NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE
IMMUNOLOGICAL STUDIES IN HEPATITIS B

A Thesis submitted to the
Faculty of Graduate Studies
University of Ottawa

In Partial Fulfillment of
the Requirements for the Degree
Doctor of Philosophy

by

Morris Jutcovich

September, 1980
Dedicated to my Mother and Father

whose love made this possible
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>i</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>ii</td>
</tr>
<tr>
<td>ABBREVIATIONS USED</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>L. Literature Review</td>
<td>2</td>
</tr>
<tr>
<td>II. Cell Mediated Immunity</td>
<td>27</td>
</tr>
<tr>
<td>III. Objectives</td>
<td>35</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>38</td>
</tr>
<tr>
<td>I. Antigen Studies</td>
<td>38</td>
</tr>
<tr>
<td>A. Source of plasma and sera</td>
<td>38</td>
</tr>
<tr>
<td>B. Hepatitis B surface antigen and antibody</td>
<td>38</td>
</tr>
<tr>
<td>1. Detection of HBsAg</td>
<td>38</td>
</tr>
<tr>
<td>a) AGD</td>
<td>39</td>
</tr>
<tr>
<td>b) CIEP</td>
<td>40</td>
</tr>
<tr>
<td>c) RIA</td>
<td>41</td>
</tr>
<tr>
<td>d) Sera tested</td>
<td>42</td>
</tr>
<tr>
<td>2. Detection of anti HBs: Passive hemagglutination assay (HA)</td>
<td>42</td>
</tr>
<tr>
<td>a) Reagents</td>
<td>42</td>
</tr>
<tr>
<td>b) Anti-HBs assay</td>
<td>42</td>
</tr>
<tr>
<td>c) Sera tested</td>
<td>44</td>
</tr>
<tr>
<td>3. Subtype determination</td>
<td>44</td>
</tr>
<tr>
<td>a) Populations studied</td>
<td>44</td>
</tr>
<tr>
<td>b) AGD technique</td>
<td>44</td>
</tr>
<tr>
<td>4. Purification of HBsAg</td>
<td>45</td>
</tr>
<tr>
<td>a) Centrifugation</td>
<td>45</td>
</tr>
<tr>
<td>b) Gradient solutions</td>
<td>45</td>
</tr>
<tr>
<td>c) Preparation of HBsAg starting material for purification</td>
<td>45</td>
</tr>
<tr>
<td>d) Large volume purification</td>
<td>46</td>
</tr>
<tr>
<td>(1) First isopycnic banding - Step I</td>
<td>46</td>
</tr>
<tr>
<td>(2) Second isopycnic banding - Step II</td>
<td>48</td>
</tr>
<tr>
<td>(3) First rate separation - Step III</td>
<td>48</td>
</tr>
<tr>
<td>(4) Third isopycnic banding - Step IV</td>
<td>49</td>
</tr>
</tbody>
</table>
Cell Mediated Immunity

A. Populations tested

1. Parameters
2. Whole blood technique
 1. Lymphocyte culture preparation
 2. Lymphocyte stimulants
 1. Antigen
 2. Mitogen
 3. Control
 3. Culture conditions
 4. Lymphocyte stimulation measurement
3. Lymphocyte cultures
 1. Lymphocyte separation
 2. Lymphocyte stimulants
 1. Antigens
 2. Mitogen
 3. Control
 3. Culture conditions
 4. Lymphocyte stimulation measurement
C. Migration Inhibition .. 77
 1. Preparation of agarose ... 77
 2. Preparation of leukocytes 78
 3. Addition of test reagents 79
 4. Migration index .. 79
 5. Identification of migrating cells 80

RESULTS ... 81

I. Antigen Studies .. 81
 A. Hepatitis B surface antigen (HB$_S$Ag and antibody (anti-HB$_S$)) 81
 1. Comparison of RIA, AGD and CIEP for HB$_S$Ag detection in serum (Table III) .. 81
 a) RIA ... 81
 b) AGD ... 81
 c) CIEP .. 81
 2. Comparison of HA and RIA for detecting anti-HB$_S$ in serum (Table IV) ... 85
 3. Detection of HB$_S$Ag and anti-HB$_S$ in consecutive sera collected from an institutionalized population (Table V) 85
 4. Subtype determinations ... 85
 5. HB$_S$Ag purification ... 89
 a) Large volume purification 89
 b) Small volume purification 93
 c) Protein determination .. 97
 d) Electron microscopy ... 97
 e) Subtype ... 99
 f) Assessment of CS2RI CSI purity 99
 g) HB$_S$Ag purification following PEG precipitation 101
 B. Hepatitis B e antigen and antibody 101
 1. Prevalence of HB$_C$Ag and anti-HB$_E$ in four HB$_S$Ag-positive populations ... 101
 2. HB$_C$Ag and anti-HB$_E$ in two institutionalized populations ... 104
 a) Prevalence of HB$_C$Ag and anti-HB$_E$ in HB$_S$Ag-positive sera .. 104
 b) Prevalence of HB$_C$Ag and anti-HB$_E$ in HB$_S$Ag-positive sera as a function of age at admission 104
 c) Prevalence of HB$_C$Ag and anti-HB$_E$ in HB$_S$Ag-positive sera as a function of length of residence 104
 (1) HB$_C$Ag .. 104
 (2) Anti-HB$_E$.. 104
 d) Prevalence of HB$_C$Ag and anti-HB$_E$ in HB$_S$Ag-positive patients as a combined function of age at admission and length of residence 111
 (1) HB$_C$Ag .. 111
 (2) Anti-HB$_E$.. 111
 e) Prevalence of HB$_C$Ag and anti-HB$_E$ in matched HB$_S$Ag positive and HB$_S$Ag/anti-HB$_S$ negative pairs 115
ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Edgar Perry for his assistance, advice, patience and above all, friendship; without these, this project could never have been completed, let alone attempted. I would also like to thank Dr. J.C.N. Westwood, Chairman of the Department of Microbiology and Immunology for his timely advice and for the opportunity to work in the department and Dr. E. Rossier for his advice and discussions on cell mediated immunity. In addition, I would like to thank the other staff members of the Department of Microbiology and Immunology whose acceptance made my stay so much more enjoyable.

I would also like to thank Dr. J.L. Gerin, Director of the MAN Program, Rockville, Maryland, Dr. R.H. Purcell, NIAID, Bethesda, Maryland, Dr. L. Overby, Abbott Labs., N. Chicago, Ill., Drs. R.Y. Dodd, and N. Nath, American Red Cross, Bethesda, Maryland and Dr. S.Z. Hirschman, Mount Sinai School of Medicine, New York City for allowing me to work in their laboratories and for teaching me invaluable technical skills needed for this project.

Last, but not least, I would like to thank the support staff in the Department of Microbiology and Immunology for their assistance - Mr. A. Brunner for assistance with electron microscopy, Mr. C.J. McCulloch for technical assistance, Mr. P. Gay for always making sure I had the right supplies when needed, Mrs. H. Baraniak and Mrs. K. Laschewski for supplying me with clean glassware at all times, Mr. W. Brennan and the Animal House staff, Mrs. Terry Goldberger and Monique D'Amour for their efficient typing, and to all other staff whose assistance from time to time was gratefully appreciated.

I have been fortunate to work with such a fine group of people. It certainly made my job a lot easier.
SUMMARY

1. Three assays were compared for their ability to detect HB$_s$Ag in serum. RIA was found to be more sensitive than CIEP and AGD. We also compared RIA and HA for detecting anti-HB$_s$ and found them to be equally sensitive.

2. Subtypes of four HB$_s$Ag-positive populations were determined. Residents of mental institutions and renal dialysis patients were predominantly HB$_s$Ag/αd. The majority of blood donors also had this subtype while acutely ill patients were predominantly HB$_s$Ag/αy positive.

3. Two HB$_s$Ag purification schemes are presented. Both involve three isopycnic bandings in CsCl and a rate separation step in a continuous sucrose gradient. The final purified antigen particles have a diameter of 20 nm, a buoyant density of 1.20 g/cm3 in CsCl and is free of detectable human serum contaminants by AGD; occasionally these preparations raise anti-HSA antibodies when injected into guinea pigs.

4. HB$_c$Ag was purified from the liver and serum. The core particles from the liver were "empty", banded at 1.30 g/cm3 in CsCl and were negative for DNA polymerase. Two populations of cores were extracted from serum Dane
particles - an "empty" population which was identical to the particles obtained from hepatic tissue and a population of "full" particles which banded at 1.36 g/cm³ in CsCl and was positive for DNA polymerase activity. Both populations had diameters of 27 nm.

5. Four HBsAg-positive populations were tested for HBeAg. This antigen was most frequently found in the renal dialysis population and least frequently encountered in blood donors with intermediate frequencies for the DS and OMR residents of mental institutions. Prevalence of HBeAg was dependent on the length of residence rather than the age at admission for these two latter groups.

6. HBeAg was more often detected in HBsAg/antibody positive blood donors while anti-HBe was more often found in the HBsAg/antibody positive donors.

7. A third e marker was detected and designated as e3. It was similar to e2 in that it appeared and disappeared at the same time as this determinant and was thermolabile at 56°C. A more appropriate designation may be e2a.

8. HBV specific DNA polymerase activity was detected in 80% of HBeAg-positive sera and in 36% of the HBeAg/anti-HBe negative sera. This latter finding is thought to be due to the relative insensitivity of the AGD assay in detecting HBeAg-positive sera.

9. All HBeAg/DNA polymerase positive sera contain full and empty Dane particles which can be visualized by EM.
An occasional anti-HB_e positive serum also has detectable Dane particles; however, their numbers are reduced and all are empty.

10. Lymphocytes from 16 post-hepatitis B patients challenged in vitro with purified HB_sAg and the inactivated NIH hepatitis B vaccine showed no significant transformation. A contaminant fraction obtained during the purification process was found to significantly stimulate lymphocytes from this population. These findings may explain some of the earlier positive CMI responses obtained by some investigators using partially-purified HB_sAg preparations.

11. The leukocyte migration inhibition test was performed using the agarose method described by Clausen (1971). No significant inhibition of the migrating polymorphonuclear leukocytes was observed, confirming the results of some investigators and refuting those of others.
ABBREVIATIONS USED

AGD
anti-\(\text{HB}_c\)
anti-\(\text{HB}_e\)
anti-\(\text{HB}_s\)
anti-NHS
ARC
B-cell
CaCl\(_2\)
CsCl
CMI
CIEP
CPM
cm
cC
Ci
CS1
CS2
CS2R1
CS2R1CS1
d ATP
d CTP
d GTP
DHT

Agarose gel diffusion
antibody to hepatitis B core antigen
antibody to hepatitis B e antigen
antibody to hepatitis B surface antigen
antibody to normal human serum
American Red Cross
Bone marrow derived lymphocyte
Calcium chloride
Cesium chloride
Cell mediated immunity
Counter immunoelectrophoresis
Counts per minute
centimetre
cubic centimetre
curie
1st isopycnic banding product
2nd isopycnic banding product
Rate separation product
3rd isopycnic banding product
deoxyadenosine-5' triphosphate
deoxycytidine-5' triphosphate
deoxyguanosine-5' triphosphate
Delayed hypersensitivity testing
DNA Deoxyribonucleic acid
DNCB Dinitrochlorobenzene
DPA DNA polymerase assay
DPSA DNA polymerase specificity assay
DS Down's syndrome
DTH Delayed type hypersensitivity
EM Electron microscopy
FBS Fetal bovine serum
g gram
g/cm^3 gram per cubic centimetre (a measure of density)
HA Passive hemagglutination
HAA Hepatitis-associated antigen
HB$_c$Ag Hepatitis B core antigen
HB$_e$Ag Hepatitis B e antigen
HB$_s$Ag Hepatitis B surface antigen
HBIG Hepatitis B immune globulin
HBSS Hanks balanced salt solution
HSA Human serum albumin
3H-T Tritiated thymidine
3H-TTP 53H-thymidine-5' triphosphate
IEM Immune electron microscopy
K cell Killer cell
KCl Potassium chloride
L Litre
LSM Lymphocyte separation medium
LT Lymphocyte transformation
M Molar
MgCl$_2$ Magnesium chloride
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>Migration index</td>
</tr>
<tr>
<td>MIF</td>
<td>Migration inhibition factor</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>mw</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NH(_4)Cl</td>
<td>Ammonium chloride</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NP40</td>
<td>Nonidet P40</td>
</tr>
<tr>
<td>Ø</td>
<td>Diameter</td>
</tr>
<tr>
<td>OMR</td>
<td>Other mentally retarded</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PHA</td>
<td>Phytohaemagglutinin</td>
</tr>
<tr>
<td>P/N</td>
<td>Positive to negative ratio</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per square inch</td>
</tr>
<tr>
<td>PTA</td>
<td>Phosphotungstic acid</td>
</tr>
<tr>
<td>RD</td>
<td>Renal dialysis</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>s</td>
<td>Sedimentation coefficient</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SGOT</td>
<td>Serum glutamic oxalacetic transaminase</td>
</tr>
</tbody>
</table>
SGPT Serum glutamic pyruvic transaminase
SI Stimulation index
SPP Sodium pyrophosphate
TC 199 Tissue culture medium 199
TCA Trichloroacetic acid
T-cell Thymus-derived lymphocyte
T_G or T_γ cells T lymphocyte with a surface receptor for the
 Fc fragment of IgG; suppressed cell
T_M or T_μ cells T lymphocyte with a surface receptor for the
 Fc fragment of IgM; helper cell
μ Micron
μCi Microcurie
μg Microgram
μl Microlitre
UV Ultraviolet
w/w Weight to Weight
LIST OF TABLES

I	Synonyms for Viral Hepatitis .. 3
II	Experimental Protocol for CMI Studies .. 70
III	Comparison of RIA, AGD and CIEP for the Detection of HBsAg 82
IV	Comparison of HA and RIA for Anti-HBs Detection 84
V	Prevalence of HBsAg and Anti-HBs in Consecutive Sera Collected from an Institutionalized Population 85
VI	Subtypes in Four HBsAg-positive Populations 88
VII	Prevalence of HBeAg and Anti-HBe in Four HBsAg-positive Populations 103
VIII	Prevalence of HBeAg in HBsAg-positive Residents in Two Ontario Institutions for the Mentally Retarded 105
IX	Prevalence of Anti-HBe in HBsAg-positive Residents of Two Ontario Institutions for the Mentally Retarded 106
X	Prevalence of HBeAg in HBsAg-positive Residents of Two Ontario Institutions for the Mentally Retarded based on Age at Admission .. 107
XI	Prevalence of Anti-HBe in HBsAg-positive Residents of Two Ontario Institutions for the Mentally Retarded Based on Age at Admission .. 108
XII	Prevalence of HBeAg in HBsAg-positive Residents of Two Ontario Institutions for the Mentally Retarded based on Length of Residence .. 109
XIII	Prevalence of Anti-HBe in HBsAg-positive Residents of Two Ontario Institutions for the Mentally Retarded Based on Length of Residence .. 110
XIIa	HBsAg-positive in Two Institutions for the Retarded as a Function of Age at Admission (AA) and Length of Residence (LR) 112
XIIb	HBeAg and Anti-HBe in HBsAg-positive Institutionalized Populations – A Function of Age at Admission and Length of Residence (AA 0-15; LR 11-25) .. 113
XIIc	HBeAg and Anti-HBe in HBsAg-positive Institutionalized Populations – A Function of Age at Admission and Length of Residence (AA 0-15; LR 0-10) .. 114
XIV	HBeAg in HBsAg-positive and HBsAg/anti-HBs negative Populations at the Rideau Regional Centre Matched by Mental Status, Age at Admission and Length of Residence 117
XV	Anti-HBe in HBsAg-positive and HBsAg/anti-HBs-negative Populations at the Rideau Regional Centre Matched by Mental Status, Age at Admission and Length of Residence 118
XVI. HB_eAg Subtypes in HB_eAg-positive Residents of Two Institutions for the Mentally Retarded in Ontario .. 120
XVIII Anti-HB_e Subtypes in HB_eAg-positive Residents of Two Institutions for the Mentally Retarded in Ontario 121
XVIII Relationship of HB_eAg Subtypes ad and ay to HB_eAg in Blood Donor and Renal Dialysis Populations 122
XIX Relationship of HB_eAg Subtypes ad and ay to Anti-HB_e in Blood Donor and Renal Dialysis Populations 123
XX Relationship of HB_eAg-associated DNA Polymerase Activity and the \(\epsilon \) Antigen/anti-HB_e System in Serum Samples of Asymptomatic HB_eAg Carriers .. 125
XXI DNA Polymerase Activity and Dane Particle Counts in 20 Serum Samples of Asymptomatic HB_eAg Carriers 127
XXII DNA Polymerase Activity and Dane Particle Counts in 20 Serum Samples of Asymptomatic Anti-HB_e Carriers 129
XXIII Interpretation of the DNA Polymerase Specificity Assay ... 130
XXIV DNA Polymerase Specificity Assay for 20 HB_eAg Positive Sera ... 131
XXVa. Experiment I. Lymphocyte Stimulation and Migration Inhibition Studies on Post Hepatitis B Subjects and Matched Normal Controls ... 152-3
XXVb. Experiment I. Lymphocyte Stimulation and Migration Inhibition Studies on Post Hepatitis B Subjects and Matched Normal Controls ... 154-5
XXVIa. Experiment II. Lymphocyte Stimulation Studies on Anti-HB_e Positive Subjects (+ Previous Acute Hepatitis B Illness) and Matched Negative Controls .. 161
XXVIb. Experiment II. Lymphocyte Stimulation Studies on Anti-HB_e Positive Subjects (+ Previous Acute Hepatitis B Illness) and Matched Negative Controls .. 163
XXVIc. Experiment II. Lymphocyte Stimulation Studies on Anti-HB_e Positive Subjects (+ Previous Acute Hepatitis B Illness) and Matched Negative Controls .. 164
XXVId. Experiment II. Migration Inhibition Studies on Anti-HB_e Positive Subjects (+ Previous Acute Hepatitis B Illness) and on Matched Negative Controls .. 167

- x -
LIST OF FIGURES

1. Courses of Acute Viral Hepatitis .. 22
2. Course of an-Acute HB\textsubscript{Ag} Infection 23
3. Six-shooter Pattern for AGD, HB\textsubscript{Ag} subtyping and HB\textsubscript{e}Ag/anti-HB\textsubscript{e} Detection 39
4. Agarose Plate for CIEP .. 41
5. Passive Hemagglutination Microtitre Plate Pattern 43
6. Large Volume Purification .. 47
7. Small Volume Purification .. 51
8. Isolation of Cores from Liver Tissue 66
9. Purification of Cores from Serum 68
10a. Subtype Determination - Identity with Antigen, Antibody Standards .. 87
10b. Subtype Determination - Partial Identity of Unknowns with Antigen, Antibody Standards .. 87
10c. Subtype Determination - Non-identity of Unknowns with Antigen, Antibody Standards .. 87
11. First Isopycnic Banding in a Large Volume Purification Scheme a. Dilutions 10^0, 10^{-1}, 10^{-2} b. Dilutions 10^{-3}, 10^{-4} ... 90
12. Prozone Effect at Lower Antigen Dilutions 91
13. Second Isopycnic Banding in a Large Volume Purification Scheme with RIA Titres and Density Determination .. 92
14. Optical Density (280 nm) Determination of the Second Isopycnic Banding ... 92
15. Rate Separation Banding (CS2R1) in a Sucrose Gradient 94
16. Optical Density Determination at 280 nm of the CS2R1 Banding 94
17. The CS2R1 CS1 Banding in a Large Volume Purification Procedure 95
18. Optical Density Determination at 280 nm of the CS2R1 CS1 Banding 95
19. The First Isopycnic Banding in a Small Volume Purification Procedure ... 96
20. The CS2 Banding in a Small Volume Purification Procedure 96
21. The Rate Separation Centrifugation (CS2R1) in the Small Volume Purification Procedure ... 98
22. The CS2R1 CS1 Centrifugation in the Small Volume Purification Procedure ... 98
A Homogeneous Population of 22 nm Spherical Particles. Purified by the Large and Small Volume Purification Procedures

a. Low Magnification
b. High Magnification

24. The Rate Separation Banding from the PEG-purification Procedure

25. \(e_1 \ e_2 \) Pattern Produced in AGD when Using a Standard
\(HB_eAg/e_1 \ e_2 \) Serum and a Standard Anti-\(HB_eAg/e_1 \ e_2 \) Serum

26. Three Lines Produced when Known \(HB_eAg \) and Anti-\(HB_e \) Samples are Tested Against the Huronia Antiserum. This Third Line is Designated \(e_2a \).

27. Pellet from a DNA Polymerase Positive Serum Showing Both Empty and Full Dane Particles

28. Serial Observations of \(HB_sAg, HB_eAg \) and DNA Polymerase in a Patient (J.O.) with Acute \(HB_sAg/\alpha \) Hepatitis

29. Serial Observations of \(HB_eAg, HB_eAg \) and DNA Polymerase in a Patient (D.K.) with Acute \(HB_sAg/\alpha \) Hepatitis

30. Immunofluorescence of Hepatic Nuclei from a \(HB_sAg \)-positive Patient Following Incubation with Fluorescein-conjugated Anti-\(HB_c \)

30a. Phase Contrast Microscopy of the Liver Section Showing Intact Hepatocytes

31. Immunofluorescence of Hepatic Nuclei from a \(HB_sAg \)-positive Patient Following Incubation with Fluorescein-conjugated Anti-\(HB_c \)

31a. Phase Contrast Microscopy of the Liver Section Showing Intact Hepatocytes

32. Immunofluorescence of Hepatic Nuclei from an \(HB_sAg \)-positive Patient Following incubation with Fluorescein-conjugated Anti-IgG

32a. Phase Contrast Microscopy

33. Absence of Immunofluorescence of Hepatocytes from an \(HB_sAg \)-positive Patient Following Incubation with Fluorescein-conjugated Anti-\(HB_s \)

33a. Phase Contrast Microscopy

34. Clump of 27 nm \(HB_cAg \) Particles Following High Speed Centrifugation but Without Using a Sucrose Cushion

35. 27 nm \(HB_cAg \) Particles Following High Speed Pelleting onto a Sucrose Cushion

36-39. Immune Electron Microscopy (IEM) of \(HB_cAg \) Particles Following Incubation with Anti-\(HB_c \)

40. Rate Separation Banding of the Pellet Obtained at 21,000 rpm from \(HB_sAg \)-positive Sera Prior to the Large and Small Volume Purification Procedures
INTRODUCTION

Viral hepatitis is a major public health problem in Canada and the United States not only in terms of its overall morbidity but also of its economic impact and demands on medical resources. Of all diseases currently reported to the Center for Disease Control (CDC) in Atlanta, it ranks behind only gonorrhea, chickenpox and mumps in the number of cases reported annually: 56,623 in 1977, a rate of 26.2 per 100,000 population (VHSA, 1979). The combination of underreporting—Mosley and Galambos (1969) estimated that only between 10% and 20% of all cases are reported annually—and clinically inapparent infections suggests that the true incidence of this disease is grossly underestimated. The economic impact in terms of direct costs (diagnosis, treatment and prevention) and indirect costs (productivity losses due to restricted activity and premature death) is substantial. In 1970, these costs were estimated to be in excess of $650 million annually (Tolsma and Bryan, 1976), and even though the annual rate of the disease has decreased from 32.0 per 100,000 population in 1970 to 26.2 in 1977, costs now are probably well in excess of $1 billion per year.
Viral hepatitis was, until very recently, thought to consist of two distinct disease entities, based on epidemiologic observations—routes of infection and periods of incubation—and on the results of studies of transmission in human volunteers. Numerous terms were used to describe these two forms of hepatitis, as can be seen in Table 1 from the World Health Organization (WHO, 1973), often leading to confusion amongst researchers and clinicians alike. A simple nomenclature had been suggested by MacCallum (1948) using the terms hepatitis A and hepatitis B to designate infectious or short incubation hepatitis and serum or long incubation hepatitis respectively. It was only following a recommendation by the WHO Scientific Committee on Viral Hepatitis (1973) that the terms hepatitis A and hepatitis B began to be used on a world-wide scale. Shortly after this report, a third type of hepatitis was described, differing from the other two etiologically, epidemiologically and immunologically and was called unspecified or non A, non B hepatitis (Feinstone et al, 1975).

I. Literature Review

Many of our current concepts of viral hepatitis are the results of studies on human volunteers conducted during the early 1940's (Voegt, 1942; MacCallum and Bradley, 1944; Havens et al, 1944; Neefe et al, 1945).
<table>
<thead>
<tr>
<th>Hepatitis A</th>
<th>Hepatitis B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute catarrhal jaundice</td>
<td>Arsenotherapy hepatitis</td>
</tr>
<tr>
<td>Acute viral hepatitis</td>
<td>Au (l)-hepatitis</td>
</tr>
<tr>
<td>A-1H hepatitis</td>
<td>Au/SH hepatitis</td>
</tr>
<tr>
<td>Australia antigen-negative hepatitis</td>
<td>Australia antigen hepatitis</td>
</tr>
<tr>
<td>Botkin's disease</td>
<td>B-SH hepatitis</td>
</tr>
<tr>
<td>Catarrhal jaundice</td>
<td>Hepatitis B (H.B.)</td>
</tr>
<tr>
<td>Common infective hepatic jaundice</td>
<td>Hippy hepatitis</td>
</tr>
<tr>
<td>Common-source hepatitis</td>
<td>Homologous serum hepatitis (Virus B)</td>
</tr>
<tr>
<td>Epidemic catarrhal jaundice</td>
<td>Homologous serum jaundice (HSJ)</td>
</tr>
<tr>
<td>Epidemic hepatitis</td>
<td>Inoculation hepatitis</td>
</tr>
<tr>
<td>Epidemic jaundice</td>
<td>Long-incubation hepatitis</td>
</tr>
<tr>
<td>Hepatitis A (H.A.)</td>
<td>MS-2 hepatitis</td>
</tr>
<tr>
<td>Icterus epidemic</td>
<td>Parenteral hepatitis</td>
</tr>
<tr>
<td>Infectious hepatitis</td>
<td>Post-arsphenamine jaundice</td>
</tr>
<tr>
<td>Infectious jaundice</td>
<td>Post-transfusion hepatitis</td>
</tr>
<tr>
<td>Infective hepatitis (Virus A)</td>
<td>Post-vaccinal jaundice</td>
</tr>
<tr>
<td>Jaunisse des camps</td>
<td>Salvarsan jaundice</td>
</tr>
<tr>
<td>MS-1 hepatitis</td>
<td>Serum (MS-2) hepatitis</td>
</tr>
<tr>
<td>Short-incubation hepatitis</td>
<td>Serum hepatitis (SH)</td>
</tr>
<tr>
<td>Soldatengelbsucht</td>
<td>Serum jaundice</td>
</tr>
<tr>
<td>Viral hepatitis type A</td>
<td>Syringe jaundice</td>
</tr>
<tr>
<td></td>
<td>Syringe-transmitted jaundice</td>
</tr>
<tr>
<td></td>
<td>Tattoo jaundice</td>
</tr>
<tr>
<td></td>
<td>Transfusion-associated hepatitis</td>
</tr>
<tr>
<td></td>
<td>Transfusion hepatitis</td>
</tr>
<tr>
<td></td>
<td>Viral hepatitis type B</td>
</tr>
<tr>
<td></td>
<td>Yellow fever vaccine hepatitis</td>
</tr>
</tbody>
</table>

From their work, it was evident that two distinct forms of the disease existed. One was primarily an enteric infection, characterized by a relatively short incubation period, and with fecal excretion of the infectious material. This type was designated infectious hepatitis, or hepatitis A. Serum hepatitis, or hepatitis B, on the other hand was transmissible only by the parenteral route, had a relatively long incubation period and had no fecal excretion of the virus.

Historically, it is probable that hepatitis A is synonymous with the epidemic jaundice described many hundreds of years ago by Hippocrates. This disease was also described by Pope Zacharias in the eighth century A.D. who noted that its spread could be prevented if jaundiced patients were separated from the rest of the population. Outbreaks of this disease were particularly common during war years when hygienic standards were often low, with resultant contamination of food and water supplies. During World War II, it was estimated that approximately 5 million German soldiers and civilians had this disease (Carver and Seto, 1974).

The history of hepatitis B, on the other hand, is a more recent one. The first reported outbreak occurred in 1883 when 191 of 1289 Bremen ship-yard workers developed hepatitis after vaccination against smallpox using human lymph material (Lürman, 1885). Further hepatitis B outbreaks were documented in 1909 among patients at V.D.
clinics treated with salvarsan I.V. therapy. The best documented outbreak, however, occurred in 1942 when 28,585 American soldiers, inoculated with yellow-fever vaccine "stabilized with human serum" developed jaundice; 62 died. In retrospect, it became obvious that the human serum component of the vaccine was contaminated with hepatitis B.

Sporadic reports of non-parenterally transmitted hepatitis B appeared in the literature (Propert, 1938; Findlay et al, 1944; Bradley, 1946; Neefe et al, 1946; Mirick and Shank, 1959), but most clinicians either did not accept these findings or tended to ignore them. Based on the human volunteer studies, the overwhelming view remained that hepatitis B was parenterally transmitted and was, therefore, not transmissible by other routes. This view, however, began to change somewhat in 1967 when Krugman et al, working at the Willowbrook School on Staten Island, New York, an institution for the mentally retarded, described two distinct forms of the disease based on clinical, immunological and epidemiological characteristics. These were designated MS-1 and MS-2. Type MS-1, resembling hepatitis A, produced hepatitis 35 to 57 days after the injection or ingestion of filtrates of infectious serum or feces. Serum transaminase levels were elevated from 3 to 19 days, thymol turbidity was consistently abnormal and the disease was highly contagious. MS-2, on the other hand, was similar to hepatitis B, producing the disease 41 to 108 days after injection or 70 to 130 days after
ingestion of infected material. The oral route, however, required a 50-fold increase in the dose to be infective. Transaminase levels were elevated from 35 to 200 days, thymol turbidity was usually within normal limits, and the disease was considered moderately contagious. These findings, and those of Hersh et al (1971) who also reported non-parenteral transmission of long-incubation hepatitis, have raised numerous questions as to whether earlier epidemiologic studies, distinguishing these two forms of the disease primarily by mode of transmission and length of incubation, are at all valid. Nevertheless, it was appreciated that two distinct diseases did indeed exist and it would be advantageous if some marker were available to distinguish between the two.

In 1961 Allison and Blumberg described precipitating antibodies in the sera of people who had received multiple transfusions. Additional studies revealed that patients with thalassemia who had received multiple transfusions developed precipitating antibodies against low density beta lipoproteins. A systematic study of these low density lipoproteins found an abnormal serum lipoprotein, very rare in the general population, that contained far less lipid than normal serum beta lipoproteins (Blumberg et al, 1962). This unique antigen was identified when a panel of 24 sera were tested in a two dimensional Ouchterlony immunodiffusion test against the sera of two hemophiliac patients who had received multiple transfusions.
The only serum that reacted was from an Australian aborigine and it was appropriately named the "Australia antigen" (Blumberg, 1964). The next task was to determine the worldwide prevalence of this antigen. It was found to be relatively rare in North America and Europe but significantly more prevalent in the tropical and Southeast Asian populations (Blumberg et al, 1965). An interesting finding of this study was the relatively high frequency of this antigen in the sera of acute leukemic patients, an incidence of 11.4% in 70 patients tested. This led the group to speculate that:

1. Persons with Australia antigen have an increased susceptibility to leukemia, or
2. The antigen itself is a manifestation of the disease process, perhaps secondary to an alteration in some normal serum constituent with a resultant change in antigenic configuration, or
3. The Australia antigen is related to the virus, which has been suggested as the cause of leukemia.

