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Abstract 

This thesis presents our method to integrate formal methods with model-driven engineering. 

Although a large amount of literature exists with the goal of facilitating the adoption of formal 

methods for educational and industrial practice, yet the adoption of formal methods in academia 

and industry is poor. The goal of this research is to improve the adoption of formal methods by 

automating the generation of formal methods code while maintaining scalability and bridging the 

gaps between formal analysis and actual implementation of the complete system.  

Our approach is based on generating formal representations of software abstractions expressed in 

a textual language, called Umple, which is derived from UML. Software abstractions of interest 

include class models and state machines. For state machines, we address concerns such as 

composite and concurrent states separately. The resulting systems are analyzable by back-end 

analysis engines such as Alloy and nuXmv or NuSMV for model checking. 

To ensure correctness of our approach, we have adopted simulation, empirical studies and rigorous 

test-driven development (TDD) methodologies. To guarantee correctness of state machine systems 

under analysis (SSUAs), we present methods to automatically generate specifications to analyze 

domain-independent properties such as non-determinism and reachability analysis. We apply these 

methods in various case studies; certify their conformance with sets of requirements and uncover 

certain flaws. 

Our contributions include a) The overall approach, involving having the developer write the 

system in Umple and generating both the formal system for analysis and the final code from the 

same model; b) a novel approach to encode SSUAs even in the presence of and-cross transitions; 

c) a fully automated approach to certify an SSUA to be free from nondeterminism even in the 

presence of unbounded domains and multiple and-cross transitions within the same enclosing 

orthogonal state; d) an empirical study of the impact of abstraction on some performance 

parameters; and e) a translator from Umple to Alloy and SMV.  
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TABLE 1. TABLE OF SYMBOLS 

Symbol Formula Explanation 

 ὠ  A finite set of attributes of the SSUA 

 Ὓ  The universal set of states of the SSUA 

 ὓ  The universal set of state machines forming the SSUA 

 ά  The root state machine of the SSUA 

 2  The universal set of transitions of the SSUA 

 Ὑ  The universal set of transitions of state machine A. 

 ὲ The name of the state machine A 

 Ὓ Finite set of top-level states of state machine A 

 ί The initial state of state machine A 

 ὰ A finite set of labels enclosed in A 

 Ὗ  A universe of states embedded in a state machine A 

 Ὁ A set of embedded transitions of state machine A 

 ὰ The trigger Ὡ (or event) on transition label ὰ ộὫȟὩȟὥỚ  

ὢ ὢὸ ὢ maps transition ὸ to its destination state (see Definition 12) 

Ὂ Ὂὸ Ὂ maps transition ὸ to its set of source state(s) (see Definition 11) 

 ὓ   maps state machine ὓ to its type (i.e., simple or hierarchical)  

 ί  maps state ί to its number of sub-state machines 

” ”ὓ  ” maps state machine ὓ to its parent state 

L L( t ) L maps transition t = (x, y, z) to y (i.e., its label) 

 O ὥᴼὦ If ὥ then ὦ 

 P ὥᴾὦ ὥ is true if and only if ὦ is true 

ṟ ὃṟὄ ὃ is an immediate descendant of state machine ὄ 

ṡ ὃṡὄ ὃ is an element of the set of descendants of state machine ὄ (including ὄ) 

ṟ ὃṟὄ ὃ is a descendant state machine of ὄ 

ṟȿȿ ὃṟȿȿὄ ὃ is parallel to state machine ὄ 

Ẅ ὥẄὦ ὥ is an immediate descendant of state ὦ 

Ẇ ὥẆὦ ὥ is an element of the set of descendants of state ὦ (including ὦ)  

Ẅ ὥẄὦ ὥ is a descendant of ὦ   

 ɴ ὼɴ ὢ ὼ is defined as an element of set ὢ 

 ᶅ ᶪ ɴ  ὼ is defined as any element of set ὢ 

 ɱ ᶬ ɴ  ὼ is defined as some elements of set ὢ 

Ў Ўὼ The set of in-transitions of state ὼ (see Definition 13) 

 ɳ ᶯὼ The set of embedded transitions of state ὼ (see Definition 14) 

H H(s) The set of high-level transitions of state s (see Definition 15) 

 ί The set of and-cross transitions of an orthogonal state ί (see Definition 16)שׂ שׂ

 ί The set of unusual transitions for an orthogonal state ί (see Definition 17) 

• •ὼ The set of enabling transitions of state ὼ (see Definition 18) 

Α Αὃ The fully qualified name of state (or sub -state) machine ὃ 

‡ ‡ὃȟί  The active state of state (or sub-state) machine ὃ at step Ὥ (see Definition 21) 

DH  DH( M )  The set of high-level transitions that will disable state machine M (see Definition 22)  

IH  IH(A)  The set of ignorable high-level transitions for sub -state machine A (see Equation 14) 

  The set of and-cross transitions with target regions other than A (A, s)שּׁ שּׁ

Ὀ Ὀὓ  The set of disabling transitions for state (or sub-state) machine ὓ 

 ίȟὸ  The set of parallel transitions of ὸ in state ί (see Definition 23) 

ὰ The guard Ὣ on transition label ὰמּ מּ ộὫȟὩȟὥỚ 

ḛ ὥḛὦ ὥ and ὦ are non-overlapping guard statements  

 ί The set of embedded states of ί (see Equation 23)  

 ( s )  maps a top-level state s to its state machine. 
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1 Introduction  

In this thesis, we demonstrate that developers can use a single formalism (a derivative of UML) to 

generate code for both formal methods and executable systems. Furthermore, we use formal 

methods to prove some properties of such systems and demonstrate usefulness of and-cross 

transitions as defined by Harelôs statechart semantics [1]. 

As the complexity of real-world software systems grows relentlessly, the risk of project and system 

failure remains unabated. This phenomenon is domain independent, as automotive [2], health [3], 

and business [4] examples attest. 

Christel and Joost-Pieter [5] stated:  

ñOur reliance on the functioning of ICT systems (Information and 

Communication Technology) is growing rapidly. These systems are becoming 

more and more complex and are massively encroaching on daily life via the 

Internet and all kinds of embedded systems such as smart cards, hand-held 

computers, mobile phones, and high-end television sets.ò  

Unfortunately, expecting human beings developing such systems to prevent failures by detecting 

faults is unreasonable unless the humans are supported by sophisticated tools. Such tools must 

match increasing complexity by increasing the use of abstractions with rigorous mathematical 

underpinnings.  

Tools enabling sound mathematical analysis of software, collectively called formal methods, 

(discussed below) have been available for decades. However, their uptake has been slow since 

they tend to be too hard for all but the most accomplished computer scientists to use, tend not to 

scale well, and tend to be somewhat special-purpose. 

Another set of tools and techniques in the field called Model-Driven Engineering (MDE), also 

discussed below, combats complexity by allowing relatively easy specification and generation of 

systems, bypassing the need for humans to understand what is being generated. 
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To some extent, MDE and formal methods are becoming connected, since MDE tools are more 

and more being given solid formal semantics. However, the easiest-to-use modeling techniques 

tend not to be well integrated with state of the art formal methods. This is the issue we address in 

this thesis. 

Our objective is to allow developers to employ the easy-to-use modeling language technology 

Umple to generate systems, while delegating to state-of-the-art formal methods tools to 

transparently analyse such systems. In doing so, we hope to increase the applicability of formal 

methods, and hence improve the quality of software systems.  

1.1 Model-Driven Engineering 

MDE [6] has emerged as a disciplined approach to addressing software complexity and effectively 

representing domain concepts, architectural concepts and other aspects of abstract design. MDE 

advocates both general-purpose and domain-specific modeling languages, model transformation 

and code generators as means of msanaging complexity of the software industry. 

A domain-specific language helps formalize structural and behavioral requirements of objects in 

target domains. Transformation engines and generators provide mechanisms that facilitate analysis 

and synthesis of domain-specific artefacts. 

Advances in MDE yielded the Unified Modelling Language (UML) [7] in the mid 1990ôs. UML 

remains a key standard for representing static and dynamic aspects of software systems, but its 

current semantics is semi-formal [8]. UML is widely taught because its core concepts, such as 

class diagrams and state diagrams are simple, yet powerful. Much of its use is informal (i.e., simply 

drawing of pictures) however, due to tool weaknesses [9]. The Umple technology has been 

developed to solve certain UML tool problems while retaining and enhancing the ability to 

generate software. We will discuss Umple in detail in Section 2.1. 

1.2 Formal Methods 

Formal methods provide strong mathematical discipline with the promise of ensuring correctness 

of software systems [10], when it is applied correctly in contexts where proof is possible. They 
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offer notations to express software abstractions with unambiguous semantics and sound 

mathematical principles to reason about correctness of software. 

According to Ouimet and Landquist [11], formal verification of systems (i.e. hardware and 

software) has gained tremendous attention since the advent of the famous ñPentium bugò which 

costs Intel Corporation a loss of $475 million in recall of faulty chips in 1994 [12]. 

Advances in formal methods for software engineering have given birth to various approaches 

including theorem proving, model checking, and static analysis. 

1.2.1 Theorem proving 

Theorem proving [13]ï[22] provides a deductive approach to the certification of program 

correctness. It requires the definition of a set of calculi targeted to programming language 

constructs. Verification of a correctness property is thus subjected to proofs using these calculi 

(i.e., the deductive verification approach [23]). A program is correct with a set of calculi if and 

only if the established pre-condition holds before program execution and the post-condition holds 

after the program execution terminates. Advances in theorem proving have given birth to 

interactive (e.g., [16], [17], [19]ï[21]) and automated (e.g., [22]) theorem proving approaches. 

Although theorem proving approaches guarantee absolute correctness for certain aspects of a 

system, their adoption in the industrial settings is low. Their major limitation is that they demand 

user guidance in the search for solutions and have inadequate support for automation.  Another 

limitation is that each technique considers only a subset of aspects of a program. 

1.2.2 Static analysis 

Static analysis [24]ï[29] is another formalizable approach. A goal of some static analysis 

techniques is to automatically compute necessary preconditions along all paths of a program 

without execution. According to [26], necessary preconditions are a set of constraints (any 

violation of which will lead to an error in subsequent program execution). The major benefit of 

this approach is its potential to address scalability issues in certifying the correctness of large-scale 

software systems. Despite its potential to address scalability, the approach is limited in several 

ways. Current solutions of this approach target program source code but not higher-level software 

abstractions such as state machines and class models, etc. Another limiting factor is that to realize 
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precision and scalability, solutions are tailored to a specific problem domain (e.g., avionics, 

automotive, etc.). To make matters worse, most interesting questions about program correctness 

are undecidable [30].   

1.2.3 Model checking 

Model checking [5], [31]ï[36] is a formal technique with the goal of automatically executing and 

analyzing software abstractions before the actual system is built. The approach is model-based and 

is rooted in the principle of exhaustive exploration. According to [5], model checking explores all 

possible system states in a brute-force manner. It requires the model and requirements of the 

system under analysis (SUA) model to be expressed in the dialect of the particular model checking 

engine and logic formalism such as CTL [37] or LTL [38]. The model and its requirements are fed 

into the model checker to determine whether the model conforms to its requirements. The failure 

of the model to conform to its requirements will produce a counterexample. 

Counterexamples are used as feedback to assist the user in certifying or correcting the SUA.  They 

describe execution paths that lead from the initial system state to states that violate the requirement. 

Analysis engines either depend on explicit-state enumeration or symbolic approaches. With the 

explicit-state enumeration, program states tend to increase exponentially. On the other hand, 

symbolic approaches (e.g. SAT [39], OBDDs [40], AIGs [41], [42]) efficiently represent sets and 

relations as Boolean formulas. 

Model checking approaches have strong mathematical underpinnings and give results that can be 

trusted (are sound). The benefits of the approaches include the ease of integration with an existing 

development cycle and automatic verification. However, they have limited capability to support 

verification of data-intensive systems and suffer from a state explosion problem. 

1.2.4 Limitations on adoption 

Despite the attention and potential of formal methods to guarantee bug-free software systems, their 

adoption for industrial and teaching purposes is poor. The following are the major problems we 

observed that limit the adoption of formal methods for software verification purposes: 
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There are numerous formal languages, each with its own advantages and areas of applicability 

(e.g., some languages are specialized for specific domains, while others are focused on dynamic 

or static aspects of design). 

The languages and tools for formal methods are complex, resulting in a high level of expertise and 

cognitive effort required to write and understand them. 

Manual creation of formal specifications becomes increasingly error-prone as systems become 

large due to the sheer amount of formal language ócodingô required. It is, we believe not feasible 

to expect engineers to create formal specifications for large modern systems that are both correct 

and can be correctly manually translated into a correct functioning system. Automation is needed 

for both correctness checking, and translation into correct systems. A key objective of this thesis 

is to allow both to be achieved, starting from one common specification, written in a simpler 

language. 

