|l ntegrating For mal
with -Modekn Engi ne:

by
OpeyemiAdesina

Thesis submitted
in partial fulfilment of the requirements for the award of
Doctor of Philosophy in Computer Science

OttawaCarleton Institute of Computer Science

School of Electrical Engineering and Computer Science

E)

uOttawa

University of Ottawa
Ottawa, Canada

Thesis Advisor. Timothy C. Lethbridge
Co-Advisor: Stéphane S. Somé

© Opeyemi Adesina, Ottawa, Canada, 2017

Abstract

This thesis presents our method to integrate formal methods with -aibeksh engineering.
Although a large amount of literature exists with tloalgof facilitating the adoption of formal
methods for educational and industrial practice, yet the adoptitmrmal methods in academia
andindustry is poor. The goal of this research is to improve the adoption of formal methods by
automating the generation of formal methods osbiée maintaining scalabilitand bridging the

gaps betweeformal analysis and actual implementation of the cetepdystem

Our approach is based on generating formal representations of software abstractions expressed in
a textual language, called Umple, which is derived from UML. Software abstractions of interest
include classmodels andstate machinesi-or statemachines, w address concerrsich as
composite and concurrent states separately. The resulting syateranalyzable by baend

analysis engines such as Alloy and nuXonNuSMV for model checking.

To ensure correctness of our approach, we have adsiptathtion, empirical studies and rigorous
testdriven development (TDD) methodologies. To guarantee correctness of state machine systems
under analysis (SSW)\ we present methods to automatically generate specifications to analyze
domairindependent pragties such as nedeeterminism and reachability analysis. We apply these
methods in various case studies; certify their conformance with sets of requirements and uncover

certain flaws.

Our contributions include) The overall approach, involving having teveloper write the
system in Umple and generating both the formal system for analysis and the final code from the
same model; anovel approach to encode SSUAs even in the presence-cf@sgltrasitions;

¢) a fully automated approach to certify aBLFA to be free from nondeterminism even in the
presence of unbounded domains and multipleaaosds transitions within the same enclosing
orthogonal stated) an empirical study of the impact of abstraction on some performance
parameters; ang) a translair from Umple to Alloy and SMV.

Page [ii

Acknowledgemens

First and foremost, | would like to express my gratitude to God for His grace, faithfulness, wealth
as well adothphysical and mental health since birth until now; and most importantly in the course

of my doctoral studiesMay His name alone be glorified.

| would like to thank my supeisor, Professor Timothy. Lethbridge for his fatherly and
professional support during my PhD studiégor to my arrival from Nigeria, Tim was able to
guide me remotely and upon my arrival until now he was unrelenting in suppoipigysically

and mentallyl appreciate your wals of encouragemeritnancial supporand absolute dedication

to making your students groand succeed

My appreciation also goes to Professa@p8tane S. So#for his casupervisory role in the course
of my PhD studied. am thankful to Stéphane for hsofessional support prior to my arrival and
during my studiesYour approach to making me understand and apply complex formal methods

in solving reallife problemsis commendable.

| would like to acknowledge comments and feedback of each member of anyinaxion
committee. These people include Professors Nancy Day, Douglas Howe, Amy Felty and Guy
Vincent JourdanYour observations are very constructive and of great importaniceproving

this thesis.

| am also grateful for the support | received froenbers othe CRUISE groupThank you, guys,
for accepting megncludingthe smooth integratioand criticizingof my work. In particular, | am
grateful to Dr. Miguel Garzon, Dr. Hamoud Aljamaddy. Vadhat Abdelzadand Sultan
Almaghthawi for taking me through the processes of registration and for their invaluable

contributions to my thesis.

Page liii

https://plus.google.com/100124326429235245599

| am also thankful tolkthe reviewers ofmy work at various capacities ranging from my tlesi
committee to anonymous reviewdos their constructive criticisnand feedbackAlthough, the

journey was roughyour feedback eased the tension.

| am also indebted to the Nigerian community in Ottawa for their effort in making $eeé at
homeeven though | amome miles away from hom@imilarly, 1 wouldlike to thank members of

my Churchfor their love, support and encourageméfdy God,bless ypu abundantly.

| would also like to thank every member of my family for their support and engemn@ntefore
and during my PhD programParticularly, | wuld like to thank my brothers Babatunde,
Olukayode, Ayodeji, Oluwatomiwa and Michaetd my fatheFestus| am thankful to God for

having you in my life.

