

Depth Camera-Based Hand Gesture

Recognition for Training a Robot to

Perform Sign Language

Da Zhi

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

May 2018

© Da Zhi, Ottawa, Canada, 2018

ii

Abstract

This thesis presents a novel depth camera-based real-time hand gesture recognition system

for training a human-like robot hand to interact with humans through sign language.

We developed a modular real-time Hand Gesture Recognition (HGR) system,

which uses multiclass Support Vector Machine (SVM) for training and recognition of the

static hand postures and N-Dimensional Dynamic Time Warping (ND-DTW) for dynamic

hand gestures recognition. A 3D hand gestures training/testing dataset was recorded using

a depth camera tailored to accommodate the kinematic constructive limitations of the hu-

man-like robotic hand.

Experimental results show that the multiclass SVM method has an overall 98.34%

recognition rate in the HRI (Human-Robot Interaction) mode and 99.94% recognition rate

in the RRI (Robot-Robot Interaction) mode, as well as the lowest average run time com-

pared to the k-NN (k-Nearest Neighbour) and ANBC (Adaptive Naµve Bayes Classifier)

approaches. In dynamic gestures recognition, the ND-DTW classifier displays a better per-

formance than DHMM (Discrete Hidden Markov Model) with a 97% recognition rate and

significantly shorter run time.

In conclusion, the combination of multiclass SVM and ND-DTW provides an effi-

cient solution for the real-time recognition of the hand gesture used for training a robot arm

to perform sign language.

iii

Acknowledgment

I would like to express my most profound gratitude to my supervisor, Dr. Emil M. Petriu,

for his full support and encouragement, insightful advice, and expert guidance throughout

my study and research. Without his incredible patience and counsel, my thesis could not be

completed. It has been a great honour to work alongside him in the past two years, and I

wish him a very successful academic career!

 I wish to say many thanks to all the members of the Bio-Inspired Robotics Lab for

their company throughout my masterôs years and thoughtful suggestions on my studies.

My sincere thanks first go to Thiago for his invaluable assistance and guidance throughout

my research works. I also thank Vinicius for his technical suggestions and the initial code

for this project. I am so happy to have shared their company and experiences, all the best

with the completion of their doctoral researches.

 Finally, I would like to express my sincere appreciation to my beloved family, my

parents, and my girlfriend, Zhijun Hou, for their endless love and understanding during the

years of my masterôs study and the process of writing the thesis. This accomplishment

would not have been possible without their support.

iv

Table of Contents

Abstract .. ii

Acknowledgment .. iii

Table of Contents ... iv

List of Figures .. vii

List of Tables ... viii

List of Acronyms .. ix

Chapter 1. Introduction .. 1

1.1. Motivation .. 2

1.2. Thesis Contributions .. 3

1.3. Publications Arising from this Thesis .. 4

1.4. Thesis Outline .. 4

Chapter 2. Background and Literature Review ... 5

2.1. Background .. 5

2.1.1. Hand Gestures and Sign Languages ... 5

2.1.2. Categories of Hand Gestures .. 6

2.1.3. Hand Gesture Recognition for Human-Robot Interaction 7

2.2. Conventional RGB camera-based Hand Gestures Recognition Approaches 8

2.2.1. Static Hand Postures Recognition ... 9

2.2.2. Dynamic Hand Gestures Recognition ... 12

2.3. Depth Sensor Based Hand Gestures Recognition .. 16

2.3.1. Recognition of Static Postures .. 17

2.3.2. Recognition of Dynamic Gestures .. 19

Chapter 3. System Overview .. 23

3.1. Hardware .. 23

3.1.1. The Robotic Hand ... 23

3.1.2. The Robotic Arm ... 24

v

3.1.3. The Leap Motion Controller ... 25

3.2. Software ... 27

3.2.1. Robot Operating System (ROS) .. 29

3.2.2. Leap Motion Controller SDK ... 31

3.2.3. Gesture Recognition Toolkits .. 34

3.2.4. Classification Module ... 35

3.3. Limitations ... 37

3.3.1. Limitation of the Robotic Hand .. 37

3.3.2. Limitation of the Leap Motion Controller .. 38

3.4. Conclusions .. 39

Chapter 4. Classification Module for Static Hand Postures Recognition 40

4.1. Training Dataset for Static Hand Postures ... 40

4.1.1. Letter Postures for Robot-Robot Interaction Training 43

4.1.2. Extra Letter Postures for Human-Robot Interaction Training 45

4.2. Pre-processing .. 47

4.3. Feature Extraction .. 48

4.4. Learning Algorithm .. 50

4.4.1. Static Hand Postures Recognition with ANBC ... 50

4.4.2. Static Hand Postures Recognition with k-NN .. 52

4.4.3. Static Hand Postures Recognition with Multi-Class SVM 54

4.5. Real-time Prediction Phase .. 56

4.6. Experimental Results and Analysis .. 57

4.6.1. Results for Human-Robot Interaction Mode ... 58

4.6.2. Results for Robot-Robot Interaction Mode ... 63

4.6.3. Comparisons and Analysis .. 65

4.7. Conclusions .. 66

Chapter 5. Classification Module: Dynamic Hand Gesture Recognition 67

5.1. Training Dataset for Dynamic Hand Gestures ... 67

5.2. Pre-processing .. 71

5.3. Feature Extraction .. 73

5.4. Learning Algorithm .. 74

5.4.1. Dynamic Hand Gesture Recognition with Discrete HMM 75

5.4.2. Dynamic Hand Gesture Recognition with ND-DTW 77

vi

5.5. Real-time Prediction Phase .. 80

5.6. Experimental Results and Analysis .. 81

5.6.1. Experimental Results .. 81

5.6.2. Comparisons and Analysis .. 83

5.7. Conclusions .. 85

Chapter 6. Conclusions and Future Work .. 86

6.1. Conclusions .. 86

6.2. Future Work .. 86

References .. 87

vii

List of Figures

Figure 2.1 American Sign Language alphabet and digits .. 6

Figure 2.2 Features of the static and dynamic hand gestures ... 7

Figure 2.3 Standard Hand Gesture Recognition diagram .. 8

Figure 2.4 A comparison of hand detection using depth camera and RGB camera 17

Figure 3.1 Assembly of the robotic hand ... 23

Figure 3.2 The Robotic Arm and its assembly ... 25

Figure 3.3 The Leap Motion Controller [89] ... 26

Figure 3.4 The working area of the Leap Motion Controller [90] 27

Figure 3.5 The Overview of Software Architecture ... 28

Figure 3.6 ROS framework .. 29

Figure 3.7 The architecture of Leap Motion software ... 32

Figure 3.8 The layout of Leap Motion NAI ... 32

Figure 3.9 Illustration of bones class provided in Leap Motion API [93] 34

Figure 3.10 Flowchart of the Classification Module ... 35

Figure 4.1 Ten digits recorded by the Leap Motion Controller 41

Figure 4.2 Flow chart of pre-processing for RRI and HRI .. 47

Figure 4.3 Illustrations of the hand tracking data for feature extraction 49

Figure 4.4 Illustrations of how k-NN algorithm predicts a 2-D class, when k = 4. [101] 53

Figure 4.5 The line or hyperplane with maximal margin of binary classification. 55

Figure 4.6 The flowchart of the real-time prediction phase ... 57

Figure 5.1 The five non-rotation hand gestures: ñgrabò, ñclickò, ñ1ò, ñ4ò, ñcomeò. 68

Figure 5.2 The five rotation hand gestures: ñnoò, ñgoodò, ñokò, ñLò, ñloveò. 69

Figure 5.3 Dynamic gesture training sample pre-processing of invalid frames. 72

Figure 5.4 The float matrix used to store dynamic training features of one sample 74

Figure 5.5 The two Markov Chains in a HMM ... 75

Figure 5.6 Illustration of the cost matrix and alignment between two timeseries. 78

Figure 5.7 The pre-processing step for real-time dynamic gesture prediction................. 80

viii

List of Tables

Table 4.1 The letters that do not require wrist rotation: óAô, óIô, óLô, and óYô 44

Table 4.2 Letters that require wrist rotation for RRI training: óCô, and óXô 45

Table 4.3 Extra letters used in the HRI mode: ñBò, ñFò, and ñUò 46

Table 4.4 Pseudocode of k-Nearest Neighbour algorithm ... 53

Table 4.5 Comparison of the recognition accuracy (%) and prediction time (ms) for 10

digits using multi-class SVM, k-NN, and ANBC in HRI mode. 58

Table 4.6 Confusion matrix for 10 digits recognition using Multi-Class SVM classifier

(HRI). .. 58

Table 4.7 Confusion matrix for 10 digits recognition using k-NN classifier (HRI)......... 59

Table 4.8 Confusion matrix for 10 digits recognition using ANBC classifier (HRI). 59

Table 4.9 Comparison of the recognition accuracy (%) and prediction time (ms) for 9

extra English letters using multi-class SVM, k-NN, and ANBC in HRI mode. 60

Table 4.10 Confusion matrix for 9 letters recognition using multi-class SVM classifier

(HRI). .. 60

Table 4.11 Confusion matrix for 9 letters recognition using k-NN classifier (HRI). 61

Table 4.12 Confusion matrix for 9 letters recognition using ANBC classifier (HRI). 61

Table 4.13 Comparison of the recognition accuracy (%) and prediction time (ms) for 10

digits using multi-class SVM, k-NN, and ANBC in RRI mode. 63

Table 4.14 Confusion matrix for 10 digits recognition using ANBC classifier (RRI). .. 63

Table 4.15 Comparison of the recognition accuracy (%) and prediction time (ms) for 6

extra English letters using multi-class SVM, k-NN, and ANBC in RRI mode. 64

Table 4.16 Confusion matrix for 6 letters recognition using ANBC classifier (RRI). ... 64

Table 5.1 Pseudocode of warping path alignment algorithm ... 79

Table 5.2 Comparison of Recognition Accuracy (%) and Prediction Time (ms) for 10

Dynamic Gestures using ND-DTW and DHMM ... 82

Table 5.3 Confusion matrix for 10 gestures recognition using DHMM classifier. 82

Table 5.4 Confusion matrix for 10 gestures recognition using ND-DTW classifier. 83

ix

List of Acronyms

Acronym Definition

API Application Program Interface

ASL American Sign Language

ANBC Adaptive Naïve Bayes Classifier

CHMM Continous Hidden Markov Model

DHMM Discrete Hidden Markov Model

DOF Degree of Freedom

DTW Dynamic Time Warping

GRT Gesture Recognition Toolkits

HCI Human-Computer Interaction

HGR Hand Gesture Recognition

HMM Hidden Markov Model

HRI Human-Robot Interaction

KNN K-Nearest Neighbour

Leap SDK Leap Motion Controller Software

Development Kit

LMC Leap Motion Controller

MA Filter Moving Average Filter

NAI Native Application Interface

ND-DTW N-Dimensional Dynamic Time Warping

PLA Polylactic Acid

ROS Robot Operating System

RRI Robot-Robot Interaction

SVM Support Vector Machine

1

Chapter 1. Introduction

Nonverbal body-language communication through hand and arm gestures, and facial ex-

pressions, covers approximately two-thirds of human communicating and interacting mo-

dalities [1].

Hand gestures are one of the widely used modalities for daily interaction and com-

munication because they produce linguistic contents like the spoken language while the

other body language modalities provide more general meanings. Based on this unique fea-

ture, hand gestures are mainly applied in sign language and human-computer interaction

(HCI) systems.

Sign languages using hand gestures are not only used for assisting communications

between people in different circumstances, such as for ñtalkingò in noisy environments, or

when the persons are too far away, or even when the talkers have language barriers, but

they also serve as a communication method for the deaf-mute conversation. According to

an analysis [2] provided by World Health Organization (WHO), almost 360 million people

were suffering of disability of hearing and this number has raised by around 14% in the

past decade. Besides, there also are some 1.1 billion young people having a high risk of

hearing disabling because of the environment they live. Because the sign languages provide

such a valuable communication modality for an important segment of human population,

the development of hand gestures recognition based HCIs has become a hot topic in com-

puter vision in the past decades.

The related research can be also beneficial to other fields. Over the past decades,

researchers have explored the possibilities of applying hand gesture recognition (HGR)

techniques for other applications. For instance, a vision-based hand gesture recognition

system was developed for touchless interaction in sterile environments, like the surgery

room, so that the medical doctors can interact with the computers to analyze medical im-

ages through simple hand gestures [3]. Also, Lange et al. [4] developed an interactive

game-based balance training tool to efficiently assist the post-operative patient rehabilitate

from a surgery.