Formal methods are taught to some extent in universities, but not universally due to their 

complexity and the lack of needed support tools that can be easily used by students. 

Nonetheless, a report by the National Aeronautics and Space Administration (NASA) and the 

Federal Aviation Authority (FAA) after an investigation into the use of formal methods stated (see 

pg. 7 of [5]): 

ñFormal methods should be part of the education of every computer scientist 

and software engineer, just as the branch of applied maths is a necessary part 

of the education of all other engineers.ò 

1.3 Problem Statement and Research Direction 

We summarize the problem to be tackled in this thesis as follows: 

Formal methods are too difficult to use by ordinary developers, and unsuitable 

to directly teach in lower-level university courses, due to complexity, 

scalability and tool suitability issues. Thus, formal methods have low adoption 

levels. 
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Our top-level research question derived from this is: 

Research Question 1 

How can we improve the adoption of formal methods, both in industry and in 

teaching, by overcoming some of the complexity, while maintaining analysis 

capabilities and enhancing scalability? 

Our working hypothesis for the thesis is the following: 

It should be possible to make formal methods more usable by hiding their 

complexity in a similar manner to how the complexity is hidden in other 

development technologies: By wrapping them in simpler abstractions (i.e., 

succinct modeling constructs), and generating both executable code and formal 

methods code from those simpler abstractions where necessary. For example, 

a complex behaviour of a system may be abstracted in a state machine (simple 

or hierarchical); relationships between classes can be abstracted in 

associations; and so on. 
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Where: 

(a) Traditional Usage;  

(b) Usage with MDE;  

(c) Round-trip Engineering Usage; and 

(d) Proposed Usage. 

 
 

 
 

 

FIGURE 1. USAGES OF FORMAL METHODS 

Automatic transformation 
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Manual transformation 
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By óformal methods codeô in this context we mean the expressions in the formal approachôs 

language. 

More specifically, we hypothesize that we can generate formal methods code corresponding to 

simple models based on UML class diagrams and state diagrams, and use the power of the formal 

methods tools óbehind the scenesô to find defects in the models.  

Our objective is to explore how to develop technology to show that the hypothesized capability is 

achievable. 

To help explain the gaps our work addresses, we present various usages of formal methods for 

software development in Figure 1. This allows us to compare various usages of formal methods 

with the usage we advocate. These are: traditional usage of formal methods; usage of formal 

methods with MDE; roundtrip engineering and the usage advocated for using formal methods with 

MDE in this thesis. 

In Figure 1(a), we present the traditional usage of formal methods for software development. The 

approach does not automate most of the transformations except the transformation to machine code 

or bytecodes done by a compiler. The starting point is the requirements, which are informal but 

later developed manually into a visual model (i.e., static and behavior). Then a formal specification 

of the model and properties are created manually from the model. The specification and the 

properties are formally analyzed to discover and fix defects. The formal specification and the 

model is then turned manually into code (e.g., C, Java, etc.) and compiled into a working system 

automatically. A typical example of this usage is applied by Chan et. al [43].  

This approach tends not to be scalable and to be error-prone. For example, applying this approach 

on an industrial-scale automotive system is arduous. That is, the manual creation of perfectly 

consistent models, formal specifications and code may delay time-to-market or make the project 

infeasible. Similarly, keeping track of changes made to the model, code and formal specification 

is difficult to guarantee. Maintaining consistent model artifacts whenever there is a change may be 

unrealistic.  

An approach to more closely connecting MDE with formal methods is presented in Figure 1(b). 

This approach involves manual creation of a visual (and sometimes textual) representation of the 

model from informal requirements in a language such as UML; this is not generally considered a 

formal model because formal verification (e.g., model checking) cannot be applied to such models. 



Page | 9  

 

Nonetheless the tool managing the model maintains a machine-processable representation of the 

model, which is then used for automatic generation of code (e.g., Java). To formally analyze 

systems with this approach, the formal specification and properties are also created manually and 

passed to an analyzer for analysis. The limitations of this approach for formal analysis of SUD 

include scalability and consistency between model and formal specifications. In other words, 

although the code may be synchronized with the model, the formal specification must still be 

manually kept in synch with the model.   

Another approach often adopted for software development is round-trip engineering (see Figure 

1(c)) with automatic code-generation. According to Klein et. al [44], round-trip engineering 

provides capabilities that facilitate manual editing of generated code such that the changes made 

to it are reflected back in the model. Round-trip engineering support attempts to guarantee 

consistency between code and model. However, it is still an issue to maintain consistency between 

model and formal specifications of the SUD.  

We present an approach that maintains consistency between model and code, as well as the model 

and formal specification. This is illustrated with the diagram presented in Figure 1(d). Our 

approach implements the model-code duality principle such that a model and code blend into one 

extended model. We express the model/program textually as an Umple program (files with 

extension *.ump) which is then parsed and analyzed. The Umple compiler produces an Umple 

Internal Representation (UIR) of the model/program. We have developed code generators to 

automatically generate both the final executable system, and formal specifications of static and 

dynamic behaviors of the SUD from the UIR. The Umple model becomes the ómasterô; all changes 

are applied to it; formal verification is performed on a formal model that is automatically kept in 

synch with the Umple model. 

We use Umple in our work for a variety of reasons. It implements model-code duality as described 

above; we have full access to it as an experimental testbed, and it meshes well with the text-based 

software development methods, such as automated testing, that are widely used in industry. Its 

capability to automatically generate formal specifications enhances scalability of formal 

representations and guarantees consistency between model and formal specifications.  

To limit the scope our research, we decided to limit the models we would investigate to class 

diagrams and state diagrams. These specific modeling abstractions are widely taught, readily 
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understandable and, taken together, are at the core of the designs of a large proportion of systems. 

We chose to work on both to generalize our work to more than one type of model and formal 

method. 

Despite the improvements our work offers, we deem it important to discuss its limitations. 

Currently, the analyst is required to add actions (e.g., assignments to variables in response to 

events) manually to the generated formal specifications to enable exhaustive analysis. Similarly, 

the analysis of algorithmic logic embedded in the model is out of the scope of this work. The focus 

of our work is the discovery of defects at the modeling (i.e., abstract or high) level but not at the 

generated-code (i.e., low) level. Hence, we encourage analysts to leverage Umpleôs infrastructure 

for test-driven development (TDD) to manage this aspect.  

1.4 Choice of Tools 

We had to choose the tools on which we would base our work. For the formal methods tools our 

selection criteria included that the tool must be actively developed and researched, capable of a 

wide range of mathematical reasoning. It was also important to choose only analysis engines that 

require no user guidance or invention to create mathematical lemmas in the process of proof search. 

For the selection of the model-driven tool, we needed it to be open source (so we can modify it to 

integrate the formal methods), easy to use and capable of full system generation.  

For all tools, we needed them to be scalable to systems of very large size (with the understanding 

that the formal method code would have to be automatically generated).  

We have developed a modular encoding approach that allows reasoning about temporal properties 

on moderately complex state machine models, and static properties in class diagrams. Our solution 

automatically generates the formal representation of systems; thus, the analysis of large systems 

is possible and users are shielded from mathematical notations. 

As a formal method and tool set for analysing dynamic properties of systems, we selected nuXmv 

[45] or its variant NuSMV [32] for systems with unbounded variable(s). nuXmv is a new symbolic 

model checking tool for the verification of fair, finite- and infinite state synchronous systems.  Its 

major goal is to address complexity characterizing data-intensive systems and preserve automated 

analysis benefits of model checking approach. It extends NuSMV [32], a state-of-the-art model 

checker for the specification and verification of finite state systems. nuXmv inherits basic 
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verification techniques of NuSMV but extends its native language with Unbounded Integer and 

Real data types for the specification of infinite domains. To enable verification of the newly 

supported domains, nuXmv integrates Satisfiability Modulo Theory (SMT [46]) algorithms. 

nuXmv had been adopted for the verification of various applications in academic and industrial 

contexts [31], [47]ï[50]. Among other state-of-the-art model checking tools, performance results 

show that nuXmv is highly competitive [45], [51].   

To enable analysis of static aspects of systems, we selected Alloy [52]. This implements a first-

order logic language for expressing software abstractions, simulating and checking requirements of 

software systems [53]. It provides mechanisms for expressing transitive closure, universal and 

existential quantifications, predicates, functions, relations, invariance, multiplicities, inheritance, 

and so on. With these mechanisms, Alloy is suitable for representing object models, simple and 

complicated constraints, and operations manipulating the structures dynamically. Hence, it is 

mostly suitable for specifying and validating structural properties of software [53]. 

Verification and validation of systems with Alloy is fully automatic with instant feedback from its 

SAT-based analyzer. It adopts a bounded verification strategy as a means of handling undecidability 

issues. Hence, Alloy is sound but incomplete. The Alloy analyzer is capable of discovering 

inconsistencies via simulations, and counterexamples by checking assertions. The simulation 

mechanism provided by Alloy allows detection of situations when no instance of the specified 

model exists within the defined scope. On the other hand, for cases when the analystôs intention is 

compromised, the analyzer generates a counterexample. Alloy has gained significant attention in 

academic research work on formalizing UML class diagrams [54]. System construction with Alloy 

is based on the following notions: signature, fields, facts, functions, predicates, and assertions.  

As the MDE tool we will use Umple [55]ï[58] as the master language for representing and 

generating real-world software systems. It supports the ómodel-code dualityô principle meaning 

that it represents software models, not only as diagrams but also equally easily and interchangeably 

in textual form [55]. 

Umple allows developers to model static and dynamic views of software systems and 

automatically generates Java, C++, Ruby, Php, etc. code from the system model. Umple achieves 

this by providing constructs and environments to express a rich subset of Unified Modeling 
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Language (UML) [7], such as class models; state machine models; and composite structure 

models. It provides code generation for UML associations that fully supports referential integrity 

and multiplicity constraints; and it supports unlimited hierarchically nested and concurrent state 

diagrams.   

1.5 Contributions 

As discussed above, the goal of this work is to integrate formal methods in a usable way with 

model-driven engineering to allow formal analysis of software abstractions (e.g., UML state 

machine diagrams and static class models); and enhance adoption of formal methods for software 

engineering education and industrial practices. To be specific, we intend to bridge the gaps 

between model and code, and model and its formal representations. This general goal requires 

solving various sub-problems, each of which is a distinct contribution. Therefore, we highlight the 

contributions of this thesis as follows: 

a) The overall approach of facilitating formal analysis by having the developer 

model the complete system in a simple modeling language (in our case, Umple), 

and systematically generating formal methods from this for verification purposes, 

while at the same time generating the final system from the same model, thus 

preventing the need for re-implementation; 

b) A novel approach to encode state machine-based systems even in the presence of 

and-cross transitions for symbolic model verification (see [59]); 

c) A fully automated approach to certify a state-machine based system to be free of 

non-determinism even in the presence of unbounded variables and multiple and-

cross transitions in the same enclosing state (see [60]);  

d) A comparative study of and-cross transitions and various alternative approaches 

that can substitute and-crossing for modeling state machine diagrams (see [61]); 

e) An empirical study of the impact of abstraction on some performance parameters 

(e.g., execution time, memory usage and the number of Binary Decision 

Diagrams - BDDs); and 

f) Transformation tools from Umple (and hence from UML) to SMV and Alloy. 
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We summarize the contributions of this work in the following thesis statement: 

Thesis Statement:  Both executable code and formal methods code can be 

generated from the same high-level model, therefore allowing developers to 

perform formal analysis and production of a final system from the same 

abstract source. It is possible to automatically analyze models corresponding 

to the final system for nondeterminism and consistency even in the presence 

of unbounded variables and and-cross transitions. And-cross transitions 

provide useful high-level abstraction and are applicable to modeling real-world 

problems that characterize software products. A set of non-conflicting 

transitions is computable to enable and disable states and sub-state machines 

of these systems for model checking purposes. By comparatively studying 

performance of various means of high-level abstractions, it can be shown that 

high-level abstractions do not always translate to performance benefits during 

model checking. 

1.6 Limitations of the work  

We tackle a general problem, but our work is limited in the following ways: 

¶ We are focusing on class diagrams and state diagrams as representable in pure Umple. This 

means that any concept not representable in Umple will not be representable or analysable 

when we generate formal methods code. Umple models, although broadly capable of 

representing many aspects of systems, are not as generalized as a typical programming 

language. Our approach does not attempt to generate formal methods from programming 

language code embedded in Umple. And our approach does not purport to be able to 

analyse systems where injected programming language code alters the core Umple 

modeling semantics, which is possible using Umpleôs aspect-oriented code injection 

capabilities.  

¶ Umple assumes certain semantics for state machines and class diagrams; other tools may 

adopt slightly different semantics. We have focused on generating analysis code to match 

Umple semantics.  

1.7 Thesis Outline 

The following is an outline that summarizes contents of chapters of this work: 
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Chapter 2 presents background information about techniques and technologies required 

to understand this research. The technologies we survey are Umple, Alloy and nuXmv.  

