Effects of phenolic acids on digestion of starch particles
Grace Northrop*, Nicolas Bordenave
School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5
*Contact: gnort048@uottawa.ca, 778-349-2342

Introduction
Starch is the principal storage form of energy in plants and is comprised of two polymers: amylose and amylopectin. Starch is the main dietary source of glyceremic carbohydrates and its digestion pattern is directly related to blood glyceremic levels and satiety. Controlling starch digestion is therefore key to eliciting a prolonged and steady post-prandial release of glucose into the blood stream in order to control energy levels throughout the day. It is commonly accepted that dietary polyphenolic compounds, plant metabolites that play an important role in the sensory and nutritional properties of food,1 can slow down or inhibit the starch digestion process; however, the role of the phenolic compounds’ structure remains unclear. In this study we hypothesize that: 1-the structure of phenolic acids and their hydrogen bonding capacity and 2- their physical state in the test matrix (incorporated in starch particles or free in solution) will impact starch digestion kinetics. Starch particles were chosen as a slowly digestible form of starch that could easily be incorporated into products aimed at eliciting a prolonged energy delivery. The phenolic acids used in this study are ones commonly found in the fruit matrix, specifically gallic acid, ethyl gallate and vanillin.

1. Materials:
- Particles: Corn Starch Ethyl Gallate
- Gallic Acid Vanillin

Digestive Solutions:
- KH2PO4 NaH2PO4
- NaCl CaCl2(H2O)4
- HCl
- Deionized water

Enzymes:
- a-amylase Pepsin Pancreatin Amyloglucosidase
- *All materials were purchased from Sigma Aldrich (St Louis, MO).

2. Starch particle formation:
Starch particles were formed in a hot starch paste (20% w/v starch in water) and then the solution was heated (7-7.5°C) to induce gelatinization. The paste was then deposited on aluminum foil using a syringe to form particles ~4-6 mm in diameter. The particles were cooled at 4°C for at least a week to induce retrogradation. Similar particles were made by incorporating the ethyl gallate, gallic acid and vanillin into the solution of starch and water at concentrations of ~0.176 M (3g gallic acid/kg starch particles).

3. Moisture and starch content of particles:
Moisture of starch particles was measured using a Mettler Toledo™ HES3 Halogen Moisture Analyzer (Mettler Toledo Mississauga) and given as % of total particle mass. This allowed the total starch content (and therefore glucose content) in the particles to be determined accordingly: 100% mass-% humidity%= total solid content %total solid content x mass of particles to be digested= mass of solids (mass of phenolic acids added)

Mass of solids/162 g/mol (molar mass of glucose unit of starch= mols of glucose available for digestion

Methodology

4. In-vitro digestion: Using the protocol described by (Minekus et al., 2014), the starch particles were subjected to three phase in vitro digestion process. The protocol includes amylloglucosidase at a concentration of 4 mg/ml. The organization of the samples is described in Figure 1: 7 g of particles were added to each test tube. To the test tubes where the phenolic acids were free in solution, the phenolic acids were added to the salivary digestive solution.

5. Glucose measurements:
To determine the extent to which the starch particles were digested in each tube, a glomometer was used to follow starch digestion throughout the 2-hour intestinal phase. The concentration of glucose within each test tube at the end of the intestinal phase served as the raw data for the final results: mmol glucose in solution/total mmol glucose units present in starch= % starch digested.

6. Statistical Analysis:
The average final glucose concentration, as well as the standard deviation for each phenolic acid type/location were determined. A pairwise comparison of these values was also used to determine if a statistically significant difference was present between the sets of data.

*Allometric values were discarded due to suspicion of experimental error

Results and Discussion

Effect of location of phenolic acids on starch digestion kinetics:
While no statistically significant difference was observed between the rate of starch digestion with the phenolic acids within the particles and outside of the particles, a trend nevertheless appeared suggesting that the starch in the tubes containing the polyphenols in solution digested at a slower rate than the starch in the tubes containing the polyphenols in the particles. This may be due to the phenomena that during gelatinization, polyphenolic acids form hydrogen bonds with starch, which may have an inhibitory effect on starch retrogradation.3 Inhibited retrogradation translates to decreased crystallinity of starch particles and increased accessibility to digestive enzymes.

Effect of phenolic acid structure on starch digestion kinetics:
While no significant difference was found between gallic acid and vanillin on the digestion kinetics of starch, ethyl gallate proved to be significantly less effective at slowing starch digestion when found within the matrix of the starch particles. It is possible that ethyl gallate is less effective at forming hydrogen and conformational bonds with a-amylase, thus blocking the digestive enzymes’ action. This may be due to ethyl gallate’s ester functional group as compared to the carboxylic acid group found on gallic acid. When compared to vanillin, ethyl gallate is a much larger molecule and potentially has a greater inhibitory effect on starch retrogradation, which may explain why it digested at a much faster rate than vanillin, when found in the particles.

Overall effect of phenolic acids on starch digestion as compared to the control:
When compared to the control, the results, with the exception of ethyl gallate within the particles, suggest that phenolic acids do not have a significant impact on starch digestion kinetics when starch is found in the form of a retrograded matrix, as compared to the impact of the retrogradation process itself. Indeed, after the two hour intestinal phase, ~95% of the starch remained undisegregated (in or out of the presence of phenolic acids) and in an in vivo context, likely pass through to the colon and therefore be considered dietary fiber. More research is therefore necessary to determine the starch matrix that best lends itself to manipulation, while not entirely inhibiting digestion.

<table>
<thead>
<tr>
<th>Phenolic acids free in solution</th>
<th>Phenolic acids in particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic Acid</td>
<td>Ethyl Gallate</td>
</tr>
<tr>
<td>5.10±0.28*</td>
<td>5.35±0.71*</td>
</tr>
<tr>
<td>5.40±0.14*</td>
<td>5.35±0.35*</td>
</tr>
</tbody>
</table>

Table 1. Average total final values for glucose release at the end of in vitro digestion, standard deviation

Conclusion
The results of this study suggest phenolic acids have the potential to reduce starch retrogradation, thus increasing starch digestion. When the phenolic acids studied are relatively small, their interactions with the digestive enzymes become less effective and as a result, the impact of these phenolic acid-enzyme interactions becomes negligible in comparison to the effects of the retrogradation of starch on its digestion. Indeed, the particles used in this study were very resistant to digestion and in the future it would be preferable to use particles that were slowly digestible rather than mostly resistant.

These insights contribute to a better understanding of interactions among food components and the influence of these interactions on glycemia, which in turn may lead to dietary solutions enabling athletes to regulate their energy levels, while avoiding spikes in blood sugar throughout a long day of training or competition.

Going forward, more in-depth research is necessary to determine the impacts of various polyphenol functional groups on their interactions with the starch matrix, as well as the digestive enzymes. Studies comparing the effects of smaller phenolic acids to larger tannins on starch digestion would aid in confirming the results obtained in this study.

References

Acknowledgements
This research was supported by the Undergraduate Research Opportunities Program. I would like to thank Nicolas Bordenave, Assistant Professor in the School of Nutrition Sciences for his support and mentoring in the development, elaboration and the carrying out of the protocol, as well as the treatment of results. Thanks as well to Claudine Henoud for her insight and expertise regarding the research protocol.