2

1.1. Motivation

Human-computer interfaces for gesture recognition have to address the challenging prob-

lem of providing for an engaging and effective interaction as natural as possible. The ear-

liest works on hand gesture recognition used wearable devices (such as data glove, markers,

and bands) as well as standard video cameras to capture the hand gestures. However, those

methods are rather cumbersome and inflexible because the user must wear equipment with

many cables. In addition, the standard video methods are not as reliable as the contact-

based interaction methods since the extracted image information is always affected by the

variations in hand size and velocity, complex background, poor lighting conditions, etc.

Therefore, most of the regular camera-based hand gesture recognition approaches require

special hand detection and feature extraction algorithms to improve the quality of the ex-

tracted information, resulting in a too low running time and cannot be efficiently applied

to real-time applications.

In the recent years, with the development of new learning algorithms and more

efficient low-cost and high-resolution 3D sensors, such as the Microsoft Kinect [5] and the

Leap Motion Controller [6], the HGR approaches have been significantly improved. The

new depth cameras have overcome the limitations of the old regular RGB cameras and

allowed for a revolution in vision-based gesture recognition by providing high accuracy

and reliable hand tracking information. This new technology allows for the skeletal data to

be transferred into high-level and meaningful gesture features that will allow enhancing the

success rate of the classifiers.

Nevertheless, the development of depth camera-based HGR is still a challenging

task in the case of gestures made by dexterous robot hands, because of the peculiarities and

limitations of the not yet enough human-like movements of the robot hands. This thesis

aims to develop a more efficient human-robot and robot-robot interaction system using the

Leap Motion Controller for a robust and efficient real-time recognition of the static hand

postures and dynamic hand gestures made by human hand as well as by dexterous robot

hands.

3

1.2. Thesis Contributions

This thesis proposes a novel depth camera-based hand real-time hand gesture recognition

system for training a human-like robot hand to interact with humans through sign language

allowing for efficient human-robot interaction (HRI) as well as robot-robot interaction

(RRI). A 3D-printed dexterous human-like robot hand was developed and used to perform

sign language gestures for interaction with humans or other robots. We developed a general

framework that can recognize in real-time static hand postures and dynamic hand gestures

based on the American Sign Language (ASL). We used a pre-recorded data set of human

hand gestures to test the recognition accuracy of our system compared with other popular

hand gesture recognition approaches.

The main contributions of this thesis are:

¶ Development of an efficient and real-time hand gesture recognition system, which

uses a multiclass Support Vector Machine (SVM) method for training the recogni-

tion of the static hand postures, and a N-Dimensional Dynamic Time Warping (ND-

DTW) method for the dynamic hand gestures recognition. The static hand posture

recognition provides two interaction modalities: human-robot interaction and ro-

bot-robot interaction using a human-like dexterous robot hand that we specially

developed.

¶ We recorded a 3D hand gestures training/testing dataset of static postures and dy-

namic gestures tailored to accommodate the kinematic constructive limitations of

the human-like robot hand. The static postures consist of the ten digits (numeric

symbols), the handshapes of selected letters based on ASL alphabet, and some sim-

ple postures. Meanwhile, the dynamic gestures subset includes hand rotation move-

ments and non-rotation movements.

¶ We tested the recognition accuracy of the system by comparing the experimental

results when using the Adaptive Naive Bayes Classifier (ANBC) and k-Nearest

Neighbors (k-NN) approaches for static posture classification. Meanwhile, we used

recognition result of discrete Hidden Markov Model (Discrete-HMM) classifier as

the comparison to exam the dynamic hand gestures recognition accuracy as well as

the average running time.

4

1.3. Publications Arising from this Thesis

The following publications have arisen from the work presented in this thesis:

¶ D. Zhi, T.E.A. de Oliveira, V.P. da Fonseca, E.M. Petriu, "Teaching a Robot Sign

Language using Vision-Based Hand Gesture Recognition." (accepted), 2018 IEEE

International Conference on Computational Intelligence and Virtual Environ-

ments for Measurement Systems and Applications (CIVEMSA), June 2018

¶ V.P. da Fonseca, D.J. Kucherhan, T.E.A. de Oliveira, D. Zhi , E.M. Petriu, ñFuzzy

controlled object manipulation using a three-fingered robotic hand.ò Proceedings

of the 2017 Annual IEEE International Systems Conference (SysCon), pp. 1-6.

April 2017

¶ D. Zhi, ñTeaching a Robot Sign Language using Vision-Based Hand Gesture

Recognitionò poster in 10th Annual Engineering and Computer Science Graduate

Poster Competition, Univ. of Ottawa, Canada, March 27, 2018

1.4. Thesis Outline

The thesis is organized as follows:

¶ Chapter 2 presents the background and literature reviews of the hand gesture

recognition problems. The literature review focused on two vision-based hand ges-

ture recognition aspects: static posture and dynamic gesture recognition.

¶ Chapter 3 introduces the hardware and software components of the developed sys-

tem and explains how these two are working together. Then we discuss the major

limitations of the robot hand and of the Leap Motion Controller.

¶ Chapter 4 presents the classification algorithms developed for the static hand pos-

ture recognition.

¶ Chapter 5 presents the classification algorithms developed for the dynamic hand

gesture recognition.

¶ Chapter 6 presents conclusions and future work plans.

5

Chapter 2. Background and Literature Re-

view

This chapter provides background information and literature review for the hand gesture

recognition field. Section 2.1 explains some fundamental notations related to the hand ges-

tures and sign language. Subsection 2.1.1 gives the concepts of the hand gestures, sign

languages, and their relationship. Then, subsection 2.1.2 presents a comprehensive taxon-

omy of the hand gestures. Subsection 2.1.3 presents the definition and challenges of the

hand gesture recognition for human-robot collaboration applications. Sections 2.2 and 2.3

provide a literature review of the vision-based hand gesture recognition using the conven-

tional RGB cameras, and of the 3D depth sensor technologies, respectively.

2.1. Background

2.1.1. Hand Gestures and Sign Languages

Hand gestures are most commonly used in our real life allowing people to non-verbally

communicate intentions and feelings. ñGestures are a form of nonverbal communication

in which visible bodily actions are used to communicate important messages, either in

place of speech or together and in parallel with spoken words,ò [7].

Technically, a sign language is a structured subset of hand gestures used by deaf

and speech-impacted people for non-verbal communication and interaction. One major dif-

ference between the sign language and the generic hand gestures is due to their relation-

ships with the spoken languages. Many linguists [8][9][10] consider that a sign language

has an equal functionality as a verbal language providing a meaningful and resourceful

communication modality. Throughout the history, people, especially deaf groups, started

developing and using sign languages long time ago, the earliest evidence being traced back

to the 5th century BC [11]. After centuries of development, sign languages have evolved,

and different regional sign languages were developed, such as the American Sign Language

(ASL), the Chinese Sign Language (CSL), the French Sign Language (FSL), and etc.

6

Figure 2.1 American Sign Language (ASL) alphabet and digits

On the other hand, the sign languages retain strong connections with the hand ges-

tures, while they both involve the use of different parts of the human body to express and

deliver the information. Sign languages concentrate on the upper human body [12], includ-

ing hands, fingers, and arms, but the same sign or hand poses may have different meanings

in different countries while the hand shapes of the sign that expresses the same sentence

may differ either. Therefore, Cheok et al. [13] considered that a sign language could be

treated as a category of communicative hand gestures. Thus, the next subsection will ex-

plain how to classify the hand gestures.

2.1.2. Categories of Hand Gestures

There are many ways to classify the hand gestures. Some researchers classify them based

on their vocabulary meaning: communicative hand gestures and non-communicative hand

gestures. The first category represents those hand gestures having a clear meaning in a sign

language, like in a spoken language. The non-communicative hand gestures indicate mean-

ingless or ambiguous actions which cannot be related to spoken vocabularies, but still pro-

vide information, so that some researchers called them informative hand gestures, as for

instance finger pointing, scratching, etc.

7

Figure 2.2 Features of the static and dynamic hand gestures

This thesis classifies the hand gestures differently based on the temporal relation-

ships into static hand postures and dynamic hand gestures, as shown in Figure 2.2. The

static hand postures, or poses, represent those gestures with stationary hand position during

the performing period, characterized by the hand orientation, shape, finger angle, relative

position within the body, and environment context. The dynamic hand gestures imply con-

tinuously changing of the position. They are characterized by additional dynamic parame-

ters like the movement trajectory, motion velocity and direction, and scale.

2.1.3. Hand Gesture Recognition for Human-Robot Interaction

Hand Gesture Recognition (HGR) has always been a challenging topic in the computer

vision and pattern recognition fields. After decades of research, a standard solution has

been formulated for this problem, including three major steps: data acquisition, feature ex-

traction, and classification, as shown in Figure2.3.

 The data acquisition uses two main approaches: non-vision and vision-based tech-

niques. The non-vision hand gesture recognition approaches use data gloves or other band-

wearable sensing devices. These non-vision sensors provide faster response, more precise

tracking information, and a larger working area. However, they are cumbersome due to the

many connection cables they use and are not conveniently to put on and off the hand.

Hand gestures

Static gestures

(Hand postures / poses)

Dynamic gestures

(Hand gestures)

Å orientations

Å shape

Åfingerôs flex angles

Å relative position to body

Å context environment

Å orientations

Å shape

Åfingerôs flex angles

Å position/trajectory

Åmotion speed/ direction

Å scale

8

Figure 2.3 Standard Hand Gesture Recognition Diagram

The vision-based HGR approaches overcome the limitations of wearable devices

by using the touch-free cameras or new depth sensors. They offer several advantages being

(i) robust and easy to setup, (ii) contact-free, (iii) better suited for real-time recognition,

and (iv) lower computational cost. Subsections 2.2 and 2.3 will present a comprehensive

literature review of the conventional camera based and, respectively, of the novel depth

sensor based HGR approaches.

Liu et al. [14] proposed a modular model of an HGR system for human-robot inter-

action. This model consists of five steps: (i) sensor data collection, (ii) gesture identifica-

tion, (iii) gesture tracking, (iv) gesture classification, and (v) gesture mapping. The first

four steps, (i) to (iv), represent hand gesture recognition, while during the additional (v)

gesture mapping step, the recognized gesture label is translated into a set of robot hand

control commands.

2.2. Conventional Camera-Based Hand Gestures Recognition

Approaches

The conventional camera-based approaches use a single camera for hand gesture recogni-

tion. The difficulty and computational complexity needed for isolating the hand area from

the image background, and the poor lighting contribute to making feature extraction the

most critical process in the pattern recognition process.

Another important step to consider is the design and selection of classification al-

gorithms for gestures made by hands with specific handshapes, orientations, etc.

This section reviews the related works from two aspects, the methods of static hand

postures recognition and the approaches for recognizing dynamic hand gestures.

Gesture

Data

Predicted

Gesture label

Data

Acquisition

Feature

Extraction
Classification

9

2.2.1. Static Hand Postures Recognition

Throughout the past decades, different approaches were proposed for dealing with hand

posture recognition: (1) graph-based methods, (2) supervised learning methods, and (3)

unsupervised learning methods.

Graph-based methods. While always used in the field of pattern recognition and

classification, these methods were not used for hand posture recognition because of their

high computational cost. Recently, the use of graph algorithms in gesture classification and

pattern recognition problems has regained researcherôs attention since the computational

cost is no more a barrier. In 1993, Lades et al. [15] introduced the Elastic Graph Matching

(EGM) method to recognize 87 personsô faces and office objects. EGM allows developing

distortion-invariant Dynamic Link Architecture neural networks that do not need new neu-

rons training in order to detect the features. One of the earlier EGM-based applications to

hand gesture recognition were presented by Triesch et al. in [16][17][18]. [16] presents a

robust classification system for recognizing 239 grey-scale images of 10 hand postures

with complex backgrounds using EGM. It uses vertices as the nodes in graph theory to

represent the image segmentation and regions and uses edges to express the relationships

between the different image segmentation. This solution can reach an average classification

rate of 86.2% for 2-dimensional pre-labelled hand posture images. The work presented in

[17], [18] was extended [16] to the human-robot interaction, where the improved algo-

rithms provide scale invariant for independent recognition with implicit hand segmentation.

The resulting HRI system allowed for a person-independent HGR. More recently, a hierar-

chical EGM (HEGM) approach for HGR has been proposed in [19]. This work dramatically

improved the original EGM by using a boosting algorithm to distribute the multi-levels of

hierarchies to the given graph. The accuracy of the proposed algorithm has been tested

using ten hand postures with three different backgrounds, and experimental results showed

that the HEGM method can reach an overall recognition rate of 99.85% if the features were

pre-extracted using Histogram of Oriented Gradient (HOG).

Bunch graphs approaches are a significant branch of EGM, usually called elastic

bunch graph matching [20], which are used to represent the variability of the observed

object shape. The bunch of the attribute of the homologous points in the images (a set of

objects or the same object) possesses an inherent variability that is captured by each pre-

10

labeled node. A matching process compares the attributesô value of the bunch to the original

image data in the graph in order to find the maximum likelihood as the similarity of the

bunch graph. This approach has also been used in [16] and [18] to recognize the hand pos-

tures within complex backgrounds.