Studies in 1967 and 1968 confirmed earlier findings by Blumberg et al that the Australia antigen was far more prevalent in tropical inhabitants. In addition to its high frequency in leukemic patients, it was also common in patients with Hodgkin's disease, lepromatous leprosy and viral hepatitis and in institutionalized Down's syndrome patients (Blumberg et al, 1968). The association with viral hepatitis was confirmed by other investigators (Okochi and Murakami, 1968; Prince, 1968) but some question remained as to whether it was a marker for one or both of the viral
hepatitis diseases. Initial reports associated this new antigen with both hepatitis A and B (Blumberg et al, 1968; Okochi and Murakami, 1968; Gocke and Kavey, 1969) but reports by other investigators (Giles et al, 1969; Krugman and Giles, 1970; Barker et al, 1970) confirmed earlier studies by Prince (1968) that the Australia antigen, or hepatitis associated antigen (Prince, 1968) was specifically a hepatitis B marker. Giles et al (1969) detected the antigen in 39 of 40 cases of MS-2 hepatitis and in none of 41 consecutive cases of MS-1, confirming that MS-2 hepatitis was, in reality, hepatitis B.

to decrease the incidence of post transfusion hepatitis. Prior to screening for this antigen, it was estimated that blood transfusions resulted in 30,000 cases of icteric hepatitis in the United States annually, 150,000 cases of anicteric hepatitis and 3,000 deaths (Krugman, 1971).

This antigen was detectable not only in serum but also in the feces of patients with hepatitis B (Grob and Jemelka 1971), urine (Skinhøj and Stéiness, 1972; Apostolov et al, 1971; Blainey et al, 1971), saliva and mouth washings (Ward et al, 1972), semen (Heathcote et al, 1974) and nasopharyngeal washings and menstrual fluid (Melnick et al, 1976). Many elaborate studies were also undertaken to examine the possibility of venereal mode of hepatitis B transmission in heterosexual and homosexual populations (Jeffries et al, 1973; Fulford et al, 1973; Henigst, 1973; Szmuness et al, 1976). Evidence for this mode of transmission was highly suggestive in the homosexual population and less so in the heterosexual group, but in no study was it conclusive.

Many investigators next turned their attention to the morphology, biophysical and biochemical characteristics and specificity of this antigen. Bayer et al (1968) partially purified hepatitis B positive serum on sucrose density gradients and was able to see small spherical particles and long filaments by electron microscopy. These findings were confirmed by other investigators (Gerin et al, 1969; Millman et al, 1969; Almeida et al, 1969; Barker et al, 1969). The small spherical particles had
diameters of approximately 22nm, roughly the size that had been suggested for the hepatitis virus in earlier studies (McCollum, 1952). Diameters, however, varied with some groups of researchers, ranging from 16 to 25nm in one (Almeida et al, 1969) and 13 to 38nm in another (Kim and Tilles, 1973). The diameters of the filaments were comparable to those of the 22nm spherical particles, but their lengths extended to several hundred nanometers.

In 1970, Dane et al described a double layered, 42nm diameter structure with a 28nm electron dense inner core in hepatitis B positive sera. This particle was called the Dane particle and it was suggested that it represented the hepatitis B virion. This finding was confirmed by other researchers (Cossart and Field, 1970; Gust et al, 1970; Almeida et al, 1971).

It soon became apparent that the 22nm spherical particles, long filaments and Dane particles shared a common surface antigen determinant, referred to as hepatitis B surface antigen or HBsAg (see Appendix I). Almeida (1971) showed that precipitation lines formed by HBsAg and its antibody, anti-HBs, cut out from agar gel were composed of 22nm particles. In addition, when anti-HBs positive serum was combined with serum containing HBsAg, aggregates containing 22nm particles (Bayer et al, 1968; Almeida et al, 1969; Hirschman et al, 1969), long filaments (Almeida et al, 1969; Almeida, 1971; Gerin, 1972) and Dane particles (Dane et al, 1970; Almeida et al, 1971; Almeida, 1971;
Gerin, 1972) were specifically formed.

The relative numbers of these three particles in HB\textsubscript{s}Ag positive serum differed from serum to serum (Gerin, 1972; Almeida, 1972). Bond and Hall (1972) determined particle concentrations following a single isopycnic banding in cesium chloride (CsCl) and found the relative numbers of 22nm particles, filaments and Dane particles to be 1730, 120 and 1 respectively. This serum, however, was found to have a relatively high concentration of Dane particles per millilitre, and was, therefore, not truly representative of all HB\textsubscript{s}Ag positive sera. In addition, centrifugation could result in an enhancement or loss of some forms, again distorting these relative figures. Almeida (1972) estimated that the sera of most chronic carriers contained an average of \(10^5\) Dane particles per millilitre with concentrations occasionally as high as \(10^8\) and \(10^9\). These numbers, however, are approximate as no internal standard such as latex beads was used during particle counting. It now seems certain that no correlation exists between HB\textsubscript{s}Ag titre and the number of particles per millilitre of serum (Robinson and Lutwick, 1976).

The surface of the three HB\textsubscript{s}Ag containing particles were also found to be antigenically quite complex (Levene and Blumberg, 1969; LeBouvier, 1971; Kim and Tilles, 1971; Bancroft et al, 1972). A group-specific "a" determinant was found to be common to all HB\textsubscript{s}Ag containing particles. In addition to this group-specific determinant, particles
usually carried two type-specific determinants, a combination of either "d" or "y" and "w" or "r". Rarely, "d" and "y" determinants occurred in the same serum, either due to infection with two different antigenic subtypes (Van Kooten Kok-Doorschot et al, 1972; Soulier and Courọcicé-Pauty, 1973) or together on the same particle (Nordenfeldt and LeBouvier, 1973; Mazzur et al, 1975). Combinations of the group-specific and type-specific determinants yielded four major subtypes—adw, ayw, adr and ayr—with unequal geographic distribution (Iwarson et al, 1973; Feinman et al, 1973; Perry and Chaudhary, 1973; Mazzur et al, 1973; Dodd et al, 1973; Mazzur et al, 1974; Zuckerman et al, 1974; LeBouvier and Williams, 1975). LeBouvier (1973) observed that the ay subtype occurred predominantly in patients with acute hepatitis B, whereas ad was more prevalent among healthy carriers. Other investigators have described additional surface antigen determinants such as "b" and "c" (Levene and Blumberg, 1969) and "g" (Shorey, 1976), and it is quite probable that additional determinants may exist.

Highly purified preparations of HBsAg have been shown to contain protein, lipid and polysaccharide. In addition, some investigators have found RNA in their preparations (Kim, 1971; Jozwiak and Koscielak, 1973) but other investigators have failed to confirm this finding (Gerin et al, 1971; Chairez et al, 1973). Six to nine polypeptides have been isolated by electrophoresis (Gerin,
1972; Chairez et al, 1973) and seven on polyacrylamide gel (Shih and Gerin, 1977). Some purified preparations of the small 22nm spherical particles have consistently been found to contain small amounts of serum protein components (Millman et al, 1971; Neurath et al, 1974), even after extensive purification. It is, as yet, not clear whether these components are normal constituents of HB$_s$Ag or are just avidly bound to the surface antigen.

The buoyant density of the 22nm particles was found to be approximately 1.20 g/cm3 in CsCl (Gerin et al, 1969; Kim and Tilles, 1973; Gerin et al, 1975), whereas that of the Dane particle was 1.25 g/cm3 owing to its dense inner core (Kaplan et al, 1973). Following detergent treatment with NP40, the isolated empty and full cores had buoyant densities of 1.30 g/cm3 and 1.36 g/cm3 in CsCl respectively (Kaplan et al, 1976).

In 1971, Almeida et al demonstrated a second antigen-antibody system for hepatitis B distinct from HB$_s$Ag. Following detergent treatment of Dane particles with Tween 80, a 28nm inner core was released which could be aggregated by human convalescent hepatitis B serum that was anti-HB$_s$ negative. This new antigen was called the hepatitis B core antigen, or HB$_c$Ag, and the antibody directed against it as anti-HB$_c$. Further evidence that HB$_s$Ag and HB$_c$Ag were antigenically distinct and that their determinants resided on separate particles was provided by Kaplan et al (1973) using radiolabelled anti-HB$_c$ from the
first serum described by Almeida et al (1971). A Dane particle-rich preparation was sedimented in a sucrose gradient and the anti-\(\text{HB}_c \) was found to be associated with the 42nm particles by electron microscopy, and not with the \(\text{HB}_s \)Ag positive fractions. Following detergent treatment with NP40, anti-\(\text{HB}_c \) activity was found to reside in the 28nm dense inner cores, the \(\text{HB}_c \)Ag described by Almeida et al. Purcell et al (1974) further confirmed these findings by showing that \(\text{HB}_c \)Ag detected by solid phase radio-immunoassay was present in the Dane particle preparations and not in the highly purified preparations of \(\text{HB}_s \)Ag.

The hepatitis B core antigen has been seen in the nuclei of infected human (Almeida et al, 1970; Huang, 1971; Caramia et al, 1972) and chimpanzee livers (Barker et al, 1973). In 1973, Hoofnagle et al were able to purify these particles from an infected liver of an immunosuppressed chimpanzee to produce anti-\(\text{HB}_c \) in guinea pigs and to aggregate the 28nm particles with anti-\(\text{HB}_c \) containing serum.

In 1971, Hirschman et al described DNA polymerase activity in three crude pellet preparations obtained after high speed centrifugation of \(\text{HB}_s \)Ag positive serum. This activity was decreased by the addition of RNAase and they concluded that this activity was probably dependent on an RNA primer template. The reaction, however, could be stimulated by the addition of poly dAT and not by poly rA-oligodT, as is typical for other RNA dependent DNA
polymerases (Temin and Baltimore, 1972). Loeb et al (1973) were also able to demonstrate DNA polymerase activity in HBsAg positive plasma, but unlike Hirschman et al, could not decrease the activity with RNAase treatment. Kaplan et al (1973), suspecting that the DNA polymerase activity might reside in the Dane particle, prepared eight Dane particle rich pellets from eight HBsAg-positive sera and found each to contain high levels of DNA polymerase activity.

Robinson and Greenman (1974) then demonstrated that DNA polymerase was indeed a component of the Dane particle and the cores prepared from these particles by detergent treatment. Prior to detergent treatment, whole Dane particles could only be aggregated by anti-HBs, and not by anti-HBc; DNA polymerase activity was present in these aggregates. After detergent treatment, the enzyme activity was found to reside in only the anti-HBc precipitated fractions. In addition, the density of these DNA polymerase cores was found to be greater than that of DNA polymerase negative HBcAg preparations, suggesting that the enzyme was associated with a sub-population of cores (Kaplan et al, 1973; Moritsugu et al, 1975).

The observation that DNA polymerase activity could occur in core preparations without detectable DNA or RNA led to the assumption that HBcAg contained nucleic acid that acted as its own primer template. HBcAg was released from Dane particles by detergent, treated with DNAase 1 to eliminate
free DNA and then disrupted with sodium dodecyl sulfate (SDS). These preparations were then examined in an electron microscope and circular double stranded DNA molecules of uniform length were seen (Robinson et al, 1974). When the DNAase pretreatment step was eliminated, linear DNA molecules with varying lengths were seen in addition to the circular forms. This suggested that the circular DNA molecules were in a protected position within the core whereas the linear DNA molecules were not. The origin of these linear molecules is unclear, but it is conceivable they are soluble DNA forms present in the plasma of all patients (Kamm and Smith, 1972).

The mechanism of action of the DNA polymerase is not clear but it appears that replication of the circular DNA molecule probably does not occur in the Dane particle because of limited space (Robinson and Lutwick, 1976). In addition, natural RNA and DNA as well as polyribonucleotides and polydeoxyribonucleotides do not seem necessary to stimulate the reaction, nor do high concentrations of RNAase inhibit it, as suggested by Hirschman et al (1971). It seems apparent that the DNA polymerase described by Kaplan et al. (1973) and Robinson and Greenman (1974) differs markedly from that described by Hirschman et al (1971), and raises the possibility that the DNA polymerase described by the latter may be of host origin.

A third antigen-antibody system was described in 1972 by Magnus and Espmark who observed a precipitating line
between two HB$_s$Ag-positive sera. This new antigen was found to be distinct from the previously described HB$_s$Ag and HB$_C$Ag systems and was designated the "e" determinant or HB$_e$Ag. Unlike the previously described "a", "d", "y", "w" and "r" determinants which resided on the HB$_s$Ag particle, the "e" determinant appeared to be associated with some other component, or particle, of HB$_s$Ag positive serum. Equilibrium centrifugation showed that this new antigen had a buoyant density of 1.29 g/cm3 in CsCl and a 12S sedimentation coefficient (Magnius et al, 1975; Magnius, 1975). These values indicated that HB$_e$Ag was considerably smaller than the HB$_s$Ag particle.

The "e" antigen has been found exclusively in HB$_s$Ag positive sera while its antibody, anti-HB$_e$ is present in both HB$_s$Ag-positive and anti-HB$_s$ positive sera (Magnius et al, 1975). Studies by several investigators have led them to suggest that the presence of HB$_e$Ag in serum may have prognostic implications for patients with hepatitis B (Neilsen et al, 1974; Magnius et al, 1975; Eleftheriou et al, 1975; Feinman et al, 1975; El Sheikh et al, 1975; Maynard et al, 1976; Nordenfelt et al, 1975; Smith et al, 1976; McAuliffe et al, 1976; Trepo et al, 1976; Takahashi et al, 1976). The detection of HB$_e$Ag in HB$_s$Ag-positive diseases such as chronic active hepatitis and cirrhosis is quite frequent and appears to indicate a poor prognosis. Conversely, the presence of anti-HB$_e$, which is found most often in healthy HB$_s$Ag carriers appears to indicate a more
favourable outcome (Okada et al, 1976). Asymptomatic HBsAg carriers were generally found to have a low frequency of HBeAg (Sherlock, 1976).

The early reports of Magnus and Espmark (1972a, b) and subsequent reports by other investigators (Nordenfelt and Kjellen, 1975; Schweitzer et al, 1975; Takahashi et al, 1976; Okada et al, 1976; Magnus et al, 1975; Skinhøj et al, 1976) have suggested that the presence of HB e Ag in the serum of HBsAg carriers correlated with infectivity. A number of studies have linked the detection of HB e Ag in serum with the presence of Dane particles (thought to be the hepatitis B virus) in serum (Takahashi et al, 1976; Nordenfelt and Kjellen, 1975; El Sheikh et al, 1975; Hindman et al, 1976; Okada et al, 1976; Nordenfelt and Andrén-Sandberg, 1976; Werner et al, 1977; Tong et al, 1977; Zanetti and Ferroni, 1977), with elevated levels of DNA polymerase (thought to be a marker for viral replication) in serum (Nordenfelt and Kjellen, 1975; Hindman et al, 1976; Nordenfelt and Andrén-Sandberg, 1976; Maynard et al, 1976; Alter et al, 1976; Imai et al, 1976; Zanetti and Ferroni, 1977; Tong et al, 1977) and with HBcAg in serum (Takahashi et al, 1976) and in liver (Takahashi et al, 1976; Murphy et al, 1976; Trepo et al, 1976; Trepo et al, 1978).

The relationship of HB e Ag to infectivity has been supported by transmission data. Okada et al (1976) showed that all 10 infants born to HBsAg and HB e Ag positive
mothers developed HB\textsubscript{S}Ag whereas none of 7 infants born to HB\textsubscript{S}Ag and anti-HB\textsubscript{e} mothers did. Beasley et al (1977) also reported that maternal HB\textsubscript{e} antigenemia was a good predictor of vertical transmission. In addition, studies of accidentally inoculated medical personnel have also shown an apparent correlation between HB\textsubscript{e}Ag and infectivity (Grady, 1976; Alter et al, 1976).

There is, however, some question about the lack of infectivity of HB\textsubscript{S}Ag and anti-HB\textsubscript{e} positive sera. Magnus et al (1975) reported that 10 of 12 healthy blood donor carriers of HB\textsubscript{S}Ag and anti-HB\textsubscript{e} donated a total of 95 units of blood with no reported cases of post transfusion hepatitis. Other investigators have reported that there are no Dane particles in anti-HB\textsubscript{e} positive serum (Imai et al, 1976; Hindm\aa n et al, 1976). Many investigators, however, have found this not to be the case. El Sheikh et al (1975) and others (Nordenfelt and Kjellen, 1975; Zanetti and Ferroni, 1977; Werner et al, 1977) found Dane particles in some HB\textsubscript{S}Ag, anti-HB\textsubscript{e} positive sera. Similarly, infection could also be transmitted with anti-HB\textsubscript{e} positive sera. Berquist et al (1976) inoculated 4 chimpanzees with HB\textsubscript{S}Ag and anti-HB\textsubscript{e} positive sera containing no detectable Dane particles. They found a human serum with anti-HB\textsubscript{e} was infectious for one chimpanzee and that a chimpanzee serum with anti-HB\textsubscript{e} may have caused infection in a second animal. In addition, there have been reports of infants born to HB\textsubscript{S}Ag anti-HB\textsubscript{e} positive mothers developing HB\textsubscript{S} antigenemia,
albeit transiently in 2 of the 3 studied (Schweitzer et al, 1975; Gerety, 1976).

Even though HB\textsubscript{e}Ag has been characterized biophysically (Magnius, 1975), its origins and relationship to HB\textsubscript{s}Ag and HB\textsubscript{c}Ag remain unknown. Its close association with DNA polymerase prompted one group of investigators to suggest that it was the DNA polymerase itself (Mełnick et al, 1976). This speculation was quickly refuted by Neurath and Strick (1976). Vogt et al (1976) suggested it was the result of an impaired host immune response to hepatitis B infection. Neurath and Strick (1977) concurred and proposed that the "e" antigen was, in reality, an abnormal immunoglobulin G. This, too, has been refuted (Takahashi et al, 1978). Another suggestion is that HB\textsubscript{e}Ag is a soluble host protein released in response to hepatitis B infection. A fourth possibility is that HB\textsubscript{e}Ag is a matrix protein, produced during viral replication (hence its association with DNA polymerase and Dane \(\Phi \) particles) to bind HB\textsubscript{s}Ag at the hepatocytic nuclear membrane to the 28nm cores packaged in the nucleus (Gerin, personal communication).

Researchers also differ as to where the "e" antigen is located, relative to the Dane particle. Neurath et al (1976) identified HB\textsubscript{e}Ag on the surface of this particle while Lam et al (1977) claim to have released HB\textsubscript{e}Ag from within the Dane particle by detergent treatment. Subsequently, it was shown that the Dane particle preparation from which Lam et al released HB\textsubscript{e}Ag was contaminated with anti-HB\textsubscript{c} and this has raised some serious doubts about the
significance of their findings (Huang, personal communication).

Whatever its origins, the "e" antigen is apparently not one antigen but a group of antigens. In 1976, Williams and LeBouvier noted two precipitation lines between two HBsAg-positive sera and designated them "e₁" and "e₂". These two lines could appear either simultaneously or sequentially during the course of an acute hepatitis B illness, and prompted these investigators to speculate that the appearance of "e₂" after "e₁" was a sign of impending resolution of the disease. This theory remains to be confirmed.

In addition to acute hepatitis and chronic carriage of the surface antigen, HBsAg has been implicated in chronic active hepatitis (Gitnick et al., 1969; Blumberg et al., 1970; Krassnitsky et al., 1970; Reinicke and Nordenfelt, 1970; Velasco and Katz, 1970; Prince et al., 1970), cirrhosis (Maynard et al., 1970; Gocke and Kavey, 1969; Wright et al., 1969; Fox et al., 1969; Kaplan and Grady, 1971), periarteritis nodosa (Gocke et al., 1970; Prince and Trepo, 1974) and carcinoma of the liver (Smith and Blumberg, 1969; Vogel et al., 1970; Hadziyannis et al., 1970; Prince et al., 1970; Moertel et al., 1970; Dennison et al., 1971; Anthony, 1973; Shikata, 1973; Reed et al., 1973; Maupas et al., 1975; Hadziyannis, 1975; Tabor et al., 1977). A course of events for acute hepatitis B is presented in figure 1 (Redeker, 1975).
Immune complexes have been detected in chronic active hepatitis and polyarteritis nodosa, but the pathogenic role of these HB_sAg-containing complexes is still not understood (Gerber et al, 1972; Prince, 1971; Wright et al, 1969). A strong correlation exists between the occurrence of joint and skin manifestations in patients with acute hepatitis B and decreased levels of complement (C3), suggesting that clinical symptoms may be caused by circulating immune complexes (Onion et al, 1971). Similar decreases in C3 were also reported by Grob et al (1971) and Alpert et al (1971). In a more recent study, Duffy et al (1976) showed that this disease can cause not only arthralgias but true polyarthritis which can simulate rheumatoid arthritis.
The relationships of HB\textsubscript{s}Ag, HB\textsubscript{c}Ag, HB\textsubscript{e}Ag and their respective antibodies and DNA polymerase to the course of an acute hepatitis B infection are shown in figure 2 (adapted from Krugman et al, 1974).

\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (8,0) node[below] {Months after exposure};
\draw[->] (0,-1) -- (0,3) node[left] {EXPOSURE};
\draw (0,2) node[above] {Anti-HB\textsubscript{s}(RIA)} -- (8,2);
\draw (0,1) node[above] {Anti-HB\textsubscript{e}(AGD)} -- (8,1);
\draw (0,0) node[above] {Anti-HB\textsubscript{c}(RIA)} -- (8,0);
\draw (4,3) node{Clinical hepatitis};
\draw (6,2) node{SGPT \uparrow};
\draw (4,0) node{HB\textsubscript{s}Ag(RIA)};
\draw (4,1) node{HB\textsubscript{e}Ag(AGD)};
\draw (4,0) node{DNA polymerase (?HB\textsubscript{c}Ag)};
\end{tikzpicture}
\end{center}

Figure 2: Course of an acute HB\textsubscript{s}Ag infection.

DNA polymerase activity and HB\textsubscript{e}Ag have been detected in the serum of patients with HBV infection after the appearance of HB\textsubscript{s}Ag but before or at the time of biochemical evidence of liver disease (Smith et al, 1976; Norkrans et al, 1976). This enzyme was found to be transient in patients with acute hepatitis B but could persist for months and even years in patients with chronic liver disease. HB\textsubscript{s}Ag is detectable throughout the clinical
course of the illness, often disappearing within 6 months of exposure and within 3 to 4 months after the onset of jaundice. In healthy carriers and chronic disease, this antigen can persist for many years. Anti-HBc appears one or more months after the onset of HBs antigenemia and is closely associated with the onset of clinical symptoms (Krugman et al, 1974). The anti-HBc titre may persist or gradually decrease with recovery and disappearance of HBsAg. In patients with chronic liver disease, high anti-HBc titres are common and can persist for very long periods of time (Hoofnagle et al, 1973; Hoofnagle et al, 1974). Anti-HBe is usually not detected during clinical illness, perhaps due to the insensitivity of the detection system used, and is occasionally detected during convalescence (Smith et al, 1976). In contrast to the early appearance of anti-HBc, anti-HBs appears several weeks or even months after the disappearance of HBsAg. This sequence of events has been confirmed not only in chimpanzees (Hoofnagle et al, 1973), but also in humans (Purcell et al, 1973).

The prevention of hepatitis B infection and disease, and transmission of HBsAg has been the major aim of all clinicians. Using disposable needles and syringes, whenever possible and sterilizing all medical equipment has greatly reduced its iatrogenic incidence. In addition, it has also been a policy not to accept blood from persons who have had the disease or from high risk populations.
such as prisoners, residents of mental institutions and homosexuals (Melnick et al, 1976). A third method has involved the use of frozen red blood cells for transfusions (Tullis et al, 1970). Removal of the plasma and washing the red cells prior to use have appeared to sufficiently reduce the concentration of HB$_s$Ag and to prevent clinical disease (Werch et al, 1971; Huggins et al, 1973).

Passive and active immunization procedures have gained much attention recently as potentially useful approaches to disease attenuation and prevention. Studies on passive immunization using a specific hepatitis B hyperimmune gamma globulin (HBIG) have been encouraging. HBIG was prepared from plasma containing anti-HB$_s$ titres 50,000 times greater than found in commercially available gamma globulin (Princé et al, 1971; Szmuness et al, 1974). When this HBIG was administered to 10 children 4 hours after exposure to HB$_s$Ag, 6 developed no disease and 1 had transient antigenemia and abnormal SGOT levels for 5 days—a 70% level of protection. All 11 control children who received the same dose of virus but without HBIG developed characteristic hepatitis B infection (Krugman et al, 1971).

Early experimentation with active immunization consisted of a series of human studies using heated inactivated HB$_s$Ag-positive sera (Krugman et al, 1970; Soulier et al, 1972). Next, successful immunization of chimpanzees with a purified, formalin-inactivated HB$_s$Ag vaccine was reported;
in addition, these animals were able to withstand a virus challenge (Hilleman et al, 1975; Purcell and Gerin, 1975). More recently still, a 2 year study of the efficacy of a hepatitis B vaccine showed it to be highly effective in protecting patients and staff in high risk hemodialysis units (Maupas et al, 1978). This group also found that if the inactivated HBsAg vaccine contained aluminum hydroxide as adjuvant; the result was a more rapid and stronger anti-HBs response.

Many arguments have been advanced against the use of HBsAg of human origin as a vaccine source (Zuckerman, 1976). The principal objection is based on the presence in the majority of HBsAg preparations of protein contaminants originating from serum (Gerin et al, 1971; Millman et al, 1971). This contamination could be the result of either insufficient purification of the antigen (Goudeau et al, 1974), or from integration of certain host proteins in the structure of the virus itself (Neurath et al, 1974); this latter assertion, however, has not yet been clarified (Schuurs and Wolters, 1975).

This unconventional method for preparing a hepatitis B vaccine could originally be justified by the inability to successfully grow the hepatitis B virus in tissue culture systems (Zuckerman and Earl-Baines, 1973; Maupas et al, 1976). The recent discovery of HBsAg and Dane particle replication in a hepatoma cell line (Alexander et al, 1978) may mean that a potential source of contaminant-free HBsAg has now become available for vaccine preparation. It remains
to be seen, however, if this is indeed a suitable source of hepatitis B antigen.

Another possible solution to the potential problem of human serum contaminants in conventionally prepared HB\textsubscript{s}Ag-vaccines has been the finding that disrupted HB\textsubscript{s}Ag particles yield low molecular weight polypeptides, retaining specific HB\textsubscript{s}Ag determinants on their surface (Rao and Vyas, 1973; Howard and Zuckerman, 1975). This finding has been the basis for preparing a hepatitis B subunit vaccine. Melnick et al (1976) have prepared two vaccines using glycoproteins from purified HB\textsubscript{s}Ag particles with molecular weights of 22,000 and 25,000 respectively; moreover, since these glycoproteins are free of nucleic acids, these vaccines have been considered to be incapable of infecting the recipient. Subunit vaccines have been found to be highly immunogenic in chimpanzees, and they may provide a safe way to actively protect recipients without raising the spectre of an autoimmune response induced by human serum contaminants in conventionally prepared vaccines (Zuckerman, 1976).

II. Cell Mediated Immunity

Two distinct lymphocyte populations are known to exist in normal, healthy humans. These have been designated thymus-derived or T lymphocytes and bone-marrow-derived or B lymphocytes. T and B lymphocytes can be distinguished by a variety of criteria, including surface characteristics,
ontogeny, life span, location in lymphoid tissue and immunologic function. When T or B cells are exposed to antigens or other stimuli, a complex series of alterations in cellular transport and metabolism occur. This process, known as lymphocyte activation, begins within minutes of exposure to the stimulus, continues for several days and leads to changes in cell morphology, to increases in DNA, protein and RNA synthesis and often to mitosis and cell division (Oppenheim and Rosenstreich, 1976; Wedner and Parker, 1976). As the response progresses, the cells synthesize new enzymes and begin to secrete a variety of biologically active macromolecules called lymphokines. The B cells eventually differentiate into antibody producing plasma cells while the T lymphocytes mediate the cellular immune response (Craddock et al, 1971).

T and B lymphocytes differ in their requirements for activation by antigens. Protein and carbohydrate antigens apparently activate B cells indirectly by combining with specific immunoglobulin receptors on the B cell surface, whereas polymerized antigens can activate B cells directly. Most antigens, however, are ineffective B cell activators unless a second signal, thought to be a protein or group of proteins from activated T cells, is also present (Wedner and Parker, 1976).

T lymphocytes also respond to a variety of antigenic and mitogenic stimuli, usually faster than similarly activated B cells. T cells are thought to contain
recognition units for antigen, but their molecular character is poorly understood. Like B-cell activation, T lymphocyte stimulation also requires a soluble helper protein, known as lymphocyte activation factor, which is released by macrophages (Oppenheimer and Rosenstreich, 1976). Additional factors, including serum proteins, transfer factor, interferon and other lymphokines are probably also involved in this response (Parker, 1976).

The T lymphocyte population of cells is a heterogeneous one consisting of functionally discrete subpopulations of T cells (Cantor and Boyse, 1975; Huber et al, 1976). These subpopulations probably respond to antigenic stimuli in different ways, either by directly stimulating or inhibiting the response, or maturation and modulation of lymphocyte function.

The cell-mediated immune response, which is a function of the T lymphocyte, is the major host response to a variety of obligate intracellular parasites, allografts, tumors and delayed type hypersensitivity (David, 1966; Mackaness and Blanden, 1967; Hall, 1967; Hellstrom and Hellstrom, 1969; World Health Organization, 1973). The direct measurement of the effector mechanism directed against these agents has often been difficult in man. Estimations of the cell-mediated immune (CMI) response, however, are possible by measuring various other CMI expressions. These include the in vivo detection of delayed-type hypersensitivity (DTH) and in vitro tests such as
antigen-specific lymphocyte transformation (LT), lymphocyte-mediated cytotoxicity and assays of lymphokine secretion such as migration inhibition factor, transfer factor and interferon production. Protective immunity, DTH, LT and MIF production are all functions of the T-cell and a host often exhibits several of these manifestations simultaneously (Lefford, 1975). This has led some investigators to conclude that a positive DTH, LT or MIF test denotes protective immunity. Unfortunately, this is not the case as dissociations of these CMI parameters can occur either spontaneously or experimentally, indicating that they are unreliable markers for protective immunity (Youmans, 1975).

It has been proposed that the host response to hepatitis B infection is largely a function of the T lymphocyte (Dudley et al, 1972a, b; Giustino et al, 1972; Popper et al, 1972). Dudley et al (1972a) postulated that if the infected individual has an adequate CMI response to the hepatitis B virus, he will develop clinical liver disease and eventually recover. If, on the other hand, the response is deficient, there will be little or no liver disease and the individual will become a chronic carrier of HBsAg. The persistence of HBsAg in serum is frequently associated with the development of chronic active and chronic persistent hepatitis (Neilsen et al, 1971), and may eventually lead to hepatic carcinoma (Redeker, 1975).

The CMI response to hepatitis B infection has been studied by various in vivo and in vitro techniques. These
include:

1. Delayed hypersensitivity testing in humans and in animal models;

2. PHA stimulation studies of lymphocytes from patients with hepatitis B positive liver disease;

3. Lymphocyte stimulation and transformation studies;

4. Migration inhibition studies; and

5. Lymphocyte cytotoxicity studies.

Delayed hypersensitivity testing (DHT) in man has been somewhat limited because of the very real danger of transmitting hepatitis B to test recipients by intradermal injections of hepatitis B antigens. Some investigators have claimed that this in vivo CMI response can be correlated to an in vitro test, the production of MIF (Irwin et al, 1974). Other investigators, however, have found this correlation to be faulty, demonstrating that one CMI response (DHT) may occur independently of another (Trepo et al, 1975). In 1950, Henle et al reported skin reactions in humans to amniotic fluid from eggs inoculated with the presumed infectious hepatitis virus. Later, other investigators attempted to demonstrate DHT in 10 patients with various liver diseases by intradermally
inoculating them with autologous liver suspensions. Even though all liver biopsies had histological evidence of an inflammatory response, no correlation could be made between these responses and the resulting cutaneous reactions (Geduldig and Iber, 1962). Other researchers demonstrated that the positive skin test to dinitrochlorobenzene (DNCB) remained intact, despite HBAg-positive chronic active or acute hepatitis (Bolin et al, 1973; Kanakoudi-Tsakalidis, 1974). More consistent and interesting data, however, have been obtained from animal experimentation. Previously sensitized guinea pigs (Irwin et al, 1972; Gerety et al, 1974) and chimpanzees (Ibrahim et al, 1974; Trepo et al, 1975), with anti-HB$_s$ and anti-HB$_c$ titres, had positive skin tests when challenged with various purified hepatitis B antigens. The correlation between DHT and hepatitis B antibodies, a humoral immune response was consistently greater than between DHT and other in vitro CMI parameters.

