-catenin, YAP, E-cadherin and pluripotency-related proteins (ALDH and CD44) of two patient samples (CRDCA and ARI-1) and mesenchymal-like MDA-MB-231 cell line. See also Figure S6 for additional patient’s sample. (D) Alamar blue viability analysis of three primary patients’ TNBC samples (CRDCA, SEM-1 and ARI-1) and one PDX sample (HCI-001) after 120 hours of exposure to vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM). (E-H) Representative flow cytometric analysis of CD44high/CD24low and ALDH+ CSC subpopulations in patients’ sample CRDCA and ARI-1 after 120 hours of exposure to vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM) (E-F). The relative living CD44high/CD24low and ALDH+ CSCs in all clinical samples are tabulated (G-H). Insets within flow cytometric plots depict DEAB control for ALDH baseline determination. All data in Figure 5 represent means ± SD, n = 3 – 4; * p < 0.05, **p < 0.01, *** p<0.001, in comparison to the indicated groups or vehicle control.

3.6 Dual inhibition of Wnt and YAP signaling is capable of retarding tumor growth and inhibits CSC subpopulations and tumorigenesis in vivo.

We next determined the effect of combination treatment in vivo. Mesenchymal and epithelial MDA-MB-231 (overexpressing E-cadherin) cells were injected into the mammary fat pad of athymic mice. When tumor reached a mean diameter of 3 mm, mice were randomized into four groups and injected intraperitoneally with vehicle, ICG-001 (100mg/kg/day), simvastatin (5mg/kg/day) or both for 15 days. As expected, the combination treatment reduced tumor burden of both mesenchymal and epithelial TNBC (Figure 6A and 6B). To determine CSC pool in vivo, we harvested tumors at the end of the treatment and assessed CD44high/CD24−/low and ALDH+ subpopulation using flow cytometry. As shown in Figure 6C and 6D, dual administration of ICG-001 and simvastatin reduced both CD44high/CD24−/low and ALDH+ CSC subpopulations in mesenchymal and epithelial-like TNBC respectively, in comparison to vehicle or single drug treatments, suggesting the necessity of dual Wnt and YAP inhibition for suppressing CSC.
subpopulations.

To determine whether co-administration of ICG-001 and simvastatin inhibits tumor-initiating potential, we performed secondary transplantation. We serially diluted tumor cells containing various percentage of CD44$^{\text{high}}$/CD24$^{\text{low}}$ and ALDH$^+$ subpopulations isolated from the primary tumors, and transplanted them into athymic nude mice without further treatment for 6 weeks. Tumor cells isolated from mice receiving both ICG-001 and simvastatin exhibited the least tumor-initiating capacity in comparison to single treatments and a vehicle control (Figure 6E). Thus, dual inhibition of Wnt and YAP signaling can reduce tumor burden but more importantly, it suppresses CSCs and attenuates tumorigenesis in mesenchymal and epithelial TNBC after secondary transplantation.
Mes MDA-MB-231

A) Tumor weight (g)

- Vehicle
- ICG-001
- Simvastatin
- ICG-Sim

B) Tumor weight (g)

- Vehicle
- ICG-001
- Simvastatin
- ICG-Sim

C

Relative CD44+CD24- CSCs

- Vehicle
- ICG-001
- Simvastatin
- ICG-Sim

D

Relative ALDH+ CSCs

- Vehicle
- ICG-001
- Simvastatin
- ICG-Sim

E

Mes MDA-MB-231

<table>
<thead>
<tr>
<th></th>
<th>1 x 10^5</th>
<th>1 x 10^4</th>
<th>1 x 10^3</th>
<th>1 x 10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>3/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0/3</td>
</tr>
<tr>
<td>ICG-001</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>2/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0/3</td>
</tr>
<tr>
<td>I+S</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

Epi MDA-MB-231

<table>
<thead>
<tr>
<th></th>
<th>1 x 10^5</th>
<th>1 x 10^4</th>
<th>1 x 10^3</th>
<th>1 x 10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>3/3</td>
<td>2/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>ICG-001</td>
<td>1/3</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>2/3</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>I+S</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

F

Patient gene expression

- CD44
- ALDH1A1

G

Patient survival

- CTNNB1+YAP1
 - Down regulated
 - Unaltered

<table>
<thead>
<tr>
<th></th>
<th>Total Cases</th>
<th>Deceased</th>
<th>Median months survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt</td>
<td>720</td>
<td>82</td>
<td>140.18</td>
</tr>
<tr>
<td>Ctrl</td>
<td>165</td>
<td>40</td>
<td>74.67</td>
</tr>
</tbody>
</table>
Figure 6. Combination therapy with YAP and Wnt small molecule inhibitors effectively retards tumor growth and reduces CSC enrichment and tumorigenesis in vivo; low expression of CTNNB1 and YAP1 genes correlates with low expression of CD44+ and ALDH1A1+ genes in patients’ tumor samples while inversely correlates with improved survival in breast cancer patients. (A-B) Mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 TNBC cells were injected into the mammary fat pads of athymic nude mice. When the tumors reached a mean diameter of 3mm, mice were separated into 4 groups and intraperitoneally injected daily with the vehicle (DMSO), ICG-001 (100 mg/g/day), simvastatin (5 mg/g/day) and ICG-001 + Simvastatin for 15 days. After conclusion of treatments, tumors were harvested from the mice, photographed and weighed. Data represent means ± SD; n = 4 mice for each group; *p < 0.05, **p < 0.01. Scale bar = 1 cm. (C-D) Flow cytometric analysis of the living CD44^high/CD24^low and ALDH+ CSC subpopulations of dissociated mesenchymal-like (Mes) and epithelial-like (Epi) tumors after 15 days of treatment with vehicle (DMSO), ICG-001 and/or simvastatin. Insets within flow cytometric plots depict DEAB control for ALDH baseline determination. Data represent means ± SD; n = 4 mice for each group; *p < 0.05, **p < 0.01, in comparison to the indicated groups or vehicle control. (E) Mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 xenografts were dissociated into single cell suspension and re-transplanted into the mammary fat pads of new nude mice in serial limiting dilutions (10^5, 10^4, 10^3, or 10^2 cells per injection). Tumor formation was observed for 6 weeks. (F) Low levels of CTNNB1 (a pivotal effector of the canonical Wnt signaling pathway) and YAP1 (YAP signaling) gene expression in breast cancer patients’ samples (Alt) correlates with low levels of CD44 and ALDH1A1 gene expression in comparison to those patients’ samples without showing the reduced expression of CTNNB1 and YAP1 genes (Ctrl). N = 2509 patients with invasive breast cancer, *p < 0.05, ***p < 0.001. (G) Kaplan-Meier curves for overall survival of the patients with low levels of CTNNB1 (Wnt) and YAP1 (YAP) protein expression in cancer samples (red curve) in comparison to those patients with unaltered expression (blue curve). N = 887, ***p < 0.001, log-rank test.

3.7 Low expression of CTNNB1 and YAP1 genes correlate with low expression of CD44+ and ALDH1A1+ genes and improved survival in breast cancer patients.

Analysis of a database containing gene expression of 2509 breast cancer patients using eBioreport (Cerami et al., 2012; Gao et al., 2013; Pereira et al., 2016) showed that, in breast tumor samples, decreased gene expressions of CTNNB1 (a pivotal effector of the canonical Wnt signaling pathway) and YAP1 (YAP) were accompanied with reduced gene expressions of CD44 and ALDH1A1 that are associated with mesenchymal and epithelial CSC phenotypes (Figure 6F). In addition, analysis of a dataset of 887 patients with invasive breast carcinoma showed that co-reduction of CTNNB1 (Wnt) and YAP1 (YAP) protein expression, was correlated with improved
patients’ survival (Figure 6G, median survival of 140.18 months versus 74.67 months in the unaltered control). Those with either reduced expression of CTNNB1 or YAP1 protein alone showed only a moderate increase in survival (32.66 months by CTNNB1 and 9.53 months by YAP1) in comparison to the unaltered control (Figure S7).

4. Discussion

Epithelial-mesenchymal plasticity and CSCs are key challenges for effective cancer treatment. In this study, we observed that dynamic changes in Wnt and YAP signaling and CSC phenotypes are dependent on epithelial or mesenchymal states. YAP is upregulated in mesenchymal TNBC cells while Wnt upregulated in epithelial TNBC cells. These observations are clearly supported within the TNBC literature. The intracellular domain of E-cadherin has been shown to mediate YAP nuclear exclusion and β-catenin activity (Benham-Pyle et al., 2015). Additionally, α-catenin and 14-3-3 proteins are known to associate with YAP and prevent its de-phosphorylation via PP2A under the upstream control of E-cadherin (Schlegelmilch et al., 2011).

Importantly, we found that mesenchymal and epithelial TNBC cells exhibited different responses to Wnt and YAP inhibition. Knockdown of Wnt/β-catenin upregulated YAP target genes in mesenchymal-like TNBC cells, which is consistent with a recent report showing that inhibition of Wnt/β-catenin signaling facilitates YAP/TAZ-overexpression induced liver growth and tumor initiation (Kim et al., 2017). We also found Wnt/β-catenin knockdown was more effective in suppressing ALDH+ CSCs in an epithelial state than in suppressing CD44high/CD24low CSCs in a mesenchymal state. In contrast, YAP knockdown enriched ALDH+ CSCs in epithelial-like TNBC cells although it potently inhibited CD44high/CD24low in mesenchymal-like TNBC cells. These observations suggest that inconsistent results reported in breast cancer cells in response to Wnt or YAP inhibition (Anastas and Moon, 2013; Green et al., 2013; Maugeri-Saccà and De Maria, 2016)
may be associated with ineffective CSC targeting due to epithelial and/or mesenchymal states, TNBC EMT/MET plasticity, and YAP and Wnt feedbacks. Dual inhibition of YAP and Wnt signaling on the other hand, can suppress both epithelial- and mesenchymal-like bulk and CSC populations without significantly affecting cultured normal mammary tissue fragments in vitro and mice in vivo, suggesting a favorable approach for this combination therapy. This was supported by the alternations of CD44high/CD24low and ALDH+ CSC subpopulations in both MDA-MB-231 and SUM149-PT cell lines, although the changes in SUM149-PT cells after siRNA knockdown of E-cadherin (which induces a mesenchymal-like phenotype) were not as robust as seen in mesenchymal MDA-MB-231 cells. This may be associated with incomplete siRNA silence, recovery of E-cadherin after knockdown and/or experimental timing.

