INTRODUCTION

• In Canada, around 20-30% of pregnant women are smokers (1). In order to reduce the teratogenic effect of tobacco, these women are encouraged to use nicotine replacement therapies (NRT) to help them stop smoking.

• However, these alternatives still constitute a source of low levels of nicotine exposure. We have previously studied the effects of low-dose nicotine in the hippocampus and entorhinal cortex of rat offspring exposed perinatally.

OBJECTIVE

To assess the effects of low levels of perinatal nicotine exposure on neuron numbers in the rat cingulate cortex (Cg2), an important part of the limbic system.

METHODOLOGY

Group 1:
- Saline
- 1 mg/kg/day for 2 weeks prior to pregnancy until weaning

Group 2:
- Dams
- Nicotine
- Male offspring (N= 26)

RESULTS

The results reveal no significant effect of treatment on the number of NeuN cells in Cg2 with p>0.05 (0.076) with a t(8) = -2.044.

DISCUSSION

• Difference of cell counts is too minimal to detect a statistically significant difference
• The treatment was given in utero, during neurodevelopment. Any early life effect would appear to be transient and no longer visible in the mature brain
• Possibility that the dose given was a safe approach for not causing any disruption in the neurodevelopment of the cingulate cortex

What does this mean?

➢ Potentially these findings suggest that low levels of nicotine given perinatally have no long-lasting effects on male rat brains.
➢ NRT therapies have low dose nicotine levels and the same conclusions may be made for humans
➢ Positive outlook for women trying to quite smoking

Future directions

• Larger sample size
• Examining the effect on younger male rats & including female subjects
• Examining other brain areas implicated in stress

CONCLUSION

➢ Perinatal NRT offers a low dose of nicotine, not found to affect the number of neurons in adult male rats cingulate cortex
➢ These results are interesting because they suggest NRT can be safely administered in pregnant women.
➢ This will help with compliance toward smoking cessation by reducing the stress associated with nicotine withdrawal

REFERENCES

• (1): Allemang-Grand R, Konkle ATM: Effects of Perinatal Nicotine Exposure on Neuronal and Astrocytic Markers in the Male Rat Hippocampus and Cortex

ACKNOWLEDGMENT

The author would like to thank professor Anne TM Konkle, Lydia Jeong as well as the University of Ottawa UROP.

LIMITATIONS

➢ Small sample size
➢ No positive control, or dose response
➢ Smaller sample size due to manipulation errors during mounting
 • Section missing
 • Rips
 • Uneven staining

AFFILIATIONS

1 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON
2 School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON
3 University of Ottawa Brain and Mind Research Institute, Ottawa, ON