Page |iv

Table of Contents

o I 3 OO PPPPP 1L
ACKNOWLEDGEMENTS. ...ttt ettt e e eee a4 e 222444444444 a s mememt s e s e e et et et e e e e e e e s ammmmm s snnnbnbebenes LLL.
TABLE OF CONTENT S ...ttt eeeee ettt oot rmmmmea ettt ettt et e e e e e e ammmme s+ 44 s s s bttt et et mmmmt e 22222 e e e e e e e anaanns V..
LIST OF FIGURES.t eeeeet ettt ettt et et e e s oot e 444 e sk a bbbt bttt et e £ 22222 2o e e e e e e s immmes X
LIST OF TABLESot eememr ettt et e et e e e e e s oot e b et e e ee e s emmmt e 222222424412 a s s mmmems s e s e e e e e e eeaeaeeeesammnn X1
TABLE OF LISTINGS ... ccieieiiieii et immmm ettt et emmme e 4o 1 e s s e s mmmmmt et e e et a2 a2 e e e e a1 e immmmme s esesseneeeeeeeeas XV
LIST OF DEEINITIONS. ... emmem ettt et emmme e e e sttt s mmmmmt e e e 22 e e 222 e e e e e e e s e ammmmns s b eebeeeeeeeens XVI
LIST OF RESEARCH QIBETONS......cooiiiiiiiiiiee oottt et e e e e s e s e s st ememms e e e e et e e aaaeeeeeessammmne XVII
LIST OF PROPOSITIONS.coiiiiiiei i immmm ettt ettt et e et s ammme s e 44 s 4 e ettt b bt memmmr e e e e e e e e e aeeeeeees s smmmmmssssbnbenes XVIII
1 INTRODUCTIONttt imeeemt e e e e e e e e e s s e s immmmms e ee et et e et e e e e e emmmmm s 444 s s R s e b b e b e s s smmmmmt £ e e 2 e e e e e e e eesnnnan 1.
1.1 MODELDRIVENENGINEERING.ciiuutttteesssmmmmmmss e e e e s s s s 1251 s 44+ ¢ st 544444155015 3 s 5100 Lo
1.2 FORMALMETHODS.0utiiiiieiiiiee s s s st 4444445118 s 5888555544+ st £+ 4415011004 s
00 R I e T=To T =10 1 o] £0)V/ T o o HO PP PP OPPPPPPPPP 3....
1.2.2 STALIC ANAIYSIS. ...c ettt ettt et e et e e e e e e e bbbt et e e et e e e e e e e e abb b aeeees 3
1.2.3 MOOEI CRECKINGcei ettt ettt et e e e e e e e e e e b b et eeeeeaaae e e e e aaebbeeeeaeeeas 4.
1.2.4 Limitations 0N @dOPUION.........uuuiii i eeeee e eee e e e e e e e e e e e e e e e e e ee st e e e eeeeaeaaenerennas 4...
1.3 PROBLEMSTATEMENT ANCRESEARCHDIRECTION . ..cciiiiiiiiuitrtreessmmmmmmmms s e e e s+ 410020+ st 005 D
1.4 CHOICE OF OOLS ...ttteiiiiiei ettt s sttt 4444444451 s s 551525344+ + st £+« 2141201000 skl O
1.5 CONTRIBUTIONS. ..ttt e smmmmmms 4444444425 s 55555544444+ st £ £ 44444125 1155 s £ 5155544444+ 4 smmmmmns L
1.6 LIMITATIONS OF THE WK ..ccteeetttiuurtreeescmmmmmmmms e et e e e e e 41 ommmmmmm £+ 4125551 e 5+ ¢ st 554444441411 s £ 10001110 Lo
2 BACKGROUND.ttt et mrmmmr ettt e e e e aeeeeeae s s smmmmmsasabebes s s eeee e e e et s ammmmme e e e e e e e e e nnnee 15.
2.1 UMPLE ..ttt it s+ 44441 st 555544444444 i £ 4444551045+ ¢ st 555344+ + 41 s £+ 1 n e v e e e LD s
2.1.1 UMPIE ClaSS MOUEIS......eeeeiiiieiii ettt et e e e e e e s s nnen e e e e eens 18....
P A N~ Tox - 110 LSO RPPRR 18
2.1.3 Other AssociatiorRelated CONSIIUCES..........uuveiiiiie it e e 21...
2.1.4 UMPIE AIIDULES. ...ttt e e e e e e e e e e e e e e e e aaeeeeeeananaebbebbbenbbannen 21....
2.0.5 KBS ettt ettt ettt e ettt ettt ee e e ettt n s s et 23...