Supervised Learning algorithms. Since the rapid development of the high-perfor-

mance computing, new machine learning algorithms spawned and changed the research

field. Due to their high recognition accuracy, the machine learning methods, especially the

supervised learning, are well fitted for solving gesture recognition problems. Different

from conventional graph-based approaches, the supervised learning algorithms have an ex-

tra training phase, where a set of pre-labelled training data are fed into the learning algo-

rithm to train the learning model, called classifier.

Zhao et al. [21] proposed an Extended Variable-Valued Logic (EVL) approach to

hand posture recognition, which is known as recursive induction learning or Rule Induction

by Extended Variable-valued Logic (RIEVL) [21]. This method classifies the hand poses

by determining whether this pose satisfies specific rules. To achieve this goal, RIEVL pro-

vides a heuristic scheme to learn classification rules from a large amount of training exam-

ples and sets of extracted features. The classifier can be refined online by producing more

rules while more training features and samples are fed into the model during the training

period. There were 30 classes of hand postures used for testing the accuracies of the RIEVL

method against other inductive based algorithms; the experimental results showing a recog-

nition rate of 94.4%.

As time passed by, the conventional offline hand posture recognition can no longer

meet the growing demands of the real-time applications due to high computational costs

and comparatively low recognition rates.

The SVMs (Support Vector Machines) algorithm proposed in [22] has quickly

gained the attention of the researchers working on the development of real-time posture

recognition applications. Ulrich [23] extended the original SVM binary classifier into the

multi-class using a one-against-one strategy, which makes the multi-class postures

recognition possible. Chen et al. [24] presented a robust multiple-angle HGR system for

static hand postures based on fusing SVM classifiers. This system uses three webcams to

record each hand pose from the front, left, and right positions, and then train three

11

corresponding SVM classifiers. The training data were preprocessed to reduce the impact

of poor lighting conditions. The recognition is done by fusing the results from the three

classifiers. Experiments have showen that the fusing SVM can efficiently predict three

different hand postures from 540 images with a 93% recognition rate.

Huang et al. [25] proposed a novel real-time hand posture recognition method

which combines SVM with Gabor Filters. Low-dimension features were calculated by

convolution operation using Gabor Filters, further refined using principal components

analysis (PCA), and then used to train the SVM classifier. Experimental results obtained

testing large-angle hand postures demostrated the robustness of the trained SVM classifier.

Two years later, Huang et al. proposed an improvement [26], which increased the average

recognition rate to 96.1%. An adaptive skin-color independent algorithm was developed to

lower the influence of the poor lighting conditions and complex illuminations. Dardas et

al. [27] presented another real-time postures recognition system based on multiclass SVM

combining with BOF (Bag-of-Features). This work improved the skin-color invariant

method by adding an extra handshape contour comparison process that made the hand area

detection more accurate. After the features have been extracted from the raw images, a K-

means quantization algorithm was implemented to map these critical values into a

normalized dimensional vector as the training input for the multiclass SVM classifier.

An Supervised Locally Linear Embedding (SLLE) algorithm for sign language

recognition described in [28] was used for the real-time Chinese Sign Language (CSL)

recognition using a low-cost USB webcam. A fast detection algorithm used for a real-time

hand region recovery, which may lower the detection accuracy. The feature extraction is

then achieved using SLLE. There were 30 hand postures from the CSL alphabet that were

used to evaluate the performance of the system, and the experimental results showed an

average 90% accuracy.

Unsupervised Learning is another type of machine learning algorithm which uses

unlabelled training samples in the classifier training phase. Ge et al. [29] proposed an HGR

and hand tracking system for both static postures and dynamic gestures based on distributed

locally linear embedding (DLLE) algorithm. The DLLE used for hand posture recognition

recovers intrinsic attributes of the high-dimensional data and projects them into a lower

dimensional space. Then, a Probabilistic Neural Network (PNN) is used to classify the hand

12

postures using their distances in the lower dimensional space.

2.2.2. Dynamic Hand Gestures Recognition

The dynamic HGR has to address the challenges of continuously tracking the hand region

from each frame of a time series of images. In the feature extraction period, the useful

information not only contains the static features recovered from each frame, but more im-

portantly, the temporal coherence between the frames needs to be measured. From the point

of view of the classification techniques that are used, there are four major approaches to

the dynamic HGR: (i) Hidden Markov Model (HMM) and other statistical methods, (ii)

Artificial Neural Networks (ANN), (iii) Dynamic Time Warping (DTW), and (iv) learning-

based algorithms and other methods.

Hidden Markov Model (HMM), is one of the most commonly used statistical

modelling techniques for solving dynamic hand gesture recognition presented in Baum et

al. [30]. Rabiner [31] reviewed the basic HMM theory and identified three basic problems

that can be addressed when using HMM in gesture recognition applications. According to

him, a gesture class can be represented by an HMM template and a typical dynamic hand

gesture recognition problem can be solved by finding the optimal parameters for all the

HMMs via the given observed sequences. Then, an unknown gesture sequence can be rec-

ognized by computing its similarities (maximum likelihood) with each available gesture

template.

Chen et al. [32] introduced a standard dynamic HGR architecture consisting of four

steps: real-time hand tracking and segmenting, feature extraction, classifier training, and

gestures recognition. In the feature extraction phase, a Fourier descriptor (FD) was used to

estimate the spatial features, and motion analysis was used to extraction the temporal fea-

tures. Then, a combined spatial-temporal feature was fed into the HMM to train the gesture

classifier. The HMM classifier computes the likelihoods of each gesture template and iden-

tifies the model with the highest probability as the prediction output. The experiment used

20 dynamic gestures to test the system and results showed a 90% recognition rate. Lee et

al. [33] used a threshold model based on HMM to filter out the low likelihoods. The ex-

tracted feature from the given sequence consists of the hand movement directions which

used to characterize each gesture sequence as a movement trajectory. The resulting system

13

allowed to effectively avoid the misclassification of the gestures that did not belong to the

training dataset.

Combined weighted features of hand angle, location and velocity were used to im-

plement the HMM for HGR [34]. The hand region is detected using a skin-color invariant

method and movement tracking is achieved by simply connecting the centroids of hand

area in the sequence. This approach ranks the hand angular feature as the most important

one, followed by location and velocity features. The experiment uses 2400 gestures to train

the HMM classifier and uses another 2400 test samples to the test the recognition accuracy

of the system. Another similar HMM-based system for the recognition of the gestures for

the ten Arabic digits is presented in [35], using the Left-Right Banded (LRB) and Baum-

Welch algorithms in the training process in order to improve the success rate of the classi-

fier.

The basic HMM using homogeneous Markov chains to represent the dynamic se-

quences can only determine the time non-relevant probabilities. Marcel et al. [36] proposed

an alternative training algorithm, called Input-Output Hidden Markov Models (IOHMM),

which is based on a non-homogeneous Markov Chain. This method trains the HMM learns

to map input and output sequences using supervised learning. However, it can only recog-

nize two classes of gestures. Just et al. [37] introduced a gesture recognition system based

on IOHMM. The experiments using a large dataset were not limited to a two-class recog-

nition, concluded that IOHMMs actually have a lower success rate than the HMMs.

An HGR system integrating HMM temporal features and static hand shape recog-

nition is presented in [38]. This work considered the hand movement as a sequence of

independent hand poses and deployed a Kalman filter to track the hand contours as tem-

poral features. The static shapes are recognized by a skin-color independent method, and

gestures descriptors are used for training the HMM classifier. This real-time system shows

robustness in recognizing gestures within complex backgrounds as well as reliability while

detecting the hand movement trajectories. Different from other gesture segmentation ap-

proaches based on backward spotting, which first finds the end point and then traces it back

to the starting point, Kim et al. [39] introduced a Forward Spotting Scheme to segment the

gestures and recognize them at the same time. This method allows to efficiently compen-

sate the backward algorithmôs deficiencies due to the time-delay between the segmentation

14

and recognition, and considerably improves the system running time.

Other HMM-based HGR methods include Parametric HMMs (PHMMs), Parallel

HMMs (PaHMMs), and Coupled HMMs (CHMMs). Wilson et al. [40] introduced an ex-

tended HMM method, the PHMMs, for gesture recognition that uses a global parameter in

the emission probabilities of the hidden states. Experimental results prove PHMMôs supe-

riority comparatively to the common HMM method. Brand et al. [41] used a CHMM ap-

proach for training HMMs to recognize two-handed gestures. This approach overcomes the

limitations of the single-process HMM (which only supports a relatively small number of

states). Vogler et al. [42] developed an ASL-based hand signs recognition system using

PaHMMs, which is an improvement of CHMM. This approach models the parallel pro-

cesses so that all HMM models can be trained independently. The system can classify a

vocabulary of 22 ASL signs, using 400 training samples and 99 test instances.

Other statistical methods can also support powerful HGR applications. Chen et al.

[43] proposed a two-level approach to represent the recognition problem based on the hi-

erarchical attributes of hand gestures. The lower level provides a fast hand detection using

a statistical method which combined Haar-like features and AdaBoost algorithm, while the

higher-level provides syntactic analysis based on a Stochastic Context-Free Grammar

(SCFG). Davis et al. [44] presented a seven-gestures recognition system based on Finite

State Machine (FSM) to model the four fixed-ordered distinct phases of a given gesture.

The hand regions are tracked in a continuous image sequence by finding the start and stop

points. The gestures are represented by extracted temporal features stored in an FSM. Suk

et al. [45] proposed a Dynamic Bayesian Network (DBN) system for the recognition of

isolated or continuous hand gestures captured from a video sequence. The highlight of the

proposed algorithm is in the feature extraction step, where they utilize a distance based

real-time decoding to classify one or two-hand gestures. Experimental results show a suc-

cess rate of 99.59% for ten isolated gestures recognition, and 80.77% for the continuous

stream of gestures.

Artificial Neural Networks (ANN) are frequently used for hand gestures recogni-

tion applications. Yang et al. [46] proposed a Time-Delay Neural Network (TDNN) method

to classify 40 dynamic ASL gestures. In this work, the 2D hand movement trajectories of

every single image are extracted using a novel algorithm which first generates hand regions

15

by performing a multiscale segmentation, and then matches the areas of the adjacent frames

in order to get a two-view correspondence. The resulting movement trajectories are then

used to train the TDNN model. The decision making is a dynamic process where the net-

work utilizes input data to make a bunch of local decisions which are then integrated to

allow for the final decision.

Chan et al. [47] developed a real-time vision-based HGR method using a combina-

tion of continuous HMMs and Recurrent Neural Networks (RNNs) to classify five simple

gestures, providing better recognition performance then each of these two methods alone.

Fourier descriptors utilized to describe the hand shape, were fed to Radial Based Function

(RBF) in order to classify the poses. The computed similarities provided by RBF and the

movement information were then used to recognize the gestures. Ahsan et al. [48] proposed

an ANN-based HGR system using Electromyography (EMG) signal analysis. The hand

movement features were extracted from EMG signals, and then an ANN was applied to

classify the gestures.

Dynamic Time Warping (DTW) is an efficient and widely used algorithm for

dealing with dynamic gesture recognition problems. Tohyama et al. [49] proposed a new

feature extraction method based on vector-field assumptions that the hand regions are

treated as optic flow. It uses multi-layers, such as retina-V1, MT, and MST, to extract two

different kinds of information, the absolute velocities, and the relative velocities. Kuremoto

et al. [50] utilized the new feature extraction method presented in [49] and proposed a novel

HGR system based on One-Pass Dynamic Programming (One-Pass DP). The hand regions

are detected by a skin-color independent method, and movement estimation is achieved by

retina-V1 model. This work provides a new direction of estimating the hand gestures which

considered the hand movements combined with a set of 40 templates of single moves.

One of the earliest studies of developing hand gestures recognition system based

on standard DTW algorithm is proposed by Corradini [51]. In this work, the unknown given

video sequence is matched with a set of pre-defined templates and DTW algorithm has

been used to find the alignment between the two sequences to be matched. Lichtenauer et

al. [52] proposed a Statistical DTW (SDTW) model only for time warping period and uti-

lized two combined classifiers, Combined Discriminative Feature Detectors (CDFSs) and

16

Quadratic Classification on DF Fisher Mapping (Q-DFFM) were used to perform the ges-

ture classification. This approach separated the warping and classification processes to

avoid the confliction the likelihood outputs of DTW and HMM. And the experimental re-

sult proves the effectiveness and potentials of recognizing more detailed hand gestures or

poses.