Viral inhibition of the in vitro lymphocyte response to PHA was described by Montgomery et al in 1967. Similar results were obtained when lymphocytes from infectious hepatitis (Mella and Lang, 1967; Martini et al, 1970) and hepatitis B patients were stimulated with PHA (Willems et al, 1969). The findings for hepatitis B were subsequently confirmed by many other investigators (Agarwal et al, 1971; Millman et al, 1971; Baroyan et al, 1970; Brooks, 1972; Malacarne and Dallapiccola, 1973;
Jöbsis, 1973; Fox et al, 1973; Campion and Wangel, 1975). Homologous sera obtained from patients with acute viral hepatitis, alcoholic hepatitis, primary biliary cirrhosis, asymptomatic HBs antigenemia and halothane hepatitis were also found to inhibit PHA proliferation of lymphocytes obtained from healthy individuals (Mella and Taswell, 1970; Hsu and Leevy, 1971; Brooks, 1972; Newberry et al, 1973; Fox et al, 1973; Macsween and Thomas, 1973; Clot et al, 1973; Petri and Mészáros, 1973). Lacava (1970) also noted such a decrease with sera from acutely ill hepatitis B patients but when the lymphocytes were incubated in sera from healthy HBsAg-positive carriers, no such suppression occurred. Sutnick et al (1973), on the other hand, found no significant difference in the levels of tritiated thymidine (3H-T) incorporation by PHA-stimulated lymphocytes of HBsAg-positive people and normal controls and concluded that HBsAg did not impair the lymphocyte response to PHA.

Results of lymphocyte stimulation (or transformation) and migration inhibition tests have, by and large, been equivocal. Liver extracts were prepared to study lymphocyte transformation and results were considered positive if a certain percentage of the cells underwent blast transformation. Lymphocytes from patients with chronic active hepatitis were converted to blasts more often (Tobias et al, 1967; Bacon et al, 1971; Eddelston, 1974).
by these hepatic antigens than were those from patients with acute disease (Tobias et al, 1967; Smith et al, 1972). Judmaier et al (1972) measured the incorporation of 3H-T into lymphocytes from patients with liver disease and noted a positive correlation between the rate of 3H-T uptake and the degree of liver damage (a measure of serum transaminases—SGOT and SGPT).

Lymphocyte stimulation assays using crude and purified HB$_s$Ag preparations have also yielded equivocal results. Reports of in vitro lymphocyte stimulation using cells from convalescent patients (Yeung Laiwah, 1971; Pettigrew and Russell, 1972; Sodomann and Havemann, 1973; De Gast et al, 1973; Yeung Laiwah et al, 1973; Reisenbuk and Ioks, 1974; Koszinowski et al, 1974; Chandra, 1975; Tong et al, 1975) are opposed by findings of non-stimulation and even inhibition (Wands et al, 1975; Tiku et al, 1978). Similarly, reports of stimulation with HB$_s$Ag in chronic active (Tong et al, 1975; Tiku et al, 1978) and acute hepatitis (Tiku et al, 1978) are contrasted by findings of non-stimulation in these groups (Yeung Laiwah et al, 1973; Pettigrew and Russell, 1972; Koszinowski et al, 1974). Combinations of HB$_s$Ag and PHA have been reported to be both stimulatory (Tsuji et al, 1972) and non-stimulatory (Barinsky et al, 1975).

Purified and crude liver preparations have produced both inhibition (Verganni et al, 1972; Miller et al, 1972; Knolle et al, 1973) and non-inhibition (Zauli et al,
of leukocyte migration in chronic active hepatitis. Similarly, using crude and purified HB$_e$Ag preparations, both inhibition (Gerber et al., 1973; Knolle et al., 1973; Gerber et al., 1974; DeMoura et al., 1975; Irwin et al., 1974) and stimulation (Frei et al., 1973; Erard, 1974; Erard et al., 1974) of migration of leukocytes have been reported for acute hepatitis B infection; with recovery, either no reactivity (Gerber et al., 1973; Gerber et al., 1974; Ibrahim et al., 1974) or inhibition of migration (Yeung Laiwah et al., 1973; Frei et al., 1973; Erard et al., 1974) have been described. Inconsistencies in assessing migration inhibition in chronic active hepatitis patients also persist; it has varied from 0% (DeMoura et al., 1975) to 50% (Dudley et al., 1972).

The fifth and most consistent in vitro technique for assessing the CMI response to hepatitis B has been the lymphocyte cytotoxicity assay. Sensitized lymphocytes destroy Cr51 labelled cells and the amount of radioactive release is a measure of T-cell function (Wands et al., 1975; Wands and Isselbachar, 1975; El Sheikh et al., 1978). This procedure, however, is technically the most difficult.

III. Objectives

The major objectives of the present study were:

1. To study the epidemiology of HB$_e$Ag and anti-HB$_e$ in various HB$_e$Ag-positive populations.
(2) To measure DNA polymerase activity and to assess specificity of this enzyme in HB$_S$Ag-positive sera.

(3) To establish a relationship between DNA polymerase, the "e" antigen/antibody system and the putative hepatitis B virion, the Dane particle.

(4) To measure the in vitro cell-mediated immune responses (lymphocyte stimulation and migration inhibition) of persons who have recovered from hepatitis B infection (post hepatitis B) in order to resolve the equivocal data that presently exist.

The enabling objectives of this study were:

(1) To evaluate techniques for detecting HB$_S$Ag and anti-HB$_S$ in sera.

(2) To study the epidemiology of HB$_S$Ag and anti-HB$_S$ in various populations.

(3) To devise a simplified and inexpensive technique for the purification of HB$_S$Ag.

(4) To assess the homogeneity and purity of the final purified HB$_S$Ag preparations.

(5) To select appropriate sera and tissues for
HBcAg isolation and purification.

(6) To determine optimal in vitro conditions for lymphocyte cultures and to assess the effect of variables (age, pH, etc.) on the in vitro lymphocyte stimulation response.
MATERIALS AND METHODS

I. Antigen Studies

A. Sources of plasma and sera

Plasma and sera for hepatitis B surface antigen (HB$_s$Ag), core antigen (HB$_c$Ag), e antigen (HB$_e$Ag) and their respective antibodies were obtained from: (1) Drs. F. S. Mazzur, N. Nath and R. Y. Dodd, American Red Cross, Bethesda, Md.; (2) Drs. J. L. Gerin and P. Kaplan, MAN Program, Oak Ridge National Laboratory, Rockville, Md.; (3) Dr. J. H. Hoofnagle, Bureau of Biologics, Division of Blood and Blood Products, Bethesda, Md.; (4) Drs. R. H. Purcell and V. J. McAuliffe, NIAID, Bethesda, Md.; (5) Dr. M. Goldfield, State of New Jersey Dept. of Health, Trenton, N.J.; (6) Dr. L. Overby, Abbott Laboratories, N. Chicago, Ill.; (7) Rideau Regional Centre, Smith Falls, Ontario; (8) Huronia Regional Centre, Orillia, Ontario; (9) Ottawa General Hospital, Ottawa, Ontario; and (10) Ottawa Civic Hospital, Ottawa, Ontario.

B. Hepatitis B surface antigen and antibody

1. Detection of HB$_s$Ag

Plasma and sera were tested for HB$_s$Ag and anti-HB$_s$ by one or more of three methods. These were agarose gel
diffusion (AGD), counterimmunoelectrophoresis (CIEP) and radioimmunoassay (RIA).

a) **AGD:** Glass slides (2.5 cm x 7.5 cm) were precoated with 0.2% agarose (Indubiose A45--Fisher Scientific, Fairlawn, N.J.) and allowed to dry. Two and one half millilitres of 0.8% A45 agarose in an immunodiffusion buffer (0.05M Tris-0.15M saline-0.1% sodium azide, pH 7.6) were poured onto each slide and allowed to harden at 4°C. A six-shooter pattern (figure 3) was cut in the hardened gel (well Ø 3.0mm) and the agarose plugs removed by gentle suction. The gaps between the well and the slide were sealed with a drop of hot 0.8% agarose A45 and the excess liquid agarose was aspirated out by gentle suction.

The "A" wells were filled with a known HB$_s$Ag-positive reagent while the four remaining "S" wells were filled with unknown plasma and/or sera samples. The centre "a" well was filled with a known anti-HB$_s$-positive
reagent. All wells were refilled with their initial reagents 1 hour later and then placed in a moist chamber. These chambers were incubated at room temperature for 48-72 hours, at which time the slides were read. Slides were kept moist for up to 1 week for periodic rereading.

b) CIEP:—Microscope slides (2.5 cm x 7.5 cm) were precoated with 0.2% A45 agarose. A tank and gel buffer were then made up as follows from these stock solutions:

Solution A—Barbital 2.763g/L. deionized water

Solution B—Sodium Barbitol 103.0g/L. deionized water

Solution C—NaCl 29.23g/L. deionized water

109 ml of solution A, 12.5 ml of solution B and 187.5 ml of solution C were combined with deionized water to approximately 2 litres. The pH was adjusted to 8.6 with 1N NaOH. Fifty millilitres were used for preparation of the gel.

Agarose A45 was dissolved in the 50 ml of buffer to a concentration of 0.8%. Each slide received 2.5 ml and was allowed to harden at 4°C. Parallel rows of wells (well Ø 4.5mm) were punched on each slide to a maximum of 18 wells. The agarose plugs were removed by gentle suction and the gel-glass gap sealed with a drop of hot agarose as previously described. The "A" well was filled with a known HBsAg-positive reagent, the "S" wells were filled
with unknowns and the "a" wells were filled with a known anti-\text{HB}_S\text{serum (figure 4).}

\begin{table}[h]
\centering
\begin{tabular}{cccccc}
 a & A & a & S & a & S \\
 a & S & a & S & a & S \\
 a & S & a & S & a & S \\
\end{tabular}
\end{table}

All wells were refilled within one hour with their respective starting materials. The slides were then placed in an electrophoretic cell (Buchler Instruments, Fort Lee, N.J.) containing the barbital-barbitol-saline buffer as described. Cotton strips were attached to the positive and negative poles of each slide and placed in the buffer. A 12 milliamp current was allowed to flow through each slide for 75 minutes, after which time the slides were read.

c) RIA:--A commercially available kit, Ausria II (Abbott Laboratories, N. Chicago, Ill.) was used for detecting \text{HB}_S\text{Ag and anti-\text{HB}_S} in sera and plasma. Positive and negative controls were included in each group of unknown sera and/or plasma tested. Samples were counted in a Nuclear Chicago model 1100 gamma scintillation counter and expressed as counts per minute (cpm). Samples with values greater than or equal to 2 times the mean of the negative controls were considered positive for
HB$_s$Ag ($P/N > 2$).

d) **Sera tested:** A panel of 20 sera positive for HB$_s$Ag by RIA and a panel of 20 negative sera were obtained from the American Red Cross for confirmatory testing by AGD, CIEP and RIA. In addition, 195 consecutive sera from Down's syndrome (DS) patients and 2,400 consecutive sera from other mentally retarded (OMR) residents of the Rideau Regional Centre were collected over a 4 year period and assayed for HB$_s$Ag by RIA in conjunction with the Provincial Laboratory, Bell's Corners, Ontario to determine the incidence of the antigen in an institutionalized population.

2. Detection of anti-HB$_s$ by the passive hemagglutination assay (HA)

 a) **Reagents:** Human group O Rh-negative red blood cells coated with subtype ad or ay antigen by the chromic chloride technique and control cells (in PBS) were purchased (Electronucleonics, Bethesda, Md.). TAP buffer (PBS, pH 7.4 containing 0.5% bovine serum albumin, 0.0025% polyvinyl pyrolidone, 1:20,000 Tween 80 and 1:1000 sodium azide) was obtained from the same company and served as a diluent.

 b) **Anti-HB$_s$ assay:** Serial 2-fold dilutions (to 1:8) of the sera to be tested were made with 25 μl loops into 25 μl TAP buffer in polyvinyl V-well microtitre plates (figure 5).
After 30 minutes incubation at room temperature, 25 μl of the appropriately coated erythrocytes were added.

Rows 1, 2 and 3 received subtype ad or ay coated cells; rows 5, 6 and 7 received non-coated control cells. Rows A9-12 and B9-12 contained TAP buffer only and either ad or ay coated cells added to serve as controls. The plates were covered with cellophane and incubated for an additional 30 minutes at room temperature. They were then centrifuged at 1200 rpm for 10 minutes, tilted at an angle of 70° for 15 minutes and read. A streaming or inverted umbrella-shaped red cell pattern was considered positive hemagglutination, and thereby anti-HBs-positive.
c) **Sera tested:** A panel of 20 sera positive for anti-HB$_s$ by RIA and a panel of 20 sera negative for anti-HB$_s$ were obtained from Dr. R. H. Purcell for confirmatory testing by HA. In addition, 195 consecutive sera from DS patients and 2400 consecutive sera from OMR residents of the Rideau Regional Centre collected over a four year period were assayed for anti-HB$_s$ by HA to determine the incidence of this antibody in an institutionalized population.

3. Subtype determination

a) **Populations studied:** One hundred consecutive sera positive for HB$_s$Ag by CIEP from each of 4 distinctive populations were subtyped by AGD. These populations were:

(1) An institutionalized population—Rideau Regional Centre, Smith Falls, Ontario;

(2) An acutely ill population—Ottawa Civic and Ottawa General Hospitals;

(3) A donor population—American Red Cross, Bethesda, Md.; and

(4) Twelve HB$_s$Ag positive sera from a renal dialysis unit—Ottawa General Hospital.

b) **AGD technique:** A 6-shooter pattern (figure 3) was cut in 0.8% agarose A45. The "A" wells were filled with either a known ad or ay antigen positive serum
(courtesy Dr. G. LeBouvier, Yale University, New Haven, Ct.) while the four peripheral "S" wells received subtype-unknown HB_SAg positive samples. The "a" well was filled with a known anti-ad, ay, d or y antiserum (courtesy Dr. G. LeBouvier and Dr. L. Overby). All wells were refilled twice within the first few hours after the initial filling and incubated in a moist chamber at room temperature for 48-72 hours. Slides, were kept for up to 1 week for periodic re-reading.

4. Purification of HB_SAg

Plasma samples were converted to sera by adding 1M CaCl₂ (3 ml/100 ml) and incubating at 56°C for 1 hour. The sera were then filtered through cheesecloth and clarified at low speed centrifugation (3500 rpm) in an IEC centrifuge (Needham Heights, Mass.) for 30 minutes.

a) **Centrifugation:** All high speed centrifugations were done in a Beckman L3-50 ultracentrifuge at 5°C.

b) **Gradient solutions:** A 1.86 g/cm³ stock solution of cesium chloride (CsCl, Harshaw Chemicals, Solon, Ohio) was prepared in 0.01M Tris-HCl, pH 7.4 from which the various CsCl solutions of varying density were made. Varying sucrose solutions were prepared from a stock 66% w/w solution (Schwarz-Mann, Orangeburg, N.J.).

c) **Preparation of HB_SAg starting material for purification:** The clarified serum was centrifuged at 21,000 rpm for 4 hours in a fixed angle 30 rotor (Spinco,
Palo Alto, Calif.). The supernatant was decanted into a sterile container to be used as the starting material for HBsAg purification. Two millilitres of phosphate buffered saline (PBS, pH 7.4) were added to each tube and the pellets resuspended. The suspensions were combined and stored at −70°C for later studies.

d) **Large volume purification:**--This procedure was done in conjunction with Dr. J. L. Gerin and consisted basically of using large volume rate-zonal rotors for purification and ultraviolet (UV) spectrophotometry at 280nm and RIA for monitoring the antigen. This procedure, which was a modification of a technique described by Gerin et al (1971), is summarized in figure 6.

(1) **First isopycnic banding--Step 1.** An empty Ti-14 rotor with a B29 liner rotating at 3000 rpm was edge loaded with 110 ml of the HBsAg starting material, followed by 250 ml of 1.20 g/cm³ CsCl and 200 ml of 1.40 g/cm³ CsCl to fill. Fifty millilitres of 0.01M Tris-HCl was then added by syringe to the rotor centre, displacing an equal volume of CsCl from the edge. The rotor was accelerated to 40,000 rpm and run for 18 hours. At termination, the rotor was decelerated to 3000 rpm, and the gradient was displaced from the rotor edge by pumping Tris buffer to the rotor centre. Twenty millilitre fractions were manually
Figure 6:-- Large Volume Purification of HBsAg
collected and assayed by RIA at dilutions of \(10^0, 10^{-1}, 10^{-2}, 10^{-3}\) and \(10^{-4}\).

(2) **Second isopycnic banding--Step II.** Antigen-positive fractions were pooled and adjusted to a density of \(1.30 \text{ g/cm}^3\) by adding \(1.60 \text{ g/cm}^3\) CsCl. A Ti-14 rotor spinning at 3000 rpm was sequentially edge-loaded with 110 ml of 1.10 g/cm³ CsCl, 100 ml of 1.20 g/cm³ CsCl, 185 ml of antigen-CsCl mixture at 1.30 g/cm³ and 150 ml of 1.40 g/cm³ CsCl to fill. The rotor was accelerated to 40,000 rpm for 18 hours. Decelerating the rotor to 3000 rpm terminated the run and the gradient was edge-unloaded, passing through a Gilford 2400 spectrophotometer at 280 nm. Twenty millilitre fractions were manually collected. Fractions positive for HBsAg by RIA at dilutions previously described were pooled, dialyzed against PBS using an Amicon 65 cell with a Diaflo, XM-100A membrane (10 psi) and concentrated to 45 ml. At this stage, the antigen-positive sample could either be stored at \(-70^\circ\text{C}\) or further purified. Antigen was designated CS2.

(3) **Rate zonal separation--Step III.** A pre-cooled Ti-14 rotor spinning at 3000 rpm was edge-loaded with 410 ml of a continuous 10-30% w/w
sucrose gradient using an IEC model 3660 gradient former. This was followed by approximately 125 ml of 45% w/w sucrose to fill the rotor. Twenty-five millilitres of CS2 antigen was centre-loaded with a syringe followed by 50 ml of 0.01M Tris-HCl overlay, displacing approximately 75 ml of 45% w/w sucrose at the rotor edge. The rotor was accelerated to 40,000 rpm for 4 hours, decelerated to 3000 rpm and edge-unloaded as previously described in (1) and (2). Twenty millilitre fractions were manually collected following UV monitoring at 280 nm using an Oak Ridge 1 cm light path flow cell. Fractions positive for HB$_s$Ag at 10^{-4} by RIA were pooled and diluted to 100 ml by 0.01M Tris-HCl.

(4) **Third isopycnic banding**—**Step IV.** One hundred millilitres of 0.01M Tris, 100 ml of diluted antigen, 170 ml of 1.30 g/cm3 CsCl and 170 ml of 1.50 g/cm3 CsCl were sequentially edge-loaded into a spinning Ti-14 rotor. The rotor was accelerated to 40,000 rpm for 22 hours, decelerated to 3000 rpm and edge-unloaded as previously described. Twenty millilitre fractions were manually collected following UV scanning at 280 nm and assayed for HB$_s$Ag by
RIA as previously described. Samples positive for HBₐAg were pooled, dialyzed against PBS in an Amicon 65 cell using an XM-100A membrane (10 psi), concentrated to 50 ml, dispensed in 1.0 ml aliquots and stored at -70°C.

e) **Small volume purification:** This purification procedure was adapted from the large volume purification technique just described. Following conversion of plasma to serum and a 4 hour centrifugation at 21,000 rpm, HBₐAg-positive sera were centrifuged at 27,000 rpm for 24 hours in a fixed angle 30 rotor. The supernatant was decanted and the pellets resuspended in PBS. The supernatant was re-centrifuged and the resulting pellets again resuspended in PBS. The pellet-PBS mixtures were pooled and adjusted to 10% of the starting volume with PBS. This material served as the starting sample for the 4-step purification procedure (figure 7). All centrifugations were done using an SW41 rotor in a Beckman L3-50 ultracentrifuge. Speed of centrifugation and temperature were 35,000 rpm and 5°C respectively.

(1) **First isopycnic banding—Step I.** Five millilitres of starting material were layered over 6 ml of 1.40 g/cm³ CsCl. The antigen was then overlaid with 1.5 ml of 0.01M Tris-HCl and centrifuged for 24 hours. Following centrifugation, 1 ml fractions were collected by bottom puncture and assayed for HBₐAg at
Figure 7:-- Small Volume Purification of HB Ag
dilutions of 1:8 to 1:512 by CIEP.

(2) **Second isopycnic banding—Step II.** Antigen-positive fractions were pooled and adjusted to a density of 1.30 g/cm³ with 1.60 g/cm³ CsCl. A four-step discontinuous gradient was formed by sequentially underlayering 2.0 ml of 1.10 g/cm³ CsCl with 1.5 ml of 1.20 g/cm³ CsCl, 5.0 ml of 1.30 g/cm³ antigen-CsCl mixture and 4.0 ml of 1.40 g/cm³ CsCl. The tubes were centrifuged for 24 hours and at termination, 0.6 ml fractions were collected by bottom puncture, UV scanned at 280 nm in a Hitachi spectrophotometer and assayed at dilutions of 1:8 to 1:512 for HBsAg by CIEP. Antigen positive fractions were pooled, dialyzed in dialysis tubing against 200 volumes of PBS and concentrated in an Amicon 65 cell with a XM 100A membrane (10 psi). The antigen could either be stored at -70°C or further purified. It was designated CS2.

(3) **Rate separation—Step III.** A 7-35% continuous w/w sucrose gradient was formed in tubes by sequentially underlayering 1.5 ml of 7% w/w sucrose with equal volumes of 15%, 20%, 25%, 30% and 35% w/w sucrose and keeping it overnight at 4°C. After allowing for overnight
diffusion, the gradient was underlayered with 2.5 ml of 45% w/w sucrose to act as a cushion. One millilitre of the Step II or CS2 antigen was carefully layered onto the preformed gradient and the tubes centrifuged for 5 hours. Following centrifugation, 0.5 ml fractions were collected by bottom puncture, UV scanned at 280 nm and assayed for HB$_s$Ag at 1:8 to 1:256 dilutions by CIEP.

(4) Third isopycnic banding--Step IV. Fractions positive for HB$_s$Ag were pooled and 4.0 ml were layered over a two-step discontinuous CsCl gradient formed by underlayering 3.8 ml of 1.30 g/cm3 with 3.2 ml of 1.50 g/cm3 CsCl. An overlay of 1.5 ml of PBS was carefully pipetted onto the antigen, and the tubes were centrifuged for 24 hours. The 0.75 ml fractions collected by bottom puncture were UV scanned at 280 nm and assayed for HB$_s$Ag by CIEP as previously described. The antigen positive fractions were pooled, dialyzed against 200 volumes of PBS, concentrated in an Amicon 65 cell, dispensed in 1.0 ml aliquots and stored at -70°C.

f) Small volume purification following polyethylene glycol (PEG) precipitation:--HB$_s$Ag was purified from serum
by a modification of a technique described by Cruecanu et al (1973). Antigen positive serum was adjusted to pH 4.6 with 2N HCl. PEG 6000 (Baker Chemical Co., Phillipsburg, N.J.) powder was added with continuous stirring to a concentration of 8%. The resulting precipitate was pelleted by centrifugation at 3500 rpm for 10 minutes and resuspended in PBS, pH 4.6 to 100 ml. This procedure was repeated 3 times, the final sediment being dissolved in 5 ml of PBS. The supernatants and the final sediment were assayed for HBsAg by CIEP. Antigen was purified by the small volume purification procedure described in e).

g) Density determinations:--The densities of the CsCl and sucrose fractions obtained from the three purification procedures described (d, e and f) were determined by a Hitachi refractometer and by relating refractive indices to densities from available tables.

h) Protein determinations:--Protein concentrations of the purified antigens were determined by using the Lowry technique. Antigen concentrations were expressed as μg/ml.

i) Electron microscopy:--Antigen positive fractions from Steps III and IV were studied. A drop of antigen (dialyzed against PBS) was placed on a formvar coated copper grid for 30 seconds. This was followed by a drop of 2% phosphotungstic acid, pH 7.2 for an additional minute. The excess fluid was blotted off with filter paper and the grid allowed to air dry. The grid was then examined in a Phillips 300 electron microscope.
j) Purity of Step IV antigen:—This antigen was tested for contaminants against rabbit anti-human serum (Hoechst Pharmaceuticals, Montreal, Quebec) by AGD and CIEP. In addition, 10 µg of Step IV antigen in complete Freund's adjuvant were inoculated into the foot pads of 6 guinea pigs. Two weeks later, each animal received a 10 µg antigen booster but with no adjuvant. Five millilitres of blood were taken by cardiac puncture immediately before the first inoculation of antigen and every week thereafter for 6 weeks. The guinea pig sera obtained on this weekly basis were assayed for both anti-\textit{HB}_e and anti-human serum (anti-NHS) components by AGD.

C. \textit{Hepatitis B} \textit{e} antigen and antibody

1. Detection of \textit{HB}_e Ag and anti-\textit{HB}_e

\textit{HB}_e Ag and anti-\textit{HB}_e were tested for by a modification of an immunodiffusion technique described by Williams and LeBouvier (1976). Agarose A37 (Indubiose, Fisher Labs, Fairlawn, N.J.) was made up fresh (in 0.005M Tris-HCl-0.15M saline buffer, pH 7.6 containing 0.1% sodium azide) to a concentration of 0.4%. Dextran T500 (Pharmacia, Uppsala, Sweden) was added to a concentration of 0.5% to sharpen the lines (McAuliffe, personal communication). An uncoated 2.5 cm x 7.5 cm glass slide was covered with 1.3 ml of agarose A37 and allowed to harden overnight at 4°C. A six-shooter pattern (see figure 3) was cut in the hardened gel and 4.5 mm diameter agarose plugs were removed by gentle suction. There was an interwell distance of 3.5 mm
from well-edge to well-edge. The peripheral gel surrounding the wells was cut away to minimize outward diffusion of reactants. An e_1, e_2 antigen standard (courtesy Dr. M. Goldfield) was pipetted into the "A" wells while the four peripheral "S" wells were filled with HB$_s$Ag-positive samples. The central "a" well was filled with a known e_1, e_2 antibody (courtesy Dr. N. Nath and Dr. V. J. McAuliffe). All wells were filled 3 times within the first 2-3 hours and incubated in a moist chamber at room temperature for 48-72 hours. The slides were read and occasionally kept moist for up to 2 weeks at 4°C for periodic rereading. Samples giving equivocal results were concentrated 5-10x and retested.

2. Populations studied

Sera from two institutions for the mentally retarded in Ontario (Rideau Regional Centre, Smith Falls and Huronia Regional Centre, Orillia) positive for HB$_s$Ag by CIEP were screened for HB$_e$Ag and anti-HB$_e$ by the AGD technique. The residents of each institution were divided as to their diagnosis (DS vs OMR), age at admission and length of residence for evaluation. Controls matched to diagnosis, age at admission and length of residence but negative for HB$_s$Ag and anti HB$_s$ were available from the Rideau Regional Centre and were also screened for HB$_e$Ag and anti-HB$_e$.
In addition, 100 consecutive sera from blood donors positive for HBsAg were obtained from the American Red Cross, Bethesda, Md. (courtesy of Dr. N. Nath). These were divided according to subtype and tested for HBeAg and anti-HBe.

A third population was made up of 12 HBsAg-positive renal dialysis patients at the Ottawa General Hospital. These, too, were divided according to subtype and tested for HBeAg and anti-HBe.

D. DNA polymerase assay (DPA)

1. Materials

 (1) Solution 1--5% trichloroacetic acid (TCA)--a 1/10 dilution of a 50% TCA stock solution with distilled water.

 (2) Whatman #3MM filter paper discs (Ø 2.4 mm). These were coded as to the samples that would be placed on them with a No. 2 lead pencil, wetted with solution 1 and dried in an oven at 37°C.

 (3) Solution 2--stored at 4°C.

 NP 40

 Distilled water

 B-mercaptoethanol

 1.0 ml

 18.7 ml

 0.3 ml

 (4) Reaction mixture--100 μl were prepared for each sample to be tested. Each component, except for the nucleotides, was stored
separately at 4°C.

1M Tris buffer, pH 7.5 17 μl
1M MgCl$_2$·6H$_2$O 3 μl
2M NH$_4$Cl 6 μl
Distilled Water 64 μl
Nucleotides (2.5 μl of each) 10 μl

90 μl

The nucleotides used were dATP, dCTP, dGTP (PL Biochemicals, Milwaukee, Wisc.) and 3H-TTP (New England Nuclear, Boston, Mass.). The 3 non-labelled nucleotides were made up as 0.02M stock solutions in distilled water and neutralized to a pH between 7-8 with a pinch of sodium bicarbonate (pH checked with litmus paper). These stock solutions were stored at -20°C and kept on ice when used in the reaction mixture. Two and one half microlitres of each of the stock solutions and 2.5 μl of 3H-TTP were added for every sample to the 90 μl of reaction mixture.

(5) Solution 3—a 5% TCA solution in 0.1M sodium pyrophosphate (SPP) was prepared by dissolving 44.6 gm of SPP in 100 ml of 50% TCA and diluting the mixture 1:10 with distilled water.

(6) Absolute ethanol.

(7) Scintillation fluid.

PPO 5 gm
POPOP 0.3 gm
Toluene 1 litre
2. Method

This procedure was a modification of a technique first described by Kaplan et al (1973). Fourteen discs were used for the 7 negative controls (7 for 0 time, 7 for 180 minutes), 2 for the 2 positive controls, and 2 each for the samples to be tested. All samples, including the controls, were passed through a 0.45 μ millipore filter (MILLEX, Millipore Corp., Bedford, Mass.) with a 5 ml syringe and tested for sterility. Five microlitres of solution 2 were added to the bottom of an appropriate number of tubes using an Eppendorf pipette. This was followed by 25 μl of each negative control, each positive control and each sample. These were mixed well and allowed to sit for a few minutes. Then, 100 μl of the reaction mixture were added to all negative control tubes and mixed. Almost immediately thereafter, 50 μl from each of the 7 tubes were spotted on appropriately marked discs, allowed to soak in and immersed in 5% TCA to stop the reaction. This constituted the 0 time for the negative controls. The remaining tubes all received 100 μl of the reaction mixture, were covered with a parafilm and together with the remaining volumes of the negative controls, were incubated in a water bath at 37°C for 180 minutes.