Page |v

2.1.6 Specialization and GeneraliZatiQn................uuuruuerrreerriiieisee e e re e e re e 23.....
2.1.7 Constraints in UMDl ...ccoi i s s e e e e e e e e e e e e e e e et e et e e e e anennneannrnanaana 23...
21.8 Umple State MaChiNES........coi ittt e et e e e e e e e e e e s st b b e rreeeeeeeaeesans 24..
2.1.9 THANSILIONS. ...tteiieiiieee ittt e ettt e e e ettt e e e e et e e e e e s s a bbb mneeeeeeeeeeeeaaannb b nnnneeeeeeeeeeeeaansbbnnnneees 28
2 T O S 1= (== PP 29.
2.1.11 Transfamed Internal View of Umple State Machines..............ccc e 30..
2.1.12 Umple Template Language (UmPIETL)......ccoiiiiii i s e e e e e e eee e 31
200 T T 1= 3 T o] = (=PRI 32
2.1.14 Emit Method SPeCifiCatiON............uuiiiiiiieeee e e e e e e e e e e s eeeeeas 32
2.1.15 EXPreSSION BIOCKetiiiiiiiit ettt ettt et e e e e e e e 32....
2.1.16 €0dE BIOCKS......coi ittt ettt ettt e e e e e e eeees 33
2.1.17 COMMENTE BIOCKcii ittt eee e e e e e e e e e e e e e e 33....
2.2 0 PP PO P PRTPPTRPRRC: 1C N
2.2.1 SIGNAIUMES....eeiiiiee e ittt ettt e e e e e e e e e e ettt eteeeeeeeeee e e e e b bbb e mteeeeeaeeeeeesaan b bbb s mneaeeaaaeeeeeaaannbbbennneeeeens 33
2.2.2 CONSITAINTS ...tttetetee e ettt eeee e e et e e e e e e e st b et e e e et e e e e e e s sa s bbb mneeeeeeeeeeeeeaasnb b nnereeaeteeeeeeeaannsbannnneees 37
2.2.3 COMIMBINGS ... eeeiieee ittt ettt e e e e e e e e ettt e e e e e e e e e e s e b bbbt mteeeeaaaeeeeeaaasb bbb e meeeeeaaaeeeessaannbbsnnnneneeans 39
2.3.1 The input language of NUXIMVSMV.......ccoooiiiiiiiiieieecers e eeeeernns e s e eenie s s e eeeennn e AL
2.4 BACKENDANALYSISTOOLS. ...ciiiiiiiiiietressimmmmmmmms st se e e s s s+ 10021 s s ¢ st 552520+ 1 1 e 100000 e D
25 MODELTRANSFORMATIONS. .1 teetvessves commmmmmes s 15 e ssse e s« sammmmmmms 21555255245« smesmmmsm 552150+ 15 0«15 smmmmmmmns e 000 D L
2.5.1 Source and Target ArtifactS (QL).....ccuuuuiiiiiiiie e e e e e e R2...
2.5.2 Characteristics of Model Transformations (Q2)........ccuuuuiiiutuereeeiiiee e h3.
2.5.3 Mechanisms for Model Transformation B)..........cccoeeiiiiiiiieiiieeeci e e e b4
2.6 SUMMARY OFBACKGROUND......0utttiieeiiees mmmmmmms st tses s s smmmmmms 5444444121+ s s 51000 s 450+ ¢ smmmmnns 20011110 OFh 1
TRANSFORMATION ENGIEERING ...ttt mmmem et immmmmss et e e e s e e s emmmmm s 56
3.1 OVERVIEW OF THERANSFORMATIOMRCHITECTUREuveeteeseestes sammmemmms e sseeeneeeses smmmmmmmms s e es e ensee s smmenn
3.2 ALLOYTRANSLATOR. ... tttteeeeeee et smmmmmmmmt 444412211 s 555544444414 s ommmmmmmt £ £ 41251115554 s 555214+ 2 101 e DO
3.3 SIMVTRANSLATOR ... uuttteeeteeee st smmmmmmt 444442t et 5555t 44 44444 s 44412511150 ¢ st 55524202210 D]
3.4 SUMMARY L.ttt smmmmns 444444 s £ £ 11t 44+ 44444441118 it 185ttt + 401111 o Dor s
TRANSFORMATION OF QLSS MODELS.......uuutiiiiiiiiiiiii it ememme et e e e e e e e e e e e e e s s ammmmmannenees 73
4.1 ATTRIBUTES. ctttiutteteeteesessmmmmmmmms s essessssses s smmammmnms 1554155515542 smmmammmns s 155515552154« sammmmmmms 415 5525 10212 smemmmmnm 500« Ao
4.2 IVIULTIPLICTTY . e smmmmms 1 s 4 s 4 4 ¢ e ¢ e« L
4.3 TRANSFORMATIORHASEJUMPLE TOALLOY) . cecutvteeeeiutreeee s mmmmmmmns e e e sessee e e cmmmmmmmms e+ 2o e e+ s smmmmmmms o0« o L b

