FUNCTIONAL GENOMIC STUDIES OF VACCINIA VIRUS PROVIDE FUNDAMENTAL INSIGHTS INTO VIRUS-HOST INTERACTIONS

Brian Andrew Keller

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of

Doctorate of Philosophy in Biochemistry

Department of Biochemistry, Microbiology and Immunology
Faculty of Medicine
University of Ottawa

© Brian Andrew Keller, Ottawa, Canada, 2017
Abstract

The oncolytic virus field is in the midst of strong and sustained growth. The clinical utility of this class of therapeutics has been bolstered in recent years by the rise of immune checkpoint inhibition, which has the potential to work synergistically with oncolytic viruses to increase the scope of patients who respond favourably to therapy. This growth has been further driven by clear industry support with several pharmaceutical companies acquiring or developing oncolytic virus products following the 2015 FDA approval of *Talimogene laherparepvec* and the generally-accepted potential of immunotherapeutic approaches to cancer treatment. Vaccinia virus is a double-stranded DNA virus with an extensive history of vaccine use in humans and a desirable safety profile. It is a large virus with a complex lifecycle, and its history of use as a vaccine has resulted in the generation of dozens of unique strains. Although it has been studied extensively, much remains unknown about many vaccinia virus gene function(s) and the virus’ interactions with cellular hosts. Vaccinia virus-based oncolytic viruses have been developed, however clinical outcomes thus far have been unsatisfactory. A more complete understanding of vaccinia virus gene functions must therefore precede the effective design of a next-generation vaccinia virus-based oncolytic candidate. With this downstream goal, we sought to (1) understand the unique oncolytic virus-relevant phenotypic properties of five clinical candidate vaccinia virus strains, and (2) generate and characterize a library of single-gene mutants of the Copenhagen strain of vaccinia virus. These studies resulted in the selection of vaccinia virus-Copenhagen as the wild-type strain of choice that will be utilized for future oncolytic virus development. Furthermore, the generation and initial characterization of an 89-member clonal library of vaccinia-Copenhagen single-gene mutants will be an important tool as we seek to generate a next-generation oncolytic virus candidate. Completed characterization studies challenge the role that viral thymidine kinase should...
play in oncolytic virus design, demonstrate novel functions of the vaccinia virus gene $A47L$, and provide an understanding of the role of the vaccinia virus gene $F15L$. These studies also raise the concept of the personalized selection of oncolytic virotherapeutics. This virus library has the potential to increase the fundamental understanding of vaccinia virus biology in this field as well as in the study of vaccine development and pathogen-host interactions.
Acknowledgements

Many people have contributed to this project and to my growth over the past several years. First and foremost, I would like to thank my supervisor and mentor, Dr. John Bell, whose contributions go far beyond scientific – I have received countless wonderful opportunities, my scope has been infinitely broadened, and the lessons that I take away from my PhD will impact my career in ways that I certainly cannot yet appreciate. Thank you also to Dr. Harry Atkins, whose mentorship and scientific guidance truly helped to shape this project and who helped show me what it means to be a clinician-scientist. I would also like to express my sincere thanks to Dr. Carolina Ilkow who has impacted this work in countless ways, who has been an excellent scientific role model, and whose friendship continues to ease the challenges associated with what we do.

Thank you to the members of my thesis advisory committee – Drs. Jonathan Angel, Jennifer Beecker, and Jean-Simon Diallo, whose diverse backgrounds and areas of expertise helped to push me, but also to build the quality and scope of this project. Thank you to Dr. Guy Ungerechts, who took an interest in my progress and this project, and whose mentorship continues to be valued.

I would like to thank all the current members of the laboratory and several alumni, the majority of whom cannot be named, for their many contributions to this work. Notably, Dr. Jiahu Wang, who conceptualized transposon-mediated insertional mutagenesis of vaccinia virus and who generated the first library; and Adrian Pelin, whose bioinformatics work was critical to the ongoing success of this project and whose input into this thesis can be directly seen in many figures. Thank you to Dr. Fabrice Le Boeuf for much insight into and help with vaccinia virus-related lab techniques, as well as for editing this thesis. Likewise, thank you to Marisa Market for taking the time to carefully read and edit this thesis. Thank you to Russell Barkley, whose technical
contributions to this project are countless, and whose scientific curiosity and pursuit of a full understanding drove me to be a better teacher.

I would like to sincerely thank Catia Cemeus for her major contributions to this project and for her patience, technical support, and skill. Thank you to Julia Petryk for help with all animal experiments. I would also like to thank Drs. Jim Dimitroulakos and Carolyn Nessim, respectively, for helping with the logistical challenges associated with, and actually obtaining, surgical specimens. Thank you also to the many patients who unknowingly impacted this work for their willingness to help as we all work together to better treat cancer.

Most importantly, I would like to thank my family for their constant and continued support of all that I do; and especially Maria, who has lived and breathed all aspects of this project along with me, who unconditionally supports my interests, and who always helps me to realize where my priorities lie.
Table of Contents

Abstract .. ii
Acknowledgements .. iv
Table of Contents .. vi
List of Abbreviations .. ix
List of Figures ... xii
List of Tables .. xiii
1. Introduction ... 1
Preface .. 1

1.1. Human cancer ... 1
1.1.1. Epidemiology and pathophysiology ... 1
1.1.2. Therapeutic challenges ... 4

1.2. Replicating oncolytic viruses .. 5
1.2.1. Physiologic anti-viral response and inherent viral targeting of transformed cells 6
1.2.2. Mechanisms of action of oncolytic virotherapy .. 11
1.2.2.1. Vascular collapse .. 11
1.2.2.2. Direct cellular lysis of transformed cells .. 14
1.2.2.3. Induction of anti-tumour adaptive immunity ... 15
1.2.3. High-throughput screening approaches .. 17
1.2.4. Desirable phenotypic properties of an oncolytic virus .. 18

1.3. Vaccinia virus .. 19
1.3.1. Historical considerations ... 19
1.3.2. Structural and genetic considerations .. 21
1.3.3. Vaccinia virus lifecycle .. 23
1.3.3.1. Attachment and entry .. 23
1.3.3.2. Uncoating and message transcription ... 27
1.3.3.3. DNA replication .. 28
1.3.3.4. Virion assembly .. 30
1.3.3.5. Wrapping and trafficking ... 32
1.3.4. Vaccinia virus cytoskeletal subversion .. 33
1.3.4.1. Microtubule-based transport .. 33
1.3.4.2. Cortical actin penetration .. 35
1.3.4.3. Release of enveloped virions ... 36
1.3.5. Oncolytic vaccinia virus .. 37
1.4. Transposon-mediated mutagenesis .. 43
1.5. Rationale, objectives, and hypothesis ... 44
2. Materials and Methods ... 46
3. Results .. 59
3.1. Understanding unique phenotypic properties of wild-type vaccinia virus ... 59
 3.1.1. In vitro replication kinetics .. 59
 3.1.2. Replication kinetics in patient-derived models .. 62
 3.1.3. In vivo replication .. 71
 3.1.4. In vitro cytotoxicity and spread ... 74
3.2. Transposon-based insertional mutagenesis of vaccinia virus-Copenhagen ... 80
 3.2.1. Design of transposable element and construction of clonal library 80
 3.2.2. Functional effects of transposon-based insertional mutagenesis 83
 3.2.3. Understanding the effects of insertional mutagenesis on viral replication 91
 3.2.4. Effects of insertional mutagenesis on cytotoxicity and viral spread 100
3.3. Investigating the role of vaccinia virus genes F15L and A47L 105
 3.3.1. Effects of pathogen-host interactions on viral cytotoxicity and spread 105
 3.3.2. Protein-level conservation of Vaccinia virus F15 and A47 116
 3.3.3. Understanding the in vivo virulence of vaccinia virus F15 124
4. Discussion and Conclusions ... 128
 4.1. Necessity for oncolytic virus backbone bioselection 128
 4.2. Generating a vaccinia virus-Copenhagen mutant library 136
 4.3. Functional implications of transposonable element insertion 140
 4.4. Exploiting transgene expression for the study of virus replication 143
 4.5. High-throughput study of differential virus replication 145
 4.6. Effects of single gene mutations on vaccinia virus plaque size 148
 4.7. Virus-induced cytoskeletal dynamics: implications for OV therapeutics 151
 4.7.1. Vaccinia virus F11L .. 152
 4.7.2. Vaccinia virus F15L .. 153
 4.7.3. Vaccinia virus A47L .. 154
 4.8. The redundancy of vaccinia virus genes complicates their functional definition ... 155
General Concluding Remarks ... 158
References ... 161
Contributions of Collaborators ... 180
Appendices ... 181
Curriculum Vitae ... 203
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>CAF</td>
<td>Cancer-associated fibroblast</td>
</tr>
<tr>
<td>CEV</td>
<td>Cell-associated enveloped virion</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T-lymphocyte</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Cytotoxic T-lymphocyte-associated protein 4</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’6’-diamidine-2’-phenylindole dihydrochloride</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ds</td>
<td>Double stranded</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>EEV</td>
<td>Extracellular enveloped virion</td>
</tr>
<tr>
<td>EFC</td>
<td>Entry fusion complex</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EV</td>
<td>Enveloped virion</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>FFPE</td>
<td>Formalin-fixed, paraffin-embedded</td>
</tr>
<tr>
<td>FGF2</td>
<td>Fibroblast growth factor 2</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>H3K9</td>
<td>Histone 3, lysine 9</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HJ</td>
<td>Holliday junction</td>
</tr>
<tr>
<td>HSV-1</td>
<td>Herpes simplex virus, type 1</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICOS</td>
<td>Inducible T-cell co-stimulator</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IFNAR</td>
<td>IFN-α/β receptor complex</td>
</tr>
<tr>
<td>ISG</td>
<td>IFN-stimulated gene</td>
</tr>
<tr>
<td>ITR</td>
<td>Inverted terminal repeats</td>
</tr>
<tr>
<td>IV</td>
<td>Immature virion</td>
</tr>
<tr>
<td>MDA5</td>
<td>Melanoma differentiation-associated gene 5</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MUSCLE</td>
<td>Multiple sequence comparison by log-expectation</td>
</tr>
<tr>
<td>MV</td>
<td>Mature virion</td>
</tr>
<tr>
<td>MVA</td>
<td>Modified Vaccinia Ankara</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease virus</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>nr</td>
<td>Non-redundant database</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>OV</td>
<td>Oncolytic virus</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>Pexa-Vec</td>
<td>Pexastimogene devacirepvec</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PD-1</td>
<td>Programmed cell death protein 1</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Programmed death ligand 1</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque forming units</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RAP94</td>
<td>RNA polymerase-associated protein of 94 kDa</td>
</tr>
<tr>
<td>RhoA</td>
<td>Ras homolog gene family, member A</td>
</tr>
<tr>
<td>RIG-I</td>
<td>Retinoic acid induced gene I</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNA-seq</td>
<td>High-throughput deep RNA sequencing</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>ss</td>
<td>Single stranded</td>
</tr>
<tr>
<td>TAA</td>
<td>Tumour-associated antigen</td>
</tr>
<tr>
<td>TE</td>
<td>Transposable element</td>
</tr>
<tr>
<td>Tp</td>
<td>Transposon</td>
</tr>
<tr>
<td>T-Vec</td>
<td>Talimogene laherparepvec</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>VACV</td>
<td>Vaccinia virus</td>
</tr>
<tr>
<td>VETF</td>
<td>Vaccinia early transcription factor</td>
</tr>
<tr>
<td>VGF</td>
<td>Vaccinia growth factor</td>
</tr>
<tr>
<td>VLTF</td>
<td>Vaccinia late transcription factor</td>
</tr>
<tr>
<td>VSV</td>
<td>Vesicular stomatitis virus</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1. The oncolytic virus paradigm .. 7
Figure 1.2. The multiple mechanisms of action of oncolytic virotherapy .. 12
Figure 1.3. Vaccinia virus lifecycle ... 24
Figure 2.1. Fluorescence-based high-throughput vaccinia virus replication assay 56
Figure 3.1. Replication kinetics of distinct wild-type vaccinia virus strains ... 60
Figure 3.2. 48-hour viral replication of vaccinia virus strains in human cancer cells 63
Figure 3.3. Vaccinia virus replication in a metastatic cutaneous melanoma model 67
Figure 3.4. Vaccinia virus replication in inguinal lymph node metastasis melanoma model 69
Figure 3.5. The replication of distinct strains of vaccinia virus in an in vivo melanoma model 72
Figure 3.6. Viral-induced plaque size formation in HeLa cells .. 75
Figure 3.7. Strain-specific extracellular enveloped virus production .. 77
Figure 3.8. Transposable element insertional mutagenesis of vaccinia virus-Copenhagen 81
Figure 3.9. Circularized schematic of insertion loci within vaccinia-Copenhagen 84
Figure 3.10. Preferential insertional mutagenesis occurs at genome extremities 86
Figure 3.11. Transposable element integration at the level of messenger RNA 88
Figure 3.12. Protein-level mutagenesis observed in select insertion mutants 92
Figure 3.13. The direct relationship between infectious virus input and fluorescence intensity 94
Figure 3.14. Differential replication of virus clones in a patient-derived melanoma cell line 98
Figure 3.15. Differential viral replication on a panel of 39 cancer cell lines 101
Figure 3.16. Mean plaque size of virus clones in HeLa cells ... 103
Figure 3.17. Mean plaque size of virus clones in a melanoma model ... 106
Figure 3.18. 48 hour plaque size of select clones in four different cancer models 110
Figure 3.19. Formed plaques at 72 hours post-infection in a large panel of cancer cell lines 112
Figure 3.20. Extracellular enveloped virus and comet production of select virus clones 117
Figure 3.21. Phylogenetic and conservation analysis of vaccinia virus-Copenhagen A47 120
Figure 3.22. Phylogenetic and conservation analysis of vaccinia virus-Copenhagen F15 122
Figure 3.23. Vaccinia virus F15 is a survival factor .. 125
List of Tables

Table 1.1. Ongoing vaccinia virus-based oncolytic virus clinical studies................................. 38
Table 3.1. Clinical characteristics of tumour-derived melanoma cultures 65
Table 3.2. Plaque size comparison between wild-type Copenhagen and the F11L mutant....... 114
1. Introduction

Preface

In recent years, oncolytic viruses (OVs) have been recognized as potential clinical agents due largely to the United States Food and Drug Administration’s approval of Imlygic™. Coupled with the potential to provide synergistic anti-tumour effects with existing cancer therapeutics, the clinical interest in effective OV platforms has gained momentum. One virus platform that has been a subject of such interest is vaccinia virus (VACV). VACV is a large and genetically complex virus; as such, many unanswered questions remain about the fundamental biology of VACV. Therefore, the focus of this research project was to investigate unknown properties of VACV in the context of use as a potential OV platform. The sections that follow will describe unique biological properties of select VACV strains and investigations directed at individual gene functions of the Copenhagen strain of VACV. This research project describes the development of a novel system that can be used to study VACV biology and provides examples of how individual VACV gene products can have profound effects on viral phenotype depending on host interactions.

1.1. Human cancer

1.1.1. Epidemiology and pathophysiology

Almost half of all Canadians are expected to develop cancer at some point in their lives and approximately 25% are expected to die of their disease. Currently, cancer-related deaths represent approximately 30% of deaths in Canada, making it proportionally responsible for more fatalities than any other single cause\(^1\). One cancer type that has a greater focus throughout this research project is melanoma. The pathophysiology of melanoma is interesting in that it generally allows good clinical outcomes in cases of early-stage pre-metastatic disease. However metastatic melanoma is aggressive and often proves to be treatment-refractory – stage IV disease currently
carries five- and ten-year survival rates of approximately 15% and 10%, respectively1. Fortunately, cancer rates in general have been steadily declining over the past several years1. This can be attributed to therapeutic advances (most notably immune checkpoint inhibition) in several cancer types, with melanoma leading the way2. Advances such as these become more common as we gain insights into the pathogenesis of disease, which is occurring in the field of cancer biology at an exceptional rate.

As our understanding of cancer biology increases, so too does our appreciation for its remarkable complexity. In order to provide a framework within which to conceptualize the many forms of cancer, Drs. Hanahan and Weinberg summarized fundamental commonalities observed across most variants of the disease, which were published in a landmark paper and came to be known as the \textit{Hallmarks of Cancer}3. Simply depicted, these hallmarks are: (1) the ability to infinitely replicate, (2) an insensitivity or lack of tumour suppression, (3) the ability to evade apoptosis, (4) the ability to stimulate growth through growth signal autonomy, (5) the ability to generate and sustain angiogenesis, and (6) the ability to invade distant tissues and metastasize. More recently, additions have been made to these hallmarks to reflect a contemporary view of cancer – such additions include a tumour cell’s ability to evade immune detection and destruction, and a cancer cell’s ability to dysregulate cellular energetics and metabolism4. Underlying these fundamentals, however, are two enabling characteristics – genomic instability and mutation4.

The hypothesis that genetic mutations could be associated with cancers first came about as a result of the epidemiologic observation that common cancers increase with age5. In the early 20th century, Boveri hypothesized many genomic concepts that became the cornerstone of cancer research over the following decades and have contributed to what are now recognized as the hallmarks discussed above6. Amongst other features, Boveri predicted the presence of cell cycle
checkpoints, tumour-suppressor genes, oncogenes, the clonal origin of cancer, and the sequential changes that must occur to allow tumour progression from benign to malignant. Later researchers used similar observations to hypothesize that cancer is indeed an accumulation of multiple genetic mutations, eventually culminating in the “multi-hit hypothesis” of cancer\(^7\), which was generated following a statistical analysis of Retinoblastoma, a disease with detectable sporadic and hereditary variants\(^8\). Today, many of Boveri’s early hypotheses have been confirmed and it is known that inherited mutations and/or somatic alterations to relevant genes indeed contribute to oncogenesis. Overall, as the molecular observations that form our biologic understanding of cancer grow, so too does our ability to more effectively design novel anti-cancer therapeutics.

One of the inherent biological properties of most cancers is that they have adapted masterful immune evasion mechanisms through a process of immunoselection, which directly contribute to their ability to indefinitely replicate. Solid tumours are known for their ability to evade immune detection due to the downregulation or loss of HLA class I expression\(^9,10\). Proteins involved in the processing and presentation of antigens by HLA class I molecules have also been shown to be downregulated. Additionally, numerous inhibitory cytokines (ex. VEGF, IL-6, IL-10, TGF-β) can be produced by tumours that act to limit dendritic cell activation, which necessitate a decreased response by T cells\(^9,11\). Despite these measures, mechanisms are in place within the tumour microenvironment to suppress the development of even minimal anti-tumour immunity. Regulatory T cells and myeloid-derived suppressor cells are amongst a group of tumour infiltrating leukocytes that is aberrantly commonplace within many tumours, functioning to slow the immune response by secreting inhibitory cytokines, and by promoting the expression of inhibitory receptors such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death ligand 1 (PD-L1)\(^11\).
1.1.2. *Therapeutic challenges*

Researchers have made tremendous progress towards the development of novel anti-cancer therapeutics, especially in recent years as our understanding of cancer biology and the potential to translate basic discoveries into clinical treatments each increase. In efforts that are often designed to address the hallmarks of cancer, novel classes of therapeutics have been created to circumvent associated therapeutic challenges.

Like with most solid cancers, traditional treatment modalities for advanced melanoma have commonly included surgery, chemotherapy, and radiation therapy. Although the quality of these treatment modalities has advanced, their lack of specificity is associated with toxicities and the majority of advanced patients do not see significant therapeutic benefit. To counter these issues, the development of biologic anti-cancer therapeutics has occurred for many indications. One example of these include the blockade of BRAF in *mtBRAF* melanoma, activating mutations of which account for approximately 50% of cases and implicate aberrant MAP kinase/ERK-signaling in disease pathogenesis. Another indication for which biologic therapies have been developed is ovarian cancer. Ovarian cancers are commonly linked to aberrancies in VEGF and BRCA expression, characteristics which are shared across other indications including breast cancer, and which have been the target of efficacious biologic therapies. These and many other biologic approaches have improved therapeutic outcomes of select patients and have importantly helped to illustrate the utility of selectively targeting activated pathways despite differences in disease site.

A more recent trend in the development of biologic therapies has been to focus on reducing immune tolerance of a tumour. Under normal physiologic conditions, immune checkpoints serve critical functions in preventing self-tolerance and protecting tissue from damage in the context of an appropriate immune response. As briefly mentioned above, however, some immune
checkpoints – such as CTLA-4 and programmed cell death protein 1 (PD-1) – can be aberrantly regulated in many cancers, which contribute to its ability to evade immune detection. Immune checkpoint inhibition, a novel class of immunotherapy that acts to “release the breaks” on the immune system, has already revolutionized the treatment of melanoma, and is being widely investigated for utility in other indications. Evidence has demonstrated that antibodies against the immune checkpoint molecules CTLA-4 and PD-L1 increase survival and durable tumour regression in previously untreated and advanced melanoma, in addition to evidence that efficacy is improved when these therapies are used concurrently2,17. While these findings are striking, quantitative analysis of the reported data reveals that there remains a great deal of room for improvement – the objective response rate exceeded 50% (specifically, 53%) in only one of the study cohorts17. Currently, the most promising strategy for improvement is to utilize a combinatorial therapeutic approach to initiate or augment a previously existing anti-tumour immunity.

1.2. Replicating oncolytic viruses

Virologists and clinicians in the early 20th century first began appreciating a link between viruses and cancer because of individual case reports of cancer regressions following natural viral infections18. It was not until the middle of the century, however, that directed efforts were made to use viral-based therapies to treat cancer19-21. In recent years, OVs have been translated into viable anti-cancer therapeutics and clinical use has been increasing. In October 2015, Amgen’s \textit{Talimogene Laherparepvec} (T-Vec), a herpes simplex virus (HSV)-1-based OV, gained provisional approval for clinical use in the United States, followed shortly thereafter by Europe.
1.2.1. Physiologic anti-viral response and inherent viral targeting of transformed cells

As the OV field matured in the final years of the 20th century and as cell biologists and clinicians began to appreciate the hallmarks of cancer, it became apparent that parallel mechanisms govern the processes of malignant transformation and viral infection. It has since been established that many aberrantly-regulated signaling pathways commonly associated with malignant transformation actually confer viral sensitivity to transformed cells and generally converge on the innate immune response, and specifically on interferon (IFN) production. Summarized in Figure 1.1, these altered pathways result in transformed cells that are able to infinitely replicate, evade apoptosis, evade immune detection, and stimulate angiogenesis, all properties which can leave these cells exquisitely sensitive to viral infection.

Under physiologic conditions, pattern recognition receptors (PRRs) first sense the presence of a virus when it encounters a cell. There are many types of PRRs, including the cell surface and endosomal toll-like receptor (TLR) family, various members of which can sense foreign ssRNA, dsRNA, and unmethylated DNA. The RIG-I (retinoic acid induced gene)-like receptors melanoma differentiation-associated gene 5 (MDA5) and RIG-I have evolved to sense dsRNA and phosphorylated ssRNA, respectively, while other intracellular molecules can recognize the presence of foreign cytosolic dsDNA, including AIM2 and RNA polymerase III. Interestingly, RNA polymerase III works to transcribe preferentially AT-rich DNA of invading pathogens into RNA, which can then be recognized by RIG-I. Most relevant to this research project, pathogen-associated molecular patterns (PAMPs) from DNA viruses such as VACV are recognized by a diverse and growing array of PRRs, however most notable are TLRs.

Once PRRs recognize pathogenic invasion, several distinct signaling cascades can be initiated that lead to the release of inflammatory or stimulatory cytokines, the release of Type I
Figure 1.1. The oncolytic virus paradigm. When a normal cell encounters an invading pathogen such as vaccinia virus, cell-associated Pattern Recognition Receptors recognize pathogen-associated molecular patterns, initiating a complex anti-viral cascade designed to limit virus replication and spread. Central to this response is the production and release of interferon, which has both autocrine and paracrine effects, such as preventing cellular growth, inducing apoptosis, preventing angiogenesis, and the downstream activation of adaptive immunity. In a transformed cell, however, this anti-viral signaling is diminished, leaving such cells inherently sensitized to pathogenic invasion.
Healthy cells have an intact interferon response, therefore virus replication is prevented.

Cancer cells have impaired interferon production, therefore virus replication is able to proceed.

Interferon production:
- Locally prevents further infection
- Prevents unrestricted cell growth
- Induces apoptosis
- Prevents angiogenesis
- Activates adaptive immunity

IFN, and various forms of cellular death. The best studied of these cascades results in the cellular release of Type I IFN through a mechanism in which STING, TBK1, and IRF-3 mediate activation24. As summarized in Figure 1.1, the release of IFN has profound autocrine and paracrine effects on the local cellular environment that are intended to prevent the spread of infection and activate adaptive immunity. These include induction of apoptosis, the prevention of unrestricted cell growth, and the down-regulation of vascular endothelial growth factor (VEGF) – all properties which the efficient cancer cell seeks to evade22,30. In the physiologic milieu, the ubiquitously expressed cell surface interferon-α/β receptor (IFNAR) complex, which is composed of two individual subunits, is typically activated in a paracrine fashion by IFN, which activates several signaling cascades and culminates in the activation of over 300 IFN-stimulated genes (ISGs)31. Interestingly, the majority of such ISGs do not have direct anti-viral activity, and instead encode PRRs or transcription factors, which can recognize invading virus and begin appropriate signaling to increase IFN production; this leads to significant amplification of anti-viral signaling31. There are, however, several protein products of ISGs with direct anti-viral activity. Such products include effectors of cytoskeletal remodeling, apoptosis, and post-transcriptional events31.

The processes of cellular transformation and tumourigenesis are complex and they are not yet fully understood at a mechanistic level. Commonly-misregulated pathways in transformed cells, however, are involved in allowing the cancer cell to gain an evolutionary advantage, which necessitates a concession at the level of adaptive immunity, as summarized by Pikor et al32. One broad example of such misregulation is the incompatibility of physiologic anti-viral signaling with tumour development, which has been touched upon and is summarized in Figure 1.1. Specifically, IFN has been demonstrated to be protective against tumour formation and its dysfunction has been shown to increase susceptibility to cancer33. Key IFN signaling molecules, including various Type
I IFNs, RIG-I, STAT1, and JAK2 can be genetically or epigenetically modified in transformed cells. Another commonly-misregulated pathway in many cancers, including melanoma, is the RAS-MAPK pathway. Downstream effectors have been shown to themselves be misregulated in cancers, however constitutively-upregulated wild-type or directly mutated epidermal growth factor (EGFR) have also been observed. Consequently, the EGFR pathway has been a common therapeutic target in recent years. Misregulation of the EGFR pathway has also been directly linked to sensitivity to viral infection, which can be rationalized by its critical role in innate immunity. Another interesting characteristic of cancer that has emerged in recent years and has profound impacts on every aspect of a cancer is the tumour microenvironment.

The tumour microenvironment is now a focus of intense study and it has emerged that many structural and molecular aspects of it impact innate immunity. Many solid tumours are known to overexpress VEGF, which has been shown to induce and sustain neovascularization – critical for tumour growth and metastasis. Much of the previous work in the OV field has focused on this neovascularization, its relationship to efficient OV delivery, as well as the mechanisms of cell death observed in the tumour microenvironment. Interestingly, vesicular stomatitis virus (VSV) and VACV have been shown to be preferentially delivered to transformed cells upon systemic delivery, however they have also been shown to induce the recruitment of neutrophils to non-transformed cells in the tumour microenvironment. It is now clear that the presence of VEGF in the tumour microenvironment sensitizes tumour endothelial cells to viral infection through a mechanism in which the transcription repressor PRD1-BF1 down-regulates the innate anti-viral response, highlighting a molecular divergence from their ‘normal’ counterparts. Another aspect of the tumour microenvironment that has recently been shown to impact innate immunity is the presence of cancer-associated fibroblasts (CAFs). Much like how endothelial cells
created by tumour neovascularization are different from their physiologic counterparts, CAFs have diverged at the molecular level from normal fibroblasts due to a transforming growth factor-β (TGF-β)-induced reprogramming60. CAFs, in turn, produce increased levels of fibroblast growth factor 2 (FGF2), which reduces RIG-I expression in tumour cells, therefore antagonizing the anti-viral programming within the cell and sensitizing it to viral infection60. As more is discovered about the tumour microenvironment, undoubtedly more will be learned about the ability of a cancer to usurp the pathways involved in physiologic innate immunity, as these two states are incompatible. What has been established, however, are that these changes sensitize transformed and associated cells to viral infection.

1.2.2. Mechanisms of action of oncolytic virotherapy

As evidenced by the multiple cellular and structural changes that occur in the process of transformation and tumourigenesis, it is not just cancer cells themselves that are vulnerable to OV infection. Most cells in the cancer milieu likely play a role, direct or supporting, in conferring a selective growth advantage to transformed cells that results in the clinical presentation of cancer. The incompatibility of intact anti-viral signaling and tumourigenesis results in a pan-tumour vulnerability to viral infection and allows the categorization of unique mechanisms of action of OV. At this point, the OV field recognizes three unique mechanisms of action59-61, short summaries of which will form the basis of this section and are depicted in Figure 1.2.

1.2.2.1. Vascular collapse

A literature has been building over the past decade describing the improved efficacy of OV in the context of concurrent therapy to block neovascularization or its associated pathways. Namely, the intratumoural administration of the oncolytic VACV JX-594 (now Pexa-Vec) into three patients with hepatitis B virus-associated hepatocellular carcinoma (HCC) resulted in the
Figure 1.2. The multiple mechanisms of action of oncolytic virotherapy. Oncolytic viruses take advantage of the unique environmental milieu associated with cancer, resulting in a multi-pronged attack with unique mechanisms of action. Namely, oncolytic viruses are able to directly infect endothelial cells associated with VEGF-induced neovascularization that occurs in many solid tumours, directly infect and lyse transformed cells, and promote the induction of anti-tumour innate and adaptive immunity. These unique mechanisms of action provide different therapeutic targets for new oncolytic viral therapeutics.
release of cytokines with known anti-vascular activity and was associated with the shutdown of tumour vasculature. Later studies made efforts to understand the mechanisms behind such therapeutic effects, which resulted in observing the sensitization of both normal respiratory epithelial cells and tumour cells to VACV internalization, replication, and cytotoxicity in an AKT-dependent fashion. These authors also described an increased VACV infection of a xenograft model of human pancreatic cancer. As described above, a recent study has tied the intratumoural over-expression of VEGF to a PRD1-BF1-based mechanism in which the cellular anti-viral response is decreased. Many further studies have made efforts to increase OV efficacy with concomitant anti-VEGF therapy. Unsurprisingly, several groups have therefore encoded anti-VEGF antibodies into their OV platforms of choice, most notably using VACV.

Another approach that has been used is the co-administration of OV with the anti-VEGF antibody bevacizumab, which is clinically approved as an anti-neovascularization monotherapy and is itself used in certain cancer indications. These experimental treatments have been used with varying successes and are at different stages of translation, however interest remains and the field will likely see this continue with future studies that can shed light into the mechanism of the apparent efficacy.

1.2.2.2. Direct cellular lysis of transformed cells

As has been established thus far, cancer cells are inherently sensitized to direct OV infection due to the anti-viral signaling compromises they make to gain an evolutionary growth advantage over their normal counterparts. Different OV platforms have viral lifecycles that are unique to them. Most central to this research project is VACV, whose viral lifecycle is such that infectious particles enter the cell, replicate exclusively in the cytoplasm and form infectious progeny, the majority of which are released upon cell lysis. After undergoing multiple viral
lifecycles before causing cell death that can result in the logarithmic expansion of infectious particles, nearby transformed cells that have themselves been sensitized to viral infection are vulnerable. From the perspective of an OV, VACV has several advantages, which will be expanded on in a later section.

For over a decade at the onset of OV development, the primary focus of the field was indeed to increase replication and direct cancer cytolysis by any of several means, both biologically and chemically. As such, many studies have demonstrated the OV enhancement in many resistant cancer models. One interesting approach was the combination treatment of OVs with histone deacetylase inhibitors, which demonstrated some success in VACV, amongst other virus platforms73. More recently, diverse libraries of chemicals known as viral sensitizers have been screened for the ability to augment OV therapy. This is also an approach that has proven successful across diverse virus platforms and with diverse chemical libraries74,75. Such approaches continue to be studied as the important therapeutic utility of augmenting viral replication is clear.