After the incubation period, 50 μl of each of the positive and negative controls were pipetted onto properly marked discs, allowed to absorb into the filter and placed into the 5% TCA solution. Fifty microlitres of each of the
antigen test samples were spotted on two appropriately marked filter papers, allowed to absorb into the filter discs and then submerged in the 5% TCA solution to stop the reaction. All discs were then transferred to a 4 litre beaker containing about 40 ml of solution 3 per disc. The beaker was placed on an electric shaker and the fluid and discs allowed to swirl at medium speed for approximately 60 minutes. It was important not to wash the discs too vigorously as this often caused them to disintegrate. The filters were taken out one by one and blotted on paper towels. This procedure of washing and blotting was repeated 2 more times. The filter discs were then washed in solution 1 for 60 minutes and blotted as before. If necessary, the discs could be left overnight in solution 3 at 4°C but then, had to be washed in fresh solution 3 for 30 minutes before washing in solution 1. Finally, the discs were dehydrated for about 5 minutes in absolute ethanol, blotted on paper towelling and dried in an incubator at 60°C. The discs were then transferred to scintillation vials containing 10 ml of scintillation fluid and counted in a Beckman LS-230 scintillation counter for 1 minute. The mean counts for the negative controls (180°-0°) and their standard deviation were then calculated and samples with counts per minute (CPM) equal to or greater than the negative mean plus 5 standard deviations were considered positive for DNA polymerase.
3. DNA polymerase specificity Assay (DPSA)

Samples positive for DNA polymerase were then tested for specificity. Fifty microlitres of test plasma or sera and 50 μl of each of three negative and two positive controls were pipetted into each of a set of 3 tubes marked A, B, and C. Five microlitres of guinea pig anti HBs (NIH, "ad" antibody; HA titre 32,000) were added to tube A, 5 μl of normal guinea pig serum to tube B and 5 μl of PBS to tube C. These tubes were incubated overnight at 4°C and the following morning, 50 μl of undiluted rabbit anti-guinea pig IgG (Flow Labs, Rockville, Md.) were added to each of the 3 tubes. All reagents were filtered through 0.45 μ Millex millipore filters before being added to the tubes. The tubes were incubated at 37°C for 90 minutes and centrifuged in an Eppendorf centrifuge for 2 minutes. Supernatants were carefully removed so as not to disturb the pellets and the DPSA was done on all the supernatants. Fifty microlitres of each supernatant were added to tubes containing 10 μl of solution 2, followed by 200 μl of the reaction mixture. Following 180 minutes incubation at 37°C, 100 μl aliquots were pipetted onto appropriately labelled discs, allowed to maximally absorb, and then washed and counted as previously described. A reduction of counts in tube A of greater than or equal to 50% in HBsAg-positive samples indicated specificity.
E. Hepatitis B core antigen (HB\textsubscript{c}Ag) and antibody

HB\textsubscript{c}Ag was isolated from both liver tissue (post-mortem) and Dane particles circulating in human blood.

l. Liver

a) Microscopy:--A liver was obtained at necropsy from an immunosuppressed renal transplant recipient with chronic hepatitis B antigenemia. Five micron frozen sections were cut, formalin-fixed on glass slides for 10 minutes and washed with distilled water. The liver sections were stained directly with either fluorescein-conjugated anti-HB\textsubscript{c}, anti-HB\textsubscript{s}, or anti-IgG for 30 minutes and rinsed with distilled water. All fluorescein-conjugated antisera were passed through Sephadex G200 (Pharmacia, Uppsala, Sweden) Pasteur pipette columns immediately prior to use to remove all non-conjugated fluorescein. The sections were allowed to air dry, cover slipped and examined by phase contrast and polarizing microscopy to visualize hepatocytic architecture and the presence of HB\textsubscript{c}Ag and/or HB\textsubscript{s}Ag fluorescence.

b) Purification of HB\textsubscript{c}Ag:--Core antigen was purified from liver by first isolating intact nuclei (a modification of a technique described by Chauveau et al, 1956) and secondly, by releasing HB\textsubscript{c}Ag from these nuclei for further purification (Hirschman et al, 1974; Hirschman, personal communication). Liver samples of 30-50 grams were blotted dry with filter paper and finely minced with
scissors while on ice. The minced tissue was washed several times in cold saline (0.15M)-gentamicin (50 μg/ml)-NEM (0.005M) solution (Gentamicin-Schering Corp., Montreal, Quebec; NEM-Sigma Chemicals, St. Louis, Mo.) until the wash was relatively clear. The tissue was then washed several more times in cold saline-NEM without gentamicin.

Following these washings, the liver was suspended in homogenizing medium (a mixture of 0.25M sucrose-0.0033M MgCl₂ - 0.005M NEM and 0.5M sucrose-MgCl₂-NEM) determined by the weight of the liver sample.

<table>
<thead>
<tr>
<th>Liver (grams)</th>
<th>0.25M Sucrose</th>
<th>0.5M Sucrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>52.5</td>
<td>7.5</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>10</td>
</tr>
</tbody>
</table>

The liver was homogenized in a Virtis 45 homogenizer for 6 minutes at a medium setting (40) and the homogenate filtered through 4 layers of cheesecloth soaked in cold homogenizing medium. The homogenate was centrifuged at 5000 rpm for 10 minutes, the resulting pellet suspended in 10 ml of 0.25M sucrose-MgCl₂-NEM and further homogenized with 15-20 up and down strokes in a Dounce homogenizer with a tight fitting teflon pestle. The homogenate was underlayered with an equal volume of 0.34M sucrose-MgCl₂-NEM and centrifuged at 5000 rpm for 20 minutes. The resulting pellet was resuspended by homogenization in a Dounce homogenizer with a loose-fitting long-handled glass pestle in approximately 9 volumes of 2.4M sucrose-MgCl₂-NEM.
and centrifuged at 18,000 rpm for 2 hours and 5°C. The pellet was resuspended in 10 ml of 0.25M sucrose-MgCl₂-
NEM, washed in this solution by centrifugation 3 times at 8000 rpm for 15 minutes and examined by phase contrast microscopy. This pellet, which consisted primarily of nuclei, could either be stored in 0.25M sucrose at -20°C or further processed.

The nuclei were repelleted at 8000 rpm for 15 minutes, the sucrose discarded and the nuclei resuspended in 10 ml of sonication buffer (0.05M Tris-HCl, 0.04M KCl, 0.1% B-mercaptoethanol, 0.01M MgCl₂, 0.005M NEM, pH 7.5). The nuclei were again pelleted at 5000 rpm for 15 minutes and the pellet resuspended in 6 ml of sonication buffer.

The suspension was poured into a metal tube (30cc capacity) and sonicated with a Bronwill III sonifier at 63 w/cm². A 30 second sonication was followed by a 30 second cooling period and this procedure was repeated 3 times for a total sonication time of 90 seconds. After each 30 second period, sonicated material was examined by phase contrast microscopy to determine the degree of nuclear disruption. Following sonication, the volume was adjusted upward to 10 ml with sonication buffer and centrifuged at 8000 rpm for 15 minutes. The pellet was discarded and the supernate was centrifuged at 18,000 rpm for 4 hours. The resulting pellet was resuspended in 0.05M Tris-HCl, pH 7.6 and adjusted to 1.30 g/cm³ with 1.60 g/cm³ CsCl. Five millilitres of the pellet suspension were underlayered with 4 ml
of 1.40 g/cm³ CsCl, overlaid with 1.5 ml of 1.20 g/cm³ CsCl and 2.0 ml of 1.10 g/cm³ CsCl and centrifuged at 35,000 rpm for 24 hours and 5°C in a Beckman L3-50 ultracentrifuge using an SW41 rotor. Fractions were collected from the tubes by bottom puncture and dialyzed against 100 volumes of PBS at 4°C. Fractions positive for cores by electron microscopy were pooled and stored at -70°C. The purification procedure is outlined in figure 8.

c) **Electron microscopy:** -- All supernatants, pellets and gradient fractions were examined in a Philips 300 EM on coated copper grids after staining with 2% PTA (phosphotungstic acid), pH 7.2.

2. Serum

a) **Electron microscopy:** -- Pellets obtained from HBsAg-positive serum after the 4 hour-21,000 rpm centrifugation described in section B 4c) were examined in a Phillips 300 EM after negative staining with 2% PTA, pH 7.2. Pellets found to contain more than 100 Dane particles/10 fields were selected for further purification.

b) **Dane particle purification:** -- Dane-rich pellets were adjusted to a volume of 10 ml with PBS and layered over 20 mls of a 5-25% w/w continuous sucrose gradient. The sucrose gradient was underlayered with 5 ml of 35% w/w sucrose and centrifuged at 21,000 rpm for 4 hours using a fixed angle 30 rotor in an L3-50 ultracentrifuge. Two millilitre fractions were collected by bottom puncture,
Figure 8: Isolation of Cores from Liver Tissue

KEY
- **C**—Centrifugation
- **W**—Wash
- **S**—Supernatant
- **P**—Pellet

Legend
- **HBcAg**—hepatitis B core antigen
- **EM**—electron microscopy

Diagram Description
- **LIVER**
 - Washed, minced, homogenized, filtered
 - S
 - P
 - C
 - Dounced, C
 - Dounced, C
 - Sucrose Supernatant
 - Nuclei in sonication buffer
 - C, resuspension in buffer
 - Suspension of nuclei
 - Sonication x 3
 - Disrupted nuclei
 - P
 - C
 - S
 - C
 - P, resuspended
 - Isopycnic banding
 - Fractions—dialyzed; EM
 - HBcAg negative fractions
 - HBcAg-positive fractions
 - Pooled, stored at 70°C

- 66 -
dialyzed against PBS and examined in an EM. Dane-rich fractions were pooled for additional purification. A rate separation of a 1 ml sample on a 7-35% w/w continuous sucrose gradient as described in section B3c) (3), for small volume purification was carried out, and 0.5 ml fractions were collected by bottom puncture. These were UV scanned in a Hitachi spectrophotometer at 280 nm, tested undiluted by CIEP, dialyzed against 200 volumes of PBS at 4°C and examined in an EM.

c) Core extraction:—The Dane-rich fractions were pooled, diluted to 100 ml in 0.05M Tris-HCl and centrifuged for 6 hours at 21,000 rpm using a fixed angle 30 rotor in an L3-50 ultracentrifuge. The pellets were resuspended in 2 ml of 0.05M Tris-HCl containing 50 μl NP40 (Shell Oil Co., Montreal, Quebec) and 15 μl B-mercaptoethanol (Eastman Kodak, Rochester, N.Y.) and allowed to incubate for 1 hour at room temperature with occasional shaking. One millilitre of this antigen-buffer mixture was layered on top of a continuous 10-45% w/w sucrose gradient on a 60% w/w sucrose cushion and centrifuged for 5 hours at 35,000 rpm and 5°C using an SW41 rotor in an L3-50 ultracentrifuge. One half millilitre fractions were collected by bottom puncture, dialyzed against PBS and examined for core antigen by standard and immune electron microscopy. The procedures outlined in b) and c) are schematically shown in figure 9.

d) Immune electron microscopy (IEM):—Guinea pig anti-HB_s and guinea pig anti-HB_c (courtesy of Dr. J. Hoofnagle)
Figure 9: Purification of Cores from Serum
were used to test the identity of the extracted core antigen. Twenty-five microlitres of either antiserum were mixed with 75 µl of the core preparation and allowed to incubate overnight at 4°C. A drop of the antigen-antiserum mixture was spotted on a coated copper grid. After 20-30 seconds, a drop of 2% PTA, pH 7.2 was added to the grid for 1 minute. The excess fluid was blotted off the grid with absorbent paper and the grid allowed to air dry. The grid was then examined in the EM.

e) Anti-HB_C detection:--Anti-HB_C was detected with a commercially available RIA kit manufactured by Abbott Labs (N. Chicago, Ill.)

II. Cell Mediated Immunity

Two sets of experiments were designed to study the cell mediated immune response to HB_SAg. In the first, two lymphocyte stimulation assays--whole blood cultures and lymphocyte cultures--were compared and then contrasted with a leukocyte migration inhibition assay in agarose. The second set of experiments looked at lymphocyte stimulation using different HB_SAg preparations and concentrations as well as serum byproducts obtained from the purification procedure (see figure 6). These are outlined in Table II.

A. Populations Tested

In experiment 1, 6 post-hepatitis B donors with proven HB_SAg-positive hepatitis, and who became negative for
TABLE II

EXPERIMENTAL PROTOCOL FOR CMI STUDIES

<table>
<thead>
<tr>
<th>Experiment I: Matched post-hepatitis B donors with HBsAg/anti-HBs negative controls.</th>
<th>Experiment II: Matched post-hepatitis B donors with HBsAg/anti-HBs negative controls.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Whole blood cultures</td>
</tr>
<tr>
<td>A</td>
<td>Control</td>
</tr>
<tr>
<td>B</td>
<td>PHA - 10 µg</td>
</tr>
<tr>
<td>C</td>
<td>HBsAg-2 µg</td>
</tr>
<tr>
<td>D</td>
<td>5 µg</td>
</tr>
<tr>
<td>E</td>
<td>25 µg</td>
</tr>
</tbody>
</table>

Migration Inhibition

<table>
<thead>
<tr>
<th>Controls</th>
<th>HBsAg- 40 µg/ml</th>
<th>- 80 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fraction 1 (0.1 ml)
| 2 (0.1 ml) |
| 3 (0.1 ml) |
| 4 (0.1 ml) |

Fraction 1' (0.1 ml)
| 2' (0.1 ml) |
| 3' (0.1 ml) |
| 4' (0.1 ml) |
antigen by CIEP and RIA, with or without anti-HBs were selected for lymphocyte stimulation and migration inhibition testing. These were matched by 6 negative controls (no exposure to HBsAg and anti-HBs-negative. Experiment II compared 10 post-hepatitis B and/or anti-HBs positive individuals with 10 healthy controls with no previous exposure to HBsAg and who were anti-HBs negative.

B. Lymphocyte Stimulation

1. Parameters

Various factors, including serum supplements added to the culture medium (autologous, homologous-pooled AB negative sera, and heterologous-fetal bovine sera) and pH were studied to determine whether they had any effect on lymphocyte stimulation. In addition, optimal incubation periods for the various antigens and mitogens used were also determined.

2. Whole blood technique.

This method was adapted from a procedure described by Pauly et al (1973).

a) Lymphocyte culture preparation:--Five millilitres of blood were collected by venipuncture and transferred immediately into a sterile container containing sodium-free heparin (Nutritional Biochemical, Cleveland, Ohio) to a final concentration of 10 units heparin per millilitre of blood. Ninety-five millilitres of RPMI 1640 (Flow Labs, Rockville, Md.) were made up as follows:
9.0 ml 10xRPMI 1640
2.5 ml of 1M HEPES buffer
1.0 ml of 200mM L-glutamine
0.75 ml of 7.5% sodium bicarbonate
1.0 ml of Pen/Strep (10000U penicillin-
10 mgm streptomycin)
80.75 ml of sterile distilled water.

The medium was filtered through a Nalgene 0.20 μ filter (Sybron Corporation, Rochester, N.Y.) and added to the blood-
heparin mixture to produce a 1:20 whole blood suspension.
The diluted whole blood was continuously mixed at low
speed on a magnetic stirrer and 3.0 ml aliquots were
pipetted aseptically in 16x125 mm disposable plastic
culture tubes (Falcon Plastic, Oxnard, Calif.). Cultures
were tightly capped, placed upright in a rack and incubated
at 37°C.

b) Lymphocyte stimulants—All stimulants were
prepared in unsupplemented RPMI 1640 (1x) to the desired
concentrations and dispensed in 0.4 ml amounts to each
culture tube.

(1) Antigen. Purified HBsAg/adw was diluted to
2, 5 and 25 μg protein/0.4 ml RPMI 1640 and
dispensed in triplicate group C, D and E
cultures respectively.

(2) Mitogen. Purified Wellcome phytohaemagglutinin
(PHA; Warner Chilcott, Toronto, Ont.) was
diluted to 25 μg/ml and 0.4 ml (10μg) was
dispensed to triplicate group B cultures.
(3) **Control.** All 6 group A cultures received 0.4 ml of un-supplemented 1xRPMI 1640.

c) **Culture conditions:** All group B and 3 of the group A cultures were incubated for 2 days whereas the remaining group A and all group C, D and E cultures were incubated for 6 days. Each day, pH and viability (trypan blue exclusion) were determined to insure optimal culture growth conditions.

d) **Lymphocyte stimulation measurement:** One day prior to harvest (either day 1 or day 5, depending on the group), 1.0 μCi of tritiated thymidine (³H-T; specific activity 2.0 Ci/m mole; Amersham Corp., Oakville, Ont.) in 0.2 ml of un-supplemented 1xRPMI 1640 was added to each culture. The cultures were agitated on a Vortex mixer and incubated for an additional 24 hours. At harvest, the cells were resuspended and transferred to a 12 ml conical glass centrifuge tube. The culture tubes were rinsed several times with cold 3% acetic acid and the washings added to the glass tubes. The cells were pelleted by centrifugation at 2000 rpm for 8 minutes, the supernatant aspirated with a glass pipette connected by rubber tubing to a double flask water tap, resuspended in 12 ml of cold 3% acetic acid and repelleted. This procedure was repeated twice. Following the final pelleting and aspiration, one drop of 30% hydrogen peroxide was added to each cell button with a pipette to decolor residual red cells. The uncapped
tubes were then placed in a prewarmed 85°C oven for 20 minutes to enhance oxidation and to decrease the moisture in the tubes. The cell buttons were dissolved in 0.6 ml of NCS tissue solubilizer (Amersham Corp.) for 1 minute.

Five millilitres of scintillation fluid (5 gram PPO/litre toluene) were added to each glass tube and mixed on a Vortex mixer. An additional 5 ml of scintillation fluid were added to each tube and the contents of each tube transferred to appropriately labelled scintillation vials (New England Nuclear, Boston, Mass.). After allowing for the vials to dark adapt overnight, they were counted for 2 minutes in a Beckman LS 230 liquid scintillation counter and the results expressed as CPM minus background (the latter usually between 30-70 cpm). A stimulation index was calculated from the formula

\[
\text{S.I.} = \frac{\text{Mean of the test cultures}}{\text{Mean of the control cultures}}
\]

3. Lymphocyte cultures

This is an adaptation of an earlier technique described by Bloom and Glade (1971).

a) Lymphocyte separation:—Sixty millilitres of blood were collected by venipuncture and immediately transferred to a sterile flask containing 600 units sodium-free heparin. The blood was gently swirled in the flask to insure thorough mixing before an equal volume of sterile 0.85M saline was added. The diluted blood was placed on a
magnetic stirrer at low speed for continuous mixing. Four millilitres of lymphocyte separation medium (LSM-Bionetics, Kensington, Md.) were pipetted into sterile glass tubes and carefully overlayered with 8 mls of diluted blood, insuring that an interface remained between the blood and LSM. The tubes were sealed with parafilm and centrifuged at 800 rpm for 30 minutes. The serum was pipetted off and discarded and the cellular layer at the interface harvested. The cells were transferred to a glass centrifuge tube and washed two times in Hanks Balanced Salt Solution (HBSS) containing 50 µg gentamicin/ml and a third time in HBSS alone. Following examination by light microscopy (>90% lymphocytes), the cells were adjusted to 10^6/ml in prewarmed (37°C) RPMI 1640 freshly prepared and pre-filtered through a 0.20 µm Nalgene filter.

12 ml of 10xRPMI 1640
3.0 ml of 1M·HEPES buffer
1.5 ml of 7.5% sodium bicarbonate
1.2 ml of 200 mM L glutamine
1.3 ml of pen/strep (10,000U penicillin/10 mgm streptomycin)
12 ml of pooled human AB negative sera* (or FBS, Exp. 1)
*(4 sera--heat inactivated; Cdn. Red Cross, Ottawa)
89 ml of sterile distilled water
1N sodium hydroxide to adjust pH to 7.4

One millilitre of medium containing 10^6 cells was pipetted into each plastic 16x125 mm culture tube, tightly capped and incubated in an upright position at 37°C.

b) Lymphocyte stimulants: Stimulants were added at desired concentration in 0.2 ml aliquots by either diluting in unsupplemented 1xRPMI 1640 or concentrating in
an Amicon 65 cell with an XM 100A membrane.

(1) **Antigens.** Groups C, D and E received 2, 5 and 25 μg HB$_s$ Ag/adw in 0.2 ml RPMI 1640 respectively. Groups F, G and H received like amounts of the Bureau of Biologics HB$_s$ Ag/adw vaccine (courtesy Dr. J. L. Gerin). The vaccine, which was a formalin inactivated HB$_s$ Ag preparation stabilized with 0.1% human serum albumin, was extensively dialyzed against PBS prior to use to remove the inactivating agent. Groups I, J, K and L received 0.1 ml of 1:8 dilutions of serum contaminants 1, 2, 3 and 4 recovered during the small volume purification procedure (see figure 7) while groups M, N, O and P received 0.2 ml of like fractions obtained following purification of an HB$_s$ Ag-negative serum (1', 2', 3' and 4'). All cultures were set up in triplicate.

(2) **Mitogen.** Purified PHA was diluted to 50 μg/ml and 0.2 ml (10 μg) was added to the triplicate B cultures.

(3) **Control.** All 6 group A cultures received 0.2 ml of unsupplemented 1xRPMI 1640.

c) **Culture conditions:** These were identical to those previously described for the whole blood technique.
d) **Lymphocyte stimulation measurement:**—One day prior to harvest (day 2 for group B and 3/6 group A; day 6 for the remaining groups), 1.0 μCi of \(^{3}\text{H}\)-T in 0.2 ml RPMI 1640 was added to each culture. The cultures were resuspended on a Vortex mixer and allowed to incubate for an additional 24 hours. The cells were then resuspended and transferred to 12 ml glass centrifuge tubes. Each culture tube was washed several times with cold 0.85N NaCl and the washings added to the glass tubes. These tubes were centrifuged at 2000 rpm for 8 minutes and the supernatant aspirated as previously described. The cells were rewashed in cold saline, followed by two washes in cold 5% trichloracetic acid. The pellets were dehydrated in an 85⁰C oven for 1 hour before 0.5 ml NCS solubilizer was added. One minute later, 5 ml of scintillation fluid was added to each tube and mixed thoroughly. An additional 5 ml of scintillation fluid was added to each tube and the contents transferred to appropriately labelled scintillation vials. The vials were allowed to dark adapt overnight and the samples were counted in an LS230 liquid scintillation counter for 2 minutes. The results were expressed as counts per minute and an S.I. was calculated for each sample (mean of triplicate cultures).

C. **Migration Inhibition**

1. **Preparation of agarose**

 The Clausen (1971) agarose migration inhibition technique was used. A 50 ml 2% solution of agarose A45
was prepared and kept at 50°C in a water bath. This was made up to 100 ml by adding 10 ml of 10×TC medium 199 (GIBCO, Grand Island, N.Y.), 10 ml of heat inactivated horse serum (Flow Labs, Rockville, Md.), 1 ml of penicillin-streptomycin (10,000U penicillin, 10 mgm streptomycin), 1 ml of 7.5% sodium bicarbonate and 28 ml of sterile distilled water. This produced a 1% agarose solution containing single strength TC-199, 10% horse serum and 100 units penicillin-100 μg streptomycin/ml.

The agarose was then dispensed in 7.5 ml aliquots into 60x15 mm plastic petri dishes (Falcon Plastics, Oxnard, Calif.). The dishes were allowed to solidify and were incubated at 37°C in a humidified atmosphere containing 2% CO₂. Immediately prior to the addition of the preincubated leukocytes, 2.5 mm Ø wells were cut in the agarose using a stainless steel punch.

2. Preparation of leukocytes.

Thirty millilitres of blood were collected by venipuncture and transferred immediately to a sterile glass tube containing 300 units of sodium-free heparin and 6 ml of 6% dextran (m.w. 234,000, Sigma Chemicals, St. Louis, Mo.) in 0.85N saline. The tube was inverted several times to allow for thorough mixing and incubated at a 30° angle for 45 minutes at 37°C. This was followed by an additional 30 minute incubation period in an upright position. The leukocyte-rich fraction was carefully pipetted off into 4
12 ml glass centrifuge tubes and spun for 15 minutes at 1000 rpm. The supernatant was aspirated off and the tubes filled with 0.85% ammonium chloride to lyse the residual red cells. This wash was followed by three washes in HBSS containing 100 units penicillin-100 μg streptomycin/ml. After the final wash, single strength TC199 containing 10% heat-inactivated horse serum was added to the cells to a concentration of 2.4x10^8 cells/ml.

3. Addition of test reagents

Ten microliters of HB⁎Ag/adw in concentrations of 40 μg/ml and 80 μg/ml were added to 90 μl of leukocytes and incubated for 1 hour at 37°C. Controls consisted of 10 μl of single strength TC199 and 90 μl of leukocytes. These, too, were incubated for 1 hour. Following incubation, 7 μl aliquots of cells were pipetted into 8 freshly cut wells (approximately 1.5x10^6 cells/well) with a Hamilton syringe and incubated for 20 hours at 37°C in a humidified 2% CO₂ incubator.

4. Migration index

The plates were magnified by projection and the areas of migration measured by planimetry. The well area was not included in the calculation. A migration index (M.I.) was calculated from the formula

\[
M.I. = \frac{\text{Mean of HB⁎Ag incubated cells}}{\text{Mean of TC199 incubated cells}}
\]
5. Identification of migrating cells

Following planimetry, the plates were placed on a 100°C water bath and the agarose allowed to soften. The plates were then filled with n-butanol for 30 minutes to fix the cells to the plate, the agarose carefully floated off and the plates stained with Wright's stain.
RESULTS

I. Antigen Studies

A. Hepatitis B surface antigen (HB₅Ag) and antibody (anti-HB₅)

1. Comparison of RIA, AGD and CIEP for HB₅Ag detection in serum (Table III)

 a) RIA:—All 20 sera from the American Red Cross (ARC) HB₅Ag-positive panel were reconfirmed as positives. A serum was considered to be HB₅Ag-positive when the ratio of the test serum (P) to the negative control (N)—the P/N ratio—was 2 or greater. The ratios of the 20 sera were between 2.4 and 135.6.

 b) AGD:—Only 14 of the 20 sera positive by RIA were positive by this technique. The resultant precipitating lines were scored 1+—4+ depending on their thickness, the thickness being somewhat indicative of the strength of the unknown antigen. The corresponding RIA P/N ratios of these 14 sera were 12.2 and greater.

 c) CIEP:—Sixteen sera were HB₅Ag-positive by this technique. Antigen strength was scored 1+—4+, depending on the thickness of the precipitating line. Only sera with an RIA P/N ratio of 8.9 or greater were detectable.
TABLE III

COMPARISON OF RIA, AGD AND CIEP FOR THE DETECTION OF HB\textsubscript{S} Ag

<table>
<thead>
<tr>
<th>Technique</th>
<th>HB\textsubscript{S} Ag-positive panel (ARC)</th>
<th>HB\textsubscript{S} Ag-negative panel (ARC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. positive</td>
<td>% positive</td>
</tr>
<tr>
<td>RIA</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>AGD</td>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>CIEP</td>
<td>16</td>
<td>80</td>
</tr>
</tbody>
</table>

ARC: American Red Cross
NT: Not tested

* The corresponding P/N ratios at which sera positive for HB\textsubscript{S} Ag by RIA could be detected by AGD or CIEP.
None of the 20 sera from the HB$_s$Ag-negative panel were found to be positive by any of these three techniques.

2. Comparison of HA and RIA for detecting anti-HB$_s$ in serum (Table IV)

 All sera from the ARC anti-HB$_s$-positive panel were reconfirmed as positives by these techniques. In addition, 1 of the 20 sera negative by RIA was anti-HB$_s$-positive by HA to a titre of 1:4. Retesting of this serum by RIA and HA reproduced the results shown in Table IV.

3. Detection of HB$_s$Ag and anti-HB$_s$ in consecutive sera collected from an institutionalized population (Table V)

 Of the 195 consecutive sera collected from the Down's syndrome (DS) population during a 4 year period, 70 were positive for HB$_s$Ag by RIA and 66 were positive by CIEP (approximately 36% and 34% respectively). Antigenemia in the other mentally retarded (OMR) patients was approximately 12% by the two techniques.

 The prevalence of anti-HB$_s$ by the HA technique was comparable in the two populations. Sera negative for HB$_s$Ag and anti-HB$_s$ were more common in the OMR group.

 No attempt was made to group these populations by age, sex, age at admission or length of residence.

4. Subtype determinations

 Three AGD subtype patterns are demonstrated in figure 10. In each, the "A" wells were filled with
TABLE IV

COMPARISON OF HA AND RIA FOR ANTI-\textit{HB}_s DETECTION

<table>
<thead>
<tr>
<th>Technique</th>
<th>Anti-\textit{HB}_s-positive panel</th>
<th>Anti-\textit{HB}_s-negative panel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. positive</td>
<td>% positive</td>
</tr>
<tr>
<td>HA</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>RIA</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE V

PREVALENCE OF HB$_S^{Ag}$ AND ANTI-HB$_S$ IN CONSECUTIVE SERA
COLLECTED FROM AN INSTITUTIONALIZED POPULATION

<table>
<thead>
<tr>
<th>Population</th>
<th>No.</th>
<th>HB$_S^{Ag}$-positive</th>
<th>Anti-HB$_S$-positive</th>
<th>HB$_S^{Ag}$/anti-HB$_S$-negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RIA (%)</td>
<td>CIEP (%)</td>
<td>HA (%)</td>
</tr>
<tr>
<td>Down's syndrome (DS)</td>
<td>195</td>
<td>70 (35.9)</td>
<td>66 (33.8)</td>
<td>102 (52.3)</td>
</tr>
<tr>
<td>Other mentally retarded (OMR)</td>
<td>2400</td>
<td>282 (11.8)</td>
<td>269 (11.2)</td>
<td>1276 (53.2)</td>
</tr>
</tbody>
</table>
HB$_s$Ag/ad, the "a" wells with HB$_s$Ag/anti-ad and the "S" wells with subtype-unknown HB$_s$Ag-positive sera for subtyping.

In figure 10a, the "S" wells showed identity to the "A" wells and to each other (lack of spur formation). The subtypes of the unknowns were identical to the known standards and in this example were all HB$_s$Ag/ad.

In figure 10b, the 8 o'clock "S" well was only partially identical to the 6 and 10 o'clock "A" and "S" wells respectively as seen by the spur formation. The group specific determinant a was common to all peripheral wells but the type specific d determinant was not common to the 8 o'clock serum. This antigen was an HB$_s$Ag/ay subtype.

The third pattern showed identity between the "S" wells (same subtype) but lack of identity with the "A" wells (spur formation). All wells had partial identity through the group specific a marker but the type specific d marker was absent from the "S" wells. These sera showed complete identity when tested against HB$_s$Ag/ay and HB$_s$Ag/anti-ay standards.

Sera collected from four distinct HB$_s$Ag-positive populations were compared as to subtype prevalence. In 3 of the 4 populations, HB$_s$Ag/ad was the predominant subtype (Table VI) whereas only in the acutely ill hepatitis B positive patients was ay predominant. Two sera in the blood donor population were untypeable, even after serum concentration (5x) and centrifugation at 3500 rpm to
Figures 10 a-c: Subtype Determination

a. Complete identity of the unknown sera with a known subtype, in this case HB$_S$Ag/ad.

b. Partial identity of the serum in the 8 o'clock well with the known antigen subtype and the unknown sera in the three other peripheral wells. Partial identity is indicated by spur formation. The 2, 4 and 10 o'clock wells are HB$_S$Ag/ad while the 8 o'clock well is HB$_S$Ag/ay.

c. Partial identity of the four unknown samples with a known antigen subtype, as evidenced by spur formation. Partial identity is with the "a" determinant only. The four unknown sera are HB$_S$Ag/ay.
Figures 10 a-c: Subtype Determination

KEY

STANDARDS
A - KNOWN ANTIGEN SUB TYPE
α - KNOWN ANTIBODY SUB TYPE

TEST SERUM
S - UNKNOWN SUB TYPE

Fig. 10a

Fig. 10b

Fig. 10c
<table>
<thead>
<tr>
<th>Population</th>
<th>No. of samples subtyped</th>
<th>Subtypes</th>
<th>Untype-able</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood donors (BD)</td>
<td>100</td>
<td>63</td>
<td>35</td>
</tr>
<tr>
<td>Other mentally retarded, Down's syndrome (OMR, DS)</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Acute hepatitis B</td>
<td>100</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>Renal dialysis (RD)</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>
remove debris.

Statistical analysis of the 4 groups revealed that these differences were significant (p < 0.01).

5. HBsAg purification

a) Large volume purification:--This purification scheme for spherical 22 nm HBsAg particles involved a series of 3 isopycnic bandings in CsCl and one sucrose rate zonal centrifugation. After the first isopycnic banding (CS1), antigenic activity by RIA at 10^{-4} dilution was recovered in fractions 7 to 10. Lower dilutions produced positive P/N ratios in almost all fractions, thereby making it difficult to select the appropriate fractions for further purification (figure 11a, b). Occasionally, at lower dilutions ($10^{-1}, 10^{-2}$), the antigen was excessive and a prozone effect resulted. This could be overcome if higher dilutions were measured by RIA (figure 12).

Fractions 7 to 10 were pooled, adjusted to a density of 1.30 g/cm3 with CsCl and rebanded in a discontinuous CsCl gradient (see Materials and Methods). This second isopycnic banding (CS2) permitted the 22 nm HBsAg particles to float free from the bulk of the lower molecular weight and higher serum density contaminants (figure 13). RIA activity at 10^{-4} dilution coincided completely with the 280 nm optical density peak. The CsCl buoyant density of the most reactive RIA fraction was 1.203 g/cm3 (figures 13, 14). Electron microscopic examination of the 10^{-4} RIA-positive fractions revealed predominantly 22 nm
Figure 1a and b: The first isopycnic banding from a large volume purification in a rate zonal rotor:

a. RIA P/N ratios at dilutions 10^0, 10^{-1} and 10^{-2}.

b. RIA P/N ratios at dilutions 10^0, 10^{-3} and 10^{-4}.