4.4 OBJIECTORIENTEDDE SIGNPATTERNS. 1. ctuuiittteitnts et smmmmmmmms s s 4 e s st s s b2 st s+ 255022400 s 55 smmmmmmmnt s+ 5500 s 201 s s smmnnkDiDn

Page |vi

7 7t A 153 1 = Uod o = TS F= 11 (=1 It T 85

4.4.2 SINGIeton Class PAEEIN (P2).......uuuuuuuuiiiicereeeeeeeeeeeeeteeeeeeereeeereesrrrnrr s aeeaaaeeeeeeeaaeeeeeeenennnnes 85
4.4.3 Class hierarchy pattern (P3)........ccuuiiiiiiii et ee e e e e ee e e e e e ee s e s nbb e e e eeeeeeas 86
4.4.4 Bidirectional association PAttern (P4).........euii et 86..
4.4.5 Unidirectional association Pattern (P5)...........uuiiiiiiiiiiiieceeriiiie e e e 87..
4.4.6 General hierarchy pattern (PB)........ccoiiiiiii i eeeeeeeee e et e e s e e e e e e e eeeeeeeeeeereeeeanas 88.
4.4.7 Asymmetricreflexive association pattern (P7)........ccooeeiii i ceeeeeeee e 89
4.4.8 Symmetricreflexive association pattern (P8)...........uuuruirriiurreieeeeieeeieeeeeeeeeeeeeeeeeeseeesrnerreersnnnn 90

4.5 SUMMARY OFOLASSMODELSPECIFICATION ¢.ettteeetiiuetresscommmmmms et e e e s s s s+ 1 01 s s s e s e e e e e s L
FORMALIZATION OF STAE MACHINES ...ttt eememe e e e e a3

51 FORMALSEMANTICS OBMPLESB STATEMACHINEScveuvereeereesssmmmmmsmns s esessese s s smemmmmnms a1 s snmmmnmns -3
5.1.1 Relationships Between State MacChinesS............cccvvvieeerieeeiiiie e e e e reee e e e e 99..
5.1.2 Relationships BEtWEEN STALES..........iiiiiiiiceee e eee e e e e e e s e e e e aeata e e e e e ennan 101

5.2 TRANSITIONS INUMPLE ...ucituiitteetneess smmmsss s s e s st s e s s st s+ 25 s 2450+ + 5 smmsimmmmms 0+ 5 5 0250 s s+ semmmmms 0 00 0000w 0 s LD

LT N = = U= T I = 1157110 1T 106..
5.2.2 HIigh-LeVel TranSItIONS.uiiiiiiiii ettt e et e e e me e e e 107
LS IZAC T AN T 2 O {0 Y I = 0 1Y | (0] £ 108

53 MANAGINGSTATES ORJMPLESTATEMACHINESccuuiiitiiinesimmmmmmmrsee st essnsssssmmmmmmnnrssesssssssnss s smmmmmmnnss s Ll O

5.3.1 Execution SemanticsS Of UMMLE..........ccoiiiiiiiie e eeee e e e e e e e e e e e e e eenean 111
5.3.2 ENabling SIMPIe SEAESeiiiiiiiii ettt 113
5.3.3 ENabling COMPOSILE SEALES.......ciiiiiiiiii it e e e e e e emneae 113
5.3.4 DEfAUIL ACHVALION.eeiiiiiiei ittt ettt et et e e e s s e nnnee e e eeeaee e s 116.