Learning-based approaches mainly contain example-based methods, eigenspace-

based algorithms, and curve fitting methods. Shen et al. [53] proposed a learning-based

approach for gesture recognition using an example-based method. To reduce the impact of

the running time caused by a large dataset, this work used a novel hand movement repre-

sentation based on motion divergence fields which used to normalize the dataset into gray-

scale images. The motion divergence maps are used to detect the salient regions from the

local movement of each hand region obtained by a local descriptor. A gesture dataset of

1050 video sequences was used to evaluate the recognition performance. Patwardhan et al.

[54] presented an eigenspace-based approach to model hand gestures with changing shapes

and trajectories. Shin et al. [55] proposed a visualization navigation system based on HGR

using Bezier curves to analyze motion trajectory and classify gestures. This work incorpo-

rated the hand velocity information in order to obtain reliable and accurate recognition

when the speed is changing.

2.3. Depth Sensor Based Hand Gestures Recognition

In recent years, new low-cost depth cameras have created a revolution in gesture recogni-

tion field by providing high-quality depth images and providing efficient solutions solving

the complex backgrounds and illuminations problems. New commercial grade depth cam-

eras such as the Microsoft Kinect [5] and the Leap Motion Controller (LMC) [6] are in-

creasingly used in the HGR research area since they have unique advantages comparatively

to the RGB cameras when recognizing body motions.

17

Figure 2.4 Hand detection using depth camera and RGB camera

A performance comparison of hand tracking using a depth camera and a RGB cam-

era is shown in figure 2.4. It is difficult to directly detect the hand area and contour using

a conventional RGB camera due to the complex background and poor lighting, and special

algorithms must be used to separate the hand region from the background. However, the

depth sensor camera is not affected by these problems, and it dramatically speeds up the

recognition process, which is essential for the real-time recognition applications.

Our review of the depth sensor-based hand gesture recognition literature is consid-

ering separately the two HGR functions: the static posture recognition and, respectively,

the dynamic gestures recognition.

2.3.1. Recognition of Static Postures

The most of commonly used depth sensors for HGR are Kinect and the LMC. Kinect [5]

is a widely used sensor in many recent depth-camera based HGR systems.

Li [56] made an early study of real-time hand gesture and sign language recognition

using Kinect to classify nine self-defined postures. The system used the OpenNI [57]

framework and the Kinect SDK, and it achieved a 84% success rate for single-handed pos-

ture recognition and 90% for double-handed postures. Yao et al. [58] proposed a new hand

movement detection method using a 14-patch hand partition scheme, to get a real posture

training dataset with unconstrained conditions using RGB and depth camera. The hand

contour model is used to lower the computational cost in gesture matching process. The

Depth image RGB image

18

experiments show that this real-time system can reach a total 87 milliseconds for recogniz-

ing one posture.

 Zhou et al. [59] describe a robust hand posture recognition system addressing the

impacts of hand location variations, scale, and orientation differences. This work intro-

duces a new distance-based metric, the Finger-Earth Moverôs Distance (FEMD), to meas-

ure the discrepancies between hand regions, which matches only the finger movements.

Another work based on FEMD is described in [60], which combines depth information and

color-marker techniques for hand detection. Experiments proved the robustness and real-

time performance of both approaches. Zhou et al. [61] developed a real-time Sudoku game

based on FEMD-related hand posture recognition algorithm.

 The novel Randomized Decision Forests (RDF) based algorithm for hand gesture

classification using Kinect proposed in [62], which labels each depth image pixel and clas-

sifies the images regions by voting. This system has been tested using an ASL gesture set

consisting of 65,000 images, and the result shows a recognition rate of 97.8%. In addition,

the author also used a subset of ChaLearn Gesture Dataset [63] to test the system for clas-

sifying multiple gestures (attaining a 87.88% precision rate) and single gestures (attaining

a 94.35% precision rate).

 Kirac et al. [64] proposed an improved feature extraction method for hand skeleton

recovery from the depth images using real-time random regression forests. The algorithm

overcomes the limitations due to the finger self-occlusion and low resolution of the depth

camera, and can estimate the hand joints position even if it is out of the frame. Experiments

show that it performs better than the random classification forests algorithm. Aiming to

enhance the feature extraction, [65] introduces an Oriented Radial Distribution feature for

locally detecting fingertips and globally representing the hand postures. The performance

was evaluated using several datasets of ASL gestures.

The Leap Motion Controller (LMC) proved to offer accurate hand tracking and

efficient solutions for real-time gesture recognition problems.

Chuan et al. [66] developed an ASL recognition system using the Leap Motion

Controller. The system deployed k-Nearest Neighbour (k-NN) and SVM classifiers to rec-

ognize 24 handshapes of the ASL alphabet, and experimental results showed a success rate

of 72.78% for the k-NN and 79.83% for the SVM classifier, respectively. Mohandes et al.

19

[67] utilized LMC to develop an Arabic Sign Language recognition system, which included

a hand tracking pre-processing phase. This system uses a Multilayer Perceptron (MLP)

algorithm to train the NN classifier. Experiments showed a 99% recognition rate. Funasaka

et al. [68] proposed a Leap Motion-based finger-spelling language recognition system us-

ing 16 basic decisions. The recognition accuracy for the letters varies for different order of

decisions. Marin et al. [69] presented a novel HGR method using a combination of Kinect

and Leap Motion devices. Features consisting of fingertips position and orientation are

extracted from both Kinect and Leap Motion data, and then fed into a multi-class SVM

classifier. Experiments using a subset of American Manual Alphabet convincingly vali-

dated the real-time performance of the described system.

Van den Bergh et al. [70] proposed a real-time HCI system using a Time of Flight

(ToF) camera. The ToF also helped to enhance the Haarlet-based gesture recognition per-

formance. The system can recognize six basic gestures used to interact with a robot using

the Robot Operating System (ROS) [71]. Experiments showed that the combination of the

depth camera and ToF cameras could reach a success rate of 99.54%. However, this work

also points that the accuracy of using the two cameras together does not lead to any signif-

icant improvement as the depth cameras are good enough to provide all the information

that the gesture recognition system actually needs.

2.3.2. Recognition of Dynamic Gestures

The dynamic HGR remains a more challenging research topic than the static posture recog-

nition due to the scene complexity, feature extraction difficulties, and flexibility of human-

made gestures. This subsection reviews recent works on dynamic gesture recognition using

depth cameras, Kinect, the Leap Motion Controller, and other depth sensors.

 Kinect-based systems: Gallo et al. [3] proposed a contact-free interaction system

using Kinect to manipulate the medical images data, like Magnetic Resonance Imaging

(MRI). Hand and arm gestures, such as scaling, animation, rotation, translation, are defined

and used for topological analysis. Lai et al. [72] developed a Kinect-based near distance

hand gestures recognition system using two different nearest-neighbour algorithms. One is

using the classic Euclidean distance metric while the other is using the log-Euclidean met-

ric. Experiments conducted while recognizing eight hand gestures from a dataset of 20

20

classes in real-time showed a 99% success rate.

Lui [73] proposed a product manifold model to normalize the gesture data tensors

based on a non-linear regression model. This regression framework is formulated as a com-

posite function of location attributes. Experiments were conducted using three hand gesture

datasets: ChaLearn, Cambridge hand gesture [74], and UMD Keck body-gesture [75], and

showed a good performance. Lui [76] extended the least squares regression based algo-

rithm to develop a gesture recognition system that provides a better solution for ChaLearn

one-shot-learning challenge using two key features: least squares fitting and underlying

geometry. Another one-shot-learning was presented in [77], which introduced a template

matching scheme to represent the hand gestures. The gesture template allows the algorithm

to classify gestures by matching the template with the best likelihood. Since this method

used only training sample per action, the hand region segmentation and movement meas-

urement are no longer needed. The classifier used a Fourier transform to calculate the cor-

relation coefficient of gesture templates. Experiments used comprehensive dataset to eval-

uate the proposed method.

Wan et al. [78] proposed a one-shot-learning based recognition algorithm combined

with Bag of Features (BoF) strategy to classify ChaLearn dynamic hand gestures using an

RGB-D camera. A novel features extraction method, namely 3D Enhanced Motion Scale-

Invariant Feature Transform (3D EMoSIFT), was used to fuse the depth data. The new

features are less affected by the scale and orientation while containing more useful visual

information compared to the traditional BoF features. A sparse representation of the input

data (SOMP) is used to represent features using a linear combination of codewords. This

approach showed a good performance in ChaLearn gesture competition [63].

Similar to the regular RGB-based HGR, the DTW algorithm still plays a key role

in depth-based gesture recognition problems. Pisharady et al. [79] proposed a robust hand

tracking and recognition algorithm based on DTW and probabilities estimation. The fea-

tures are extracted by Kinect, and the size, velocity, and detection of the hand gestures are

enhanced using DTW. A multiple probability estimation algorithm was used to classify 12

letter spelling gestures and the experimental results showed a 96.85% success rate.

Cheng et al. [80] presented a 3D HGR system based on an Image-To-Class DTW

(I2C-DTW) method. The basic idea is to disassemble a 3D gesture sequence into a set of

21

finger combinations, namely ñfingerletsò, which represents the different gestures and cap-

tures the discrepancies between gesture classes. The gesture classification is done using

multiple I2C-DTW. The method showed significantly improved performance when tested

using two ASL gesture datasets. Later, Cheng et al. [81] extended their work and proposed

a Windowed DTW (WDTW) algorithm for multi-class 3D hand movement trajectory

recognition. They proposed a novel concept, called parameterized searching window, to

calculate the cost matrix to find the begin and end points of a gesture sequence. A hand

gesture dataset of 16 classes recorded using Kinect was used to evaluate the performance

of the proposed approach.

The LMC-based systems: Chen et al. [82] proposed a rapid HGR system using the

LMC. A gesture database consisting of 3D movement trajectory of 36 gestures recorded by

Leap Motion was used to test the accuracy of this system. The gesture classification is done

using SVM classifier. Experiments comparing SVMôs and HMMôs performance proved

that SVM has a better performance regarding the overall recognition rate and running time.

Lu et al. [83] developed another HGR system based on Leap Motion. This work introduced

a simplified gesture recognition procedure without the traditional pre-processing and hand

detection steps, as the LMC significantly simplifies the hand extraction and tracking by

providing accurate absolute positions of hand joints. The hand gestures are classified by

Hidden Conditional Neural Field (HCNF) algorithm. Experimental results show an accu-

racy of 89.5% when using the LMC-gesture3D database and 95.0% for Handicraft-Gesture

database.

Other depth sensor-based systems: Holte et al. [84] presented a view-invariant

hand gestures recognition system using a depth-intensity camera which provides both depth

information and intensity images. The algorithm aligned these two layers of data to im-

prove the recognition accuracy. Different from the conventional movement trajectory-

based approach, this work uses the shape context in the image to represent the motion

primitives. The gestures are classified by the probability Edit Distance approach which

finds the gesture class with the best description. Test data samples recorded from a different

viewpoint then the training data are used to test the system accuracy, which returns a 92.9%

success rate.

22

Erden et al. [85] used a Pyroelectric Infrared (PIR) camera and a regular RGB cam-

era to develop a hand gesture remote control system. The PIR camera is used to recover

the hand movements in the video sequence. If the sequences are recognized as valid hand

movements, the captured information is directly sent to the classification step, otherwise a

video analysis has to be performed on the RGB camera data. An improved Winner-Take-

All (WTA) algorithm was used to classify the gestures in real-time. Experiment shows that

this method has a better performance in multi-model gesture recognition than the Jaccard

distance-based recognition method.

23

Chapter 3. System Overview

This chapter presents the hardware and software components of the developed system. The

hardware architecture given in section 3.1, consists of three major ingredients, the robotic

hand, the robotic arm, and the Leap Motion Controller. The software architecture, presented

in section 3.2, consists of the Robot Operating System (ROS) framework, the software

development kit for Leap Motion Controller, and a C++ library used to real-time hand ges-

ture prediction. Section 3.3 will discuss the hardware limitations of the assembled robotic

hand and the Leap Motion Controller. Section 3.4 presents the conclusions.

3.1. Hardware

The three hardware components are the robotic hand, the robotic arm, and the Leap Motion

Controller. The five-finger robotic hand and the arm are assembled to build a human-like

robot hand, as shown in Figure 3.1.

3.1.1. The Robotic Hand

Figure 3.1 Assembly of the robotic hand

(a)

(b)

(c)

24

The robotic hand, shown in Figure 3.1, is an open-source 3D printed hand [86]. It has five

underactuated fingers actuated by tendons and linear motors shown in Fig. 4(c). Also, there

is an extended wrist cover (white part in Figure 3.1(a)) at the base of palm which will be

connected to the robotic arm to perform the wrist rotation movements. With this extended

cover, our robotic hand can perform hand rotation movement around the z-axis from -45

degrees to +45 degrees.

3.1.2. The Robotic Arm

The robotic arm, as known as forearm [87], is an open-source fully 3D printed robotic arm

designed for research and educational purposes, as shown in Figure 3.2. It mainly consists

of arm cover, wrist cover and wrist motor, and all the parts are printed with PLA material.