We also observed that knockdown of YAP or usage of simvastatin suppressed Wnt signaling. The suppressed Wnt signaling may be associated with the formation of YAP, β-catenin and TBX5 complex that is essential for transformation and survival of β-catenin-driven cancers (Rosenbluh et al., 2012). At present, it is unclear why such an effect is significant in mesenchymal but less in epithelial TNBC cells, warranting further investigations. Nevertheless, since epithelial and mesenchymal cancer cells are interconvertible, simultaneously targeting YAP and Wnt signaling should be taken into consideration in future TNBC treatment.

Administration of ICG-001 and simvastatin was clinically relevant; both are FDA-approved drugs for clinical applications with defined pharmacological dynamics/kinetics, and have the potential to be readily repurposed in this clinical indication. ICG-001/PRI-724 is a fairly specific Wnt inhibitor and is used for the treatment of acute and chronic myeloid leukemia (NCT01606579). Simvastatin is an inhibitor of HMG-CoA reductase and widely employed as a cholesterol-lowering drug. In addition, simvastatin has been reported to affect wide plethora of
targets including YAP, RhoA, Ras, Akt, mTOR, and JAK2/STAT3 (Wang et al., 2016b; Wu and Liu, 2008; Zhang et al., 2013c). We have observed that ICG-001 inhibits TNBC Wnt signaling, and simvastatin suppresses YAP signaling although other off-target effects coexist. Since ICG-001 and simvastatin exhibited effects resembling YAP1 and β-catenin knockdown in TNBC cells, it is likely that the biological changes observed in this study are associated with Wnt and YAP inhibitions. This study identifies different expressions of CSC phenotypes and cellular responses to YAP and Wnt targeting associated with mesenchymal or epithelial state. Through dual inhibition of Wnt and YAP signaling, both epithelial and mesenchymal CSC subpopulations can be inhibited and tumorigenesis can be halted after secondary transplantation, which may reduce TNBC recurrence. Since simvastatin is commonly prescribed and ICG-001/PRI-724 has been approved by FDA for clinical trial evaluation, further investigation of this combination and other Wnt and YAP inhibitors may lead to an effective therapy with reduced toxicity and attenuated CSC enrichment as compared to conventional chemotherapy.
Supplemental Figure 1: Overexpression of E-cadherin in mesenchymal-like MDA-MB-231 TNBC cells resulted in an epithelial-like phenotype. RT-qPCR analysis of epithelial genes \textit{KRT13} (Keratin 13), \textit{KRT15} (Keratin 15) and \textit{DSP} (Desmoplakin) in epithelial-like (Epi) MDA-MB-231 and mesenchymal-like (Mes) cells. Data represent means ± SE, n = 3 for all figures; * \(p \) < 0.05, **\(p \) < 0.01.

Supplemental Figure 2: 7xTCF-eGFP Wnt reporter activity upon E-cadherin knockdown in SUM 149-PT cells. Representative flow cytometric analysis of 7xTCF-eGFP Wnt reporter activity (MFI: median fluorescent intensity) in SUM 149-PT cells 48 hours after siRNA knockdown of E-cadherin. Cells were exposed to vehicle (left panel) or 3\(\mu \)M CHIR99021 (a GSK3 inhibitor activating Wnt signaling, right panel).
Supplemental Figure 3: CTNNB1 and YAP1 knockdown efficacy in mesenchymal-like (Ctrl) and epithelial-like (E-cad+) MDA-MB-231 TNBC cells. (A-B) RT-qPCR analysis of CTNNB1 and YAP1 48 hours after siRNA knockdown of β-catenin and YAP1 in mesenchymal-like (Mes) or epithelial-like (Epi) MDA-MB-231 cells. Data represent means ± SE, n = 3 for all figures; * p < 0.05, **p < 0.01.
Supplemental Figure 4: Suppression of Wnt and pluripotency-related genes after treatment with ICG-001 and simvastatin in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 TNBC cells. (A) RT-qPCR analysis of Wnt genes AXIN2 and LEF1 48 hours after treatment with vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. (B) RT-qPCR analysis of pluripotent genes SOX2 and NANOG, 48 hours after treatment with vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. Data represent means ± SE, n = 3 for all figures, * p < 0.05, **p < 0.01.
Supplemental Figure 5: Dual inhibition of YAP and Wnt signaling suppresses both mesenchymal and epithelial-like bulk and CSC populations in epithelial-like SUM149-PT TNBC cells. (A) Flow cytometry analysis of apoptosis (Annexin V+/7AAD+) of SUM149-PT cells after 120 hours of exposure to vehicle (DMSO), ICG-001 (2.5 µM) and/or simvastatin (100 nM). (B-C) Flow cytometric analysis of CD44$^{\text{high}}$/CD24$^{\text{low}}$ and ALDH+ CSCs after 120 hours of exposure to ICG-001 (2.5 µM) and simvastatin (100 nM) in SUM149-PT cells. Data represent means ± SD, n = 3 for all figures; * p < 0.05, ** p < 0.01, *** p < 0.001.
Supplemental Figure 6: Western blot analysis of patient TNBC tumor fragment in comparison to MDA-MB-231 cell line (A) Representative western blot depicting β-catenin, YAP and E-cadherin expression in patient tumor samples (SEM-1) and the mesenchymal-like MDA MB-231 cell line.
Supplemental Figure 7: Kaplan-Meier curves for overall survival of the patients with low levels of Wnt (CTNNB1) or YAP (YAP1) protein expression in cancer samples (A-B) Kaplan-Meier curves for overall survival of the patients with low levels of CTNNB1 (Wnt) or YAP1 (YAP) protein expression in cancer samples (red curve) in comparison to those patients with unaltered expression (blue curve, n = 885, **p < 0.01, log-rank test).
Chapter 5: Co-Targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy
Preface

The following Chapter consists of a research article for which I am the primary author. The article was submitted to Molecular Cancer Therapeutics.

AS, LW and SG conceived and designed the study. AS preformed data analysis and FACS. AS, SM, SE, LL, JC and AP performed the in vitro experiments. AS and SM performed the in vivo experiments. AS preformed in vivo serial dilution, MRI analysis (with GC), IVIS, Quantum Dot experiments. AS analyzed the data. AS drafted the manuscript and created the figures. SG and AP prepared reagents and nanoparticles. LW, AS, SM and SG edited the manuscript. MC, GC, TA, YL, S-HL, SL, DF and SG provided valuable suggestions and assisted in troubleshooting the experiments. SL provided supplemental figures 1-3. All authors approved the final version of the manuscript.
Abstract

Triple negative breast cancer (TNBC) accounts disproportionately for the majority of breast cancer related deaths throughout the world. This is largely attributed to lack of a specific therapy capable of targeting both bulk tumor mass and cancer stem cells (CSC) as well as appropriate animal models to accurately evaluate treatment efficacy for clinical translation. Thus, development of effective and clinically translatable targeted therapies for TNBC is an unmet medical need. We developed a hybrid nanoparticles-based co-delivery platform containing both paclitaxel and verteporfin (PV-NPs) to target TNBC patient-derived xenograft (PDX) tumor and CSCs. MRI and IVIS imaging were performed on mice containing PDX tumors to assess tumor vascularity and accumulation of NPs. NF-kB, Wnt and YAP activities were measured by reporter assays. Mice bearing TNBC PDX tumor were treated with PV-NPs and controls, and tumors progression and CSC subpopulations were analyzed. MRI imaging indicated high vascularization of PDX tumors. IVIS imaging showed accumulation of NPs in PDX tumors. In comparison to control-NPs and free-drug combination, PV-NPs significantly retarded tumor growth of TNBC PDX. PV-NPs simultaneously repressed NF-kB, Wnt and YAP signaling, each of which have been shown to be crucial for cancer growth, CSC development and tumorigenesis. In conclusion, NPs containing two clinically used drugs concurrently inhibited NF-kB, Wnt and YAP pathways and exhibited synergic effects on killing TNBC bulk tumor and CSCs. This combination nanotherapy evaluated with a PDX model may lead to an effective treatment of TNBC patients.

1.0 Introduction

Breast cancer remains a leading cause of death in women worldwide (Siegel et al., 2016). Amongst the various breast cancer sub-types, triple negative breast cancer (TNBC, a highly
heterogeneous disease) accounts for only one fifth of all breast cancers, but disproportionately accounts for the majority of breast cancer-related deaths. Relapse has been closely associated with CSCs and is a major challenge in TNBC wherein approximately one third of patients will experience a distant recurrence within 2.6 years (Dent et al., 2007). In contrast to other breast cancer sub-types, due to lack of specific targets, conventional chemotherapy is still the clinical standard treatment for TNBC. However, chemotherapy has been shown to promote CSC enrichment after treatment (Jia et al., 2017).

In TNBC, CSCs have been found to coexist in two distinct but interconvertible subtypes: epithelial ALDH+ and mesenchymal CD44+/CD24- subpopulations that are closely associated with chemoresistance, tumor regrowth, and disease relapse (Liu et al., 2014; Sulaiman et al., 2016; Sulaiman et al., 2017b). A recent study revealed that YAP signaling was highly activated in mesenchymal CSCs while Wnt signaling in epithelial CSCs (Sulaiman et al., 2018b). In addition, it has been found that NF-kB (nuclear factor-κB), an essential mediator of the inflammatory response, is a potent signaling modulator in tumor cells and tumor microenvironment. NF-kB stimulates Wnt and other signaling pathways and facilitates the survival of both bulk and CSC populations (Taniguchi and Karin, 2018; Wang et al., 2018). As such, repression of NF-kB signaling has been considered as one of the most effective approaches in cancer treatment (Taniguchi and Karin, 2018; Wang et al., 2018). We thus hypothesize that therapeutic strategies capable of effectively delivering drugs into tumor to co-inhibit NF-kB, Wnt and YAP signals and evaluating therapeutic efficacy with a clinically translatable model may lead to the effective treatment of TNBC.