5.4 FORMULATING THIDISABLINGTRANSITIONSSET FORSUB-STATEMACHINES.......ucivviivineers smmmsnms e eaneeenn e L22.

5.4.1 Enabling Transitions of a State MacChing..............oouuiiiiieeeei e e eeeenn 123
5.4.2 Disabling NonParallel SubState MacChineg.............ccovuiiiiiiieiei e e e eeeeeees 123
5.4.3 Disabling Parallel SukState Machine (0r REQION).......c.coiiiiiiiiimeiiiieeeeee et e 128..
5.4.4 Generalizing Disabling Transitions for StBtate Machines.............ooovvvvimmveeeeiiiiiiiiiiereeee e 139

5.5 SUMMARY OFSTATE MACHINESFORMALIZATION. ...vcviuvviiurirs et vmmmmmmmms et s s s s o0 LA L
QUALITY ASSURANCE GB- 0, %0 3 ..3.3.5.L.3 et sememmeeees e svmenenn 143

6.1 DISCOVERINGION-DETERMINISM. . .cuuiitniieuness s smmmmmmmms s s esssn s st s smmmmmns s s 10 sssssesss summmmmmms s s s 0 sesssssss smmmmanndeZhO

6.1.1 SAMESOUICE TraNSIIONS........uuieeiiiiee e eeeeeeir bttt e e e e e e e bbb e e e e e e e e e e e eerannrbbbeeeeeeeeeeeseeeranns 144
I I = (o [o] £ O o R I = 1 1S 1 10 L= 145
6.1.3 Cases Of NONUEIErMINISITL......c..uuiiiiii ettt e e e e et e e e e e e aeee s eeb e e e eeeeaanan s 150
6.1.4 False Cases of NONGEEIMINISML..........coiiiiiieeiee ettt e s e e e e e 151.

Page |vii

9

6.2 THEMATCHMAKINGALGORITHM. .. .ccttttrenteessmmmmmmens sttt sse e s ommmmmmmis 25t see5 5 ¢ sammmmm 4411441100 112 emmnmmme LD O
6.2.1 Specifying Invariance for Potentially Conflicting PairS...........covvvvivieeemeiiiiiciiceccisseeeeeeeeeeee 158
6.2.2 2-Bit COUNLET CASE STUY.......uurreiiieieeiieeeeiiittr et e e e e e e e eeeere bbb e e e e e e e e e e eaeeaansrbbrereeeeeeeeeeeaannns 158
6.2.3 Applying the MatchMaker Algorithm on 2Bit Counter Machine............ccccceeviieeecciniiiiiieeeeeennn 164...

6.3 REACHABILITYANALYSIS OSTATES OF ABBSUAL......oiiiiiiiiiii ittt mmnmmn 1O D
6.3.1 Limitations of thiS @PPrOACK............uuiiiiiiii e cccrree e eee e e e e e 170

6.4 IMPROVINGQUALITATIVEANALYSIS VIAAND-CROSSTRANSITION.ceruetrureensee s mmmmmmmnseseseenseensessemmmenmmese e L 4L
6.4.1 Motivation for ANG-CroSS TraNSIHION.........cicvrriiiiireeeeeeee e eeeernrr e e emere e e e nneeas 171
6.4.2 Modeling Solutions to the-Bit Counter Problem (see Section 6.2.2).........ccccccovieeeevmeernnenenn. 172

6.5 SUMMARY OFQUALITYASSURANCE.......ccitiiiiiiieesemmmmmt et e aeeeetee et smmmmmmmms s 22222 eae 2 e e e s smmmmmmmns s 22222 e2eeeeessmmmnnd 4 O
TRANSFORMATION OF SATE MACHINE MODELS........ccoiiiiiiiii i immmemr et emmmmm e 180

7.1 AACASESTUDY.....ciiiiiitttieiiees s smmmmmsns s e 41 s £ 1154224444+ st 554444415514 s s 512000434+ ¢ smmmmmnnns OO

7.2 FORMALOVERVIEW OFSMV.....uiiiiiiiiiiiiiiis s sttt s st 44441012144 s 15102250204+ e+« 41+ LD

7.3 TRANSFORMATION OFTTRIBUTESetttteeetiiiuusrssemmmmmmmss et e et e s s s smmmmmmmit 44441055110 ¢ s 1510 s 21420141 smmmmn L OO