It should be noticed that the robotic arm part used in this thesis is not the standard fully

assembled forearm with all servo motors because this work focuses on hand gestures and

wrist movement. So, there are no motors inside the arm cover but an empty shell to support

the robotic hand. A servo motor [88] was installed inside the wrist cover of the arm to

control the hand rotation movements around the vertical axis with 90 degrees.

The wrist motor is connected to an electronic board with a microcontroller as shown

in Figure 3.2(c), which powered by a regular power supply via the bottom right red and

black wires. The other five wires are all connecting to the wrist motor as shown in Figure

3.2(b). The brown wire gets the feedback of the potentiometer of the wrist motor for the

controller stabilization purposes. The other wires connected to the wrist motor gives the

power and converts the voltage when we need to change the movement direction of the

motor. Besides, there is a micro USB interface on the microcontroller which allows the PC

to connect and control it. The primary duty of the microcontroller system is to control the

gear rotation of the wrist servo motor when a movement command received from computer,

by converting it into the direct voltage. From the software perspective, the incoming move-

ment command is a continuously changing float value with a range from 0 to 1, where 0

means negative 45 degrees and 1 indicates positive 45 degrees.

25

Figure 3.2 The Robotic Arm and its assembly

3.1.3. The Leap Motion Controller

The Leap Motion Controller [6] has quickly created a revolution in the field due to the new

method of interacting. Unlike the popular depth camera, such as Microsoft Kinect, the Leap

Motion Controller only concentrates on hand tracking and detection, providing high preci-

sion discrete motion and position information, and a well-maintained and comprehensive

software development kit.

26

Figure 3.3 The Leap Motion Controller [89]

The Leap Motion Controller uses visual cameras and infrared light to provide com-

prehensive position information of the hands and finger by establishing a 3D space above

the deviceôs surface. In this coordinate system, the origin is located at the center of the

surface of the Leap Motion Controller. The x- and z-axes occupy the horizontal plane par-

alleling to the deviceôs surface, while the y-axis is vertical to the x-z plane, with the in-

creasing positive values upward. Because the observed hands are always above the surface

of the Leap Motion Controller, the discrete positions of hands would not contain any neg-

ative values of the y-axis. For instance, the output of palm position is (-25.812, 102.571, -

63.436) means the center point of the palm is located at 102.571 millimeters above the

surface of Leap Motion Controller in the current frame.

The working area of the Leap Motion Controller is very limited, only approximately

from 25 millimeters to 600 millimeters with a field of view of 150 degrees above the de-

viceôs surface in the air as shown in Figure 3.4. However, the localization precision of Leap

Motion is higher than other depth sensors, which makes the position output of the finger

joints, fingertips, and palm center can be accurate to three decimal places. The Leap Motion

Controller not only provides the precise position of the hands, but it is also tracking each

part of the hands and providing the speed of them in millimeters per second. The user can

quickly determine which finger or joint is moving since the speed of each part is tracked

separately.

27

Figure 3.4 The working area of the Leap Motion Controller [90]

In addition, there are several advantages of Leap Motion Controller compare to

other popular depth sensors: (1) Easy to connect to a computer via USB cable, (2) Portable.

With width: 3.1-inch, Depth: 1.2-inch, Height: 0.5-inch, and Weight 1.6 ounce, (3) Afford-

able and inexpensive with around 100 dollars. These unique advantages make Leap Motion

Controller has a perfect fit for hand gesture recognition research than other depth sensors.

3.2. Software

The diagram shown in Figure 3.5 specifies the relations between each component as well

as indicates the inputs and outputs under the ROS (Robot Operating System) framework,

as follow:

1. Robot hand A, or human hand performs the hand gestures representing the input of

the interaction system. The hand gestures can be classified into static hand postures

and dynamic hand gestures;

2. The Leap Motion Controller used to obtain the real-time hand gestures. The inputs

of this sensor are the static hand postures or the dynamic hand gestures, and the

outputs are the corresponding depth data containing hand tracking information;

3. Classification Module is the most important part of the proposed system for the

training phase as for the gesture classification. It receives the raw depth data of

28

captured hand gestures as the input and outputs the predicted gesture label to the

robotic hand B. In classification module, there is a training phase need to be imple-

mented to perform real-time gestures classification. The more details will be ex-

plained in section 3.3.4;

4. Robotic hand B is the destination robot which will receive the predicted gesture

labels from the classification module and transfer the predicted label into movement

command send to robotic hand B via ROS system.

Figure 3.5 The Overview of Software Architecture

Based on the input prediction label, the ROS hand-node and wrist-node will send a

size of 5 float value to the hand node and one float value to the wrist node. For example, if

the prediction class is 1, then a float vector [0.0, 1.0, 0.0, 0.0, 0.0] (representing gesture 1)

will be sent to five linear motors of the hand and a float value 0.5 (representing the rotation

angle equals to zero) will be sent to wrist motor. All these float control values are within

the range [0, 1], for the robot hand movement command, 0 means the fingers fully closed

and 1 indicates the fingers fully opened. For the wrist part, value 0 represents the wrist

rotates to the position of -45 degrees and 1 represents +45 degrees, respectively.

The presented interaction system was developed under ROS (Robot Operating Sys-

tem) framework [71] and integrated with Leap SDK [91] and GRT (Gesture Recognition

Toolkits) library [92] to program. The ROS is the highest-level framework which controls

and communicates all system components through the serial port using peer-to-peer tech-

nology. The GRT library is deployed in classification module and used to handle the real-

Classification

Module

robot A or

human hand

Leap Motion

Controller

ROS

robotB

static postures

dynamic gestures

depth data Predicted label

29

time hand gesture recognition. Moreover, the Leap Motion Controller provides it own soft-

ware development kit to give users the access to the hand tracking data, which is a neces-

sary software component in this system.

3.2.1. Robot Operating System (ROS)

The Robot Operating System (ROS) [71] is an open-source inter-robots communication

software framework. It provides a well-organized communication architecture which al-

lows a wild range of robotic hardware to communicate each other in the different layout.

More importantly, ROS also has the capabilities to integrate large-scale of software, such

as third-party libraries and deviceôs SDK, since most of the current projects involve varying

equipment and learning algorithms. Furthermore, it allows developers with different levels

to work together under the framework using C++ or Python programming language.

Figure 3.6 ROS framework

The ROS framework provides better performance and convenience for the robotic

project development compared to other similar interfaces. To deal with any level of robot

communication, ROS framework introduced some basic concepts of its implementation,

and they are ROS packages, ROS nodes, ROS messages, ROS topics, and ROS services.

Packages are the primitive folders of independent projects which stored within the

ROS workspace, and each project must create a unique ROS package to save everything

related to it. The structure of each ROS package is restrictive, a cmake file must be included

for telling the compiler how to build the code and listing all the dependencies, and an XML

/l eap_motion /classifier

/hand_data_static

/hand_data_dynamic

/binary_motors_hand

/binary_motors_wrist

/position_hand

/position_wrist

/enable_motors_hand

/enable_motors_wrist

30

file of describing and declaring some fundamental properties of this package. Besides, the

ROS system has a pre-installed build solution instead of the default make or cmake com-

mand to compile and build the project in Linux, which is called catkin.

 Nodes are the executable programs in a ROS package. The core of ROS nodes is

the initialization of node class using the ROS library to make every executable program or

components can communicate with other nodes using peer-to-peer links. After that, all the

elements in ROS system are treated as ROS nodes (shown in Figure 3.6), and each node

can send data to or receive data from other nodes. This peer-to-peer communication in-

cludes two parts, namely ñpublishingò and ñsubscribingò.

¶ Publishing indicates the action of sending data from a ROS node to a ROS topic.

The data is sent by a publisher in the node, which called ñpublisherò, and a ROS

node can contain many publishers. It means a ROS node can send many different

types of data to the ROS topics, allowing other nodes get these data as needed.

¶ Subscribing denotes the action that a ROS node receives data from a ROS topic. To

receive the data, a ROS node needs to create one or more ñsubscriberò inside the

node and determine the name of the specific topic to subscribe. It should be noticed

that a subscriber can only ñsubscribeò one topic at a time.

Figure 3.6 shows the foundational concept of ROS node in ñ/leap_motionò, ñ/clas-

sifierò, ñbinary_motors_handò, and ñbinary_motors_wristò. These four ROS nodes rep-

resent the corresponding components in the presented interaction system.

Messages indicate the way of how ROS nodes communicate with others. In the

ROS framework, a ROS message composes of a specific type of data structure and will be

published on a unique topic. This data type can be any standard data structure supported

by most popular programming languages, such as integer, float, double, boolean, etc., or

the arrays that consist of other messages.

Topics mean that a ROS node will send the message to a provided topic. In general,

a ROS topic will be created with the initialization of a publisher by giving a unique name.

For instance, ROS node ñ/leap_motionò is publishing the raw data of static hand posture

and dynamic hand gesture from the publishers inside the node to the ROS topic

ñ/hand_data_staticò and ñ/hand_data_dynamicò, respectively. Simultaneously, Another

31

ROS node ñ/classifierò is listening to the two topics and getting its messages using sub-

scribers in the node when there are messages in the topics.

¶ Publisher represents the class of letting the ROS nodes send messages to other

nodes. It will notify the ROS master node to register a given topic name and keep

this registration of publishing. Except for the topic name, a typical publisher will

be given a size of the message queue to buffer up the published messages which

have not been sent yet when the messages are published too quick.

¶ Subscriber denotes the class which allows the ROS nodes can receive messages

from the other nodes by calling its subscribe function. This function usually has

three parameters: (1) the first parameter is the name of the topic that a ROS node

wants to subscribe, (2) the second parameter is the message queue same as the pub-

lisher which gives a buffer to store the received messages that have not been pro-

ceeded, (3) the third parameter is a callback function that will be triggered when a

message has arrived.

A ROS topic usually contains only one type of ROS message and allows multiple

subscribers to receive message from it. On the other hand, a ROS node may publish or

subscribe various topics to send or receive messages. Furthermore, all the publishers and

subscribers in concurrent ROS network are comparatively independent and they donôt have

an awareness of knowing each other.

Services indicate the alternative communication method between each ROS nodes

in the concurrent framework. A ROS service can only be advertised by one ROS node with

a specific name. This service usually contains many commands that can be attached and

directly operate the nodes to send a request and receive a response.

In this thesis, the version of the ROS framework is indigo and installed on ubuntu

14.04 LTE Operation System.

3.2.2. Leap Motion Controller SDK

When the Leap Motion Controller device is connecting to the PC via a USB, the auxiliary

software runs a background process to receive the hand tracking data from the device,

which called ñLeap Serviceò [91] in the system architecture of Leap Motion as shown in

the Figure 3.7. This service processes the hand tracking information from the hardware and

32

sends it to the foreground application by default or the background application by request.

Besides, there is a Leap Motion application works independently from the service process

and allows the user to control the device by changing the basic settings or installation con-

figuration of the Leap Motion Controller.

Figure 3.7 The architecture of Leap Motion software

The Leap Motion Controller software development kit, as known as LeapSDK, pro-

vides two different type of APIs (Application Programming Interfaces), a Native Applica-

tion Interface (NAI) and a WebSocket Interface. However, the latter API would not be in-

troduced in this section since the presented interaction system was developed using Native

Application Interface. Same as all APIs, the NAI is a dynamic link library can be used in

many popular programming languages, such as C++, Python, and Java. It also gives the

application the access to the Leap Service to get the hand tracking data from the device so

that we can develop our foreground or background application. In the system, the fore-

ground application indicates the program continuously receiving hand movement tracking

information from the device through NAI, while the background application pauses col-

lecting data from the service process and runs in the background.

Figure 3.8 The layout of Leap Motion NAI

Leap Service Leap Settings App

Foreground
Application

Background
Application

USB

API

FrameController Hands Fingers

Listener

Handlist Fingerlist

Bones

Bonelist

33

The NAI provides complete and absolute hand positions in 3D space created by

Leap Motion as mentioned earlier in section 3.2.3. Through the NAI, all hand motion data

can be obtained frame by frame, and each frame of tracking information consists of the

absolute positions of each part of the hand, including fingers, bones, fingertips, etc., as

shown in Figure 8. To get the desired information from the current frame, we need to trigger

some callback functions in each layer. The main classes provided in NAI consists of Con-

troller, Listener, Frame, Hand, Finger, and Bone, as follow:

¶ Controller class represents the Leap Motion Controller, and the created controller

object can automatically make a connection to the service process to obtain the hand

tracking data. This class contains several member functions that user can use to

configure the device.

¶ Listener class includes many callback functions to be overridden by assigning a

controller instance to listen to the events of the controller. For instance, the frame

callback function from a listener object can be triggered to get the frame infor-

mation when the latest frame obtained by the Leap Motion Controller.