Cancer nanomedicines overcome the intrinsic limits of drug delivery and conventional cancer therapies through their uniquely appealing features, such as improved blood circulation,
increased tumor accumulation, reduced off-target toxicities, leading to a higher therapeutic index (Gadde, 2015; Shi et al., 2017). However, in preclinical cancer research, the therapeutic efficacy of drugs and formulated in NPs is assessed by using cancer cell line-based animal models that do not represent the heterogeneity and complexity of patients’ primary tumors. Even though cell lines originate from patient’s tumors, due to artificial tissue culture conditions, they have adapted for adherence/growth in a monoculture, leading to uniformity in cells and loss of heterogeneity. Most of the cancer cell lines used in preclinical research are genetically and epigenetically divergent from their starting source and real tumors (Miller et al., 2017; Sulaiman and Wang, 2017). This agglomeration may culminate with artifact discoveries and clinical trial failures for the therapeutic agents including cancer nanomedicines (Miller et al., 2017; Sulaiman and Wang, 2017). In contrast, PDX (Patient Derived Xenograft) tumors are obtained from patient and engrafted directly into immunocompromised mice, bypassing extensively in vitro selection. As such, PDX tumors retain the original patient’s tumor heterogeneity, three-dimensional architecture and microenvironment representing the tumors biology, and resulting in a 92% concordance with patient tumors (Lum et al., 2012).

In this report, we developed a co-delivery NPs containing the conventional chemotherapeutic agent paclitaxel in combination with an FDA-approved porphyrinic photosensitizer, verteporfin (PV-NPs). Paclitaxel is a routinely prescribed chemotherapeutic for the treatment of TNBC. It inhibits the mitotic spindle apparatus, preventing cancer cell division. However, resistance to paclitaxel is common in the clinic. Although the mechanism behind this phenomenon is still under investigation, paclitaxel-induced CSC enrichment has been demonstrated to be one of key players for drug resistance and disease relapse (Jia et al., 2016b; Yu et al., 2007). Verteporfin is a FDA-approved photosensitizer for photodynamic therapy to
eliminate the abnormal blood vessels in the eye such as macular degeneration (Arnold et al., 2001). Verteporfin has been reported to possess potent anti-cancerous activity in pancreatic and breast cancer patients (Huggett et al., 2014; Isakoff et al., 2017b), and is currently in a clinical trial for the treatment of breast cancer (NCT02939274). However, paclitaxel resistance, CSC enrichment, and drug delivery to tumors remain challenges in cancer treatment. Here, we provided the first demonstration that PV-NPs accumulate within TNBC PDX tumors and potently inhibit both bulk tumor mass and CSC populations. Furthermore, we showed that PV-NPs suppressed NF-kB, Wnt and YAP pathways that are crucial for cancer growth, CSC development and tumorigenesis. These findings suggest that development of nanoparticle platforms encapsulated with specific drugs to promote synergetic inhibition of bulk tumor and CSCs is an effective and translatable approach for TNBC treatment.

2.0 Materials and Methods

2.1 Cell culture and reagents

MDA-MB-231 breast cancer cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in DMEM-F12 media supplemented with 10% Fetal bovine serum (FBS, HyClone, Logan, UT, USA) and 1% penicillin/streptomycin. Cells were cultured at 37°C in a 5% CO2 incubator. Verteporfin was purchased from CalBiotech (El Cajon, CA, USA), and paclitaxel from Cedarlane (Burlinton, ON, Canada). PLGA was purchased from LACTEL polymers, Lecithin from Alfa Aesar, and DSPE-PEG2K from Avanti Lipids. Alexa Fluor 750 and Qdot800 were purchased from Thermo Fisher. ACN, dry DMF, and acetone were purchased from Fisher Chemicals.
Synthesis and Characterization of NPs

Lipid-polymer hybrid NPs were synthesized via previously reported nanoprecipitation method (Zhang et al., 2008). Briefly, lecithin and DSPE-PEG2K in molar ratio of 6.5:1 were dissolved in 4% ethanol aqueous solution (0.02% w/v) and heated for 2-4 mins at 68 °C under gentle stirring. After heating, PLGA (poly lactic co-glycolic acid) and appropriate drugs (10: 1 w/w ratio) in either acetonitrile (ACN) or acetone (1-2 mg/ml) were added dropwise at 0.6ml/min rate and stirred at room temp to form self-assembly of hybrid NPs. NPs were concentrated, and purified by centrifugal filters and analyzed by ZetaView, Malvern Zetasizer (DLS) and TEM. Stability of NPs in biologically relevant conditions were tested according to literature procedure (Marrache and Dhar, 2012). The amount of paclitaxel encapsulated in NPs is analyzed using HPLC at 204 nm, with H2O:ACN mobile phase with 5-90% ACN gradient. The amount of verteporfin encapsulated in NPs is quantified by Nanodrop at 430nm absorbance. Drug release profiles were performed using published procedures (Abouelmagd et al., 2015).

PLGA-Qdot800 conjugate was synthesized according to previously reported literature procedure (Marrache and Dhar, 2012). PLGA-Alexa750 conjugate was synthesized via ester coupling by reacting amine end group of PLGA with Alexa Fluor 750 NHS ester.

2.2 DAPI staining and fluorescence microscopy

MDA-MB-231 cells cultured on glass coverslips were treated with nanoparticle-Bodipy FL for 3 hours. After being fixed with 4% paraformaldehyde and stained with 100 ng/ml of DNA-specific fluorophore DAPI for one hour at room temperature, the coverslips were mounted on a glass slide for fluorescence microscopy. Fluorescence images were obtained by using a Leica
AF6000 deconvolution microscope system equipped with a fully automated microscope (DMI6000B) and a DFC350 FX digital camera (Leica Microsystems, Heidelberg, Germany). Fluorescence images were acquired under the identical exposure time and instrument settings among different groups, and analyzed using Leica LAS AF6000 software.

2.3 Flow cytometry analysis

Cancer cells or PDX tumor cells were dissociated and filtered through a 40 µm strainer and suspended in PBS supplemented with 2% FBS and 2mM EDTA. 1µL of mouse IgG (1mg/mL) was then added and incubated at 4°C for 10 minutes. Afterwards, the cells were resuspended in 1× binding buffer (eBioscience, San Diego, CA, USA) and cell apoptosis was determined using Annexin-V-V450 Apoptosis Detection Kit (BD Bioscience). Afterwards, cells were incubated with the different reagents as described below at 4°C for 30 minutes in ALDEFLUOR™ Assay Buffer. Anti-CD44 (APC) and anti-CD24 (PE) (BD Pharmingen) antibodies were added according to the manufacturer’s instructions as previously described (Sulaiman et al., 2016). ALDH activity was determined using ALDEFLUOR (Stem-cell Technologies, Vancouver) with a DEAB control according to the manufacturer’s instructions. Lastly, cells were washed twice and 7-aminoactinomycin D (7-AAD, eBioscience, San Diego, CA) was added to exclude dead cells. Flow cytometry was performed on the BD LSRFortessa. Data was analyzed with FlowJo software (Ashland, OR, USA). To analyze cell uptake of nanoparticle in different organs versus TNBC PDX tumors, mice were injected Qdot800 conjugated lipid-hybrid nanoparticles 3 hours before euthanization. Different organs and TNBC PDX tumors were harvested, dissociated into single cell suspensions, and washed three times with PBS before analysis with the BD LSRFortessa. FlowJo software was used for data analysis.
2.4 Cell viability assays

Cells were seeded into 12 well plates (1.5×10⁴ cells/well). After 120 hours of treatment, viability analysis was performed by incubation with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 1 mg/ml) for 4 hours. Absorbance was measured at 570nm.

HCl-002 PDX TNBC tumor fragments were incubated in 24 well plates (i.e. organotypic slice culture). After 120 hours of treatment, alamar blue viability assay was performed via incubation with 10% alamar blue solution (Thermo Fisher Scientific) for 4 hours, followed by measurement of fluorescence at 560nm excitation and 590nm emission as previously performed (Sulaiman et al., 2018a).

2.5 Luciferase Assay

MDA-MB-231 TNBC cells were seeded into 12-well plates and transfected with 1000 ng of a NF-kB reporter p1242 3x-KB-L (Addgene Plasmid #26699, a gift from Dr. Bill Sugden) (Mitchell and Sugden, 1995), or YAP reporter 8xGTIIC-luciferase (Addgene Plasmid #34615, a gift from Dr. Stefano Piccolo) (Dupont et al., 2011) or Wnt reporter M50 Super 8x TOPFlash (Addgene Plasmid #12456, a gift from Dr. Randall Moon) (Veeman et al., 2003) constructs in conjunction with 1000 ng Renilla pRL-SV40P (Addgene Plasmid #27163, a gift from Dr. Ron Prywes) (Chen and Prywes, 1999) construct using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. After 18 hours, cells were treated with either empty (vehicle) lipid-hybrid nanoparticles or lipid hybrid nanoparticles with paclitaxel (10nM), verteporfin (500nM) or both for 24 hours, after which cells were lysed and both Firefly and Renilla luciferase activity was quantified using a Dual-Luciferase® Reporter Assay System (Promega) following the manufacturer's instructions.
2.6 Xenograft tumor growth

All protocols described throughout this manuscript regarding animal studies were performed in strict pathogen free conditions and in accordance with ethical guidelines as approved by The Ottawa Hospital Research Ethics Board (Protocol# 20120559-01H). TNBC PDX HCI-002 tumor chunks (2mm × 4 mm) were transplanted into the mammary fat pad of athymic nude mice (purchased from Charles River). After the tumors reached a mean diameter of 3 mm, drug treatment was initiated. Mice were randomly divided into three groups and treated with either vehicle (empty) lipid-polymer hybrid nanoparticles, free drugs (1mg/kg of paclitaxel and 9 mg/kg of verteporfin), or PV-NPs loaded with 0.5mg/kg of paclitaxel and 3.2mg/kg of verteporfin every other day for 20 days (n=5 mice for each group). Tumor growth was monitored every other day using a caliper and tumor volume was determined using the formula: \(V = \frac{1}{2} (\text{Tumor Length} \times \text{Tumor Width}^2) \). After the completion of the treatment, mice were humanly euthanized and tumors were weighed and photographed. For flow cytometry analysis, tumors were mechanically minced and then enzymatically digested into single cell suspension using 1x Collagenase/Hyaluronidase in DMEM (Stemcell Technologies).