Chapter 3 presents processes involved in transformation engineering. Particularly, we 

present our approach to automatically generate formal specifications of software 

abstractions expressed in Umple. 

Chapter 4 presents formal specification of Umple class models in Alloy for the purpose 

of analysis. Umple class models include classes, attributes, and associations. These 

modeling constructs are formally specified in Alloyôs input language. Our discussion 

focuses on attribute and multiplicity mappings, constraint specifications, and object-

oriented design patterns. 

Chapter 5 presents our approach to formalize state machines in Umple. Particularly, it 

discusses our methods to compute the set of enabling and disabling transitions for states 

and sub-state machines in Umple. 

Chapter 6 presents our approach to raise the quality of state machine systems under 

analysis (SSUAs) expressed in Umple. We focus on discovering non-determinism and 

reachability of states.   

Chapter 7 presents the transformation of state machine models by example. This involves 

the mapping of each Umple state machine construct to its equivalent SMV construct. 

Chapter 8 presents our approach to verify and validate our work. For verification purposes, 

we proposed simulation and rigorous test-driven development.  

Chapter 9 presents a survey of related work and a comparative study of solutions closely 

related to our work. 

Chapter 10 presents concluding remarks and directions for future research.      
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2 Background  

In this chapter, we present background information about techniques and technologies required to 

understand the rest of this thesis. The technologies we will survey are Umple, Alloy and nuXmv. 

When discussing grammars we will use a simplified notation developed for this thesis to facilitate 

unified representations across the three technologies; it is based on the core Umple grammar [62], 

although when we present the Umple grammar we will present a simplified view. We will illustrate 

some concepts with simple examples. Table 2 introduces notations and semantics adopted for 

discussion. 

 

To ease readability of code in listings, simple state names and terminal symbols are in red; 

composite state names and non-terminal symbols are in green, class, signature, and module names 

are in brown and keywords are in blue. 

TABLE 2. MAPPING OF NOTATIONS AND MEANINGS 

SYMBOL  MEANING  

? optional (zero or one; UML equivalent ï ó0..1ô) 

*  any number (zero or more; UML equivalent ï ó0..*ô) 

+ mandatory (one or more; UML equivalent ï ó1..*ô)  

[[é]] non-terminal symbol, referring to another rule 

[é] terminal symbol that can match any simple alphanumeric 

identifier 

| logical OR-operator 

& logical AND-operator 

... other things of no interest to us when discussing concepts 

[ xxx ]*  any number of ñxxxò 

[= typeName: value-1 é] an enumeration of possible values 
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2.1 Umple 

Umple is a model-oriented programming technology for the development of real-world software 

systems. It supports the model-code duality principle by representing software models, not only as 

diagrams but also as text [55]. Umple allows developers to model static and dynamic views of 

software systems and automatically generates code in languages like Java, C++, Ruby, Php from 

the model. Umple achieves this by providing constructs and environments to express a rich subset 

of Unified Modeling Language (UML) [7], such as class models; state machine models; and 

composite structure models. It also allows direct expression of some concepts not in UML, such 

as certain patterns, and algorithmic code in native languages like Java. 

Umple was explicitly designed to be simple to use while generating high-quality code. People used 

to UML diagrams can draw them using Umple (or can import them into Umple from other UML 

tools), but many people who are used to textual coding can also use Umple, since its lightweight 

syntax for UML constructs can be blended with programming language code.  

We will discuss below how Umple handles the notions of state machines and class models, since 

these will be particularly relevant to this work.  

 

 
FIGURE 2. VISUAL REPRESENTATION OF UMPLE CLASS MODEL (LISTING 1). 
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44 

//Umple Classes 

class Person { abstract; } 

class Bank { singleton; }  

class Account  { } 

 

//Directed associations in Umple  

class FacilityType  { } 

class Facility  { * -> 0..1 FacilityType ; } 

 

//Bi-directional  association 

class FunctionalArea  { * -- * Facility ; } 

 

//Independent association 

association { 1 Bank -- * Account ; } 

 

//Composition association 

class Wheel { }  

class Vehicle { * <@>- 2..* Wheel; } 

 

//Reflexive associations  

class Person { 0..1 husband -- 0..* Person wife; } // (asymmetric)  

class Course { * self mutuallyExclusiveWith; } // (symmetric)  

 

//Umple Attributes  

class Group  { 

 Integer numberOfMembers;  

 const Integer MAX_NUMBER_OF_PEOPLE = 20; 

 immutable groupName;  

 Time meetingTime; 

 Boolean maxNumReached; 

 Date meetingDate; 

 autounique numberOfMeetingsSoFar; 

} 

 

//Specialization and generalization  

class Employee { isA Person; } 

 

//Other associations 

class Student {  

 0..1 sorted { identity } -- * Course;  //sorted association 

 Integer identity ; 

 String [] names; //arrays 

 key { identity }  

} 

 LISTING 1. EXAMPLE MODEL OF CLASS DIAGRAMS IN UMPLE 
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2.1.1 Umple Class Models 

Umple provides constructs for representing most constituents of the UML class models, and some 

concepts that go beyond class models. The constructs are sufficient to express structural properties 

of any kind of object-oriented system. These include attributes, associations with multiplicity, keys 

and various patterns such as singleton. 

Figure 2 is the visual representation of the code presented in Listing 1 (see below). As is standard 

in Object-Oriented programming and modeling, a class defines a reusable entity in an object-

oriented system whose instances can be created at run-time. A class in Umple may be stereotyped 

in various ways, such as abstract or singleton. An abstract class is a class that cannot be instantiated 

at run-time, but instances of its non-abstract subclasses can be created. This can be realized in 

Umple with the abstract keyword. A singleton class is constrained to have at most one instance at 

run-time, and is specified by the singleton keyword in the Umple class definition. Classes without 

any of the above keywords are not limited in terms of the number of instances created at run-time. 

Lines 2-4 of Listing 1 demonstrate the specification of various kinds of classes in Umple. This 

example defines the structural relationships of some objects in a bank subsystem with emphasis 

on Umple syntax for representing highlighted class types. In the discussion that follows we will 

use the textual representation of Umple presented in Listing 1 as a basis for explanations. 

2.1.2 Associations 

As in UML, an association models the mapping of instances of one class to instances of another 

(or possibly the same) class. Umple supports only binary associations. A reflexive association 

involves two ends with the same class; while a non-reflexive association involves two different 

classes. Reflexive and non-reflexive associations can either be unidirectional (ó->ô, e.g. see line 8), 

meaning that they can be navigated in only one direction, or else bidirectional (ó--ô, e.g. see line 

11). An association may be defined as composition (ó-<@> or <@>-ô, e.g. see line 18) meaning 

that the composed objects are to be destroyed when the composing object is destroyed. 

Each association end defines an optional role name, and a mandatory multiplicity of the class it 

describes. Multiplicities in Umple allow developers to constrain the cardinalities of objects 

collaborating with each other in an association. A multiplicity defines both the lower and upper 
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bounds of the number of instances of objects allowed at run-time. Table 3 presents the syntax and 

semantics of multiplicities in Umple.   

 

 

Umple supports both inline and independent definitions of associations. An inline association 

refers to an association defined within one of the collaborating classes. On the other hand, an 

independent association refers to association defined outside any of the collaborating classes. The 

following is a discussion on Umple constructs for the representation of various types of 

association: unidirectional, bidirectional, composition, reflexive, and symmetric-reflexive; and 

independent. 

It should be noted that Umple associations, along with generalization and attributes (discussed 

shortly) have been part of the Umple language since its beginning in 2006, and were originally 

developed by PhD student Andrew Forward [63], and Masters student Dusan Brestovansky [64]. 

Many other students contributed enhancements to them over the years. 

2.1.2.1 Unidirectional associations  

The example on line 8 illustrates the syntax of unidirectional association in Umple. It models the 

relationship between facility (Facility ) and its type (i.e. FacilityType ). The representation of 

unidirectional association is orientation-specific. A right navigation implies right orientation and 

left navigation implies left orientation. The implication of unidirectionality in this example is that 

UMPLE SYNTAX  MEANING OR SEMANTICS  

1..* Mandatory many 

*  or 0..* Any number 

1 Mandatory 

0..1 Optional 

n..m Range() 

n..n or n Exact() 

 

TABLE 3. UMPLE MULTIPLICITIES 
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Facility  stores information about its type; but the reference to Facility  is insignificant to FacilityType , 

so FaciltyTypes do not store lists of their Facilit ies.  

2.1.2.2 Bidirectional associations 

As opposed to the unidirectional association, bi-directional associations (denoted as ñ--ò) involve 

classes where references to the instances of each associated class are accessible to each other.  Line 

11 of Listing 1 illustrates the syntax for representing this kind of association in Umple. It defines 

a bidirectional relationship between classes Facility  and FunctionalArea .  

2.1.2.3   Independent association definition 

Associations in Umple may not necessarily be specified as inline (e.g., as specified on line 11 

Listing 1). Their specification may be defined independently. Line 14 of Listing 1 is an example 

of independent association definition between Bank and Account. 

2.1.2.4   Composition 

A composition is a kind of association. Like other associations, it involves two collaborating 

objects (composite and parts). The composite object is composed of simpler parts. Its semantics 

implies that instances of simpler object should be deleted upon the deletion of the composite. 

Generally speaking, this implies is-part-of relationship in the software engineering context. To 

specify composition; the diamond goes on the composite end, which could be visually located on 

the right or the left. With this kind of association, Umple allows the definition to be specified 

independently. Line 18 illustrate the syntax of composition association (right-oriented) such that: 

Vehicle is the composite class and Wheel is one its elements.  

2.1.2.5  Asymmetric-reflexive associations 

A reflexive association is a kind of association whose ends reference the same class. A typical 

example is a model of class Person such that husband and wife are different kinds of persons playing 

different roles. The illustration on line 21 of Listing 1 demonstrates Umpleôs syntax and for 

representing this scenario. Note that this is an asymmetric reflexive association, since the two ends 

have different role names. 
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2.1.2.6  Symmetric-reflexive association 

A symmetric-reflexive association is a special kind of reflexive association in which both ends act 

in the same capacity. For example, a set of mutually-exclusive courses in a university can be 

represented with this association. The code in line 22 of Listing 1 illustrates its syntax and diagram 

in Umple. 

2.1.3 Other Association-Related Constructs 

Umple provides the sorted construct with the intention of succinctly representing the notion of 

association without specifying multiplicity elements such as: multi-set, sequence, set, ordered-set, 

array, etc. For example, on line 40 of Listing 1 we present an example of a sorted association. The 

association models the relationship between classes Student and Course, such that instances of 

students in the association are sorted based on the values of identity attribute. Similarly, the case 

of array is expressed on line 42. The example presents array of names (of type String) as an attribute 

of Student.  

 

 

2.1.4 Umple Attributes 

An attribute defines a property of a class. As in UML, the Umple notion of attributes extends fields 

in object-oriented programming languages. The extension adds methods for altering or 

constraining values or state of an attribute. Umple allows developers to describe attributes of a 

class using different data types (primitive and non-primitive). These include: String, Integer, Boolean, 

Double, Time, Date, etc. Lines 26-32 of Listing 1 illustrate attribute definitions in Umple. We illustrate 

usage of attribute types and stereotypes in Umple by this example. It defines a class ï Group with 

various properties. The general syntax for representing attributes in Umple is given in Listing 2. It 

1 

2 

3 

4 

AttributeDefinition -: [[AttributeStereotype ]]?[[AttributeType ]]? AttribteName;  

AttributeStereotype -: [=type: const| immutable | lazy| settable| autounique |  

  defaulted  ȱȼ 

AttributeType -: [= String| Integer| Boolean| Double| Float| Date| Time ȱȼ 

 
LISTING 2. UMPLEôS GRAMMAR FOR VARIABLE DECLARATION 
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presents the grammar for attribute definitions in Umple. The following discussion focuses on 

Listing 2 unless explicitly stated. 

A const attribute implies that the value of the attribute is fixed for all instances (the notion of óstaticô 

in C and Java). The semantics of immutable qualifier implies that the attribute value is set during 

construction and remains unchanged throughout the life of the object. In particular, these attributes 

are non-static with private access and an assumption that the attribute cannot be modified within 

the class.  Umple achieves this by ensuring no ósetô method is generated for attributes qualified as 

immutable. It is technically possible for a programmer to violate immutability by directly 

modifying a variable, although Umple best practice is that they must always use set methods. 

Violation of similar best practices would also render the formal analysis discussed in other parts 

of this thesis invalid. This is much the same as if a Java programmer were to use reflection to 

bypass the óprivateô declaration on a method. As future work, we have considered detecting 

violations of this best practice by scanning user-written methods. 

The semantics of an autounique attribute implies that every object of the class created at run-time is 

allocated a unique value for the attribute. The value can be queried (i.e., via the ógetô method) but 

cannot be set. For example, on line 32 the numberOfMeetingsSoFar is unique because the creation 

of a new group implies an increment in the number of meetings that take place.  