7.4 TRANSFORMATION TEVENTS c.ueeteetueaneeesseommmmmmmms e esseessee ss mmmmmmmns o522 se s 252 e s mmmmnmmms £+ 1554155011 14 smnmmmenes s+« LOG

7.5 TRANSFORMATION OFRANSITIONS .. ueeiuteeseeeee s ommmmmmns e seesseessse s semmmemmms 25215202 s s smmmmmemms 222550210025 smmeme 3D

7.6 TRANSFORMATION CBTATES. .. .uttttiiiieeisssss cmmmmmmmns s o1 ssssbs s e st smmmmmmss 425450+ 4 112 s £ 1455510000+ ssmmmmminnt o+ 2+ L

7.7 TRANSFORMATION CBTATEMACHINES........utttiiiiieie s smmmmmsnmr e e s s st smmmmmmmms s s e s s+ 01100 s 0000 LS,
7.7.1 Simple State MaCRINES.......ccoooiii e e e e e e e e e 189
7.7.2 Hierarchical State MaChiNeS...........coiiiiiiiiii e e 192

7.8 DISCOVERINGIONDETERMINISM.......utttveeeteeessssmmmmmmmie e+ 4 44 smmmmmmmms st 2 244214 smmmmmmms 11111010004 smmmmmmmn LD O

7.9 REACHABILITYANALYSIS OF THESUAL......oitiiiiiiie i cmmmmnmmme st st et a e s 1 s s nnneeen e L Lo

7.10 SUMMARY OFSTATEMACHINETRANSFORMATION.....ccttiieeiiseeesmmmmmmmn s sessresee s s s smmmmmns o2+ 21 s s LD £
VERIFICATION AND VALIDATION ...ttt mmmmmt et e e e e e e e e s e s immmmms s se e et e e e e e e e s emmmmm s s e e nnnnnee 199

8.1 VERIFICATION. ... tttttetetee e st 4444441+ s 552544444+ 4 st £+ £+ 4425151+ 5 s 552552522+ 4+ 3 smmmmmnmns « 1D D
S 0 I R 11 o TU] F= 11T P PP PO PPPP 199
8.1.2 TeStDIVEN DEVEIOPIMENL.ciiiiiiiiiiiii ettt e ettt e e e e e e e e ne e e e e e et e e e e e e s aeb b b nnneeeeeas 202

8.2 WALIDATION. .t tteeeiaeitte e ecmmmmmmms et e 4444 o £ 44442515554 ¢ st 5554444441 s £ 4111550444« emmmmnmns o0+ 2 O
8.2.1 Case Study 2 Discovering NoNdeterminiSm............coouiiiiiimmmmeei e eee e eeeees 204
8.2.2 Case Study 2 Abstraction via ANACross TranSitioNS..........coueviiiiiimmmmemmmeieeee e 210
8.2.3 Case Study 3 Asserting Observational Equivalence of Similar SSUAS............ccvveeeeeeennnenn. 226
8.2.4 Case Study 4Electronic Seating SYSIEML........iicuuiiiiiiiieeieeee e eree e e e e ene e e e 235

8.3 CONCLUSION. ..ttt s smmmmmns 444444 s 444 ¢+ st £ 44444412115 s 140+ 45 smmmmnrns « « VL
RELATED WORK ..ottt ittt e 4 s bbbttt e s emt 2422222424444 s e mmemms e eeeeeeeeaeeas 246

Page |viii

9.1 LITERATURE OMNALYSISTOOLSc.uvtiuteerteeseessmmmmmmmms ettt e 115111014 et 1154110000« remmmnnn 200
9.1.1 StatiC ANAIYSIS TOOLS. .. .iiiiii i e i s e ee e e e et e eeeeeaaseeeeeeee e e e e e s eeeeerenerrnnrrnas 248
9.1.2 Theorem Proving APPrOACHES.........c.uuiiiiiiieeee ettt e e e e e e et e e e e e e see s e e e eeas 249
9.1.3 Model Checking APPIOBCIES.........uiiiiiiie et e e e e e senne b e e e e e e e s aeeaan 252
9.1.4 Summary 0N ANAIYSIS TOQIS.......ccciiiiiiiteree et e e e e e e e e e e e e e e e s ane b mnnees 257