1.2.2.3. Induction of anti-tumour adaptive immunity

In 2013, Science magazine named cancer immunotherapy the Breakthrough of the Year, and the clinical approach to cancer therapy has since changed dramatically22,76. Clinicians have added immune checkpoint inhibitors to their armamentarium, a move which has improved clinical outcomes in certain indications2, and there is great interest in the further development of cell-based therapies. With the rise of immune checkpoint inhibition, there was a longstanding hypothesis that OVs had the potential to synergize with such therapies by breaking immune tolerance to cancer and releasing tumour-associated antigens (TAAs). Indeed, experimental evidence showing efficacy supported this, however the mechanism was not understood. Recently, Woller et al. demonstrated that the T cell response to several neoepitopes in an anti-PD-1-resistant CMT64 lung
adenocarcinoma model was increased following treatment with an oncolytic adenovirus, a phenomenon that was not observed with alternative inflammatory agents. They also demonstrated that this increased T cell response could be cytotoxic, that the range of neoepitopes against which an increased T cell response occurred was increased with concomitant anti-PD-1 blockade in their immunocompetent model, and that this dual therapeutic approach resulted in increased efficacy compared to controls. Although this was the first literature to establish a mechanism for the induction of adaptive immunity, the fact that the hypothesis existed earlier prompted several groups to begin investigating whether combined treatment of OV therapeutics with immune checkpoint inhibition would be effective. One way to do this is to encode immune checkpoint antibodies into the viral backbone itself, which was hypothesized to reduce the systemic toxicities that have been known to occur with immune checkpoint inhibitor monotherapy. This has been done using the adenovirus backbone encoding anti-CTLA-4 as well as with measles virus encoding either anti-CTLA-4 or anti-PD-L1, with varying levels of efficacy. A more common approach, however, is to use separate therapeutic regimens to first deliver an OV of choice with the goal of breaking tumour immune tolerance followed by administration of systemic immune checkpoint blockade. This approach was first utilized effectively with a Newcastle disease virus (NDV) platform in combination with systemic administration of CTLA-4 blockade in a B16 melanoma model, which allowed the authors to observe a distant therapeutic effect despite only local viral replication following intratumoural delivery. Recently, this approach has been expanded upon by encoding the ligand for inducible T cell co-stimulator (ICOS) into NDV followed by the systemic administration of anti-CTLA-4, which resulted in enhanced intratumoural infiltration of activated T-cells and bilateral anti-tumour efficacy. Other notable examples of combining OV therapy with systemic immune checkpoint blockade include VACV,
VSV, and Reovirus83-87. One exciting recent clinical development has been the publication of results from the first clinical trial of T-Vec in combination with immune checkpoint blockade. The findings were that intratumoural T-Vec administration in combination with systemic anti-CTLA-4 blockade demonstrated a tolerable safety profile and the combination therapy was more effective than either monotherapy88. More trials are currently in the clinic, and this continues to be an area of active investigation for which the field is sure to see the results from future studies.

\textbf{1.2.3. High-throughput screening approaches}

Throughout the past decade of research in the biological sciences, technological advances have allowed genome sequencing to progress to a point that overwhelming accumulation of genetic data is building without full functional validation. Similar rapid advances have occurred in the ability to manipulate genomes more rapidly and efficiently than previously possible, leading to new model systems of cancer. These insights, coupled with the biological therapeutic advances discussed above, have led to an understanding that therapeutics often have the greatest effects in similarly-activated subtypes of cancer. As such, large libraries of potentially novel therapeutics have emerged, sometimes numbering in the millions of compounds, which must be efficiently screened for function. Approaches to handling large numbers of experimental variables have therefore resulted in the development of new experimental methods, equipment, and data analysis techniques that are tailored to individual needs. The careful execution of such experiments can provide insights into complex biologic interactions.

Inherent OV shortcomings and interest in combination therapy (both expanded on below), with the added complexity of viral genetic diversity resulting in incompletely understood pathogen-host interactions, has prompted several groups to use high-throughput approaches in OV development. Two methodological reports have emerged in which transgene-expressing viruses
were able to be quantified based on their relative expression of fluorescence or bioluminescence, respectively, which makes the rapid study of viral replication possible89,90. High-throughput chemical library screens have been performed on various viral platforms, including HSV-191 and a variant of VSV92. These studies led to the identification of replication- or oncolysis-augmenting small molecule compounds, respectively, and a better mechanistic understanding of the two viral platforms. Taking a different approach, several more recent studies have used various RNA silencing approaches to specifically knock-down host genome targets and identify factors that were observed to impact viral parameters in VACV, HSV, and VSV93-95. Regardless of experimental objectives, the approach of high-throughput assays is always similar – primary screens are executed to find hits above a selected statistical threshold, secondary screens validate interesting hits, and finally independent assays are performed to ascertain biological significance; thus far in the field of OVs, such approaches have been rare96.

1.2.4. Desirable phenotypic properties of an oncolytic virus

As the OV field has matured and as distinct mechanisms of action have been recognized, several inherent viral properties of effective OVs have been established. The above discussion makes clear that there are inherent properties that should be possessed by the optimal OV backbone. Namely, the optimal OV will replicate preferentially in cancer cells and cause subsequent oncolysis, it will be able to productively infect and lyse pathologic cells of the tumour microenvironment, and it will break immune tolerance to cancer while limiting anti-viral immunity61,96. Some studies suggest that viruses with increased ability to spread systemically can better evade immune destruction, especially with VACV or viruses which have been made to express certain VACV proteins97,98. Finally, some studies have suggested that OVs with high
intratumoural persistence will be better vectors for the delivery of therapeutic transgenes and/or pro-drugs96.

1.3. **Vaccinia virus**

Vaccinia virus is a large, enveloped, dsDNA virus that replicates entirely within the cytoplasm of vertebrate and invertebrate cells99. It is able to form two distinct types of infectious particles: mature virions (MVs) and enveloped virions (EVs). As will be expanded upon later, MVs are the basic infectious unit of VACV, represent the majority of infectious particles, and are released upon cell lysis following cytoplasmic accumulation; EVs are essentially MVs with an additional fragile membrane wrapping, are specialized for more distant spread within the host, and have the ability to subsequently infect distant cells99. VACV holds important distinction as the vaccine used in the eradication of smallpox, or variola, from the human population. It is the most well-studied member of the orthopoxvirus genus, and is classified as a member of the family Poxviridae. As such, VACV has served as a prototypic model system in the broader field of virology. As the major focus of this research project is on the development and characterization of a tool utilizing previously-developed technology to manipulate the VACV genome, the current section will present a comprehensive review of the VACV literature.

1.3.1. **Historical considerations**

The most famous member of the Poxviridae family, variola virus, is responsible for hundreds of millions of deaths throughout human history. Early attempts at inoculating patients with material from lesions of convalescent smallpox patients had mixed results100. In 1798, work was published by Edward Jenner in which he described the infectious agent that was known to cause lesions on cows and their caretakers as being used to prevent smallpox; this is considered to be the first successful example of intentional vaccination. The exact origins of VACV are
unknown, however it is thought to be derived from evolution in laboratories and appears to have a shared ancestor with cowpox virus and variola virus. Throughout the duration of the smallpox eradication campaign by the World Health Organization (WHO), several vaccine strains emerged, all with unique genomic and phenotypic features99,100. At one time, VACV was believed to have no known natural hosts outside of humans, however several reports of bovine outbreaks in Brazil since the end of the smallpox eradication campaign have proven otherwise101. Reports such as these have generated questions as to the natural reservoir of VACV and raised the possibility that rodents and/or marsupials could serve as such. Interestingly, a recent report from Brazil demonstrated the serological prevalence of VACV in house cats102. As a consequence of the use of VACV in various aspects of public health, much has been learned about its biology.

Vaccinia virus was the first animal virus to be extensively worked with in a laboratory setting – it was the first to be purified, observed microscopically, expanded in tissue culture, to have its infectious particles accurately quantified, and to be chemically analyzed99. In 1961, Reich et al. were the first to resolve cellular RNA synthetic activity from that in purified VACV, postulating that the two processes were enzymatically or topographically distinct from one another103. This study led to a revision of the longstanding view that viruses were mere packets of genetic material, led to later key discoveries in RNA viruses, and to structural findings regarding viral and eukaryotic messenger RNA (mRNA)99. Since this time, VACV has become an important model in understanding the lifecycle of orthopoxviruses, of providing lessons in virus-host interactions as relevant replication, host-range, and immunomodulatory protein functions are uncovered, and it has been developed into a useful tool as an expression vector99. For many reasons, gaining a greater understanding of VACV, especially in terms of novel virus-host interactions, continues to be an area of active research.
1.3.2. *Structural and genetic considerations*

As will be expanded on in the following section, VACV is a large and complex virus whose ability to efficiently infect and replicate is directly tied to many aspects of its structure. Morphologically, therefore, the VACV virion is large compared to other well-studied animal viruses. Many studies utilizing scanning electron microscopy and/or cryo-electron tomography have captured images and modeled both MV and EV – a single MV particle is a barrel shape that is approximately 360 x 270 x 250 nm\(^{99,104}\). Internally, VACV consists of a dumbbell-shaped core with opposing lateral bodies between the core membrane and the dumbbell concavities\(^99\). The MV membrane consists of a single, continuous lipid bilayer that is tightly-associated with the developing virion as it matures\(^{105}\). As is expanded on in a later section, MVs can gain an additional wrapping from the trans-Golgi network or endosomes, which changes the morphology and size of the virion in question.

The genome of VACV virus is approximately 200kb, however the specific size can vary by strain. The genome is a linear, double-stranded DNA genome with inverted terminal repeats (ITRs) at its extremities that are joined together by hairpin loops that link the two strands together into a single uninterrupted polynucleotide chain\(^{106}\). The hairpin loops are highly conserved regions within the ITRs of the genome containing sequences of identical, but oppositely-oriented nucleotides that are critical structural components involved in the resolution of replication intermediate DNA concatemers\(^{107}\). An interesting body of work has established that highly conserved VACV genes tend to have important functions in successful viral replication, and tend to be located in the middle portion of the genome; less conserved genes, conversely, tend to be located towards the extremities of the genome and are often involved in host-range, virulence, or immunomodulation. Furthermore, VACV genes tend to be non-overlapping\(^99\).
The convention for VACV’s system of nomenclature arose before the publication of the first full genome108,109. When the first full genome sequence of the Copenhagen strain of VACV was published in 1990, nomenclature followed the previously-established convention110. This genome sequence was determined by sequencing plasmid-cloned fragments of VACV DNA that had been digested by commonly-used restriction enzymes, however naming convention was established from the results of \textit{Hind}III digestion. In the Copenhagen genome, there are 15 \textit{Hind}III digest sites, resulting in 16 fragments that are named according to decreasing size, with fragment A of approximately 50,000 bp down to fragment P of approximately 300 bp, which does not contain any open reading frames (ORFs). Within each fragment, ORFs were enumerated following previously-established convention, in which each ORF was numbered from left-to-right in sequence111. The one exception to this rule is \textit{Hind}III fragment C, the leftmost fragment that is poorly conserved at its terminus, in which ORFs are enumerated right-to-left in an effort to establish consistency across strains within the literature. Finally, ORFs are labeled as R (for right) or L (for left) according to their direction of transcription. This naming convention is such that VACV gene \textit{A47}L is located in the \textit{Hind}III digest fragment A, it is the 47th ORF within fragment A, and it is transcribed in the leftward direction. This convention has persisted in the literature; however, it is interesting to note that the majority of studies establishing novel VACV gene functions have actually been done using the Western Reserve strain. Western Reserve, therefore, has its own genetic nomenclature that differs from that established for Copenhagen, however all published studies of consequence in the VACV field use the Copenhagen convention, which is also used throughout this research project.
1.3.3. *Vaccinia virus lifecycle*

The lifecycle of VACV is complex. Its distinct components are separated both spatially and temporally, and its output is the highly-amplified production of infectious progeny that can exist in one of three forms. As the focus of this research project is on developing a better basic understanding of VACV biology, a comprehensive overview of the lifecycle is presented in the current section. Furthermore, a schematic of the VACV lifecycle is presented in Figure 1.3.

1.3.3.1. Attachment and entry

Viral entry is defined as the moment at which the nucleoprotein core of the virion passes into the cytoplasm\(^\text{112}\). The understanding of properties that govern this process for VACV has been complicated by the fact that a relatively large number of proteins are involved in the processes, and also by the fact that there are two distinguishable infectious particles: MVs and EVs\(^\text{99,112-114}\). Electron microscopy studies have demonstrated that VACV is unique in its ability to accomplish this feat in one of two ways: either by direct fusion to the outer leaflet of a cell membrane, or by fusion to the inner leaflet of an endosomal membrane following macropinocytosis\(^\text{114}\). The reason for a certain strain using primarily one mechanism over another is unclear, however it appears VACV strains that have adapted for laboratory growth tend to favour direct fusion, whereas those more recently isolated from nature tend to utilize endosomal acidification, perhaps as a mechanism for penetrating the dense cellular cortex of most cells\(^\text{112,115-118}\). Studies using inhibitors of various cellular processes have supported a two-step entry that includes hemi-fusion and fusion/entry. Inhibitors of tyrosine protein kinases, dynamin GTPase, and actin dynamics all impair membrane fusion, while partial cholesterol depletion and inhibitors of endosomal acidification and/or membrane blebbing all impair viral core entry\(^\text{119}\).
Figure 1.3. Vaccinia virus lifecycle. The lifecycle of vaccinia virus occurs entirely within the host cell cytoplasm and utilizes the formation of so called Virus Factories, or virosomes, in which the entirety of intermediate and late gene expression occurs. Prior to this, cellular attachment and entry occur, which precede the rapid expression of early genes and immune defense molecules. Mature infectious progeny is produced in one of two forms: mature virions (also known as intracellular mature virions, IMV), and extracellular virions, the formation of which is preceded by trans-Golgi processing. Following penetration of the cellular cortical actin, extracellular virions can remain attached to external cellular membrane (cell-associated virions, CEV), or can be released via an actin tail-dependent mechanism (extracellular enveloped virions, EEV). IV = immature virion, MV = mature virion, WV = wrapped virion.
Adapted from: Moss, B. in Fields virology Vol. 2 (eds David M. Knipe & Peter M. Howley) 2129-2159 (Wolters Kluwer/Lippincott Williams & Wilkins Health, 2013).
Before beginning the entry process, in the case of EV, the outer membrane must first undergo a non-fusogenic dissolution. This process involves the EV-specific viral glycoproteins A34 and B5, and effectively reveals a MV particle upon completion120. It occurs via differential mechanisms depending on whether it is upon EV-cell membrane apposition, in which case the outer EV membrane is dissolved by exposure of an active region on the proximal stalk of viral B5 to cellular glycosaminoglycans121, or via an unknown pH-dependent mechanism following endosomal internalization114. Once apposition occurs between the MV membrane and the cell or endosomal membrane, lipid mixing of the respective membrane leaflets leads to an intermediate state in a process that has come to be known as hemi-fusion. Attachment occurs via protein-protein interactions between four attachment proteins in the MV membrane. These four attachment proteins include D8, which can bind chondroitin sulfate122,123, A27 and H3, which are known to bind heparan sulfate124,125, and A26, which can bind cell membrane-associated laminin113,126. The entry fusion complex (EFC) is composed of at least 11 additional viral proteins, 10 of which are thought to be essential for viral replication. Although the exact protein configuration of the EFC is unknown, studies have determined various interactions between them as well as whether specific proteins compose the core or are located on the periphery of the EFC, as is the case with F9 and L1112. Whether following direct internalization or macropinocytosis (and non-fusogenic membrane dissolution, in the case of EV), EFC activation is triggered by the acidic environment of the late endosome. This causes dissociation of the viral fusion suppressor protein A26, which in turn triggers fusion and the release of the viral nucleoprotein core into the cytoplasm. Upon successful release of the viral core into the cell cytoplasm, early gene expression begins almost immediately112-114.
1.3.3.2. Uncoating and message transcription

The entire VACV lifecycle has evolved for optimal efficiency in the production of progeny, a characteristic that can be appreciated almost immediately following entry. Upon entry, VACV virions are transported on microtubules to sites of transcription, and mRNA synthesis can be detected within 20 minutes of entry\(^99\). VACV controls the timing of the expression of individual proteins, a critical component of the complex replication cycle, at the level of transcription initiation\(^{127}\). Within the deposited core is packaged the late gene products of a virion’s infectious precursor, which provides the virion with a complete early transcription system. This includes an eight-unit DNA-dependent RNA polymerase that has homology to eukaryotic and archaeal RNA polymerases, RNA polymerase-associated protein of 94 kDa (RAP94), early transcription factor, capping and methylating enzymes, poly(A) polymerase, nucleotide phosphohydrolase I, and topoisomerase\(^{99,127-129}\). Therefore, early mRNA production can begin almost immediately, and it is set up in such a way that early gene products encode enzymes and regulatory factors for intermediate gene products, which do the same for late gene products, which are components of a transcription system and will be packaged into progeny, so the cycle can begin anew\(^99\). In addition to enzymes and factors that influence later gene expression, early mRNAs tend to be translated into host immune defense molecules, growth factors, and DNA replication molecules. Of the approximately 200 ORFs in most VACV strains, high-throughput deep RNA sequencing (RNA-seq) studies have identified the presence of 118 ORFs before the detection of viral DNA, thus their classification as early genes\(^{130}\). Like those of eukaryotes, early VACV gene transcripts are capped to enhance their stability and to promote mRNA-ribosome interactions\(^{131}\). Early gene expression has been shown to be disrupted upon viral uncoating, which occurs following core wall breaches induced by a putative uncoating protein\(^{99,132,133}\). The presence of early steady-state mRNA then
rapidly declines due in part to the enhanced presence of early gene products and decapping enzymes D9 and D1099.

Intermediate and late gene expression share several common characteristics that allow them to be grouped together, but remain clearly distinct from early gene expression. Most notably, a 30-50 residue long “poly(A) tail” is added to their mRNA 3’ ends due to RNA polymerase slippage134,135, their transcripts are extremely heterogenous at their 3’ ends136, and the factors that control both processes appear to be the same viruses-coded factors in each case131. Resolving these two sets of genes from one another was not possible until Yang \textit{et al.} performed RNA-seq on synchronously-infected HeLa S3 cells with a virus lacking the late transcription factor G8137. The results of this study revealed 53 primarily intermediate genes, 38 late genes, and led to completion of the first transcriptional map of VACV99,130,137. Despite the similarities in the regulation of these gene sets, differences exist. Transcription of intermediate genes requires at least five known transcription factors that incorporate eight distinct early gene products, accounting for the formation of heterodimeric transcription factors131. Similarly, late gene transcription is initiated by a group of viral gene products that have come to be known as Vaccinia Late Transcription Factors (VLTF) and the group includes VLTF1, VLTF2, VLTF3, and VLTF4. These proteins are formed by the monomeric products of the intermediate genes \textit{G8R, A1L, A2L}, and the early gene \textit{H5R}, respectively131,138. As is evidenced by this brief overview, the viral factors regulating VACV gene expression are numerous and the list continues to grow as more are described, which should reveal further mechanistic insights into the process.

\textbf{1.3.3.3. DNA replication}

Poxviruses are unique in their ability to conduct DNA replication entirely in the cytoplasm of their host cell. Live cell imaging and microscopy studies have demonstrated that they do so by
setting up compartmentalized areas of replication activity termed *virosomes* or Virus Factories, which can initiate from an individual virion and eventually merge with other factories139,140. The mechanisms underlying VACV DNA replication are not completely understood and it remains an area of active investigation. It is only within the past decade that the field has begun to accept a relatively conventional model of RNA priming and semi-discontinuous DNA synthesis at replication forks99. Until important observations that VACV encodes a DNA primase141 along with several other factors of DNA replication machinery (DNA polymerase E9, the helicase D5)142,143, and that VACV can usurp cellular DNA ligase144, certain structural and associated functional components of the VACV genome pointed to a self-priming model of DNA replication99,106,145. A recent report used directional deep sequencing of short single-stranded DNA fragments isolated from the cytoplasm of VACV-infected cells and prominent initiation points were mapped to a terminal hairpin loop as well as to the concatemeric junction of replication intermediates146; this work points to a DNA replication model in which leading and lagging strand synthesis is used. The current belief in the field is that the two models of DNA replication are not mutually exclusive and that it is possible these viruses use both. Regardless of the process(es) used, however, one step that is clear in VACV DNA replication is the production of DNA concatemers145,147.

Concatemer resolution into unit-length molecules is a necessary step in the successful replication of VACV DNA145,147. Mature VACV genomes exists as a linear double-stranded DNA with covalently closed hairpin termini, and thus the genome is present as a continuous polynucleotide chain. As expected, therefore, replication intermediates exist as transient head-to-head or tail-to-tail concatemers, which must be appropriately resolved. It has been observed that plasmids with palindromic junction fragments that have been transfected into VACV-infected cells are resolved into linear *mini-chromosomes* with VACV DNA hairpins at either end148. In early
studies, it was established that the concatemeric junction can form a structure resembling a Holliday junction (HJ), which suggested the likelihood of a virally-encoded HJ resolvase99. Later bioinformatics studies identified \textit{A22R} as a highly-conserved gene across poxviruses that is homologous to Escherichia coli (E. coli)’s HJ resolvase RuvC149. The HJ resolvase activity of A22 was established, and a subsequent study reported an A22-null mutant as lacking the ability to resolve DNA concatemers into unit-length genomes150. Another important component of the concatemeric resolution is the presence of a virally-encoded DNA topoisomerase, a protein which can help to relieve the supercoils that are a structural characteristic of the VACV concatemeric junction. In VACV, the \textit{H6R} gene was shown to produce a product that could serve this role. Interestingly, an H6-null mutant produced a small plaque phenotype and demonstrated a significant decrease in the production of infectious progeny151. Once concatemeric resolution into unit-length genomes has occurred, subsequent packaging will allow for infectious progeny to be produced.

1.3.3.4. Virion assembly

The process of VACV virion assembly is not completely understood. The main components are clear, however, in that the immature virion (IV) is first structurally distinct as a crescent or circular particle, followed by transformation to a MV with an accompanied change in morphology to an oval or brick-shaped particle, which must occur alongside a release from the viral factory at some point in the process99. The limitation of the study of such particles is that the field has based their understanding almost entirely on EM images, however these have not been inconclusive. As a result, it is unclear whether crescents or IVs are single-membrane bound, double-membrane bound, or whether they associate with certain cellular organelles for their membrane. Other images that seem to show IVs open to the cytoplasm and not associated with
cellular organelles have resulted in the hypothesis that de novo production of IV membrane occurs, however this goes against the current belief that stable membranes must form from pre-existing membranes99. Whatever the exact sequence of events, several viral proteins have been implicated in virion assembly and it remains an area of active investigation99,152,153.

The packaging of unit-length viral genomes and early transcriptional machinery are amongst the most critical components of virion assembly. Following concatemeric resolution, unit-length genomes await assembly in a state referred to as the nucleoid, which must occur in order for viral morphogenesis to continue150. One interesting study demonstrated that the packaging of individual nucleoids into IVs was found to occur independently of transcriptional machinery and several other enzymes in an A32-dependent manner, and that $A32L$ mutants produced IVs lacking genomes and the ability to complete morphogenesis154. The packaging of the transcription machinery is incompletely understood, however certain components and protein-level interactions have been elucidated. One such interaction involves the previously-mentioned RAP94 – it is a critical linker between the multi-subunit RNA polymerase and vaccinia early transcription factor (VETF) – and is needed for the packaging of infectious progeny155. Before being released into the cytoplasm as a MV, a final IV-processing step is necessary – proteolysis. The IV still present in the virosome contains a D13 scaffold and several core precursor proteins that must be cleaved by I7 into their mature forms153. Once cleaved, the particle can begin its IV-MV transition, which includes the condensation of the viral core into its biconcave shape, the formation of lateral bodies, and the presence of mature proteins embedded in the MV membrane. Once the MV is released into the cytoplasm, processing can occur in one of several distinct ways, which will give the infectious particle distinct characteristics.
1.3.3.5. Wrapping and trafficking

Intracellular mature virions are the most abundant type of virus particle produced by VACV, accounting for approximately 90% of infectious progeny in a given productive cell156. In its core are packaged over 80 viral proteins that will be used in early stages of subsequent lifecycles. MV membrane proteins include those that are necessary for cellular entry, however others can be used to facilitate additional membrane wrapping, forming the second type of VACV infectious particle, EV. Enveloped virions are MVs that have been wrapped by additional membranes from the trans-Golgi network or endosomes153,157,158. In order for MVs to get to these wrapping sites, microtubule movement is exploited using an unknown mechanism. Although studies have aimed to answer this question, thus far only proteins involved in trafficking of newly-wrapped EVs to the cell periphery have been identified159,160. One such example is the viral protein A36, which has been shown to bind the microtubule motor protein kinesin to transport to the cell periphery, a process that may be regulated by the VACV protein A33160. EVs are known to incorporate at least nine VACV-derived proteins, some of which – including A27, B5, and F13 – are known to be essential to the formation of EVs. Others, including A36 and F12, are associated exclusively with the outermost membrane and are not retained by the EV but are utilized for EV trafficking161-166. Many of these viral proteins that are known to be closely associated with wrapping itself or the EV membrane, when mutated, are known to produce a small-plaque phenotype99. Many are known to interact with and modulate cytoskeletal-associated proteins at various levels, which can be explained by the EV’s need to subvert the host’s actin and microtubule cytoskeletal systems for efficient egress. A more detailed discussion of VACV subversion of the host’s cytoskeleton will form the section that follows.
1.3.4. Vaccinia virus cytoskeletal subversion

Viruses infecting almost all organisms employ host cytoskeletal subversion as a common strategy to thrive throughout their lifecycles. Since it has been so thoroughly studied compared to many other viruses, VACV is considered to be one of the most striking examples of this. Upon VACV infection in vitro, simple observation of infected cells allows one to see profound changes in their morphology – they round, lose plate and cell-to-cell adhesion, and their motility is increased – all as a direct result of cytoskeletal modulation\(^99\). Currently, VACV’s ability to interact with and modulate the host cytoskeletal framework is one of the most active areas of research in the poxvirus field, and observations that have been published over the past decade have largely formed our understanding of this\(^72\). This section will provide an overview discussion of what is known about virus-host interactions from the perspective of cytoskeletal modulation, and describe how VACV uses this machinery for efficient intracellular transport and egress.

1.3.4.1. Microtubule-based transport

Vaccinia virus, like most viruses, uses microtubule-based transport to move around its hosts. In the case of a large virus like VACV, the ability to hijack a cell’s microtubule transport system is critical to its ability to replicate, as diffusion for a cargo of the size of a VACV virion is not possible\(^72,167\). Microscope-based studies examining the movement of fluorescently labeled virus particles were the first to provide clues that VACV is able to use the microtubule system of its host cell as calculations suggest that VACV MVs and EVs would have a rate of diffusion that is unable to match the observed rates of trafficking within a host cell\(^168\). Specifically, MV particles have been observed traveling at a rate of 3 \(\mu\)m/second, however based on their estimated rate of intracellular transport by diffusion, they would only be able to travel at approximately 2 \(\mu\)m/hour\(^159,168\). Therefore, microtubule-based intracellular transport of VACV MVs occurs at a rate
of approximately 5,400x what would be expected by diffusion. Conversely, several studies have directly imaged EV moving along microtubules towards the cell periphery, and it has been established that this is dependent on kinesin-1 as the microtubule-associated motor that drives this movement72,162,169-175. Importantly, this set of studies established the VACV-encoded proteins F12, F13, A36, and B5 as being directly implicated in intracellular EV movement, and also established microtubule-based transport as preceding actin-based transport in VACV egress.

The VACV-encoded protein A36 has been the subject of intense study because of its ability to directly interact with the light chain of kinesin-1, a protein that is part of the microtubule-associated motor complex160,165,166,171. As has been reviewed by Leite and Way72, deletion of \textit{A36R} results in a virus that is still able to produce EV163, however these EV have diminished ability to move from the site of assembly to the cell periphery173,175,176, and consequently have a diminished ability to successfully engage in cell-to-cell spread. Several more recent studies have established two active domains within A36 that are each responsible for direct binding to the light chain of kinesin-1. Interestingly, it has also been reported that cells infected by a \textit{ΔA36R} VACV overexpressing the most consequential of the A36 binding motifs, WD, allowed for the viral-induced formation of actin tails, which are needed for release and efficient cell-to-cell spread163. Most recently, three more active motifs in the C-terminus of A36 have been described, which provide a mechanistic linkage for the induction of actin tails in EV egress, and is the first report of such a protein being able to interact with endocytic machinery166. In much of the literature that has expanded on the function of VACV A36, F12 has been shown to play a supporting role. Like A36, F12 is a membrane-associated protein that is only found on the outer membrane of intracellular EV, but not on extracellular EV or MV. VACV F12 is able to interact with A36, and a recombinant VACV lacking amino acids 351-458 was demonstrated to have a small plaque phenotype, a defect
in viral release, and an inability to associate with the infected cell membrane, suggesting a critical role during viral egress161. Subsequent imaging studies revealed that F12 functions as part of a complex with the VACV protein E2 that is involved in EV microtubule transport, but not actin nucleation, and that this complex can interact directly with kinesin-1 light chain during microtubule transport162-164. As mentioned, microtubule-associated transport of VACV during viral egress is one of the most active areas of the field. Although it has progressed a great deal in the past decade, the understanding of it compared to actin-based motility is lagging.

1.3.4.2. Cortical actin penetration

Once an EV reaches the cellular periphery and the cellular cortical actin, fusion with the plasma membrane and therefore a change in classification to either cell-associated EV (CEV) or extracellular EV (EEV) cannot occur until the dense cortical actin is penetrated. The cortical actin in eukaryotic cells is known to provide the cell with increased resistance to mechanical stress and also is involved in motility-related cellular processes. From the virus’ perspective, however, this dense cortex represents a significant barrier to both entry and egress. To this end, VACV has adapted a mechanism that has been elegantly described. The VACV-encoded F11 protein was originally identified as a protein that is responsible for VACV-induced cell migration of infected cells177. Valderrama \textit{et al.} were the first to demonstrate that F11 was involved in the migration of infected cells via Ras homolog gene family member A (RhoA) signaling, and another group later reported that F11 was essential for migration, but not contractility of infected cells178. More recently, F11 has been extensively studied in its context as a promoter of VACV EV release – it is able to increase the dynamics of both microtubules and also cortical actin through a mechanism involving mDia-induced actin polymerization179,180. The mechanism by which F11 downregulates RhoA signaling has been further established – in data that describes the inclusion of an
unprecedented (in viruses) PDZ domain within the central region of F11, it inhibits RhoA signaling by functioning as a scaffolding protein by binding Myosin-9A, a Rho GTPase-activating protein181. Interestingly, several of the studies reporting these findings have demonstrated a small plaque phenotype produced by the F11-null virus, which is similar to the F12-, F13-, A36-, and E2-null mutants mentioned above. Finally, F11’s role in viral spread, both \textit{in vitro} and \textit{in vivo}, was further demonstrated when cloned into myxoma virus, a poxvirus that lacks a homologue to VACV’s F11 and thus is unable to produce progeny with the ability to efficiently penetrate cortical actin97,182.