¶ Frame class indicates a single frame captured by the device which contains a set

of hand and finger tracking data, giving their orientations, positions, directions, and

velocities. The frame object can be initialized either by implementing a listener

class to get the latest frame when the callback has been triggered or creating a frame

object as usual in a controller object. A frame object attached with a handlist which

has all the tracking data as we needed.

¶ A hand class provides the physical motion information of detected hand. It contains

a batch of hand tracking data, including velocity, position, and normal of palm, the

direction of hand, and the list of attached fingers. Besides, a handlist consisting of

hand objects can be extracted from the frame class, and this hand objects normally

compose left hand and right hand.

¶ Similar to the hand class, we can get the finger objects from a finger list provided

by hand class. In the list, all fingers are stored in the order of thumb, index, middle,

ring, and pinky. Moreover, finger class also provides the position and direction of

fingertips as well as the velocities, and per each finger, a bone list is contained to

give the users the access to the bone object.

34

¶ The bone class is exactly the primitive class in the NAI architecture. It is the small-

est class and only provides the tracking information of the detected bone. For ex-

ample, in index finger, length: 52.9144mm, width: 17.1565 Proximal bone, start at

(3.21084, 147.759, 64.3163), end with (11.4152, 156.976, 27.6814), direction: (-

0.212235, -0.238427, 0.947686). Except to thumb finger, all fingers have four

bones identified as Metacarpal, Proximal Phalanx, Intermediate Phalanx, and Distal

Phalanx, in the order from hand base to tip, as shown in Figure 3.9.

Figure 3.9 Illustration of bones class provided in Leap Motion API [93]

In addition to above classes, we can obtain the many other hand tracking infor-

mation in Leap Motion API, such as the distances between fingertips or any two arbitrary

joints, palmôs rotation angle around each axis, and the velocities. These extra tracking data

still useful in the presented interaction system will show in Chapter 4 and 5.

3.2.3. Gesture Recognition Toolkits

The Gesture Recognition Toolkits (GRT) [92] is an open-source C++ library developed for

real-time gesture classification and recognition applications. It contains a set of popular

and classic Machine Learning algorithms that can be used to integrate into userôs C++ pro-

ject. A GRT project can handle with a wild range of data types or sensor inputs, such as the

voice data, motion data, and even depth data, which makes the library can be applied to

various applications. Furthermore, users can change different learning algorithms deployed

Distal Phalanges

Intermediate Phalanges

Proximal Phalanges

Metacarpals
0-length thumb metacarpal

35

in the project to get the best recognition performance according to the type and specific

demand of the project. For instance, the SVMs algorithm might be used in a static postures

recognition project if the posture inputs are linear separated; otherwise, a k-NN classifier

would be better to handle with non-linear separable postures.

 Recently, this real-time gesture recognition library has rapidly taken researcherôs

interests according to its several unique advantages. Firstly, GRT provides a quick and

comprehensive data training phase. It allows the user to record own custom gestures

through any sensor and save the recorded gestures as labelled training dataset for later use.

Then, the labelled training will be sent to supervised learning method to train the gesture

classifier. Secondly, GRT has additional signal processing algorithm can be used for filter-

ing the gesture inputs. This large set of processing algorithms includes pre- and post- signal

processing algorithms, and feature extraction methods, such as Moving Average Filter,

Non-Movement Filter, and trajectory features, to refine the training dataset and increase

the recognition accuracy of classifiers. Finally, this library is developed for real-time ges-

ture recognition project including static postures recognition and dynamic gestures recog-

nition, which means that the supported learning algorithms can achieve gestures spotting

by default. With this unique feature, the trained classifier automatically computes the re-

jection thresholds used to validate continuous data stream.

3.2.4. Classification Module

Figure 3.10 Flowchart of the Classification Module

The proposed classification module of software architecture plays a crucial role in the

Real Time

Sensor Data

Feature

Extraction
Classification

Predicted

label

Pre-

processing
Learning

Algorithm

Test

Accuracy

TRAINING PHASE

Trained Model

REAL TIME PREDICTION PHASE

Post-

processing

Training

Data

Feature

Extraction

Pre-

processing

36

whole interaction system, and it includes two major phases: data training phase and real-

time prediction phase (as shown in Figure 3.10). The primary function of this module is to

transfer the real-time gesture data from a sensor into the predicted gesture label send to the

robotic hand. To achieve this purpose, a classifier should be trained during the training

phase before we implement real-time hand gesture classification.

The training phase indicates the process of training classifier models, and there are

some little differences between static postures training phase and dynamic gestures training

phase, as follow:

¶ For static postures training phase, the recorded training data consists of static

hand postures of ASL alphabet hand shapes. Then, a moving average filter was

implemented to pre-processing these training data. After that, the processed training

data will be used to perform feature extraction to extract the training feature of static

hand postures. The extracted features contain distances and velocities of fingertips,

see Chapter 4 for more details, and it will be fed into the static posture classifier.

To be more specific, a multi-class SVM learning algorithm has been chosen as the

classifier for static hand postures classification and trained model will be saved for

further use in real-time prediction phase. Lastly, a test accuracy of the trained clas-

sifier will be given at the end of the training phase.

¶ For dynamic gestures training phase, some predefined simple hand movements

have been recorded and saved as the dynamic gestures training dataset. Similar to

static postures training phase, the dynamic training dataset needs to be pre-pro-

cessed to get a precise trained model by trimming those non-movement frames,

then, the refined training dataset will be used to extract dynamic features. The ex-

tracted dynamic features are more complex than static because of higher dimen-

sions and may differ from Human-Computer interaction to Robot-Robot interaction,

see Chapter 5. Besides, DTW algorithm has been selected as the main classifier for

dynamic hand gestures classification compared to other algorithms. Same as static

training phase, the trained model will be saved for real-time prediction, and the test

accuracy will be given.

Although the training details are varying to static and dynamic, the final goal of training

phase is to get a precise trained model used for real-time classification.

37

In real-time prediction phase, the real-time depth data of human-made or robot-

made gestures are captured by Leap Motion Controller frame by frame. However, before

we send the raw data to the feature extraction step, it must be pre-processed to determine

the incoming real-time gesture belongs to static posture or dynamic gesture so that we add

an extra velocity threshold of hand movement at pre-processing phase. Next, if the received

raw data belongs to static postures, we will implement the static posture feature extraction;

otherwise, the dynamic feature extraction method will be performed. Then, these extracted

features will be sent to trained classifier model to do real-time prediction and output a

predicted gesture label. Moreover, there is an extra post-processing step in prediction phase

compared to training phase due to some special cases, see Chapter 4 and 5 for more details.

Lastly, a predicted label will be presented and sent to the destination robot B, then the

whole process of classification module has been completed.

3.3. Limitations

3.3.1. Limitation of the Robotic Hand

The robotic hand is the central unit of the presented system that interacts with human or

another robot, and it is also the bridge to connect the user and computer. Thus, the limit of

the robotic hand will determine the overall performance of the entire system because we

will use this hand to repeat humanôs or the other robotsô gestures as much as we can. This

limitation mainly refers to the degree of freedom (DOF):

1. Five DOF of the robotic hand: As we can see in section 3.1.1, each finger is con-

trolled by one linear motor inside the palm cover. It also uses a fishing line to attach

all the tendons of the finger by connecting the fingertip and the linear motor so that

the fingers can be actuated. However, this hardware structure is exactly the most

significant limitation of the robotic hand because all the tendons or phalanges have

to move together, result in only five degrees of freedom can be used. Also, the

bending direction of each finger is fixed so that this hand cannot perform the com-

plex handshapes, like the finger twists.

2. One DOF of the wrist part: Because the original robotic hand does not contain the

wrist part, we assembled the with forearm together to make the robotic hand can

perform rotation movement for some dynamic gestures. But due to the material and

38

time limit, there is only one servo motor installed inside the wrist part, also refers

to one degree of freedom.

3. Loss of the fishing line: This limitation indicates that the fishing line which binds

the tendon and motor will loose with the increasing experiment times. This defect

is inevitable so that we need to fasten it or re-tie the connections to avoid the inac-

curate effect of the handshape time to time.

The defects 1 and 2 of the robotic hand are the main limitations that decline the possibility

of repeating postures and gestures, result in the training samples have to be selected in a

limited range.

3.3.2. Limitation of the Leap Motion Controller

The Leap Motion Controller is depth camera used to capture hand gestures input and record

the training dataset. The accuracy of the Leap Motion will directly influence the quality of

training samples and the recognition rate. Even the Leap Motion Controller is one of the

most accurate 3D depth sensors in the market regarding the hand tracking, and there are

still several defects when we use it:

1. Communication interruptions: The communication interruption indicates that the

PC loses signal from Leap Motion Controller sometimes, result in getting invalid

hand tracking frame or frames, depends on the duration of the signal interruption.

It mainly caused by weak USB contact or the short break of process Leap Service,

and the probability of this phenomenon is relatively low and usually happens at the

beginning or the end of a posture recording.

2. Meaningless finger tracking data: This disadvantage is mainly caused by the rela-

tive position and orientation of the hand about the camera. When some fingers are

overlapping, the Leap Motion Controller may detect the forefingers as the back

fingers and vice versa, result in the incorrect finger tracking data recorded in the

current frame. If these false frames still exist in the training dataset, the accuracy of

the trained model will be affected.

3. Poor working area: As we know in section 3.1.3, the working area of the device is

above the surface 25 millimeters to 600 millimeters with a field of view of 150

degrees. However, this working area might be compressed in some cases.

39

Above three limitations are all caused by the camera itself and can be improved or effec-

tively avoid by recalibrating the Leap Motion Controller using the default software.

3.4. Conclusions

In this Chapter, we introduced the architecture of the presented hand gesture interaction

system which contains two major parts: hardware and software. Then, section 3.2 presented

all the hardware components built in this project, including the robotic hand, the robotic

arm (forearm), and the Leap Motion Controller. Especially, the robotic hand and arm are

assembled to perform the hand gestures, while the Leap Motion Controller is the sensor

receiving the gesture inputs. Meanwhile, section 3.3 described the corresponding software

parts used to control the above hardware components. It consists of a high-level control

system, ROS framework, and two libraries, GRT and LeapSDK, to take charge of classifi-

cation module of Leap Motion device. Besides, a classification module presented and de-

scribed in section 3.3.4. which plays a key role in in the system. The next chapters will

explain how to classify static hand postures and dynamic hand gestures based on classifi-

cation module flowchart.

40

Chapter 4. Classification Module for Static

Hand Postures Recognition

This chapter presents the methodology used for the real-time static hand postures recogni-

tion, corresponding to the classification module shown in section 3.3.4 for both the human-

robot interaction (HRI) and the robot-robot interaction (RRI) respectively. Section 4.1 de-

scribes the raw training dataset for static postures recognition. Then, section 4.2 shows how

the raw static hand postures data are pre-processed to get a better training dataset, and

section 4.3 explains what kind of features from static postures training data should be used

for classification. Section 4.4 which gives a detailed description and comparison of three

machine learning methods we used for static postures recognition. The experimental results

discussed in section 4.5, explaining why we decided to select the multi-class SVM classi-

fier for static posture recognition in our system.

4.1. Training Dataset for Static Hand Postures

The training dataset of static hand postures consists of ten digits and selected letters based

on American Sign Language. It composes of hand tracking frames captured by Leap Mo-

tion Controller and contains all the information which allows us to extract the features as

we need. As the handshapes of some ASL letters are very similar to digit handshapes, only

those letters with obviously different handshapes have been used in the training dataset.

For instance, as the posture for the letter óVô is same as that for the digit 2 in terms of

handshape, orientation, and location of each finger, the letter óVô has been removed from

the training dataset, even there is a little discrepancy in the position of the thumb finger.

The selected letters are varying to the different interaction modes because of the

flexibility of humanôs hand and robotic hand. Because the humanôs hand is more flexible

than any robotic hand, and it can perform the complicated hand shapes, like the fingers

twist. This is a significant feature in ASL communication because some of the letters or

gestures involve complex handshape, such as the letter óRô (see Figure 2.1). Due to the

limitation of the degree of freedom (DOF) and flexibility, the robotic hand can only repeat

41

those hand postures which do not require orientation changes of the wrist part. Thus, some

letters have been removed from the robot-robot interaction mode.

In both the human-robot interaction mode and the robot-robot interaction mode, the

ten digits (0 to 9) hand postures in ASL have been used as static posture training data.

Because the handshape for the digit 0 is same as that for the letter óOô, we removed the

duplicated letter óOô from both modes. It should be noticed that all the handshapes for the

nine digits except for digit 0 do not involve the wrist rotation, which means the palm always

has to face the camera or the observer. In the case of the hand posture for the digit 0, the

wrist will rotate 90 degrees around the arm direction. The set of all ten digits postures is

shown in Figure 4.1.