As in typical C-family programming languages, a developer would normally explicitly specify a 

data type for an attribute (e.g., line 26 of Listing 1). Acceptable data types are defined on line 4. It 

is also possible to specify any other class as an attribute type, but the general recommendation is 

to only do this with classes that themselves have no associations. An example might be an Address 

class that has street, city and postalCode attributes. 

By default, when the type of an attribute is omitted in a declaration, the Umple compiler sets the 

type as String (e.g., see line 28 of Listing 1). This allows rapid free-form modeling. An exception 

to default attribute type is a case with autounique qualifier (e.g., see line 32 of Listing 1). The Umple 

compiler defaults autounique attributes to Integer. 

Another kind of attribute in Umple is the state machine. Umple considers state machines embedded 

in a class as attributes of the class, whose values are an enumeration of the possible states. The 
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discussions of state machines are deferred to Section 2.1.8. For more details on the syntax and 

semantics of Umple attributes, readers should consult the Umple user manual [62].   

 

 

2.1.5  Keys  

Umple provides constructs for the specification of which attributes (or associations with a 1 end) 

make up the primary key. This specification requires a pre-defined attribute to be qualified with 

keyword ókeyô.  Listing 3 is a general syntax for specifying a key. 

The syntax implies that the attributes tagged as key must exist in the class. For example, attribute 

identity (see line 41 of Listing 1) is further qualified as key attribute (line 43 of Listing 1) for class 

Student. The semantics implies that no two students can be associated with the same identity.  

2.1.6 Specialization and Generalization 

As in UML and object-orientation in general, the notion of generalization involves creating a new 

class (known as superclass) to represent characteristics common to a group of classes. On the other 

hand, specialization involves making a new class as a subclass of another class (its superclass) 

whenever the new class shares some properties (e.g. attributes, associations, methods) with the 

existing class (i.e. superclass). Umpleôs notation for indicating generalization is the óisAô keyword. 

Lines 35-36 illustrate the syntax of specialization in Umple. It models class Employee as a special 

kind (i.e. subclass) of Person (i.e. superclass). This representation applies to the notion of 

generalization; but the semantics must be preserved.  

2.1.7 Constraints in Umple 

Umple facilitates the representation of various kinds of constraints. Some, such as multiplicity 

constraints are built in to Umpleôs core notation. Others, including state machine guards, class 

invariants and method preconditions, are written in as Boolean expressions and can be mapped to 

a subset of Object Constraint Language (OCL); they can constrain various Umple constructs and 

1 

2 

DataType ÈÛÛÙÐÉÜÛÌ-ÈÔÌƕȮɯÈÛÛÙÐÉÜÛÌ-ÈÔÌƖȮɯȱȮɯÈÛÛÙÐÉÜÛÌ-ÈÔÌ-Ȱ 

key ȽɯÈÛÛÙÐÉÜÛÌ-ÈÔÌƕȮɯÈÛÛÙÐÉÜÛÌ-ÈÔÌƖȮɯȱȮɯÈÛÛÙÐÉÜÛÌ-ÈÔÌ-ɯȾ 

 
LISTING 3. GENERAL SYNTAX FOR SPECIFYING KEYS IN UMPLE 
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appear surrounded by square brackets [58]. The following are the types of constraints present in 

Umple, organized by the constrained element. 

1. Association: The multiplicities on associations constrain the upper and lower bounds of 

the number of collaborating objects. The directionality of an association constrains whether 

an end should store information about its collaborator or not. Reflexivity and symmetricity 

define further constraints on associations. Class invariants (written in square brackets) can 

also constrain associations. 

2. Attributes : Properties (stereotypes) of attributes such as immutability, uniqueness, 

constant, and laziness constrain various aspects of attribute changeability: Immutability 

constrains variables such that no change can be made after initial setting. Laziness relaxes 

the normal requirements that the attribute be set at instance creation. Uniqueness constrains 

two objects of the same class to have the same value for the attribute. Auto-uniqueness 

constrains the system to determine the value of the attribute for every given instance of its 

containing class. In addition to the above any class invariant can constrain values of the 

attribute during system execution. 

3. State Machines: State transitions (see next section) may be controlled by a guard; a 

Boolean expression whose evaluation determines whether the transition executes or not. A 

transition controlled by a guard executes only if the controlling guard condition is satisfied. 

4. Method preconditions: A method precondition constrains whether the method is allowed 

to run.         

2.1.8 Umple State Machines 

The representation of dynamic aspects of software systems is facilitated in Umple by providing 

support for an extended subset of UML state machines. These are graphs of states and transitions 

[7]. The notion of state machines as facilitated by Umple provides constructs to represent states 

(simple, composite, and orthogonal), transitions (regular, guarded, high-level), and events. State 

machines in Umple can either be simple or hierarchical. A simple state machine is composed of a 

set of simple states. For a hierarchical state machine, there are one or more composite or orthogonal 

sub-states. 
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State machines are designed to be textually specified in Umple, while their diagrammatic 

representations are automatically generated as Graphviz [65] images. We present an extract of the 

home heating system state machine by Lu et. al [66] to facilitate readersô understanding of Umpleôs 

state machine representation both in textual and diagrammatic forms. Our discussions of the 

notions of state machine and syntax will be based on this example. It expresses some of the notions 

facilitated by Umple but relevant to our work. These include concurrency, transitions, states, 

guards, and actions. 

Listing 4 is a textual representation of the system under discussion. State machine ï sm is defined 

as an attribute of class óHeatControllerô. Figure 3 is a diagrammatic representation of the state 

machine automatically generated from the code in Listing 4. This will be used to discuss some of 

the notions of state machine as facilitated by Umple.   
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18 
19 
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21 
22 
23 
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27 
28 
29 
30 
31 
32 
33 
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35 
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37 
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39 
40 

41 

42 

class HeatController  { 

 Integer setTemp; 

 Integer actualTemp; 

 Integer valvePos;  

 Integer waitedForCool;  

 Integer coolDownTimer;  

 Boolean furnaceRunning;  

 Boolean activate;  

 Boolean deactivate;  

 Boolean requestHeat; 

  Boolean furnaceReset;  

 

 sm { 

     house { 

         heatReq { 

              idleHeat  { 

       [(actualTemp - setTemp) > 2]/ { valvePos--; waitedForCool = 0; }  -> waitForCool ; //t1  

              } 

              waitForCool  { 

    [(valvePos != 0) & (coolDownTimer == waitedForCool)]  /{  valvePos--; waitedForCool = 0; }  

                                            -> waitForCool ; //t2 

    [waitedForCool < coolDownTimer] / { waitedForCool++; }  -> waitForCool ; //t3 

    [!((actualTemp - setTemp) > 2)] -> idleHeat ; //t4 

             } } 

             ||  

             controller { 

   off  { heatSwitchOn -> controllerOn ; } //t5 

   controllerOn  { 

        heatSwitchOff / { deactivate = true; } -> off ; //t6 

        furnaceFault -> error ; //t7 

        idle { 

            [requestHeat == true] / { activate = true; } -> heaterActive; //t9 

                       } 

        heaterActive { 

            [requestHeat == false] / { deactivate = true; } -> idle ; //t10 

            actHeater { 

    [furnaceRunning == true] -> heaterRun; //t11 

                       } 

        heaterRun { } 

    } } 

    error { userReset / { furnaceReset = true; } -> off ; } //t8 

  }}}} 
 

LISTING 4. PARTIAL MODEL OF HOME HEATING SYSTEM 
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(a) 

 

(b) 

FIGURE 3. VISUAL REPRESENTATION OF THE HOME HEATING STATE MACHINE. 

where:  

(a) The Left-View of the State Machine.  

(b) The Right-View of the State Machine. 
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To allow detailed discussions on the notions of state machines supported in Umple, we will in the 

subsequent sections provide details about states (terminal, simple, non-orthogonal and orthogonal 

composite), transitions, and Umpleôs internal representation of state machines. 

State machines were added to Umple by PhD student Omar Badreddin [55] and have been 

improved by many others in subsequent years. 

2.1.9 Transitions 

As in UML, an Umple transition has a source state and a destination state; the transition is ófiredô 

(i.e. executes) when a specified event occurs and any associated guard evaluates to true. 

Transitions in Umple can either be: auto, or normal transitions with the former being triggered 

immediately upon entry into the source state. Listing 5 presents the grammar of the various 

transitions supported by Umple for state machine definition. 

Several transitions, indicated by ñ->ò are shown in Listing 4. The state enclosing the transition is 

referred to as the ósourceô; while the target state is referred to as the ódestinationô. For transition ὸ 

on line 28 of Listing 4, ñidleò and ñheaterActiveò are its source and destination states respectively. 

ὸ is a basic transition because it has no guard statement.  

 

A guarded transition has a Boolean expression controlling whether or not a transition is taken 

whenever an event occurs or automatically taken whenever it is an auto-transition. A transition 

without a trigger (or a controlling event) is regarded as an auto-transition. For example, ὸ  on line 

33 of Listing 4 is an auto transition, because it is not controlled by any event, and guarded, because 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

transition :- [[standAloneTransition ]]|[[ autoTransition ]]|[[ normalTransition ]]  

autoTransition :- [[guard]]?[[ transitionCore ]][ stateName]; 

normalTransition :- [[activity ]]?[[eventSpecification]]?[[ transitionCore ]]     

  [stateName]; 

eventSpecification:- ( [[eventDefinition ]][[ guard]]|[[ guard]]  

  [[eventDefinition ]]|[=unspecified][[ guard]]|[[ eventDefinition ]] ) 

transitionCore :- ( [[action]] ->| ->[[action]]| -> )  

eventDefinition -: [[afterEveryEvent]]|[[ afterEvent]]|[ event]| ȱ 

guard: [[**guardRepresentation]]  

action: /[**actionRepresentation]+ 

 

LISTING 5. UMPLEôS TRANSITION NOTATION 
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a guard statement controls its execution. In particular, the guard controls its execution: whenever 

the transition is enabled and the guard evaluates to true then the transition executes. 

On the other hand, a transition with a triggering event becomes enabled whenever the event occurs 

and source state is in the global configuration (or active), and the guard (if any) evaluates to true. 

At this point, the transition executes and the global configuration reflects the target state of the 

transition in the next step.  

Definition 1. Global Configuration 

A global configuration of an Umple state machine ὃ is a quadruple 

ộὓ Ὗ Ὁ ὠỚ such that ὓ is the set of sub-state machines (including the 

root), Ὗ is the universal set of states, Ὁ is a set of execution steps and ὠ is a 

finite set of pairs ộὲȟὺỚ such that ὲ is a variable name and ὺ is its value. 

The following expression defines the configuration of an SSUA at step Ὥ where 

sub-machine ά  is in state ί, variable ὲ is evaluated to value ὺ, and ὯȟὮ 

are the number of variables and sub-machines respectively. This definition is 

further used in defining notions presented in Definition 19. 

ộộ□ ȟȣȟ□▒Ớȟộ▼ȟȣȟ▼▒Ớȟ▄
░ȟộộ▪ȟȣȟ▪▓Ớȟộ○ȟȣȟ○▓ỚỚỚ 

A high-level transition is any kind of transition defined outside of sub-states in a composite state, 

but which has effect in all the sub-states (e.g., ὸ, line 29 of Listing 4).  

2.1.10   States  

Umple provides constructs for the specification of various kinds of states. These include: initial, 

end, simple, non-orthogonal composite, and orthogonal states.  

An example of a simple state is ñidleò defined in lines 31-33 of Listing 4; an example non-

orthogonal composite state is ñcontrollerOnò defined in lines 28-40 of Listing 4.  

Orthogonal states (e.g., ñhouseò defined on lines 14-42 of Listing 4) exist when two or more sub-

states all become activated whenever control is transferred to their parent. For example, sub-states 

ñcontrollerò and ñheatReqò become activated whenever ñhouseò is activated. In other words, the 

execution of sub-states occurs concurrently. Child states of non-orthogonal composite and 

orthogonal states may be simple, composite, or orthogonal themselves. 
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By default, the first state (i.e., simple or composite) defined within an Umple state machine at any 

level of the hierarchy is regarded as its initial state (e.g., the state ñidleHeatò in lines 16-18 in 

Listing 4). In particular, ñidleHeatò is the initial of the state machine corresponding to ñheatReqò. 

Listing 6 is a grammar defining óstateô in Umple. 

 

 

2.1.11  Transformed Internal View of Umple State Machines 

To facilitate execution and prevent a combinatorial explosion of states, Umple transforms a 

hierarchical state machine (e.g., ñsmò of Listing 4) internally into a collection of state machines 

[67]. For each non-orthogonal composite state, there is a corresponding state machine such that its 

sub-states become the states of the state machine when active.  

Umple introduces a special ónullô state for every state machine such that these state machines are 

in their ónullô state until they are activated. Similarly, for every region of orthogonal states, there 

is also a corresponding state machine.  