1.3.4.3. Release of enveloped virions

The EV form of VACV can be processed in one of two ways after wrapping, transport to the cellular periphery, and penetration of the actin cortex. Upon reaching the inner cellular membrane, fusion of the EV occurs via an unknown mechanism, at which point its outer membrane is shed and it becomes part of the cell membrane. At this point, the virion is termed a CEV as it remains attached to the outer surface of the cell membrane99. The majority of EV remains attached to the cell surface, however the presence of CEV has also been demonstrated to induce actin polymerization and actin tail formation, a phenomenon which can propel CEV from the cell surface to become EEV72,99,172,174,175. Several proteins have been demonstrated to affect the release of EEV, most notably B5, A33, A34, and A36183. In a large body of literature, the mechanistic role of A36 in actin polymerization and EEV release has been well established – A36 is phosphorylated by Src and Abl family kinases, which induces a well-described signaling cascade involving the Rho GTPases Cdc42 and FHOD1 and culminates in the polymerization of actin, the formation of actin tails, and the release of EEV72. One way to easily distinguish between EEV and other forms of infectious VACV in tissue culture models is to perform satellite release assays (aka \textit{comet}
assays) in which a known concentration of virus is used to infect cells which are covered with a liquid overlay – when infectious progeny are EEV, satellite plaques can be formed that are distant from the original plaque, forming a distinct comet pattern in a cell monolayer. This phenomenon was poorly understood in that it appeared the formation and position of satellite plaques occurred at rates that were incompatible with the replication kinetics of VACV until it was shown that newly-infected cells are able to repel would-be superinfecting virions. Interestingly, this is mediated by the cell surface expression of the VACV proteins A33 and A36, which mark the cells as infected184. Therefore, instead of internalizing superinfecting EEV, infected cells induce polymerization of actin tails and thus active repulsion across the cell surface until an uninfected neighbouring cell is located72,184. The ability of VACV to usurp cellular cytoskeletal machinery has been optimally-adapted for viral propagation, and as such many mechanisms that VACV uses to this end have been uncovered. Regardless, gaining a further understanding of cytoskeletal dynamics in the context of VACV infection remains an active area of investigation and future insights into novel VACV factors and established mechanisms will likely shape current opinions.

1.3.5. Oncolytic vaccinia virus

Multiple VACV platforms have been investigated for their oncolytic potential. Indeed, this field has advanced significantly as numerous clinical trials have been completed or are underway to determine the potential of VACV as an OV. The currently-active clinical studies investigating the utility of VACV-based OVs are outlined in Table 1.1. Thus far, mixed clinical benefits have been observed, however ongoing clinical trials and intense pre-clinical investigations from groups around the world will surely lead to future attempts at translation of the VACV platform into an effective OV. This section will summarize current pre-clinical and clinical knowledge from the perspective of VACV as an OV.
Table 1.1. Ongoing vaccinia virus-based oncolytic virus clinical studies. As of May 2017, there were four vaccinia virus oncolytic platforms being investigated in clinical studies worldwide. GM-CSF = granulocyte macrophage colony-stimulating factor, TK = thymidine kinase, TRIF = TIR-domain-containing adapter-inducing interferon-β, HPGD = 15-hydroxyprostaglandin dehydrogenase, β-gal = beta-galactosidase, β-gluc = beta-glucuronidase, FCU-1 = suicide gene.
<table>
<thead>
<tr>
<th>Company</th>
<th>Trade Name</th>
<th>Backbone</th>
<th>Attenuating Mutations</th>
<th>Transgenes</th>
<th>Targeting Characteristics</th>
<th>Current Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sillajen</td>
<td>PexaVec (formerly JX-594)</td>
<td>Wyeth</td>
<td>TK, B18R</td>
<td>GM-CSF</td>
<td>Highly metabolic</td>
<td>- Three Phase I/II studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- One Phase III study</td>
</tr>
<tr>
<td>Western Oncolytics & Pfizer</td>
<td>WO-12</td>
<td>Western Reserve</td>
<td>Truncated TK, Deleted VGF</td>
<td>TRIF, HPGD</td>
<td>Highly metabolic</td>
<td>- Planning Phase I</td>
</tr>
<tr>
<td>Genelux</td>
<td>GL-ONC1 (GLV-1h68)</td>
<td>Lister</td>
<td>TK, F14.5, A56R</td>
<td>Renilla luciferase, β-gal, β-gluc</td>
<td>Highly metabolic</td>
<td>- Two Phase I studies</td>
</tr>
<tr>
<td>TransGene</td>
<td>TG6002</td>
<td>Copenhagen</td>
<td>TK, Ribonucleotide reductase</td>
<td>FCU-1</td>
<td>Highly metabolic</td>
<td>- Planning Phase I</td>
</tr>
</tbody>
</table>
Many groups have made efforts to design an optimal OV on the VACV backbone. Thus far, this has been attempted with several vaccine strains of VACV, however the Wyeth (Pexa-Vec) and Lister strains of VACV have progressed the furthest clinically22. The rationale for each of the respective groups selecting their parental strain of choice is not clear, however the overarching strategies employed by most groups have been similar and have included efforts to (1) increase the selectivity of their viruses to transformed cells, and (2) increase the potential to establish anti-tumour immunity upon infection. Cancer selectivity has primarily been accomplished by deleting the VACV-encoded thymidine kinase (TK; \textit{J2R}), which results in a virus that is more selective to metabolically-active cells, a common characteristic of transformed cells. Deletion of \textit{TK} was experimentally shown to produce an attenuated virus infection in mice being vaccinated with VACV vectors expressing various foreign antigens185. Of VACV backbones that have advanced clinically as OVs, this strategy has been utilized in the Wyeth, Lister, and Western Reserve products186-188. Each of these OV candidates has also utilized additional strategies to increase selectivity. Pexa-Vec additionally contains a natural \textit{B18R} truncation, which renders the clinical candidate more susceptible to intact anti-viral effects of the healthy cell environment22. In addition to a \textit{TK} deletion, the Lister-based candidate GL-ONC1 has expression cassettes inserted into the \textit{F14.5L} and \textit{A56R} genes, respectively189. Interestingly, this virus has demonstrated the ability to preferentially induce apoptosis and cytotoxicity in mutant \textit{BRAF} melanoma, both \textit{in vitro} and \textit{in vivo}190. Similarly, the Western Reserve-based OV also harbors a deletion of Vaccinia Growth Factor (VGF, \textit{C11R}) and has demonstrated attenuation \textit{in vitro} and increased safety \textit{in vivo}191. Each of these viruses have progressed clinically at different rates and will be discussed below. Another strategy that has been utilized in the production of clinical candidate OVs is the encoding of therapeutic transgenes into the VACV backbone. One recent study used a \textit{\Delta TK}-Western
Reserve strain of VACV with encoded micro RNA (miR)-34a and demonstrated increased induction of apoptosis in a model of multiple myeloma192. More commonly, however, the insertion of transgenes has been used in an effort to induce anti-tumour immunity after cancer-specific viral infection.

The oncolytic Wyeth platform was the first OV to encode human granulocyte macrophage colony-stimulating factor (GM-CSF) in an effort to provide the virus with the ability to break tumour immune tolerance186. Early in vivo studies in rabbits demonstrated the successful expression of virally-encoded human GM-CSF that peaked at four days following intravenous infusion or direct intratumoural delivery of the virus, which was accompanied by a significant recruitment of CD8\(^+\) and CD4\(^+\) T cells to the tumour 8-days post-infection186. Recently, the mechanism of action of GM-CSF-encoded OVs was clarified by Parviainen et al., who utilized immunocompetent Syrian golden hamsters and the double-deleted backbone of Western Reserve encoding human GM-CSF, which is known to be active in this model. They observed the same tumour control and safety profiles previously reported, however they also observed increased proliferation and migration in splenocytes from animals treated with the GM-CSF-encoding virus193. Therefore, GM-CSF-encoding VACVs are able to induce the proliferation and migration of monocytes, a critical step in the induction of adaptive immunity, and presumably are involved in the subsequently-observed CTL (cytotoxic T-lymphocyte) recruitment to the tumour.

Clinically, VACV-based OVs have made impressive progress22,61. The leading candidate for approval at this time is Pexa-Vec, which is currently (May 2017) in the midst of recruiting for two separate studies – one Phase III study for the use of Pexa-Vec in combination with the kinase inhibitor Sorafenib in the context of HCC, and another Phase I study of Pexa-Vec in combination with the immune checkpoint inhibitor anti-CTLA-4 for advanced solid tumours.
(ClinicalTrials.gov identifiers: NCT02562755 and NCT02977156, respectively). Past clinical studies with this virus have revealed several important lessons, including its tolerable safety profile194, its ability to effectively locate to tumours following intravenous delivery57 and disrupt tumour vasculature56, as well as its utility across diverse indications and patient groups195-197. The next most advanced platform is the Lister strain VACV-based OV, GL-ONC1. Although clinical trial results appear unpublished at this time, conference presentations have demonstrated that GL-ONC1 is well-tolerated with minimal toxicity, that the delivery of transgenes to tumours occurred successfully, and that systemic administration resulted in localization of the virus to tumour sites. There are three ongoing GL-ONC1 clinical trials in different indications (NCT02759588, NCT01766739, and NCT02714374)22. Results have also recently been published from the first trials utilizing the above mentioned double-deleted Western Reserve-based OV. These have indicated that patients tolerated the supposed augmented virulence of the Western Reserve strain of VACV, that it was successfully delivered to tumours, and that early anti-tumour activity was observed198,199. Another VACV platform that has been utilized as an OV in an early study is Modified Vaccinia Ankara (MVA) encoding Epstein-Barr Virus (EBV) target antigens. In this Phase I trial, EBV-associated nasopharyngeal carcinoma was targeted as it is known to commonly express EBV-specific antigens, and antigen-expressing MVA was determined to be safe and immunogenic200. As evidenced by this discussion, the interest in VACV-based OV therapeutics is increasing as it provides desirable OV-relevant properties, however there are still many unknowns surrounding VACV as a pathogen that should be investigated. It is in the interest of the field to more thoroughly understand the basic biology governing the interactions between VACV and transformed cells before next-generation OV candidates will gain clinical traction; for this, improved and more comprehensive investigative tools are required.
1.4. Transposon-mediated mutagenesis

Initial observations that led to the discovery of transposable elements (TEs) were made by Barbara McClintock in maize and published as a body of work that increased the fundamental understanding of genetic diversity and for which she was awarded the 1983 Nobel Prize for Physiology or Medicine201,202. Shortly thereafter, investigators were able to harness the properties of TEs for use as tools in molecular biology. The earliest examples of this are described in reports of the transposition of antibiotic resistance genes between plasmids, or from TE-containing plasmid(s) into phage DNA in the context of infected cells203-205. Once the utility of systems such as this became apparent, they were adapted for countless purposes by groups worldwide. Most commonly, TE-mediated insertional mutagenesis has been utilized to study bacterial functional genetics, however it has also been regularly applied in an effort to discover novel oncogenes206. In fact, a recent body of work has led to the method known as \textit{Tn-Seq}, in which TE-mediated insertional mutagenesis is combined with high-throughput parallel sequencing that allows the relative fitness of bacterial genes to be determined based on insertion frequencies206,207. TE systems have also been applied to several viral platforms, including HSV and hepatitis C virus, usually from the perspective of identifying essential viral genes208-214. This approach has not been applied to VACV, and the approach in various viral platforms does not appear to have been expanded to include high-throughput functional assays, which would assist in identifying downstream functions of putative ORFs or select regions within them.

Consequent to the interest in TE-mediated insertional mutagenesis for the study of gene functions, several commercially-available platforms have emerged. One such platform, now known as \textit{PiggyBac}TM, utilizes a naturally-active transposon system that was originally described by studying Baculovirus propagating in the cabbage looper moth cell line TN-368215-217. The
original publications identified a 2.7kb TE that was flanked by 32-bp ITRs, exhibited specificity for insertion at TTAA sites in the target genome, and could insert host genetic material into the genome of infecting Baculovirus. This naturally-occurring TE was first mobilized for experimental use in mammalian systems, including mice that were made to express a transposable red-fluorescent protein transgene and subsequently exhibited red fluorescence218. \textit{PiggyBac}TM’s use as a genetic tool has expanded, and hundreds of studies have since reported using it for diverse applications. Typically, the \textit{PiggyBac}TM transposase enzyme is carried on a separate plasmid from the transposon itself, and the two are independently transfected into the host cell (supplied in \textit{trans}). Once the transposase enzyme is expressed in mammalian cells, it works by binding to the ITR of the transposon, nicking the DNA, and freeing 3’ –OH groups at each end. This results in a hydrophilic attack in which the transposon is freed from its plasmid backbone215,219. As explained by Woodard and Wilson, cellular genomic TTAA sequences are then subject to an additional hydrophilic attack, resulting in a staggered cut in the genomic DNA and a transient double-stranded break into which the TE can then insert215. There are notable advantages of using the \textit{PiggyBac}TM system over other TE systems. Typically, insertion at TTAA sites in the target genome has been shown to lead to biased insertion towards transcription units, therefore increasing the rate of insertional mutagenesis, and although less relevant to this research project, there is less limitation in cargo size compared to similar systems215.

1.5. Rationale, objectives, and hypothesis

As has been presented thus far, VACV is an interesting OV platform for several reasons:

- It has been utilized extensively in humans as a vaccine vector and therefore has a well-established and acceptable safety profile,
• Past clinical trials have demonstrated the cancer-selectively and efficacy of VACV-based OVs following intravenous or intratumoural delivery, and

• VACV can be engineered to express large therapeutic transgenes.

However, the study into basic VACV biology remains ongoing and the current VACV-based OV platforms were not bio-selected for potency. As a result of its large and complex genome, many of VACV’s gene products remain uncharacterized. Of those that are characterized, several have functions with presumed deleterious effects from the perspective of an OV, and additional functions are likely for others. A better tool for the study of VACV is required. Therefore, this research project has been designed to address the following main objectives:

1. To understand the phenotype of five wild-type vaccine strains of VACV from the perspective of OV-relevant characteristics (replication, cytotoxicity, spread) and select a strain for the development of next-generation VACV-based OV therapeutics.

2. To construct and characterize a working library of single-gene VACV-Copenhagen mutants to allow better study of the VACV-Copenhagen genome.

3. To investigate relevant viral gene properties in the underlying context of OV development and unique pathogen-host interactions while demonstrating potential utility of this library for putative gene description and high-throughput functional genomic studies.

The remainder of this research project will present experimental evidence that relates to these objectives and supports the overall hypothesis that selective interruption of VACV genes will improve the oncolytic properties of the VACV-Copenhagen backbone. The broader research goal is to comprehensively investigate the VACV genome so that future VACV-based OV platforms can be optimally designed for therapeutic benefit.
2. Materials and Methods

Cell culture and virus. Unless further specified, all cells were purchased from the American Type Culture Collection (ATCC; Manassas, USA) and maintained according to ATCC-derived culture methods, including cell-specific growth media, as well as sub-culturing and cryopreservation techniques. The NCI-60 cell panel was obtained directly from the National Cancer Institute (Bethesda, USA) and maintained according to their guidelines. VACV strains Copenhagen, Western Reserve, Wyeth, and Lister were obtained from the ATCC. VACV-Tian Tan was a gift from Dr. David Evans (University of Alberta, Edmonton, Canada) and was previously described under the identifier DTH-14220.

Virus plaque purification. Before experimentation, all wild-type VACV strains were plaque-purified for a minimum of five rounds in U-2 OS cells before expansion and purification. All clones in the working TE library were also plaque-purified in U-2 OS cells. This plaque purification was performed as many times as necessary until 100% of observed plaques in subsequent infections expressed mCherry (n = 100).

Sucrose gradient purification and virus stock generation. All viruses used in this research project were expanded in HeLa or U-2 OS cells. Following standard protocols, collected lysates were subjected to a freeze (-80°C) and thaw cycle to lyse intact cells. Cleared lysate containing virus was then overlayed onto a 36% sucrose gradient and centrifuged at 11,500 x RPM for 90 minutes. Viral pellets were resuspended in 1mM Tris pH 9.0 and concentrations were determined via standardized plaque assay.
Creation, culture, and characterization of patient-derived cancer cell lines. Several primary cultures of patient-derived cancer cells were used in this research project. Patient-derived ovarian cancer cell lines 2028 and 2068 were gifts from Dr. Carolina Ilkow (Ottawa Hospital Research Institute, Ottawa, Canada) and were previously established from the ascites of individuals with ovarian cancer during routine paracentesis according to Ottawa Health Science Network Research Ethics Board (OHSN-REB) protocol number 20140075-01H. These cells were maintained in complete Dulbecco’s Modified Eagle’s medium (Corning, Manassas, USA) supplemented with 10% fetal bovine serum (Corning, Manassas, USA). Patient-derived melanoma cell lines pMel-T and pMel-X2 were gifts from Drs. Guy Ungerechts and Christine Engeland (National Center for Tumor Diseases, Heidelberg, Germany) and were generated following institutional ethics guidelines (Ethics Committee of Heidelberg University NCT MASTER, S-206/2011). These were maintained in Roswell Park Memorial Institute (RPMI)-1640 medium (Corning, Manassas, USA) supplemented with 10% fetal bovine serum, 100 µg/mL Gentamicin (Gibco – Life Technologies, Grand Island, USA), 0.1 mg/mL Normocin™ (InvivoGen, San Diego, USA), and 1 x Antibiotic-Antimycotic (Gibco – ThermoFisher Scientific, Toronto, Canada).

Melanoma Patient 12-2016 and Melanoma Patient 13-2016 primary cultures were derived from excised surgical specimens from an ulcerated chest nodular melanoma and from melanoma metastasized to the patient’s left retroperitoneal pelvic lymph node, respectively. The surgeries were performed by Dr. Carolyn Nessim (Ottawa Hospital Research Institute, Ottawa, ON, Canada) and tissue was taken following the receipt of patient consent according to the Ottawa Health Science Network Research Ethics Board protocol number 20120559-01 (Appendix I). Primary cultures were established following scalpel-mediated homogenization of tumour specimens in the presence of the RPMI-based media described above, and filtering the homogenate through a 70
µm nylon mesh cell strainer (ThermoFisher Scientific, Toronto, Canada). Homogenate was maintained in culture with periodically-refreshed media until sufficient cellular proliferation occurred for experimental purposes. Both primary cultures have been cryopreserved and have proven useful as experimental models.

Basic characterization of all human-derived primary cultures was performed. Immunofluorescent staining was performed on ovarian cancer cultures using a monoclonal primary antibody against Cytokeratin 18 raised in mice (Cat. # ab55395, 1:1,000; Abcam, Toronto, Canada; Appendix II). Human-derived primary melanoma cultures were characterized at the RNA and protein levels. Reverse transcriptase PCR was performed using primers targeting the MelanA (TAAGGAGGTGTCTGTGC; AGAGACACTTTGCTGTCCCG), Tyrosinase (GGAAGAATGCTCCTGGCTGT; GGCTACAGACAATCTGCCAAG), and S100A1 (TTGGCCATCTGTCCAGAACC; TGTCCACAGCATCCACATCC) genes, respectively. Immunofluorescent staining was also performed on cells in primary cultures using primary antibodies against MelanA and S100 – antibodies used were monoclonal mouse anti-human MelanA (Cat # ab140503, 1:150; Abcam, Toronto, Canada) and polyclonal rabbit anti-human S100 (Cat # ab868, 1:500; Abcam, Toronto, Canada). For primary melanoma cultures generated from patients in Ottawa, original tumour specimens were also collected, processed, and sectioned for staining purposes. Immunohistochemistry was performed using the antibodies described above, and hematoxylin and eosin staining was also performed to visualize original tumour architecture (Figures 3.3B and 3.4B).

Viral replication studies. Virus replication studies were performed using standardized protocols. When performed on cell monolayers, replication studies were multi-step (MOI 0.01). Virus
inoculation was allowed to proceed for two hours, at which point inoculum was removed, cells or patient cores were washed twice with 1 x PBS, and new culture media was applied to the system. At indicated time points, infected cells were frozen at -80°C and viral output was determined using standardized titration methods upon thawing.

Immunohistochemistry/Immunofluorescence staining. Tumour specimens were fixed in 10% formalin for 24-48 hours and stored for longer term in 70% ethanol. Specimens were formalin-fixed and paraffin-embedded (FFPE) by the Histology Core Facility at the University of Ottawa. Likewise, tissue sectioning and hematoxylin and eosin staining was performed by the Histology Core Facility at the University of Ottawa. Immunohistochemistry was performed on FFPE tissues as previously described. Immunofluorescence staining on cell cultures was performed using standardized protocols. Cells were initially grown on glass coverslips until desired density, fixed using 4% paraformaldehyde, and permeabilized using 0.1% Triton X-100. Primary antibody staining was performed for 90 minutes at room temperature. Secondary antibodies were targeted against species-specific IgG and were fluorophore-conjugated (1:500, AlexaFluor; ThermoFisher Scientific, Toronto, Canada); these were utilized for 60 minutes at room temperature. Coverslips were mounted on glass microscope slides using 4’6’-diamidine-2’-phenylindole dihydrochloride (DAPI)-containing ProLong Antifade Reagent, ThermoFisher Scientific, Toronto, Canada). After light-protected, overnight drying, cells were imaged by microscopy.

As previously mentioned, primary antibodies used to characterize primary cancer cultures include: mouse anti-human Cytokeratin 18, mouse anti-human MelanA, and rabbit anti-human S100. Rabbit anti-VACV (1:10,000; Quartett Immunodiagnostika, Berlin, Germany) was used to stain select VACV-infected tumours (Figure 3.5).
Microscopy. Imaging of live cells was performed using an EVOS FL Cell Imaging System (ThermoFisher Scientific, Toronto, Canada). Imaging of fixed cells following immunofluorescence staining was performed using a Zeiss AxioCam HRm Imager M1 (ZEISS Canada, Toronto, Canada) and an X-Cite 200DC Fluorescence Illumination System (Excelitas Technologies, Waltham, USA). Imaging of FFPE tissues following immunohistochemistry was performed using an Aperio ScanScope CS2 (Leica Biosystems, Concord, Canada).

Human biopsy core infection. Tumour specimens were obtained following the protocols established in Ottawa Health Science Network Research Ethics Board protocol number 20120559-01. Tumour specimens were taken to the Department of Pathology where a certified Pathologist Assistant would assess the tissues for diagnostic purposes. Any remaining tissue was immediately placed in RPMI-1640 medium supplemented with 10% fetal bovine serum, 100 µg/mL Gentamicin, 0.1 mg/mL Normocin™, and 1 x Antibiotic-Antimycotic, as described above. The tissue was cored with a 2-mm punch biopsy tool and the cores were allowed to incubate in media overnight at 37ºC. Tissue cores were then inoculated with 10,000 plaque forming units (PFU) of virus for two hours, at which point the inoculum was removed, the cores were washed with 1 x PBS and infected cores were allowed to incubate for 72 hours before being processed for titration.

In vivo melanoma virus replication studies. Female CD1 nude mice were implanted with 1 x 10⁷ M14 human melanoma cells in their bilateral sub-cutaneous flanks. Once tumours reached approximate volume of 62.5 mm³ (5 mm x 5 mm), tumours were injected with 1 x 10⁷ PFU of virus. Experimental groups included each of the wild-type VACV strains as well as ΔTK-Wyeth.
72 hours post-infection, animals were sacrificed and tumours were collected and flash frozen. Frozen tumours were homogenized at a frequency of 30 Hz for five minutes using a TissueLyser II (Qiagen, Germantown, USA). 1 x PBS was then added to homogenate and titration by standardized plaque assays was performed. Representative tissues infected with VACV were also collected and fixed in 10% formalin for 48 hours followed by 70% ethanol before being processed for immunohistochemistry.

Plaque size assays. Known concentrations of virus were used to inoculate cells of interest. Following two hours of inoculation, inoculum was removed, cells were washed with 1 x PBS and a semi-solid overlay of 3% carboxymethylcellulose, 1 x DMEM, and 10% fetal bovine serum was applied. Following a selected experimental time period, the semi-solid overlay was removed and infected monocultures were stained with 0.1% crystal violet for 30 minutes. After an overnight drying period, stained monocultures were photographed and ImageJ software (Version 1.50i; National Institutes of Health, Bethesda, USA) was used to measure plaque diameter. Measured plaques were marked to ensure no duplicate measurements.

Extracellular enveloped virus assays. Extracellular enveloped virus “comet” assays were performed following the same protocols as with plaque size assays, however a fully liquid overlay was used instead of a semi-solid overlay. Incubation periods ranged from 48 to 96 hours, during which time infected cells were placed in an incubator that remained unopened for the duration of the experiment. Following incubation in a closed incubator, infected monocultures were stained according to standardized protocols.
Quantitative extracellular enveloped virus assays were performed using a fractional titration approach that has been previously validated222. In short, culture supernatants, which predominantly contain released extracellular enveloped virus, were collected at selected time points post-infection and virus particles were quantified according to standardized protocols.

Vaccinia virus-Copenhagen transposable element library generation. The clonal library of VACV-Copenhagen used in this research project was derived from a previously-developed transposable element-mutagenized Copenhagen library that was optimized by Dr. Jiahu Wang (Research Associate, Dr. John Bell Laboratory). Dr. Wang cloned the sequence of *PiggyBac*TM transposase (a gift from Professor Malcolm Fraser Jr.; University of Notre Dame, Notre Dame, USA) into a pcDNA3.1 mammalian expression vector. An mCherry-expressing transposable element flanked by inverse terminal repeats was assembled by PCR and cloned into a high-copy pUC57-based vector. Following transposase vector transfection, infection, and transposable element vector transfection over a 72 hour period, transposable element-mutagenized virions were released from U-2 OS cells using a freeze (-80°C) and thaw approach.

With this library, HeLa cells were infected for 16 hours at MOIs of 0.01 and 0.1, respectively. Using a MoFlo Astrios EQ cell sorter (Beckmann Coulter Canada, Mississauga, Canada) at the University of Ottawa’s Flow Cytometry and Virometry core facility, mCherry-positive cells were sorted into 96-well plates already containing U-2 OS cells in monoculture. Excess mCherry-positive cells were collected and subsequently used to infect U-2 OS cells in six-well plate format, with mCherry-positive plaques being collected 48 hours post-infection. All independent mCherry-positive cultures (see example Figure 3.8) were further expanded on HeLa cells in 12-well, and subsequently, in 10-cm plate formats. DNA was extracted from each
potentially unique virus clones (n = 228) using the QIAmp Min Elute Virus Spin Kit (Qiagen, Germantown, USA). Quality control and Next-Generation Sequencing (150 bp paired-end reads, Illumina NextSeq 500) analyses were performed by StemCore Laboratories (Ottawa Hospital Research Institute, Ottawa, Canada). Bioinformatics analysis (Adrian Pelin, Ottawa Hospital Research Institute, Ottawa, Canada) on resulting reads were inspected for the presence of inverted terminal repeat sequences flanking the TE insert. Reads which contained the inverted terminal repeat sequence were used to map back to our wild-type VACV-Copenhagen backbone reference, which allows the exact position of the insert to be determined. This analysis revealed 89 unique virus clones with unique insertion sites. Finally, unique virus clones were subjected to a minimum of five rounds of plaque purification until 100% purity was reached, as defined by the exclusive presence of mCherry-positive plaques. Unique virus stocks were then amplified and quantified according to standardized protocols.

Reverse transcription polymerase chain reaction studies. RNA was extracted from infected or uninfected cell cultures using a Trizol extraction followed by ethanol precipitation. RNA concentrations were obtained using a NanoDrop ND-1000 Spectrophotometer (ThermoFisher Scientific, Toronto, Canada). Reverse transcription was performed in a two-step reaction using a Maxima Reverse Transcriptase enzyme kit (ThermoFisher Scientific, Toronto, Canada). Finally, polymerase chain reactions were performed following standardized protocols using a Mastercycler Pro PCR System (Eppendorf, Hamburg, Germany). Primers targeting melanoma diagnostic genes are presented above. Primers targeting the Tp 61 insertion clone were ATGAGGAGTATTGCGGGGCT and AGGCTTCCAAAAATTTTTCATCCGT. Primers targeting the Tp 243 insertion clone were AGACTGTCCATCTTGCTCCAAGGA and
TGTTTGACTTTATGGTTAGACCCGCA. Primers targeting the Tp 250 insertion clone were AGACTGTCCATCTTGATCAAGGA and TGTTTGACTTTATGGTTAGACCCGCA. Primers targeting the Tp 279 insertion clone were ATGGGGTTTTCATCCATTTGAGATCAAGAG and ACGAAGTGCTGTTTGTAGAGACAAAACT. Primers targeting the Tp 311 insertion clone were ATGAGGAGTATTGCAGGGGT and AGGCTTCCAAAATTTTTCATCCGT. Primers targeting the Tp 344 insertion clone were ATGGCGACTAAATTAGATTATGAGGATGC and TCGTCGGTCATCAGATCTGTAATGT. Primers targeting the VACV C9L gene were ACTGTAAGCATGTCCGTACCA and ATGCGTGGAGTTGGATGTG.

Immunoblotting. Cellular or viral proteins were resolved on NuPAGE 4-12% Bis-Tris gels (Life Technologies, Carlsbad, USA) and transferred onto Immun-Blot Polyvinylidene difluoride membranes (Bio-Rad Life Sciences, Mississauga, Canada). Membranes were incubated for one hour at room temperature or overnight at 4°C with primary antibodies or antisera. Specific products and dilutions include: 1:1,000 polyclonal goat anti-β-Tubulin (Abcam, Toronto, Canada; ab21057), 1:2,000 polyclonal rabbit anti-VACV F11, 1:2,000 rabbit anti-VACV K7 antiserum, 1:10,000 polyclonal rabbit anti-VACV A36. The antibodies against VACV proteins F11 and A36, and the antiserum against VACV K7 were generous gifts from the laboratories of Professor Michael Way (The Francis Crick Institute, London, UK) and Dr. Martina Schroeder (National University of Ireland, Maynooth, UK) and have been previously described. Membranes were incubated for one hour at room temperature with horseradish peroxidase-conjugated secondary antibodies: 1:5,000 anti-goat IgG (Jackson ImmunoResearch Laboratories, West Grove, USA; 805035180) or 1:5,000 anti-rabbit IgG (Cell Signaling, Danvers, USA; 7074),
respectively. Proteins were detected with Supersignal West Pico chemiluminescent substrate (ThermoFisher Scientific, Toronto, Canada) followed by exposure to premium autoradiography film (Denville Scientific, Holliston, USA).

Vaccinia virus-Copenhagen B19 insertion functionality assay. The human renal cell adenocarcinoma cell line 786-O was infected for 24 hours with wild-type Copenhagen or Tp 203 (B19R insertion of TE) at an MOI of 0.1. After 24-hours inoculation, the supernatants from each condition were collected, passed through a 0.22 µm filter, and added to fresh monocultures of 786-O cells. VSVΔ51-GFP, a virus with neutralization sensitivity to secreted interferon, was used to inoculate each respective population at an MOI of 0.01. After 24 hours of infection, cells were imaged using an EVOS FL Cell Imaging System (ThermoFisher Scientific, Toronto, Canada).

Fluorescence-based viral replication assays. Fluorescence-based viral replication assays were performed by exploiting a previously-described direct relationship between the fluorescence intensity output of a fluorophore-expressing virus and the amount of virus in the system. As schematized in Figure 2.1, a TE-mutagenized virus was used to primarily infect an experimental cell line of choice at an MOI of 0.1 or 0.01. Following initial inoculation (n = 4/virus clone), an aliquot of the input virus was left at 4°C to prevent any further freeze and thaw cycles. Inoculation was allowed to proceed for a selected period, following which the test plate was frozen at -80°C to encourage cell lysis. Meanwhile, read-out plates consisting of confluent U-2 OS cells in 96-well format were prepared, which hosted the secondary infection (n = 4/virus clone). The secondary infection was then allowed to proceed with equivalent volumes of inocula from the primary infecting virus (n = 4) as well as the output virus that had been released upon cell lysis following
Figure 2.1. Fluorescence-based high-throughput vaccinia virus replication assay. Step 1 includes the primary infection and subsequent incubation of a test cell line of choice, followed by a freeze (-80°C) and thaw (room temperature) cycle. Step 2 includes the secondary infection with both the output of virus from the primary infection as well as the same input virus as was used for the primary infection. In Step 3, a high-throughput fluorescence readout is obtained for both samples following secondary infection, the results of which are used to calculate the relative amount of virus replication during the primary infection (Step 4).
STEP 1:

- Virus Input
- Test cell line
- 36-48 hour primary infection
- Freeze (-80°C) & thaw cycle

STEP 2:

- U-2 OS (read-out cell line)

STEP 3:

- 27-hour secondary infection
- High-throughput fluorescence readout: Fluorescence (Input) → Fluorescence (Output)

STEP 4:

\[\Delta = \text{virus replication} = \frac{\text{Fluorescence (Output)}}{\text{Fluorescence (Input)}} \]
a thaw of the primary-infected cells (n = 4). Secondary infection was allowed to proceed for 27 hours, at which point the fluorescence output was read using a Cellomics ArrayScan VTI HCS Reader (ThermoScientific, Toronto, Canada) with the help of an Orbitor RS loading system (ThermoScientific, Toronto, Canada).