2.7 IVIS Analysis

Athymic mice were injected via tail vein with lipid-polymer hybrid nanoparticles conjugated with Alexa fluor750. The fluorescence of Alexa fluor750 was measured at 3, 6 and 24 hours using the Perkin Elmer IVIS Spectrum In Vivo Imaging System.

2.8 MRI Analysis

To determine TNBC PDX vascularity for potential nanoparticle delivery, whole body T1-
weighted MRI was conducted using a small-animal MRI machine (7T GE/Agilent MR901). After the first scanning, athymic mice were retrieved and injected with Gadovist via tail vein at a concentration of 0.1 mmol/kg (Bayer). Immediately after injection, the mice were re-scanned using the 7T GE/Agilent MR901.

3.0 Results

3.1 Dual-drug delivery PV-NP platforms

In TNBC therapy, conventional paclitaxel treatment has been shown to upregulate NF-kB, YAP and Wnt pathways, thereby enriching CSCs that are detrimental for long-term disease-free prognosis in patients (Fillmore and Kuperwasser, 2008; Fu et al., 2015; Pan et al., 2016; Yu et al., 2007). We sought to define an agent capable of co-inhibiting these pathways to prevent subsequent CSC enrichment. After reviewing literature and performing initial in vitro experiments, we found that verteporfin inhibited Wnt, YAP and NF-kB signaling, thus we theorized that it may be a suitable agent to abolish paclitaxel-induced CSC enrichment as illustrated in the schematic (Fig 1), and developed a co-delivery nanoplatform for its delivery. Co-delivered paclitaxel and verteporfin loaded PV-NPs (1:7.5 molar ratios), paclitaxel loaded P-NPs, and verteporfin encapsulated V-NPs were synthesized via self-assembly using a modified nanoprecipitation method. As expected, there was a small increase in hydrodynamic size of dual-drug containing PV-NPs in comparison to single drug loaded P-NPs and V-NPs, due to the accommodation of both drugs in single NP (Fig 2A, SI Fig1) (Valencia et al., 2013). However, all NPs have slightly negative surface charge without significant difference (~2-3 mV, Fig 2A). Transmission electron microscopy (TEM) imaging showed the spherical structures for all NPs, with size range of 80-100 nm and matched with hydrodynamic radius measured with DLS (Fig. 2B, SI Fig 2). Drug
encapsulation and loading efficiencies for single and dual drug loaded NPs were within acceptable range. Encapsulation efficiency of verteporfin from V-NPs to PV-NPs decreased from ~73% to 67%, whereas paclitaxel encapsulation improved from P-NPs to PV-NPs (60% to 75% EE). This might be due to the presence of verteporfin inside the NPs increased overall hydrophobicity of NP core or π–π interactions between phenyl groups of paclitaxel and π conjugate system in verteporfin. Drug loading efficiencies for paclitaxel in P-NP and PV-NPs are 2.8% and 0.56% whereas for verteporfin in V-NPs and PV-NPs are 4% and 3.4% respectively. *In vitro* serum stability studies for all NPs showed no significant changes in hydrodynamic size and poly dispersity, highlighting the excellent stability of NPs under biologically relevant conditions (SI Fig 1). Drug release profiles of PV-NPs have typical initial burst release followed by slow release for both drugs (SI Fig. 3). Additionally, *in vitro* microscopy studies showed efficient up-take of NPs by MDA-MB-231 TNBC cells after 3 hours of incubation (Fig 2C).
Figure 1. A schematic representation of PV-NPs’ effects on TNBC PDX tumors. Upon systemic administration, NPs accumulate and release drugs in PDX tumors via the EPR (enhanced permeability and retention) effect. Paclitaxel promotes bulk cell death via inhibition of the mitotic spindle apparatus; however, paclitaxel also promotes CSC enrichment due to upregulation of NF-kB, Wnt and YAP signals. Whereas verteporfin co-inhibits NF-kB, Wnt and YAP signals, preventing CSC enrichment and increasing the overall efficacy of combination nanotherapy although it does not potently induce bulk tumour cell death. MSA: mitotic spindle apparatus.
Figure 2. NP characterization and in vitro uptake. (A) Size distribution of PV-NPs. (B) Size and surface charge potential of single and dual-drug NPs. (C) Fluorescence microscopy of MDA-MB-231 TNBC cells after 3 hours of incubation with BODIPY tagged NPs. Data represent means +/- SD; n = 3 for all figures; there are no statistical differences between the indicated groups or vehicle control. (D) Transmission electron microscopy image of PV-NP spherical structure (scale bar, 100nm).
3.2 PV-NPs are capable of simultaneously inhibiting NF-kB, YAP and Wnt signaling activities and concurrently suppressing both mesenchymal and epithelial CSCs in TNBC.

Next, we sought to elucidate the effects of P-NPs, V-NPs and PV-NPs on NF-kB, YAP and Wnt pathways which have been shown to be essential for tumor regrowth and CSC development. We transfected MDA-MB-231 cells with pRL-CMV together with the p1242 3x-KB-L luciferase NF-kB reporter, the M50 Super 8x TOPFlash-luciferase Wnt reporter, or the 8xGTIIC-luciferase YAP reporter (Dupont et al., 2011; Mitchell and Sugden, 1995; Veeman et al., 2003). After 24 hours, the cells were exposed to P-NPs, V-NPs or combinations of both for an additional 24 hours and luciferase activity was determined using the Dual-Glo® Luciferase Assay System. It was found that V-NPs simultaneously inhibited NF-kB, Wnt and YAP, and abrogated P-NPs-induced upregulations of NF-kB, Wnt and YAP signaling (Fig. 3A-C). Additionally, combination treatment with P-NPs and V-NPs elicited a reduction in TNBC cell viability (Fig. 3D, SI Fig. 4). For effective drug delivery in vivo, we co-encapsulated both P and V in single lipid-hybrid nanoparticles (PV-NPs), which exhibited the same efficacy as combination treatment with individually encapsulated P-NPs plus V-NPs in killing TNBC cells (SI Fig. 4). Significantly, CD44+/CD24- mesenchymal CSCs and ALDH+ epithelial CSCs were enriched after exposure to P-NPs but were diminished after exposure to PV-NPs (Fig. 3E).

Organotypic slice culture of PDX has been shown to faithfully represent PDX tumors and primary patient tumors in drug screening experiments (Skvortsova, 2018). We plated PDX organotypic slices and treated them over 120 hours with PV-NPs and free drugs. We observed similar results to those of TNBC cell line. In comparison to other treatment groups, P-NPs+V-NPs and PV-NPs effectively decreased viability (SI Fig. 5) and paclitaxel-induced CSC enrichment (SI Fig. 6) whilst promoting apoptosis (SI Fig. 7) in cultured PDX organotypic slices. Together, these
data indicate that the encapsulation of drugs within PV-NPs maintains drug function, *in vitro* efficacy, is capable of co-inhibiting both subtypes of CSCs, and concurrently suppresses NF-kB, Wnt, and YAP signaling crucial for CSC development. In addition, while verteporfin is frequently used as a photosensitizer (Pogue *et al.*, 2003), it showed no photochemical effects on cellular functions at our experimental conditions.
A) NF-κB Reporter
Relative Luciferase Activity

B) YAP Reporter
Relative Luciferase Activity

C) Wnt Reporter
Relative Luciferase Activity

D) Viability
% Cell Viability

E) CD44+/CD24- CSCs
Vehicle-40.7%
P-NP-44.4%
V-NP-10.3%
PV-NP-14.8%

CD44
ALDH+
CSCs

Vehicle-21.2%
P-NP-29.9%
V-NP-3.12%
PV-NP-7.20%

SSC
ALDH
Figure 3. NP-encapsulated verteporfin is capable of simultaneously suppressing NF-kB, Wnt and YAP as well as concurrently inhibiting both mesenchymal and epithelial CSC subpopulations in vitro. (A-C) Luciferase reporter activity of NF-kB, YAP and Wnt activities in MDA MB-231 cells treated with Veh (vehicle-NP), P-NP (containing 25 nM paclitaxel), V-NP (containing 500nM verteporfin) or both (PV-NP). (D) Viability analysis after 120 hours of incubation with Vehicle (vehicle-NP), P-NP (5nM), V-NP (100nM) or PV-NP. (E) Flow cytometric analysis of CD44+/CD24- CSCs and ALDH+ CSCs after 120 hours of treatments. Data represent means +/- SD; n = 3 for all figures; * p < 0.05, **p < 0.01, *** p<0.001, in comparison to the indicated groups or vehicle-NP control.

3.3 TNBC PDX vasculature is EPR-active and PDX tumors accumulate NPs.

Following *in vitro* studies, we explored if our results would be translated in the highly clinically relevant TNBC PDX animal model. A simplified interpretation of EPR effect is based on an assumption that macromolecules such as NPs accumulate more in solid tumors due to leaky vasculature and poor lymphatic drainage. EPR driven NPs accumulation in tumors is a complex multistep biological process influenced by several factors including angiogenesis, such as vascular permeability, heterogeneities in genetic profile and tumor microenvironments, tumor tissue penetration, tumor cell internalization, and NPs physicochemical properties.

Unlike tumors generated from cancer cell lines, PDX tumors retain the original patient’s tumor heterogeneity, microenvironment, intratumoral vasculature and three-dimensional architecture. Currently, EPR driven nanomedicines accumulation within PDX tumor models has not been fully described. In order to determine if PDX tumors are EPR active, we first preformed MRI and IVIS experiments to study vascularity and NPs accumulation in the tumors (Bertrand *et al.*, 2014; Miller *et al.*, 2015; Prabhakar *et al.*, 2013; Rosenblum *et al.*, 2018). To this end, we surgically engrafted athymic mice with the TNBC PDX tumor fragments within the mammary fat pad. To allow blood vessel growth to detectable size, we waited until tumors reached 100 mm³. We then performed T1-weighted MRI before and 8 minutes after tail-vein injection of Gadovist.
(0.1mM/kg, a clinically used contrast agent in angiography). MRI showed marked contrast enhancement, indicating abundant vascularity within PDX tumors (Fig. 4A). To confirm if this tumor vasculature exhibits EPR effects, fluorescently labeled NPs (Alexa 750) were administrated via tail vein and IVIS imaging was performed at 0, 3, 6 and 24 hours to determine NP accumulation inside the tumors. IVIS analysis showed high levels of NP accumulation within the PDX tumor area and upper abdomen area for 6 hours (Fig. 4B).