A state machine is also generated for the root state machine but without the ónullô state, since the 

root is always active throughout its containing objectôs life cycle. But sub-state machines are only 

active when control is transferred to their parent state or any of their sub-states [55], [67]. Listing 

7 defines Umpleôs grammar for constructing state machines. 

1 

2 

3 

4 

5 

6 

state-: [final]?[stateName]{[[ stateInternal]]*}  

stateInternal-: [[stateEntity]]|[[ standAloneTransitionȼȼɧȱ 

stateEntity-: [[=||]]|[[ entryOrExitAction ]]|[[ autoTransition ]]|  
  [[ transition ]]|[[ activity ]]|[[ stateȼȼɧȰɯȱ 

entryOrExitAction -: [=type: entry| exit]/[ actionRepresentation]+ 

activity -: do [**actionRepresentation] 

 
LISTING 6. UMPLEôS STATE NOTATION 

1 

2 

3 

4 

5 

stateMachine-: [[inlineStateMachine]]|[[ referencedStateMachineȼȼɧȱ 
inlineStateMachine-: [=queued]?[=pooled]? [~name]{([[state]]|   
  [[standAloneTransition ]])*}  
referencedStateMachine-: [name] as [definitionName ]({[[ extendedStateMachine]]}  
  |;)  

 
LISTING 7. UMPLEôS NOTATION FOR STATE MACHINE 
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2.1.12  Umple Template Language (UmpleTL) 

The template language facilitated by Umple, called UmpleTL, aims at providing state-of-the-art 

support to ease the specification of templates for text generation purposes. The Umple compiler, 

which is written in Umple, uses UmpleTL to generate code. UmpleTL provides various elements 

such as templates, emit specification methods, and expression, code, and comment blocks. A 

detailed discussion of the language can be obtained from [62].  

 

 

1 

2 
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12 

13 

14 

15 

16 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

class RefLetterRequest { 

  // Attributes used to construct the instance  

  String fileno;  

   

  // Letter template  

  letterTemplate <<! 

Subject: Reference request for <<=applicant>>, File #<<=fileno>> 

 

Dear <<=recipient>>, 

Our company, Umple Enterprise s, is hiring talented software  

engineers. 

 

We have received an application from <<=applicant>> who named you 

as an individual who could provide a letter of reference. Would you  

please reply to this letter, answering the following questions:  

  * In what capacity do you know <<=applicant>> 

  * For how long have you known <<=applicant>> 

  * Describe the abilities of <<=applicant>> in software development 

  * What his or her strengths and weaknesses? 

  * Please provide your phone number and suitable times to call in 

    case we need to follow up.  

     

Yours sincerely, 

<<=sender>> 

<<=senderSignature>> 

!>> 

<</*Specification of the method to generate*/>> 

 emit letterTemplate(String recipient, String applicant, String sender,  

   String senderSignature) (letterTemplate); 

 

 rows <<!<<# for  (int  i=0; i <= times; i++) {#>> 

 <<=times>> times <<=i>> is <<=times*i>><<#}#>>!>> 

 // Specification of a single method to emit the result  

 emit result(int  times)(header, rows, cr); } 

 

LISTING 8. LETTER TEMPLATE EXPRESSED IN UMPLE 
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In Umple, every other text embedded within a template block but outside any of the blocks 

discussed above are output ñas isò by the compiler. For example, lines 19 ï 23 of Listing 8 will be 

output ñas isò. 

Listing 8 is an example of a template expressed in Umple. It describes a class for generating a 

reference letter for job applicants. An attribute of the class is ñfilenoò. We added the ñrowsò 

template (see lines 31-34 of Listing 8) to facilitate discussion of code blocks.  

Templates were added to Umple in 2013 by PhD students Ahmed Orabi and Mahmoud Orabi [68]. 

2.1.13  Templates 

The template element is fundamental and essential in template creation.  It begins with the template 

name and followed by arbitrary texts of the form: ḺȦ  ȣ  Ȧḻ. For example, lines 6 ï 26 of Listing 

8 define a template with a name ñtemplateLetterò and its content.  

The body enclosed within tags ñḺȦò and ñȦḻò defines the content of the template. Its content 

includes other elements except the emit method specification. 

2.1.14  Emit Method Specification 

The emit method specification is important for all templates. For every template there need to be 

one or more óemitô statements that invoke the template, or else the template needs to be nested 

inside some other template, which is emitted. These methods specify the logic of output to be 

generated. Just like every other method, an emit method may be associated with a set of arguments, 

each separated from another by a comma. For example, lines 28, 29 of Listing 8 define an emit 

method for ñletterTemplateò. Its arguments are ñrecipientò, ñapplicantò, ñsenderò and 

ñsenderSignatureò of type String. The other argument (e.g. letterTemplate) references the template 

of interest. It must have at least an argument specified in the order of composition. 

2.1.15  Expression Block 

The expression block allows programmers to specify arbitrary expressions with the following tags 

ñḺ ò and ñḻò. Expressions of this kind may reference attributes, associations and state machines 

of a class (e.g. line 9 of Listing 8), parameters of the emit method (e.g. line 13 of Listing 8), and 

method calls. The result of the expression is substituted whenever the template method is called.   
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2.1.16  Code Blocks      

A code block is embedded within the following tags ñḺΠò and ñΠḻò. This corresponds to the 

logic of the template. Its purpose is to allow conditional emission for the parts of a template, or 

looping within the template. For example, line 31 of Listing 8 embeds a for-loop construct within 

the template ñrowò to compute a multiplication table. 

2.1.17  Comment Block 

A comment block enables developers to embed comments within the template. Anything 

embedded within the following block ñḺȾzò and ñzȾḻò are treated as comments by the Umple 

compiler. For instance, line 27 of Listing 8 defines a comment for the emit statement. 

2.2 Alloy  

Alloy [52] implements a light-weight modeling language based on first-order relational logic with 

the goal of expressing software abstractions, as well as simulating and checking requirements of 

software systems [53]. It has formal syntax and semantics, thus positioning it as a language capable 

of specifying, verifying and validating safety and correctness requirements of software.  

Requirements checking, simulations and visualizations are realizable by the aid of its SAT-based 

analyzer.  

As mentioned earlier (see Section 1.4), Alloy is considered most suitable for the representation of 

class models due to its provisions of mechanisms (e.g., signatures, transitive closure, 

universal/existential quantifications, facts, etc.) necessary to represent domain entities, constraints 

and operations required to manipulate the structures dynamically.  In the following, we present a 

grammar of the Alloy language (i.e., Listing 9) to formally describe its constituents and the notions 

it facilitates. The subset of Alloy relevant to our work is derivable from the grammar in Listing 9. 

Similarly, we have categorized its core mechanisms as signatures, constraints and commands.  

2.2.1 Signatures 

Alloy provides the notion of signatures that can be used to represent UML classes. A signature 

introduces a set of atomic objects. It is defined with the keyword sig. Any signature defined 
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independently is regarded as a top-level signature. For example, line 10 of Listing 10 is a top-level 

signature, equivalent to a UML class with name óBô. 
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21 
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27 

28 

29 
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paragraph-: [[sigdecl]]|[[ factdecl]]|[[ predecl]]|[[ fundecl ]]|[[ assertdecl]]  

 | [[ cmdecl]]  

sigdecl-: [abstract]? [[mult ]]? sig [[varnames]]  [[sigExt]]? {[[body]]?}   

 [[block]]? 

mult -: [=type: lone| one| some] 

varnames-: [name][,name]*  

sigExt-: extends [name]| in [name][+ name]* 

body-: [[vardecl]][,[[ vardecl]] [[expr]]  

vardecl-: [disj]?[[varnames]] : [disj]?[[typename]]  

typename-: [=type: String| Int | ObjectName] 

expr-:[[const]]|@name| this|[[ unop]][[ expr]]  

 | [[ expr]] [[ binop ]] [[ expr]]  

 | [[ expr]] [[ arrowop ]] [[ expr]]  

 | [[ expr]] [comma: ,] [[ expr]]  

 | [[ expr]] [ !| not]? [[compareOp]] [[ expr]]  

 | [[ expr]] [[ implication ]] [[ expr]]  

 |  [[expr]]  else [[expr]]  

 |  let [[ letdecl]] [,[[ letdecl]]]* [[ blockorbar ]]  

 | [[ quant]] [[ decl]] [,[[ decl]]]* [[ blockorbar ]]  

 |  { [[decl]][,[[ decl]]* [[ blockorbar ]]  } 

 |  ( expr ) | [[block]]  

const-: [-]?[[number ]]| none| univ| iden 

unop-: !| not| no|[[ mult ]]| set| #| ~| *| ^ 

binop-: || | or| && | and| <=>| iff| =>| implies| & | +| -| ++| <:| :>| . 

arrowop -: [[[ mult ]]| set]? -> [[[ mult ]]| set]? 

compareop-: in| =| <| >| <=| >=  

implication -: [type: =>| implies] 

letdecl-: [name] = [[expr]]  

block-: { [[expr]]* } 

blockorbar -: [[block]] | | [[expr]]  

quant-: all| no| sum| mult 

 

-- grammar of various kinds of constraints in Alloy...  

factdecl-: fact [name]? [[block]]  

predecl-: pred [[[ qualName]] .]? [name] [[ paradecls]]? [[block]]  

qualName-: [this/]? [( name/ )]* [name] 

paradecls-: ( [[decl]]?[,[[ decl]]]* )|[ [[ decl]][[, decl]] ]?  

fundecl -: fun [[[ qualname]] .] [name] [[ paradecls]]? : [[expr]]  { [[expr]]  } 

assertdecl-: assert [name] [[ block]]  

cmdecl-: [[name]:]? [run| check]? [ [[qualname]]|[[ block]] ]? [[scope]]  

scope-: for [[number ]] [ but [[ typescope]][,[[ typescope]]]* ]  

  | for [[ typescope]][,[[ typescope]]]*  

typescope-: [exactly]? [[number]] [[ qualname]]  

 
LISTING 9. THE GRAMMAR OF ALLOYôS LANGUAGE 
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27 

28 

29 
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31 
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38 
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40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

-- notion of singleton  

one sig Organization  { }  

-- multiple inheritance  

abstract sig Animal  { } -- notion of generalization  (superclass) 

sig Mammal  extends Animal  { } -- notion of generalization (subclass) 

sig WingedAnimal  extends Animal  { } 

sig Bat extends Mammal  { } 

fact { Bat in WingedAnimal  } 

-- notion of association 

sig B { } 

sig A { roleName : m B } 

 

-- notion of attribute  

sig Student { age : Int , firstName : String, takes : some Course,  

   supervisor : lone Professor, studentNumber : Int , identity : Int  }  

{ all studentA, studentB : Student | studentA.identity != studentB.identity }  

sig Course { } 

sig Professor { students: set Student } 

abstract sig Object { } 

sig Directory  extends Object { } 

sig File extends Object { } 

sig Alias extends File { } 

assert A ȽɯȱɯȾ 

-- notion of fact  

fact Numeric -Bounds { no student: Student | #student.takes < 1 ||   

  #student.takes > 7 } 

 

-- notion of function  

fun grandMothers[grandChild : Person] set Person  

{ grandChi ld.(mother + father).mother } 

-- notion of predicates 

pred coSupervision[ supA : Professor, supB: ProfessorȮɯÚȮɯÚɀȮɯÚɂ: Student]  

ȽɯÚɀȭÚÜ×ÌÙÝÐÚÖÙɯǻɯÚȭÚÜ×ÌÙÝÐÚÖÙɯǶɯÚÜ× ɯȫȫɯÚɂȭÚÜ×ÌÙÝÐÚÖÙɯǻɯÚɀȭÚÜ×ÌÙÝÐÚÖÙɯǶɯÚÜ×!ɯɯ 

  &&  șÚɂȭÚÜ×ÌÙÝÐÚÖÙɯǿɯƕɯȾ 

-- notion of assertion 

assert UniqueIdentity  { no student1, student2: Student |  

  student1.identity = student2.identity }  

 

-- check command 

check A  

check A for 10 

check A for 5 Object 

check A for 5 but 3 Directory  

check A for exactly 3 Directory , exactly 3 Alias , 5 File 

 

-- run command  

run { } 

run { } for 10 

run UniqueIdentity  

run UniqueIdentity for 10 

run UniqueIdentity for 5 Student, 1 Professor  

 LISTING 10. MODELLING EXAMPLE IN ALLOY  
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To facilitate the principle of inheritance, Alloy provides the óextendsô keyword. This implies the 

definition of a set of objects that are a subset of the set defined by the extended signature. The 

example on lines 4, 5 of Listing 10 defines atomic signature Mammal  (see line 5 of Listing 10) as a 

subclass of Animal  (see line 4 of Listing 10). 

Similarly, to support the UML notion of abstract object, Alloy provides the óabstractô keyword. 