Vaccinia virus protein homology analyses. Vaccinia virus-Copenhagen proteins F15 and A47 were individually blasted against the nr database at the amino acid level. All poxvirus sequences were filtered for redundancy and duplicates and aligned together using the multiple sequence comparison by log-expectation (MUSCLE) algorithm. This alignment allowed similarity matrices to be constructed, as well as a maximum likelihood phylogeny.

In vivo toxicity studies. Female Balb/c mice were injected intranasally with 8 x 10^6 PFU of selected virus clones on three separate occasions (Days 1, 3, and 5). Mice were weighed at baseline (prior to first virus dose) and every day thereafter for the remainder of the experiment.

Statistics. All statistical analyses were performed using GraphPad Prism or Microsoft Excel. Where possible, statistical analyses were performed on log-transformed values. One-way ANOVAs and multiple comparisons analyses were employed for the comparison of multiple independent groups. Log-log plots were analyzed using power analyses and the slopes of their curves correspond to exponents of power-law scaling (slopes not presented). Regression values presented in these analyses were generated by solving for the power regression. P values less than 0.05 were considered significant and are annotated as follows: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
3. Results

3.1. Understanding unique phenotypic properties of wild-type vaccinia virus

3.1.1. In vitro replication kinetics

The underlying goal of this research project was to increase our understanding of VACV to facilitate a downstream effort aimed at bioengineering a novel VACV-based oncolytic backbone. As such, the first step was to bio-select the wild-type strain of VACV with which to conduct these studies. There are five clinical candidate strains to which we had access: Copenhagen, Western Reserve, Wyeth, Lister, and Tian Tan. The initial aim was to investigate the in vitro replication kinetics of each individual strain in several relevant cancer models. As a first step to gaining this understanding, a multi-step growth curve (MOI 0.01) was performed on the immortalized human cervical adenocarcinoma cell line HeLa (Figure 3.1). The mean input virus across all strains tested consisted of 2.5×10^4 PFU, with the lowest input being represented by the wild-type Copenhagen strain at 1.3×10^4 PFU. This discrepancy is attributed to the inherent inaccuracies associated with quantifying concentrations within viral preparations; despite beginning the assay with a smaller input population, the Copenhagen strain produced significantly increased progeny compared to each of the other wild-type strains of VACV as early as 24 hours post-infection. This advantage in infectious particle production was observed to be maintained at 36 and 48 hours post-infection, respectively. Similar assays were then performed in alternative immortalized human cancer models; the human melanoma cell line M14, renal cell adenocarcinoma cell line 786-O, prostate adenocarcinoma cell line PC-3, and the colorectal adenocarcinoma cell line HT-29 were all subject to in vitro infection by individual wild type strains of VACV. As the replication kinetics observed in HeLa cells would suggest, the Copenhagen strain was observed to produce significantly greater infectious progeny at 48 hours post-infection.
Figure 3.1. Replication kinetics of distinct wild-type vaccinia virus strains. (A) A multi-step growth curve of five distinct wild-type strains of vaccinia virus in the human cervical adenocarcinoma cell line HeLa: Copenhagen, Western Reserve, Wyeth, Lister, and Tian Tan. Cells were infected at a multiplicity of infection of 0.01 and infections were allowed to proceed for the durations listed. Statistical annotations represent the analysis of variance between Copenhagen and each of the other wild-type strains. The box highlighting the 48 hour replication values has been presented in (B) so that the variability of individual means can be observed. Results shown represent three independent experiments. Statistical annotations in A represent the variance between wild-type Copenhagen and each of the other virus strains studied. (One-way ANOVA, *P < 0.05, **P < 0.01, ****P < 0.0001)
compared to each of the other wild type strains (Figure 3.2). This is a finding that was observed to be consistent in more expansive cancer models and also in competition assays in which equivalent amounts of wild-type VACV were pooled and used to infect various cancer models, with NGS providing a readout of Copenhagen dominance within a diverse population (data not shown). These results suggest that the Copenhagen strain of VACV possesses an in vitro growth advantage compared to other wild-type strains that may have become more attenuated during their history of vaccine use.

3.1.2. Replication kinetics in patient-derived models

As a complement to these studies, an effort was made to investigate the growth properties of these five VACV strains in more clinically-relevant in vitro and ex vivo models. The data presented in Figures 3.3 and 3.4 were generated from tumour specimens taken from two individuals who presented with various degrees of advanced melanoma (Table 3.1) and underwent debulking surgery at the Ottawa Hospital (Ottawa Health Science Network Research Ethics Board protocol number 20120559-01). The gross specimen from Patient 12-2016 can be observed in Figure 3.3A and is clinically characteristic of a nodular melanoma as it was well circumscribed, ulcerated, and found on the trunk region. This diagnosis was histologically confirmed and a representative photomicrograph of Hematoxylin and eosin-stained tissue demonstrates a prevalence of epithelioid tumour cells and hyperchromatic nuclei (Figure 3.3B). Similarly, the melanoma specimen from Patient 13-2016 demonstrated similar histologic features, and the representative photomicrograph presented in Figure 3.4B also allows rudimentary nests to be observed. These features, along with the clinical presentation of numerous palpable inguinal lymph node metastases at the time of surgery (Figure 3.4B), are consistent with the more advanced disease state of this individual. In both cases, sustained in vitro cellular growth (Figure 3.3C, 3.4C) was
Figure 3.2. 48-hour viral replication of vaccinia virus strains in human cancer cells. The vaccinia virus strains Copenhagen, Western Reserve, Wyeth, Lister, Tian Tan, and the clinical candidate oncolytic strain ΔTK-Wyeth were used to infect various cancer cell lines at a multiplicity of infection of 0.01. Similar replication properties were observed for each of the virus strains in (A) M14 melanoma cells, (B) 786-O renal cell adenocarcinoma cells, (C) PC-3 prostate adenocarcinoma cells, and (D) HT-29 colorectal adenocarcinoma cells. Results shown represent 3 independent experiments. Statistical annotations indicate differences between Copenhagen and each of the other respective virus strains; no significant differences were observed otherwise. (One-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
Table 3.1. Clinical characteristics of tumour-derived melanoma cultures. Mel-A = Melanoma antigen, AE1/3 = Cytokeratin AE1 and AE3, HMB-45 = homatropine methylbromide, Tyr = Tyrosinase.
<table>
<thead>
<tr>
<th>Case ID</th>
<th>Age</th>
<th>Sex</th>
<th>Description</th>
<th>Relevant mutations</th>
<th>Pathologist Diagnosis (IHC)</th>
<th>RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma Pt. 12-2016</td>
<td>82</td>
<td>M</td>
<td>Nodular melanoma, chest; ulcerated, pedunculated; original tumour: Breslow 1.2 cm, pT4b</td>
<td>Unknown</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Melanoma Pt. 13-2016</td>
<td>59</td>
<td>M</td>
<td>In-transit metastasis, left retroperitoneal pelvic lymph node; 23/28 lymph nodes positive for metastatic carcinoma</td>
<td>BRAF K601N</td>
<td>n/a</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure 3.3. Vaccinia virus replication in a metastatic cutaneous melanoma model. (A) Following surgical excision, a specimen was removed from the surface of this in-transit cutaneous melanoma metastasis (Patient 12-2016), which was histologically-confirmed via hematoxylin and eosin staining (B), as well as other relevant diagnostic stains. This specimen was used to generate a primary monoculture of cells (C), which were confirmed to express the diagnostic markers MelanA, Tyrosinase, and S100 by RT-PCR (D) and at the protein level (data not shown). Wild-type strains of vaccinia virus were used to infect punch biopsy cores of the freshly-excised tumour specimen (E; input: 1×10^4 plaque forming units) as well as to probe the replication kinetics of distinct strains on the tumour-derived primary monoculture via a multi-step growth curve (F; multiplicity of infection 0.01). Error bars indicate the s.d. amongst replicates ($n = 4$). (One-way ANOVA, ****$P < 0.0001$; statistical annotations in F represent the variance between Copenhagen and the other strains studied)
Figure 3.4. Vaccinia virus replication in inguinal lymph node metastasis melanoma model. (A) Following surgical excision, a specimen was removed from the center of this in-transit inguinal lymph node metastasis (Patient 13-2016) so as not to disturb any potential histologic margins of invasion. (B) Representative sampling allowed the tumour architecture of this specimen to be histologically-confirmed via hematoxylin and eosin staining. This specimen was used to generate a primary monculture of cells (C), which were confirmed to express the diagnostic markers MelanA, Tyrosinase, and S100 by RT-PCR (D). Wild-type strains of vaccinia virus were used to infect punch biopsy cores of the freshly-excised tumour specimen (E; input: 1×10^4 plaque forming units) as well as to probe the replication kinetics of distinct strains on the tumour-derived primary monculture via a multi-step growth curve (F, multiplicity of infection 0.01). Error bars indicate the s.d. amongst replicates ($n = 4$). (One-way ANOVA, ****$P < 0.0001$, **$P < 0.01$; statistical annotations in F represent the variance between Copenhagen and the other strains studied)
observed, and these primary cultures were found to express select melanoma diagnostic markers at the RNA level (Figures 3.3D, 3.4D). Upon obtaining each of these tissue specimens, 2-mm tumour cores were excised and each of the clinical candidate VACV strains investigated in this study were used to infect these tissues *ex vivo* (Figures 3.3E, 3.4E). Results were variable with relative equal output observed in Patient 12-2016 (Figure 3.3E) while nearly 1,000-fold higher output of Copenhagen observed in Patient 13-2016 (Figure 3.4E). Finally, multi-step growth curves were performed on the primary cultures generated from these patients – in both cases, Copenhagen is shown to have a significant growth advantage over the other wild-type strains investigated.

3.1.3. *In vivo replication*

With greater replication of Copenhagen when compared to the other clinical candidate strains observed *in vitro* in both immortalized and primary cancer cell lines, as well as *ex vivo* in fresh human melanoma tissues, virus replication was studied *in vivo*. The human melanoma cell line M14 was used to generate tumours in female CD1 nude mice, which were infected with individual wild-type strains of VACV as well as the current leading VACV clinical candidate ΔTK-Wyeth. The mice were sacrificed and tumours collected 72 hours post-infection, and virus output was determined by standardized plaque assay; while Copenhagen graphically appeared to replicate to a greater extent *in vivo* than each of the other strains, it reached statistical significance when compared to four of five additional strains, with the Tian Tan strain being the outlier (Figure 3.5A). By immunohistochemistry analysis, a pan-tumour spread of VACV-Copenhagen can be observed with a central region of extensive necrosis after 72 hours of virus infection (Figure 3.5B). This photomicrograph provides an interesting representation of the potential for VACV spread *in vivo*,
Figure 3.5. The replication of distinct strains of vaccinia virus in an in vivo melanoma model. The flanks of nude mice were implanted with bilateral sub-cutaneous M14 cells and allowed to reach approximate dimensions of 5 x 5 mm. Distinct vaccinia virus strains were then used to infect tumours via intratumoural injection of 1×10^7 plaque forming units of each respective virus strain. 72 hours post-infection, animals were sacrificed, tumours were collected and processed, and the recovered virus was determined by plaque assay (A). Representative photomicrographs of a Copenhagen-infected tumour (B) immunohistochemically treated with (i) a secondary control, or (ii) anti-vaccinia virus antibody demonstrates a pan-tumour infection with the Copenhagen strain of vaccinia virus. Error bars indicate the s.d. amongst at least 3 individual replicates. (One-way ANOVA, *P < 0.05)
Recovered Virus (PFU/g)

A

B

(i)

(ii)
however an immunohistochemistry-based study would have to be designed and performed systematically to make conclusions regarding cross-strain differential viral replication in vivo.

3.1.4. In vitro cytotoxicity and spread

To build upon the data that was generated across complementary models demonstrating the growth advantage of VACV-Copenhagen, it was decided to pursue an analysis of plaque size formation by the unique wild-type virus strains. Data from plaque size assays can provide an understanding of the cytotoxic potential of a virus strain in question over the chosen time period. A semi-solid overlay of carboxymethylcellulose was used, which minimizes any distant cell-to-cell spread that may be due to differential EEV production. Quantification of plaques produced by each strain revealed that those produced by VACV-Copenhagen are significantly larger than those produced by each of the other wild-type strains in this study plus the clinical candidate ∆TK-Wyeth (Figure 3.6). Interestingly, there was no differential plaque size phenotype produced by any of the other virus strains in this study when compared to one another.

There are two distinct forms of infectious VACV progeny that can be produced from an infected cell: IMV and EEV. Some evidence has suggested that a virus with greater propensity for EEV production may indeed be better equipped to evade host immune neutralization and therefore spread systemically to distant sites of disease97,98. Therefore, as an extension of the plaque size assays, an effort was made to understand the EEV-producing propensity of each of the wild-type VACV strains in this study. EEV is released from the infected cell via the polymerization of actin tails that propel its dissemination. Therefore, in vitro, the majority of infectious progeny in the supernatant of a monoculture is EEV that has been released, which can be quantified with a fractional titration approach using standardized plaque assays. The results from this study are presented in Figure 3.7A; by 72 hours post-infection, VACV-Copenhagen and VACV-Tian Tan
Figure 3.6. **Viral-induced plaque size formation in HeLa cells.** Individual strains of vaccinia virus were used to infect HeLa cells and plaque formation was allowed to proceed for 48 hours. Plaque diameters were individually measured. Results shown indicate the measurements of 20 individual plaques. (One-way ANOVA, **P < 0.01, ****P < 0.0001; statistical annotations represent the variance between Copenhagen and the other strains studied as no statistically-significant differences were otherwise observed)
Figure 3.7. Strain-specific extracellular enveloped virus production. Following the strain-specific infection of HeLa cells (MOI 0.01), fractional titration indicates the relative amounts of extracellular enveloped virus produced by each individual strain of vaccinia virus (A). Representative images of HeLa cells 96-hours post-infection qualitatively demonstrate the ability of individual virus strains to produce appreciable extracellular enveloped virus (B). Error bars indicate the s.d. from 3 independent experiments. Statistical annotations represent the variance between Copenhagen or Tian Tan, respectively, and each of Western Reserve, Wyeth, and Lister independently; there were no statistically-significant differences observed otherwise. (One-way ANOVA, ***P < 0.001, **P < 0.01, *P < 0.05)
produce significantly increased EEV progeny compared to each of the other wild-type strains in this study, a relationship that extends to the 96 hours post-infection time point. These results are accompanied by images of monocultures of HeLa cells that were infected with each of the listed viruses and liquid-overlayed for 96 hours (Figure 3.7B). When EEV are released from infected cells during the course of virus replication and allowed to spread via convection currents due to the use of a liquid overlay, satellite plaques can form a characteristic “comet” pattern, which can be observed in the VACV-Copenhagen and VACV-Tian Tan wells, but not to any appreciable extent in any of the other virus-infected wells.

The results presented thus far have contributed to our understanding of the phenotypic properties of VACV and how unique properties can be selected for based on the desired characteristics of a next-generation clinical candidate OV. Given the unsatisfactory clinical responses of current VACV-based candidate OVs and the poor rationale for the past selection of certain wild type backbone strains upon which to build, we thought that a systematic bioselection of available clinical candidate strains was a prudent approach. The data presented thus far demonstrates the inherent in vitro, ex vivo, and in vivo attenuation of the majority of clinical candidate VACV backbones. Therefore, the decision was made to focus on VACV-Copenhagen as the backbone upon which our next-generation clinical candidate OV will be built. However, the complexity of VACV contributes to the field’s current incomplete understanding of its products, and a comprehensive functional genomics approach to the study of VACV has yet to be completed. A better tool is required to more completely understand OV-relevant properties of VACV on a gene-by-gene basis. The latter portion of this research project will describe studies designed to bridge this knowledge gap.
3.2. Transposon-based insertional mutagenesis of vaccinia virus-Copenhagen

3.2.1. Design of transposable element and construction of clonal library

A previously-developed TE-based mutagenesis approach to the study of VACV-Copenhagen was optimized and utilized to study individual gene components of this virus. The TE mutagenesis was completed as described above, however an NGS-based study of mutagenized virus allowed the structure of this insert to be confirmed. The results of this analysis are schematized in Figure 3.8A, which presents the important functional components that have allowed this research project to proceed. Firstly, the TE is based on the PiggyBac™ transposon system, which is known to target TTAA loci in the target genome for insertion, and indeed uses the sequence of PiggyBac™ transposase supplied in trans to the system on a unique vector. Any TTAA site in the VACV-Copenhagen genome is a theoretical insertion site when using this approach, and Figure 3.8A reflects this. The mobile genetic element is flanked on either side by inverted terminal repeats. Immediately downstream of the 5’ ITR is a stop sequence, followed by a genetic linker sequence and a synthetic VACV early/late promoter that initiates transcription of the mCherry gene within the TE. A second stop sequence is present downstream of mCherry and before the 3’ ITR.

Following the infection of HeLa cells for 16 hours, fluorescence-activated cell sorting was utilized as described above to sort individual mCherry-expressing cells into individual wells of 96-well plates already containing cells. The results of this were the expansion of potentially unique (due to insertional mutagenesis) VACV-Copenhagen-based virus clones that could be visualized due to their TE mCherry expression; a representative example of such a plate can be observed in Figure 3.8B. As described, mCherry-positive viruses were further expanded, plaque-purified, and purified through a sucrose gradient to generate a working VACV library of unique clones. NGS
Figure 3.8. Transposable element insertional mutagenesis of vaccinia virus-Copenhagen. (A) A schematic of the transposable element used in this research project is presented, which is able to insert at TTAA sites throughout the genome. (B) Flow cytometry-based sorting allowed potentially unique individual virus clones to be separated into HeLa cell-containing individual wells of 96-well plates, which then supported viral replication. Following infection, mCherry-expressing cells were harvested, expanded, and prepared for next-generation sequencing analysis.
data allowed genetically redundant clones to be discarded, which resulted in a working library of 89 unique VACV-Copenhagen mutant clones. Of the 89 clones in this library, there are eight that contain intergenic insertions. Of the remaining 81 clones, there are 52 unique genes into which the TE has inserted. There are 19 genes that have been targeted by the TE in more than one place; multiple insertion mutant clones are therefore present in the working library for such genes. The overall landscape of the insertion mutants that have been used for this research project has been schematized in Figure 3.9. Of note in the distribution of insertion mutants in this working library is the propensity for insertion towards the genome extremities despite there being a relatively equal distribution of TTAA sites throughout the VACV genome. Figure 3.10 represents this, as well as the complementary paucity of observed TE insertion sites in the central region of the genome.

3.2.2. Functional effects of transposon-based insertional mutagenesis

We were able to generate VACV genomic sequencing data to verify the presence of the TE at unique sites in this library. Selection of novel clones was based on mCherry expression, so this genomic sequencing data provided specificity to what was already observed based on transgene expression. The questions of how this TE was processed both at the level of transcription and also how it affects the protein products of mutagenized genes still remain. To interrogate the effects of TE insertion on transcription, reverse transcription PCR experiments were performed in which sets of primers were designed to target regions in selected genes that surrounded the known insertion site based on NGS data. Figure 3.11 presents the results from these experiments. For each selected clone, primers targeting VACV-Copenhagen C9L were used as a non-mutagenized virus gene control, which can be observed in lane 2 of the control gel, as well as in each respective clone’s gel in lane iv. For each selected gene labeled underneath that gene’s clone in Figure 3.11, the primers used in lanes i, ii, and iii were as outlined in the schematic at the top of the figure; what
Figure 3.9. Circularized schematic of insertion loci within vaccinia-Copenhagen. Each gene within the vaccinia-Copenhagen genome is represented in this schematic by a box relative to its size. Boxes that are coloured red indicate genes that have been interrupted in at least one place by insertion of the transposable element. Boxes coloured yellow were inserted into, however to a secondary extent compared to the primary insertion sites within their respective samples. Green lines indicate intergenic sites of insertion. Non-interrupted genes are coloured blue. The unique clones highlighted in this figure compose the working library for this research project, which consists of 89 unique virus clones that span 52 unique vaccinia-Copenhagen genes and 8 mutants with integration of the transposable element in intergenic regions.
Figure 3.10. Preferential insertional mutagenesis occurs at genome extremities. (Top) A schematic indicates the frequency of TTAA sites, and thus possible transposable element integration sites, across the vaccinia virus-Copenhagen genome. Each bar represents 1kb of the genome, and the y-axis scale represents the frequency of TTAA sites within that 1kb of genome. (Bottom) A schematic outlining observed TTAA integration events within each respective 1kb of genome.
Distribution of TTAA motifs in vaccinia-Copenhagen

Insertion frequency of transposable element in vaccinia-Copenhagen
Figure 3.11. Transposable element integration at the level of messenger RNA. Reverse-transcription PCR of virus following 8-hour infection (MOI 10) of HeLa cells with the respective virus clones highlighted below each image. Primers were utilized that span the site of transposable element integration. The transposable element is approximately 1kb in size.
1. Wild-type Copenhagen cDNA - C9L primer pair
2. Uninfected cellular control cDNA - C9L primer pair

i. Wild-type Copenhagen cDNA - gene-specific primer pair
ii. cDNA from select library clone - gene-specific primer pair
iii. Uninfected cellular control cDNA - gene specific primer pair
iv. cDNA from select library clone - C9L primer pair
differed was the treatment conditions of original cells from which the original RNA was extracted – it was from wild-type Copenhagen-infected cells, from an infection of cells with the selected clone, or from uninfected cells, respectively. As can be observed by the shift of bands in each of the lanes i and ii, the approximately 1,000 bp transposable element is present at the level of the transcript in each of the select clones.

Following confirmation of insertion at both the genomic and transcriptomic levels, the next question was how this insertion affected translation of mutagenized genes. Assays were designed to probe the presence or function of the viral proteins following insertion of the transposable element. Immunoblotting was performed against the viral proteins F11, K7, and A36; in the case of F11, an affinity-purified antibody against the residues 101-120 was used, while an unpurified anti-serum against the full-length protein was used in the case of viral K7, and a polyclonal antibody against residues 142-214 was used for A36. When cells were infected at a MOI of 10 for eight hours with the select viruses labeled in Figure 3.12A, viral protein levels could be clearly detected with the probes mentioned above. When inserting into VACV-Copenhagen F11L approximately 30% of the way through the gene, the antibody used in this assay detected no production of protein. Similarly, when inserting into VACV-Copenhagen K7R approximately 30% of the way through the gene, full-length anti-K7 anti-serum was unable to detect the presence of any viral protein. Finally, when inserting in VACV-Copenhagen A36R approximately 90% of the way through the gene, the antibody used in this assay detected no production of protein. In each of these cases, there was also no truncated mutant proteins produced of smaller size detected. In all cases, these Western blot results suggest that insertional mutagenesis using the transposable element in this study leads to the knockout of viral protein.
To confirm this at the functional level, a functional assay was performed that has previously been optimized in the Bell laboratory225. VACV-Copenhagen B19 is a functional homologue of B18 in other VACV strains, which is known to be a secreted protein able to sequester Type I and II interferons. Furthermore, VSV\textDelta51 is a virus with known neutralization sensitivity to Type I and II interferons and is unable to productively infect cells in their presence. Therefore, the presence of a functional protein that is able to sequester these anti-viral cytokines would create an \textit{in vitro} microenvironment that allows replication of VSV\textDelta51 to proceed. In this experiment, 786-O cells were infected with either wild-type Copenhagen or Tp 203 (B19R, 0.6); supernatants from these cultures were transferred onto fresh 786-O cells following overnight culture, and VSV\textDelta51 was used to inoculate. Several independent replicates and conditions were utilized, and Figure 3.12B presents representative results in which VSV\textDelta51 is able to robustly replicate in cells whose supernatant contains a functional VACV-Copenhagen B19, while not in those whose supernatants contains a functionally knocked out B19 (Tp 203). Taken together Figure 3.12 demonstrates that the production and/or function of select affected proteins in this randomly mutagenized VACV-Copenhagen library is eliminated.

3.2.3. \textit{Understanding the effects of insertional mutagenesis on viral replication}

Following the creation of this library and the verification that the VACV-Copenhagen clones that compose it are functional, the challenge was to meaningfully screen each of them to advance our understanding of VACV from an OV perspective. Because each of the insertion mutants contains an mCherry transgene, early studies with these viruses revealed a fundamental characteristic that could be exploited for experimental gain: that red fluorescence increases with increasing length and/or multiplicity of infection (Figure 3.13A). This fluorescence can be reliably quantified with the appropriate tools, and it was observed that each virus produced the same shape
Figure 3.12. Protein-level mutagenesis observed in select insertion mutants. (A) Immunoblot analysis using probes against the vaccinia virus proteins F11, K7 and A36. Anti-beta-Tubulin is used as a cellular control. (B) Supernatant transfer experiment with functional (wild-type) or dysfunctional (Tp 203; B19R, 0.6) vaccinia virus-Copenhagen protein B19. Vesicular Stomatitis Virus-delta 51-GFP is able to productively infect cells in the presence of functional B19 (wild-type), while unable to productively infect cells when Type I and II interferons are present.
Figure 3.13. The direct relationship between infectious virus input and fluorescence intensity. (A) As virus infects cells of the read-out cell line, U-2 OS, fluorescence intensity increases proportionally to the concentration of virus and/or the time of infection. This intensity can be accurately quantified, plotted in a logarithmic fashion, and be observed to increase in a manner that is directly proportional to the amount of virus that is inputted to the system. (B) A virus-fluorescence intensity plot for Tp 69 (C15L; 0.7) and (C) A virus-fluorescence intensity plot for Tp 335 (intergenic), which are the lowest and highest fluorescence-producing viruses in this library, respectively. A non-linear power regression equation was generated by solving for the power regression.
of virus concentration vs. fluorescence intensity curve. Critically for this research project, it was observed that this is a direct relationship that begins shortly after the production of fluorescence and continues until the system (a single well in a tissue culture plate, for example) is fluorescently quenched. Interestingly, it was also observed that there is significant variability in the amount of fluorescence produced by each respective clone, and that this intensity of fluorescence is independent of the amount of virus in the system. In Figure 3.13B and C, representative virus vs. fluorescence intensity curves are presented for the viruses that were later found to reliably produce the lowest and highest values of fluorescence intensity – Tp 69 (C15L, 0.7) and Tp 335 (intergenic insertion), respectively. This shows that there is a range of fluorescent outputs that are produced by viruses in this library. What this makes clear is that direct output of fluorescent intensity by itself cannot be used as a surrogate for virus production when comparing across viruses. A method to gain meaningful replication data using this approach therefore needed to be optimized.

Typically, VACV virus concentration would be quantified on U-2 OS cells, which act as a standardized read-out cell line across experiments. As previously demonstrated in Figure 2.1, an assay was developed so that U-2 OS could be utilized as such, however the read-out itself would change from plaque assay to fluorescence output. Since comparing direct fluorescence output across virus clones is inappropriate given their unique fluorescence characteristics, and since the virus input versus fluorescence intensity curves are shaped characteristically as outlined in Figures 3.13B and C, it was determined that the fold-change from input virus to output virus could be utilized as a surrogate for virus replication. In work that optimized the utilization of such principles to screen a large panel of cells, cells from the patient-derived primary melanoma culture Patient 12-2016 were infected with each of the virus clones in the library at a MOI of 0.1 for 36 hours. Following this period of replication, U-2 OS cells were infected with both the same input virus
that originally infected the patient-derived primary cells as well as the output virus produced following 36 hours of infection. Fluorescence output was measured after 27 hours, and fold-change fluorescence was calculated from input to output; the greatest fold-change value was arbitrarily set at 1 and all other values plotted as a fraction of the greatest. These values are plotted in Figure 3.14A and range from approximately 0.16 to 1, representing a 6.33-fold change from the lowest producing virus to the highest producing virus. To confirm the validity of these results, standardized plaque assays were performed for each of the replicates used in the calculation of such values. In standard terms, these values correlated to a viral output of 4.9×10^4 PFU at the low end to a viral output of 3.1×10^5 PFU at the high end (Figure 3.14B). This represents a 6.25-fold change in virus output across the spectrum of viruses in the library. Interestingly, these optimization assays were performed on several cell lines ($n = 9$) using these conditions and this high degree of fold-change correlation was consistent between values of fluorescence output and PFU output in each case (data not shown).

As this data emerged, patterns of replication were observed that led to new questions about virus–host interactions and how genetically unique host cells may tolerate robust replication of some virus clones but not in others, while other cell lines may provide the optimal conditions for replication of other distinct virus strains. As such, this fluorescent-based approach to the study of viral replication was tailored for a larger panel of cell lines that represented diverse clinical indications and molecular subtypes of cancer. In addition, patient-derived cancer cell lines were studied, as were select normal cell lines. In total, 41 cell lines were screened using this approach; these cell lines include six patient-derived primary cultures of cancer, two normal (non-transformed) human cell lines, 31 members of the NCI-60 cell panel, as well as HeLa and U-2 OS
Figure 3.14. Differential replication of virus clones in a patient-derived melanoma cell line.
(A) Cells derived from Patient 12-2016 were used to assess differential replication following 36-hour infection. Plotting fold-change of fluorescence demonstrates significant replication variability amongst unique viral clones. Red and green bars denote the poorest and best replicating clones, respectively. (B) By traditional titration methods, the difference in virus output following 36-hour infection is plotted for those two clones. (One-way ANOVA was performed following titration by plaque assay)
A

Relative fluorescence fold-change

Infectious virus particles (PFU)

Unique Virus Clones

B

Infectious virus particles [PFU]

P = 0.0033

Lowest Highest

Relative fluorescence fold-change
cells. The final output from the cancer cell lines in this experiment is presented in the form of a heat map in Figure 3.15 in which a green box represents a virus clone that is amongst the best replicating viruses in the library for a given cell line and a red box represents a virus clone that is amongst the poorest-replicating viruses in the library for a given cell line. The replication data has been normalized to input across the spectrum of cell lines, and as in the previous figure, the most robustly-replicating virus in each cell line was assigned a value of 1. Furthermore, in cases of multiple virus clones with insertions in the same gene, the clone that was plotted for graphical purposes is the clone with the site of insertion that is the most upstream in the gene following the viral gene start site. With the data presented in this manner, VACV-Copenhagen genes that most impact virus replication in this context can be easily identified.

3.2.4. Effects of insertional mutagenesis on cytotoxicity and viral spread

To complement this viral replication data, viral-induced cytotoxicity and cell-to-cell spread were studied by way of plaque size assays. The first attempt to understand the effects of insertional mutagenesis on plaque size were made in the human cervical carcinoma cell line HeLa. As a control in these experiments, wild-type Copenhagen was used as there was no dependence on transgene expression. The size of plaques formed by each of the virus clones were plotted and are presented in Figure 3.16A. The breadth of important data from this experiment is clear, however several specific observations have been highlighted in this figure. Interestingly, insertional mutagenesis of the VACV-Copenhagen gene A47L resulted in plaques that were significantly larger than any other mutants in the library. These clones have been highlighted green in Figure 3.16A and the phenotypic observations are nearly identical in each of the three mutants with A47L insertions (Tp 326, A47L, 0.1; Tp 243, A47L, 0.2; Tp 250, A47L, 0.6). On the other end of the spectrum, plaques formed by mutants with F15L interruptions have been highlighted in red in
Figure 3.15. Differential viral replication on a panel of 39 cancer cell lines. A schematic representation of relative replication of each clonal virus across a large panel of cancer cell lines. Each column represents an individual heat map, which allows clonal virus replication results within each cell line to be compared.
Figure 3.16. Mean plaque size of virus clones in HeLa cells. (A) After 48 hours infection of HeLa cells, the diameter of formed plaques was measured and plotted. On the left of the figure, the red-blue-red-labeled data points correspond to the respective virus clones in (B). Similarly, the green-labeled data points on the right of A correspond to the A47L clones highlighted in green in figure (B). Results from independent plaque measurements are plotted (n = 20).
A

Unique Virus Clones

ΔTK-Wyeth

Wild-type Copenhagen

Plaque diameter (mm)

B

Tp 61 (F15L, 0.8) Tp 279 (F11L, 0.3) Tp 311 (F15L, 0.3)

Tp 250 (A47L, 0.6) Tp 326 (A47L, 0.1) Tp 243 (A47L, 0.2)

Plaque Size:
Figure 3.16A and are significantly smaller than wild-type Copenhagen. There are two mutants with such interruptions in this library (Tp 311, $F15L$, 0.3; Tp 61, $F15L$, 0.8), and both display the same plaque size phenotype in this experiment. Interestingly, the well-described VACV gene $F11L$ is also represented in this library by insertional mutagenesis (Tp 279, $F11L$, 0.3) and the plaque phenotype observed is consistent with what would be expected of a F11 protein knockout, which is also consistent with the Western blot data presented in Figure 3.12A. Images of the plaques produced by each of the six virus clones discussed are presented in Figure 3.16B.