Figure 4.1 Ten digits recorded by the Leap Motion Controller

The posture for the digit 1: only the index finger fully extended, and the thumb

finger is closed on the middle finger. The orientation of the hand is up, and the normal of

palm direct to the camera.

The posture for the digit 2: the index and middle fingers are fully extended, and the

thumb finger is closed on the ring finger. The orientation of the hand is up, and the normal

of palm direct to the camera.

The posture for the digit 3: the index, middle, and thumb fingers are fully extended,

1 2 3 4 5

6 7 8 9 0

42

ring and pinky fingers are closed. The orientation of the hand is up, and the normal of palm

direct to the camera.

The posture for the digit 4: only the thumb finger is closed on the palm, other fingers

are fully extended. The orientation of the hand is up, and the normal of palm direct to the

camera.

The posture for the digit 5: all fingers are fully extended. The orientation of the

hand is up, and the normal of palm direct to the camera.

The posture for the digit 6: the index, middle, and ring fingers are fully extended,

the thumb and pinky fingers are closed together. The orientation of the hand is up, and the

normal of palm direct to the camera.

The posture for the digit 7: the index, middle, and pinky fingers are fully extended,

the thumb and ring fingers are closed together. The orientation of the hand is up, and the

normal of palm direct to the camera.

The posture for the digit 8: the index, ring, and pinky fingers are fully extended, the

thumb and middle fingers are closed together. The orientation of the hand is up, and the

normal of palm direct to the camera.

The posture for the digit 9: the middle, ring, and pinky fingers are fully extended,

the thumb and index fingers are closed together. The orientation of the hand is up, and the

normal of palm direct to the camera.

The posture for the digit 0: all fingers are half extended, and the thumb touches the

middle finger to form a circle. The orientation of the hand is up, and the normal of palm

has 45 to 90 degrees with the normal of the cameraôs surface.

There are several discrepancies of the ten digits for robot-robot interaction (RRI)

mode and human-robot interaction (HRI) mode. Firstly, the recorded static postures train-

ing data for robot-robot interaction mode was performed by the robotic hand, while the

humanôs hand performed training data used for human-robot interaction. Secondly, some

digits played by the robotic hand cannot meet the standard handshape of ASL. For example,

the posture for the digit 6 performed by the robot hand failed to achieve the connection

between the thumb and pinky according to the constraints of a robotic hand, including the

maximum bending angle and the bend direction of the fingers. Lastly, there are some posi-

tion differences of the ring finger between the training datasets for two modes. Due to the

43

muscular structure and connections of middle, ring, and pinky fingers [94], the ring finger

will bend when the pinky finger or the middle finger are bending. Thus, the fingertipôs

positions of the ring finger will be a little forward compared to the fully extended position,

if the postures need to extend the ring finger and close the middle or pinky finger at the

same time, like the posture for the digit 6 and 8. However, this deviation only happens in

the training data for human-robot interaction mode when the poses contain the above situ-

ation, and it would not influence the accuracy of the trained classifier.

There are extra postures of letters have been included in training dataset for RRI

and HRI, respectively. The following sections 4.1.1 and 4.1.2 will explain which and why

the letters have been selected by listing and analyzing the pros and cons from the perspec-

tive of fitting this project.

4.1.1. Letter Postures for Robot-Robot Interaction Training

In addition to the ten digits, there were six letters óAô, óCô, óIô, óLô, óXô, óYô also included

in the training dataset for robot-robot interaction (RRI) mode as the corresponding postures

for these letters are distinguishable. There are more letters that were not included in the

RRI training dataset because there is a high possibility of the confusion between robot

handshapes, as follow:

1. The posture of letter óBô and that of the digit 4;

2. The posture of letter óDô and that of the digit 1;

3. The postures of letters óEô, óSô, and óTô and that of the letter óAô;

4. The posture of letter óFô and that of the digit 9;

5. The posture of letter óGô and that of the digit 1;

6. The posture of letter óHô and that of the digit 2;

7. The posture of letter óKô, óUô, and óVô and that of the digit 2;

8. The postures of letters óMô, óNô, and óOô and that of the digit 0;

9. The postures of letters óPô and óQô cannot be performed by robotic hand due to

complex handshapes and the direction of wrist rotation;

10. The posture of letter óRô includes finger twist;

11. The postures of letters óWô and that of the digit 6.

Moreover, the postures of letters óJô and óZô are not static posture so that they would not be

44

considered in this training dataset.

The extra six letters included in the RRI training dataset are divided into two cate-

gories: (i) those requiring wrist rotation, and (ii) those which do not require wrist rotation,

as shown in Table 4.1 and 4.2.

Letter A I L Y

Illustration

(left-handed)

Robotic hand

(left-handed)

Leap Motion

image

(left-handed

for both hu-

man-made and

robot)

Description

Extended fingers:

None; Palmôs nor-

mal direction: cam-

era

Extended fingers:

Pinky; Palmôs nor-

mal direction: cam-

era

Extended fingers:

Thumb, index;

Palmôs normal di-

rection: camera

Extended fingers:

Thumb, pinky;

Palmôs normal di-

rection: camera

Table 4.1 The letters that do not require wrist rotation: óAô, óIô, óLô, and óYô

The postures for óAô, óIô, óLô, and óYô do not require the wrist rotation as shown in

Table 4.1. Similar to the postures for the ten digits 1 to 9, the normal of the palm in the

postures for these four letters is always facing the camera. The second raw of the table

shows how the robotic hand performs the postures used for the training dataset. There is a

little discrepancy in the position of the pinky and thumb fingers when the robotic hand

plays the posture for letter óYô because it lacks the degree of freedom to wave. Lastly, the

third raw displays the depth tracking data of hand skeleton provided by the LMC.

45

Letter C X

Illustration (left-

handed)

Robotic hand (left-

handed)

Leap motion

image (left-handed

for both human-

made and robot)

description

Extended fingers: All;

Palmôs normal direc-

tion: +45 degrees of

camera

Extended fingers: in-

dex; Palmôs normal

direction: -45 degrees

of camera

Table 4.2 Letters that require wrist rotation for RRI training: óCô, and óXô

The hand postures for letters óCô and óXô require wrist rotation as shown in Table

4.2. The hand posture for letter óCô requires a 45 degrees positive rotation around the wrist

while the posture for letter óXô requires a 45-degree negative wrist rotation. There are 100

frames recorded for each of these letters.

4.1.2. Extra Letter Postures for Human-Robot Interaction Training

In the human-robot interaction (HRI) mode, we used extra three letters óBô, óFô, and óUô,

as shown as in Table 4.3, on top of the letter postures óAô, óBô, óCô, óFô, óIô, óLô, óUô, óXô,

óYô used in the RRI static training dataset. While a human hand can easily perform all the

postures of ASL alphabet, we added only these three extra letter postures because of the

Leap Motion Controller limitations (see section 3.4.2). For instance, the thumb finger is

hidden by other four fingers in the handshape of letters óMô and óNô so that the Leap Motion

46

Controller cannot detect the specific position of thumb finger. Another primary reason for

rejecting some letters is about the slight and unnoticeable differences between postures as

explained in section 4.1.1.

 B F U

Illustration (left-

handed)

Robotic hand

(left-handed)

Leap motion im-

age (left-handed

for human-made

only)

description

Extended fingers:

All except thumb;

Palmôs normal di-

rection: camera

Extended fingers:

middle, ring,

pinky; Palmôs nor-

mal direction:

camera

Extended fingers:

index, middle;

Palmôs normal di-

rection: camera

Table 4.3 Extra letters used in the HRI mode: ñBò, ñFò, and ñUò

Because differently from the hand postures training dataset used for the RRI mode,

the hand postures used in the HRI mode could be anywhere of the Leap Motion working

area in the real-time prediction phase. We, therefore, recorded 10,000 frames per each letter

to handle these position variations. These 10,000 frames for each letter were taken from 5

different relative positions in front of the camera (2,000 frames per each position), includ-

ing up, down, left, right, and centre positions.

The hand position of up has an angle of approximately 45 degrees upward to the

horizontal direction of the camera; the position of down indicates there is 45 degrees down-

ward to the horizontal of the camera; the left means the relative position of hand is located

47

at the left side of the vertical direction of the camera, while right represents the hand has a

rightward angle to the vertical direction of the camera; the hand position of centre is at the

opposite of the cameraôs surface. In each position, the direct distance from the hand to the

camera will be always the same and approximately 35 centimeters, moreover, the normal

of the handôs palm always direct to the camera.

4.2. Pre-processing

Pre-processing of the static training dataset is a necessary step before feature extraction

from data because these data could be affected by hardware communication interruption,

distal phalanges vibration, and meaningless tracking data.

Figure 4.2 Flow chart of pre-processing for RRI and HRI

 In both human-robot interaction and robot-robot interaction modes: the raw static

posture training data contains invalid frames more caused by communication interruption,

see section 3.3.2. To deal with this hardware issue, we will have to eliminate these invalid

tracking frames from the 100 frames per posture in the HRI mode and the 10,000 frames

per posture in the RRI mode, respectively.

 In the human-robot interaction mode, there is another problem to deal with distal

raw training dataset

100 frames /

posture

10,000 frames / posture
RRI(10 digits + 6 letters)

for RRI or

HRI ? HRI(10 digits + 9letters)

10 refined frames /

posture

Trim invalid
frames and

randomly extract
10 valid frames

2,000 of up 2,000 of down2,000 of left 2,000 of right2,000 of centre

20 frames / position

Trim invalid or
meaningless frames
and average filtering

100 pre-processed

frames / posture

Pre-processed

training dataset

48

phalanges vibration. This is due to the subtle jitter/vibration of the distal phalanges of each

finger that may occur during the posture recording. A velocity threshold of 10 millimeters

per second was set to eliminate the postures affected by massive amounts of vibration.

Besides, we also implemented an average filter to correct the position of fingertips in those

recorded frames by calculating the average positions of every 100 frames to extract 20

refined frames per posture, as shown in Figure 4.2.

 In the human-robot interaction mode, it may happen that some meaningless frames

recorded. This is due to another limitation of the camera (see section 3.3.2) that produces

a mismatch of the finger positions when the forefingers are blocking the view of the rear

fingers. To deal with this problem, we have not only to eliminate the incorrect frames, but

also need to manually adjust the orientation of the hand postures to make all fingers could

be separately detected.

After these pre-processing steps for both RRI and HRI, we obtained a clean static

postures dataset consisting of 160 RRI frames and 1,900 HRI frames, which are used in the

next step, the feature extraction.

4.3. Feature Extraction

Feature extraction is a crucial step before we implement the classifier training because it

decides what kind of features will be fed into the static posture classifier. Furthermore, the

selection of features from static training dataset will directly influence the trained model

and the recognition accuracy in many cases.

The extracted features will be same for both HRI and RRI modes. The tracking data

consists of a 9-dimensions vector from each frame of the pre-processed training data (see

section 4.2) obtained after repeating experiments and comparing the results, so it provides

the best balance between the scale of data and the information it contains.

49

Figure 4.3 Illustrations of the hand tracking data for feature extraction

Figure 4.3 shows the 9-dimensions tracking data, and how this vector was calculated

as described as following,

¶ Palmôs position ὖ , normal ὔ , and velocity ὠ ;

¶ The fingertips position ὖ , velocity ὠ , and direction ὈὍὙ (where i represent-

ing the finger index: 0-thumb, 1-index, 2-middle, 3-ring, and 4-pinky);

¶ Hand direction ὈὍὙ .

The features for the static training dataset could mainly be divided into two parts. One part

is associated with the distances between palmôs position to each fingertip, represented by

Ὀ , which occupied total 5 dimensions and represented by:

 Ὀ ȿὖ ὖ ȿ (1)

where i = 0 ~ 4 indicates five fingers in order from thumb to pinky. The second part is

associated with the absolute distances of fingertips positions between two adjacent fingers,

computed as:

 Ὀ ȿὖ ὖ ȿ (2)

where i and j are the indices of the fingers, for example, Ὀ means the distance of finger-

tips between thumb and index fingers, and it consumes 4 dimensions of the vector. The

resulting 9-dimensions feature vector representing the static training data that will be fed

..

.

. .

.
ὖ

ὖ

ὖ
ὖ ὖ

ὖ

.

.
..
.

.
ὈὍὙ

ὈὍὙ

ὈὍὙ

ὈὍὙ

ὈὍὙ

ὈὍὙ

ὔ

50

into the learning algorithm to train the classifiers.

 All the static features are stored in .grt file format [92] and labelled as a unique

class for each posture. As there is a 9-dimensions feature vector for each frame, there are

total 160 vectors for the RRI mode and 1,900 vectors for the HRI mode.