We illustrate the definition of an abstract signature in Alloy with the example on line 4 of Listing 

10. The example enforces that no instance of signature óAnimalô is created at run-time except those 

extending it.   

 

Alloy provides keywords such as lone, one, some, set for the specification of multiplicity constraints. 

Table 4 shows the mapping between Alloy and UML multiplicity constraints. 

Singleton sets can be realized by providing the notation óoneô before a signature. This restricts the 

number of objects that can be instantiated to óoneô at run-time. The example on line 2 of Listing 

10 illustrates this notion for the óOrganizationô set. 

Multiple inheritance is allowed in Alloy, but it is supported in an indirect way with an additional 

constraint (e.g., line 8 of Listing 10). We illustrate the specification of multiple inheritance in Alloy 

with the example describing Bat as a WingedAnimal  (see line 8 of Listing 10) and Mammal  (see line 7 

of Listing 10). The declaration of variables is achieved by the concepts of fields and attributes.  

TABLE 4. MULTIPLICITY CONSTRAINTS MAPPING 

ALLOY SYNTAX  M EANING OR SEMANTICS  UML NOTATION  
some  

Mandatory many 1..* 

set 

Any number *  

one 

Mandatory 1 

lone 

Optional 0..1 
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The notion of fields in Alloy defines relations among objects of the domain under specification. It 

equivalently represents the notion of attributes and associations in the UML context. Fields of a 

set are separated with a comma operator.   

The example on lines 10, 11 of Listing 10 illustrates the use of field declarations in the realization 

of UML associations. It maps set ñAò to a corresponding set ñBò (see line 11 of Listing 10). ómô 

defines the multiplicity between the collaborating sets. The roleName defines the role of set B in 

A. The notation ótakes: some Courseô in line 14 of Listing 10 is another association.  

The types of attributes supported by Alloy include string and integer types. String types are 

qualified with keyword String and integer types are qualified with keyword Int . The example on 

lines 14, 15 of Listing 10 demonstrates the specification of attribute types in Alloy. It defines a set 

of type Student. Every instance of Student has an attribute age of type Int  and attribute ñfirstNameò 

of type String and so on. 

2.2.2 Constraints 

Alloy allows the specification of constraints with the following notions: facts, assertion, predicates, 

and functions. According to [52], the notion of fact semantically correlates to invariant but is richer 

than invariant due to set navigation capabilities; functions are reusable constraints or expressions; 

assertions are implications to be checked on the model; and predicates represent constraints used 

in different contexts of correctness certification. 

2.2.2.1 Facts   

Constraints that are assumed to hold in all cases of execution are recommended to be placed in a 

fact paragraph. Alloy allows the specification of invariants to be quantified over the set of objects. 

This can be actualized by directly associating the paragraph of the fact to the set. A fact may be 

named or not. There can be any number of facts in a model. The order of occurrence of fact or the 

content of its paragraphs are irrelevant. 

The example on lines 25, 26 of Listing 10 illustrates a named independent paragraph of fact in a 

modeling context. It models the relationship between Student and Course sets in the school domain. 

Each student must take a minimum of one course but a maximum of seven courses. The constraint 

is specified in the fact paragraph with a name ï Numeric-Bounds. A dependent fact is a constraint 
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that is directly attached to the signature. The semantics implies that the constraint is associated 

with every instance of the signature created at run-time.  An example illustrating the specification 

of this kind of fact is on line 16 of Listing 10. The fact is directly associated with signature Student 

(see lines 16 of Listing 10).  The keyword fact and the name are not necessarily required. For 

example, lines 14-16 of Listing 10 define a signature and an associated fact. The fact is directly 

associated with the signature on line 16. Thus, the keyword fact has been omitted as well as the 

name.   

2.2.2.2 Functions 

A function houses a set of expressions for reuse purposes. Like functions in other programming 

languages, Alloy functions may have any number of arguments. Functions are referenced by their 

unique names. The body of a function defines constraints binding results of the function. An 

example illustrating the use of function is presented on lines 29, 30 of Listing 10. 

The example (see lines 29, 30 of Listing 10) illustrates a function expression for determining a set 

of grandmothers of a Person. It is observable from the example that every Person is associated with 

a mother and a father both of type Person. The function can be referenced as grandMothers. It takes 

an instance of Person - grandChild as an argument. The function returns all the grandmothers of 

grandChild. 

2.2.2.3 Predicates 

Alloy predicates are named expressions with at least an argument. According to [52], their uses 

for model analysis include:  

¶ to check for inclusion or exclusion of a constraint;  

¶ to check whether a constraint is a consequence of others; or  

¶ to define a reusable constraint in other contexts.  

To use a predicate, the basic requirement is that an expression is provided for each of its arguments. 

It returns either TRUE or FALSE. 

The example on lines 32-34 of Listing 10 illustrates the use of a predicate. We define a predicate 

to verify whether the model satisfies co-supervision requirement. The predicate assumed that 
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ósupAô and ósupBô are the supervisors of óstudentô; then if that is valid, the implication is that the 

cardinality of supervisors of óstudentô must be ótwoô.       

2.2.2.4 Assertions 

According to [52], assertions are constraints derivable from the facts of the model. The Alloy 

analyzer explores all the states of the model to verify conformance of the assertion. It achieves this 

by negating the assertion and conjoining the result with the rest of the constraints of the model.  

The result of the state exploration is a counterexample, whenever the negated assertion produces 

a model with constraints defined on the model. A counterexample implies the presence of a model 

error or a wrong formulation of the assertion expressions. For example, in a student management 

systemôs model, a student should have a unique identity. We demonstrated the use of assertion to 

verify whether the model conforms to the requirement of uniqueness of identity. 

Lines 36, 37 of Listing 10 define an assertion with the intention of verifying whether the student 

model satisfies the uniqueness property of studentsô identities.  

2.2.3 Commands 

Alloy provides command statements for the analysis of an abstract model expressed in its native 

dialect. These include run and check commands. The run command instructs the Alloy analysis 

engine to search for an instance of a predicate. On the other hand, the check command instructs 

the analysis engine to search for a counterexample of a given assertion. To address decidability 

issues, each command requires the specification of scope for searching or exploration. However, 

in the case where the user specified no scope for exploration, Alloy defaults the exploration scope 

to three for all top-level signatures. Defining exact size of top-level signatures to be created for 

analysis requires the usage of keyword exactly. The following illustrate usage of commands check 

and run in modeling context. A good discussion on the use of these commands can be obtained 

from [52]. 

2.2.3.1 Check commands 

The example on lines 40-44 of Listing 10 illustrates various ways of using the check command. We 

obtained the example from [52]. 
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The following explains the semantics of the commands defined using the associated label and 

references focus on Listing 9Listing 10.  

¶ Line 40 instructs the analyzer to check the assertion with the default of 3 instances of Object. 

¶ On line 41, the assertion overrides the default scope to create 10 instances of Object for 

analysis.   

¶ The assertion on line 42 specifically binds the scope of analysis to 5 instances of Object. 

This is semantically equivalent to the assertion on line 41 if and only if the scope was 

bound to 5 instead of 10 instances. 

¶ The assertion on line 43 will create 5 instances of Object but 3 of the instances will be 

Directory ; an Alias  and File will be created as well. 

¶ On line 44, the command will create 3 instances of Directory  and Alias , and 5 instances of 

File.  

2.2.3.2 Run commands 

The example on lines 47-51 illustrates varieties of usage of the run command. This command can 

be used with predicates. 

In the following, we explain informally the semantics of commands using associated indexes. 

Readers should note that references focus on Listing 10.  

¶ The command on line 47 runs the entire model in search of possible examples using the 

default scope (i.e., 3 instances of every top-level signature). The top-level signatures 

according to the model given are: Object, Animal , Professor, Course, Student, A, and B. The run 

command is a mechanism for simulating models within Alloy environment. Suppose there 

is no example or the model cannot be instantiated; in that case the analyzer will report ñno 

instance foundò. 

¶ The command on line 48 will be semantically equivalent to the command on line 47 if and 

only if the scope of 10 instances has not been specified for every top-level signature. 

¶ The command on line 49 runs the UniqueIdentity assertion with 3 instances (the default) 

of Person.  

¶ The command on line 50 is semantically equivalent to line 49 except the default scope is 

not overridden to 10.  
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¶ The command on line 51 runs UniqueIdentity assertion with 5 instances of Student and 1 

instance of Professor. 

2.3 nuXmv 

nuXmv, a symbolic model checker for the verification of fair finite- and infinite-state synchronous 

systems extends NuSMV [32], a state-of-the-art model checker for the specification and 

verification of finite state systems. As earlier mentioned, it adopts the basic verification techniques 

of NuSMV and extends its native language with unbounded integer and real data types for the 

specification of infinite domains. For the verification of the newly supported domains, nuXmv 

integrates Satisfiability Modulo Theory (SMT [46]) algorithms.  

We have adopted nuXmv as a back-end engine for the analysis and simulation of correctness 

properties of state machines expressed in Umple based on its capabilities to represent and analyze 

infinite-state systems. The following section presents an overview of the nuXmv specification 

language. 

2.3.1 The input language of nuXmv - SMV 

In this section, we present the syntax and semantics of Symbolic Model Verifier (SMV), the 

specification language of the nuXmv model checker. We facilitate easy reading and thorough 

understanding by focusing on the subset of the language relevant to this thesis. As we did with 

Umple and Alloy, we have adapted the grammar of SMV to the notational style introduced in this 

chapter so readers do not have to deal with more than one grammar notation. 

We assume that identifiers are well-formed and composed from the set {A-Z, a-z, 0-9, _, $, #, -}. 

A comprehensive knowledge of this specification language can be obtained from the nuXmv user 

manual [69]. We will focus our discussion on the following notions: variable declaration, assign 

constraint, module concepts (e.g. declarations, instantiations), and logic specifications (e.g. LTL, 

CTL, INVARSPEC). 
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MODULE  HeatControllerSm  (smHeatReq, smController, smControllerControllerOn,  

 smControllerControllerOnHeaterActive)  

  

 VAR 

  state : { Sm_house, null  }; 

  event : { heatSwitchOn, heatSwitchOff, autotransition, userReset,  

   furnaceFault, null  }; 

  setTemp : integer; 

  actualTemp : integer; 

  valvePos : integer; 

  waitedForCool : integer; 

  coolDownTimer : integer; 

  furnaceRunning : boolean; 

  activate : boolean; 

  deactivate : boolean; 

  requestHeat : boolean; 

  furnaceReset : boolean; 

  

 DEFINE 

  sm_stable := !(event = heatSwitchOff | event = userReset  

   | event = heatSwitchOn | event = autotransition | event = furnaceFault);  

  t1 := event = autotransition & smHeatReq.state = SmHeatReq_idleHeat & g1; 

  t2 := event = autotransition & smHeatReq.state = SmHeatReq_waitForCool &  

     g2; 

  t3 := event = autotransition & smHeatReq.state = SmHeatReq_waitForCool &  

     g3; 

  t4 := event = autotransition & _smHeatReq.state = SmHeatReq_waitForCool &  

     g4; 

  t5 := event = heatSwitchOn & smController.state = SmController_off ; 

  t6 := event = heatSwitchOff & smController.state =  

     SmController_controllerOn ; 

  t7 := event = furnaceFault &  

     smController.state = SmController_controllerOn ; 

  t8 := event = userReset & smController.state = SmControll er_error; 

  t9 := event = autotransition &  

     smControllerControllerOn.state = SmControllerControllerOn_idle  & g5; 

  t10 := event = autotransition &  

     smControllerControllerOn.state = SmControllerControllerOn_heaterActiv e &  

     g6; 

  t11 := event = autotransition & smControllerControllerOnHeaterActive.state  

     = SmControllerControllerOnHeaterActive_actHeater  & g7; 

  g1 := (actualTemp - setTemp) > 2; 

  g2 := (valvePos != 0) & (coolDownTimer = waitedForCool); 

  g3 := waitedForCool < coolDownTimer; 

  g4 := ((actualTemp - setTemp) <= 2); 

  g5 := requestHeat = TRUE; 

  g6 := requestHeat = FALSE; 

  g7 := furnaceRunning = TRUE; 

 

 ASSIGN 

  init ( state ) := Sm_house; 

  next( state ) := case 

   t1 | t3 | t8 | t10 | t11 | t4 | t2 | t6 | t5 | t9 | t7 : Sm_house; 

   TRUE : state; 

  esac; 

  init ( event ) := null ; 

  next( event ) := case 

   sm_stable : { heatSwitchOn, heatSwitchOff, autotransition, userReset,  

     furnaceFault }; 
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   TRUE : null ; 

  esac; 

  init ( setTemp ) := 0; 

  init ( actualTemp ) := 0; 

  init ( valvePos ) := 0; 

  init ( waitedForCool ) := 0; 

  init ( coolDownTimer ) := 0; 

  init ( furnaceRunning ) := FALSE; 

  init ( activate ) := FALSE; 

  init ( deactivate ) := FALSE; 

  init ( requestHeat ) := FALSE; 

  init ( furnaceReset ) := FALSE; 