Given the striking results of studying plaque size in HeLa cells, similar studies were performed on additional cell lines. Figure 3.17A presents results from the same experiment on the human melanoma cell line M14. M14 cells are more sensitive to killing by VACV and cell-to-cell spread occurs more readily (as can be observed by the relatively large plaques in Figure 3.17B), however there is interestingly less infectious progeny produced from these cells when compared to HeLa cells. From these experiments, similar results were obtained as with HeLa cells – insertion mutants in VACV-Copenhagen $A47L$ were observed to produce significantly larger plaques than any other clone in the library, and plaques produced by insertional mutagenesis of $F11L$ and $F15L$, respectively, were small. Another interesting observation of note in this experiment was the relatively small plaques produced by the current leading VACV-based clinical candidate OV, ΔTK-Wyeth. As previously discussed, this virus is built on the VACV-Wyeth backbone, and such results are consistent with those observed with wild-type Wyeth (Figure 3.6).

3.3. Investigating the role of vaccinia virus genes $F15L$ and $A47L$

3.3.1. Effects of pathogen-host interactions on viral cytotoxicity and spread

These studies were expanded on the human prostate cancer cell lines PC-3 and DU-145. Including the results discussed in Figures 3.16 and 3.17, quantitative values for plaque sizes
Figure 3.17. Mean plaque size of virus clones in a melanoma model. (A) After 48 hours infection of M14 melanoma cells, the diameter of formed plaques was measured and plotted. On the left of the figure, the red- and blue-labeled data points represent the colour-correspondent virus clones highlighted in B with insertion sites in F11L and at different points in F15L, respectively. Similarly, the green-labeled data points on the right of the figure correspond to the plaques formed by the A47L clones highlighted in green in figure B. Also, highlighted in A are the size of the plaques formed by ΔTK-Wyeth and wild-type Copenhagen strains. Plotted are results from independent plaque measurements (n = 20).
A

Unique Virus Clones

Plaque diameter (mm)

Wild-type Copenhagen

ΔTK-Wyeth

B

Plaque Size:

- **Tp 279 (F11L, 0.3)**
- **Tp 311 (F15L, 0.3)**
- **Tp 61 (F15L, 0.8)**

- **Tp 250 (A47L, 0.6)**
- **Tp 326 (A47L, 0.1)**
- **Tp 243 (A47L, 0.2)**
produced by clones Tp 311 \((F15L, 0.3)\) and Tp 326 \((A47L, 0.1)\) are plotted in Figure 3.18. As can be observed, the patterns discussed previously are not statistically significant in each case (note the lack of statistical significance between plaques produced by wild-type Copenhagen and Tp 311 in the human melanoma cell line M14), and the addition of further cell lines makes clear that the observed relationships in HeLa and M14 cells do not hold true in the prostate cancer cell lines in this experiment. Furthermore, plaques produced by each of the VACV-Copenhagen \(A47L\) mutants are not the same size as one another (data not shown), which suggests a role for this gene in cytotoxicity and/or cell-to-cell spread in some molecular sub-types of cancer (or in certain disease indications), but not in others. Taken together, these observations provide further evidence for the complexity of the pathogen–host interaction in this context.

To further expand the observations that were made in these plaque size experiments, select virus clones were used to expand the study across a larger panel of cell lines. As such, cell lines from the NCI-60 panel were chosen on which to perform these experiments and infection was allowed to proceed for 72 hours – selection criteria included cells that were known to be adherent in culture and cells whose growth characteristics resulted in a density that were appropriate for these assays. Furthermore, the experiment was supplemented with the tumour-derived primary culture Melanoma Patient 12-2016 as well as with the human osteosarcoma cell line U-2 OS. Of greatest interest to this research project, results for both Tp 311 \((F15L, 0.3)\) and Tp 326 \((A47L, 0.1)\) are plotted in Figures 3.19A and B, respectively, versus results obtained for wild-type Copenhagen in the same cell lines. From these studies, there are many interesting observations to be made that speak to currently-undescribed functions of both VACV-Copenhagen \(F15L\) and \(A47L\). In 18 of the 20 cell lines studied, insertional mutagenesis of \(F15L\) led to the formation of smaller plaques. Of the two cell lines for which smaller plaque size was not observed, one was in
the human prostate adenocarcinoma cell line PC-3, which validates previous results at 48 hours of infection (Figure 3.18). The other was the human glioblastoma cell line SF 295. The results for insertion into VACV-Copenhagen A47L were less striking, however several interesting observations could also be made. Plaques were observed to be approximately the same size as those produced by wild-type Copenhagen in 11 of the 20 cell lines studied. Of the nine in which significant differences between wild-type Copenhagen and the A47L mutant were observed, the mean plaque size was interestingly observed to be smaller than wild-type in the human cell lines SNB 75, OVCAR.4, A549, and H460. The original finding of A47L mutant plaques being larger than wild-type Copenhagen at 48 hours in the human melanoma cell line M14 and the prostate adenocarcinoma cell line PC-3 were confirmed at 72 hours, and this finding was strengthened with the addition of similar results in the tumour-derived primary cells from Melanoma Patient 12-2016, the glioblastoma cell line SF 295, and the ovarian carcinoma cell line OVCAR.8. In addition to a study of the functional effects of insertional mutagenesis on VACV-Copenhagen F15L and A47L, one of the striking plaque-size phenotypes discussed earlier was that observed with the F11L mutant. VACV F11 is a well-described protein that is known to fundamentally modulate various aspects of the host cell cytoskeleton in the process of VACV shuttling and egress. One would expect that a deletion of this protein would lead to the production of plaques that are significantly reduced in size compared to wild-type Copenhagen. Across the 20 cell lines on which these studies were completed, this is indeed what was observed; the results are summarized in Table 3.2.

When a dynamic range of plaque size is observed across mutant VACV clones, questions can remain as to the mechanism behind this finding. For clones that are observed to induce the formation of larger plaques, it is possible that viral replication is simply more efficient and the burst size is significantly larger, or it may be that the clone in question more readily produces EEV.
Figure 3.18. 48 hour plaque size of select clones in four different cancer models. Plaque sizes formed by 3 unique virus clones are plotted – Tp 311 (F15L, 0.3), wild-type Copenhagen, and Tp 326 (A47L, 0.1). Results plotted are a result of independent plaque measurements (n = 20). (One-way ANOVA, ns = not significant, **P < 0.01, ***P < 0.001, ****P < 0.0001)
Figure 3.19. Formed plaques at 72 hours post-infection in a large panel of cancer cell lines. 20 cell lines were used to study plaque size formation and determine whether cell effects could be responsible for differential plaque formation. Three unique virus clones – Tp 311 (F15L, 0.3), wild-type Copenhagen, Tp 326 (A47L, 0.1) – were utilized. (A) Results plotted for wild-type Copenhagen versus Tp 311 (F15L, 0.3). Each pair of unique symbols represents results from an independent cell line, denoted in the figure legend. In each pair, wild-type Copenhagen is plotted first, followed by Tp 311. (B) Results plotted for wild-type Copenhagen versus Tp 326 (A47L, 0.1). Each pair of unique symbols represents results from an independent cell line, denoted in the figure legend. In each pair, wild-type Copenhagen is plotted first, followed by Tp 326. Results plotted are the results of independent plaque measurements (n = 35, where possible). (One-way ANOVA between wild-type Copenhagen and Tp 311 or Tp 326, respectively; ns = not significant, *P < 0.05, **P < 0.01, ***P<0.001, ****P < 0.0001)
<table>
<thead>
<tr>
<th></th>
<th>Tp 311 F15L</th>
<th>Tp 326 A47L</th>
<th>Tp 311 F15L</th>
<th>Tp 326 A47L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel Pt. 12-2016</td>
<td>****</td>
<td>***</td>
<td>****</td>
<td>ns</td>
</tr>
<tr>
<td>M14</td>
<td>****</td>
<td>**</td>
<td>*****</td>
<td>***</td>
</tr>
<tr>
<td>UACC 62</td>
<td>***</td>
<td>ns</td>
<td>H460</td>
<td>**</td>
</tr>
<tr>
<td>SK MEL 2</td>
<td>*</td>
<td>ns</td>
<td>BT 549</td>
<td>**</td>
</tr>
<tr>
<td>SNB 75</td>
<td>****</td>
<td>***</td>
<td>MDA-MB-231</td>
<td>**</td>
</tr>
<tr>
<td>U251</td>
<td>*</td>
<td>ns</td>
<td>786-O</td>
<td>****</td>
</tr>
<tr>
<td>SF 295</td>
<td>ns</td>
<td>***</td>
<td>ACHN</td>
<td>**</td>
</tr>
<tr>
<td>SF 268</td>
<td>***</td>
<td>ns</td>
<td>HCT 116</td>
<td>****</td>
</tr>
<tr>
<td>OVCAR.4</td>
<td>****</td>
<td>****</td>
<td>PC-3</td>
<td>ns</td>
</tr>
<tr>
<td>OVCAR.8</td>
<td>****</td>
<td>***</td>
<td>U-2 OS</td>
<td>***</td>
</tr>
</tbody>
</table>
Table 3.2. Plaque size comparison between wild-type Copenhagen and the F11L mutant. Plaque size formation after 72 hours of infection. (Statistical annotations represent results from one-way ANOVA comparing results between wild-type Copenhagen and Tp 279, **P < 0.01, ***P < 0.001, ****P < 0.0001)
<table>
<thead>
<tr>
<th>Disease site</th>
<th>Cell Line</th>
<th>Mean wild-type Copenhagen plaques (mm (SD) [n])</th>
<th>Mean Tp 279 (F11L, 0.3) plaques (mm (SD) [n])</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>Pt. 12-2016</td>
<td>2.018 (0.253) [35]</td>
<td>1.611 (0.248) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>M14</td>
<td>1.951 (0.346) [35]</td>
<td>1.226 (0.185) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>UACC 62</td>
<td>2.173 (0.344) [35]</td>
<td>1.491 (0.164) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>SK MEL 2</td>
<td>1.911 (0.209) [35]</td>
<td>1.183 (0.140) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>SNB 75</td>
<td>1.907 (0.351) [35]</td>
<td>1.058 (0.131) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>U251</td>
<td>3.125 (0.642) [35]</td>
<td>2.134 (0.374) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>SF 295</td>
<td>1.847 (0.401) [25]</td>
<td>1.340 (0.220) [25]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>SF 268</td>
<td>2.198 (0.391) [35]</td>
<td>1.584 (0.213) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Ovaries</td>
<td>OVCAR.4</td>
<td>1.214 (0.187) [35]</td>
<td>0.891 (0.104) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>OVCAR.8</td>
<td>1.829 (0.273) [35]</td>
<td>1.268 (0.156) [35]</td>
<td>****P = 0.0001</td>
</tr>
<tr>
<td></td>
<td>SK-OV-3</td>
<td>2.027 (0.191) [35]</td>
<td>1.205 (1.132) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Lung</td>
<td>A549</td>
<td>1.078 (0.098) [35]</td>
<td>0.727 (0.055) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>H460</td>
<td>0.809 (0.148) [35]</td>
<td>0.704 (0.099) [35]</td>
<td>****P = 0.0009</td>
</tr>
<tr>
<td>Breast</td>
<td>BT 549</td>
<td>2.742 (0.388) [25]</td>
<td>1.877 (0.189) [25]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>MDA MB 231</td>
<td>3.393 (0.726) [10]</td>
<td>1.672 (0.329) [25]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Renal</td>
<td>786-O</td>
<td>2.330 (0.281) [25]</td>
<td>1.568 (0.204) [25]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td></td>
<td>ACHN</td>
<td>2.192 (0.408) [15]</td>
<td>1.836 (0.198) [25]</td>
<td>**P = 0.0054</td>
</tr>
<tr>
<td>Colorectal</td>
<td>HCT 116</td>
<td>1.715 (0.330) [35]</td>
<td>0.998 (0.167) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Prostate</td>
<td>PC-3</td>
<td>2.660 (0.391) [35]</td>
<td>2.188 (0.294) [35]</td>
<td>****P < 0.0001</td>
</tr>
<tr>
<td>Bone</td>
<td>U-2 OS</td>
<td>2.861 (0.583) [25]</td>
<td>1.757 (0.358) [13]</td>
<td>****P < 0.0001</td>
</tr>
</tbody>
</table>
To qualitatively assess the ability of select mutants to produce EEV, comet assays were performed on HeLa cells. As can be observed in Figure 3.20, there is a range of observed ability of select virus clones to produce significant satellite plaques. As previously demonstrated in Figure 3.7B, wild-type Copenhagen is able to produce satellite plaques to the point that tangible comets are observed, suggesting that more EEV are produced with this VACV strain than others; the results in this experiment confirmed those previously observed. Interestingly, insertional mutagenesis of VACV-Copenhagen F11L, F15L, and A47L was observed to significantly alter the degree of satellite plaque formation in HeLa cells. As expected, the F11L mutant was not observed to produce significant EEV or comet formation. Similarly, although the effect was less pronounced than with F11L, the F15L mutant was not observed to produce significant comet morphology in the crystal violet-stained monoculture, however rare exceptions were noted and can be observed in Figure 3.20. In contrast to virus mutants that are unable to produce appreciable EEV, the A47L mutants were able to produce comets with a diffuse pattern of satellite plaque dispersion compared to that observed with wild-type Copenhagen. Of additional note is the ability of the K7R insertion mutant to produce appreciable EEV and large comets. In contrast to the large comets observed with A47L mutagenesis, these were smaller, however cell cytotoxicity was more evident and demarcation of original and satellite plaques was well defined. Of interesting comparison in this assay was the inclusion of the leading VACV OV ΔTK-Wyeth, which was observed to be unable to produce appreciable satellite plaques, however well-defined plaques were evident; this finding is consistent with the inability of wild-type VACV-Wyeth to produce comets (Figure 3.6).

3.3.2. Protein-level conservation of Vaccinia virus F15 and A47

The data presented thus far is proving informative in the design of a superior next-generation VACV-based OV and there are also several observations that can add to the
Figure 3.20. Extracellular enveloped virus and comet production of select virus clones.
Highlighted virus clones were allowed to infect HeLa cells for 96 hours and clones of interest are presented. Tp 279 (F11L, 0.3) and Tp 311 (F15L, 0.3) demonstrate impaired ability to produce qualitatively appreciable extracellular enveloped virions. Conversely, Tp 326 (A47L, 0.1) and Tp 344 (K7R, 0.3) demonstrate larger comet formation than wild-type Copenhagen. The clinical candidate oncolytic virus ΔTK-Wyeth was also used in this assay and results are presented here.
Wild-type Copenhagen

F15L insertion

A47L insertion

F11L insertion

ΔTK-Wyeth

K7R insertion
understanding of VACV functional genomics. Chief amongst these are the roles that are played by the VACV genes *F15L* and *A47L*, respectively. Currently, VACV *F15L* is an undescribed gene with unknown protein function(s); A47, conversely, has been described, however it has been described primarily for its important role in the priming of CD8 T cells, and specifically to not be involved in viral growth or plaque phenotype. To gain a sense of the importance of these two proteins amongst the broader family of Poxviridae, an amino acid-level homology study was performed. The results of that for VACV-Copenhagen A47 are presented in Figure 3.21A. Homologues were identified in 12 divergent species. Nearly 100% sequence homology was identified in each of the four additional clinical candidate wild-type VACV strains presented in this study, as well as in horsepox, rabbitpox and ectromelia viruses. Also closely related, however sharing a sister group and a common ancestor to one another, are the A47 homologues in variola and camelopox viruses. More distantly related, however still at over 80% amino acid homology is a third major clade containing the A47 homologues of raccoonpox, volepox, and skunkpox. These data are also plotted in Figure 3.21B as a similarity plot, which allows for the easy comparison of amino acid sequence homology amongst all of the species discussed.

A similar analysis was performed for the amino acid sequence of VACV-Copenhagen F15. Interestingly, this as-of-yet undescribed protein was found to be highly-conserved amongst divergent Poxviridae species, which has been plotted on Figure 3.22A. It was found to have homologues in a total of 19 species with differing levels of homology. In the A47 analysis presented in Figure 3.21, there were nine species with over 90% homology to the VACV-Copenhagen variant of A47. In the case of F15, these nine species shared nearly 100% amino acid homology. There was also found to be nearly 100% sequence homology between the VACV-Copenhagen F15 and its monkeypox virus homologue, a virus which was not represented in Figure
Figure 3.21. Phylogenetic and conservation analysis of vaccinia virus-Copenhagen A47. (A) A phylogenetic tree of the Copenhagen protein A47 shows that it shares a common ancestral lineage with homologues in other vaccinia virus strains, as well as within horsepox and rabbitpox viruses, respectively. (B) Similarity analysis of Copenhagen A47 with homologues in species identified in the phylogenetic tree presented in A. The Copenhagen A47 amino acid sequence is conserved in closely-related species, denoted by orange squares.
Figure 3.22. Phylogenetic and conservation analysis of vaccinia virus-Copenhagen F15. (A) The F15 protein of Copenhagen is highly conserved across all available strains of vaccinia virus as well as within other viruses within the Poxviridae family. (B) Similarity analysis of Copenhagen F15 compared with all viruses presented in the phylogeny above. Orange squares denote the intersection of viruses that share the most highly conserved amino acid sequences of F15.
3.21. Also, notable amongst those viruses that shared high homology was each of the other wild-type VACV strains that were studied in this research project. Similar to the amino acid phylogeny presented for A47, a small sister group was formed by the F15 homologues of raccoonpox virus, volepox virus, and skunkpox virus at 80-90% homology with the VACV-Copenhagen homologue but nearly 100% homology to one another. Finally, a more divergent clade exists for homologues of this protein, however the sequence homology is lower than that described for the above-mentioned species. Swinepox virus, deerpox virus, myxoma virus, sheeppox virus, Lumpy skin disease virus, and goatpox virus were all found to have a homologue of VACV-Copenhagen F15, however amino acid sequence homology was found to be between 60-80%. All were also found to share a common F15 ancestor with one another at some point in their evolution. Interestingly, three viruses which have been said to be nearly antigenically indistinguishable from one another – goatpox virus, sheeppox virus, and Lumpy skin disease virus, were observed to have homologues of F15 which share nearly 100% amino acid sequence homology. Despite the high conservation of this protein amongst divergent species in the family, no predicted functional domains are present and the mechanism of the observed phenotype remains to be elucidated.

3.3.3. Understanding the in vivo virulence of vaccinia virus F15

To gain a further understanding on the effects of VACV-Copenhagen F15 on VACV virulence, in vivo toxicity assays were performed in which immunocompetent mice received three intranasal inoculations of 8×10^6 PFU of virus over a period of five days. Including the first day of virus inoculation and each day thereafter, mice were weighed and the results are plotted in Figure 3.23. The results observed support the hypothesis that the F15 mutant viruses may have a larger burst, however produced virions are not proficient at spreading to distant cells. Due to the doses selected, mice treated with wild-type Copenhagen were not observed to lose significant
Figure 3.23. Vaccinia virus F15 is a survival factor. Female Balb/c mice (n = 5 per group) were injected intranasally with 8 x 10^6 PFU of select viruses on days 1, 3, and 5. Mice injected with Tp 311 (F15L, 0.3) experienced a significantly increased weight loss that was observed following the second virus injection compared to those animals infected with wild-type Copenhagen. The observed weights of all treated animals did return to baseline 2 weeks following initial virus infection. (One-way ANOVA between wild-type Copenhagen and Tp 311, ***P<0.001; no statistically-significant differences were observed between animals treated with a vehicle control and wild-type Copenhagen)
Proportion of original weight

Days post virus injection

Vehicle
Wild-type Copenhagen
Tp 311 (F15L, 0.3)
weight, while those treated with Tp 311 (F15, 0.3) were observed to lose significant weight compared to both vehicle control and, notably, mice treated with wild-type Copenhagen. These results suggest that the loss of VACV F15 may produce a more pathogenic virus strain than wild-type Copenhagen.
4. Discussion and Conclusions

4.1. Necessity for oncolytic virus backbone bioselection

For nearly two decades, the field of OV therapeutics has matured rapidly and with a clinical and translational focus. Clinical candidate OVs have been selected and tested quickly and with variable results. In the case of several candidate viruses, moderate clinical successes have been observed, which has led to the field’s current situation in which dozens of clinical trials are underway and one OV that is fully approved for clinical use in the United States, Europe, and Australia227. This rapid pace of development is understandable and justified by the nature of the common clinical course of cancer. However, this translational appetite has also created a situation in which our understanding of the mechanisms of action of OVs is incomplete, evidenced by recent fundamental discoveries which have broadened our understanding of their utility56,59,60. Unfortunately, this rapid pace of clinical translation has also perhaps pressured the innovators in the field to settle on clinical products whose phenotypic characteristics are not optimal, thus providing most patients with less efficacious treatments thus far than pre-clinical data would suggest is possible. This phenomenon certainly impacts many characteristics of a virus, however even at the most basic level of strain-specific backbone selection, data has not been gathered in many cases to support the use of selected strain(s).

As described throughout this thesis, VACV is a large double-stranded DNA virus with known capacity to encode large transgenes. It also has an extensively-characterized and well-understood safety profile for use in humans due to its role in the WHO’s smallpox eradication campaign228. Because of these and other properties, there is a high level of interest in VACV as a therapeutic platform. However, these characteristics also contribute to the biologic complexity of VACV; much remains to be elucidated despite its status as one of the most well-studied viruses.
From the perspective of a potential OV platform, a systematic study of VACV backbone candidates is yet to be completed. As such, there is a great deal of diversity of VACV backbones (wild-type strains) on which current OV candidates are built. Therefore, there is also an accompanying diversity in therapeutic benefits that have been observed with these products. Despite pre-clinical data that supports the oncolytic activity of these OVs, the one common theme that has plagued VACV OV candidates thus far is the lack of clinical efficacy. Simply, oncolytic VACV candidates have thus far proven to be too attenuated in their growth and spread for wide-ranging clinical utility. Currently, there are two VACV products in clinical trials – PexaVec and GL-ONC1, built on the Wyeth and Lister backbones, respectively. Advanced planning is also in progress for clinical trials with WO-12, an OV candidate built on the Western Reserve strain of VACV and recently acquired by Pfizer. With the goal of establishing a superior next-generation oncolytic VACV candidate, we sought to understand the phenotypic properties of each of the clinical candidate strains in an effort to select the least attenuated strain on which to build.

As demonstrated throughout Chapter 3.1 of this research project, differential replication properties exist for each of the five wild-type clinical candidate strains that were tested. As demonstrated in Figure 3.1A, although the general replication kinetics of each of the tested strains is similar in the human embryonic carcinoma cell line HeLa, wild-type Copenhagen demonstrates the production of increased progeny compared to other strains. This increased virus progeny is due to an increase in the viral burst size for Copenhagen-infected cells, leading to increased progeny as early as 12 hours post-infection (data not shown). The production of relatively greater infectious progeny peaked at 48 hours post-infection, a relationship with other wild-type strains which was observed to be relatively unchanged up to 96 hours post-infection (data not shown). This interesting observation led to the question of whether this effect was due to the fundamental
biology of VACV-Copenhagen compared to each of the other strains. Therefore, replication studies in several other in vitro cancer models were pursued. Interestingly, this phenomenon of the greater production of infectious progeny by VACV-Copenhagen compared to all other wild-type strains was observed to be consistent across each in vitro cancer model tested. Shown in Figure 3.2 are results obtained for human melanoma, renal cell carcinoma, prostate carcinoma, and colorectal adenocarcinoma. An addition to the array of viruses tested was the current leading VACV clinical candidate ΔTK-Wyeth, which consistently underperformed in terms of viral replication compared to each of the wild-type strains, including the Wyeth strain upon which it is built. The current VACV OV candidate contains attenuating mutations in the viral thymidine kinase gene J2R and a natural truncation of the interferon-scavenging gene B18R (B19R in Copenhagen). Interestingly, deletion of B18R has been shown to have a relatively neutral effect on the output of infectious progeny (Figure 3.15), however also leads to a diminished toxicity in vivo229. This relative lack of effect of B18R deletion on viral output coupled with the known genotype and observed replication of ΔTK-Wyeth throughout Figure 3.2 brings into question the overall attenuating effects of viral thymidine kinase deletion. To our knowledge, these simple replication studies provide the first evidence for the superior replication ability of VACV-Copenhagen in the context of head-to-head in vitro growth in immortalized cancer cell lines.

To position ourselves for the long-term goal of developing a superior clinical candidate oncolytic VACV, it was important to investigate whether these findings would remain consistent in more clinically-relevant specimens and non-immortalized cell cultures. To this end, surgical specimens were collected from several patients undergoing tumour debulking surgery for melanoma at the Ottawa Hospital. The original specimens obtained were histologically confirmed to be from melanoma tumours, both by hematoxylin and eosin staining, but also by a board-
certified pathologist as noted in confidential clinical records. Furthermore, the primary cultures generated were confirmed to retain expression of the melanoma markers MelanA, Tyrosinase, and S100 at the RNA level. This type of identification confirmation is critical to research such as this because of the behavior of OV's (known as the oncolytic paradigm), but also because of the logistical challenges associated with tumour specimen retrieval and primary culture generation. Possibility exists for the gross identification of cancer on tissue acquisition that is later confirmed to not be histologically-representative of such a diagnosis. Furthermore, when the successful acquisition of a cancer specimen has occurred, this specimen is undoubtedly representative of a diverse and complex tumour microenvironment that consists of more than simply transformed cancer cells. Likely, and as confirmed by the tissue sections from which photomicrographs were obtained for Figures 3.3B and 3.4B (data not shown), the specimens can consist of extensive fibrosis, fatty deposits, and vascular cells, which can all impact the growth of a culture. It is possible, for example, for fibroblast outgrowth to overtake the growth of transformed cells in tissue culture, and therefore the confirmation of expression within these primary cultures of select diagnostic markers are important to the generation and maintenance of quality in vitro models. Finally, with our downstream translational interests, it is important to gain an understanding of whether in vitro viral replication data can translate into a meaningful replication advantage when a more realistic model is utilized. Presumably, an ex vivo model derived from an excised human tumour specimen, which itself was infected with the viruses of interest, could appropriately represent such a model. Although it was not tested in this project, tumour-derived primary cultures are likely complex in their composition due to the complexity of their origins and their short-term existence in culture.
For this research project, data is presented for two of the specimens from which primary cell cultures were generated. *Ex vivo* infection of tumour cores from Patient 12-2016 (Figure 3.3E) revealed a mean virus output that was highest for VACV-Copenhagen, however none of the findings were statistically significant. Due to tissue limitations, these experiments were performed in triplicate and the observed mean of replication advantage for VACV-Copenhagen compared to each of the other strains did not reach a statistically significant level. This may have been remedied with increased sample size, however it is also possible that challenges associated with the tumour microenvironment preclude productive viral infection or that VACV-Copenhagen simply does not possess a replication advantage in all cases. Interestingly, cells of the primary culture derived from this patient did support productive viral replication across all strains, however the previously-observed *in vitro* growth advantage for VACV-Copenhagen was likewise observed to reach significance at 24 hours post-infection and onwards. This data supports the finding that wild-type Copenhagen causes an increased viral burst size compared to the other wild-type strains.

Alternatively, specimens from Patient 13-2016 were infected *ex vivo* and the same amount of virus was recovered from each wild-type strain except for wild-type Copenhagen, for which approximately 600-fold greater infectious virus was recovered 72 hours post-infection. Interestingly, wild-type Copenhagen is also the only virus in these two experiments (Figures 3.3E and 3.4E) for which productive viral replication can be confirmed due to the recovery of more virus than was used to inoculate the specimen at baseline. This analysis suggests that VACV-Copenhagen would indeed be the best strain upon which to consider building an oncolytic VACV due to its ability to productively infect various cancer models. Additionally, cells of the primary culture derived from this specimen were able to host productive replication in each of the wild-type strains used across these experiments. However, such as in previous studies, VACV-
Copenhagen demonstrated a growth advantage which was maintained onwards from 48 hours post-infection.

To study the ability of these virus strains to replicate *in vivo*, nude mice were allowed to grow bilateral sub-cutaneous tumours of the human melanoma cell line M14. These tumours were infected intratumourally and their ability to host productive replication was studied when they were collected and processed at 72 hours post-infection. The hypothesis of this experiment was that these tumours would recapitulate what was observed *in vitro* in M14 melanoma cells, however results from this *in vivo* model were equivocal. Greater replication and virus recovery occurred from tumours that were infected with VACV-Copenhagen compared with each of the other strains, however this did not reach a statistical level of significance when compared with VACV-Tian Tan, which is a Chinese vaccine strain that one group is currently developing as an oncolytic vector. Interestingly, infected tumours that were recovered for immunohistochemistry analysis show infection throughout the tumours (data shown for VACV-Copenhagen, Figure 3.5Bii), which does not significantly differ across virus groups, however the gross morphology of the tumour treated by VACV-Copenhagen is unique. There is a central paucity of anti-VACV staining in these tumours that is characteristic of necrosis, which is a finding that was not observed in any of the other tumours. This finding suggests that, at the time of tumour recovery and fixation, there were fewer total infected cells in the tumours that were infected with VACV-Copenhagen due to the fact that many of the infected tumour cells had already undergone necrosis. Interpreted in this way, these data lend further support to the finding that VACV-Copenhagen is a superior platform on which to build a next-generation OV, however these processes would need to be systematically studied *in vivo* to conclusively make these claims.
With the finding that the observed replication capacity of VACV-Copenhagen in several relevant cancer models is greater than in other wild-type strains, other relevant OV characteristics of cytotoxicity and cell-to-cell spread were studied. As previously discussed, there are two distinct types of infectious VACV particles that differ from one another in their ability to infect neighboring cells following an actin tail-induced propulsion, or for their propensity to remain in the cytoplasm of intact cells until lysis. It is known that each of these distinct particles can have unique impacts on the appearance of viral plaques, which can also shed light on the ability of a select strain to induce cell death. Interestingly, plaques formed by VACV-Copenhagen are significantly larger than any of the other strains studied in this research project in HeLa cells, as can be observed in Figure 3.6. This increased clearance of cells in a monolayer strongly suggests that there is greater cell death with VACV-Copenhagen than any of the other strains, and that viral replication indeed correlates to viral-induced cytotoxicity. Furthermore, the clinical candidate ΔTK-Wyeth was observed to form plaques of similar size to the other wild-type strains studied.