St. S. - Starting sample
Figure 11a.

Figure 11b.
Figure 12: Prozone effect at a dilution of 10^{-2} when measured by RIA.
Figure 12
Figures 13 and 14

13. Second isopycnic banding in CsCl from the large volume purification procedure. Peak RIA activity coincided with a CsCl density of 1.203 g/cm³.

14. Optical density determination at 280 nm of the second isopycnic banding in CsCl. The second peak coincides with RIA activity.
spherical particles with minimal contamination with short and long filaments.

The peak fractions (19-21) from this second isopycnic banding were pooled, dialyzed against PBS in an Amicon 65 cell and concentrated to 45 ml as previously described. Twenty-five millilitres of CS2 were used for the rate separation centrifugation (CS2 R1). This procedure resulted in the coincident migration of RIA activity with a major optical density peak, well separated from the residual soluble serum contaminants which remained in the starting CS2 zone (figures 15, 16). Fractions 9-13 from the CS2 R1 banding were combined and rebanded in CsCl (CS2 R1 Cs1). Optical density scanning at 280 nm and RIA screening at 10^{-4} dilution showed a single homogeneous peak at a density of 1.203 g/cm3 (figures 17, 18). Fractions 10-13 were pooled, dialyzed extensively against PBS and concentrated to 50 ml in an Amicon 65 cell as previously described. The CS2 R1 Cs1 sample was aliquoted in 1 ml volumes and stored at -70°C.

b) **Small volume purification:** This procedure also involved 3 isopycnic bandings in discontinuous CsCl gradients and a rate separation centrifugation in a continuous sucrose gradient. The first isopycnic banding (CS1) had a peak CIEP reactivity for HBsAg at a 1:128 titre and a buoyant density of 1.20 g/cm3 (figure 19). Fractions 5-8 were pooled, adjusted to a density of 1.30 g/cm3 as
Figures 15 and 16

15. The rate separation banding (CS2R1) in a continuous sucrose gradient.

Figures 17 and 18

17. Third isopycnic banding in CsCl. Peak RIA activity coincides with a CsCl density of 1.203 g/cm³.

18. Optical density determination at 280 nm for the CS2R1 CS1 banding. The OD peak coincides with peak RIA activity.
Figures 19 and 20

19. The first isopycnic banding in the small volume purification procedure. Peak CIEP activity is recovered at a density of 1.20 g/cm3 in CsCl.

20. The CS2 banding in the small volume purification procedure. Peak CIEP activity coincides with the second UV peak obtained at 280 nm and is found at a density of 1.20 g/cm3 in CsCl.
Figure 19

Figure 20
previously described and recentrifuged to float the 22 nm spherical particles away from the heavier serum protein contaminants. Peak CIEP activity was seen in the second 280 nm optical density zone and coincided with a 1.20 g/cm3 buoyant density (figure 20). Fractions 17-19 of the CS2 banding were pooled, dialyzed against PBS and concentrated to 10 ml in an Amicon 65 cell. One millilitre aliquots per tube were used for the rate separation centrifugation (CS2 R1). Peak CIEP activity migrated with the first major 280 nm optical density zone, well away from the soluble serum contaminants which remained in the starting area at the top of the tube (figure 21). Fractions 13-17 were pooled and rebanded for a third time in CsCl (CS2 R1 CS1). Optimal CIEP activity was found in a single homogeneous peak of 280 nm absorption, with a buoyant density of 1.20 g/cm3 (figure 22). Fractions 8-11 were pooled, dialyzed against PBS and dispensed in 1 ml aliquots for storage at -70°C.

c) Protein determination:—The protein concentrations of CS2 R1 CS1 preparations were determined by the Lowry technique. Protein concentrations of HB$_s$Ag-purified material by the large volume procedure ranged between 110-275 µg/ml whereas HB$_s$Ag purified by the small volume method ranged between 100-245 µg/ml.

d) Electron microscopy:—EM examination of the CS2 R1 CS1 preparation showed a homogeneous population of
Figures 21 and 22

21. The rate separation centrifugation (CS2R1) in the small volume purification procedure.

22. The third isopycnic banding (CS2R1 CS1) in the small volume purification procedure. RIA activity is recovered in a single 280 nm peak.
22 nm spherical particles. The number of particles per millilitre could not be estimated accurately as no standardized latex particle preparation was used for comparison (figs. 23a, b).

e) **Subtype:**--The subtypes of purified CS2 R1 CS1 preparations were identical to those of the starting sample in all cases. In addition, purification did not significantly enhance subtype determination for any HB_s Ag-positive serum.

f) **Assessment of CS2 R1 CS1 purity:**--CIEP and AGD analyses of purified HB_s Ag revealed no human serum contaminants in any of the 6 sera prepared by the large volume purification technique. Five of the 20 small-volume sera reacted with anti-NHS. These were reprocessed through the CS2 R1 and CS2 R1 CS1 steps and retested. These two rebandings were 100% successful in removing detectable contaminants.

The antibody response of anti-HB_s negative guinea pigs to purified HB_s Ag was assessed by AGD and CIEP. Detectable levels of anti-HB_s resulted 2-3 weeks after inoculation of 0.5 ml of HB_s Ag (in complete Freund's adjuvant) into guinea pig foot pads. In addition, 3 of the 6 large volume preparations produced low but detectable titres of anti-NHS in these animals by AGD as did 8 of 20 small volume preparations. These titres ranged from undiluted (1:1) to 1:16. CS2 R1 CS1 preparations producing detectable anti-NHS titres in guinea pigs were stored at
Figures 23 a and b: A homogeneous population of 22 nm spherical particles purified by the small volume purification procedure:

a. Low magnification (140,000X)

b. Higher magnification (256,000X)

Bar represents 100 μ.
-70°C and not used for later CMI studies.

g) **HB$_s$Ag purification following PEG precipitation:**
The CS1 and CS2 bandings of PEG-precipitated HB$_s$Ag were similar to the first 2 bandings described for the small volume purification procedure. CIEP activity was recovered in an opaque band following each isopycnic banding. Following the rate separation centrifugation, 3 major 280 nm optical density peaks were recoverable. The first peak, devoid of CIEP activity, contained PEG exclusively. The second peak was associated with CIEP activity and the third peak contained the soluble serum contaminants in the starting zone (figure 24). The baseline between these 3 peaks was markedly elevated when compared to the non-PEG precipitated HB$_s$Ag-preparations. This elevation was the result of PEG cross-contamination between the fractions and peaks. Repeated rate separation purifications of the CS2 R1 material reduced this baseline but PEG was always recoverable in all fractions. HB$_s$Ag titres by PEG-precipitation were often 2-4 fold higher than with the large and small volume purification procedures. Nevertheless, this technique was abandoned because of the problem of cross-contamination.

B. **Hepatitis B$_e$antigen and antibody**

1. **Prevalence of HB$_e$Ag and anti-HB$_e$ in four HB$_s$Ag-positive populations**

As is shown in Table VII, a significant percentage of HB$_s$Ag-positive renal dialysis sera was also positive for
Figure 24: The rate separation banding from the PEG-purification procedure
Figure 24
Table VII

Prevalence of HB Ag and Anti-HB _e_ in Four HB Ag-Positive Populations

<table>
<thead>
<tr>
<th>Population</th>
<th>No. examined</th>
<th>No. HBeAg-positive</th>
<th>% HBeAg-positive</th>
<th>No. examined</th>
<th>No. anti-HBe- _e_ positive</th>
<th>% anti-HBe- _e_ positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down's Syndrome (DS)</td>
<td>105</td>
<td>17</td>
<td>16.2</td>
<td>105</td>
<td>27</td>
<td>25.7</td>
</tr>
<tr>
<td>Other mentally retarded (OMR)</td>
<td>162</td>
<td>16</td>
<td>10.0</td>
<td>162</td>
<td>57</td>
<td>35.2</td>
</tr>
<tr>
<td>Blood donors (BD)</td>
<td>96</td>
<td>8</td>
<td>8.3</td>
<td>96</td>
<td>30</td>
<td>31.3</td>
</tr>
<tr>
<td>Renal dialysis (RD)</td>
<td>12</td>
<td>6</td>
<td>50.0</td>
<td>12</td>
<td>1</td>
<td>8.3</td>
</tr>
</tbody>
</table>

\textit{HB_e_Ag} \text{ RD vs BD: } \chi^2 \text{ with continuity correction } = 5.725, 0.05 > P > 0.01, \text{ d.f. } = 1
\text{ RD vs DS: } \chi^2 \text{ with continuity correction } = 5.274, 0.05 > P > 0.01, \text{ d.f. } = 1
\text{ RD vs OMR: } \chi^2 \text{ with continuity correction } = 5.070, 0.05 > P > 0.01, \text{ d.f. } = 1
\text{ All other comparisons: } \chi^2 \text{ with continuity correction } P > 0.01 \rightarrow P > 0.1.

\textit{Anti-HB_e_} \text{ RD vs BD, OMR and DS: } \chi^2 \text{ with continuity correction } 0.05 > P > 0.01, \text{ d.f. } = 1
\text{ All other comparisons } P > 0.1.
e antigen by the AGD technique (0.05 > p > 0.01). Anti-\(\text{HB}_e \)
on the other hand was detected in only 8.3% of \(\text{HB}_e \text{Ag} \)-positive
dialysis sera, significantly less than for the three other
groups tested (0.05 > p > 0.01).

2. \(\text{HB}_e \text{Ag} \) and anti-\(\text{HB}_e \) in two institutionalized populations.

 a) **Prevalence of \(\text{HB}_e \text{Ag} \) and anti-\(\text{HB}_e \) in \(\text{HB}_e \text{Ag} \)-positive sera:** As seen in Tables VIII and IX, there was no
difference in the prevalence of \(e \) antigen and antibody be-
tween the DS and OMR populations at the two centres (p > 0.1).

 b) **Prevalence of \(\text{HB}_e \text{Ag} \) and anti-\(\text{HB}_e \) in \(\text{HB}_e \text{Ag} \)-positive
patients as a function of age at admission:** Age at admission
was not a contributory factor in the prevalence of either \(e \)
antigen or antibody at the two institutions (p > 0.1). The
findings are summarized in Tables X and XI.

 c) **Prevalence of \(\text{HB}_e \text{Ag} \) and anti-\(\text{HB}_e \) in \(\text{HB}_e \text{Ag} \)-positive
patients as a function of length of residence:**

 (1) \(\text{HB}_e \text{Ag} \). \(e \) antigen was more prevalent in the DS
and OMR populations at the Rideau centre, and in the OMR
population at the Huronia Centre when length of residence in
these institutions was 10 years or less (p < 0.05). These
results are shown in Table XII.

 (2) **Anti-\(\text{HB}_e \).** As is shown in Table XIII, anti-\(\text{HB}_e \)
was not significantly affected by the length of residence in
any of the populations at the two centres (p > 0.1).
Table VII

Prevalence of HBsAg in HBsAg-positive residents of two Ontario Institutions for the Mentally Retarded

<table>
<thead>
<tr>
<th></th>
<th>No. of residents examined</th>
<th>No. examined</th>
<th>Down's Syndrome (DS)</th>
<th>No. positive</th>
<th>% positive</th>
<th>Other mentally retarded (OMR)</th>
<th>No. examined</th>
<th>Down's Syndrome (DS)</th>
<th>No. positive</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rideau</td>
<td>146</td>
<td>54</td>
<td>10</td>
<td>18.5</td>
<td>92</td>
<td>8</td>
<td>7</td>
<td>13.7</td>
<td>8</td>
<td>11.4</td>
</tr>
<tr>
<td>Huronia</td>
<td>121</td>
<td>51</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS vs OMR (Rideau): X^2 with continuity correction $= 2.486$, $P > 0.1$, d.f. $= 1$

DS vs OMR (Huronia): X^2 with continuity correction $= 0.338$, $P > 0.5$, d.f. $= 1$
TABLE IX

PREVALENCE OF ANTI-HB_e IN HB_s Ag-POSITIVE RESIDENTS OF TWO ONTARIO INSTITUTIONS FOR THE MENTALLY RETARDED

<table>
<thead>
<tr>
<th></th>
<th>No. of residents examined</th>
<th>Down's syndrome (DS)</th>
<th>'Other mentally retarded' (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
<td>% positive</td>
</tr>
<tr>
<td>Rideau</td>
<td>146</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Huronia</td>
<td>121</td>
<td>51</td>
<td>15</td>
</tr>
</tbody>
</table>

DS vs OMR (Rideau): χ^2 with continuity correction = 2.962, $P > 0.1$, d.f. = 1
DS vs OMR (Huronia): χ^2 with continuity correction = 0.314, $P > 0.5$, d.f. = 1
Table X

Prevalence of HB Ag in HB Ag-positive Residents of Two Ontario Institutions For the Mentally Retarded Based on Age at Admission

<table>
<thead>
<tr>
<th>Age at admission (yrs)</th>
<th>Down's Syndrome (DS)</th>
<th>Other Mentally Retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>Rideau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>11-20</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Huronia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>11-20</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>7</td>
</tr>
</tbody>
</table>

DS (Rideau): $\chi^2 = 0.948$, d.f. = 1, $P > 0.5$

OMR (Rideau): $\chi^2 = 3.342$, d.f. = 2, $P > 0.1$

DS (Huronia): $\chi^2 = 0.158$, d.f. = 1, $P > 0.5$

OMR (Huronia): $\chi^2 = 1.938$, d.f. = 2, $P > 0.1$
TABLE XI

PREVALENCE OF ANTI-HB e IN HB Ag-POSITIVE RESIDENTS OF TWO ONTARIO INSTITUTIONS FOR THE MENTALLY RETARDED BASED ON AGE AT ADMISSION

<table>
<thead>
<tr>
<th>Age at admission (yrs)</th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>Rideau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>11-20</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Huronia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>11-20</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>15</td>
</tr>
</tbody>
</table>

DS (Rideau): $X^2 = 1.438$, d.f. = 1, $P > 0.1$
OMR (Rideau): $X^2 = 4.142$, d.f. = 1, $P > 0.1$

DS (Huronia): $X^2 = 0.273$, d.f. = 2, $P > 0.5$
OMR (Huronia): $X^2 = 2.791$, d.f. = 2, $P > 0.1$
TABLE XII

Prevalence of HBAg in HBAg-Positive Residents of Two Ontario Institutions

For the Mentally Retarded Based on Length of Residence

<table>
<thead>
<tr>
<th>Length of residence (yrs)</th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>Rideau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>11-20</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>>20</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Huronia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>11-20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>>20</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>7</td>
</tr>
</tbody>
</table>

DS (Rideau): $\chi^2 = 4.324$, d.f. = 2, $0.05 > P > 0.01$

OMR (Rideau): $\chi^2 = 6.261$, d.f. = 2, $0.05 > P > 0.01$

DS (Huronia): $\chi^2 = 0.526$, d.f. = 2, $P > 0.1$

OMR (Huronia): $\chi^2 = 6.710$, d.f. = 2, $0.05 > P > 0.01$
TABLE XIII

PREVALENCE OF ANTI-HB_e IN HB Ag-POSITIVE RESIDENTS OF TWO ONTARIO INSTITUTIONS FOR THE MENTALLY RETARDED BASED ON LENGTH OF RESIDENCE

<table>
<thead>
<tr>
<th>Length of residence (yrs)</th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>Rideau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>11-20</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>>20</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Huronia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>11-20</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>>20</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>15</td>
</tr>
</tbody>
</table>

DS (Rideau): $X^2 = 0.616$, d.f. = 2, $P > 0.5$
OMR (Rideau): $X^2 = 4.087$, d.f. = 2, $P > 0.1$

DS (Huronia): $X^2 = 1.804$, d.f. = 2, $P > 0.1$
OMR (Huronia): $X^2 = 1.301$, d.f. = 2, $P > 0.5$
d) Prevalence of HB\textsubscript{e}Ag and anti-HB\textsubscript{e} in HB\textsubscript{e}Ag-positive patients as a combined function of age at admission and length of residence:--

(1) HB\textsubscript{e}Ag. Most DS patients at both institutions were admitted between 0 and 10 years of age (95\% and 84\% at Rideau and Huronia respectively). Whereas 84\% of the Rideau DS population were institutionalized for 10 or more years, only 53\% at Huronia were residents for an equal period of time (0.1 > p > 0.05). A significant percentage of the Huronia population (31\%) had been residents for less than 10 years (0.05 > p > 0.01). There were no such differences between the OMR populations at the two centres (Table XIIa).

Comparison of the DS and OMR patients admitted before the age of 10 and residing at the centre for more than 10 years showed a significantly higher percentage of e antigen in the DS population at the Rideau Centre only (0.05 > p > 0.01). When the length of residence was 10 years or less, the differences between the DS and OMR populations at the two centres were not significant (p > 0.1). These results are summarized in Tables XIIb and XIIc.

(2) Anti-HB\textsubscript{e}. Age at admission and length of residence were found not to be significant factors in the prevalence of e antibody in either the DS or OMR populations at the two institutions (Tables XIIb and XIIc).
TABLE XIIa

HB Ag-POSITIVE POPULATIONS IN TWO INSTITUTIONS FOR THE RETARDED AS A FUNCTION
OF AGE AT ADMISSION (AA) AND LENGTH OF RESIDENCE (LR)

<table>
<thead>
<tr>
<th></th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>AA/LR 0-15/11-25 (%)</td>
</tr>
<tr>
<td>Rideau</td>
<td>54</td>
<td>45 (84)</td>
</tr>
<tr>
<td>Huronia</td>
<td>51</td>
<td>27 (53)</td>
</tr>
</tbody>
</table>

DS Rideau vs Huronia (AA/LR 0-15/11-25): \(\chi^2 \) with continuity correction = 3.664, 0.05 > P > 0.01, d.f. = 1
(AA/LR 0-15/0-10): \(\chi^2 \) with continuity correction = 5.973, 0.05 > P > 0.01, d.f. = 1
OMR Rideau vs Huronia (AA/LR 0-15/11-25): \(\chi^2 \) with continuity correction = 0.125, P > 0.5, d.f. = 1
(AA/LR 0-15/0-10): \(\chi^2 \) with continuity correction = 0.324, P > 0.5, d.f. = 1
TABLE XIIIb

HB Ag and anti-HB e in HB Ag-positive institutionalized populations—A function of age at admission and length of residence (AA 0-15; LR 11-25).

<table>
<thead>
<tr>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
</tr>
<tr>
<td>Rideau</td>
<td>45</td>
</tr>
<tr>
<td>Huronia</td>
<td>27</td>
</tr>
</tbody>
</table>

HB Ag e
Rideau DS vs OMR: X^2 with continuity correction = 5.268, 0.05 > p > 0.01, d.f. = 1
Huronia DS vs OMR: X^2 with continuity correction = 1.231, p > 0.1, d.f. = 1

Anti-HB e
P > 0.5 for both Rideau, Huronia

P > 0.5 for both Rideau, Huronia
Table XIIc

HB Ag and Anti-HB e in HB Ag-positive Institutionalized Populations—A Function of Age at Admission and Length of Residence (AA 0-15; LR 0-10)

<table>
<thead>
<tr>
<th></th>
<th>Down's Syndrome (DS)</th>
<th>Other Mentally Retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>HB Ag (%)</td>
</tr>
<tr>
<td>Rideau</td>
<td>6</td>
<td>4 (67)</td>
</tr>
<tr>
<td>Huronia</td>
<td>-16</td>
<td>4 (25)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6 (33)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5 (45)</td>
</tr>
</tbody>
</table>

HB Ag
- Rideau DS vs OMR: χ^2 with continuity correction = 1.16, $p < 0.1$, d.f. = 1
- Huronia DS vs OMR: χ^2 with continuity correction = 0.865, $p < 0.1$, d.f. = 1

Anti-HB e
- $P > 0.5$
e) **Prevalence of HB$_e$Ag and anti-HB$_e$ in matched HB$_s$Ag-positive and HB$_s$Ag/anti-HB$_s$ negative pairs:**—None of the 88 HB$_s$Ag/anti-HB$_s$ negative sera from DS and OMR residents at the Rideau Centre matched by age, sex and length of residence to a like number of HB$_s$Ag-positive patients had detectable HB$_e$Ag or anti-HB$_e$ in their sera (p < 0.001). DS versus OMR comparisons for e antigen and antibody in the HB$_s$Ag-positive group were not significant (Tables XIV and XV).

3. **Characterization of HB$_e$Ag and anti-HB$_e$**

Two antigenic reactivities were found by AGD when a standard HB$_e$Ag/e$_1$e$_2$ was tested against a known anti-HB$_e$/e$_1$e$_2$ (figure 25). One anti-HB$_e$ gave 3 distinct precipitating lines with e$_1$e$_2$ antigen-positive sera, and was designated the Huronia antiserum (figure 26). In no instances were three lines seen when the antigen was an e$_1$ subtype. HB$_e$Ag and anti-HB$_e$ were not detected in any HB$_s$Ag/anti-HB$_s$ negative sera screened.

a) **Heat inactivation of HB$_e$Ag-positive sera:**—HB$_e$Ag/e$_1$ and HB$_e$Ag/e$_1$e$_2$ containing sera were heat inactivated at 56°C for 30 minutes and tested against anti-HB$_e$/e$_1$e$_2$ by immunodiffusion. The e$_1$ line was detectable in 90% of the sera, but the e$_1$ titre fell by as much as 50%. The e$_2$ line was not detectable in any of the inactivated HB$_e$Ag/e$_1$e$_2$ sera. Sera giving 3 lines with the Huronia antiserum were also heat inactivated and only the e$_1$ line persisted. Because of the similarity of the third line with e$_2$ appearance and
Figures 25 and 26

25. HB₆Ag/e₁ e₂

26. Three lines are produced when known HB₆Ag/e₁ e₂ and anti-HB₆/e₁ e₂ positive sera are tested against the Huronia antiserum. Because of the similarities between e₂ and the third line, it is designated e₂ₐ rather than e₃.
TABLE XIV

HB_s Ag IN HB_s Ag-POSITIVE AND HB_s Ag/ANTI-HB_s -NEGATIVE POPULATIONS AT THE RIDEAU REGIONAL CENTRE MATCHED BY MENTAL STATUS, AGE AT ADMISSION AND LENGTH OF RESIDENCE

<table>
<thead>
<tr>
<th>No. of patients matched</th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>HB_s Ag- positive 88</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>HB_s Ag/anti- HB_s- negative 88</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

DS vs OMR: χ^2 with continuity correction = 1.669, P > 0.1, d.f. = 1
<table>
<thead>
<tr>
<th>No. of patients matched</th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>No. positive</td>
</tr>
<tr>
<td>HBsAg-positive</td>
<td>88</td>
<td>19</td>
</tr>
<tr>
<td>HBsAg/anti-HBs-negative</td>
<td>88</td>
<td>19</td>
</tr>
</tbody>
</table>

DS vs OMR: \(\chi^2 \) with continuity correction = 2.541, \(P > 0.1 \), d.f. = 1
disappearance, it was designated \(e_{2a} \).

b) HB\(_e\) Ag and anti-HB\(_e\) subtypes in HB\(_s\) Ag-positive sera:

(1) HB\(_e\) Ag. All Rideau DS and OMR HB\(_e\) Ag-positive sera were \(e_1 \) subtype as were all Huronia DS sera positive for \(e \) antigen. Of the eight HB\(_e\) Ag-positive OMR sera from the Huronia centre, 7 were \(e_1 \) and 1 was \(e_1e_2 \) (Table XVI).

(2) Anti-HB\(_e\). The majority of anti-HB\(_e\) positive sera were anti-\(e_1 \) subtype, followed in descending frequency by anti-\(e_1e_2 \) and finally anti-\(e_2 \). One serum from Huronia gave 3 precipitating lines as already described and was designated anti-\(e_1e_2e_{2a} \). Results are summarized in Table XVII.

4. Relationship of HB\(_e\) Ag and anti-HB\(_e\) to HB\(_s\) Ag subtypes

Blood donor sera positive for HB\(_s\) Ag were subtyped and tested for \(e \) antigen and antibody. HB\(_e\) Ag was detected in 15.6% of HB\(_s\) Ag/ay sera compared to only 3.9% for the ad subtype \((0.05 > p > 0.01)\). In renal dialysis patients, 50% of the HB\(_s\) Ag/ad sera were also positive for the \(e \) antigen. All HB\(_s\) Ag/ad sera that were \(e \) antigen positive were of the \(e_1 \) subtype whereas two of the seven ay subtypes were HB\(_e\) Ag/\(e_1e_2 \) (Table XVIII).

Anti-HB\(_e\) was most prevalent in blood donor HB\(_s\) Ag/ad sera \((0.1 > p > 0.05)\) and least detected in dialysis patients of the same subtype (Table XIX).
<table>
<thead>
<tr>
<th></th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. examined</td>
<td>e₁</td>
<td>e₂</td>
</tr>
<tr>
<td>Rideau</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Huronia</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
TABLE XVII

ANTI-HB e SUBTYPES IN HB Ag-POSITIVE RESIDENTS OF TWO ONTARIO INSTITUTIONS FOR THE MENTALLY RETARDED

<table>
<thead>
<tr>
<th></th>
<th>Down's syndrome (DS)</th>
<th>Other mentally retarded (OMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined</td>
<td>e_1</td>
</tr>
<tr>
<td>Rideau</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Huronia</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>
TABLE XVIII

RELATIONSHIP OF HB₅ Ag SUBTYPES ad AND ay TO HBₑ Ag IN BLOOD DONOR AND RENAL DIALYSIS POPULATIONS

<table>
<thead>
<tr>
<th>Population</th>
<th>No. examined</th>
<th>No. positive</th>
<th>% positive</th>
<th>No. examined</th>
<th>No. positive</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood donors (BD)</td>
<td>51</td>
<td>2¹</td>
<td>3.9</td>
<td>45</td>
<td>7²</td>
<td>15.6</td>
</tr>
<tr>
<td>Renal dialysis patients (RD)</td>
<td>12</td>
<td>6¹</td>
<td>50.0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ All HBₑ Ag subtype e₁
² 5-e₁, 2-e₁e₂

BD: ad vs ay with continuity correction = 4.159, 0.05 > P > 0.01, d.f. = 1
TABLE XIX

RELATIONSHIP OF HBsAg SUBTYPES ad AND ay TO ANTI-HBs IN BLOOD DONOR AND RENAL DIALYSIS POPULATIONS

<table>
<thead>
<tr>
<th>Population</th>
<th>No. examined</th>
<th>No. positive</th>
<th>% positive</th>
<th>No. examined</th>
<th>No. positive</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood donors (BD)</td>
<td>51</td>
<td>21<sup>1</sup></td>
<td>41.2</td>
<td>45</td>
<td>9<sup>2</sup></td>
<td>20.0</td>
</tr>
<tr>
<td>Renal dialysis patients (RD)</td>
<td>12</td>
<td>1<sup>3</sup></td>
<td>8.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ 14-e₁; 6-e₁e₂; 1-e₂
² 6-e₁; 3-e₁e₂
³ 1-e₁

BD: ad vs ay with continuity correction = 3.782, 0.1 > P > 0.05, d.f. = 1
C. DNA polymerase

1. Assay (DPA)

The results of the DPA on sera obtained from 75 asymptomatic H_B^SAg positive carriers (25 H_B^EAg positive, 25 anti-H_B^E positive and 25 negative for both H_B^EAg and anti-H_B^E by ACD) are summarized in table XX. The counts per minute (cpm) of 7 unconcentrated normal sera, negative for both H_B^SAg and anti-H_B^S and treated in an identical manner as the 75 H_B^SAg positive sera, fell within the range of 19 and 70 cpm (mean ± standard deviation, 40 ± 9.2). Sera were considered to be positive for DNA polymerase activity when the cpm exceeded the mean of the 7 normal controls plus 5 standard deviations of the mean.

DNA polymerase activity was detected in 11 (44%) of the unconcentrated H_B^EAg positive sera and in 20 (80%) of the 25 sera samples after 5 times concentration. In sharp contrast, none of the 25 anti-H_B^E-positive sera had any detectable DNA polymerase activity, either in unconcentrated or concentrated form. The third group of H_B^SAg-positive sera tested were negative for both H_B^EAg and anti-H_B^E by ACD. DNA polymerase activity was detected in 4 (16%) of the unconcentrated sera and in 9 (36%) sera following 5 times concentration. A total of 15 (20%) unconcentrated H_B^SAg-positive sera were found to have DNA polymerase activity, increasing to 29 (39%) after concentration of the serum samples.
<table>
<thead>
<tr>
<th>HB_e Ag or anti-HB_e</th>
<th>[1x Serum]</th>
<th>[5x Serum]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Positive (%)</td>
</tr>
<tr>
<td>HB_e Ag</td>
<td>25</td>
<td>11 (44)</td>
</tr>
<tr>
<td>anti-HB_e</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>25</td>
<td>4 (16)</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>15 (20)</td>
</tr>
</tbody>
</table>

1Uptake of \[^3\text{H}]\text{TTP} greater than 76 cpm (mean count of 7 normal sera + 5 S.D. - 40 ± 9.2).

2HB_e Ag and anti-HB_e negative by immunodiffusion.
The 20 HB_eAg sera positive for DNA polymerase activity were further tested for HB_sAg subtype and titre. Twelve of the sera were $\text{HB}_s\text{Ag/}ad$ while the remaining 8 were $\text{HB}_s\text{Ag/}ay$. Titres for the sera ranged between 1:16 and 1:256 by CIEP. Mean DPA cpm for the 12 unconcentrated $\text{HB}_s\text{Ag/}ad$ sera were 112.5; the mean cpm for the 8 ay sera were 153.4. There was a significant increase in $^3\text{H}-\text{TTP}$ incorporation following 5 times concentration of the individual serum samples; mean cpm increased to 730.2 for the 12 $\text{HB}_s\text{Ag/}ad$ sera and 1803.8 for the 8 ay sera ($p < 0.001$). The difference in $^3\text{H}-\text{TTP}$ incorporation between the 2 subtypes was also significant ($p < 0.001$). In addition, these 20 sera were examined by EM for the presence of Dane particles, and were scored as 1+ to 4+, depending on the number of Dane particles per field (see Table XXI). Both empty and full particles were seen in all 20 sera following negative staining with 2% PTA (figure 27). Four of the 8 $\text{HB}_s\text{Ag/}ay$ sera contained more than 75 Dane particles per field (i.e., 4+) but only 1 of 12 $\text{HB}_s\text{Ag/}ad$ sera contained a like number of Dane particles. Numerous long filaments and 22 nm spherical particles were also seen in all samples. These results are summarized in Table XXI.

Twenty anti-HB_e positive sera, matched for HB_sAg subtype but negative for DNA polymerase activity in unconcentrated form were also retested for $^3\text{H}-\text{TTP}$ uptake following 5 times concentration. None of the 20 sera were positive for DNA polymerase activity following concentration, with
TABLE XXI

DNA POLYMERASE ACTIVITY AND DANE PARTICLE COUNTS IN 20 SERUM SAMPLES OF ASYMPOTOMATIC HB_eAg CARRIERS

<table>
<thead>
<tr>
<th>HB_eAg Subtype</th>
<th>Titre (CIEP)</th>
<th>DNA polymerase activity</th>
<th>Dane particles¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[³H]TTP uptake - cpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1x]</td>
<td>[5x]</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>53</td>
<td>447</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>159</td>
<td>856</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>122</td>
<td>844</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>193</td>
<td>1114</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>129</td>
<td>760</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>59</td>
<td>545</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>62</td>
<td>478</td>
</tr>
<tr>
<td>ad</td>
<td>128</td>
<td>259</td>
<td>2156</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>57</td>
<td>432</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>65</td>
<td>517</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>66</td>
<td>320</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>127</td>
<td>493</td>
</tr>
<tr>
<td>ay</td>
<td>256</td>
<td>469</td>
<td>4620</td>
</tr>
<tr>
<td>ay</td>
<td>64</td>
<td>122</td>
<td>1460</td>
</tr>
<tr>
<td>ay</td>
<td>128</td>
<td>236</td>
<td>2775</td>
</tr>
<tr>
<td>ay</td>
<td>64</td>
<td>87</td>
<td>930</td>
</tr>
<tr>
<td>ay</td>
<td>16</td>
<td>50</td>
<td>725</td>
</tr>
<tr>
<td>ay</td>
<td>32</td>
<td>69</td>
<td>660</td>
</tr>
<tr>
<td>ay</td>
<td>16</td>
<td>61</td>
<td>715</td>
</tr>
<tr>
<td>ay</td>
<td>64</td>
<td>133</td>
<td>2545</td>
</tr>
</tbody>
</table>

Mean ± SD

<table>
<thead>
<tr>
<th></th>
<th>ad</th>
<th>ay</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1x]</td>
<td>112.5 ± 65.1</td>
<td>153.4 ± 141.4</td>
</tr>
<tr>
<td>[2x]</td>
<td>730.2 ± 498.7</td>
<td>1803.8 ± 1413.1</td>
</tr>
</tbody>
</table>

¹Number of Dane particles/EM field.