To accurately quantify NP uptake by tumor cells in comparison with other organ cells, we injected the mice with Qdot 800-labeled NPs. Three hours post-injection, we euthanized the mice, harvested organs and tumors, dissociated them into a single cell suspension and analyzed them using flow cytometry. As shown in Fig 4C, our data support a note that NPs were preferentially located within PDX TNBC tumors in comparison to heart, liver and kidney although NPs were also highly accumulated in non-vital spleen cells (Fig. 4C). Taken together, our data suggests that TNBC PDX vasculature is EPR-active, and NPs accumulate within PDX tumors.
Figure 4: In vivo NP bio-distribution and accumulation within TNBC PDX tumors. (A) T1-weighted MRI of PDX tumors before and 8 minutes after injection of Gadovist in the same mouse. (B) IVIS analyses of PDX tumors (low abdomen area) before and after injection of NPs labelled with Alexa750 at indicated time periods using excitation laser of 745 nm and emission filter of 800. (C) Flow cytometric analyses of cell uptake of NPs labelled with Qdot 800 in the dissociated organs vs PDX tumors 3 hours after tail vein injection. Flow cytometry analysis was performed using a 405 nm excitation laser and a 780/60nm filter to determine cellular uptake.
3.4 PV-NPs retard TNBC PDX tumor growth and suppress CSC populations

Finally, we determined whether co-encapsulated PV-NPs could inhibit the growth of TNBC tumors and abrogate the enrichment of CSCs in a highly clinically relevant PDX mouse model. We again surgically engrafted TNBC PDX tumors into athymic mice. When the tumors reached a mean diameter of 3 mm, mice were randomized and treated with vehicle-NPs (empty NPs), free drug combination (1 mg/kg of paclitaxel and 9 mg/kg verteporfin), or PV-NPs (NPs containing 0.5 mg/kg of paclitaxel and 3.2 mg/kg verteporfin) every other day for 20 days via tail-vein injection (n = 5 for each group). Based on our in vitro results using TNBC PDX organotypic slice culture, we did not include P-NPs, V-NPs, and P-NPs+V-NPs treatments in our in vivo study.

Given the heterogeneity, composition and variability in each engrafted PDX tumor fragment, it is expected to see differential growth rate for PDX tumors. Indeed, we observed variable tumor growth rate in Vehicle-NPs and free-drug treated groups. However, despite this variability, PV-NPs treatment (even containing low dose of drugs than free-drug control, only 50% paclitaxel and 32% verteporfin) significantly retarded PDX tumor growth in comparison to the free drug and vehicle-NP control groups (Fig. 5A), highlighting the efficacy of PV-NPs treatment. Consistently, mice treated with PV-NPs showed significantly reduced tumor size and tumor weight (Fig. 5B). While PV-NPs treatment effectively diminished TNBC PDX tumor growth, mice body weight remained constant throughout treatment (SI Fig. 8), suggesting the specificity and tolerability of the PV-NP treatment. In contrast to PV-NPs, free-drug did not show statistical difference in comparison to Vehicle-NP control. This is likely due to inadequate tumor accumulation and/or retention of free-drug, highlighting the necessity for NP delivery. Furthermore, in agreement with in vitro cell line results, PV-NPs reduced both mesenchymal CD44+/CD24- CSCs and epithelial ALDH+ CSCs in PDX tumors after treatment while the free-
A drug combination was unable to significantly suppress CD44+/CD24- CSC subpopulation when compared to Vehicle-NP control (Fig. 5C-D, SI Fig. 9).

Figure 5: Efficacy of paclitaxel and verteporfin co-loaded NPs in the treatment of TNBC PDX tumors. (A) TNBC PDX tumors were surgically engrafted into the mammary fat pads of athymic nude mice and treated with Vehicle-NPs (empty NPs), free drugs (FD, 1 mg/kg of paclitaxel and 9 mg/kg V), or PV-NP (0.5 mg/kg of paclitaxel and 3.2 mg/kg verteporfin co-loaded NPs) every other day for 20 days. Tumor volumes were determined every 2-day. (B) Representative tumor photos after treatments with means of tumor weights shown below. (C, D) Flow cytometric analysis of CD44+/CD24- CSCs and ALDH+ CSCs within TNBC PDX tumor after completion of in vivo treatment. Data represent means +/- SD; n = 5 for mice/group and n = 3 for flow cytometric analysis; * p < 0.05, **p < 0.01.
4.0 Discussion:

There is limited data showing EPR effects in patients due to several limitations. One of the main challenges to overcome is achieving meaningful bio-distribution data in patients. A indirect method to analyze EPR effects in treatments is to compare treatment responses within patient groups. However, patients’ tumors are heterogeneous and their tumor’s biology, microenvironment, vasculature, drug efflux and drug response rates vary significantly. Additionally, tumor heterogeneity leads to dissimilar NP accumulation within tumors and dissimilar treatment responses. This might be one of the reasons for the poor results in Phase II clinical trials of BIND014 and CAALA01. Recent reports showed the benefit of companion imaging of NPs to quantify the EPR effect, in order to stratify patients for better nanomedicine therapeutic response (Miller et al., 2015). Multiple clinical studies demonstrated positive results in identifying patients with positive nanomedicine effect via companion imaging (Lee et al., 2017; Ramanathan et al., 2017).

Of note, the majority of preclinical experiments studying NP uptake via EPR have employed syngeneic mouse or human cell line xenograft tumors, which develop over days, are comprised of a homogeneous cellular population, and possess immature vasculature in addition to a malformed tumor microenvironment (Damia and D’Incalci, 2009; Prabhakar et al., 2013). In contrast, PDX tumors develop over longer periods of time, are comprised of multiple cellular populations, primary tumor microenvironment, architecture and more mature vasculature, similar to primary patients’ tumors (Choi et al., 2014; Whittle et al., 2015). These similarities translate into the success of PDX emulation of patient tumor response upon exposure to chemotherapies. Hence, the increasing mouse-clinical trials are using PDX tumors for drug development,
identification and clinical translation (Bruna et al., 2016; Gao et al., 2015; Migliardi et al., 2012; Yu et al., 2017).

In this study, we have developed a NP platform for the delivery of our combination therapy to TNBC PDX tumors. TNBC PDX tumors were highly vascularized as indicated by the MRI imaging with Gadovist and showed EPR related nanoparticle accumulation as determined by IVIS imaging (Fig 4A-B). Flow cytometry analysis demonstrated tumor cell uptake of fluorophore-NPs, supporting NP tumor delivery of the payload (Fig 4C). We also observed NP accumulation in the spleen. It is likely due to macrophage uptake and spleen red pulp (Franken et al., 2015). In spleen red pulp, red blood cells are sieved by splenic sinuses before re-entering circulation. Nanoparticles 100-200nm in size have been shown to have difficulty traversing through the red pulp, resulting in accumulation within the red pulp as well as uptake by macrophages (Cataldi et al., 2017).

In vivo TNBC PDX studies demonstrated that the efficacy of NP-delivered paclitaxel and verteporfin for inhibiting PDX tumor growth and preventing CD44+/CD24- and ALDH+ CSCs enrichment (Fig 5). To our best knowledge, this is the first report showing the treatment efficacy of drug-NPs using a highly clinically relevant TNBC PDX mouse model. It is also the first demonstration of verteporfin’s capability of simultaneously inhibiting NF-κB, Wnt and YAP signaling (Fig 3A-C) as well as repressing both mesenchymal CD44+/CD24- and epithelial ALDH+ TNBC CSC subpopulations (Fig 3E). Recent reports have demonstrated that paclitaxel-mediated CSC enrichment is due to co-upregulation of NF-κB and Wnt pathways and the important role of YAP signaling in CSC development (Jia et al., 2017; Sulaiman et al., 2018b; Yu et al., 2007). Thus, concurrent inhibition of these three signals might be an important mechanism underlying the effective treatment of PV-NPs. Given that two drugs are commonly used in clinic and their synergic effects on inhibiting TNBC bulk and CSCs, such a combination nanotherapy
may lead to an effective treatment of TNBC patients.

Supplemental Figure S1: The hydrodynamic size of co-encapsulated V-NP, P-NPs or PV-NPs in FBS versus water.
Supplemental Figure S2: The DLS size distribution of P-NPs, V-NPs and PV-NPs

Supplemental Figure S3: The release profile for Verteporfin and Paclitaxel over a time course. Each time point is expressed as total % of drug released.
Supplemental Figure S4: The efficacy of co-encapsulated PV-NPs in comparison with single drug encapsulated P-NP+V-NP treatment. MDA-MB231 cells were treated with Vehicle (Veh), and different NPs loaded with drugs as well as free drugs.
Supplemental Figure S5: Alamar Blue viability analysis of PDX TNBC tumors after treatment with co-encapsulated PV-NPs in comparison with single encapsulated P-NP+V-NP treatment and free drug treatments. HCI-002 PDX TNBC tumor fragments were isolated, plated into 24 well plates and treated with Vehicle (Veh), V-NPs (100nM), P-NPs (5nM) and different NPs loaded with drugs as well as free drugs at the same concentration every day for 120 hours.
Supplemental Figure S6: Tabulated flow cytometry analysis of ALDH+ CSCs in TNBC PDX HCI-002 tumor fragments after 120 hours of Vehicle (Veh), V-NPs (100nM), P-NPs (5nM) and different NPs loaded with drugs or free drugs at the same concentration.
Supplemental Figure S7: RT-qPCR analysis and comparison of relative mRNA levels of Caspase-3 (CASP3) genes between HCl-002 PDX TNBC tumor fragments after treatment for 120 hours with Vehicle (Veh), V-NPs (100nM), P-NPs (5nM) and different NPs loaded with drugs or free drugs at the same concentration.
Supplemental Figure S8: The body weights of mice treated with vehicle-nanoparticles (Vehicle-NPs), free drugs (paclitaxel + verteporfin) or PV-NPs before the initial treatments and following the last treatment after 20 days. No significant differences of body weight were observed amongst three groups.
Supplemental Figure S9: Flow cytometry analysis of CD44+/CD24- and ALDH+ CSCs in TNBC PDX HCI-002 tumor after *in vivo* Paclitaxel-NP treatment (Pacli) compared to the Vehicle-lipid-polymer hybrid nanoparticle control (Vehicle).
Chapter 6: Summary
The lack of specific therapies for the treatment of TNBC is a currently unmet medical need. In Chapter 2, it was found that Wnt and HDAC expression was associated with a TNBC phenotype and reduced patient prognosis. Upon Wnt inhibition (via BC21 or shβ-catenin), CD44+/CD24− CSCs were diminished, an effect which was further magnified upon HDAC inhibition. ESRII re-expression was observed following duel inhibition of Wnt and HDAC. To target the estrogen receptor, the anti-estrogen inhibitor tamoxifen was employed which magnified efficacy of the treatment.