As there is a prevalent idea in the literature that viruses with a propensity for EEV production may be better oncolytic candidates97,98, this property of each of the wild-type strains of virus was studied. As can be observed in Figure 3.7, HeLa cells 96 hours post-infection and under a liquid overlay show EEV release as characteristic comet formation, both when quantitative fractional titration is performed and also when qualitative analyses are performed. This finding is true of VACV-Copenhagen and VACV-Tian Tan only, however not the other three virus clones studied. The ability of these two strains to release greater EEV, and the importance of EEV release to a successful OV platform remains to be studied in depth, however these findings do speak to the unique biology of these strains compared to one another.
Taken together, these data suggest that VACV-Copenhagen has a replicative advantage over the other wild-type clinical candidate strains of VACV that were studied. This finding is consistent with other studies that date back as far as five decades, however no study to date has made an effort to characterize the oncolytic potential of unique strains of VACV in head-to-head studies and under controlled conditions, therefore resulting in its bioselection for therapeutic purposes. As discussed earlier, the clinical performance thus far for oncolytic VACV candidates has been variable – favourable treatment outcomes have only been observed in a minority of patients. To date, all patients to our knowledge that have undergone VACV cancer therapy have experienced toxicity, typically in the form of pox lesion development. It appears as though the thinking in the development of previous-generation OVs was to begin with highly-attenuated vaccine strains and modify their cancer specificity by genetic manipulation and/or their capacity to break immune tolerance with the addition of encoded cytokines. The result of these efforts are viruses that are too attenuated to induce oncolytic activity in the majority of patients, however have also been unsuccessful in eliminating virus-induced toxicities. It therefore appears clear that these viruses were developed with an incomplete understanding of their components and that this will need to be remedied in order to rationally design a superior clinical candidate OV, which was the main focus of this research project. In that sense, the compilation of data discussed thus far provides the necessary knowledge on which to build, which is the direction that was taken herein. However, in many other ways these data are hypothesis-generating and could be used as a foundation upon which to further understand the unique genetic aspects of these strains that lend to their unique phenotypes. Namely, what are the behaviors of these virus strains on normal non-transformed cells, and are they truly “oncolytic”? What are the baseline abilities of these unique virus strains to break cancer immune tolerance? What are the mechanisms that lead to a superior
burst size of VACV-Copenhagen? A more comprehensive study of these wild-type strains in vivo would also shed light on their suitability for use as OVAs, and answering any of the mechanistic questions posed would likely shed light on fundamental cell biology. In any case, the bulk of this research project was aimed at increasing our understanding of the genetic components of VACV as they relate to OV development.

4.2. Generating a vaccinia virus-Copenhagen mutant library

Before being able to sensibly select the genetic elements of VACV-Copenhagen that may contribute to the improvement of a clinical candidate OV, it was clear that a better tool to study the virus genome needed to be developed. To date in the study of VACV, a single tool has not allowed the comprehensive study of a large portion of the VACV genome. For the most part, this lack of a comprehensive tool has led to the functional definition of VACV genes on a single gene basis, with several genes remaining undescribed. The current preferred strategy to this end uses homologous recombination; a technique for using the CRISPR-Cas9 system has recently been described, however this was shown to be labour-intensive and has not been developed for widespread use. Groups that have tried to optimize an OV backbone using existing information have therefore been working with an incomplete functional picture of the viral genome. We sought to design, develop, and characterize a tool to address this shortcoming. Our selected methodology of TE insertional mutagenesis provides several advantages over traditional methods and the data presented in this research project demonstrates the ability for this tool to be utilized such that OV-relevant information can be gathered for many mutant clones at one time, which is amongst other potential uses for this tool. Not only has a VACV-focused library of guide RNAs that may be applied in a CRISPR-Cas9 approach not yet been produced, but the randomized nature of our insertional mutagenesis approach provides two clear additional benefits that can speak to the
biology of VACV. Namely, the potential for studying the active domains of select proteins into which insertion has occurred at multiple points, and secondly the potential for studying relative gene fitness using NGS-based technologies.

The design of our transposable element, as presented in Figure 3.8A, is such that successful insertion precludes the full translation of the mutagenized protein due to an amino terminus stop codon immediately downstream of the inserted TE ITR. Therefore, possibility remains for the partial production of mutagenized proteins, which may or may not affect protein function depending on the active domain of the function in question. There are many examples of this phenomenon in the literature and studying differentially-mutated proteins has indeed been a route of discovery of the active domains of VACV proteins in many cases. Furthermore, the synthetic early/late VACV promoter used in the TE likewise ensures the expression of the inserted mCherry transgene, which was also used as a selective strategy for the generation of this working library (Figure 3.8B). The fact that this selection methodology was used, importantly followed by plaque purification of mCherry-expressing virus plaques until 100% of plaques expressed this transgene, ensured the creation of a mutagenized working library composed of clonal viruses that retained the ability to produce fluorescence at each stage of their lifecycle.

As previously mentioned, one of the ways that TE mutagenesis has been recently used in the literature combines TE mutagenesis with NGS. Earlier studies used arrayed single gene mutant libraries, which exist for relatively few microorganisms, to study properties of interest namely in yeast231,232. It was clear that a method that would allow the high-throughput study of genes without the development of single-gene mutant libraries would be of interest for microorganisms, which led to the development of Tn-seq in 2010233. Thus far, this is an approach that has rarely been applied to viruses, and in fact has not been applied to VACV. Typically, bacteria have been the
focus of such studies and the seminal publication in this discipline focused on *Streptococcus pneumonia* and the ascription of fitness genes in contexts of interest. To date, Tn-seq has not been combined with the generation of a single-gene mutant library. The data presented in this research project demonstrates the ability to do so and demonstrates the ability to functionally characterize accompanying single-gene mutants in a high-throughput manner in contexts of interest. This research also hints at traditional applications of Tn-seq in the context of VACV, however the comprehensive NGS of our stored specimens will need to be completed to say this conclusively. Although data has not been presented herein that to support arguments around the relative fitness of VACV genes, the data presented does indeed hint at such arguments. Namely, presented in Figure 3.9 is a schematic of the insertion sites that are represented in the working library used throughout this research project. It is evident that the majority of insertion sites are located towards the extremities of the VACV-Copenhagen genome, which is an observation that correlates with what would be expected of a VACV mutant library that was constructed using the methodology that was used here. Based on what is known about divergent chordopoxviruses, approximately 100 genes located in the central region of the VACV genome exhibit remarkable conservation and even arrangement to other viruses; approximately half of these can also be found in entomopoxviruses. These genes are assumed or known to be involved in critical replication functions of this virus subfamily99, and as such functional insertional mutagenesis in this gene region would be predicted to generate non-viable virus clones. There are indeed only two insertion clones in this working library that were found to be in this highly conserved region: one was found in J2R and the other in J5L. Interestingly, J2 is the VACV thymidine kinase, modification of which is common in the OV field and is commonly thought to increase cancer selectivity of OVs by directing it to highly metabolic cells while retaining virus virulence. J5, on the other hand, is known to have a more
critical role in virus replication as it partially composes the VACV EFC. It is structurally related to two other EFC proteins, A16 and G9, which suggests a common evolutionary relationship and interestingly are not represented in this working library234. A critical point of note regarding this \textit{J5L} insertion mutant is that the insertion site is located at the 5’ end of the gene, shortly before the gene’s stop codon, therefore it is possible and perhaps probable that the protein retains full functionality.

Figure 3.10 was generated to schematize the locations of these insertion sites more clearly and to get a sense of whether TTAA frequency within the genome affects the working library that has been created. The possibilities exist that there are areas of high or low TTAA frequency in the VACV genome that inherently direct insertion frequency, or that there is a conformational disadvantage to insertion in the middle portion of the genome. As can be observed in Figure 3.10, the distribution of TTAA sites throughout the VACV-Copenhagen genome is relatively even. As expected, there are areas of higher or lower frequency, however kb-by-kb, significant variation of theoretical insertion sites across the genome does not exist. Furthermore, there is at least one TTAA site in each VACV-Copenhagen gene. When this is overlayed by the distribution of observed sites of insertional mutagenesis, the previously discussed preference for the genome extremities is evident. Although an experiment to test whether a conformational disadvantage to insertion in the middle portion of the genome was not performed, the observed insertions in \textit{J2R} and \textit{J5L} suggest that such a disadvantage does not exist, and perhaps more importantly, the known critical functions of the majority of these central genes would make recovery of a functional virion following insertion impossible. When these data are further overlayed with a plot demonstrating the degree of conservation amongst diverse VACV strains (data not shown), the overlap between regions of nearly 100% genomic conservation and areas of poor insertion frequency is striking.
Our observations of TE insertion favouring the extremities of the VACV genome therefore lend further support to the well-known importance of the highly-conserved central VACV genes.

4.3. Functional implications of transposable element insertion

Once the working library used in this research project was fully established, it became important to gain an understanding of the functional implications of insertion of the TE. VACV genomic sequencing data exists for each clone in this library and was used to create the Figures 3.9 and 3.10, but the next question was to understand the effects of insertion at both the level of the transcript and protein. To assess the effects at the level of the message, reverse transcription PCR was performed using cells that were infected with select clones and primer pairs that were designed to target opposing sides of the insert such that the size of the amplicon would vary by the size of the TE. These experiments were performed on selected clones that represented insertion at different positions of the VACV-Copenhagen genome and were therefore considered to be representative. Figure 3.11 presents the generated data, which suggests that, as expected, the transposable element is indeed transcribed with the virus clone.

More interesting studies were then designed to understand the effects of insertion at the level of the protein. Such studies are made challenging due to the lack of full understanding of VACV genes and proteins as well as to the lack of antibodies that are commercially available to target such proteins. In fact, all commercially available antibodies designed to recognize VACV are designed against epitopes on proteins whose function is known to be essential for virus replication. There are notable academic groups around the world who have largely shaped the study of VACV and have generated antibodies against select VACV proteins in the process, however these have all been generated for individual research purposes and are not widely available for outside use. Furthermore, many VACV genes that have been described have been
described for specific functions, however it is clear that most have additional currently undescribed phenotypic effects. Most instances of VACV protein definition have therefore occurred generally, with functional domains within proteins not being entirely understood. There are notable exceptions, one such exception being the thorough understanding that has recently accumulated for the VACV protein F11, which is known to possess a relative amino terminus functional domain with a C terminus binding site. This is an example of a protein that has been more thoroughly studied because its discovery and initial definition was transformative in virology as it was the first viral protein shown to inhibit RhoA signaling177. Another active area of investigation has surrounded the viral protein A36, which is known to be involved in the actin nucleation-mediated release of mature EEVs from the extracellular surface of infected cells165. On the immune side, there is a several-protein member class of VACV proteins that is known to inhibit the NF-κB pathway at various levels. Members of this pathway are currently an active area of focus within the VACV community as their role in modulating immune response may have implications for OVs or as vaccine candidates. One example of this protein class is the viral protein K7, which is represented in this library by Tp 344 (0.3). Finally, the soluble interferon-sequestering VACV-Copenhagen protein B19 has been defined for its ability to sequester secreted interferon, and assays have been designed to test such a phenotype. B19 is represented in this working library as Tp 203 (0.6). These four VACV-Copenhagen proteins – F11, A36, K7, B19 – were selected to further study in an effort to gain an understanding of the effects of insertional mutagenesis at the level of the protein. They were selected because their functions have been specifically defined and are known to be diverse, their deletion causes well-known phenotypes, the relative insertion sites within their respective genes are diverse (F11 – 0.3, A36 – 0.9, K7 – 0.3, B19 – 0.6), and most
importantly, reagents or functional assays exist that allow the detection of protein presence or function.

Various antibodies against the VACV proteins F11, A36, and K7 were obtained from collaborators, which enabled the immunoblotting for the presence of selected epitopes. Importantly for the present purposes, each of the antibodies used were either polyclonal, or were polyclonal antiserum as in the case of K7. As can be observed in Figure 3.12A, each of these antibodies failed to detect the presence of any protein in the mutagenized clones in question. The F11 antibody is polyclonal and the peptide used to immunize animals corresponded to residues 101-120, which has been described to include the N-terminus of the PDZ domain within VACV protein F11. This PDZ domain has been shown to be necessary to modulate the interaction between a RhoA binding domain close to the C-terminus of F11 and cellular RhoA, and the loss of this functional domain results in the inability to promote viral spread⁴¹. As it relates to Tp 279 (F11, 0.3), genomic insertion occurred before this region and the expected phenotype is observed. The antibody obtained against the viral protein A36 is also polyclonal and against an epitope corresponding to residues 142-214. Several NPF motifs have recently been described to be in the C-terminus of A36 and are responsible for modulating the cell-to-cell spread of VACV⁴⁶. As for Tp 306 (A36, 0.9), TE insertion should theoretically result in the production of the first approximately 200aa of the full-length 220aa protein, therefore one would expect the presence of a diminished signal on detection with this polyclonal antibody. Interestingly, no signal is detected using this antibody, suggesting perhaps that the produced polypeptide fraction is destabilized by the loss of its C-terminus and subsequently unfit for function. Finally, the anti-VACV K7 anti-serum was raised against full-length protein and is also polyclonal, therefore one would expect a diminished binding of antibody if only partial protein production occurred. In the case of Tp 344 (K7, 0.3),
approximately 45aa of this 149aa protein would be predicted to be produced and partial binding would be expected if this was stable. Interestingly, like in the case of the previous two antibodies, the anti-K7 anti-serum failed to detect the presence of any protein. Taken together these immunoblot assays suggest that insertional mutagenesis using the transposable element in this study may actually result in functional knockout of the proteins into which insertion occurred.

Finally, the only true functional assay presented in this research project was done to validate the functional limitations of B19 following insertion into B19R (Tp 203, 0.6). As described above, this is an assay that has previously been described and assesses the ability of VSVΔ51 to infect or not infect in the presence or absence of Type I and II interferons. As presented in Figure 3.12B, the observed complete inability of VSVΔ51 to infect cells in the context of a supernatant transfer from cells infected with Tp 203 suggests the absence of B19 functionality. The combination of these data presented in Figure 3.12 suggests that even relative 5’ genomic insertion may result in a complete functional knockout of these viral proteins; however comprehensive functional assays would need to be performed to fully assess this hypothesis.

4.4. Exploiting transgene expression for the study of virus replication

One of the advantages of the generation of a working library following TE mutagenesis with our TE specifically is that it allows the high-throughput study of VACV-Copenhagen single gene mutants by exploiting mCherry fluorescence production. As demonstrated in Figure 3.13A, the observations that led to the study of virus mutants in this way were fundamentally simplistic, which were that there is a direct relationship between the amount of infectious virus in a system versus the amount of fluorescence that is produced by that system at a given time point and across a certain range of virus concentrations (Figures 3.13A and B, respectively). Interestingly, it was quickly observed that mCherry transgene expression and therefore fluorescence intensity differs
on a clone-by-clone basis. This finding complicates the utility of fluorescence as a useful readout because there is inherent variation between baseline fluorescence, which does not correlate to the amount of virus that has been produced given a certain set of experimental conditions. To address this challenge, a two-step virus infection protocol was set up, which utilizes the same principles as standardized plaque assays to assess virus output, however it was tailored for the high-throughput quantification of this 89-virus working library across a large panel of normal and cancer cells. As described previously in Figure 2.1, this involves a primary infection using a virus clone of choice, followed by a dual secondary infection using the output of the primary infection as well as the same input that was used in the primary infection; the resulting fold-change between fluorescence output then corresponds to the amount of relative virus production, which can be compared across clones.

Differential transgene expression is a commonly-observed phenomenon in molecular biology and likely stems from our incomplete understanding of genetic regulatory elements for most species. In microorganisms and specifically in VACV, the regulation of genes is likewise incompletely understood, however the differential expression of transgenes has been observed and reported in the literature. There are several potential explanations for the differential expression of mCherry that are not necessarily tied to efficiency of virus production. The first is that at their most fundamental level, VACV genes are temporally regulated to be expressed early, intermediate, or late, and will not be expressed to high levels at other times of the viral lifecycle. Therefore, it is possible that differential transgene expression may be tied to differences in temporal gene regulation. Furthermore, gene enhancers are cis- or trans-acting regulatory elements that have been shown to act at the level of transcription to cause differential expression of certain genes. In VACV specifically, enhancer-like sequences have been characterized, which are generally thought to
be dependent on distance and/or orientation factors. Therefore, despite the same synthetic early/late VACV promoter regulating insert transgene expression, it is possible that secondary structures or other spatial limitations have an impact on a fluorescence intensity readout. Although the study of miRNAs in VACV has occurred, they are unlikely to be playing a role in the post-transcriptional modification of viral genes that modify transgene transcription due to the virally-encoded poly(A) polymerase, which polyadenylates viral transcripts, but also polyadenylates host miRNAs, which results in their degradation by host machinery236. The cause of this differential transgene expression remains unknown, however the challenge it poses to easily study virus replication was dealt with technically and therefore the principles described above have been used to study this property in a high-throughput fashion. Understanding this phenomenon is not the focus of this research project, however further study would be interesting.

4.5. High-throughput study of differential virus replication

Using the principles discussed in the previous section to study differential virus replication of the clones in this single gene mutant library is technically straightforward with accurately-quantified and arrayed virus preparations. The optimization of this technique was performed on approximately 10 cell lines following a given set of selected conditions (full data not shown), which revealed many interesting observations. Presented in Figure 3.14A are virus replication results from the patient-derived primary melanoma culture Patient 12-2016 (see also Figure 3.3). Several virus clones of choice were highlighted, which were selected to discuss interesting results. Notably, the relative replication differential that was calculated from the poorest-replicating virus (Tp 311) to the greatest-replicating virus (Tp 257) was calculated to be 6.33 and corresponds to the fold-change between these two highlighted viruses in Figure 3.14A. Interestingly, when validating traditional plaque assays were performed on the replicate infections with these virus
clones, the differential was calculated to be 6.25-times, correlating well with the results obtained by fluorescence. Such correlation was observed in each of the 10 cell lines or primary cultures studied in initial optimization experiments, providing a strong foundation upon which to build. These same principles that apply to the determination of relative virus replication using mCherry expression can also be applied using GFP expression and so a GFP-tagged version of the clinical-candidate ΔTK-Wyeth was also included in these initial replication studies. Interestingly, in the majority of cases, ΔTK-Wyeth was among the least efficiently-replicating viruses in the library tested, which correlates with the initial studies presented herein in which the wild-type clinical candidate clones were assessed. Simply, the VACV-Wyeth backbone is a more attenuated strain of virus that cannot replicate to the point of VACV-Copenhagen, even when attenuated versions of the latter are used. Finally, there are many clones in this working library that contain intergenic insertions of the TE, which presumably would have no effect on viral replication. To confirm this, viral growth curves were performed using Tp 229 and wild-type Copenhagen, and the nearly-identical growth kinetics led to the labeling of Tp 229 as “wild-type Copenhagen” for these replication studies. It was found to commonly be amongst the better-replicating virus clones for a given set of experimental conditions, however in every context there were several single gene mutants that possessed a growth advantage. To move these experiments forward, a much larger panel of cell lines for which molecular data is publicly-available were screened versus select non-transformed cell lines. These studies were designed to predict VACV mutations that might favour use as OVVs, but also to understand whether it may be necessary to have tailored viral mutation landscapes in clinical candidate OVVs for patients whose cancers possess a given molecular signature.
To answer these questions, a screen was performed on diverse cancer models that included a large portion of the NCI-60 cell panel supplemented with several additional cell lines of interest, including the human cervical carcinoma cell line HeLa, the human osteosarcoma cell line U-2 OS, two normal non-transformed human cell lines, and a six-member panel of patient-derived primary cultures representing both metastatic melanoma and ovarian cancer ascites. In total, relative virus replication was studied in 41 cell lines or primary cultures, including 39 different cancers, the normal human fibroblast cell line GM-38, and a primary normal human keratinocyte culture. These clustered data for cancer cell lines are summarized and presented in Figure 3.15, providing a clear example of the power of a tool such as the one developed for this research project. These data also represent head-to-head comparisons of single gene VACV mutants representing a majority of the non-essential VACV genome; to our knowledge, these results are the first of their kind and could help shape the design of next-generation OV therapeutics.

As summarized in Table 1.1, all clinical candidate VACV OV platforms to date have incorporated deletion or truncation of the VACV thymidine kinase gene $J2R$, thus providing some degree of targeting to highly metabolic cells. There are several interesting findings presented in Figure 3.15 that may be incorporated into the design of a next-generation therapeutic, however one in particular challenges the validity of this approach. Namely, Tp 255 ($J2R$, 0.8) appears to be significantly more attenuated in terms of virus replication across every cancer cell line tested. The relative attenuation of VACV following thymidine kinase deletion has been observed previously, however these observations focused on the development of effective vaccine strains, predate the development of OV platforms, and therefore this concept has not been studied in the context of transformed cells185,237. There exists the concept in the OV literature that cancer selectivity and targeting are increased following thymidine kinase deletion, however it has not been systematically
studied. Furthermore, the failings of previously-developed OV platforms seem to stem from virus platforms that are overly attenuated. The results presented here suggest that not only are these products developed on wild-type platforms that are more attenuated than wild-type Copenhagen at baseline, but that they were made further attenuated by design choices. Perhaps these data will help to prove the utility of VACV thymidine kinase in maintaining virulence in the context of diverse cancer models.

4.6. Effects of single gene mutations on vaccinia virus plaque size

Proficiency of viral plaque formation is a good indicator of the ability of the virus in question to efficiently cause cytolysis, and in general there are two properties that are studied in such assays. Typically, studies comment on the clarity of plaques formed given a set of experimental conditions, but also on the size of the plaques that are formed at a given time point. The killing of cells in vitro results in a loss of cell adherence, which can be visualized when a relevant dye such as crystal violet is used to stain remaining cell material. The complete clearance within formed virus plaques of remaining cellular material occurs with viruses that are proficient in the induction of cytolysis. Likewise, the diameter of formed plaques produced by virus at a given time point can speak to the efficiency of cell-to-cell spread, but also of killing. It stands to reason that a larger plaque occurs because of efficiently-spreading virions that can infect and carry out their lifecycle in neighboring cells, therefore resulting in a greater cell clearance. In VACV studies, plaque size is a common indicator of differential phenotype when new viral species are made and can be commonly found in the literature. As discussed previously, one of the more active areas of study in VACV occurs around VACV-induced cytoskeletal dynamics, which is thought to have fundamental implications for the efficiency of plaque formation. In the field of OV therapeutics, plaque size is often utilized as an imperfect surrogate for oncolytic effect, as many
viruses have demonstrated proficiency of plaque formation in cancer cells without causing cell death in normal cells. Furthermore, the study of viral plaque formation is another indicator of unique phenotype and can be especially useful in the study of novel phenotypes observed with mutant virus clones.

As VACV genes can have specific function(s), one of the goals of this research project was to characterize the unique biology produced by the single gene mutations that exist in this working library by studying the virus clones by more than one readout. To this end, the size of plaques produced by each of the clones in this library as well as wild-type Copenhagen and the current leading clinical VACV OV candidate was studied. The study of plaque sizes was carried out for the full library on four unique cell lines: the human cervical carcinoma cell line HeLa, the human melanoma cell line M14, and the human prostate carcinoma cell lines PC-3 and DU-145. Several notable results were observed that may impact future OV design and will provide a strong rationale for the study of virus-host interactions in the understanding of OV platforms. Plaque sizes produced by the wild-type Copenhagen virus varied in range, with it being amongst the largest observed plaques produced in HeLa, but appeared to be significantly more attenuated in M14, PC-3, and DU-145. This finding provides evidence for the importance of studying biology in diverse models because differential effects can be observed. It also brings into question the unique features of the HeLa cell line that distinguish it from others in which the full virus library was tested. Another interesting note is that the plaques produced by ΔTK-Wyeth were amongst the smallest of plaques produced in the library, even when compared to mutants with known impairment in their ability to efficiently spread, therefore producing plaques of drastically reduced size. This result provides further evidence that we may be sacrificing too much in the use of the clinical
candidate OV ΔTK-Wyeth in terms of its attenuation. Such an approach may not give a potential patient the best chance to respond favorably to treatment.

In terms of specific VACV genes whose insertional mutagenesis produced interesting results, there are several that have been highlighted in Figures 3.16 and 3.17. The first of note is with the VACV gene F11L, whose insertion was observed to produce a small plaque phenotype in each of the four cell lines tested. This result was predicted as the deletion of F11L is known to result in viruses with profound defects in cell-to-cell spread due to the absence of RhoA signaling inhibition, and indeed a small plaque phenotype has been described\(^\text{181}\). Furthermore, a polyclonal antibody against the PDZ domain of F11 demonstrated the complete loss of intact F11 protein in Tp 279 (F11L, 0.3). Another clear phenotype was observed for the clones with insertional mutagenesis of the VACV gene A50R. Consistently, this clone was observed to produce the single smallest or among the smallest plaque size phenotype of any clone in this library. This poor cell-to-cell spread was coupled with a poor ability to replicate (Figure 3.15) across the majority of cell lines in which these studies were performed. Mutants such as this may not be of immediate interest in the development or selection of a novel OV platform, however they may be encoded into non-VACV OV platforms to increase replication and/or virus spread and these are increasingly-relevant data that will allow us to expand our understanding of VACV biology.

Another striking phenotype that was observed was due to the insertional mutagenesis of VACV-Copenhagen A47L, which occurs in three independent viral clones in this library that each possess unique insertion sites. Insertional mutagenesis of this gene resulted in a plaque phenotype that was significantly larger than wild-type Copenhagen and any other virus clones in this library in Hela and M14 cells, however this phenotype was not observed in PC-3 and DU-145 cells (Figure 3.18). This result provides further evidence for the need to study such striking phenotypes across
a large panel of cell lines, and also provides evidence to further investigate differences that may exist in the molecular profile of HeLa and M14 cells versus PC-3 and DU-145 cells. Immediately obvious is that this phenotype was lost when cells derived from prostate carcinoma were studied, however it is likely that this is due to fundamental molecular differences in the host cell’s ability to efficiently promote increased virus spread. Interestingly, this is a novel phenotype of VACV A47 that has not been described and whose further study may provide a mechanistic basis for understanding unique virus-host interactions.

On the other end of the phenotypic spectrum are the small plaques that were observed to be produced by virus clones with interruption of the F15L gene. There are two such unique clones in this library, Tp 311 (0.3) and Tp 61 (0.8), for which the same phenotype was observed in these plaque size studies. This result was first observed in HeLa cells and was interesting because of the striking phenotype that was observed, the fact that a similar phenotype was observed for both Tp 311 and Tp 61, and for the fact that VACV F15L remains undescribed in the literature. As presented in Figure 3.18, this observed effect was statistically significant in only one out of the four cell lines tested, however the mean plaque size was smaller than that observed for wild-type Copenhagen in each of the other three cell lines studied. Again, this provides evidence for the complexity of the biological interactions that lead to the observable plaque size phenotypes and the need to expand findings such as this to a larger panel of cells before required molecular studies can be executed.

4.7. Virus-induced cytoskeletal dynamics: implications for OV therapeutics

Virus-induced modulation of the host cell cytoskeletal system is currently one of the most active areas of investigation in the VACV field. Findings have provided many fundamental lessons in cell biology, and systematic study of the inherent complexities in VACV-host cell interactions
hold the potential to reveal novel aspects of cancer biology. As such, suitable members of the NCI-60 panel were supplemented with the human osteosarcoma cell line U-2 OS as well as the tumour-derived primary melanoma culture Patient 12-2016 to comprise a 20-member panel on which the size of plaques formed by select virus clones after 72 hours of infection was assessed. Cells were selected for these assays based on their propensity for uniform monolayer formation in culture, which is a necessary prerequisite to performing these experiments. Many interesting observations were made that (1) demonstrate the power of viral factors in modulating virus spread and cytotoxicity, and (2) suggest that viral plaque formation occurs due to a complex interplay between virus and host cell factors, which can be differentially-appreciated in unique molecular landscapes found in unique hosts.

4.7.1. *Vaccinia virus F11L*

To understand the power of viral factors in modulating cell-to-cell spread, the insertion mutant of F11 was studied (Tp 279, 0.3). Ubiquitously, viral plaque size was observed to be diminished compared to wild-type Copenhagen (Table 3.2), which was expected given the critical role of RhoA signaling in modulating cell-to-cell spread and given the previously-discussed properties of this clone. Studies focusing on VACV genes that have been implicated in modulating viral plaque size have overwhelmingly focused on the host cell cytoskeletal framework as a causative factor. In the case of F11, modulation is at the level of the cellular cortical actin, the nucleation of which promotes the formation of actin tails and the propulsion of EEV from the host cell surface following the completion of the viral lifecycle. At the level of microtubule transport, a similar small plaque phenotype has been observed with mutant VACV proteins A36, F12, and F13, which all directly or indirectly modulate the microtubule transport system. The modulation of other virus factors has also been shown to modify the size of observed plaques, however these
differences tend not to be as striking as those caused by the diminished ability to subvert the host cytoskeleton.

4.7.2. *Vaccinia virus F15L*

Similar to the results observed in these 20 cell lines for the *F11L* insertion mutant in this library are the results for the *F15L* insertion mutant Tp 311 (0.3). In 18 of the 20 cell lines studied, plaques formed by this clone were significantly smaller than those formed by wild-type Copenhagen, which suggests the profound modulation of a currently unknown host response due to a virus factor. Interestingly, these results are accompanied by the qualitative observation that this F15 mutant has a diminished ability to induce EEV formation and/or release (Figure 3.20), however it also is observed to be relatively less attenuated than other mutants in this virus library. Taken together, these results suggest that the infectious progeny are highly produced, however have a diminished ability to either (1) be wrapped with an additional membrane, (2) make it to the cell surface, or (3) be released. Furthermore, and perhaps paradoxically, Figure 3.23 suggests the possibility that VACV F15 is a survival factor as it appears to be more toxic in immunocompetent animals compared to wild-type Copenhagen. Finally, the high evolutionary conservation of F15 across divergent orthopoxviruses (Figure 3.22) suggests that it may have an important role in VACV propagation as its peptide sequence shares remarkable (near 100%) homology to species as divergent as variola virus. Although these data work to support a role for the currently undescribed VACV gene *F15L*, the mechanism(s) for these findings remains undiscovered. Interestingly, this 158-amino acid protein is not predicted to have any functional domains, so further probing studies will be necessary to gain an understanding of what this protein’s role is in the lifecycle of VACV and how it accomplishes this.
Assuming that an effective OV candidate might display an in vitro phenotype that is the opposite of that observed with these F15 mutants, it is unlikely that incorporation of a similar mutation will result in a superior OV backbone. However, the possibility exists for encoding this VACV protein into another OV platform, such as VSV. As discussed previously, this approach has been utilized to take advantage of the phenotypic properties of VACV F11 by encoding it into a myxoma virus backbone. This resulted in an OV with increased potential to spread to distant tumour sites and displayed distant tumour control97,182. This increased spread phenotype was utilized in VACV to create a better OV platform98, however these ideas have yet to be fully developed in the field. Whatever the case, the F15L studies presented in this research project are the first to functionally describe this unknown protein, open the door for studies to understand the mechanisms by which these phenotypes are observed, which hold the potential to increase our understanding of the complexity of virus-host interactions.

4.7.3. Vaccinia virus A47L

In many ways, the data presented describing the phenotypes that were observed given the insertional mutagenesis of VACV A47L is striking. The current understanding of this gene’s role in the VACV lifecycle is minimal and it has been described solely as a highly-transcribed gene whose immunoprevalent protein contains many CD8+ T cell epitopes226, therefore its deletion would be expected to result in a diminished anti-VACV CD8+ T cell response. In the data presented throughout this project, it seems to play a role in the release of EEV from infected cells as plaque assays performed under a liquid overlay demonstrate striking comets in HeLa and other cell lines (Figure 3.20). Plaque size assays performed under a semi-solid overlay strengthen these findings in cell lines for which it was observed, however this effect seems to be profoundly-regulated by host cell factors. In the 20-member cell line panel for which this was studied,
significantly-altered plaque size was observed for VACV A47 mutants in only nine of the cell lines at 72 hours post-infection. These altered plaque sizes were observed to be larger than wild-type Copenhagen in five of the nine and were surprisingly found to produce smaller plaques than wild-type Copenhagen in four of these cell lines. These data suggest that certain hosts are able to be modulated by a VACV A47 mutant in opposite ways to other hosts, and the clear comet phenotype observed in HeLa cells suggest that this altered plaque size is caused by differential EEV release. These data suggest that VACV A47L deletion causes differential modulation of the host cytoskeleton, however mechanisms remain currently undescribed. Furthermore, the protein-level homology of VACV A47 presented in Figure 3.21 demonstrates the presence of homologues in a smaller number of species than with F15 and the near 100% conservation in only closely-related viral species, including the other wild-type strains of VACV used in this study.