 

MODULE  HeatControllerSmHeatReq ( sm ) 

  

 VAR 

  state : { SmHeatReq_idleHeat, SmHeatReq_waitForCool, null  }; 

  

 ASSIGN 

  init ( state ) := null ; 

  next( state ) := case 

   sm.t4 : SmHeatReq_idleHeat; 

   sm.t2 | sm.t1 | sm.t3 : SmHeatReq_waitForCool; 

   sm.state = Sm_house & state = null  : SmHeatReq_idleHeat; 

   TRUE : state; 

  esac; 

 

MODULE  HeatControllerSmController  ( sm ) 

  

 VAR 

  state : { SmController_off , SmController_controllerOn , SmController_error ,  

    null  }; 

    

 ASSIGN 

  init ( state ) := null ; 

  next( state ) := case 

   sm.t6 | sm.t8 : SmController_off ; 

   sm.t5 | sm.t9 | sm.t10 | sm.t11 : SmController_controllerOn ; 

   sm.t7 : SmController_error ; 

   sm.state = Sm_house & state = null  : SmController_off ; 

   TRUE : state; 

  esac; 

 

MODULE  HeatControllerSmControllerControllerOn  ( sm , smController ) 

   

 VAR 

  state : { SmControllerControllerOn_idle ,    

    SmControllerControllerOn_heaterActive , null  }; 

  

 ASSIGN 

  init ( state ) := null ; 

  next( state ) := case 

   sm.t6 | sm.t8 | sm.t5 | sm.t7 | sm.t9 : null ; 

   sm.t10 : SmControllerControllerOn_idle ; 

   sm.t9 | sm.t11 : SmControllerControllerOn_heaterActive ; 

   smController.state = SmController_controllerOn  & state = null  :  

     SmControllerControllerOn_idle ; 

   TRUE : state; 

  esac; 

 

MODULE  HeatControllerSmControllerControllerO nHeaterActive  ( sm,   

 smControllerControllerOn )  
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 VAR 

  state : { SmControllerControllerOnHeaterActive_actHeater ,  

    SmControllerControllerOnHeaterActive_heaterRun, null  }; 

 

 ASSIGN 

  init ( state ) := null ; 

  next( state ) := case 

   sm.t9 | sm.t10 : null ; 

   sm.t11 : SmControllerController OnHeaterActive_heaterRun; 

   smControllerControllerOn.state = SmControllerControllerOn_heaterActive  &  

    state = null  : SmControllerControllerOnHeaterActive_actHeater ; 

   TRUE : state; 

  esac; 

 

MODULE  HeatControllerSm_Machine  

 VAR 

  hcsm : HeatControllerSm (hcsmHeatReq, hcsmController, 

    hcsmControllerControllerOn, hcsmControllerControllerOnHeaterActive);  

  hcsmHeatReq : HeatControllerSmHeatReq(hcsm); 

  hcsmController : HeatControllerSmController (hcsm); 

  hcsmControllerControllerOn : HeatControllerSmControllerControllerOn (hcsm,  

    hcsmController);  

  hcsmControllerControllerOnHeaterActive :  

    HeatControllerSmControllerControllerOnHeaterActive (hcsm,  

    hcsmControllerControllerOn );  

 

-- The following properties are specified to certify t hat this model is free of non-determinism.  

 INVARSPEC( hcsm_Machine.hcsm.t2 & hcsm_Machine.hcsm.t4  

   -> next( hcsm_Machine.hcsmHeatReq.state = SmHeatReq_waitForCool &  

   hcsm_Machine.hcsmHeatReq.state = SmHeatReq_idleHeat ) ) 

... 

 

-- this defines the initial configuration of the SUA 

 LTLSPEC ( hcsm_Machine.hcsm.state = Sm_house  

   &  hcsm_Machine.hcsmHeatReq.state = null  

   &  hcsm_Machine.hcsmController.state = null  

   &  hcsm_Machine.hcsmControllerControllerOn.state = null  

   & hcsm_Machine.hcsmControllerControllerOnHeaterActive.state = null ) 

   SmControllerControllerOnHeaterActive_heaterRun  ) 

-- The following properties are specified to certify that non -symbolic state(s) of this model is (or are) reachable.  

 CTLSPEC EF( hcsm_Machine.hcsmHeatReq.state = SmHeatReq_idleHeat ) 

 CTLSPEC EF( hcsm_Machine.hcsmHeatReq.state = SmHeatReq_waitForCool ) 

 CTLSPEC EF( hcsm_Machine.hcsmController.state = SmController_off  ) 

 CTLSPEC EF( hcsm_Machine.hcsmController.state = SmController_controllerOn  ) 

 CTLSPEC EF( hcsm_Machine.hcsmController.state = SmController_error  ) 

 SPEC EF( hcsm_Machine.hcsmControllerControllerOn.state =  

   SmControllerControllerOn_idle  ) 

 CTLSPEC EF( hcsm_Machine.hcsmControllerControllerOn.state =  

   SmControllerControllerOn_heaterActive  ) 

 CTLSPEC EF( hcsm_Machine.hcsmControllerControllerOnHeaterActive.state =  

   SmControllerControllerOnHeaterActive_actHeater  ) 

 CTLSPEC EF( hcsm_Machine.hcsmControllerControllerOnHeaterActive.state =  

   SmControllerControllerOnH eaterActive_heaterRun ) 

 
LISTING 11. HEAT CONTROLLER STATE TRANSITION SYSTEM 
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Listing 11 is an example SMV program with the purpose of facilitating readersô understanding of 

notions supported by the language and those relevant to our work. 

The program defines a transition system for the heating system presented in Listing 4. The system 

contains several modules because the heating system is hierarchical. These are modules 

corresponding to the root state machine and sub-state machines of composite states, and the main 

module. However, the simplest form of an SMV program contains at least a main module. Listing 

12 is a grammar for defining SMV program specifically adapted to our work. 

2.3.1.1   Module Concepts 

In this section, we will discuss module declaration and instantiation. Module declarations specify 

a transition system in SMV language; while module instantiations describe how instances of 

modules are created. An example of a non-main but comprehensive module is presented on lines 

1-71 of Listing 11. By ñnon-mainò module, we mean every other module in the program except 

the ñmainò module. A ñmainò module (see lines 136-146 of Listing 11) is an entry point of 

execution just like programming languages in C-family. The module represents most concepts 

relevant to our work. Module instantiation inherits the properties of object declaration in object-

oriented systems. For example, lines 138, 139 of Listing 11 defines ñhcsmò as an instance of 

ñHeatControllerSmò. It represents a parametrized instantiation of a module. 

Other notions facilitated by the referenced module include: variable and define declarations, and 

assign constraints. Variable declarations are the SMV constructs for declaring properties in 

transition systems. These are synonymous with field declarations in conventional object-oriented 

programming languages. Variable declarations are defined within a paragraph preceded by the 

ñVARò keyword. For example, lines 4-17 of Listing 11 is a VAR paragraph with various 

declarations of names and types of variables local to the module. The grammar equivalent to this 

definition is presented on line 7 of Listing 12. 

For the purpose of modularity and conciseness, a ñdefineò declaration paragraph may be associated 

with a common expression. For example, lines 19-48 of Listing 11 is an example of such a 

declaration. Any variable declared in this paragraph can be seen as a macro. In essence, identifiers 

in this paragraph do not contribute to the state space of the system under analysis (SSUA). A macro 

binds the identifier with the expression type and value on its right-hand side. The paragraph must 
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be preceded with the keyword ñDEFINEò. The grammar corresponding to this definition is presented 

on line 11 of Listing 12. 
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smv-program  -: [ [[module ]] ]* MODULE  main [[moduleBody ]]  

module  -: MODULE  [name] [( [[moduleParameters]] )]? [[moduleBody ]]  

moduleParameters -: [name] [, [name] ]* 

moduleBody  -: [[moduleBodyPart ]]+ 

moduleBodyPart  -: [[varDeclaration ]] |  [[defineDeclaration ]]  

  [[assignConstraint]] | [[ specification]]  ȱ 

varDeclaration  -: VAR [[declarationStatements]]  

declarationStatements -: [name] : [[variableTypes]]; 

variableTypes -: [=type: integer | real | boolean] | [[ enumeration]]  

enumeration -: { val-1 [, val-n]* } 

defineDeclaration  -: DEFINE [[defineBlock]]  

defineBlock -: [ [name] := [[expression]] ]+ 

expression -: [constant] | [ identifier ]  

  | [[ expression]] [[ binop ]] [[ expression]] | [[ unop]] [[ expression]]  

  | ( [[expression]] ) | [[ case-expression]] | [=type: TRUE | FALSE] 

  | next( [[expression]] ) 

binop -: [=type: &  | | | xor | xnor | -> | <-> | = | != | < | > | <= 

  | >= | + | - | * | / | mod]  

unop -:[=type: ! | -] 

case-expression -: case [[case-body]] esac; 

case-body -: [[expression]] : [[ expression]]  

  |  [[case-body]]  [[expression]]  : [[expression]]  

assignConstraint -: ASSIGN [[assignBody]] 
assignBody -: [ [[ initStmt ]] [ [[ nextStmt]] ]? ]+ 
initStmt  -: init(  identifier  ) := [[value]]  
nextStmt -: next( identifier  ) := [[expression]] 
value -: [identifier ] | [ integerNumber ] | [ realNumber ] 
specification -: [[ltl -specification]] | [[ ctl-specification]]  
  | INVARSPEC [[expression]]  
ltl -specification -: LTLSPEC [[ ltl -expression]]  
ltl -expression -: [[expression]] | [[ ltlOperator ]] [[ ltl -expression]]  
  | [[ ltl -expression]] [[ specialBinaryOperator ]] [[ ltl -expression]]  
ltlOperator  -: [= G | X | F | Y | Z | H | O] 

specialBinaryOperator  -: [= U | V | S | T] 
ctl-specification -: CTLSPEC [[ctl-expression]] | SPEC [[ctl-expression]]  

ctl-expression -: [[ctlOperator ]] [[ expression]]  

  | [[ ctlOperator ]] [[ ctl-expression]]  

  | [[ existentialOperator ]] [ [[ctl-expression]] U [[ctl-expression]] ] 

ctlOperator  -: [= AG | AX | AF |  EG | EX | EF] 

existentialOperator  -: [= A | E] 

 
LISTING 12. MODULE'S GRAMMAR IN NUXMV  



Page | 47  

 

SMV allows assignment of values to state variables within an assign paragraph. In an assign 

paragraph (or constraint), a variable is assigned initial and next values with the keywords ñinitò 

(see line 51 of Listing 11) and ñnextò (see lines 80-85 of Listing 11) respectively. The next statement 

embodies a ñcase ... esacò statement which models the possible conditions (on the left-hand side) and 

values (on the right-hand side) to be assigned to the variable at any given step of execution of the 

program. In this paragraph, at least a variable must be initialized or its next values specified. 

2.3.1.2 Logic Specification 

The notion of logic specification allows developers to define requirements for the purpose of 

analysis via the analysis engine. The nuXmv analysis engine accepts both linear (i.e., LTL [38]) 

and branching (i.e., CTL [37]) time logics for the expression of system requirements. While LTL 

specifications quantify over paths, CTL specifications quantity over the global state space of the 

SUD. The benefit of dual support is to allow user the expressive power of each logic specification. 

Besides these logics, nuXmv also facilitates the representation of invariance. 

 

 

Figure 4 presents the relationship between expressive powers of LTL and CTL. The implication 

of the figure is to demonstrate that some requirements are only expressible in either of the logics; 

while some requirements can be expressed in both logics.  

A CTL statement begins with either keyword óSPECô (see line 168, 169 of Listing 11) or óCTLSPECô 

(see line 167 of Listing 11). An LTL statement begins with the keyword óLTLSPECô (see lines 156-

160 of Listing 11). To constrain the entire model to fulfil some special properties, SMV provides 

"INVARSPEC" (see lines 156-160 of Listing 11) keyword. We introduce the grammar to define these 

specification statements on line 29 of Listing 12.  

 

FIGURE 4. RELATIONSHIP BETWEEN EXPRESSIVE POWERS OF CTL AND LTL 

 

 

LTL CTL 

U 
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A detailed discussion of the semantics of CTL (e.g. EF, AF, AG, EG, A[é U é], E[é U é]) and LTL 

(e.g. G,  X, F,  Y, Z,  H,  O) operators as obtainable from [5], [69] are presented in Table 5, Table 6 

respectively. p and q are considered as formulas whose syntax conforms to the grammar described 

in Listing 12. A CTL formula evaluates to true whenever it is true in all initial states. An LTL 

formula evaluates to true whenever it is true at the initial time ὸ.  

 

 

 

 

 

TABLE 5. SEMANTICS OF LTL  OPERATORS FOR NUXMV [69] 

Notation  Semantics 

X p Given times ὸȟὸ, then X p = true at time t if and only if p is true at time ὸ ὸ ρ. 