MDA MB-231 cells were fractionated into four sub-populations based on CD44/CD24 expression. It was found that while the CSC population retained majority CD44+/CD24− status, the non-CSC populations were able to reconstitute the CD44+/CD24− CSC population over time. Due to the plasticity of non-CSC and CSCs, blocking CSC conversion from non-CSCs is important for eradication of CSCs to reduce disease recurrence. The VBT (valproic acid, BC21 and tamoxifen) combination was found to suppress CSC enrichment, and prevent non-CSC to CSC conversion in addition to its inhibition of proliferation and promotion of apoptosis. These results were reproduced in two TNBC patient tumor samples obtained from The Ottawa General Hospital.

While findings generated from this report were positive and demonstrated effective targeting of CD44+/CD24− CSCs in vitro, BC21, testing has not been approved by the FDA. We thus decided to pursue another avenue as our goal was clinical translation.

In the subsequent study (Chapter 3), it was found that mTORC1 and HDAC were highly expressed in TNBC patients in comparison to normal breast tissue and Luminal ER+ breast cancer patients. Gene expression analysis of TNBC and ER+ breast cancer cell lines replicated these findings. Inhibition of mTORC1, HDAC and ESRI via VRT (valproic acid, rapamycin and tamoxifen) led to effective inhibition of cell growth and potent ERα protein expression. Using the
same fractionation approach based on CD44/CD24 markers (as described in Chapter 2), it was found that TNBC CSCs expressed higher levels of HDAC and mTORC1 genes compared to non-CSCs. As such, combinational inhibition of mTORC1, HDAC and ESR1 was effective at suppressing CSC enrichment and preventing the non-CSC to CSC conversion.

As rapamycin, valproic acid and tamoxifen (the inhibitors used for mTORC1, HDAC and ESR1 inhibition respectively) are all well characterized in the clinic with acceptable toxicity profiles (individually), this study was progressed to an *in vivo* TNBC cell line xenograft platform to assess efficacy, tolerability and CSC targeting in a living model.

MDA MB-231 and SUM 149-PT TNBC cell lines were injected into the fat pad of athymic mice after which the mice were treated with a DMSO control or the VRT combination via intraperitoneal injections every day for a period of 20 days. The VRT combination was able to reduce tumor burden, inhibit CSCs, and diminish tumorigenicity after secondary transplantation in both TNBC cell lines following treatment.

The previous research (Chapter 2-3) focused on targeting solely the CD44+/CD24- CSC population in TNBC. Due to the plasticity of CSCs, it has been demonstrated that epithelial (ALDH+) and mesenchymal (CD44+/CD24+) CSCs are interconvertible (Liu *et al*., 2014). As such, I was keen to develop a therapy which could effectively target both CSC populations.

In the subsequent study (Chapter 4), it was found that YAP signalling and CD44+/CD24- CSCs were upregulated in mesenchymal-like TNBC cells while Wnt/β-catenin signalling and ALDH+ CSCs were downregulated in mesenchymal-like TNBC cells. In contrast, in epithelial-like possessed *vice-versa* signalling and CSC enrichment patterns. Co-inhibition of Wnt and YAP using FDA approved ICG-001/PRI-724 and simvastatin respectively was able to potently target
and inhibit both ALDH+ and CD44+/CD24− CSCs in epithelial and mesenchymal states of MDA MB-231 and SUM 149-PT cells. These findings were corroborated using three patient tumor samples (CRDCA, ARI-1 and SEM-1) and 1 PDX tumor sample (HCI-001) in vitro.

Using a human xenograft model, dual inhibition of Wnt via ICG-001/PRI-724 and YAP/mevalonate via simvastatin effectively attenuated both mesenchymal and epithelial TNBC tumor burdens, diminished both CD44+/CD24− and ALDH+ CSC subpopulations, and reduced tumorigenicity after secondary transplantation. Together, this study demonstrated differential signal pathway expression within the E/M phenotypes and CSC populations in TNBC. This study also identified a viable strategy for the effective treatment of both epithelial and mesenchymal TNBC and their respective CSC populations via Wnt and YAP/mevalonate co-inhibition. Simvastatin is a widely used to reduce patient cholesterol. ICG-001/PRI-724 is a Wnt inhibitor in clinical trials which has demonstrated tolerability and efficacy for the treatment of a wide variety of cancers (Chan et al., 2015; El-Khoueiry et al., 2013; Ko et al., 2016).

In the last study (Chapter 5), building off the success of Wnt and YAP inhibition as a method to target TNBC and E/M CSC populations, the goal was to translate these findings using a clinically translatable patient derived xenograft (PDX) mouse model. We used a potent Wnt and YAP co-inhibitor, verteporfin (a FDA-approved drug as a photosensitizer for photodynamic therapy to eliminate the abnormal blood vessels, such as macular degeneration). Due to the irregular vasculature reported within patient tumors, we assessed whether adequate blood flow reached the tumors via Gadovist MRI analysis of mice implanted with PDX tumors. Upon determining sufficient levels of blood flow, we tested a nanoparticle drug-delivery system and found high levels of specific localization over 3-6 hours via IVIS analysis within the TNBC PDX tumor. Verteporfin was then encapsulated within the nanoparticles in combination with paclitaxel,
and the PDX tumors were treated with nanoparticle-encapsulated drugs. It was found that tumor burden was substantially inhibited and both CD44+/CD24− and ALDH+ CSC populations were reduced following combinational treatment.

In summary, Chapters 2-5 demonstrated novel therapeutic approaches for the treatment of TNBC by targeting not only the bulk tumor population but also the CSC populations. Importantly, it was found that mesenchymal-like TNBC were enriched for CD44+/CD24− CSCs while epithelial-like TNBC were enriched for ALDH+ CSCs. CSC plasticity highlights that both epithelial and mesenchymal CSC populations need to be co-targeted. Wnt and YAP/mevalonate pathway inhibitors in combination were identified to inhibit both ALDH+ and CD44+/CD24− CSC populations and prevent chemotherapy-induced CSC enrichment and tumorigenesis in TNBC cell lines and PDX models. Further studies should use humanized mouse models engrafted with PDX tumors to assess overall treatment efficacy of drug combinations which may generate tangible therapeutic approaches for future clinical trials.
The following Section contains licensing/referencing/permissive materials obtained directly from the source of the journal in question/government website as well as the link to which this information could be found.

For Andrew Sulaiman and Lisheng Wang. Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget, 2017; 8(68): 113269–113281:

“COPYRIGHT AND LICENSE POLICIES

Open-Access License No Permission Required

“Oncotarget applies the Creative Commons Attribution 3.0 License (CC BY 3.0) to all works we publish (read the human-readable summary or the full license legal code). Under the CC BY, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in Oncotarget, so long as the original authors and source are cited.

No permission is required from the authors or the publishers.

In most cases, appropriate attribution can be provided by simply citing the original article. If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available.

For queries about the license, please contact us at forms@oncotarget.com”

For Andrew Sulaiman, Brandon Sulaiman, Lara Khouri, Sarah McGarry, Carolyn Nessim, Angel Arnaout, Sean Xuguang Li, Christina Addison, Jim Dimitroulakos, and Lisheng
Wang. Both bulk and CSC subpopulations in TNBC are susceptible to Wnt, HDAC and ERα co-inhibition. FEBS Letters, 2017;590(24):4606-4616, please see Appendix 2:

“AUTHORS - If you wish to reuse your own article (or an amended version of it) in a new publication of which you are the author, editor or co-editor, prior permission is not required (with the usual acknowledgements). However, a formal grant of license can be downloaded free of charge from RightsLink by selecting “Author of this Wiley article” as your requestor type.”

For Andrew Sulaiman, Sarah McGarry, Sara El-Sahli, Ka Mien Lam, Jason Chambers, Shelby Kaczmarek, Li Li, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Co-inhibition of mTORC1, HDAC and ESR1α Regards the Growth of Triple Negative Breast Cancer and Suppresses Cancer Stem Cells. Cell Death and Disease 2018; 9(8): 815 doi: 10.1038/s41419-018-0811-7). Published under CC BY 4.0 International License: https://creativecommons.org/licenses/by/4.0/deed.ast

“Cell Death & Disease articles are published under a CC BY license (Creative Commons Attribution 4.0 International License) by default. This license is preferred by many funding bodies and allows for maximum dissemination and re-use of published materials. Learn more about Creative Commons licenses and the license options available in Cell Death & Disease here.”

Attained from: https://www.nature.com/cddis/authors-and-referees/authors

“Open access articles in Springer Nature journals are published under Creative Commons licences. These provide an industry-standard framework to support easy re-use of open access material. Under Creative Commons, authors retain copyright of their work. Authors publishing via the open access route in journals on the nature.com platform additionally assign Springer Nature a non-exclusive licence to publish (LTP).

All Springer Nature-owned journals with open access options offer the CC BY licence (Creative Commons Attribution v4.0 International Licence), and this is the default licence for all Springer Nature-owned fully open access journals and for OA content in all journals in the Palgrave Macmillan hybrid portfolio, and in the majority of hybrid academic titles on the nature.com platform. The CC BY licence is the most open licence available and considered the industry ‘gold standard’ for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited. Other Creative
Commons licences are available for some titles: please see the individual journals for details on other Creative Commons licences offered.

All Springer Nature-owned journals offer intergovernmental organisation (IGO) versions of Creative Commons licences on request, where required by the author’s employer.

Where journals offer a range of Creative Commons licences, authors are advised to check their funder’s requirements before selecting a licence, to ensure compliance.”