+ <10
++ 10 - 25
+++ 26 - 75
++++ >75
individual serum sample cpm occasionally decreasing to the negative value range (serum sample cpm—mean of the negative controls). Two HBsAg/ay were positive for Dane particles, but contained less than 10 particles per field (i.e., 1+); moreover particles in these 2 samples were empty. No Dane particles were seen in any of the 12 anti-HBe-positive HBsAg/ad sera (Table XXII).

2. Specificity (DPSA)

Sera positive for DNA polymerase activity were tested for specificity as described in Materials and Methods. The assay was considered specific when guinea pig anti-HBs reduced the supernatant counts per minute by more than 50%. Treatment with normal guinea pig serum and PBS, on the other hand, produced no significant decrease in counts. High cpm following treatment with guinea pig anti-HBs indicated non-specific DNA polymerase activity, usually caused by bacterial contamination of the serum tested. This occurred only when a serum sample had not been filtered prior to testing for DNA polymerase activity (Table XXIII).

All 20 sera tested for DNA polymerase specificity were found to contain specific hepatitis B DNA polymerase activity with a reduction in cpm of more than 50% following treatment with guinea pig anti-HBs (range 66 – 93%). There was no significant decrease in cpm after treatment with either normal guinea pig serum or PBS (Table XXIV).
TABLE XXII

DNA POLYMERASE ACTIVITY AND DANE PARTICLE COUNTS IN 20 SERUM SAMPLES OF ASYMPTOMATIC ANTI-HB_e CARRIERS

<table>
<thead>
<tr>
<th>HB_eAg Subtype</th>
<th>Titre (CIEP)</th>
<th>DNA polymerase activity</th>
<th>Dane particles^1</th>
<th>(number/EM field)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[3H]TTP uptake - cpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1x]</td>
<td>[5x]</td>
<td></td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>24</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>57</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>29</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>34</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>34</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>17</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>47</td>
<td>-3</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>128</td>
<td>41</td>
<td>-10</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>32</td>
<td>29</td>
<td>-12</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>64</td>
<td>16</td>
<td>-11</td>
<td>-</td>
</tr>
<tr>
<td>ad</td>
<td>16</td>
<td>22</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>64</td>
<td>51</td>
<td>9</td>
<td>+</td>
</tr>
<tr>
<td>ay</td>
<td>16</td>
<td>27</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>32</td>
<td>30</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>64</td>
<td>25</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>ay</td>
<td>128</td>
<td>42</td>
<td>-30</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>32</td>
<td>15</td>
<td>-6</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>16</td>
<td>10</td>
<td>-12</td>
<td>-</td>
</tr>
<tr>
<td>ay</td>
<td>16</td>
<td>12</td>
<td>-27</td>
<td>-</td>
</tr>
</tbody>
</table>

Mean (χ) | [1x] | [5x] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>30 ± 13.8</td>
<td>2.2 ± 9.5</td>
</tr>
<tr>
<td>ay</td>
<td>26.5 ± 14.3</td>
<td>-6.3 ± 15.3</td>
</tr>
</tbody>
</table>

^1 Number of Dane particles/EM field

+ <10
++ 10 - 25
+++ 26 - 75
++++ >75

<table>
<thead>
<tr>
<th>Sample supernatant</th>
<th>Expected Values</th>
<th>Tubes</th>
<th>CPM in supernatants after 180 minutes incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1) HBV⁺²; no bacteria (filtered)</td>
<td>Low³</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>2) HBV⁻; no bacteria</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>3) HBV⁺; bacteria⁺(not filtered)</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>4) HBV⁻; bacteria⁺</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

1. A—treated with guinea pig anti-HBs serum.
2. B—treated with normal guinea pig serum.
3. C—treated with phosphate buffered saline (PBS).

² Hepatitis B virus—HBsAg⁺, HBcAg⁺, Dane particles⁺
³ Low count means a reduction by more than 50%.
TABLE XXIV
DNA POLYMERASE SPECIFICITY ASSAY FOR 20 HB\textsubscript{Ag} POSITIVE SERA

<table>
<thead>
<tr>
<th>Sample</th>
<th>CPM [5x]</th>
<th>Tubes</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>447</td>
<td>37 (92) (^2)</td>
<td>417</td>
<td>421</td>
</tr>
<tr>
<td>ad</td>
<td>656</td>
<td>48 (93)</td>
<td>573</td>
<td>558</td>
</tr>
<tr>
<td>ad</td>
<td>844</td>
<td>131 (84)</td>
<td>849</td>
<td>799</td>
</tr>
<tr>
<td>ad</td>
<td>1114</td>
<td>262 (76)</td>
<td>1010</td>
<td>1055</td>
</tr>
<tr>
<td>ad</td>
<td>760</td>
<td>135 (82)</td>
<td>750</td>
<td>775</td>
</tr>
<tr>
<td>ad</td>
<td>545</td>
<td>105 (81)</td>
<td>560</td>
<td>522</td>
</tr>
<tr>
<td>ad</td>
<td>478</td>
<td>113 (76)</td>
<td>418</td>
<td>429</td>
</tr>
<tr>
<td>ad</td>
<td>2156</td>
<td>675 (69)</td>
<td>1610</td>
<td>1970</td>
</tr>
<tr>
<td>ad</td>
<td>432</td>
<td>112 (74)</td>
<td>390</td>
<td>445</td>
</tr>
<tr>
<td>ad</td>
<td>517</td>
<td>76 (85)</td>
<td>502</td>
<td>530</td>
</tr>
<tr>
<td>ad</td>
<td>320</td>
<td>19 (94)</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>ad</td>
<td>493</td>
<td>60 (88)</td>
<td>460</td>
<td>490</td>
</tr>
<tr>
<td>ay</td>
<td>4620</td>
<td>816 (82)</td>
<td>3700</td>
<td>4065</td>
</tr>
<tr>
<td>ay</td>
<td>1460</td>
<td>502 (66)</td>
<td>1030</td>
<td>1420</td>
</tr>
<tr>
<td>ay</td>
<td>2775</td>
<td>595 (78)</td>
<td>2035</td>
<td>2620</td>
</tr>
<tr>
<td>ay</td>
<td>930</td>
<td>214 (77)</td>
<td>970</td>
<td>830</td>
</tr>
<tr>
<td>ay</td>
<td>725</td>
<td>110 (85)</td>
<td>720</td>
<td>815</td>
</tr>
<tr>
<td>ay</td>
<td>660</td>
<td>71 (89)</td>
<td>515</td>
<td>730</td>
</tr>
<tr>
<td>ay</td>
<td>-715</td>
<td>190 (73)</td>
<td>630</td>
<td>610</td>
</tr>
<tr>
<td>ay</td>
<td>2545</td>
<td>405 (84)</td>
<td>2620</td>
<td>2815</td>
</tr>
</tbody>
</table>

\(^1\)---treated with guinea pig anti-HB\textsubscript{s}.

\(^2\)---treated with normal guinea pig serum.

---treated with PBS.

\(^2\) reduction in cpm.
3. HB$_e$Ag and DNA polymerase in the course of an acute hepatitis B illness

Two individuals who contracted acute hepatitis B were followed during the course of their illnesses and for several months after resolution. The first individual (JD) was a nurse in a renal dialysis unit where staff were screened routinely on a monthly basis for HB$_s$Ag by RIA. Serial observations of this patient's illness are shown in figure 28. HB$_s$Ag was first detected on January 11 after suspected exposure in early December; it persisted for about four and a half months. The antigen was subtyped as HB$_s$Ag/ad, the predominant subtype of the chronically infected dialysis patients. HB$_e$Ag/e$_1$ and DNA polymerase activity were detected on February 7, with HB$_e$Ag/e$_2$ appearing one week later at the peak of DNA polymerase activity. These three parameters were transient, disappearing within two and a half weeks after initial detection. Transaminase and bilirubin values were elevated for approximately six and four weeks respectively whereas alkaline phosphatase remained within normal limits throughout the course of the disease. Anti-HB$_c$ first became detectable concomitantly with HB$_e$Ag and DNA polymerase activity and persisted for the remaining period of observation. Anti-HB$_e$ was detected approximately two and a half months after the disappearance of HB$_e$Ag but was not detectable by AGD four months later. Anti-HB$_s$ was detectable by RIA five months after resolution of antigenemia and it too persisted for the remaining period of observation.
Figures 28 and 29

28. Serial observations of HB$_s$Ag, HB$_e$Ag and DNA polymerase in a patient (J.D.) with acute HB$_s$Ag/ad hepatitis.

29. Serial observations of HB$_s$Ag, HB$_e$Ag and DNA polymerase in a patient (D.K.) with acute HB$_s$Ag/ay hepatitis.
Figure 28

Figure 29
The second individual (DK) was a researcher who worked extensively with hepatitis B. Unfortunately, serum samples were only collected after the patient became icteric and no estimate of the time of exposure was available. The antigen subtype was HBSAg/ay and the course of this patient's illness is diagrammed in figure 29. HBSAg persisted for an additional three and a half weeks after the onset of jaundice. HBeAg/e1 was detectable for only three days with no HBeAg/e2 and DNA polymerase activity detected. Transaminase, alkaline phosphatase and bilirubin values were elevated for five to eight weeks. Anti-HBc was detected in the first sample tested and persisted for the entire period of observation. Anti-HBe was detected six weeks after the disappearance of HBeAg but anti-HBs only appeared three months after clearance of HBS antigenemia. Both persisted for the remainder of the observation period.

D. Hepatitis B Core Antigen (HBCAg)

1. Liver

 a) Microscopy:—Liver sections from an immuno-suppressed renal transplant recipient with chronic hepatitis B antigenemia were incubated with fluorescein-conjugated anti-HBC, anti-HBS and anti-IgG (courtesy of Dr. S.N. Huang, McGill University, Montreal) and examined by phase contrast and fluorescent microscopy. Strong fluorescence was seen in approximately 35% of the hepatocytic nuclei following incubation with anti-HBC (figures 30 and 31), with some granular fluorescence in the cytoplasm of a few scattered hepatocytes. Nuclear and cytoplasmic fluorescence were markedly increased
Figures 30 and 30a

30. Immunofluorescence of hepatic nuclei from an HB$_s$Ag-positive patient following incubation with fluorescein-conjugated anti-HB$_c$ (1250 X).

30a. Phase contrast microscopy of the liver section showing intact hepatocytes (1250 X).
Figures 31 and 31a

31. Immunofluorescence of hepatic nuclei from an HBsAg-positive patient following incubation with fluorescein-conjugated anti-HBc (1250 X).

31a. Phase contrast microscopy of the liver section showing intact hepatocytes (1250 X).
Figures 32 and 32a

32. Immunofluorescence of hepatic nuclei from an HBsAg-positive patient following incubation with fluorescein-conjugated anti-IgG (1250 X).

32a. Phase contrast microscopy (1250 X).
Figures 33 and 33a

33. Absence of hepatocyte immunofluorescence when incubated with fluorescein-conjugated anti-HB$_s$ (300 X).

33a. Phase contrast microscopy (300 X).
in sections incubated with anti-IgG (figure 32). Incubation with anti-
HB\textsubscript{s}, on the other hand, yielded no detectable nuclear fluorescence and only a rare hepatocyte with cytoplasmic fluorescence (figure 33). Examination of the sections by phase contrast microscopy showed the hepatocytic architecture to be intact and well organized (figures 30a, 31a, 32a, 33a).

b) **Purification of HB\textsubscript{Ag}:--**No spherical particles were seen by EM in the supernatant fluids and low-speed pellets discarded during the preparation of the nuclear pellets. Examination of this final pellet by phase contrast microscopy showed the nuclear membranes to be intact, with no adhering cytoplasm detectable.

Following disruption of the nuclei by sonication, the nuclear debris was pelleted at low speed and discarded. The supernatant was pelleted at high speed yielding a thick gelatinous pellet containing many spherical particles in clumps (figure 34). This pellet, however, was difficult to disrupt. As a result of this occurrence, it was decided to pellet the supernatant onto a 45% w/w sucrose cushion prior to isopycnic banding in CsCl. This added procedure greatly increased the yield of non-aggregated particles.

The isolated HB\textsubscript{Ag} particles were recovered at a CsCl density of 1.30 g/cm3. Maximal RIA activity coincided with ultraviolet absorption ranging between 260-265 nm. Following dialysis against PBS, the particles were examined by electron microscopy and found to be spherical in shape with a mean diameter of 27 nm. Negative staining with 2%
Figure 34: Clump of 27 nm HB$_c$Ag particles following high speed centrifugation

Bar represents 100 μ.
Figure 35: 27 nm HB Ag particles following high speed pelleting onto a sucrose cushion.

Bar represents 100 µ.
Figures 36-39: Immune electron microscopy (IEM) of HBcAg particles following incubation with anti-HBc.

Note the fine spicules between the 27 nm particles which are anti-HBc.

Bar represents 100 μ.
PTA showed that almost all particles were empty (figure 35).

No HBsAg was detected by RIA in the fractions containing the 27 nm particles. Furthermore, incubation with anti-HBs did not agglutinate these particles. In sharp contrast, incubation with anti-HBc resulted in particle agglutination, with spike-like projections seen between the individual particles of the clusters examined (figures 36, 37, 38 and 39).

2. Serum

a) Dane particle purification:—Crude pellet preparations rich in Dane particles were selected for further purification by 2 rate separations on sucrose gradients as previously described. Whereas 20 nm spherical particles were recovered in fractions 13–17 (figure 21), Dane particles were found most often in fractions 4–6 (figure 40). Two populations of Dane particles were seen, designated as empty and full, based on their appearance following negative staining with 2% PTA (figures 41 and 42a,b). Following isopycnic banding in CsCl, these empty and full Dane particles were recovered at 1.20 and 1.25 g/cm³ respectively.

Fractions 7–17 from the 2nd rate separation banding contained decreasing numbers of filaments of varying lengths and increasing numbers of 20 nm particles as the sucrose density of the collected fractions decreased (figures 43, 44, 45 and 46).

b) Core extraction:—The Dane-rich fractions were pooled, detergent treated, passed through a rate separation
Figure 40: The rate separation banding of the pellet obtained at 21,000 rpm from HB \textsubscript{S} Ag-positive sera prior to the large and small volume purification procedure. These pellets were from sera which were HB \textsubscript{E} Ag and DNA polymerase positive.
Figures 27, 41 a and b

27. A pellet from a DNA polymerase/\(HB_e \) Ag-positive serum showing both populations of Dane particles, empty and full. There are also filaments and 22 nm spherical particles present in this pellet.

41, a,b) Full and empty Dane particles purified from three different DNA polymerase/\(HB_e \) Ag-positive sera.

All bars represent 100 \(\mu \).
Four HB_sAg-positive fractions collected at four different densities in a sucrose gradient following the rate separation banding of the pellet recovered after a 21,000 rpm, 4 hour centrifugation of HB_sAg-positive serum.

43. Fraction 8. Long filaments with some empty Dane particles.

44. Fraction 11. Filaments are slightly shorter. An occasional Dane particle is still evident.

45. Fraction 13. Filament lengths have further decreased. Some 22 nm spherical particles are present.

46. Fraction 15. The majority of particles are 22 nm spherical particles with some very short filaments still present.

All bars represent 200 μ.
centrifugation step and banded isopycnically. Two populations of HB$_c$Ag were collected—empty and full—at 1.30 and 1.35 g/cm3 in CsCl. Neither of these two populations had detectable HB$_s$Ag by RIA, nor were they agglutinated by anti-HB$_s$. These particles were agglutinated with anti-HB$_c$, as previously described.

A DNA polymerase assay was attempted on only one sample of each population because of the limited amount of material available. DNA polymerase activity was detected in the denser, "full" core sample ($\bar{x} = 216$ cpn) but not in the less dense "empty" HB$_c$Ag sample ($\bar{x} = 37$ cpn).

II. Cell Mediated Immunity

A. Lymphocyte Stimulation Parameters

1. Serum supplements

Control cultures from HB$_s$Ag-negative individuals were incubated in autologous, homologous and heterologous sera as described in Materials and Methods and the effects of these supplements were measured by tritiated thymidine (3H-T) uptake over a six day period. 3H-T incorporation by whole blood cultures did not differ significantly from day 1 to day 6. Similarly, cultures incubated in homologous (pooled AB Rh-negative) sera also resulted in only minimal increases in 3H-T uptake during the observation period. Cells incubated in heterologous (fetal bovine) sera, however, had markedly increasing 3H-T uptake each day over the six day period, with counts per minute (cpm) at day 6 often greater than 20,000 (figure 47).
Figures 47 and 48

47. Tritiated thymidine incorporation by whole blood cultures and by lymphocytes incubated in homologous or heterologous sera.

48. PHA stimulation of whole blood cultures and lymphocytes incubated in homologous or heterologous sera.
2. Mitogen stimulation

Cultures were incubated with autologous, homologous and heterologous sera and challenged with 10 µg phyto-
haemagglutinin (PHA), for one to six days. Optimal stimu-
lation occurred at day 2 for the three culture systems,
decreasing thereafter for the remainder of the observation
period (figure 48). Stimulation indices (SI) exceeded 150
at day 2 for all three culture systems, and remained near
or slightly above 100 at day 6 for the autologous and
homologous sera cultures. In sharp contrast, the SI
decreased rapidly for cells cultured in heterologous sera,
and was often below 10 in 6 day cultures (figure 49).

3. Cell viability as a function of pH

The viability of all control cultures incubated at
pH 7.4 (±0.1) over a six day period was consistently greater
than 90% by the trypan blue exclusion test, regardless of
serum supplements used. Decreasing or increasing the pH
below or above this level always resulted in a fall in cell
viability, with 6 day viability levels at pH 8.2 and 6.6
(±0.1 for each) at less than 40% and 20% respectively
(figure 50a).

4. Lymphocyte stimulation as a function of age of individuals tested

Lymphocytes from individuals of varying age were
challenged in vitro with PHA as previously described (figure 50b).
Maximum stimulation occurred at day 2 for all age groups,
with the highest cpm's noted in the 15 to 30 year old group.
Figures 49, 50a and 50b

49. Stimulation indices of whole blood cultures and lymphocytes incubated in homologous or heterologous sera.

50a. Control lymphocyte cultures — viability as a function of pH.

50b. PHA-stimulated lymphocyte cultures — stimulation as a function of age.
STIMULATION INDICES

CONTROL LYMPHOCYTE CULTURES
VIABILITY AS A FUNCTION OF pH

PHA-STIMULATED LYMPHOCYTE CULTURES
STIMULATION AS A FUNCTION OF AGE

Figure 49

Figure 50a

Figure 50b
(mean cpm approximately 300,000 for six individuals tested) and the lowest in those individuals between 40 and 60 years of age (mean cpm approximately 140,000). Stimulation declined in all groups after day 2, with mean cpm's for all groups approximating each other at day 6 (about 100,000 cpm).

B. Experiment I

1. Lymphocyte stimulation

Six subjects who had recovered from hepatitis B were selected. Two of the six had only recently cleared HBsAg (subjects 3 and 4) and were anti-HBs-negative at the time of study. Cell cultures were divided into three groups depending on the serum supplements added and were incubated with either 2, 5 or 25 μg of purified HBsAg for a six day period. In none of the three groups were any significant stimulation indices (SI.) obtained (Table XXVa). The two anti-HBs-negative individuals had stimulation indices greater than 2 when incubated in AB-negative serum and challenged with 5 μg of purified HBsAg; these results were not reproducible with the two other serum supplements. The S.I. of whole blood cultures were less than 1 when incubated with 2 μg of purified antigen. At higher antigen concentrations, however, the stimulation indices were consistently greater than 1. None of the normal control groups demonstrated these stimulation index variations following antigen challenge (Table XXVb). The results of the six post-hepatitis B subjects and the six normal controls are
TABLE XXVa

EXPERIMENT I. LYMPHOCYTE STIMULATION AND MIGRATION INHIBITION STUDIES ON POST HEPATITIS B SUBJECTS AND MATCHED NORMAL CONTROLS

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Interval (wks) since HBsAg Positive</th>
<th>Anti-HBs Cultures (cpm)</th>
<th>Unstimulated Control Cultures</th>
<th>Lymphocyte Stimulation (S.I.) HBsAg concentration</th>
<th>Migration Inhibition (M.I.) HBsAg concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2µg</td>
<td>5µg</td>
</tr>
</tbody>
</table>

Post HBsAg--Whole Blood Cultures

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(F;37)</td>
<td>50</td>
<td>+</td>
<td>270</td>
<td>1.01</td>
<td>0.90</td>
</tr>
<tr>
<td>2</td>
<td>(F;31)</td>
<td>72</td>
<td>+</td>
<td>327</td>
<td>0.86</td>
<td>1.11</td>
</tr>
<tr>
<td>3</td>
<td>(F;21)</td>
<td>2</td>
<td>-</td>
<td>340</td>
<td>0.72</td>
<td>1.37</td>
</tr>
<tr>
<td>4</td>
<td>(F;23)</td>
<td>1</td>
<td>-</td>
<td>285</td>
<td>0.75</td>
<td>1.75</td>
</tr>
<tr>
<td>5</td>
<td>(M;29)</td>
<td>22</td>
<td>+</td>
<td>329</td>
<td>0.95</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>(M;24)</td>
<td>30</td>
<td>+</td>
<td>313</td>
<td>N/T</td>
<td>N/T</td>
</tr>
</tbody>
</table>

MEANS ± S.D. 311 ± 0.27 0.86 ± 0.13 1.28 ± 0.32 1.11 ± 0.22

Post HBsAg--AB Negative Sera Pool

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(F;37)</td>
<td>50</td>
<td>+</td>
<td>975</td>
<td>0.99</td>
<td>1.02</td>
</tr>
<tr>
<td>2</td>
<td>(F;31)</td>
<td>72</td>
<td>+</td>
<td>1430</td>
<td>1.06</td>
<td>1.23</td>
</tr>
<tr>
<td>3</td>
<td>(F;21)</td>
<td>2</td>
<td>-</td>
<td>1725</td>
<td>1.55</td>
<td>2.01</td>
</tr>
<tr>
<td>4</td>
<td>(F;23)</td>
<td>1</td>
<td>-</td>
<td>1160</td>
<td>1.49</td>
<td>2.75</td>
</tr>
<tr>
<td>5</td>
<td>(M;29)</td>
<td>22</td>
<td>+</td>
<td>830</td>
<td>1.15</td>
<td>1.26</td>
</tr>
<tr>
<td>6</td>
<td>(M;24)</td>
<td>30</td>
<td>+</td>
<td>725</td>
<td>1.27</td>
<td>1.25</td>
</tr>
</tbody>
</table>

MEANS ± S.D. 1141 ± 380 1.25 ± 0.23 1.59 ± 0.65 1.39 ± 0.39 0.83 ± 0.15 0.86 ± 0.10

...Continued
<table>
<thead>
<tr>
<th>Subject Number (Sex; Age)</th>
<th>Interval (wks) since HBsAg Positive</th>
<th>Anti-HBs Cultures (cpm)</th>
<th>Lymphocyte Stimulation (S.I.) HBs Ag concentration</th>
<th>Migration Inhibition (M.I.) HBs Ag concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2μg</td>
<td>5μg</td>
</tr>
<tr>
<td>1 (F;37)</td>
<td>50</td>
<td>+</td>
<td>17,485</td>
<td>0.89</td>
</tr>
<tr>
<td>2 (F;31)</td>
<td>72</td>
<td>+</td>
<td>22,680</td>
<td>0.96</td>
</tr>
<tr>
<td>3 (F;21)</td>
<td>2</td>
<td>-</td>
<td>33,250</td>
<td>1.05</td>
</tr>
<tr>
<td>4 (F;23)</td>
<td>1</td>
<td>-</td>
<td>26,195</td>
<td>1.10</td>
</tr>
<tr>
<td>5 (M;29)</td>
<td>22</td>
<td>+</td>
<td>19,845</td>
<td>1.03</td>
</tr>
<tr>
<td>6 (M;24)</td>
<td>30</td>
<td>+</td>
<td>21,455</td>
<td>1.22</td>
</tr>
</tbody>
</table>

MEANS ± S.D. 23,485 ± 5,601 1.04 ± 0.12 1.10 ± 0.10 1.19 ± 0.18

N/T—Not tested.
TABLE XXVI

EXPERIMENT I. LYMPHOCYTE STIMULATION AND MIGRATION INHIBITION STUDIES ON POST HEPATITIS B SUBJECTS AND MATCHED NORMAL CONTROLS

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Interval (wks) since HBsAg</th>
<th>HBs Anti-HBs Positive Control Cultures (cpm)</th>
<th>Unstimulated</th>
<th>Lymphocyte Stimulation (S.I.)</th>
<th>Migration Inhibition (M.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HBsAg concentration</td>
<td>HBsAg concentration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2µg 5µg 25µg</td>
<td>80µg 40µg</td>
</tr>
<tr>
<td>7 (F; 35)</td>
<td>N/A</td>
<td>-</td>
<td>267</td>
<td>0.87 0.99 0.74</td>
<td></td>
</tr>
<tr>
<td>8 (F; 30)</td>
<td>N/A</td>
<td>-</td>
<td>239</td>
<td>1.27 1.55 1.25</td>
<td></td>
</tr>
<tr>
<td>9 (F; 21)</td>
<td>N/A</td>
<td>-</td>
<td>316</td>
<td>1.29 1.16 1.09</td>
<td></td>
</tr>
<tr>
<td>10 (F; 21)</td>
<td>N/A</td>
<td>-</td>
<td>284</td>
<td>0.09 1.30 1.51</td>
<td></td>
</tr>
<tr>
<td>11 (M; 30)</td>
<td>N/A</td>
<td>-</td>
<td>325</td>
<td>1.11 1.04 1.16</td>
<td></td>
</tr>
<tr>
<td>12 (M; 25)</td>
<td>N/A</td>
<td>-</td>
<td>278</td>
<td>1.03 1.25 1.05</td>
<td></td>
</tr>
</tbody>
</table>

Normal Controls—Whole Blood Cultures

| | | | Unstimulated | Lymphocyte Stimulation (S.I.) | Migration Inhibition (M.I.) |
| | | | | HBsAg concentration | HBsAg concentration |
| | | | | 2µg 5µg 25µg | 80µg 40µg |
| | | | | Mean ± S.D. | |
| | | | 285 ± 32 | 1.08 ± 0.18 1.22 ± 0.20 1.13 ± 0.25 |

Normal Controls—AB Negative Sera Pool

| | | | Unstimulated | Lymphocyte Stimulation (S.I.) | Migration Inhibition (M.I.) |
| | | | | HBsAg concentration | HBsAg concentration |
| | | | | 2µg 5µg 25µg | 80µg 40µg |
| | | | | Mean ± S.D. | |
| | | | 993 ± 289 | 1.23 ± 0.29 1.09 ± 0.22 1.03 ± 0.23 0.94 ± 0.14 0.92 ± 0.09 |

...Continued
TABLE XXVb
Continued

<table>
<thead>
<tr>
<th>Subject Number (Sex; Age)</th>
<th>Interval (wks) since HBsAg Positive</th>
<th>Unstimulated Anti-HBs Cultures (cpm)</th>
<th>Lymphocyte Stimulation (S.I.) HBsAg concentration</th>
<th>Migration Inhibition (M.I.) HBsAg concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2μg</td>
<td>5μg</td>
</tr>
<tr>
<td>Normal Controls—Fetal Bovine Sera Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 (F;35)</td>
<td>N/A</td>
<td>-</td>
<td>19,325</td>
<td>1.38</td>
</tr>
<tr>
<td>8 (F;30)</td>
<td>N/A</td>
<td>-</td>
<td>24,240</td>
<td>1.08</td>
</tr>
<tr>
<td>9 (F;21)</td>
<td>N/A</td>
<td>-</td>
<td>31,455</td>
<td>1.22</td>
</tr>
<tr>
<td>10 (F;21)</td>
<td>N/A</td>
<td>-</td>
<td>27,210</td>
<td>0.91</td>
</tr>
<tr>
<td>11 (M;30)</td>
<td>N/A</td>
<td>-</td>
<td>19,885</td>
<td>1.04</td>
</tr>
<tr>
<td>12 (M;25)</td>
<td>N/A</td>
<td>-</td>
<td>21,105</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Means ± S.D. 23,870 ± 4,779 1.08 ± 0.20 1.04 ± 0.12 1.11 ± 0.19

N/A—Not applicable.
Figures 51 and 52

51. Tritiated thymidine incorporation by whole blood cultures and lymphocytes cultured in homologous and heterologous serum following incubation with three different purified HB$_5$Ag concentrations.

52. Stimulation indices following pre-incubation with four different concentrations of purified HB$_5$Ag.

* (Indices less than 0.80 and greater than 1.20 constitute significant inhibition and migration respectively).
CULTURE TECHNIQUES

<table>
<thead>
<tr>
<th>WHOLE BLOOD</th>
<th>LYMPHOCYTES AB NEG</th>
<th>LYMPHOCYTES FBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph of stimulation index vs. µg purified HB_Ag for whole blood, lymphocytes AB neg, and lymphocytes FBS, with data points for normal controls and post hepatitis B.

Figure 51](image)

![Graph of migration index vs. µg purified HB_Ag for normal controls and post hepatitis B.

Figure 52](image)
graphically compared in figure 51.

All twelve subjects tested were found to have normal white cell counts with normal differentials. Two day PHA-stimulated cultures performed concomitantly had stimulation indices greater than 200 in all groups (whole blood culture mean 273; range 184 - 491; AB negative serum mean 258; range 193 - 447; fetal bovine serum mean 207; range 143 - 338). Viability for all cultures by the trypan blue exclusion test was greater than 90%.

2. Migration inhibition

The migration inhibition test was carried out simultaneously with the lymphocyte stimulation study. Three of the six post-hepatitis B patients had migration indices (M.I.) of less than 0.80 following pre-incubation with 80 μg of purified HB_s Ag (table XXVa). Included in this number were the two anti-HB_s negative individuals. Pre-incubation with 40 μg HB_s Ag reduced this number to 1. At lesser antigenic concentrations (i.e., 20 and 10 μg), all indices were greater than 0.80. By contrast, only one of the six normal controls had an M.I. less than 0.8 when pre-incubated with 80 μg of the purified antigen; however, a similar inhibition was also obtained with 40 μg (table XXVb). The means for the post-hepatitis B and normal controls were both greater than 0.80 and the difference between the two groups was not statistically significant. The migration indices of these two groups are graphically compared in figure 52.
Figure 53: An agarose plate showing migration inhibition.

The wells with the wider rims contain leukocytes pre-incubated in TC 199 while leukocytes pre-incubated with 80 μg of purified HB₅Ag show only a narrow rim after staining with Wright's stain. The two wells with no staining contain saline. More than 98% of the migrating leukocytes are polymorphonuclear cells.
3. Identification of the migrating cells

Following measurement of the areas of cellular migration by planimetry, the plates were fixed and stained with Wright's stain (figure 53). Four hundred migrating cells were differentially counted per plate using a light microscope. More than 98% of all cells counted were polymorphonuclear leukocytes.