F p Given times ὸȟὸ, then F p = true at time t if and only if p is true at some time ὸ ὸ. 

G p Given times ὸȟὸ, then G p = true at time t if and only if p is true at times ὸ ὸ.  

Y p 

 

Given times ὸȟὸȟὸ, then Y p = true at time  ὸ  ὸ, if and only if p is true at time ὸ ὸ ρ but p is 

false at time ὸ. 

Z p Similar to Y p but p must be true at time ὸ. 

H p 

 

Given times ὸȟὸ, then H p = true at time t if and only if p is true at all previous time steps ὸ ὸ.  

O p 

 

Given times ὸȟὸ, then O p = true at time t if and only if p is true in some previous time steps ὸ ὸ.  

p U q 

 

Given times ὸȟὸȟὸͼ, then p U q = true at time t if and only if q is true at some time ὸ ὸ and p is true 

for all time ὸͼ, such that: ὸ ὸͼ ὸ. 

p V q 

 

 

Given times ὸȟὸȟὸͼ, then p V q = true at time t if and only if q is true at all time steps ὸ ὸ up to and 

including time step ὸͼ where p is also true. Alternatively, p may never be true but q must be true in 

all time steps ὸ ὸ. 

p S q Given times ὸȟὸȟὸͼ, then p S q = true at time t if and only if q is true at time ὸ ὸ and p is true at all 

time steps ὸͼ, such that: ὸ ὸͼ ὸ. 

p T q 

 

Given times ὸȟὸȟὸͼȟὸ, then p T q = true at time t if and only if p is true at ὸ ὸ and q is true at all 

time steps ὸͼ, such that: ὸ ὸͼ ὸ. Alternatively, if p has never been true, then q must be true in all 

time steps ὸͼ, such that: ὸ ὸͼ ὸ. 
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2.4 Back-end Analysis Tools 

In the solution space, varieties of formal analysis tools exist. These range from model checking to 

theorem proving technologies. We will limit our survey to tools that requires no user-guidance in 

the search for solution. In this section, we will summarize these technologies using some 

parameters such as the underlying technology (e.g. SAT [39], BDDs [40], AIGs [42], SMT [46]); 

specification logic supported (e.g. CTL, LTL); domain of analysis supported (e.g. infinite or 

finite); open-source or not; orientation (state-based or event-based). 

Our analysis is presented in Table 7; this indicates that nuXmv [45] and SAL [70] are the only 

tools with capabilities of analyzing unbounded infinite types (e.g. integer and floating-point 

numbers). Although SAL is open-source, it is not being actively developed. On the other hand, 

while other tools surveyed facilitate the analysis dynamic aspects, Alloy is the only tool surveyed 

that facilitates the analysis of static aspects.  

 

TABLE 6. SEMANTICS OF CTL OPERATORS IN NUXMV [69] 

Notation  Semantics 

EX p  Given states ÚȮɯÚɀ such that: s -ǿɯÚɀɯthen EX p = true in s if and only if p is true in Úɀȭ 

AX p Given states ÚȮɯÚɀɯsuch that: s -ǿɯÚɀɯthen AX p = true in s if and only if p is true in x  ᶅὼɴ ίᴂ. 

EF p Given states ίȟίȟίȟȣȟί ȟί and there exists ίᴼ ίȟίᴼ ίȟȣȟί ᴼί then EF p = true 

in ί if and only if p is true in ί. 

AF p Given states ίȟίȟίȟȣȟί ȟί and for all ίᴼ ίȟίᴼ ίȟȣȟί ᴼί then AF p = true in ί 

if and only if p is true in ί. 

EG p Given states ίȟίȟί and there exists ίᴼ ίȟίᴼ ίȟȣ then EG p = true if and only if p is true 

in ί. 

AG p Given states ίȟίȟί and for all ίᴼ ίȟίᴼ ίȟȣ then EG p = true if and only if p is true in ί. 

E[p U q] Given states ίȟίȟίȟȣȟί ȟί and there exists ίᴼ ίȟίᴼ ίȟȣȟί ᴼί then E[p U q] = 

true if and only if p is true in all states ίȟίȟίȟȣȟί  and q is true in ί. 

A[p U q] Given states ίȟίȟίȟȣȟί ȟί and for all ίᴼ ίȟίᴼ ίȟȣȟί ᴼί then A[p U q] = true if 

and only if p is true in all states ίȟίȟίȟȣȟί  and q is true in ί. 
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TABLE 7. SUMMARY OF ATTRIBUTES OF ANALYSIS ENGINES 
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Verification domain: Ð = unbounded infinite types; Specification language: LTL, CTL, FOL = Linear 

Temporal Logic, Computational Tree Logic, First-Order Logic; Underlying Technology: SAT, BDD, AIG, SMT 

= Boolean Satisfiability, Binary Decision Diagrams, And-Inverter Gate, Satisfiability Modulo Theory; Other 

Notations: +, ++, +++ = Supported, Partly Supported, Fully Supported. 



Page | 51  

 

2.5 Model Transformations 

In this section, we present some background information on model transformations. This will 

enable us to discuss in detail and position our work with related concepts. In the literature a large 

amount of work has been done on this topic; we will adopt definitions from Kleppe et al. [71] 

because most literature (e.g. [72]ï[74]) relies on these definitions. 

Definition 2 - Transformation 

ñA transformation is an automatic generation of a target model from a source 

model, according to a transformation definition.ò [75] 

Definition 3 ï Transformation Definition 

ñA transformation definition is a set of transformation rules that together 

describe how a model in the source language can be transformed into one or 

more constructs in the target languageò. [75] 

Definition 4 ï Transformation Rule 

ñA transformation rule is a description of how one or more constructs in the 

source language can be transformed into one or more constructs in the target 

language.ò [75] 

According to the report of the working group of the Dagstuhl Seminar on Language engineering 

for Model-Driven Software Development (i.e. Mens et al. [76]) five questions are key to the 

discussion of model transformation. These include:  

Q1. What needs to be transformed into what?  

Q2. What are the important characteristics of model transformation?  

Q3. What are the success criteria for a transformation language or tool? 

Q4. What are the quality requirements for a transformation language or tool? 

Q5. Which mechanisms can be used for model transformation?   

We will focus on (Q1), (Q2) and (Q5) because our work is not a transformation tool but it applies 

model transformation for the purpose of code generation. In addition, our discussion will be based 

on Mens et al. [76]. 
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2.5.1 Source and Target Artifacts (Q1) 

This question concerns the artifacts for transformation. For example, the source and target 

programs or models. If the artifacts are source code, bytecode or machine code, they are referred 

to as programs and the process is termed program transformation. On the other hand, if the artifacts 

are models (e.g. state, class, composite structure, or activity diagram), the process is termed model 

transformation. A hybrid of these elements is possible such as model-to-text (M2T) or text-to-

model (T2M). Consequently, program transformation may be considered a subset of model 

transformation because a model may range from abstract analysis models to concrete models of 

source code.  

Model transformation involves the expression of models in some modeling language such as UML 

diagrams or programming languages for source code. The syntax and semantics of a modeling 

language (e.g. Umple, Alloy, SMV) is expressed with a metamodel. Transformation processes can 

be categorized into exogenous or endogenous based on the language for expressing the source and 

target.  

Definition 5 ï Endogenous Transformation 

ñEndogenous transformations are transformations between models expressed 

in the same languageò [75]. In particular, the source and target models 

conforms to a meta-model. For example, a model transformation between 

UML state diagrams and UML activity diagrams is regarded as endogenous 

transformation since both must conform to the UML meta-model at large. 

Definition 6 ï Exogenous Transformation 

ñExogenous transformations are transformations between models expressed 

using different languages.ò [75] In particular, the source and target models 

conform to different meta-models. For example, a model transformation from 

Umple to Alloy is regarded as an exogenous transformation because Umpleôs 

meta-model differs from Alloyôs meta-model. 

Transformations may also be categorized based on the abstraction levels of source and target 

models. These are called vertical and horizontal transformations. 
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Definition 7 - Vertical Transformation 

ñA vertical transformation is a transformation where the source and target 

models reside at different abstraction level.ò [75] A different abstraction level 

may be model or source code. The model is considered more abstract than 

source code. The transformation at a parsing phase (i.e. T2M) such that a 

program text is transformed to an abstract syntax tree (AST) is a typical 

example of vertical transformation.  

Definition 8 ï Horizontal Transformation 

ñA horizontal transformation is a transformation where source and target 

models reside at the same abstraction level.ò [75] For example, the overall 

process of transforming Umpleôs source code to Alloyôs source code is 

horizontal. Similarly, the transformation between Umple Internal 

Representation (UIR) to Alloy Internal Representation (AIR) is horizontal. 

2.5.2 Characteristics of Model Transformations (Q2) 

Mens et al. [76] identified level of automation, complexity of transformation, and preservation as 

key properties of model transformations. A clear distinction must be made on what can and should 

be automated or executed manually. In particular, what demands user-intervention? For example, 

a transformation between requirements documents and analysis models demands user-intervention 

ï most importantly to resolve ambiguities, incompleteness and inconsistencies in the requirements. 

Transformations such as refactoring (e.g. model or code level) may be considered minor 

transformations but transformations involving parsers, compilers, and code generators are major 

transformations.  

The question of what must be preserved is important for model transformations. In particular, what 

aspects (e.g. structure or behavior) must be preserved such that these elements of the input model 

are unchanged in the output model. Refactoring and restructuring demand behavioral preservation 

while the structure may be modified. On the other hand, refinement demands semantics 

preservation.  
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2.5.3 Mechanisms for Model Transformation (Q5)   

Mechanisms for transformation are not limited to techniques, languages, and methods adopted for 

development to actualize the transformation process. A programming paradigm like procedural, 

object-oriented, functional or logic-based approaches or a hybrid may be applied to specify 

transformations. 

These mechanisms can be categorized into declarative and operational approaches. Declarative 

approaches define relationships between the source and target models. In particular, they map 

elements of a source model to that of a target model. They are centered on ñwhatò should be 

transformed and what it should be transformed to. Declarative approaches offer particular services 

like source model traversal, traceability management and automatic bi-directionality [73] via the 

underlying reasoning engine. Thus, they tend to be more attractive to software engineers. 

Examples include functional programming and logic programming [76].   

Operational approaches define steps for executing transformation process from source to target 

models. They are centred on ñhowò the transformation is executed. They are most suitable for 

transformations that incrementally update a model. This is achievable by its built-in support for 

sequence, selection and iteration and an operational approach that are most beneficial when it is 

necessary to control the order of applying a set of transformations [76].  

2.6 Summary of Background 

In this chapter, we have presented background on the technologies involved in this thesis. The 

technologies discussed were Umple, Alloy, and nuXmv. 

Umple, an MDE technology designed to be highly usable in both textual and visible form provides 

constructs for the representation of class models and state machine models. It is designed for 

integration with programming languages and code generation. We discussed the various notions 

of class and state machine models that are relevant to this thesis by giving some examples 

(textually and diagrammatically). Techniques discussed under class model representation include: 

class diagrams, associations, attribute, specializations, and keys. The notions discussed under state 

machines of Umple include: transitions, states, and state machines themselves. 
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Alloy is a specification technology for representing and analyzing structural models of software 

systems. We presented a detailed discussion of Alloy, covering the following notions: signature, 

field, constraint, and commands. Our discussion included textual examples for each notion. The 

notion of fields focuses on how to specify associations and attributes. We discussed the notion of 

constraints based on specifications of facts, functions, predicates, and assertions. The notion of 

commands was discussed; in particular, the check and run concepts.    

nuXmv is a model checking tool for the analysis of state transition systems. We began our 

discussion on nuXmv with an example to illustrate notions supported by the tool. The notions 

discussed include: variable declaration, assign constraint, trans constraint, module concepts, and 

logic specification. We discussed each notion with its grammar and semantics were discussed 

succinctly. Discussions of trans constraints involve how transitions and states are represented in 

nuXmv. We discussed module concepts based on how a module can be designed and instantiated. 

We presented a detailed discussion on logic specification with nuXmv. Our discussion on logic 

specification focuses on linear time logic (LTL) and computational tree logic (CTL). Finally, we 

presented a table comparing underlying concepts of model checking tools surveyed in the 

literature. 
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3 Transformation Engineering 

In this chapter, we give an overview of our solution to automatically generate formal specifications 

of models (state machine and class models) expressed in Umple. We will present an architecture 

we have adopted for the realization of our goal. 

Similarly, we will present partial metamodels of Umple, Alloy and SMV to facilitate the process 

of model transformations and relevant architectures to illustrate specific transformations. Readers 

should note that the metamodels presented follow the semantics of UML class modeling. To 

simplify the representation, we exclude algorithmic logic and templates from the Umple code. 

 

 

 

FIGURE 5. TRANSFORMATION ENGINEERING 
















































































































































































































































































































































































































































