From an OV perspective, the deletion of A47L from a clinical candidate platform may be advantageous in select patients, however may have the opposite effect in others. Clearly, molecular mechanisms for the differential plaque sizes and EEV release would need to be understood before any conclusions could be made. However, the findings described herein raise the question of whether concepts of personalized medicine should be applied to OV therapy. Simple tumour genomic sequencing could lead to the selection of unique OV platforms if differential viral phenotypes are found to offer unique benefits in a clinical setting.

4.8. The redundancy of vaccinia virus genes complicates their functional definition

Vaccinia is a complex virus with many genes that are known to possess redundant functions to others. From the perspective of viral fitness, this strategy may be beneficial when evolutionary pressures are faced. From the perspective of gaining a functional genomic understanding of the virus, this redundancy complicates matters. It is well known and has been
described in this thesis that a large central portion of the VACV genome is highly-conserved and contains genes whose functions are essential to viral replication. Many immune-modulating and host range genes, however are found in the areas represented by insertion mutants in this VACV library. There are well-known examples of redundant genes in this region that have only been defined in the context of underlying mutations of regions in which genes with redundant functions are also deleted. An excellent example of this is the VGF-encoding VACV gene C11R, which is a soluble factor known to bind to EGFR and promote NF-κB activation, has been described as an in vitro growth factor, however it behaves as an essential gene in the context of a large terminal deletion that eliminates the complicating factors of redundant genes from the genome.

A library of single gene mutants such as the one used in this research project is an incredibly useful tool for the characterization of VACV genes, however there are likely many functions masked by the presence of redundant counterparts. It is likely that subtle changes in phenotype such as increased or decreased viral replication are not easily discernible due to the nature of the assays, however experiments such as these do provide meaningful data that can be incorporated into next-generation OV backbones. Perhaps phenotypes such as the striking ones observed with F11, F15, and A47 mutants in some or all experimental contexts suggest that genes with redundant functionality do not exist in those cases. This is indeed known to be true for the unique cellular RhoA signaling regulation by VACV F11. Regardless, it is likely important to consider incorporating several gene deletions into one viral backbone in an effort to tailor an OV backbone to the phenotype of interest. Furthermore, the possibility also exists to modify a VACV backbone that already contains major gene deletions, which could independently deliver a desired OV phenotype. Overlaying such a virus with a mutant library, perhaps using the same technique
as described in this research project, could then provide even further information regarding VACV biology to unmask unappreciated genetic effects.
General Concluding Remarks

The primary objective of this work was to develop a better understanding of the genetic components of VACV, specifically for phenotypic properties that are relevant to the development of next-generation OV therapeutics. Before setting out to study the functional genomics of VACV, considerable effort was dedicated to the rational selection of the wild-type strain of the virus with properties that seemed most interesting for their oncolytic potential. This resulted in the selection of VACV-Copenhagen as the platform virus for the development of a library of single-gene mutants using a novel TE insertional mutagenesis approach. The development of the working virus library resulted in a tool that has wide-ranging utility for the study of VACV as it is composed of several dozen single gene VACV mutants. These virus mutants were described in the context of this study for their properties which are thought to impact downstream efficacy as OV therapeutics, however there are clear implications for the development of novel vaccines, furthering our understanding of VACV biology, and subsequently as a tool to better understand components of cell biology.

One of the most active areas of study in the field of VACV biology surrounds the modulation and understanding of VACV’s usurping of the host cell cytoskeleton to execute its lifecycle. It is not surprising that the field has taken this turn as VACV (and most other viruses) exploits these existing intracellular transport pathways to navigate the cell as virions require unique cellular components at specific times in their lifecycle. The speed and efficiency with which VACV has evolved to replicate has made it masterful at utilizing these transport mechanisms. Some of what we understand about intracellular transport and cell motility in general has come from the basic study of VACV, however the extent of our understanding is regularly pushed. Many publications have explored the links between injury response-induced cell motility and cancer
metastasis, concepts which tie together VACV cytoskeletal dynamics and cancer progression. Some data presented in this work seems to add to the current list of VACV proteins that modulate various cytoskeletal components and the scope to which this occurs, but further mechanistic studies will need to be performed to investigate these hypotheses. In addition to the formation of this working clonal library and its initial characterization, the most interesting components to arise from this project are the VACV genes A47L and F15L. The functions of VACV A47 described in this project remain undescribed, and F15 is a functionally unknown protein. It also remains unclear how the modulation of the host cytoskeleton may impact efficacy of an OV candidate, although two separate studies have provided evidence that proficient EEV-producing virus clones stand a better chance to achieve clinical success.

From a therapeutic perspective, there are many studies that could follow those presented in this thesis in order to determine the translational possibilities of certain VACV mutations. One such finding that stands a chance of impacting the design of future OV candidates is the observation that viral thymidine kinase mutation results in a severely attenuated virus. Furthermore, the dichotomous phenotypes that were observed for VACV A47 mutant clones set the stage for the exploration of unique OVs based on a patient’s molecular subtype of cancer. Greater study of the virulence and/or normal cell cytotoxicity associated with these genetic changes will be necessary.

Clarity surrounding the therapeutic potential of OVs, and interest in an effective VACV OV platform specifically, continue to grow. To date in the development of novel VACV OV therapeutics, innovations have come despite an incomplete understanding of the genetic and phenotypic landscape of the virus. It was abundantly clear at the onset of this project that a comprehensive and well-characterized tool to better understand such properties of VACV needed
to be developed and may have widespread utility. As the OV field moves towards an optimized therapeutic VACV platform and the interest in the study of basic VACV biology continues to grow, this virus library and its functional characterization could disrupt currently-held biologic beliefs and shape future OV design decisions.
References

Contributions of Collaborators

Dr. Jim Dimitroulakos is the principal investigator on OHSN-REB protocol 20140075-01H that allowed for the collection, characterization, and ex vivo infection of human specimens. Surgical specimens were obtained from Dr. Carolyn Nessim following regulations in the above protocol. Human-derived ovarian cancer cell lines were obtained from Dr. Carolina Ilkow and were derived following paracentesis under the same OHSN-REB protocol. The human-derived melanoma cell lines pMel-T and pMel-X2 were obtained from Dr. Christine Engeland in the laboratory of Dr. Guy Ungerechts at the National Center for Tumor Diseases (Heidelberg, Germany); these were obtained following the guidelines outlined in the Ethics Committee of Heidelberg University NCT MASTER, S-206/2011. Dr. Jiahu Wang engineered the constructs and built the original VACV mutant library from which the working library used in this research project was derived. Dr. Vera Tang assisted with flow cytometry-based cell sorting (Flow Cytometry and Virometry core facility, University of Ottawa). All bioinformatics analyses (and the creation of accompanying figures) were conducted by Adrian Pelin, who also aided in the expansion of wild-type virus stocks. Anti-VACV F11 and anti-VACV A36 antibodies were obtained from Dr. Antonio Postigo in the laboratory of Professor Michael Way at the Francis Crick Institute and were previously described as outlined in Materials and Methods. Antiserum against VACV K7 was obtained from Dr. Martina Schroeder at Maynooth University and was also previously described as outlined. The VACV-Tian Tan strain was obtained from Dr. David Evans (University of Alberta, Edmonton, Canada). The experiment shown in Figure 3.12B was performed by Dr. Fabrice Le Boeuf. VACV mutant library replication studies were performed with the help of Catia Cemeus. Plaque size and EEV release assays were performed with the help of Russell Barkley. Animal studies were performed with the help of Julia Petryk.
Appendices

Appendix I: Ethics approval for attaining human tumour specimens. These are copies of the relevant portions of OHSN-REB #20120559-01H that allow human tumour specimens to be obtained for *ex vivo* research purposes, as well as the document confirming my addition to this protocol.
October 12, 2016

Dr. Jim Dimitroulakos
Ottawa Hospital Cancer Centre - General Campus
Department of Cancer Therapeutics
501 Smyth Road, 3rd Floor
Ottawa, ON
K1H 8L6

Dear Dr. Dimitroulakos:

RE: Protocol# - 20120559-01H Evaluating novel therapeutic approaches in ex-vivo tumour tissue (OHSN-REB #20120559-01H)

Renewal Expiry Date - October 26, 2017

Thank you for your e-mail dated October 4, 2016. I am pleased to inform you that your Annual Renewal Request was reviewed by the Ottawa Health Science Network Research Ethics Board (OHSN-REB) and is approved. No changes, amendments or addenda may be made in the protocol or the consent form without the OHSN-REB's review and approval.

Renewal is valid for a period of one year. Approximately one month prior to that time, a single renewal form should be sent to the REB office.

The REB no longer requires a 'valid until' date at the bottom of all approved informed consent forms. The consent forms currently approved for use by the REB are:

- English and French Patient Information and Consent Form version date May 2014.

OHSN-REB complies with the membership requirements and operates in compliance with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans; the International Conference on Harmonization - Good Clinical Practice: Consolidated Guideline; and the provisions of the Personal Health Information Protection Act 2004.

Raphael Saginur, M.D.
Chairperson
Ottawa Health Science Network Research Ethics Board

/\
Thursday, January 22, 2015

Dr. Jim Dimitroulakos
Ottawa Hospital Cancer Centre - General Campus
Department of Cancer Therapeutics
501 Smyth Road, 3rd Floor
Ottawa, ON
K1H 8L6

Dear Dr. Dimitroulakos:

Re: Protocol # 20120559-01H Evaluating novel therapeutic approaches in ex-vivo tumour tissue (OHSN-REB #20120559-01H)

Thank you for your letter dated January 9, 2015 informing us of the addition of Rebecca Auer, Brian Keller, Celia Marginean, Guillaume Martel and Avijit Chatterjee to the study as co-investigators. Our file has been updated accordingly.

OHSN-REB complies with the membership requirements and operates in compliance with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans; the International Conference on Harmonization - Good Clinical Practice: Consolidated Guideline; and the provisions of the Personal Health Information Protection Act 2004.

Ethical approval remains in effect until October 23, 2015.

/km
Appendix II: Initial characterization of the patient-derived primary cultures that were utilized in this study whose characterization was not presented in the main text. Cultures include models derived from ovarian cancer ascites patients 2028 and 2068 that were fixed and stained with an antibody recognizing Cytokeratin-18 (A, green). Photomicrographs of the melanoma models pMel-T and pMel-X2 are shown as well as their RNA-level characterization of relevant markers of choice (B).
A Ovarian cancer ascites
Ovarian cancer ascites
Patient 2028
Patient 2068

IHC. Cytokeratin-18

B

pMel-T
pMel-X2

MelanA
(295 bp)

Tyrosinase
(837 bp)

S100
(228 bp)

1) SK MEL 28
2) Mel-Pt. 12-2016
3) pMel-T
4) pMel-X2
5) H₂O
Appendix III: Oncolytic viruses – immunotherapeutics on the rise. Reprinted with permission from the Journal of Molecular Medicine, 94 (9), 979-991. BA Keller & JC Bell (2016).
Oncolytic viruses—immunotherapeutics on the rise

Brian A. Keller¹,² · John C. Bell¹,²

Received: 7 April 2016 / Revised: 7 July 2016 / Accepted: 27 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The oncolytic virus (OV) field has entered an exciting period in its evolution in which our basic understanding of viral biology and anti-cancer potential are being actively translated into viable therapeutic options for aggressive malignancies. OVs are naturally occurring or engineered viruses that are able to exploit cancer-specific changes in cellular signaling to specifically target cancers and their microenvironment. The direct cytopathic effect of OVs on cancer cells is known to release antigens, which can begin a cascade of events that results in the induction of anti-cancer adaptive immunity. This response is now regarded as the most critical mechanism of OV action and harnessing it can lead to the elimination of distant micrometastases as well as provide long-term anti-cancer immune surveillance. In this review, we highlight the development of the OV field, why OVs are gaining an increasingly elevated standing as members of the cancer immunotherapy armamentarium, and finally, ongoing clinical studies that are aimed at translating unique OV therapies into approved therapies for aggressive cancers.

Keywords Oncolytic viruses · Cancer · Immunotherapy · Immune checkpoint inhibitors · Combination therapy

Introduction

The fields of clinical oncology and cancer therapeutics development are in the midst of a revolution driven primarily by the successful translation of novel forms of cancer immunotherapy into clinical practice. Since Science magazine named Cancer Immunotherapy the Breakthrough of the Year in 2013 [1], the approach to treatment in many cancers has evolved to include immune checkpoint inhibition and cell-based immunotherapies. Beginning with the FDA approval of the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody Yervoy® (developed by Bristol Myers Squibb [BMS]) in 2011, the influx of novel therapeutic agents has expanded to include those directed against programmed cell death protein 1 (PD1)—Keytruda®, developed by Merck, and another BMS product Opdivo®, both FDA approved in 2014–15 [2]. The majority of early clinical trials using these novel agents have focused on non-small cell lung cancer and melanoma, but the types of cancers being tested with monoclonal antibodies are rapidly expanding. In addition to the clinical arrival of immune checkpoint inhibitors in recent years, other players in the field of immuno-oncology are also being explored, including adoptive cell therapeutic approaches, new approaches for cytokine therapies, and more recently, inhibition of indoleamine-2,3-dioxygenase (IDO), an inhibitor of tumour immune resistance [2–4]. Despite the well-deserved excitement surrounding the field of immunoncology, there is still much to be learned as a minority of patients respond to these innovative therapeutics [5–7].

Oncolytic viruses (OVs) are on emerging class of therapeutic with the potential to act in synergy with novel immunotherapies to improve clinical outcomes. Oncolytic viruses are cancer-targeted viruses designed to exploit cell signaling pathways of cancer cells that are activated as they undergo malignant transformation [8]. The cellular antiviral response relies heavily on intact innate immune interferon (IFN) signaling, primarily mediated by the JAK/STAT pathway [9]. One of the well-characterized changes that occurs in the process of malignant transformation in
many cancers is the accumulation of mutations affecting IFN signaling [10–13]. Recently, an interesting mechanistic discovery has linked commonly-observed mutations in the tumour-suppressor gene encoding PTEN with defects in the anti-viral IFN response [14]. As summarized in Fig. 1, the results of these changes are directly implicated in oncogenesis by preventing the cell from initiating apoptosis, growth arrest, or immune stimulation [8, 15]. However, the diminished IFN response, a fundamental biological property of the malignant phenotype, also leaves the cancer cell vulnerable to OV infection [10–12]. These multiple mechanisms of action are summarized in Fig. 2 and take advantage of a number of changes in the tumour microenvironment to facilitate vascular collapse [16], cause the direct cellular lysis of both cancer cells (oncolysis) and cancer-associated fibroblasts (CAFs) [17], and perhaps most importantly, to initiate or augment existing anti-tumour immunity [8].

Clinically, OVs have moved beyond a field of investigative laboratory-based research to becoming acknowledged as validated therapeutics. This translation was significantly buoyed by the 2015 FDA approval of the herpes simplex virus 1-based Talimogene Laherparepvec (T-Vec; Imlygic™) for the treatment of advanced melanoma [18, 19]. The field is now moving towards discovering optimal viral backbones to limit toxicity and maximize anti-cancer potency, while clinical studies are being conducted to define the clinical contexts in which OV's will fit. This review summarizes our current understanding of the biology behind the utility of OV's, the most exciting viral platforms and strategies for potential clinical development, the leading branches of immuno-oncology with which OV therapeutics might synergize, and relevant clinical trials that have and will continue to define how OVs will be used.

The clinical evolution of oncolytic viruses

The concept of a clinically advantageous link between viruses and cancer treatment emerged in the early twentieth century due to observations surrounding individual case reports of cancer regressions following natural virus infection [20, 21]. At the time, viral biology was poorly understood and the ability to pursue laboratory-based studies on such agents was limited. Through the 1920s and into the 1940s, dozens of viruses were investigated for their abilities to infect and productively replicate in various cancer models [22]. The 1950s–70s saw the advancement of the field in terms of understanding appropriate models, experimenting with dozens of virus strains, and translating this knowledge into clinical experiments [21]. During this period, several meaningful clinical trials were performed [23, 24], the largest of which was a 90-patient trial investigating the use of mumps virus as an anti-cancer agent in cases of advanced non-resectable cancers [25]. The results of this and several other trials were interesting; however, many at the time dismissed the clinical utility of this novel class of anti-cancer agent due to the inherent safety risks and demonstrated lack of successful human translation.

The next several decades of research into basic virology and cancer-targeted viruses yielded many fundamental insights; however, major clinical steps were delayed until the 1990s [26, 27]. An important step in the clinical advancement of OV's was the Chinese approval of the genetically modified adenovirus H101 in 2005, which was followed by a second generation of OV's that have now begun to mature in the clinic.

Imlygic™ and beyond—biological strategies for engineering superior oncolytic viruses

Amgen’s Imlygic™ recently gained FDA and European approval for the treatment of advanced melanoma, with clinical trials underway to expand both the clinical indications and the strategic approach for its use. Imlygic™ (formerly Oncovex) is built on the JS1 strain of HSV-1, which was isolated from the infected cold sore of an otherwise healthy volunteer [18]. The ICP-34.5 gene was deleted to increase both malignant cell specificity and potency, co-incident with an ICP-47 gene deletion to increase antigen presentation. The human cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) was added to the HSV-1 vector in an effort to enhance anti-tumour adaptive immunity and provide long-lasting anti-cancer immune surveillance [18]. This approach has proven clinically effective [28, 29], which justifies its continued investigation (Table 1). Despite the clinical activity of Imlygic™, many believe this iteration of oncolytic HSV-1 poorly capitalizes on the therapeutic potential of the OV platform and, thus, laboratory research designed to improve OV therapeutics continues.

Investigating diverse viral platforms to direct tumour selectivity

Attenuation of HSV-1 to create Imlygic™ was in part accomplished by deletion of ICP-34.5, a well-studied virulence gene that normally prevents infected cellular autophagy and antagonizes natural cellular interferon responses [18, 30, 31]. As an alternative strategy to create oncolytic HSV strains, groups have deleted the ribonucleotide reductase large R1 subunit gene (UL39) of HSV-1, creating a strain of virus that is attracted to the high metabolic physiology found in cancer cells [32–34].

Another viral backbone that has been commonly translated into human studies is adenovirus. Several different strategies
Fig. 1 Upon viral infection, the intact interferon response in healthy cells is initiated. This leads to the induction of an anti-viral state in nearby healthy cells, primarily through the JAK/STAT pathway, amongst others. This prevents the oncolytic virus infection from spreading in healthy cells, leaving normal tissues intact. In addition, an intact interferon response prevents uncontrolled cell growth, induces apoptosis,

have been employed to create oncolytic adenoviruses (oAds) that demonstrate selective growth in cancer cells. One strategy involves deleting the Ad E1A gene, which results in a virus more directed towards replication in transformed cells [35]. More recently, miRNA-controlled oAds have been developed to attenuate virulence in quiescent cells while still retaining their full lytic capacity in human-derived xenografts. This work was performed specifically by targeting the late structural protein fiber (L5) [36]. Finally, a popular strategy is to create transcriptionally regulated versions of oAds harboring tissue-specific promoters that can drive key virus regulatory genes [37, 38].

Similar strategies to those discussed above have been employed with Vaccinia virus (VacV) to direct virulence towards transformed cells. For instance, in the Wyeth strain of

Fig. 2 Oncolytic viruses have been engineered to initiate a multi-faceted cancer attack that uses complementary mechanisms to destroy the tumour. Tumour-associated active endothelial cells are vulnerable to OV infection through a VEGF-mediated mechanism, which leads to vascular collapse and tumour starvation. The traditional mechanism of action of direct

cancer cell oncolysis can now also be applied to cancer-associated fibroblasts (CAFs) as we have come to understand their vulnerability to OV attack. Finally, released tumour-specific antigens can be ingested by various antigen presenting cells, which can lead to the initiation of both innate and adaptive anti-tumour immunity.
<table>
<thead>
<tr>
<th>Clinical indication</th>
<th>Virus platform</th>
<th>Primary outcome and treatment arms</th>
<th>Study status; trial phase</th>
<th>Clinicaltrials.gov identifier No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple cancers</td>
<td>Adenovirus</td>
<td>Safety and recommended Phase II dose</td>
<td>Recruiting; phase I trial of VCN-01</td>
<td>NCT02045602</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Single-agent IV dose escalation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IV virus + Gemcitabine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MTD and selection of reasonable administration schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Overall survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IP infusion of MV-NIS vs. investigator's choice chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancers of the nervous system Non-CNS tumours (adolescents and young adults)</td>
<td>Adenovirus</td>
<td>Objective response (determined by MRI)</td>
<td>Recruiting; phase Ib trial of DNA-2401 with IFN-γ</td>
<td>NCT02197169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DNX-2401 + IFN-γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Safety and tolerability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MRI-guided single dose of G207 by catheter infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Safety and tolerability of IT and IV injections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT HS7176 (metastatic disease)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IV HS7176 (metastatic disease)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Maximum tolerated dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT HS7176 + prontumoral HS7176 post-resection; patients also receive desamethasone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Best response, adverse events, maximum tolerated dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT injection MV-NIS; follow-up by SPECTPECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DNX2401 injection into brain parenchyma and tumor necrosis treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical indication</td>
<td>Virus platform</td>
<td>Primary outcome and treatment arms</td>
<td>Study status; trial phase</td>
<td>Clinicaltrials.gov identifier No.</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Skin Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Malignant melanoma</td>
<td>HSV-1</td>
<td>- Dose escalation of repeated IT virus administration</td>
<td>Recruiting; phase I trial of TB-1-I401(HF10)</td>
<td>NCT02428036</td>
</tr>
<tr>
<td>- SCC</td>
<td></td>
<td>- High dose vs. low dose</td>
<td>Recruiting; phase II trial of HF10</td>
<td>NCT02272855</td>
</tr>
<tr>
<td>*Unresectable melanoma (stages IIIB, IIIC, IV)</td>
<td>HSV-1</td>
<td>- Best overall response rate</td>
<td>Recruiting; phase III trial of PV-10</td>
<td>NCT02288897</td>
</tr>
<tr>
<td>Recurrent cutaneous melanoma</td>
<td>HSV-1</td>
<td>- IT HF10 in combination with IV Yervoy®</td>
<td>co-treatment with Yervoy®</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Progression-free survival</td>
<td>Recruiting; phase III trial of PV-10</td>
<td>NCT02288897</td>
</tr>
<tr>
<td>Melanoma (stage IIIIB to IVM1c)</td>
<td>HSV-1</td>
<td>- Detecting Imlygic™ DNA in blood and urine within first 3 treatment cycles</td>
<td>Ongoing; phase II trial of Imlygic™</td>
<td>NCT02014441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT Imlygic™ administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Melanoma (stage IIIIB to IV)</td>
<td>HSV-1</td>
<td>- Safety, tolerability, efficacy</td>
<td>Recruiting; Phase I-II trial of Imlygic™</td>
<td>NCT01740297</td>
</tr>
<tr>
<td>Melanoma (stage IIIIB to IVM1c)</td>
<td>HSV-1</td>
<td>- Yervoy® vs. Yervoy® alone</td>
<td>Recruiting; phase II trial of Imlygic™</td>
<td>NCT02211131</td>
</tr>
<tr>
<td>*Unresected melanoma</td>
<td>HSV-1</td>
<td>- Neoadjuvant Imlygic™ + surgery vs. surgery alone</td>
<td>Recruiting; phase I-II trial of Imlygic™</td>
<td>NCT02263508</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dose limiting toxicity, progression-free survival, and overall survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma (stage IIIIB to IVM1c)</td>
<td>HSV-1</td>
<td>- Imlygic™ + Keytruda® vs. placebo + Keytruda®</td>
<td>Recruiting; phase II trial of Imlygic™</td>
<td>NCT02366185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Correlating IT CD8+ cell density to objective response rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT Imlygic™ administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>Adenovirus</td>
<td>- Maximum tolerated dose</td>
<td>Recruiting; phase I trial of LOAd703</td>
<td>NCT02705196</td>
</tr>
<tr>
<td>Advanced pancreatic cancer</td>
<td>Adenovirus</td>
<td>- IT LOAd703 + IV gemcitabine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Advanced pancreatic carcinoma</td>
<td>Reovirus</td>
<td>- Safety and recommended phase II dose development</td>
<td>Not yet recruiting; phase I trial of VCN-01</td>
<td>NCT02045589</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Safety, radiation, and chemotherapy + Keytruda®</td>
<td>Recruiting; phase I trial of Reoysin®</td>
<td>NCT02620423</td>
</tr>
<tr>
<td>Liver Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>Vaccum</td>
<td>- Overall survival</td>
<td>Recruiting; phase III trial of Pesa-Vec</td>
<td>NCT02562755</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>HSV-1</td>
<td>- Pesa-Vec + Sorafenib vs. Sorafenib alone</td>
<td>Recruiting; phase I trial of Imlygic™</td>
<td>NCT02509507</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dose-limiting toxicities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- US-guided IT Imlygic™ administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic colorectal cancer (mKRAS)</td>
<td>Reovirus</td>
<td>- Dose limiting toxicity and pharmacokinetic parameters of combination therapy</td>
<td>Recruiting; phase I trial of Reoysin®</td>
<td>NCT02124624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Different dose levels of Reoysin® + FOLFIRI and bevucizumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High grade non-muscle invasive bladder cancer</td>
<td>Adenovirus</td>
<td>- Durable complete response for patients who have failed BCG therapy and refused cystectomy</td>
<td>Recruiting; phase III trial of CG0070</td>
<td>NCT02265818</td>
</tr>
<tr>
<td>Non-muscle invasive bladder cancer</td>
<td>Adenovirus</td>
<td>- Complete response</td>
<td>Ongoing; phase III trial of CG0070</td>
<td>NCT01433112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CG0070 vs. chemotherapy or interferon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical indication</td>
<td>Virus platform</td>
<td>Primary outcome and treatment arms</td>
<td>Study status; trial phase</td>
<td>Clinicaltrials.gov identifier No.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>Adenovirus</td>
<td>- Maximum tolerated dose
- Experimental arm: Eudenaotacirev
- intraperitoneal injection</td>
<td>Recruiting; phase I/II trial of Eudenaotacirev</td>
<td>NCT02028117</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>HSV-1</td>
<td>- Safety and efficacy
- Injection of HSV1716 into tumour-bearing
- pleural cavity
- Safety/efficacy study</td>
<td>Recruiting; phase I/II trial of HSV1716</td>
<td>NCT01721008</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>Vaccinia</td>
<td>- Determine MTD for subsequent Phase II studies
- Dose escalation</td>
<td>Recruiting; phase I trial of GL-ONC1</td>
<td>NCT01766739</td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>Measles virus</td>
<td>- Efficacy
- UARK-21 expressing NIS + Cyclophosphamide
- Maximum tolerated dose, proportion of confirmed response
- MV-NIS vs. MV-NIS + cyclophosphamide
- Adverse events
- Denosumab, bortezomib, and IV reovirus following treatment schedule</td>
<td>Recruiting; phase II trial of UARK-21</td>
<td>NCT02192773</td>
</tr>
<tr>
<td>Recurrent or refractory multiple myeloma</td>
<td>Measles virus</td>
<td>- Efficacy
- UARK-21 expressing NIS + Cyclophosphamide
- Maximum tolerated dose, proportion of confirmed response
- MV-NIS vs. MV-NIS + cyclophosphamide
- Adverse events
- Denosumab, bortezomib, and IV reovirus following treatment schedule</td>
<td>Recruiting; phase I trial of MV-NIS</td>
<td>NCT00450814</td>
</tr>
<tr>
<td>Relapsed or refractory multiple myeloma</td>
<td>Reovirus</td>
<td>- Efficacy
- UARK-21 expressing NIS + Cyclophosphamide
- Maximum tolerated dose, proportion of confirmed response
- MV-NIS vs. MV-NIS + cyclophosphamide
- Adverse events
- Denosumab, bortezomib, and IV reovirus following treatment schedule</td>
<td>Recruiting; phase I trial of wild-type reovirus virus + standard of care</td>
<td>NCT02514382</td>
</tr>
<tr>
<td>Head and Neck Cancers</td>
<td>Measles virus</td>
<td>- Maximum tolerated dose
- IT injection MV-NIS
- Incidence of dose limiting toxicity
- Imlygic™ + Keytruda®</td>
<td>Recruiting; phase I trial of MV-NIS</td>
<td>NCT01846091</td>
</tr>
<tr>
<td>Recurrent or metastatic SCC</td>
<td>HSV-1</td>
<td>- Efficacy
- UARK-21 expressing NIS + Cyclophosphamide
- Maximum tolerated dose, proportion of confirmed response
- MV-NIS vs. MV-NIS + cyclophosphamide
- Adverse events
- Denosumab, bortezomib, and IV reovirus following treatment schedule</td>
<td>Recruiting; phase I trial of MV-NIS</td>
<td>NCT02626000</td>
</tr>
<tr>
<td>*Prostate Cancer</td>
<td>Adenovirus</td>
<td>- Maximum tolerated dose and dose-dependent toxicity
- Intracranial injection of engineered virus</td>
<td>Recruiting; phase I trial of oncolytic adenovirus and IL-12 gene therapy</td>
<td>NCT02555397</td>
</tr>
<tr>
<td>*Prostate Cancer</td>
<td>Vaccinia (prime) and flow (boost)</td>
<td>- Efficacy
- UARK-21 expressing NIS + Cyclophosphamide
- Maximum tolerated dose, proportion of confirmed response
- MV-NIS vs. MV-NIS + cyclophosphamide
- Adverse events
- Denosumab, bortezomib, and IV reovirus following treatment schedule</td>
<td>Recruiting; phase I trial of Imlygic™ + Keytruda®</td>
<td>NCT01322490</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>HSV-1</td>
<td>- Disease control rate
- Imlygic™ initial dose IT injection + higher dose IT injections at 2 week intervals</td>
<td>Not yet recruiting; Phase II trial of Imlygic™ + Keytruda®</td>
<td>NCT02658812</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>HSV-1</td>
<td>- Safety and efficacy
- Imlygic™ + radiotherapy</td>
<td>Recruiting; phase I/II trial of Imlygic™ + radiotherpay</td>
<td>NCT02453191</td>
</tr>
</tbody>
</table>

*MTD maximum tolerated dose, IT intravenous, IP intraperitoneal, IM intramuscular, IHC immunohistochemistry, MP measles virus, HSV herpes simplex virus, NIS sodium-iodide symporter, CEA carcinoembryonic antigen, IPN interferon

*Ongoing trials of ONVs in combination with other immuno-oncology products
VacV, the deletion of the thymidine kinase (TK) gene has been shown to limit virus replication to highly metabolic and proliferative cancer cells. In addition, this version of Pexa-Vec has a natural B18R truncation, which renders the virus susceptible to intact anti-viral effects in normal cells. The TK deletion coupled with the B18R truncation has contributed to the clinical success of Pexa-Vec (formerly JX-594), which has entered phase III clinical trials (Table 1; ClinicalTrials.gov identifier NCT02562755) [39–41]. Another group has explored the effects of a so-called double deleted VacV, or VVDD. This therapeutic is based on the Western Reserve (WR) strain of VacV and is attenuated by elimination of both the gene encoding Vaccinia Growth Factor (VGF) and that of thymidine kinase (TK). The wild-type version of WR is more virulent than the Wyeth strain, and the addition of these gene deletions has created a potentially more potent therapeutic. To date, VVDD has proven safe in a phase I dose-escalation trial by intramuscular injection including some hints of therapeutic benefit and is now poised for further clinical testing [42, 43]. The Lister strain of VacV has also been used in OV development, with Genelux Corporation leading the development of this approach. They have created an attenuated and cancer-targeted OV by inserting expression cassettes into the F14.5L, TK, and A56R genes of Lister [44], an approach that is now actively in phase I clinical trials (Table 1).