4.4. Learning Algorithm

Three popular learning methods for hand gesture classification have been selected and im-

plemented in this section in order to find the most suitable one: The Adaptive Naµve Bayes

Classifier (ANBC), the k-Nearest Neighbours (k-NN), and the multi-class Support Vector

Machine (SVM). They are all supervised learning algorithms and need to be fed with train-

ing data with labelled gesture classes. A test accuracy will be given for each classifier using

the training dataset itself to test the real-time prediction.

4.4.1. Static Hand Postures Recognition with ANBC

Adaptive Naµve Bayes Classifier (ANBC), presented in [95], is a basic statistical classifier,

particularly suitable for gestures recognition. The Naµve Bayes classifiers have been used

to deal with a wild range of classification problems, such as text classification [96] and

gesture recognition [97], for which a mathematical model can be deducted from the basic

Bayesô probability calculation. ANBC is a simple classifier that gives some strong assump-

tions of each training data input (the 9-dimensions vector in our case), most notably all the

dimensional values in the vector are relatively independent. The Adaptive Naµve Bayes

Classifier has an adaptive online training phase which provides the classifier with relatively

high accuracy for recognizing the hand gestures, by refining the original trained model

during the real-time prediction phase. This adaptive feature allows the algorithm to contin-

uously train and perfect the model of each gesture by adding the latest real-time predicted

result to the original model, and then re-compute the model using appended labelled data.

Moreover, another significant feature of ANBC is the weighting factors which gives the

user freedom to weight the essential dimensions of the training data and makes the trained

model more precise.

The ANBC uses the Bayesô theorem to represent the posterior probability of an

event A given the data of event B, by:

51

 ὖὃȿὄ
ὖὄȿὃὖὃ

ὖὄ
 (3)

where ὖὃ represents the prior probability of the event A happening, and ὖὄ represents

the probability of the event B.

In the hand gesture classification problems, the calculated posterior probability

ὖὃȿὄ of event A using equation (3) is actually representing the probability of each di-

mension value of input vectors occurring given each class probability, where ὖὃ is now

the conditional probability of each input dimension given the gesture class and ὖὄ is the

probability of this gesture occurring. Based on this cogitation, the likelihood of gesture Ὃ

(k ŗ [1, K]) can be calculated from the probability associated with the real-time sensor

data d:

 ὖὋȿὨ
ὖὨȿὋ ὖὋ

В ὖὨȿὋ ὖὋ
 (4)

In equation (4), the probability of gesture class ὖὄ is the sum of all the K ges-

tures, ὖὋȿὨ, in the trained model happening when given the real-time sensor data. The

prior probability of gesture k is equal to 1/K because we manually set the same number of

training vectors for each gesture.

 The equation (4) can be updated to calculate the class probability of gesture k when

the given the real-time sensor dataset contains the N-dimensional vector D, since the strong

assumptions for each dimension have been made independently, by:

 ὖὋȿὈ
ὖὈȿὋ ὖὋ

В ὖὈȿὋ ὖὋ
 (5)

where Ὀ ὨȟὨȟȣȟὨ , N = 9 in our case, and the conditional probability of N-dimen-

sional vector ὖὈȿὋ ὖὋ can be calculated by:

 ὖὈȿὋ ὖὋ ὖὈȿὋ ὖὋ (6)

Here, a Multivariate Normal Distribution (Multivariate Gaussian Distribution) has been

used as the density function due to the advantage of handling the continuous-valued vector

D of a specific gesture k.

Lastly, an adaptive re-training process can be implemented after the classification

model has been trained. During this phase, the algorithm uses a fixed size buffer to store

52

the latest predicted gesture as the input training data and pop out the oldest data to update

the trained model with the streaming data. Meanwhile, the algorithm allows adding weights

for those dimensions of training data that the user considers necessary, which is helpful to

distinguish the two similar hand gestures in our case.

After all, the final prediction of input data can be made by finding the maximum

likelihood among with all labelled gestures given the current input gesture from sensor data,

by equation (7):

 ÁÒÇÍÁØὯ ὖὋȿὈ
ὖὈȿὋ ὖὋ

В ὖὈȿὋ ὖὋ
 ρ Ὧ ὑ (7)

4.4.2. Static Hand Postures Recognition with k-NN

K-nearest neighbour (k-NN) algorithm is a well-known supervised learning algorithm that

can be used to solve classification and regression problems. Although it belongs to the

supervised machine learning algorithm, in fact, k-NN classifier learns nothing from the

training data and uses the entire training dataset to perform prediction, which is called lazy

learning. Thus, the training phase is not a necessary step before the real-time prediction

phase since the predicted label for the current input gesture will be computed during the

prediction period.

The idea of the k-NN used for classification is to find the majority from the k-

nearest instances which can be calculated based on geometric distance measurement be-

tween the input sample and the labelled training samples, and each instance among the k-

nearest group represents the corresponding gesture class. The majority class will be the

prediction of the k-NN classifier. In most real-world problems, Euclidean distance is the

most popular geometric distance metric and a perfect choice in hand gesture recognition

because the variables of the training data possess the same type, the absolute positions in

the 3-D space. However, it can be replaced with other distance metrics according to the

specific training data type, such as Hamming Distance [98], Manhattan Distance [99], and

Minkowski Distance [100]. The Euclidean distance between ὈὫȟὫ is defined as:

 ὈὫȟὫ Ὣ Ὣ Ὣ Ὣ ȣ Ὣ Ὣ (8)

where the Ὣ, Ὥ ρȟςȟσȟȣȟὑ, is the input vector sample with N-dimensional features

53

{Ὣ, Ὣ, é, Ὣ }, and ὑ equals to the total number of input gestures; Ὣ represents the

training samples.

Figure 4.4 Illustrations of how k-NN algorithm predicts a 2-D class, when k = 4. [101]

Figure 4.4 shows the 4-nearest neighbour classifier that predicts an unknown 2-

dimensional class by finding the majority of its four nearest instances. The prediction will

be the class A.

Algorithm 1. Pseudocode of k-Nearest Neighbour classifier

)ÎÐÕÔȡ .Ȥ$ÉÍÅÎÓÉÏÎÁÌ ÔÒÁÉÎÉÎÇ ÄÁÔÁȟ ËȤÖÁÌÕÅ

/ÕÔÐÕÔȡ the predicted label

ÂÅÇÉÎ

 Classify (M, N, ὼ) // M: training data, N: class labels of M, ὼ: sample to be predicted

 ÆÏÒ Ὥ=1 ÔÏ n ÄÏ
 Calculate Euclidean distance $ (ὢ, ὼ);
 ÅÎÄ ÆÏÒ
 Calculate the set I which has the indices for the k smallest distances $ (ὢ, ὼ).
 ÒÅÔÕÒÎ majority label for {ὣ where i ŗ Ὅ}
ÅÎÄ

Table 4.4 Pseudocode of k-Nearest Neighbour algorithm

54

In the case of our hand gesture classification problem, the dimensions of input vec-

tor will be increased from 2 to 9 dimensions. For each input gesture, we compute the Eu-

clidean distances between this gesture and all samples in the training dataset and sort the

distances with ascending order. Then the smallest K distances can be obtained and take

place the majority label as the prediction label. Table 4.4 shows the pseudocode of k-NN

classifier.

4.4.3. Static Hand Postures Recognition with Multi-Class SVM

The multi-class Support Vector Machine classifier also is a supervised learning algorithm

based on Support Vector Machine algorithm, which has a good performance in solving high

dimensions and non-linear separable problems, being able to deal with a large range of

pattern recognition and classification problems. We used a front-end class of LIBSVM

[102], a library for support vector machines (SVMs), providing gesture recognition toolkits

(GRT) [92] to implement the SVMs model training and to act the real-time static posture

prediction. Different from the previous two simple classifiers, the SVM algorithm is more

complicated and has been extended to many sub-SVM algorithms applied to a wide number

of real problems.

The basic idea of the SVM method for classification is to find the optimal hyper-

plane with the maximal margin which separates the training data samples, and then use this

hyperplane in the prediction phase when dealing with the input sensor data. The classic

SVM algorithm was proposed to handle the binary classification problems by satisfying

the following requirements [22]:

 ÍÉÎ
◌ɴ ȟɴ ȟᶰ

ρ

ς
◌◌ ὅ ‚Ὥ

 subject to ώ◌‰● ὦ ρ ‚Ὥ,

 ‚ὭπȟὭ ρȟςȟȣȟὮ (9)

where ●ᶰὙ, Ὥ ρȟςȟȣȟὮ is the training data vector of the two independent classes, ώᶰ

ρȟρ is the vector label, and function ‰● represents the projection from training data

to the high-dimensional vector ◌ in the space H and parameter C is the regularization con-

stant variable.

55

 Using the regulation (9), the training data can be linearly separated by a line (when

the dimensions = 2), or hyperplane (when the dimensions Ó 3), and figure 4.5 shows the

hyperplane separating the 2-classes training data with the optimal margin when the training

samples are 2-D and 3-D, respectively.

Figure 4.5 The line or hyperplane with maximal margin of binary classification.

Most real-life classification problems, including the hand posture classification, in-

volve multi-class training data, that requires the SVM algorithm to generate more hyper-

planes to separate the training samples. As it is not possible to solve the multi-class classi-

fication problems using the standard binary SVM classifier, a multi-class SVM classifier

was proposed in [23].

The general idea of the multi-class SVM approach is based on ñone-versus-oneò

strategy to construct ὯὯ ρȾς binary sub-classifiers that used to classify two classes us-

ing one training data, where k is the number of classes. Given the training samples from i

to j classes, the multi-class classification problem can be represented by the following re-

quirements:

 ÍÉÎ
◌ ȟ ȟ

ρ

ς
◌ ◌ ὅ ‚

 subject to ◌ ‰● ὦ ρ ‚, if ●ᶰὭÔÈ class,

 ◌ ‰● ὦ ‚ ρ, if ●ᶰὮÔÈ class,

 ‚ π (10)

56

A majority voting approach is used to achieve the multi-class classification, which

applies every binary classifier to perform prediction and vote to the winning class. Since

all the classifiers vote for a class, the prediction label can be replaced by the class with the

most votes. In addition to above strategy, there are other approaches to implement a multi-

class SVM classifier, such as the ñone-against-allò [103] strategy or the Weston and Wat-

kinsô [104] multi-class SVM.

As our system was designed for real-time prediction, we selected linear kernel as

the classifier type since it dramatically boosts training and classification speed and signif-

icantly reduces the memory demands. There are several parameters need to be set to get

the better result, as follow,

¶ Scaling training/prediction data to range of [-1, 1];

¶ A predicted class will be rejected if the classesô probability is below 0.8;

¶ Main parameters: nu = 0.05, C = 1;

¶ Type: C-Support Vector Classification (C-SVC).

where SVM parameters: (i) nu represents the maximum percentage of the misclassified

training samples in the margin; (ii) penalty parameter C is any positive value which finds

the balance between getting the largest minimum margin of the hyperplane and separating

the training samples as many as possible. As our training samples are highly linear separa-

ble, we set C = 1.

The SVM parameters may vary according to the features of the static postures. In

this case, we found above parameters are perfectly fit either the human-made postures or

the robotic hand postures.

4.5. Real-time Prediction Phase

Using the gesture classifiers trained as described in section 4.4, we can actually implement

the real-time prediction. During the prediction period, the process is same as we did in the

training phase but there are several differences in the specific steps. The following para-

graphs will explain the differences and how to implement real-time postures prediction

based on the diagram shown in Figure 4.6.

57

Figure 4.6 The flowchart of the real-time prediction phase

The raw real-time posture data captured by the camera are sent to the prediction

module, where the invalid frames caused by communication interruption or finger self-

occultation will be removed at pre-processing step and then sent to next step for feature

extraction.

Different from the training phase, the velocity features of the five fingertips ὠ

and handôs palm ὠ will be extracted in order to distinguish between the static hand pos-

tures and the dynamic hand gestures. Only those frames with all velocity features less than

10 millimeters per second will be sent to classification step. If there is one or more velocity

failed to meet the threshold requirement, then this frame will be removed.

 Then, the gesture prediction can be made in classification step using the trained

model, where we will use the multi-class SVM as the primary classifier, and the reason will

be shown in next section.

 Finally, the predicted posture label of the current frame is generated. If the classifier

is ANBC, then there is an extra post-processing step before the predicted label come out.

Because the ANBC classifier performs an adaptive feature to update the original training

samples with the newest labelled class so that the produced label will be stored with all

features of this frame in a buffer. Then, the whole process of real-time prediction has been

achieved.

4.6. Experimental Results and Analysis

Two experiments were conducted to validate the hand postures recognition in the robot-

robot interaction and, respectively, the human-robot interaction mode. We used two pre-

recorded test datasets: one test dataset consisting of 3,800 frames of hand postures per-

formed by humanôs hand to test the HRI trained classifier, and another dataset of 3,200