C. Experiment II

1. Lymphocyte stimulation (figure 54)

Ten anti-\(\text{HB}_s\)-positive subjects and 10 \(\text{HB}_s\)-Ag/anti-\(\text{HB}_s\)-negative controls were selected. Five of the ten anti-\(\text{HB}_s\)-positive patients had had acute hepatitis B 11 to 30 months earlier, while the remainder had no history of the illness. All twenty subjects had normal white cell counts with normal differentials. Lymphocyte cultures from the anti-\(\text{HB}_s\)-positive group showed no significant stimulation when incubated for six days with three different concentrations of either purified \(\text{HB}_s\)-Ag or \(\text{HB}_s\)-Ag vaccine (a formalin inactivated pool of purified \(\text{HB}_s\)-Ag). Incubation with purification contaminants on the other hand resulted in significant stimulation with Fraction 1 \((0.01 > p > 0.001)\) but a decrease in \(^3\text{H}\)-thymidine uptake with fraction 4 \((0.05 > p > 0.02)\). Stimulation indices with fractions 2 and 3 were not significant (Table XXVIa). Fraction 1 was negative for \(\text{HB}_s\)-Ag by CIEP but positive by RIA (\(P/N\) ratio of 8.4 at 10\(^0\) dilution) whereas fractions 2, 3 and 4 were negative by both techniques (see
TABLE XXVIa

EXPERIMENT II. Lymphocyte stimulation studies on Anti-HBs positive subjects (†Previous acute hepatitis B illness) and matched negative controls

<table>
<thead>
<tr>
<th>Subject Number (Sex;Age)</th>
<th>Previous illness interval (months)</th>
<th>Unstimulated controls (cpm)</th>
<th>Purified HBs Ag 2µg</th>
<th>Purified HBs Ag 5µg</th>
<th>Purified HBs Ag 25µg</th>
<th>HBs Ag Vaccine 2µg</th>
<th>HBs Ag Vaccine 5µg</th>
<th>HBs Ag Vaccine 25µg</th>
<th>Purification contaminants 1 2 3 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (F;31)</td>
<td>+ (26m)</td>
<td>899</td>
<td>1.68</td>
<td>1.19</td>
<td>1.49</td>
<td>1.33</td>
<td>1.25</td>
<td>1.29</td>
<td>4.29 2.12 1.29 0.42</td>
</tr>
<tr>
<td>2 (F;22)</td>
<td>+ (11m)</td>
<td>1209</td>
<td>0.72</td>
<td>0.70</td>
<td>0.96</td>
<td>0.88</td>
<td>0.85</td>
<td>0.75</td>
<td>1.48 1.33 1.08 0.36</td>
</tr>
<tr>
<td>3 (F;27)</td>
<td>-</td>
<td>833</td>
<td>0.81</td>
<td>1.03</td>
<td>1.44</td>
<td>1.08</td>
<td>1.15</td>
<td>1.21</td>
<td>2.09 1.35 1.26 0.87</td>
</tr>
<tr>
<td>4 (F;24)</td>
<td>+ (15m)</td>
<td>1323</td>
<td>1.23</td>
<td>1.27</td>
<td>1.40</td>
<td>1.47</td>
<td>1.43</td>
<td>1.79</td>
<td>7.01 5.06 1.92 0.78</td>
</tr>
<tr>
<td>5 (F;25)</td>
<td>-</td>
<td>1553</td>
<td>1.04</td>
<td>1.16</td>
<td>1.24</td>
<td>1.08</td>
<td>1.49</td>
<td>1.49</td>
<td>4.70 1.59 0.76 0.69</td>
</tr>
<tr>
<td>6 (F;45)</td>
<td>-</td>
<td>1156</td>
<td>0.70</td>
<td>0.92</td>
<td>0.76</td>
<td>0.73</td>
<td>0.69</td>
<td>0.64</td>
<td>1.89 0.89 0.95 0.60</td>
</tr>
<tr>
<td>7 (M;34)</td>
<td>+ (28m)</td>
<td>770</td>
<td>1.43</td>
<td>1.49</td>
<td>1.06</td>
<td>0.85</td>
<td>1.28</td>
<td>1.08</td>
<td>6.08 1.95 0.84 0.65</td>
</tr>
<tr>
<td>8 (M;21)</td>
<td>+ (30m)</td>
<td>1056</td>
<td>0.47</td>
<td>0.72</td>
<td>0.75</td>
<td>0.85</td>
<td>0.92</td>
<td>0.80</td>
<td>1.74 1.23 1.82 0.49</td>
</tr>
<tr>
<td>9 (M;32)</td>
<td>-</td>
<td>959</td>
<td>0.95</td>
<td>0.95</td>
<td>1.01</td>
<td>1.45</td>
<td>1.09</td>
<td>1.88</td>
<td>2.40 1.48 0.87 1.31</td>
</tr>
<tr>
<td>10 (M;25)</td>
<td>-</td>
<td>836</td>
<td>1.11</td>
<td>0.89</td>
<td>0.85</td>
<td>0.97</td>
<td>1.04</td>
<td>0.88</td>
<td>4.51 2.02 1.51 1.26</td>
</tr>
</tbody>
</table>

Means†: 1059† 1.01† 1.03† 1.10† 1.07† 1.12† 1.18† 3.62† 1.90† 1.23† 0.74†
S.D.: 264 0.37 0.25 0.28 0.26 0.25 0.43 1.99† 1.17 0.41 0.33‡

1 0.01 > p > 0.001 (Contaminant 1 vs control).
2 0.05 > p > 0.02 (Contaminant 4 vs control).
figure 7 for fraction source).

Cultures from the ten negative controls also showed no significant stimulation when incubated with the two previously described antigen preparations. Purification contaminant 1 produced significant lymphocyte stimulation in this group as well (0.02 > p > 0.01) but unlike the anti-HB$_s$-positive group, fraction 4 did not decrease 3H-thymidine uptake (Table XXVIb).

Cell viability for all cultures for the two groups was greater than 90% by the trypan blue exclusion test. Two-day PHA cultures had mean S.I.'s of greater than 200 for both groups with cell viability consistently greater than 80%.

Normal human serum (NHS), negative for HB$_s$Ag and anti-HB$_s$, was treated in a method identical to that described for HB$_s$Ag serum purification to yield 4 contaminant fractions designated 1' to 4'. These were added to lymphocyte cultures of five individuals from each of the two groups. The resultant S.I. of fraction 1-stimulated anti-HB$_s$-positive cultures was 5.32 ± 1.18 but only 2.10 ± 0.57 when incubated with fraction 1' (0.01 > p > 0.001). The difference in 3H-thymidine uptake between fraction 1-stimulated anti-HB$_s$-positive cultures and those of the negative controls were similarly significant (Table XXVIC). None of the other fraction stimulation comparisons for the two groups were statistically different.
TABLE XXVIb

EXPERIMENT II. LYMPHOCYTE STIMULATION STUDIES ON ANTI-HB\textsubscript{S} POSITIVE SUBJECTS
(± PREVIOUS ACUTE HEPATITIS B ILLNESS) AND MATCHED NEGATIVE CONTROLS

<table>
<thead>
<tr>
<th>Subject Number (Sex;Age)</th>
<th>Previous illness interval (cpm)</th>
<th>Unstimulated controls</th>
<th>Purified HB\textsubscript{S} Ag</th>
<th>HB\textsubscript{Ag} Vaccine</th>
<th>Purification Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2µg</td>
<td>5µg</td>
<td>25µg</td>
</tr>
<tr>
<td>Negative Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 (F;30) N/A</td>
<td>N/A</td>
<td>927</td>
<td>1.30</td>
<td>1.12</td>
<td>1.26</td>
</tr>
<tr>
<td>12 (F;20) N/A</td>
<td>N/A</td>
<td>1114</td>
<td>1.45</td>
<td>1.38</td>
<td>1.16</td>
</tr>
<tr>
<td>13 (F;25) N/A</td>
<td>N/A</td>
<td>1025</td>
<td>0.95</td>
<td>0.93</td>
<td>0.69</td>
</tr>
<tr>
<td>14 (F;24) N/A</td>
<td>N/A</td>
<td>1216</td>
<td>0.91</td>
<td>1.13</td>
<td>1.12</td>
</tr>
<tr>
<td>15 (F;27) N/A</td>
<td>N/A</td>
<td>847</td>
<td>1.14</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>16 (F;42) N/A</td>
<td>N/A</td>
<td>616</td>
<td>1.10</td>
<td>1.23</td>
<td>1.02</td>
</tr>
<tr>
<td>17 (M;31) N/A</td>
<td>N/A</td>
<td>1327</td>
<td>1.04</td>
<td>1.23</td>
<td>1.42</td>
</tr>
<tr>
<td>18 (M;22) N/A</td>
<td>N/A</td>
<td>1474</td>
<td>1.05</td>
<td>0.78</td>
<td>0.92</td>
</tr>
<tr>
<td>19 (M;29) N/A</td>
<td>N/A</td>
<td>1103</td>
<td>0.69</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>20 (M;27) N/A</td>
<td>N/A</td>
<td>955</td>
<td>0.75</td>
<td>1.01</td>
<td>1.09</td>
</tr>
<tr>
<td>Means*</td>
<td></td>
<td>1060\textsubscript{±}</td>
<td>1.12±</td>
<td>1.07±</td>
<td>1.04±</td>
</tr>
<tr>
<td>S.D.</td>
<td></td>
<td>236</td>
<td>0.34</td>
<td>0.18</td>
<td>0.22</td>
</tr>
</tbody>
</table>

N/A—Not applicable.

*0.02 > p > 0.01 (Contaminant 1 vs control).
TABLE XXVIc

EXPERIMENT II. LYMPHOCYTE STIMULATION STUDIES ON ANTI-HB Positive Subjects († Previous acute hepatitis B illness) and Matched Negative Controls

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Previous Illness Interval</th>
<th>Lymphocyte Stimulation (S.I.) Purification Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Anti-HB Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (F;31)</td>
<td>+(26m)</td>
<td>4.29</td>
</tr>
<tr>
<td>4 (F;24)</td>
<td>+(15m)</td>
<td>7.01</td>
</tr>
<tr>
<td>5 (F;25)</td>
<td>-</td>
<td>4.70</td>
</tr>
<tr>
<td>7 (M;34)</td>
<td>+(28m)</td>
<td>6.08</td>
</tr>
<tr>
<td>10 (M;25)</td>
<td>-</td>
<td>4.51</td>
</tr>
<tr>
<td>Means ± S.D.</td>
<td></td>
<td>5.32± ±</td>
</tr>
<tr>
<td>Negative Controls</td>
<td></td>
<td>1.18¹</td>
</tr>
</tbody>
</table>

| 11 (F;30) | N/A | 1.41 | 1.35 | 1.51 | 1.39 | 0.76 | 1.30 | 0.99 | 1.16 |
| 14 (F;24) | N/A | 2.30 | 1.26 | 1.88 | 0.96 | 0.88 | 1.06 | 0.94 | 1.05 |
| 15 (F;27) | N/A | 1.95 | 1.55 | 1.99 | 1.36 | 1.12 | 0.97 | 1.54 | 1.12 |
| 17 (M;31) | N/A | 3.67 | 1.67 | 3.09 | 1.57 | 1.17 | 0.85 | 1.28 | 1.26 |
| 20 (M;27) | N/A | 1.55 | 1.90 | 0.95 | 1.26 | 1.03 | 1.05 | 1.31 | 1.09 |
| **Means ± S.D.**| | 2.18± ± | 1.55± ± | 1.88± ± | 1.31± ± | 0.99± ± | 1.05± ± | 1.21± ± | 1.14± ± |
| | | 0.92¹ | 0.25 | 0.79 | 0.23 | 0.17 | 0.16 | 0.25 | 0.08 |

N/A—Not applicable.

¹(anti-HB +) vs ¹(Neg. Cont.) \(0.01 > p > 0.001\)

¹ vs ¹' \(p > 0.001\)
Figures 54 and 55

54. Tritiated thymidine incorporation by lymphocyte cultures following incubation with purified HB\textsubscript{S} Ag, HB\textsubscript{S} Ag vaccine and contaminants recovered during the purification procedure.

55. Stimulation indices following pre-incubation with four different concentrations of purified HB\textsubscript{S} Ag.
2. Migration inhibition

Two of the ten anti-HBs-positive patients had M.I.'s of less than 0.80 with both 80 and 40 μg of purified HBsAg. Neither of these two individuals had had acute hepatitis B previously. By comparison, one of the ten negative controls had an M.I. of less than 0.80 with these two antigenic concentrations (Table XXVId). The mean M.I.'s for the two groups, however, were all equal to or greater than 0.90 and the differences between them and the migration controls were not statistically significant. When leukocytes were pre-incubated with 20 and 10 μg of purified antigen, none of the individual M.I.'s were below 0.80 in either group (figure 55).
TABLE XXVII

EXPERIMENT II. MIGRATION INHIBITION STUDIES ON ANTI-HBs POSITIVE SUBJECTS (± PREVIOUS ACUTE HEPATITIS B ILLNESS) AND ON MATCHED NEGATIVE CONTROLS

<table>
<thead>
<tr>
<th>Subject Number (Sex; Age)</th>
<th>Previous Acute Illness</th>
<th>Migration Inhibition (M.I.) HBsAg concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>80 µg</td>
</tr>
<tr>
<td>Anti-HBs Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (F; 31)</td>
<td>+</td>
<td>1.18</td>
</tr>
<tr>
<td>2 (F; 22)</td>
<td>+</td>
<td>0.98</td>
</tr>
<tr>
<td>3 (F; 27)</td>
<td>-</td>
<td>0.89</td>
</tr>
<tr>
<td>4 (F; 24)</td>
<td>+</td>
<td>0.82</td>
</tr>
<tr>
<td>5 (F; 25)</td>
<td>-</td>
<td>0.66</td>
</tr>
<tr>
<td>6 (F; 45)</td>
<td>-</td>
<td>1.04</td>
</tr>
<tr>
<td>7 (M; 34)</td>
<td>+</td>
<td>0.96</td>
</tr>
<tr>
<td>8 (M; 21)</td>
<td>+</td>
<td>0.93</td>
</tr>
<tr>
<td>9 (M; 32)</td>
<td>-</td>
<td>0.71</td>
</tr>
<tr>
<td>10 (M; 25)</td>
<td>-</td>
<td>0.85</td>
</tr>
<tr>
<td>MEANS ± S.D.</td>
<td></td>
<td>0.90 ± 0.15</td>
</tr>
<tr>
<td>Negative Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 (F; 30)</td>
<td>N/A</td>
<td>1.08</td>
</tr>
<tr>
<td>12 (F; 20)</td>
<td>N/A</td>
<td>0.99</td>
</tr>
<tr>
<td>13 (F; 25)</td>
<td>N/A</td>
<td>0.94</td>
</tr>
<tr>
<td>14 (F; 24)</td>
<td>N/A</td>
<td>1.02</td>
</tr>
<tr>
<td>15 (F; 27)</td>
<td>N/A</td>
<td>0.88</td>
</tr>
<tr>
<td>16 (F; 42)</td>
<td>N/A</td>
<td>0.90</td>
</tr>
<tr>
<td>17 (M; 31)</td>
<td>N/A</td>
<td>0.95</td>
</tr>
<tr>
<td>18 (M; 27)</td>
<td>N/A</td>
<td>1.05</td>
</tr>
<tr>
<td>19 (M; 29)</td>
<td>N/A</td>
<td>0.74</td>
</tr>
<tr>
<td>20 (M; 27)</td>
<td>N/A</td>
<td>0.86</td>
</tr>
<tr>
<td>MEANS ± S.D.</td>
<td></td>
<td>0.94 ± 0.10</td>
</tr>
</tbody>
</table>

N/A—Not applicable.
DISCUSSION

I. Hepatitis B Antigens and Antibodies

Progress in hepatitis B research was hampered until fairly recently by the lack of a specific serological assay. Following the discovery of HB$_s$Ag, increasingly sensitive assays were developed which have, in large part, been responsible for our increased understanding of the disease and the remarkable advances that have occurred in recent years.

Among the most sensitive of the assays currently available is the RIA (Walsh et al, 1970). Comparative studies have consistently shown this assay to be more sensitive than either CIEP or AGD in identifying HB$_s$Ag-positive sera (Aach et al, 1971; Hollinger et al, 1971; Ling and Overby, 1972; Giorgini et al, 1972; Hollinger et al, 1973) and on a par with the HA technique for detecting anti-HB$_s$ (Peterson et al, 1973). Preliminary reports indicated that the RIA was 500 to 4,000 times as sensitive as CIEP for detecting HB$_s$Ag in serum (Hacker and Aach, 1973; Cossart et al, 1973) and when used as a screening test in blood donors, could detect as many as ten times the number of positives detected by CIEP (Prince et al, 1973). Subsequent studies revealed that most of this apparent difference in sensitivity was due to the large number of false
positive reactions caused by the non-specific binding of test reagents with radiolabelled guinea pig anti-\(\text{HB}_s^s \) (Alter et al, 1972; Vyas et al, 1973; Purcell et al, 1973). Specificity of the test increased when \(^{125}\text{I} \)-labelled human anti-\(\text{HB}_s^s \) was substituted for the guinea pig globulins (Aus RIA II test, Abbott Labs) but, as a result sensitivity decreased. Revised estimates of sensitivity indicated that RIA would detect only 2 to 3 times the number of true positives as CIEP (Irwin et al, 1974). Results from the present study confirmed that RIA is indeed superior in sensitivity to CIEP and AGD but the differences were much more modest, with only 5 to 20% more positives detected than with CIEP.

Evaluation of 195 consecutive sera from institutionalized Down's Syndrome (DS) patients and 2400 consecutive sera from patients with other forms of mental retardation (OMR) showed \(\text{HB}_s^s \text{Ag} \) to be 3 times as prevalent in the DS population. These findings were in agreement with those from other institutionalized populations (Szmuness et al, 1970; Szmuness and Prince, 1971; Hollinger et al, 1972; Ferris et al, 1972; Perry et al, 1975). They also showed that persistence of antigenemia was influenced by length of residence and age at admission, particularly in the DS group. The prevalence of \(\text{HB}_s^s \text{Ag} \) was higher in DS patients admitted in early childhood and persisted for a longer period of time. Unlike \(\text{HB}_s^s \text{Ag} \), we found that anti-\(\text{HB}_s^s \) was equally detectable in both the DS and OMR populations and differed from results reported by other investigators (Szmuness and Prince, 1971; Szmuness
et al, 1972; Perry et al, 1975; Chaudhary et al, 1977). Our findings are in agreement with a recent study which showed no significant differences in anti-HBs between institutionalized DS and OMR residents; furthermore, these investigators concluded that neither the length of residence nor the age at admission were significant factors in determining antigen clearance (Hawkes et al, 1980).

The hepatitis B surface antigen is antigenically heterogeneous. In addition to the group specific "a" determinant common to all HBsAg-positive particles (Levene and Blumberg, 1969), there are also two subspecific determinants present - either "d" or "y" and "w" or "r" (Le Bouvier, 1971; Bancroft et al, 1972). Several investigators have independently identified other antigenic markers (Kim and Tilles, 1971; Gust, 1971; Magnus and Espmark, 1972a; Van Kooten Kok-Doorschodt et al, 1972) but these have been found to be either variations in the nomenclature of the aforementioned determinants or non-specific antigenic markers.

These determinants have significant epidemiological value. Not only do they tend to have a specific geographic distribution but are also more frequently associated with certain forms of the infection. The "d" determinant is found in asymptomatic carriers in North America, northern Europe, Asia and Oceania although "y" occurs in these areas as well. The "y" determinant on the other hand, occurs almost to the exclusion of "d" in Africa and is the more
common subtype in India and the Mediterranean area (Mazzur et al, 1974).

Our study confirms earlier reports that HBsAg/ad is more commonly found in asymptomatic blood donors, renal dialysis patients and institutionalized populations while the ay subtype is predominant in acute disease (Schmidt et al, 1972; Holland et al, 1972, Iwarson et al, 1973; Perry and Chaudhary, 1973; Perry et al, 1975; Madden et al, 1975). The ad/ay ratio in our donor population was lower than that noted by other investigators (Holland et al, 1972; Dodd et al, 1973) but this may have been due to regional variations in antigenic subtypes which are known to occur (Dodd et al, 1973). A second consideration for this difference is the continuously ongoing shift in HBsAg subtypes that has been occurring in the past 10-20 years. Magnus et al (1973) subtyped sera collected in 1953 from patients with acute hepatitis and found that they were predominanty HBsAg/ad; by the late 1960's and early 1970's, HBsAg positive sera from a similar population were largely ay.

Institutionalized populations tend to be closed, adynamic units and newly infected individuals tend to have the subtype common to that centre. Occasionally, a patient with a different HBsAg subtype is admitted and pockets of this new antigen subtype are isolated (Madden et al, 1975).

Further HBsAg characterization was possible only after antigen purification. We tried many of the purification schemes reported in the literature but found them to be either laborious and time consuming or technically
difficult to do. The two procedures presented in this study are modifications of previously described techniques (Gerin et al., 1969; Gerin et al., 1971; Gerin et al., 1975). These proved to be relatively simple to perform in comparison with other methods of \(H_{\text{B}} \text{Ag} \) purification and were consistently reproducible. The advantages of the large volume procedure are readily apparent - large volumes of serum can be purified in a minimal amount of time. The disadvantages include the need for more expensive centrifugation equipment, greater technical expertise on the part of the operator and the need for large volumes of costly CsCl. The small volume procedure, on the other hand, can be carried out using less expensive machinery, and smaller volumes of CsCl; however, two additional centrifugations add not only time to this procedure but also decrease effective \(H_{\text{B}} \text{Ag} \) recovery, albeit only in the range of 5-10%.

\(H_{\text{B}} \text{Ag} \) recovery by the two techniques was between 50 and 70% of the estimated antigen content in the starting sample. Precipitation of this antigen from serum by PEG 6000 increased recovery to approximately 90% and this simple procedure appeared to offer an ideal method for obtaining maximal antigen recovery; unfortunately, we were unable to remove all of the PEG 6000 from our final purified preparations despite repeated rate separation centrifugations and we had to abandon this promising technique as unworkable.

The final purified product was a homogeneous population of 22 nm spherical particles with a buoyant density of approximately 1.20 g/cm\(^3\) in CsCl. There were no
differences in size between the two subtypes. Specific antibodies directed against HB₄ Ag were raised by injecting the purified antigen into guinea pigs. Occasionally, antibodies to human serum albumin (HSA) were also found, even though no HSA was detectable in our final purified HB₄ Ag preparations. There had been some early reports that human host components were incorporated into the viral genome (Burrell, 1975); more recent evidence tends to confirm this and specifically shows this to be HSA. Imai et al (1979) have shown that HB₄ Ag from HBₑ Ag-positive individuals contain receptors for polymerized HSA and that red blood cells coated with polymerized HSA can be agglutinated by these particles. Hollinger and Dreesman (1979) reviewed this paper and speculated that both the HB₄ Ag and albumin antigenic determinants might reside on the same polypeptide. Subsequent investigations have found this not to be the case. Shih et al (1980) fractionated HB₄ Ag on polyacrylamide gel and found that between 20 and 40% of HB₄ Ag particles contained a P6 fraction which was shown to be HSA. This fraction could be precipitated with anti-HSA; however, co-precipitation of P6 with anti-HB₄ and anti-HSA led them to conclude that the HB₄ Ag and HSA determinants resided on separate molecules. Other investigators reported that HB₄ Ag activity resided on a 49,000 molecular weight polypeptide and that this fraction expressed the identical subtype determinants and antigenic titres as intact HB₄ Ag. In addition, this polypeptide was as effective as HB₄ Ag in raising specific antibodies (Mishiro et al, 1980).
The NIH hepatitis B vaccines presently undergoing clinical trials were prepared in a manner similar to that described for the large volume purification procedure. The final purified product was formalin inactivated and 0.1% HSA was added to maintain HB Ag structural integrity (Gerin, personal communication). The fact that this antigen was prepared from a human serum source and that human host components were part of the antigen composition has caused some investigators to worry about inducing autoimmune disease in vaccinees (Zackerman, 1976). Recently, investigators have been able to combine hepatitis B specific DNA with a plasmid and introduce this product into Escherichia coli with the resultant expression of hepatitis B specific DNA and protein by bacteria (Burrell et al, 1979; Valenzuela et al, 1979; Charnay et al, 1979). Cloning of the hepatitis B genome in bacterial cells holds much promise as an alternate method for producing viral vaccines both safely and efficiently.

Two distinct populations of Dane particles were identified in the sera of some HB Ag-positive individuals based on electron microscopic observation of their staining patterns and on their different densities in CsCl. Particles were designated as either "empty" or "full" depending on whether or not they were penetrated by stain; empty and full Dane particles banded at 1.20 g/cm³ and 1.25 g/cm³ respectively. Our findings were in agreement with an earlier report by Gerin (1974) but differed slightly from a subsequent study which found these particles to band at 1.20 g/cm³ and 1.22 g/cm³ (Kaplan et al, 1976). In addition, we found
DNA polymerase activity to be associated with the denser Dane particle population and our findings were consistent with those of other investigators (Moritsugu et al, 1975; Kaplan et al, 1976; Macaya et al, 1979).

Lipman et al (1973) isolated cores from Dane particles by disrupting these particles with NP 40 and centrifuging them in a Ficoll-sucrose density gradient. Two distinct populations of cores were identified by electron microscopy; cores banding at a density of 1.29 to 1.30 g/cm³ in CsCl had smooth surfaces and reacted with anti-\(\text{HB}_C \) whereas cores banding at a density of 1.28 to 1.29 g/cm³ had a ragged surface and did not react with anti-\(\text{HB}_C \). It was postulated that the ragged border of the non-reactive core preparation consisted of a "matrix protein" with a different antigenic specificity than the core. Moritsugu et al (1975) found that these "matrix proteins" were either anti-\(\text{HB}_C \) attached to the isolated particles as a result of the purification procedure or incompletely removed \(\text{HB}_S \)Ag.

We were also able to isolate two distinct populations of core particles from Dane particle preparations. The densities of the "empty" and "full" core particle preparations were 1.30 g/cm³ and 1.36 g/cm³ respectively with DNA polymerase activity associated with the denser particle. Our findings confirmed an earlier report by Kaplan et al (1976) who also described two subpopulations of cores with similar DNA polymerase activity in the denser population. Moritsugu et al (1975) also isolated two populations of
cores with densities of 1.30 and 1.36 g/cm\(^3\) but found DNA polymerase activity in both populations. They also found that the lighter core population had human immunoglobulin, presumably anti-HB\(_c\) associated with it and the density of these lighter particles was dependent on the degree of antigen-antibody association. Furthermore, the lower density core population was more heterogeneous in that it contained both higher density DNA polymerase-positive cores and lower density DNA polymerase-negative particles and as a result, the overall enzymatic activity of this population was lower than the higher density core preparation.

Our inability to detect DNA polymerase activity in the lower density Dane and core particle preparations may be due to a number of factors. The enzyme may not be present in the cores of these particles. A second possibility is that the enzyme is present but that the particles do not contain a template DNA to produce detectable DNA polymerase activity. A third consideration is that these Dane particles lack both the enzyme and the nucleic acid template. Kaplan et al (1976) feel that these Dane particles lack the appropriate nucleic acid template. The enzyme is needed for viral replication and it would seem highly unlikely that it would be lacking; in any case, such deletions would be strongly selected against. With no template, the particles would have no demonstrable DNA polymerase activity, regardless of whether the enzyme were present or not. The existence of such particles is not unique to hepatitis B since most virus preparations also contain variable numbers of "empty"

At present, no sera have been found to have DNA polymerase inhibiting activity and therefore, the DNA polymerase assay is not affected when utilized to quantitate DNA-polymerase positive Dane particle preparations (Hess et al, 1980). The DNA polymerase assay however is not a routine diagnostic procedure at present because the test system is variable and results do not add substantially to patient care and evaluation. Recently, it has been shown that serial determinations of DNA polymerase activity are the most sensitive indicators of a therapeutic effect during therapy of chronic hepatitis with interferon and other drugs and the use of this assay has strongly been advocated to monitor the efficacy of the various treatments (Merigan et al, 1980; Deinhardt, 1980).

Recently, sensitive assays have been developed to detect anti-HBc of the IgM class which is a highly sensitive indicator of recent infection and clearance of the hepatitis B virus (Cohen, 1978; Katchaki et al, 1979; Gerlich and Luer, 1979). Anti-HBc IgM is the first antibody to arise and it appears in or shortly before the acute stage of hepatitis B. It persists for several months but recent evidence suggests that it may be detectable for up to 17 months from the onset of illness (Hawkes et al, 1980). It is extremely rare for IgM antibodies to persist for more than 1-2 months in viral infections but there have been reports of prolonged IgM antibody responses of up to 4 months.
in occasional rubella infections (Robertson and Bell, 1974). Disappearance of anti-HBc IgM may prove to be the most reliable indicator for clearance of the hepatitis B virus whereas persistence denotes chronic disease and viral replication. High titres of this antibody are encountered in acute and convalescent phases of the disease while chronic active and persistent hepatitis have lower anti-HBc IgM titres. The height of the titre does not correlate well with the severity of the disease and other markers should be used to determine this feature of the illness (Deinhardt, 1980).

Core particles were also isolated from liver nuclei of a chronically infected renal dialysis patient at necropsy. Particles banded at 1.30 g/cm³ in CsCl and were negative for endogenous DNA polymerase activity. Hirschman et al. (1974) also isolated naked core particles from livers of chronic hepatitis B patients and showed DNA polymerase activity was present only in the presence of exogenous DNA template. Similar results were obtained from the necropsied liver of a chimpanzee with chronic active hepatitis (Bradley et al, 1976). Other investigators, however, have demonstrated the existence of endogenous DNA polymerase activity in hepatic tissue from humans and chimpanzees (Fields et al, 1976; Onda et al, 1978). The reason for these differences is speculative. Gerin et al (1975a) have suggested that the bulk of Dane particles, which appear to be "empty" and therefore deficient in nucleic acid, could play a role in the persistence of hepatitis B virus by acting as defective interfering particles. Livers obtained from chronically infected humans and animals may have contained many defective
core particles with DNA polymerase activity but no endogenous DNA template. HBcAg particles isolated from humans and chimpanzees with little or no anti-HBc in their plasma may on the other hand have a greater proportion of intact versus defective particlgs and may have the necessary template to initiate an appropriate DNA polymerase response (Onda et al, 1978).

The close association of DNA polymerase with HBcAg led some investigators to speculate that HBcAg may be the DNA polymerase protein (Melnick et al, 1976). Neurath and Strick (1976) showed that HBcAg and DNA polymerase were not identical and in a later study, demonstrated that HBcAg is a dimer of a 7S immunoglobulin (Neurath and Strick, 1977). They concluded that since HBcAg and anti-HBc are both immunoglobulins which react only with each other and not with normal IgG, the HBcAg/anti-HBc system represents an antibody/anti-antibody system. Subsequent studies have, however, challenged their conclusions (Takahashi et al, 1978).

Neurath et al (1976) also reported that HBcAg was exposed on the surface of Dane particles and tubular forms of HBsAg but were not present on the surface of the 20 nm spherical particles. Gerin et al (1978), however, were unable to find HBcAg on the surfaces of Dane particles, filaments and 20 nm HBsAg forms. Significantly, HBcAg was not found on the surface of the population of Dane particles that contains DNA polymerase and correlates with hepatitis B infectivity indicating that anti-HBc has no direct role in virus neutralization. Earlier, Lam et al (1977) reported
that treatment of Dane particle-rich preparations with Tween 80 released HBsAg suggesting that HBsAg represents an internal structural protein of the HBV. Their results were somewhat tainted by the finding that their preparations contained anti-HBc and that this antibody may have resulted in an erroneous interpretation of their data (Huang, personal communication). However, subsequent studies tend to support an association between HBcAg and HBsAg. Mild detergent treatment of Dane particle-rich preparations resulted in the release of core particles containing HBsAg activity when examined by reverse passive hemagglutination. When exposed to stronger detergent, additional HBsAg activity was released only from intact core particles with DNA polymerase activity but not from empty core particles (Ohori et al, 1979). Takahashi et al (1979) isolated HBcAg from Dane particles by treatment with NP 40 and β-mercaptoethanol. HBsAg was not detected on the surface of the Dane particles or the resultant cores. Treatment of the core with pronase resulted in some HBsAg activity while further treatment with SDS yielded high HBsAg activity, indicating that HBsAg exists in the core of the Dane particle in a cryptic form. They concluded that HBsAg is an integral component of the Dane particle and accounts for the close correlation between HBsAg and Dane particles in HBsAg positive sera. HBcAg purified from hepatic nuclei was converted into HBsAg by sonication or by passing it through an anti-HBc IgG-conjugation sepharose B column; however, there was no appreciable difference in protein composition between HBcAg.
and HB_eAg. Centrifugation in CsCl also converted core particles to HB_eAg. Ohori et al (1980) hypothesized that HB_eAg resides on a protein conformation which consists of a polypeptide sharing HB_e antigenicity.