Attained from: https://www.nature.com/openresearch/about-open-access/policies-journals/

For Andrew Sulaiman, Sarah McGarry, Li Li, Deyong Jia, Sarah Ooi, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Dual inhibition of Wnt and YAP signaling retards the growth of both mesenchymal and epithelial TNBC. Molecular Oncology, 2018; 12(4):423-440. Published under CC BY 4.0 International License: https://creativecommons.org/licenses/by/4.0/deed.ast

“All Molecular Oncology articles are published under the terms of the Creative Commons Attribution License (CC BY) which allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed. Use of the article, in whole or part, in any medium requires attribution suitable in form and content as follows: [Title of Article/Author/Journal Title and Volume/Issue]. Published under a Creative Commons Attribution (CC BY) License. Links to the final article on Wiley’s website are encouraged where applicable.”

“Further Details Related to Re-Use of Articles:

Copyright on any research article published by a Wiley Open Access journal is retained by the author(s).

Authors grant Wiley a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified. The Creative Commons Attribution License does not affect the moral rights of authors, including without limitation the right not to have their work subjected to derogatory treatment. It also does not affect any other rights held by authors or third parties in the article, including trademark or patent rights, or the rights of privacy and publicity. Use of the article must not assert or imply, whether implicitly or explicitly, any connection with, endorsement or sponsorship of such use by the author, publisher or any other party associated with the article.
For any reuse or distribution, users must include the copyright notice and make clear to others that the article is made available under a Creative Commons Attribution license, linking to the relevant Creative Commons web page. Users may impose no restrictions on use of the article other than those imposed by the Creative Commons Attribution license.

To the fullest extent permitted by applicable law, the article is made available as is and without representation or warranties of any kind whether express, implied, statutory or otherwise and including, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of defects, accuracy, or the presence or absence of errors.”

Attained from:
https://febs.onlinelibrary.wiley.com/hub/journal/18780261/about/permissions

“Article Reuse by Authors
Authors of articles published in AACR journals are permitted to use their article or parts of their article in the following ways without requesting permission from the AACR. All such uses must include appropriate attribution to the original AACR publication. Authors may do the following as applicable:

1. Reproduce parts of their article, including figures and tables, in books, reviews, or subsequent research articles they write;
2. Use parts of their article in presentations, including figures downloaded into PowerPoint, which can be done directly from the journal's website;
3. Post the accepted version of their article (after revisions resulting from peer review, but before editing and formatting) on their institutional website, if this is required by their institution. The version on the institutional repository must contain a link to the final, published version of the article on the AACR journal website so that any subsequent corrections to the published record will continue to be available to the broadest readership. The posted version may be released publicly (made open to anyone) 12 months after its publication in the journal;
4. Submit a copy of the article to a doctoral candidate's university in support of a doctoral thesis or dissertation.

Article Reuse by Others
Third parties or individuals who are seeking permission to copy, reproduce, or republish content from an AACR journal and who are not the author of that content may use the Copyright Clearance Center's Rightslink® service to request permission to reuse identified content. Please see Third Party Permission and Reprints for detailed instructions on how to submit a request.”
For Appendix 3, Statistics Canada. Table 13-10-0394-01 Leading causes of death, total population, by age group. https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1310039401; the table was published under the Statistics Canada Open Licence.

"Statistics Canada hereby grants you the permission to use, reproduce, publish, freely distribute or sell information covered by the Statistics Canada Open Licence. In any use of this information, you must adhere to the conditions of the Statistics Canada Open Licence. If you do not agree to these terms, you may not use the information."

5. **Andrew Sulaiman**, Sarah McGarry, Li Li, Deyong Jia, Sarah Ooi, Christina Addison, Jim Dimitroulakos, Angel Arnaout, Carolyn Nessim, Zemin Yao, Guang Ji, Haiyan Song, Suresh Gadde, Xuguang Li, Lisheng Wang. Dual inhibition of Wnt and YAP signaling retards the growth of both mesenchymal and epithelial TNBC. Molecular Oncology, 2018; 12(4):423-440. **Impact Factor 5.3**

Oral Presentations

- Sulaiman, Andrew. (March 2018) "The Roles of Wnt, and YAP and their Effects on CSC Enrichment in Triple Negative Breast Cancer" University of Ottawa Faculty of Medicine, Seminar Day. Ottawa, ON. BMI Seminar Day Winner, 3rd Place Amongst PhD Candidates

- Sulaiman, Andrew. (June 2017) "Investigating Epithelial and Mesenchymal Triple Negative Breast Cancer Plasticity: Identification of Duel Wnt and YAP Susceptibility for Effective Tumor Targeting " EACR-AACR-SIC 2017: From Cancer Biology to the Clinic. Florence, Italy.

- Sulaiman, Andrew. (March 2016) "Co-Inhibition of HDAC, mTORC1, and ER Pathways to Target Triple Negative Breast Cancer and CSCs" University of Ottawa Faculty of Medicine, Seminar Day. Ottawa, ON.

- Sulaiman, Andrew. (November 2015) "Targeting HDACs, MTORC1 and Endocrine Pathways to Overcome Triple Negative Breast Cancer " University of Ottawa Faculty of Medicine Work In Progress Seminar. Ottawa, ON.

- Sulaiman, Andrew. (May 2015) "Targeting HDACs, MTORC1 and the WNT/B-Catenin/TCF4 Pathway to Overcome Anti-Estrogen Resistant Breast Cancer." Ottawa Institute of Systems Biology Symposium. Tremblant, QB.

Poster Presentations

- Sulaiman, Andrew. (May 2017) "An autocrine inflammatory loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells" 60th annual Canadian Society for Molecular Biosciences conference. Ottawa, ON.

- Sulaiman, Andrew. (May 2017) "Dual inhibition of Wnt and YAP pathways retards the growth of both mesenchymal and epithelial TNBC " 60th annual Canadian Society for Molecular Biosciences conference. Ottawa, ON.

- Sulaiman, Andrew. (May 2017) "A model for epithelial and mesenchymal breast cancer stem cell conversion and the identification of Wnt and YAP as potent inhibitors of TNBC" University of Ottawa Faculty of Medicine, BMI Poster Day. Ottawa, ON.

- Sulaiman, Andrew. (December 2016) "A model for epithelial and mesenchymal breast cancer stem cell conversion in TNBC to identify sensitivities within patient samples" Journee Phare, 2016. Bromont, Canada.
- Sulaiman, Andrew. (November 2016) "Modeling epithelial and mesenchymal conversion in TNBC to identify sensitivities within breast cancer stem cell populations" Ottawa University, Student Recruitment Seminar, 2016. Ottawa, Canada.
- Sulaiman, Andrew. (May 2015) "Targeting HDACs, MTORC1, and the Wnt/β-Catenin/TCF4 Pathway for Overcoming Anti-Estrogen Resistant Breast Cancer" University of Ottawa Faculty of Medicine, BMI Poster Day. Ottawa, ON.

Acknowledgements

HONOURS AND AWARDS

- NSERC CGS –Michael Smith Foreign Study Supplement, 2019 $6,000
- University of Ottawa Excellence Scholarship, 2019 $7,500
- NSERC CGS-D, Alexander Graham Bell Canada Graduate Scholarship-Doctoral, 2018-2020 $70,000
- Ranked 8th amongst all PhD students in Cellular and Molecular Biology in Canada
- Ontario Graduate Scholarship, 2018 (I declined this award) $15,000
- Canada Research Scholars’ Exchange to Shanghai, China, 2019 $7,000
- University of Ottawa- Leadership Award, 2018
- University of Ottawa- Biochemistry Program Award for Excellence, 2018
- Eva Prinz Memorial Travel Bursary, 2018 $1,000
- Winner of BMI Seminar Day amongst the PhD Candidates (3rd Place), 2018
- Judith R. Raymond Scholarship in Cancer Research, 2018 $5,000
- University of Ottawa Excellence Scholarship, 2018 $7,500
- Canadian Cancer Society Travel Award Recipient, 2017 $1,750
- Judith R. Raymond Scholarship in Cancer Research, 2017 $10,000
- Ontario Graduate Scholarship, 2017 $15,000
- University of Ottawa Excellence Scholarship, 2017 $7,500
- Abstract Selection to present proffered paper at EACR-AACR-SIC 2017
- Travel Award, World Life Science Conference 2016 $1,000
- University of Ottawa Doctoral Scholarship, 2016-2017 $10,000
- University of Ottawa Master to PhD Transfer Exam, Ottawa University, 2016
- Dean’s List, Carleton University, 2014
- Admission Scholarship, Carleton University, 2010 $2,000
- Ontario Scholar, Father Michael McGivney Catholic Academy, 2010
- Honeywell Presidential Scholarship, Honeywell, 2008

197
Education
- Ph.D. Biochemistry– University of Ottawa
- B.Sc. with Honors in Biochemistry and Biotechnology – Carleton University

References

receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer research 60, 4819-4824.

Lum, DH, Matsen, C, Welm, AL, Welm, BE (2012) Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. *Curr Protoc Pharmacol* Chapter 14, Unit 14 22.

Sinha, G(2014) Downfall of iniparib: a PARP inhibitor that doesn’t inhibit PARP after all. *JNCI: Journal of the National Cancer Institute* 106.1

Taplin, M-E, Antonarakis, ES, Ferrante, KJ, Horgan, K, Blumenstein, BA, Saad, F, Luo, J, De Bono, JS(2017) Clinical factors associated with AR-V7 detection in ARMOR3-SV, a randomized trial of galeterone (Gal) vs
enzalutamide (Enz) in men with AR-V7+ metastatic castration-resistant prostate cancer (mCRPC). *Journal of Clinical Oncology* 35, no. 15_suppl

Xu, Y, Stamenkovic, I, Yu, Q (2010b) CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer research 70, 2455-2464.

Appendix
Step 3: Order Confirmation

Thank you for your order! A confirmation for your order will be sent to your account email address. If you have questions about your order, you can call us 24 hrs/day, M-F at +1 833.239.3415 Toll Free, or write to us at info@copyright.com. This is not an invoice.