In addition to those discussed above, several other virus families have served as backbones for the development of OVs. This list includes, but is not limited to, Paramyxoviruses (Newcastle Disease virus [NDV], Measles virus [MV], Respiratory syncytial virus [RSV], and Rhadinoviruses (Vesicular Stomatitis virus [VSV], Maraba virus). With these platforms, the strategies that have been used across the field to make effective oncolytics have remained consistent (reducing toxicity and maximizing tumour-specificity); however, opportunities exist to take advantage of the unique biology of each viral platform. For instance, MV has been engineered to allow monitoring of virus replication either by virus-directed expression of a blood maker (CEA peptide [45]) or by a cellular imaging gene like the sodium iodide symporter [46]. The naturally attenuated Reovirus strains that have made clinical strides have been demonstrated to preferentially replicate in Ras-activated cells, a common occurrence in many cancer types [47–49]. The Maraba virus MG1 was engineered to have two attenuating mutations creating a virus that is restricted for growth in normal cells while being hyper-virulent in cancer cells [50]. This virus has been further engineered to express a tumour antigen to boost anti-tumour immunity [51] and is therefore currently being explored for clinical use (Table 1; ClinicalTrials.gov identifier: NCT02285816). Evidently, many bio-engineering approaches have been explored in the OV field; however, much of the work currently being done is aimed at harnessing the anti-cancer potential of the human immune system.

Strategies to maximize anti-tumour immunity

A recent focus of the OV field has been to optimize virus design or combination therapeutic strategies to improve the ability of existing platforms to induce anti-tumour immunity. One effective approach has been the inclusion of immunostimulatory transgenes and/or cytokines into candidate OVs. For instance, Imlyric™—unquestionably the most successful OV to date—encodes and expresses human GM-CSF cDNA [18, 29]. The addition of GM-CSF promotes monocyte-to-dendritic cell differentiation, thereby facilitating antigen presentation on the surface of dendritic cells following viral-induced oncolysis [8]. Another widely utilized strategy in HSV-1 is the addition of various interleukins to activate adaptive immunity through T cell activation (IL2) [52] or by doubly activating both T cells and NK cells ([IL12, IL15, IL18] [53–55]). The ability to direct the co-stimulation of T cells has also been exploited in the development of HSV-1-based OVs. Specifically, B7-1 (CD80) has been cloned into the HSV backbone to help activate antigen presentation [56–58], a strategy that has also been utilized with the ligand of CD40, likely working through a PI3K-dependent mechanism [59, 60].

Similarly, approaches have been taken to create more immunostimulatory oAd and VacV OV candidates. As with Imlyric™, human GM-CSF has been encoded into both oAd and VacV candidates [41, 61, 62]. Specifically in the oncolytic VacV Pexa-Vec, ongoing phase III clinical efforts are being made following several promising phase I and II studies (Table 1; ClinicalTrials.gov identifier NCT02562755) [41, 61]. Although there is a clear trend in the OV field of encoding human GM-CSF cDNA and/or that of other cytokines in clinical candidate strains, it is important to understand the fundamental immunology behind this strategy. The mechanisms are incompletely understood, but some evidence suggests that we can trigger the activation of innate inhibitory cells such as myeloid derived precursor cells upon cytokine-encoding viral infection [63]. More fundamental discovery must occur to understand the control of these approaches, but we believe it is important for the field to consider potential unwanted outcomes caused by stimulating undesirable immune targets.

Since the generation of OVs began prior to VacV OV development, many more strategies have been attempted in this context, especially as they relate to immune cell recruitment and activation. From the CC chemokine sub-family, two proteins have been encoded into oAds—CCL3 and RANTES (CCL5), which work to attract PMN leukocytes and T cells, respectively—positively affecting OV efficacy while recruiting immune cells to the tumour microenvironment [64, 65]. Additionally, IL4 [66] and IL12 [67, 68] have been used to elicit anti-tumour immunity; however, the toxicity risk of the latter was recently called into question in the context of oAd in a hamster pancreatic cancer model, so questions
remain [69]. Similar to the approach in HSV-1 of using B7-1 to increase T cell co-stimulation, this approach has been adapted for both vacV [70] and oAd [71] with the tumour necrosis factor receptor family member CD137 (4-1BB).

Interestingly, this approach has also been adapted as a co-therapeutic approach in which the TK/VGF double-deleted strain of vacV is co-administered with a CD137 agonist, which resulted in a decreased tumour burden and increased intratumoural immune infiltrate [72].

The trend in the OV field of combining strategies to make more immunogenic clinical candidate viruses extends beyond those discussed in this review. However, this tendency reveals a fundamental truth that researchers in the OV field are accepting—current OVs are most likely to be clinically successful when they have been optimized for their ability to induce anti-tumour immunity.

Synergy between oncolytic viruses and existing immunotherapies—immune checkpoint blockade

As has been clinically well-documented, current standards of immune checkpoint inhibition (ICI) therapy, while impressive as monotherapies, are effective in only a minority of cancer patients [7, 73, 74]. This is likely because of the mechanism of action of ICIs, which by design “remove the brakes” from existing anti-tumour immune responses. Likely in many patients, pre-existing bona fide anti-tumour immunity is not present, and thus, there is little for an ICI therapeutic approach to augment. An objective appraisal of the OV literature will also demonstrate their limitations as monotherapies in many patients; however, it is important to understand that we are in the midst of improving early-generation products, and that by their mechanistic natures, OVs are optimally positioned to work in synergy with existing ICIs. As discussed, numerous pre-clinical and clinical (Table 1) studies are beginning to demonstrate this.

One such example occurred in a mouse tumour model with intratumoural NDV infection in combination with systemic anti-CTLA-4 administration, leading to a systemic anti-tumour effect [75]. Another example of OV synergy with ICI therapy was observed in difficult-to-treat mouse cancer models using a Semliki Forest virus platform encoding IL-12 in concert with anti-mouse-PD-1 [76]. These and other data have led to clinical studies designed to test OVs in combination with ICIs. Ongoing studies include the combination of Imlygic™ with the anti-CTLA-4 product Yervoy® (Table 1; ClinicalTrials.gov identifiers: NCT00740297) and in another study with the anti-PD1 therapy Keytruda® (Table 1; ClinicalTrials.gov identifiers: NCT02263508 and NCT02626000). An exciting recent development in the OV field was the publication of results from the first phase I/II trial of combination Imlygic™ and Yervoy® in advanced melanoma, which demonstrated significant improvements over either monotherapy [77]. In addition, the chimeric oAd Enadenotucirev and the naturally oncolytic Reolysin® virus are being tested in combination with Keytruda® (Table 1; ClinicalTrials.gov identifiers: NCT02636036 and NCT02620423, respectively).

While the clinical benefits of ICIs began to emerge, it became evident that systemic administration of these agents carried the potential to cause immune-related adverse events in some patients that required acute immunosuppressive therapies to manage [78, 79]. Given that OVs can often harbor and express therapeutic payloads, it was hypothesized that the intratumoural OV-induced production of an antibody against CTLA-4 could reduce toxicity while improving anti-tumour immunity. Thus, a transcriptionally targeted oAd expressing anti-CTLA-4 was generated, which demonstrated preferential tumoral replication, effective anti-CTLA-4 delivery to the tumour, and mechanistically linked T cell activation [80]. This approach of intratumoural viral-induced anti-CTLA-4 production was replicated in an oAd, which demonstrated efficacy in an immunocompetent B16 melanoma model [81]. More recently, antibodies against CTLA-4 and PD-L1 were cloned into the measles virus platform, which improved therapeutic outcomes in terms of both tumour size and overall survival. This effect was observed to be maintained when systemic administration of immune checkpoint blockade was alternatively utilized, strongly supporting the clinical rationale for co-treatment with OVs and immune checkpoint blockade [82] (Fig. 3).

Oncolytic viruses and adoptive cell therapy

Adaptive cell therapy has been developed and refined over many years to the point at which, when combined with a maximal lymphodepletion regimen, complete durable responses have been observed in a reasonable number of patients primarily suffering from melanoma [83, 84]. These positive responses are often durable, even in cases of advanced disease. Therefore, adoptive cell therapy in some form will likely play an important role in the future of anti-cancer therapy. One branch of the OV field has compiled evidence to support the combination therapy of various adoptive cell transfer approaches with OV therapeutics. In 2008, Qiao et al. studied an aggressive mouse melanoma model prone to metastases in both lymphoid and more distant organs. They infected naïve T lymphocytes with a vesicular stomatitis virus (VSV) expressing GFP and adoptively transferred them, hypothesizing that they could take advantage of the innate tumour inhibitory activity of immune cells. They then monitored tumour growth/survival and noticed significant in vivo effects in animals treated with adoptively transferred VSV-GFP-preloaded T cells [85, 86]. This approach was similarly applied with a NDV platform in activated peripheral blood-
Fig. 3 Oncolytic viruses are well positioned to synergize with existing immunotherapies. Cancer cell infection and direct oncolysis leads to the release of tumour-specific antigens, which can be processed by dendritic cells for antigen presentation to naive T cells. Now activated against the tumour antigens, these T cells can aggressively replicate within lymphoid organs before being circulated to intact tumour cells. The concomitant systemic administration of checkpoint inhibitors (e.g., Keytruda®; anti-PD-1) will block the negative checkpoints on the surface of cytotoxic T cells, providing a competitive advantage for the positive regulations of T cell function to interact with the tumour cell, leading to their specific destruction. TAA tumour-associated antigen, TCR T cell receptor, APC antigen-presenting cell

derived T cells and tumour growth inhibition was also observed, however using a MCF-7 human breast cancer cell line [87]. In another pre-clinical model, donor splenocytes from rats harboring parvovirus-treated orthotopic PDAC tumours were adoptively transferred into naive PDAC-bearing recipients, resulting in a significant prolonging of recipient survival [88]. In a more recent effort combining the adoptive transfer of cytotoxic T lymphocytes with OV therapy using an oAd expressing IL15, a positive therapeutic effect was observed in both human glioblastoma and gastric cancer models [89].

Cytokine-induced killer (CIK) cells have also been shown to gain an enhanced therapeutic effect when used in synergy with OV therapeutics. This has been observed using an oAd in an orthotopic rectal cancer model [90], in a patient-derived xenograft model of HCC in synergy with an HSP70-loaded oAd [91], and in an HCC model using an oAd expressing IL12 [92]. These pre-clinical studies represent attractive possibilities for future clinical translation due to the many technical benefits of working with CIK cells and their apparent efficacy benefits in early studies [93].

One of the challenges of using adoptive cell therapy is creating a situation in which the transferred cells are preferentially attracted to cancers, especially in the context of many solid tumours. Oncolytic viruses may have a mechanism by which they can help adoptively transferred cells overcome this limitation, as seen with the HSV-2-based OV that has been observed to actively pull effector T cells to the site of viral infection [94]. With the same rationale, Nishio et al. approached the less often combined CAR-T therapy with an oAd expressing IL15 as well as the RANTES chemokine. They observed that the OV therapy had a direct oncolytic effect as expected, however also worked to home the tumour antigen GD2-specific CAR-T cells to their experimental neuroblastoma model [95].

Accelerated clinical development of oncolytic viruses

As discussed, the field of OV therapeutics is in the midst of a rapid surge in clinical candidate development thanks in large
part to their synergistic potential with existing immunotherapies. It is evident that recent clinical advances in immunotherapy have changed the way oncology is practiced and changed the prognosis for many patients. Unfortunately, many patients will remain non-responders despite these advances, which is where OV's can have tremendous impacts. Dozens of clinical trials have been completed to advance the field; however, Table 1 summarizes the currently active registered clinical trials (as of April 2016; listed on ClinicalTrials.gov) involving OVs. Our group is taking a novel approach to enhancing anti-tumour immunity by encoding tumour antigens directly in an OV backbone, thus creating a true oncolytic virus vaccine. Heterologous “prime-boost” approaches have been in vogue in the infectious disease field for over a decade and are designed to focus the immune system on the target antigen rather than the immunizing vectors. We have adapted this strategy and are conducting a trial wherein patients receive a priming vaccination via intramuscular injection with a non-replicating adenovirus vector expressing a tumour antigen followed by a boosting vaccination with an intravenously administered rhabdovirus-based OV that encodes the same tumour antigen. In this study, we hope to combine the potent stimulation of the immune system using our novel vaccination strategy along with the benefits of OV therapy (ClinicalTrials.gov, identifier NCT02285816). Another similar approach has been employed in minimally symptomatic, chemotherapy naïve metastatic castration-resistant prostate cancer—patients have been treated with PROSTVAC immunotherapy, which uses a “prime-boost” treatment course of recombinant VaxXV followed by a recombinant fowl pox in an effort to generate and maintain anti-tumour immunity [96]. The field will await results of a phase III trial, which is currently underway (Table 1; ClinicalTrials.gov, identifier NCT01322490).

Future perspectives

The past decade in the OV field has been one of great progress as OVs have demonstrated themselves to be excellent potential partners to boost existing and emerging immunotherapies, and as discussed herein are poised to enhance the growing anti-cancer armament available to today’s oncologist. However, there are still many unanswered questions in the OV field and there is a need to continue funding fundamental research into virus-host interactions. For instance, how can we best design vectors that overcome natural adaptive and innate anti-viral responses [97] facilitating successful systemic delivery and tumour lysis without compromising the excellent safety record OVs have enjoyed to date? These approaches have to be balanced with the need to also stimulate the immune systems of individuals with cancer to generate effective and long-lasting anti-tumour immunity. Whatever the answers to these questions, it is clear the OV field has entered ‘primetime’, and we now seek to deliver the best possible next-generation therapeutics for our patients.

Acknowledgments BAK is supported by a Vanier Canada Graduate Scholarship. JCB is supported by the Ontario Institute of Cancer Research, the Canadian Institutes of Health Research, and the Terry Fox Foundation. We would like to acknowledge the many investigators whose basic discoveries have been translated into clinical candidate oncolytic viral therapies and may otherwise not be mentioned. We would like to thank Dr. C. Eklund for the critical appraisal of this manuscript.

Compliance with ethical standards

Conflict of interest JCB is a scientific co-founder of Turnstone Biologics.

References

Appendix IV: A list of all clonal viruses represented in this working library and discussed throughout this thesis. Firstly, viruses are listed in numerical order. Secondly, viruses are listed in order as they are found genomically (grouped by HindIII digest fragments).
<table>
<thead>
<tr>
<th>Clone ID (Tp)</th>
<th>Insertion</th>
<th>268</th>
<th>A41L/1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F4L/1.0</td>
<td>269</td>
<td>A43R/0.3</td>
</tr>
<tr>
<td>35</td>
<td>C21L/0.7</td>
<td>270</td>
<td>C10L/0.1</td>
</tr>
<tr>
<td>36</td>
<td>C6L/0.3</td>
<td>272</td>
<td>B17L/0.9</td>
</tr>
<tr>
<td>41</td>
<td>B8R/0.2</td>
<td>275</td>
<td>B7R/0.1</td>
</tr>
<tr>
<td>53</td>
<td>A51R/0.5</td>
<td>276</td>
<td>B17L/0.7</td>
</tr>
<tr>
<td>54</td>
<td>N1L/0.2</td>
<td>279</td>
<td>F11L/0.3</td>
</tr>
<tr>
<td>59</td>
<td>C8L/0.3</td>
<td>280</td>
<td>K1L/0.4</td>
</tr>
<tr>
<td>61</td>
<td>F15L/0.8</td>
<td>285</td>
<td>A48R/0.9</td>
</tr>
<tr>
<td>69</td>
<td>C15L/0.7</td>
<td>287</td>
<td>C17L/1.0</td>
</tr>
<tr>
<td>81</td>
<td>F2L/0.3</td>
<td>288</td>
<td>A55R/0.3</td>
</tr>
<tr>
<td>90</td>
<td>J5L/1.0</td>
<td>289</td>
<td>C7L/1.0</td>
</tr>
<tr>
<td>96</td>
<td>A41L/0.4</td>
<td>292</td>
<td>A43R/1.0</td>
</tr>
<tr>
<td>98B</td>
<td>B7R/0.2</td>
<td>293</td>
<td>C6L/0.7</td>
</tr>
<tr>
<td>106</td>
<td>Intergenic</td>
<td>297</td>
<td>C9L/0.9</td>
</tr>
<tr>
<td>112</td>
<td>C10L/0.4</td>
<td>299</td>
<td>B20R/0.2</td>
</tr>
<tr>
<td>117</td>
<td>A49R/0.7</td>
<td>304</td>
<td>C9L/0.1</td>
</tr>
<tr>
<td>130</td>
<td>A57R/0.5</td>
<td>305</td>
<td>K5L/0.5</td>
</tr>
<tr>
<td>131</td>
<td>A55R/0.0</td>
<td>306</td>
<td>A36R/0.9</td>
</tr>
<tr>
<td>133</td>
<td>B14R/0.1</td>
<td>307</td>
<td>C10L/0.3</td>
</tr>
<tr>
<td>173</td>
<td>C14L/0.3</td>
<td>311</td>
<td>F15L/0.3</td>
</tr>
<tr>
<td>177</td>
<td>B17L/0.8</td>
<td>313</td>
<td>C10L/1.0</td>
</tr>
<tr>
<td>181</td>
<td>Intergenic</td>
<td>314</td>
<td>C1L/0.7</td>
</tr>
<tr>
<td>186</td>
<td>Intergenic</td>
<td>315</td>
<td>A55R/0.4</td>
</tr>
<tr>
<td>195</td>
<td>Intergenic</td>
<td>316</td>
<td>A51R/0.9</td>
</tr>
<tr>
<td>199</td>
<td>B13R/0.6</td>
<td>321</td>
<td>C19L/0.4</td>
</tr>
<tr>
<td>201</td>
<td>A52R/0.9</td>
<td>323</td>
<td>O1L/0.2</td>
</tr>
<tr>
<td>203</td>
<td>B19R/0.6</td>
<td>324</td>
<td>M1L/0.6</td>
</tr>
<tr>
<td>205</td>
<td>C9L/0.6</td>
<td>325</td>
<td>C9L/0.8</td>
</tr>
<tr>
<td>211</td>
<td>Intergenic</td>
<td>326</td>
<td>A47L/0.1</td>
</tr>
<tr>
<td>214</td>
<td>A40R/0.6</td>
<td>327</td>
<td>A46R/0.6</td>
</tr>
<tr>
<td>219</td>
<td>B4R/0.6</td>
<td>332</td>
<td>I4L/0.9</td>
</tr>
<tr>
<td>223</td>
<td>F5L/0.4</td>
<td>333</td>
<td>A39R/0.1</td>
</tr>
<tr>
<td>225</td>
<td>C10L/0.8</td>
<td>334</td>
<td>N2L/0.7</td>
</tr>
<tr>
<td>229</td>
<td>Intergenic</td>
<td>335</td>
<td>Intergenic</td>
</tr>
<tr>
<td>237</td>
<td>A41L/0.7</td>
<td>336</td>
<td>F5L/0.2</td>
</tr>
<tr>
<td>243</td>
<td>A47L/0.2</td>
<td>337</td>
<td>I4L/0.3</td>
</tr>
<tr>
<td>250</td>
<td>A47L/0.6</td>
<td>339</td>
<td>Intergenic</td>
</tr>
<tr>
<td>254</td>
<td>C2L/0.3</td>
<td>344</td>
<td>K7R/0.3</td>
</tr>
<tr>
<td>255</td>
<td>J2R/0.8</td>
<td>347</td>
<td>A31R/0.9</td>
</tr>
<tr>
<td>257</td>
<td>A41L/0.9</td>
<td>348</td>
<td>F8L/0.8</td>
</tr>
<tr>
<td>258</td>
<td>A50R/0.1</td>
<td>351</td>
<td>O1L/0.1</td>
</tr>
<tr>
<td>261</td>
<td>E5R/0.0</td>
<td>353</td>
<td>A39R/0.7</td>
</tr>
<tr>
<td>262</td>
<td>C15L/0.1</td>
<td>356</td>
<td>F2L/0.1</td>
</tr>
<tr>
<td>263</td>
<td>N1L/0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>C17L/0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clonal vaccinia virus mutant library (genomic order)

<table>
<thead>
<tr>
<th>Insertion</th>
<th>Clone ID (Tp)</th>
<th>O1L/0.2</th>
<th>323</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intergenic</td>
<td>186</td>
<td>I4L/0.3</td>
<td>337</td>
</tr>
<tr>
<td>C21L/0.7</td>
<td>35</td>
<td>I4L/0.9</td>
<td>332</td>
</tr>
<tr>
<td>C19L/0.4</td>
<td>321</td>
<td>J2R/0.8</td>
<td>255</td>
</tr>
<tr>
<td>C17L/0.5</td>
<td>264</td>
<td>J5L/1.0</td>
<td>90</td>
</tr>
<tr>
<td>C17L/1.0</td>
<td>287</td>
<td>A31R/0.9</td>
<td>347</td>
</tr>
<tr>
<td>Intergenic</td>
<td>335</td>
<td>A36R/0.9</td>
<td>306</td>
</tr>
<tr>
<td>C15L/0.1</td>
<td>262</td>
<td>A39R/0.1</td>
<td>333</td>
</tr>
<tr>
<td>C15L/0.7</td>
<td>69</td>
<td>A39R/0.7</td>
<td>353</td>
</tr>
<tr>
<td>C14L/0.3</td>
<td>173</td>
<td>A40R/0.6</td>
<td>214</td>
</tr>
<tr>
<td>Intergenic</td>
<td>211</td>
<td>A41L/0.4</td>
<td>96</td>
</tr>
<tr>
<td>C10L/0.1</td>
<td>270</td>
<td>A41L/0.7</td>
<td>237</td>
</tr>
<tr>
<td>C10L/0.3</td>
<td>307</td>
<td>A41L/0.9</td>
<td>257</td>
</tr>
<tr>
<td>C10L/0.4</td>
<td>112</td>
<td>A41L/1.0</td>
<td>268</td>
</tr>
<tr>
<td>C10L/0.8</td>
<td>225</td>
<td>A43R/0.3</td>
<td>269</td>
</tr>
<tr>
<td>C10L/1.0</td>
<td>313</td>
<td>A43R/1.0</td>
<td>292</td>
</tr>
<tr>
<td>C9L/0.1</td>
<td>304</td>
<td>A46R/0.6</td>
<td>327</td>
</tr>
<tr>
<td>C9L/0.6</td>
<td>205</td>
<td>A47L/0.1</td>
<td>326</td>
</tr>
<tr>
<td>C9L/0.8</td>
<td>325</td>
<td>A47L/0.2</td>
<td>243</td>
</tr>
<tr>
<td>C9L/0.9</td>
<td>297</td>
<td>A47L/0.6</td>
<td>250</td>
</tr>
<tr>
<td>C8L/0.3</td>
<td>59</td>
<td>A48R/0.9</td>
<td>285</td>
</tr>
<tr>
<td>Intergenic</td>
<td>195</td>
<td>A49R/0.7</td>
<td>117</td>
</tr>
<tr>
<td>C7L/1.0</td>
<td>289</td>
<td>A50R/0.1</td>
<td>258</td>
</tr>
<tr>
<td>C6L/0.3</td>
<td>36</td>
<td>A51R/0.5</td>
<td>53</td>
</tr>
<tr>
<td>C6L/0.7</td>
<td>293</td>
<td>A51R/0.9</td>
<td>316</td>
</tr>
<tr>
<td>C2L/0.3</td>
<td>254</td>
<td>A52R/0.9</td>
<td>201</td>
</tr>
<tr>
<td>C1L/0.7</td>
<td>314</td>
<td>A55R/0.0</td>
<td>131</td>
</tr>
<tr>
<td>N1L/0.2</td>
<td>54</td>
<td>A55R/0.3</td>
<td>288</td>
</tr>
<tr>
<td>N1L/0.4</td>
<td>263</td>
<td>A55R/0.4</td>
<td>315</td>
</tr>
<tr>
<td>N2L/0.7</td>
<td>334</td>
<td>A57R/0.5</td>
<td>130</td>
</tr>
<tr>
<td>M1L/0.6</td>
<td>324</td>
<td>B4R/0.6</td>
<td>219</td>
</tr>
<tr>
<td>K1L/0.4</td>
<td>280</td>
<td>B7R/0.1</td>
<td>275</td>
</tr>
<tr>
<td>Intergenic</td>
<td>229</td>
<td>B7R/0.2</td>
<td>98B</td>
</tr>
<tr>
<td>K5L/0.5</td>
<td>305</td>
<td>B8R/0.2</td>
<td>41</td>
</tr>
<tr>
<td>K7R/0.3</td>
<td>344</td>
<td>Intergenic</td>
<td>181</td>
</tr>
<tr>
<td>F2L/0.1</td>
<td>356</td>
<td>B13R/0.6</td>
<td>199</td>
</tr>
<tr>
<td>F2L/0.3</td>
<td>81</td>
<td>B14R/0.1</td>
<td>133</td>
</tr>
<tr>
<td>F4L/1.0</td>
<td>2</td>
<td>B17L/0.7</td>
<td>276</td>
</tr>
<tr>
<td>F5L/0.2</td>
<td>336</td>
<td>B17L/0.8</td>
<td>177</td>
</tr>
<tr>
<td>F5L/0.4</td>
<td>223</td>
<td>B17L/0.9</td>
<td>272</td>
</tr>
<tr>
<td>F8L/0.8</td>
<td>348</td>
<td>B19R/0.6</td>
<td>203</td>
</tr>
<tr>
<td>Intergenic</td>
<td>106</td>
<td>B20R/0.2</td>
<td>299</td>
</tr>
<tr>
<td>F11L/0.3</td>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergenic</td>
<td>339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15L/0.3</td>
<td>311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15L/0.8</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5R/0.0</td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1L/0.1</td>
<td>351</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curriculum Vitae

BRIAN ANDREW KELLER

EDUCATION

Doctor of Philosophy (PhD) – Biochemistry 2014 - 2017
University of Ottawa | Ottawa, Ontario
Thesis Supervisor: John C. Bell, Professor & Senior Scientist, Ottawa Hospital Research Institute

Doctor of Medicine (MD) 2012 - 2014, 2017 - 2019
University of Ottawa | Ottawa, Ontario

Master of Science (MSc) – Pathology 2010 - 2011
Western University | London, Ontario
Thesis Supervisor: Michael J. Strong, Distinguished University Professor, Western University

Bachelor of Science (BSc) – Biochemistry 2004 - 2008
Hawaii Pacific University | Honolulu, Hawaii, USA

ACADEMIC AWARDS

Research/Academic Funding (Most recent 5 years)

2016-2018 Cancer Research Institute CLIP Grant (Co-applicant)
2014-17 Vanier Canada Graduate Scholarship
2017 Audrey J. Boyce MD/PhD Fellowship
2017 CIHR Michael Smith Foreign Study Supplement (Leeds, UK)
2014-17 University of Ottawa Excellence Scholarship
2014-17 CIHR CGS Doctoral Award (Declined)
2015-16 Judith R. Raymond Scholarship in Cancer Research
2014-15 Ontario Graduate Scholarship (Declined)
2013-14 Dr. Charles W. MacLeod MD/PhD Fellowship
2013-14 University of Ottawa MD/PhD Scholarship
2013 University of Ottawa FGPS Admission Scholarship
2012-13 University of Ottawa MD/PhD Scholarship

Additional Funding/Awards

2017 Mark Ernsting Entrepreneurship Award (with Dr. C. Ilkow)
2016 BioCanRx Highly Qualified Personnel travel award
2016 University of Ottawa BMI Department travel award
2016 University of Ottawa BMI Department travel award
2016 BioCanRx Highly Qualified Personnel travel award
2016 Terry Fox Research Institute travel award
2015 Ottawa Hospital Research Institute IMPACT Award (with A. Pelin)
2015 CIHR Institute Community Support travel award

PUBLICATIONS, PRESENTATIONS, AND TEACHING

Publications

Conference/External Seminar Oral Presentations

2017 Characterizing the phenotypic parameters of vaccinia virus using a library of single gene mutants with differential phenotypes
Institute of Cancer Research (Chelsea), Melcher & Harrington Lab Seminar
London, UK

2016 Random mutagenesis of vaccinia virus uncovers novel clinical candidate oncolytic backbones with unique phenotypes
International Conference on Replicating Oncolytic Viral Therapeutics
Vancouver, British Columbia

2016 Creating novel oncolytic vaccinia virus strains using transposon mutagenesis
German Cancer Research Center, Ungerechts Lab Seminar
Heidelberg, Germany

2016 Transposon-mediated mutagenesis for the creation of a novel oncolytic vaccinia virus
XXI International Poxvirus, Asfarvirus and Iridovirus Conference
Le Bischenberg, Strasbourg, France

2016 Augmenting the anti-tumour immunogenicity of Vaccinia virus using transposon-mediated mutagenesis
Summit for Cancer Immunotherapy
Halifax, Nova Scotia

2016 Creating and characterizing a transposon-mutagenized library of Vaccinia virus clones for the treatment of human cancer
Terry Fox Research Institute Annual Scientific Meeting
Vancouver, British Columbia

2016 Creating better oncolytic viruses for the treatment of hematologic malignancies utilizing a transposon-mutagenized library of vaccinia virus clones
Hematology Trainee Research Day – Ottawa Hospital
Ottawa, Ontario

2014 Directed evolution of vaccinia virus
Canadian Oncolytic Virus Consortium Annual Retreat
Elgin, Ontario

2012 Strengthening the argument for the role of RNA metabolism in ALS
23rd International Symposium on ALS/MND
Chicago, IL, USA
Poster Presentations (Most recent 5 years)

2016 Optimizing the vaccinia backbone for use as an oncolytic virus using insertional mutagenesis
 Terry Fox Research Institute, Ontario Node Symposium
 Toronto, Ontario

2016 Random mutagenesis of vaccinia virus uncovers novel clinical candidate oncolytic backbones with unique phenotypes
 OHRI Research Day 2016
 Ottawa, Ontario

2016 Augmenting the anti-tumour immunogenicity of vaccinia virus using transposon-mediated mutagenesis
 Summit for Cancer Immunotherapy
 Halifax, Nova Scotia

2016 Creating and characterizing a transposon-mutagenized library of vaccinia virus clones for the treatment of human cancer
 Terry Fox Research Institute Annual Scientific Meeting
 Vancouver, British Columbia

2015 Bio-engineering a vaccinia-based oncolytic virus for the treatment of cancer
 OHRI IMPACT Award finalist
 Ottawa, Ontario

2015 Bio-engineering a vaccinia-based oncolytic virus using transposon-mediated mutagenesis for the treatment of malignant melanoma
 OHRI Research Day 2015
 Ottawa, Ontario

2015 Directing recombination evolution to develop novel vaccinia virus-based therapeutics for the treatment of malignant melanoma
 9th International Conference on Oncolytic Virus Therapeutics
 Boston, MA, USA

2014 Directing recombination evolution to develop novel vaccinia virus-based therapeutics for the treatment of malignant melanoma
 Clinical Investigator Trainee Association of Canada Annual General Meeting
 Toronto, Ontario

2014 Directing recombination evolution to develop novel vaccinia virus-based therapeutics for the treatment of malignant melanoma
 OHRI Research Day 2014
 Ottawa, Ontario
2012 The pathogenic expression of RNA binding proteins in ALS and evidence for the histologic distinction of mtSOD1-ALS

London Health Research Day
London, Ontario

Teaching Experience

2017 CO-OP student supervision – Natalie Crawford (Dalhousie University)

Ottawa Hospital Research Institute, Ottawa, Ontario

2016-2017 Honours student supervision – Russell Barkley (University of Ottawa)

Ottawa Hospital Research Institute, Ottawa, Ontario

2016 Laboratory MD student supervision – Brandon Budhram (University of Ottawa)

Ottawa Hospital Research Institute, Ottawa, Ontario

2016 CO-OP student supervision – Russell Barkley (University of Ottawa)

Ottawa Hospital Research Institute, Ottawa, Ontario

2015 Summer student supervision – Nathan Fergusson (Queen’s University)

Ottawa Hospital Research Institute, Ottawa, Ontario

2013 Case-Based Learning session for MD2017

University of Ottawa, Faculty of Medicine, Ottawa, Ontario

External Collaborators

- Dr. Christine Engeland (German Cancer Research Center, Heidelberg, Germany)
- Dr. Victoria Jennings (University of Leeds, Leeds, UK)
- Professor Alan Melcher (Institute of Cancer Research, London, UK)
- Dr. Antonio Postigo (Francis Crick Institute, London, UK)
- Dr. Martina Schroeder (Maynooth University, Maynooth, UK)
- Professor Michael Way (Francis Crick Institute, London, UK)