HB_eAg has been proposed as a marker of infectivity by many investigators. Okada et al (1976) showed that in a group of mother-child pairs, all infants born to HB_sAg and HB_eAg-positive mothers developed HB_s antigenemia; conversely, all HB_sAg and anti-HB_e-positive mothers had infants who did not develop HB_sAg. Beasley et al (1977) also found maternal e antigenemia to be a good predictor of vertical transmission. In addition, studies of accidently inoculated medical personnel also showed a striking correlation between HB_eAg and infectivity (Grady, 1976; Alter et al, 1976). Other investigators, however, have found that anti-HB_e-positive sera may also be infective. Berquist et al (1976) inoculated four chimpanzees with HB_sAg positive sera containing anti-HB_e. They found that a human serum with anti-HB_e was infectious for one chimpanzee and that an anti-HB_e-positive chimpanzee serum may have been infectious for a second animal. Subsequently, investigators have also been able to detect HB_sAg infants born to HB_sAg, anti-HB_e-positive mothers; in all three studies, antigenemia was transient and the infants later developed anti-HB_s (Schweitzer et al, 1975; Gerety, 1976; Gerety and Schweitzer, 1977). Gerin et al (1978) found that anti-HB_e had no direct role in virus neutralization and that the correlation between anti-HB_e and lack of infectivity was probably an indirect one. This
finding may serve to explain the equivocal data presented.

The prevalence of \(\text{HB}_e \text{Ag} \) in the four populations we studied was comparable to or higher than that reported in other studies of asymptomatic blood donors and other healthy \(\text{HB}_s \text{Ag} \) carriers (Magnus and Espmark, 1972b; Magnus et al, 1975; Nordenfelt and Kjellen, 1975; El Sheikh et al, 1975; Feinman et al, 1975; Smith et al, 1976; Takahashi et al, 1976; Skinhøj, 1977; Couroucé-Pauty and Plancon, 1978) but lower than that reported by others (Hindman et al, 1976; Maynard et al, 1976; Werner et al, 1977). We also found several \(\text{HB}_s \text{Ag} \)-positive sera which were negative for \(\text{HB}_e \text{Ag} \) but positive for DNA polymerase and vice versa. Similar results were obtained by other investigators (Imai et al, 1976). A 44% correlation was found in our study between \(\text{HB}_e \text{Ag} \) and DNA polymerase activity which was comparable to findings by some researchers (Cappel et al, 1978) and considerably higher than results in other studies (Imai et al, 1976). Concentration of \(\text{HB}_e \text{Ag} \)-positive sera further increased the correlation of \(\text{HB}_e \text{Ag} \) and DNA polymerase activity to 80%.

The discrepancies between results can be attributed to three factors: the insensitivity of the assay used, the pre-selection of sera for testing by some investigators and the probable regional variations that exist similar to those reported for \(\text{HB}_s \text{Ag} \). All aforementioned studies used the relatively insensitive immunodiffusion technique. The RIA increased sensitivity by up to tenfold (Mushawar et al,
1978; Frösner et al, 1978) and it is reasonable to assume that many of the sera negative for HB_e Ag by AGD and positive for DNA polymerase will, in reality prove to be HB_e Ag-positive by more sensitive assays. A second consideration is sera pre-selection. Werner et al (1977) selected high-titred HB_s Ag-positive sera and found that more than 50% of all sera tested were HB_e Ag-positive. An association has been found between the presence of HB_e Ag and high titres of HB_s Ag in sera (Okada et al, 1976; Imai et al, 1976; Trepo et al, 1976; Beasley et al, 1977; Skinhøj, 1977) and this may account for the large number of HB_e Ag-positive specimens in their study. This can also account for the increased frequency of HB_e Ag-positive sera in dialysis patients who generally tend to have higher titres of HB_s Ag.

Some investigators report that anti-HB_e indicates the absence of Dane particles (Imai et al, 1976; Hindman et al, 1976). We and others (El Sheikh et al, 1975; Werner et al, 1977) however, find Dane particles in certain sera positive for anti-HB_e. Werner et al (1977) extracted DNA from sera and assayed its ability to anneal to a [32P]-DNA probe that was a copy of the Dane particle DNA. All 10 HB_e Ag-positive samples tested contained DNA that formed specific hybrids with the DNA probe. One anti-HB_e positive sample also annealed with the radiolabeled DNA probe although the level of DNA hybridization was much lower than that of the HB_e Ag-positive samples. Electron microscopic examination of this sample showed that it contained Dane particles. The Dane particles seen in our anti-HB_e positive samples
were all found to be negative for DNA polymerase activity and were empty when visualized by electron microscopy. Alberti et al (1978) also found Dane particles from anti-\(HB_e\) positive sera to be empty.

In our study, we found that \(HB_s\) positive sera from asymptomatic blood donors had a higher frequency of \(HB_e\) than did \(HB_s\) positive sera. The anti-\(HB_e\) frequency was reciprocal for the two subtypes. Couroucé-Pauty and Plancon (1978) have found that the frequency of both \(HB_e\) and anti-\(HB_e\) is higher for \(HB_s\) positive sera. The only group in which we found \(HB_e\) frequency to be higher for the \(ad\) subtype was the dialysis population. One can only speculate as to the reason for these significant differences. It has been noted previously that there has been a recent shift in the proportion of the two subtypes in the donor population. It appears that the \(HB_s\) positive donors have been more recently infected than the chronic "ad" carriers; in addition, the \(HB_s\) positive donors tend to be somewhat younger.

Sasaki et al (1979) have recently shown that the frequency of \(HB_e\) decreases with both age and length of carriage while antibody frequency increases. This could explain our findings in the donor population. Dialysis patients, on the other hand, tend to have high titres of \(HB_s\) and \(HB_e\) prevalence has been found to be increased with increased titres of \(HB_s\) (Imai et al, 1976; Beasley et al, 1977; Sasaki et al, 1979).

RIA is certainly the technique of choice now in
determining HB_Ag prevalence; however, what it accomplishes in sensitivity it lacks in specificity in that it cannot differentiate between HB_Ag antigenic reactivities. Initially, Williams and Le Bouvier (1976) described two determinants which they designated as e1 and e2. We, along with other investigators (Couroucé-Pauty and Plancon, 1978; Murphy et al, 1978) have found a third determinant which has been designated as e3. This third line appeared in conjunction with e2, disappeared at the same time and had the same biophysical characteristics. It seems from our studies that e2 and e3 are closely related but that they differ markedly from e1. Therefore, it may be more appropriate to designate e3 as e2a to denote these similarities.

The significance of the e determinants is not known. Williams and Le Bouvier (1976) have speculated that the appearance of e2 heralds HB_Ag clearance in the near future. This seems unlikely as many sera from chronic HB_Ag carriers contain both determinants and have for lengthy periods of time. A possible correlation however seems to exist between these determinants: DNA polymerase activity and Dane particle numbers. In patients with acute hepatitis B, DNA polymerase activity reached its peak when e2 was detected in addition to e1, and declined thereafter. Chronic HB_Ag carriers positive for both e1 and e2 had the highest numbers of Dane particles in their plasma when examined by EM. Our findings and suspicions were recently confirmed when Yamada et al (1979) found that although e1 was more common than e2, e2
positive sera contained increased concentrations of Dane particles and had higher levels of DNA polymerase activity.

We also studied the prevalence of HB\textsubscript{e}Ag and anti-HB\textsubscript{e} in two institutions for the mentally retarded and our findings confirm earlier reports that no significant differences exist between DS and OMR populations (Hindman et al, 1976). The number of HB\textsubscript{e}Ag positive sera was lower than in the aforementioned study but anti-HB\textsubscript{e} was more prevalent. Recently, Gust et al (1978) have reported that significant differences existed between these two groups; their percentage of HB\textsubscript{e}Ag-positive sera was much higher than in our study while anti-HB\textsubscript{e} was almost non-existent in their populations, a finding they did not attempt to interpret. They also found that HB\textsubscript{e}Ag prevalence was highest in the young, declining in the second and subsequent decades. Their findings echoed an earlier study by Ohbayashi et al (1976) who also noted a decreasing frequency of HB\textsubscript{e}Ag with age but in a non-institutionalized population.

Our experience has been somewhat different. The prevalence of HB\textsubscript{e}Ag and anti-HB\textsubscript{e} was found to be more a function of length of residence rather than age at admission. Individuals in both the first and second decades had equal opportunity of becoming HB\textsubscript{e}Ag positive and we found that in our two centres, no significant differences existed between the two age groups. However, when length of residence was considered, significant differences were noted for both the DS and OMR populations; the only discrepancy
occurred with the DS group at the Huronia Centre. A significant number of DS patients had been admitted in the past ten years when compared with the Rideau Centre and a significantly smaller number of residents had become HBeAg positive. It is difficult to explain why 67% of one institution had become HBeAg positive whereas only 25% of another were positive. The small numbers studied make these differences insignificant; nevertheless, one might assume that these two institutions handle their new admissions somewhat differently, thereby accounting for these apparent discrepancies.

What is the significance of HBeAg in determining the course of an acute hepatitis B infection? Aldershivile et al (1980) followed HBeAg and anti-HBe by RIA and found the course of events to be similar for the two patients we have described in our study. Fifteen of sixteen individuals infected with HBeAg became HBeAg positive two weeks after the onset of symptoms; antigen prevalence declined during the next ten weeks. Chronic liver disease was noted in five patients in whom HBeAg persisted for more than ten weeks. The vast majority of patients became anti-HBe positive (91%) with 82% having detectable anti-HBe activity within two weeks of HBeAg clearance. From these findings, they concluded that HBeAg occurs regularly in early acute hepatitis B and that persistence may correlate with either a chronic carrier state or chronic liver disease. In another study, however, some question was raised about its significance. Schulman et al (1980) studied 71 susceptible
oncology patients who inadvertently received a tumor cell vaccine contaminated with HB\textsubscript{s}Ag; 45 became infected. Of these, 28 were positive for both HB\textsubscript{s}Ag and HB\textsubscript{e}Ag, 8 were positive for only HB\textsubscript{s}Ag and 9 had detectable anti-HB\textsubscript{s}. No significant difference was seen in the acute course and outcome between the two HB\textsubscript{s}Ag groups. They concluded that even though HB\textsubscript{e}Ag was common early in the course of the disease, it had no prognostic significance independent of HB\textsubscript{s}Ag.

The mechanism by which HB\textsubscript{e}Ag is cleared from the serum is poorly understood. Recently, Ta\c{s}or et al (1980) detected HB\textsubscript{e}Ag by AGD in four patients with tropical splenomegaly syndrome; all four were negative for HB\textsubscript{s}Ag by RIA. Two patients subsequently developed anti-HB\textsubscript{s} while the other two became anti-HB\textsubscript{c} positive. Detection of HB\textsubscript{e}Ag by an insensitive assay would seem to indicate that removal of the two antigens occurs independently. These results, however, remain to be confirmed.

Much work has been done in attempting to correlate HB\textsubscript{e}Ag to HBV and in determining its prognostic value with regards to resolution of acute illness. Its association with a non-hepatic disease also raises questions about its specificity. Further studies are apparently needed in order to resolve these discrepancies and to ascertain the true significance of this marker in hepatitis B.
II. Cell Mediated Immunity

The cell-mediated immune response is a function of the T-lymphocyte and is important in the resolution of intracellular infections by viruses, fungi and mycobacteria and for tumor immunity and transplantation rejection. The T-cell population is not a homogeneous one but rather is composed of subsets of T cells consisting of mediator (lymphokine) producing cells, cytotoxic or killer (K) cells, memory cells, helper cells and suppressor cells. The latter two cell populations are differentiated from each other by their ability to bind with specific immunoglobulins. The cells with receptors for the Fc portion of IgM are the helper cells and make up approximately 70% of the total peripheral blood T cell population. They are designated as T_4 or T_M cells. Cells with receptors for the Fc portion of IgG are the suppressor cells and are called T_2 or T_C cells. Helper and suppressor activity also reside in the non-specific monocyte population. Monocytes may exert a suppressor effect on lymphocyte responses to mitogens, for example, by producing the prostaglandin PGE_2 which results in increased intracellular cyclic adenosine monophosphate (c-AMP) and decreased cellular function.

Four distinct lymphocytic cell populations are found in the peripheral blood. T-lymphocytes make up approximately 70% of peripheral circulating agranular white cells. They form spontaneous E-rosettes with sheep red blood cells, have no detectable surface immunoglobulins and have receptors
for the Fc portions of IgM and IgG. B lymphocytes make up about 10% of the peripheral monocytes. They also form rosettes but with mouse red blood cells. Unlike the T-lymphocytes, they have detectable surface immunoglobulin and have receptors only for the Fc portion of IgG. Monocytes comprise an additional 20% of this population; they do not form rosettes spontaneously, and have no surface immunoglobulin. They do, however, have receptors for the Fc portion of IgG. The fourth component of this population are the null cells which make up 0 to 5% of the agranular white cells in the peripheral blood. They do not form rosettes, have no surface immunoglobulin and may or may not have Fc receptors on their surfaces. It is thought that interactions between these four cell types are responsible for the in vivo and in vitro manifestations of cell-mediated immunity.

The cell-mediated immune response to hepatitis B has been measured by in vivo and in vitro techniques in animals and man. Delayed skin reactions to HB$_s$Ag have been demonstrated in guinea pigs (Irwin et al, 1972), mice (Roberts et al, 1975) and chimpanzees (Ibrahim et al, 1974; Trepo et al, 1975). Gerety et al (1974) have found this reaction to be specific for the particular hepatitis B antigen used to sensitize the animal. Guinea pigs immunized with HB$_s$Ag had a positive reaction only when skin tested with this antigen; HB$_c$Ag-sensitized animals only responded to an HB$_c$Ag challenge. No skin testing however has been done on humans because of the very real danger of inducing a hepatitis B infection. It, therefore, remains to be
proven whether the delayed hypersensitivity reactions observed in animals is truly representative of the human response.

The specific cell-mediated immune response to HBsAg has also been shown to be transferrable to non-sensitized animals. Vyas et al (1974) phenol-extracted RNA from guinea pig lymph nodes immunized with HBsAg and added it to peritoneal exudate cells from normal non-sensitized guinea pigs. In the presence of HBsAg, migration by these peritoneal macrophages was inhibited. This transfer of specific cellular immunity by RNA is not unique to hepatitis B. Han (1973) had demonstrated the transfer of delayed-skin reactivity to tuberculin, variadase and candida by injecting RNA from sensitized animals into non-sensitized animals.

In the present study, we have measured two in vitro parameters of the cell-mediated immune response - lymphocyte transformation and leukocyte migration. We also examined various other factors which might affect the ability of lymphocytes to respond in culture, namely the age of the cell donor, and the serum supplements used. Cells from older individuals were found to have a decreased ability to respond to a challenge by a powerful non-specific lymphocyte stimulant (PHA) as shown by a decrease in tritiated thymidine uptake than did cells from younger individuals. Our results were in agreement with earlier studies which noted that immunological responses decreased with increasing age (Price and Makinodan, 1972; Krogsrud and Perkins, 1977).
Recently, these findings have been expanded on by Rice et al (1979) who found three distinct suppressor systems in human blood that modulated lymphoproliferation. The first was an adherent cell suppressor system (ACSS) which consisted of steroid and radioresistant monocytic cells that survived well in culture. The second was designated the prostaglandin-related suppressor system or PgSS. These cells were similar to the ACSS cells morphologically but differed in their ability to suppress other cells. In addition, they had a lower effective concentration in the peripheral blood and were sensitive to indomethacin. The third cell in the suppressor triad was the ISS or induced suppressor system T-lymphocyte which was shown to be partially radiosensitive but unlike the two other cells, lost its activity in culture within 24 hours. ACSS and PgSS cells from older individuals were more active than cells from younger people and this may partially explain the age-related depression of the lymphocyte response to PHA found in our study. Age may also affect the receptors located on the responding cell surface either by decreasing the availability of sites or by decreasing their avidity for the stimulating agent and this too must be considered.

Non-specific stimulation of effector cells in CMI assays is always a concern. Fetal bovine serum which is a heterologous serum supplement when added to human lymphocyte or leukocyte cultures is known to induce non-specific stimulation of cells (Oppenheim and Schecter, 1976) and
probably should not be used. Autologous serum, on the other hand, often tends to be inhibitory and occasionally cytotoxic and may dampen CMI responses to specific antigens (Bloom et al, 1973). Most investigators use pooled AB negative serum in an attempt to minimize these effects; however, there is no evidence at present to indicate that ABO and Rh determinants are stimulatory or inhibitory and use of AB negative serum may be an unnecessary precaution. Antibiotics also play a role in the cellular response to stimulants in culture. Munster et al. (1977) found severe dose-dependent suppression of DNA synthesis in the presence of minocycline, oxytetracycline and the ascorbic acid salt of tetracycline. Less severe but still significant suppression was found in the presence of chloramphenicol, clindamycin, tetracycline and ascorbic acid alone. No effect was noted when penicillin, carbenicillin or cephalothin was added and slight stimulation was noted in the presence of gentamicin. Other investigators found that leukocytes incubated with chloramphenicol, rifampin, sodium fusidate and tetracycline had markedly depressed migration when compared to other antibiotics (Forsgren and Schmeling, 1977).

In the present study, cells from patients who had recovered from an acute HBV infection showed no significant lymphocyte transformation when incubated with purified HBsAg, an observation diametrically opposed to earlier reports which found lymphocyte transformation to be detectable up to six years after recovery from an acute hepatitis B.
infection (Yeung Laiwah, 1971; Pettigrew and Russell, 1972; Tsuji et al, 1972; Sodemann and Havemann, 1973; Yeung Laiwah et al, 1973; De Gast et al, 1973; Koszinowski et al, 1974; Reisenbuk and Ioks, 1974; Chandra, 1975; Tong et al, 1975). Koszinowski et al (1974) found that anti-\textit{HB}_s was needed for lymphocyte transformation while De Gast et al (1973) reported that by heat-inactivating \textit{HB}_s Ag, they could further enhance tritiated thymidine uptake by cells from post hepatitis B patients. Fourteen of our 16 patients had detectable anti-\textit{HB}_s in their plasma but in none of them was the lymphocyte transformation response significant. We also tested two inactivated \textit{HB}_s Ag preparations - heat-inactivated \textit{HB}_s Ag (results not reported) and the formalin-inactivated NIH hepatitis B vaccine - and found no significant transformation with either.

More recent studies, however, have shown that lymphocytes from post hepatitis B patients incubated with highly purified \textit{HB}_s Ag preparations do not undergo significant transformation (Wands et al, 1975; Tiku et al, 1978; Hafkin et al, 1979). Wands et al (1975) were also unable to demonstrate cytotoxicity with lymphocytes from this patient population and concluded that "factor(s) other than \textit{HB}_s Ag are involved in the stimulation of recovered hepatitic patient lymphocytes".

One such factor may be the presence of serum components or contaminants in the antigen preparations used; some of the earlier experiments were performed with either \textit{HB}_s Ag-positive sera or partially purified \textit{HB}_s Ag. We tested
four such serum contaminants obtained during the course of our purification procedure and found one to significantly stimulate lymphocytes from post hepatitis B patients; fractions from normal human serum processed in a similar manner had no effect. We did not attempt to determine what specifically was causing this stimulation but one and possibly more factors may be involved. The stimulant may be a fragment or possibly a major component of either the HBV or HB$_s$Ag dissociated from these particles during the purification procedure; fraction 1 was weakly positive for HB$_s$Ag by RIA but we were unable to visualize any fragments, 22 nm spherical particles, filaments or Dane particles by EM. A second possible candidate is some new or perhaps altered antigen released from the liver into the circulation during the disease process. Kissling and Speck (1971) examined 27 sera from patients with various liver diseases and found 25 of them caused normal lymphocytes to become blastoid and undergo mitosis. Since all sera had a comparable transforming effect on lymphocytes and since only two were positive for HB$_s$Ag, it did not appear that this antigen had a direct effect on transformation. These findings and similar results by Barinsky et al (1975) suggested that perhaps hepatic antigens or products might be the stimulating agent. Tobias et al (1967) had found that autologous liver homogenates from patients with liver disease could transform lymphocytes in culture, expanding on earlier findings by Geduldig and Iber (1962) that some patients with different liver diseases had a delayed cutaneous hypersensitivity
response when challenged with autologous hepatic tissue suspensions. These results have now been confirmed by other investigators and have led some to speculate that the pathogenesis of chronic liver disease may be related to the induction of the immune response to host tissue proteins such as liver specific antigens (Bacon et al, 1971; Miller et al, 1972; Popper and Mackay, 1972; Smith et al, 1972; Knolle et al, 1973; Thomson et al, 1974; Edgington and Chisari, 1975; Cochrane et al, 1976; Hopf et al, 1976; Tiku et al, 1978).

No standardized HB$_s$Ag preparation has been used to determine in vitro CMI responses because of the differences in the purification procedures that exist from laboratory to laboratory and may, in part, also account for the different results obtained by various investigators. Some investigators have been unable to reproduce their results when moving from one centre to another. Tiku et al (1978) reported significant lymphocyte transformation in 12 of 17 chronic HB$_s$Ag carriers with elevated serum glutamic pyruvic transaminase and 1 of 2 patients with chronic hepatitis B. However, when Tiku tried to reproduce these results at another centre using identical techniques and antigen preparations and a similar patient population, he was unable to do so (Hafkin et al, 1979).

Differences in lymphocyte stimulation using highly purified versus semi- or unpurified antigens are not unique to hepatitis B. Investigators have been able to stimulate lymphocyte cultures with unpurified, measles-infected cell
membranes or measles vaccines (Graziano et al, 1975; Ruckdeschel et al, 1975; Cunningham-Rundles et al, 1975) while purified measles antigen was found to be inhibitory (Zweiman and Miller, 1974; Sullivan et al, 1975; Arstila et al, 1976; Ilonen, 1979).

We also measured the CMI responses of post-hepatitis B patients by the leukocyte migration inhibition assay previously described by Clausen (1971). This test was preferred to the capillary tube technique because it used less antigen and fewer cells, thus facilitating the simultaneous testing of several antigenic concentrations. The overwhelming majority of the migrating cells were found to be polymorphonuclear leukocytes and our findings are consistent with earlier findings which reported similar results (Erard, 1974). When examining our population as a whole, no significant inhibition of cellular migration was found, confirming results reported by other researchers (Dudley et al, 1972b; Gerber et al, 1974; De Moura et al, 1975). However, two groups have reported inhibition during a period of several months of convalescence (Frei et al, 1973; Yeung Laiwah et al, 1973) while another noted the simultaneous occurrence of migration inhibition and anti-HBs (Reed et al, 1974). These discrepancies may be due to the purity of the antigen used and/or to technical differences. Ito et al (1972) used liver homogenates from HBsAg-positive liver biopsies and demonstrated leukocyte migration inhibition in patients with a previous history of HBsAg.

- 197 -
When we examined our population on an individual basis, we noted that the two patients who had just cleared HB$_s$Ag within a two week period and were anti-HB$_s$ negative had significant migration inhibition of their leukocytes when cultured with two concentrations of purified HB$_s$Ag. Ibrahim et al. (1975) also noted a similar pattern in their population and concluded that the disappearance of circulating HB$_s$Ag after acute hepatitis coinciding with the appearance of leukocyte migration inhibition and not with humoral immunity is consistent with the hypothesis and observations of Dudley et al (1972a) that the cellular immune response plays an important role in the clearance of this infective agent.

Why lymphocytes previously exposed to herpes simplex virus, rubella, varicella, mumps and cytomegalovirus respond to these specific viral antigens in vitro (Simons and Fitzgerald, 1968; Russell et al, 1972; Russell, 1974; Rasmussen et al, 1974; Vesikari and Buimovici-Klein, 1975; Starr et al, 1975; Möller-Larsen et al, 1976; Rossier et al, 1977a, b; ten Napel et al, 1977; Maller and Soren, 1977; Pollard et al, 1978; Arvin et al, 1978; Ilonen, 1979; Hafkin et al, 1979) while cells exposed to HB$_s$Ag do not is open to speculation. One possible explanation for this finding is that a population of suppressor T-cells somehow inhibits lymphocytes sensitized to HB$_s$Ag from recognizing and/or responding to a challenge by this antigen. Until recently, such T-T cell interactions had only been described for
animals, the classic model being the Ly system in mice (Cantor et al, 1978; Eardley et al, 1979a, b). Antigen stimulated Ly 1 cells were capable of inducing B cells to produce antibodies and non-immune T cell subsets (surface phenotype Ly 125⁺; Qa 1⁺) to participate in suppressor activity by feedback inhibition. The Ly 1 cell in this system is a helper cell and behaves like the T₄ cell in man while the Ly 2 cell could act either as a suppressor (analogous to the T₆ cell) or as a K-cell. In 1979, Lobo and Spencer demonstrated T-T cell interactions in man. One suppressor cell subset activated by concanavalin A (Con A) was found to inhibit a blastogenic response to allogeneic cells while a PHA-activated population inhibited the generation of K-cells. These differed from the T-suppressor subset involved in the suppression of plasma cells (T-B interaction) in that they were resistant to both radiation and prednisone. Their findings and those of Rice et al (1979) discussed earlier would indicate that the suppressor cell population is a heterogeneous one. Separation of the T-lymphocyte population into its various subsets and challenging each one with purified HBAg would certainly be one way of resolving this issue and would also give us a better understanding of the significance of the cell to cell interactions that occur during the disease process.

The inability of sensitized lymphocytes to respond to HBsAg may be a manifestation of tolerance. Two theories exist. One is the clonal deletion model advocated by Burnet (1959) in which self-reactive lymphocytes are thought
to be eliminated upon contact with self antigens. The second is the clonal abortion theory which holds that as lymphocytes acquire immunological competence, there is a particular stage in the differentiation process during which contact with self-antigen results in the elimination of potential self-reactive clones (Nossal, 1958). Human host components, particularly HSA, have been shown to be incorporated into HB$_s$Ag and may result in this antigen being recognized as self. HB$_c$Ag, on the other hand, contains no human host components and strong CMI responses have been obtained using this antigen (Gerety et al, 1974); unfortunately, it is difficult to obtain large amounts of this antigen and this has hampered efforts to fully assess CMI responses to it. Recently, two developments have occurred which may offer ways in which to resolve these problems. Mishiro et al (1980) have isolated a 49,000 m.w. polypeptide containing all the determinants and immogenicity of the intact HB$_s$Ag particle but without HSA which is found to reside on another polypeptide (Shih et al, 1980). Stimulation with this antigenic subunit would certainly circumvent any inhibition by HSA (if it does indeed exist) and could possibly resolve the discrepancies that exist in the literature. The second development is the finding that the hepatoma cell line from which HB$_s$Ag has been obtained also produces HBV specific DNA (Marion et al, 1980); cultures of this cell line may therefore be a potential source for the large amounts of HB$_c$Ag needed to fully assess CMI responses to this antigen.
Much work has already been done in trying to understand the role of the cell-mediated immune response in the pathogenesis of liver disease but the results obtained to date raise as many questions as they answer. Despite the massive amount of research done in the past ten years, much more still remains to be done before we can fully appreciate the intricacies of the various cell populations involved in clearing this infection and the significance of each of the antigen markers detected.
BIBLIOGRAPHY

Berquist, K.R., Maynard, J.E. and Murphy, B.L. Infectivity of serum containing HB Ag and antibody to e antigen. Lancet 1: 1026, 1976.

Campion, E.C. and Wangel, A.G. Australia antigen, auto-
antibodies and cell-mediated immune responses in patients

Cantor, H. and Boyse, E.A. Functional subclasses of T
lymphocytes bearing different L, antigens. I. The
generation of functionally distinct T cell subclasses
is a differentiative process independent of antigen.

Cantor, H., Hugenberger, J., Boudreau, L.M., Eardley, D.D.,
Kemp, J., Shen, F.W. and Gershon, R.K. Immunoregulatory
circuits among T cell subsets. Identification of a sub-
population of T-helper cells that induces feedback

Cappel, R., De Cuypers, F. and Van Beers, D. Diagnosis of
hepatitis B by Dane particle associated DNA polymerase

Caramia, F., De Bac, C. and Ricci, G. Virus-like particles
within hepatocytes of Australia antigen carriers. Am. J.

Carver, D.H. and Seto, D.S.Y. Hepatitis A and B. Pediatric

Chairez, R., Steiner, S. and Melhick, J.L. Glycoproteins
associated with hepatitis B antigen. Interviroir. 1: 224,

Chandra, R.K. Lymphocyte response to hepatitis B surface
antigen: findings in hepatitis and Indian childhood

Charnay, P., Pourcel, C., Louise, A., Fritsch, A. and Tiolais,
P. Cloning in Escherichia coli and physical structure

Chaudhary, R.K., Perry, E. and Cleary, T.E. Prevalence of
hepatitis B infection among residents of an institution
for the mentally retarded. Am. J. Epidemiol. 105: 123,
1977.

Chauveau, J., Moule, Y. and Rouiller, C. Isolation of pure
and unaltered liver nuclei. Morphology and biochemical

Clausen, J.E. Tuberculin-induced migration inhibition of
human peripheral leucocytes in agarose medium. Acta

Murphy, B., Tabor, E., McAuliffe, V.J., Williams, A., Maynard, J., Gerety, R.J. and Purcell, R.H. Third component, HBsAg/3 of hepatitis B e antigen system, identified by three different double diffusion techniques. J. Clin. Microbiol. 8: 349, 1978.

APPENDIX I

Nomenclature of Antigens Associated with Viral Hepatitis Type B

by

Committee on Viral Hepatitis of the National Research Council National Academy of Sciences

\[\text{HB}_s \text{Ag} \]

The hepatitis B antigen found on the surface of the Dane particle and on the unattached 20 nm particles.

\[\text{HB}_c \text{Ag} \]

The hepatitis B antigen found within the core of the Dane particle.

Dane particle

A current term for the 42 nm particle containing the \(\text{HB}_c \text{Ag} \) in its core and \(\text{HB}_s \text{Ag} \) on its surface.

\[\text{HBV} \]

Reserved for hepatitis B virus. The Dane particle may turn out to be HBV.

\[\text{HB}_s \text{Ag/adr} \]

Hepatitis B surface antigen manifesting the group specific determinant, a, and subtype-specific determinants, d and r. All recognized
subtypes are to be indicated to the right of the slash.

anti-HB_s Antibody to hepatitis B surface antigen. If the subtypic reactivity is known, the appropriate antigenic determinants are to be indicated to the right of a slash.

anti-HB_c Antibody to hepatitis B core antigen. If more than one core antigen is discovered, the corresponding antigens can be indicated.

CONTRIBUTION TO KNOWLEDGE

The investigations performed in this study make the following original contributions to hepatitis B research:

(1) Contrary to earlier reports, the CMI response of convalescing hepatitis B patients is in part dependent on the purity of the antigen employed. In our hands, no purified HB$_s$Ag preparations (including the HB$_s$Ag vaccine) were able to stimulate lymphocyte transformation. Furthermore, no significant migration inhibition could be demonstrated in this population using four different concentrations of highly purified HB$_s$Ag.

(2) Contaminating serum components recovered during the purification procedure were shown to significantly stimulate lymphocytes from convalescent HB$_s$Ag patients. No attempt was made to specifically identify these stimulatory substances but it seems likely that their inclusion with partially purified antigen preparations in earlier experiments led to erroneous conclusions by these investigators on the role of CMI in hepatitis B.

(3) A small volume purification procedure was developed. This had the advantages of being rather simple to perform, cost effective and consistently reproducible.

(4) Further epidemiological data on the e antigen and antibody is provided. HB$_e$Ag was more frequently
found to be associated with HB.Ag/ay than HB.Ag/ad whereas anti-HB. was more frequently associated with the latter subtype. This may, in part, explain the recent shift from the more common ad subtype in North America to HB.Ag/ay in both acute and chronic hepatitis B infection.

(5) A third e antigen marker is described. Because of its similarities to e₂ (time of appearance and disappearance, biophysical properties), it has been designated e₂a.