Confirmation Number: 11767576
Order Date: 11/23/2016

Payment Information
- **Payment Method:** n/a
- **Author:** Andrew Sulaiman

Order Details

<table>
<thead>
<tr>
<th>Journal of biomedical research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order detail ID:</td>
</tr>
<tr>
<td>Order Licence Id:</td>
</tr>
<tr>
<td>ISSN:</td>
</tr>
<tr>
<td>Publication Type:</td>
</tr>
<tr>
<td>Volume:</td>
</tr>
<tr>
<td>Issue:</td>
</tr>
<tr>
<td>Start page:</td>
</tr>
<tr>
<td>Publisher:</td>
</tr>
<tr>
<td>Permission Status:</td>
</tr>
<tr>
<td>Permission type:</td>
</tr>
<tr>
<td>Type of use:</td>
</tr>
<tr>
<td>Requestor type:</td>
</tr>
<tr>
<td>Format:</td>
</tr>
<tr>
<td>Portion:</td>
</tr>
<tr>
<td>Number of pages in chapter/article:</td>
</tr>
<tr>
<td>The requesting person/organization:</td>
</tr>
<tr>
<td>Title or numeric reference of the portion(s):</td>
</tr>
</tbody>
</table>

242
<table>
<thead>
<tr>
<th>Title of the article or chapter the portion is from</th>
<th>A model for epithelial and mesenchymal conversion in TNBC: Identification of dual Wnt and YAP sensitivity within both breast cancer stem cell populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor of portion(s)</td>
<td>N/A</td>
</tr>
<tr>
<td>Author of portion(s)</td>
<td>N/A</td>
</tr>
<tr>
<td>Volume of serial or monograph</td>
<td>N/A</td>
</tr>
<tr>
<td>Page range of portion</td>
<td>100</td>
</tr>
<tr>
<td>Publication date of portion</td>
<td>May 2019</td>
</tr>
<tr>
<td>Rights for</td>
<td>Main Product, any product related to main product, and other compilations/derivative products</td>
</tr>
<tr>
<td>Duration of use</td>
<td>Life of current edition</td>
</tr>
<tr>
<td>Creation of copies for the disabled</td>
<td>no</td>
</tr>
<tr>
<td>With minor editing privileges</td>
<td>yes</td>
</tr>
<tr>
<td>For distribution to</td>
<td>Canada</td>
</tr>
<tr>
<td>In the following language(s)</td>
<td>Original language of publication</td>
</tr>
<tr>
<td>With incidental promotional use</td>
<td>no</td>
</tr>
<tr>
<td>Lifetime unit quantity of new product</td>
<td>Up to 499</td>
</tr>
<tr>
<td>Title</td>
<td>Molecular Targets for the Treatment of TNBC in Clinically Translatable Models</td>
</tr>
<tr>
<td>Institution name</td>
<td>n/a</td>
</tr>
<tr>
<td>Expected presentation date</td>
<td>May 2019</td>
</tr>
</tbody>
</table>

Notes: This item will be invoiced or charged separately through CCC’s RightsLink service. More info
TERMS AND CONDITIONS

The following terms are individual to this publisher:

None

Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS

1. Description of Services/Defined Terms. This Reproduction License enables the User to obtain licenses for republication of one or more copyrighted works as described in detail on the relevant Order Confirmation (the “Work(s)”); Copyright Clearance Center, Inc. (“CCC”) licensing licenses through the Service. Such license(s) are granted on behalf of the Rightsholder identified on the Order Confirmation (the “Rightsholder”); “Reproduction”, as used herein, generally means the inclusion of a Work, in whole or in part, in a new work or works, also as described on the Order Confirmation. “User”, as used herein, means the person or entity making such republication.

2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with respect to a particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person transacting for a reproduction license on behalf of the User represents and warrants that he/she/it (a) has been duly authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User; and (b) shall inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party independent of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms and conditions. In any event, User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the Work in any fashion.

3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the Rightsholder. The license created by the exchange of an Order Confirmation (and/or any invoice) and payment by User of the full amount set forth on that document includes only those rights expressly set forth in the Order Confirmation and in these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not expressly granted are hereby reserved.

3.2 Payment Terms: You may pay by credit card or through an account with us payable at the end of the month. If you and we agree that you may establish a standing account with CCC, then the following terms apply: Remittance to Copyright Clearance Center, 229 Madison Avenue, Chicago, IL 60615-1293. Payment Due: Invoices are payable upon their delivery to you (or upon our notice to you that they are available to you for downloading). After 30 days, outstanding amount will be subject to a service charge of 1.5% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise specifically set forth in the Order Confirmation or in a separate written agreement signed by CCC, payments are due and payable on “Net 30” terms. While User may exercise the rights licensed immediately upon issuance of the Order Confirmation, the license is automatically revoked and all null and void, as if it had never been issued, if complete payment for the license is not received on a timely basis either from User directly or through a payment agent, such as a credit card company.

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-time” (including the editions and product family specified in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work(s) (except for copies printed on paper in accordance with this license and still in User’s stock at the end of such period).

3.4 In the event that the material for which a reproduction license is sought includes third party materials (such as photographs, illustrations, graphics, inserts and similar materials) which are identified in such material as having been used by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) for any of such third party materials; without a separate license, such third party materials may not be used.

3.5 Use of proper copyright notice for a Work is required as a condition of any license granted through the Service. Unless otherwise provided in the Order Confirmation, a proper copyright notice will read substantially as follows: “Reproduced with permission of [Rightsholder’s name], from [Work(s) title, author, volume, edition number and year of copyright]” printed in a reasonably legible font size and must be placed either immediately adjacent to the Work as used (for example, as part of a by-line or footnote)
but not as a separate electronic link or in the place where substantially all other credits or notices for the new work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.

3.6 User may only make alterations to the Work if and as expressly set forth in the Order Confirmation. No Work may be used in any way that is defamatory, violates the rights of third parties (including such third parties’ rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In addition, User may not contain a Work with any other material that may result in damage to the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC or the Rightsholder in connection therewith.

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their respective employees and directors, against all claims, liability, damages, costs and expenses, including legal fees and expenses, arising out of any use of a Work beyond the scope of the rights granted herein, or any use of a Work which has been altered in any unauthorized way by Users including claims of defamation or infringement of rights of copyright, publicity, privacy or other tangible or intangible property.

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OR BOTH OR CCC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, employees, agents, affiliates, successors and assigns.

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS IS". CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE WORK (AS APPLIED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER, USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of the license set forth in the Order Confirmation and/or these terms and conditions, shall be a material breach of the license created by the Order Confirmation and these terms and conditions. Any breach not cured within 30 days of written notice thereof shall result in immediate termination of such license without further notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by payment of the Rightsholder’s ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any reason (including, for example, because materials containing the Work cannot reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less than three times the Rightsholder’s ordinary license price for the most closely analogous licensable use plus Rightsholder’s and/or CCC’s costs and expenses incurred in collecting such payment.

8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions already secured and paid for.

8.2 Use of User-related information collected through the Service is governed by CCC’s privacy policy, available online here: http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.

8.3 The licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural person or an organization of any kind) the license created by the Order Confirmation and the rights granted hereunder provided, however, that User may assign such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User’s rights in the new material which includes the Work(s) licensed under this Service.

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its principals, employees, agents or affiliates and purporting to govern or otherwise relate to the licensing transaction described in the Order Confirmation, which terms are in any way inconsistent with any terms set forth in the Order Confirmation and/or in these terms and conditions or CCC’s standard operating procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate instrument.

8.5 The licensing transaction described in the Order Confirmation document shall be governed by and construed under the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at CCC’s sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.

If you have any comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-8400 or send an e-mail to info@copyright.com.
This Agreement between ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number: 4474570763253
License date: Nov 23, 2018
Licensed Content Publisher: John Wiley and Sons
Licensed Content Publication: FEBS Letters
Licensed Content Title: Both bulk and cancer stem cell subpopulations in triple-negative breast cancer are susceptible to Wnt, HDAC, and ERα co-inhibition
Licensed Content Author: Lisheng Wang, Jim Dimitroulakos, Christina Addison, et al
Licensed Content Date: Dec 9, 2016
Licensed Content Volume: 590
Licensed Content Issue: 24
Licensed Content Pages: 11
Type of use: Dissertation/Thesis
Requestor type: Author of this Wiley article
Format: Print and electronic
Portion: Full article
Will you be translating?: No
Title of your thesis / dissertation: Molecular Targets for the Treatment of TNBC in Clinically Translatable Models
Expected completion date: May 2019
Expected size (number of pages): 300
Requestor Location:

Publisher Tax ID: EU826007151
Total: 0.00 USD

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a "Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.

- You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.

- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts. You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.

- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto.

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS

249
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.

- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.

- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party’s right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY’s prior written consent.

- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

- These terms and conditions together with CCC’s Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.

- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.

- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. (see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
Other Terms and Conditions:

v1.10 Last updated September 2015
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
Appendix 3. Table 1.1: The Leading Causes of Deaths by Males and Females from 2012 to 2016.

<table>
<thead>
<tr>
<th>Leading causes of death (ICD-10)</th>
<th>Characteristics</th>
<th>Both sexes</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant neoplasms [C00-C97]</td>
<td>Rank of leading causes of death</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>74,361</td>
<td>75,112</td>
<td>77,059</td>
</tr>
<tr>
<td>Diabetes mellitus [E10-E14]</td>
<td>Rank of leading causes of death</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>6,993</td>
<td>7,045</td>
<td>7,071</td>
</tr>
<tr>
<td>Alzheimer's disease [G30]</td>
<td>Rank of leading causes of death</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>6,293</td>
<td>6,345</td>
<td>6,410</td>
</tr>
<tr>
<td>Diseases of heart [I00-I09, I11, I13, I20-I51]</td>
<td>Rank of leading causes of death</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>48,681</td>
<td>49,691</td>
<td>51,014</td>
</tr>
<tr>
<td>Cerebrovascular diseases [I60-I69]</td>
<td>Rank of leading causes of death</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>13,174</td>
<td>13,400</td>
<td>13,573</td>
</tr>
<tr>
<td>Influenza and pneumonia [J00-J18]</td>
<td>Rank of leading causes of death</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>5,694</td>
<td>6,551</td>
<td>6,597</td>
</tr>
<tr>
<td>Chronic lower respiratory diseases [J40-J47]</td>
<td>Rank of leading causes of death</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Number of deaths</td>
<td>11,130</td>
<td>11,976</td>
<td>11,076</td>
</tr>
</tbody>
</table>