9.2 LITERATURE OMND-OROSTT RANSITIONS .. .vceuvvetveense s omemmmns s sttt s smmmmnmms 4210 e 1104 11+ smmmmmmnm 10« 110010 2O0,
9.2.1 Support for ANACIOSS TraNSItIONSuuuurueiiiiiiiiererrrrareeeeeeeeeeeeesereerrererrnrrrnrrrn i eeeaaaeeees 259.
9.2.2 On the rejection of ANECross TranSItioNS........ccooveiiii i e e e e e e 261
9.2.3 Managing complexities of state diagramsS..............ueiiiiierriaeee e e e e e e e 261

9.3 LITERATURE ONDISCOVERINGIONDETERMINISM........uuvvrreeeres s smmmmmmmne e e s s sness s s smmmmmmms e s s s ssmmmmnmns < 202
LS IR 700 R 1N o To T 11 oS0 111 T o 262
9.3.2 Solutions adopting SPIN Nondeterministic SeleClOr..........ccvvvivieeeiieeeeiec e 263.
9.3.3 TOOFBASEA SOIULIOMNS.......cuvreiiiieeiiieeeeeie et e e e e e e e e e s e e e e e e e e e e e e e eenn s 263

9.4 SUMMARY ONAND-CROSS ANINONDETERMINISNML....cvveeeeesiseeers mmmmmmmms s resee e s e s smmmmmmnms o222 111010 s 204

10 CONCLUSION AND FUTURWORKcoiiiiie e cmememte ettt e e e e e e emmmmms st emmmmmt e e e 267

10.1 SUMMARY WITHRESPECT TBRESEARCHUESTION......cciiiiiiiieieies et e e e e e e e e e e e e et st e s e e e e e e e e e e e s s 2O 1

10.2 SUMMARY ONSCIENTIFICCONTRIBUTIONS.cuttrririreess s cmmmmmnmne s s essses s smmmmmmms 5521000101 s 10000 20D,

10.3 FUTUREDIRECTIONS . ..citiiiiiiiiittesimmmmmmmmss s bsesee st st s+ 444155151+ s 154055524+ + 44 s+ 441010 n 0000 s (oo

REFERENGCES ceemem ettt e ettt e s et e e 22414444 s s n e s s mmmmmr e e et e e e e eeeeeees e sammmmmenns 275
APPENDIX ...ttt e e e e et e mm———— £t aa et e e e et e et s mmmmnss e e e e e e et eeeeee s mennn s 287
APPENDIXL Z HOMEHEATINGSYSTEM SIMV.....ciiiiiiiiiiites s commmmmse oot s st st s+ 2101 enmn 2

Page |ix

List of Figures

FIGUREL. USAGES OFORMALMETHODS. ... cututututstsess cmmmmmmmns s sssssessss s mmmmmmms 5555555555555 s 5555555555555 srmmmmmmms 55555502 Lo ne

FIGURE2. VISUALREPRESENTATION ABMPLECQLASSMODEL(LISTINGL).....uvvieieiirieees it immmmmne e sereee et e oo e e LB
FIGURE3. VISUALREPRESENTATION OF THHOMEHEATINGSTATEMAGCHINE.......uuuiiieieeiestss cmmmmmmmms s e senn e e e s s oo 2l
FIGURE4. RELATIONSHIP BETWEEEXPRESSIVE POWERSOFLANDLTLiiiiiiiiiiiee e s oo e et s e s
FIGURES. TRANSFORMATIORENGINEERING.tevvvttuusses ommmmmmms s e e e e st esssss s smmmmmmmes s 5554054444+ 4 s s+ 4440055014+ smmmmmemns 0 20
FIGUREG. THE PIPELINEMODEL OFALLOYTRANSLATOR ...tttttttuuneeeesssmmmmmmmms s s e et eesssss s smmmmmmns 555001020420 s s s+ 1200000 Db

FIGURE7. PARTIALMETAMODEL OKJMPLE FORCLASAMODELS.uuiiuuiienniensscmmmmmmns s e sesansssnss s s s essnsssss s smmmmmnnme @0

FIGURES. AN OVERVIEW OF THALLOY METAMODELuuiivnitunsisns s smmmmmmmns s sesanssss s s smmmmmmmms s 0 sss0sesss s ssmmmmmmms s s 10 sssnsssen 03 0ens

FIGURED. PARTA - ALLOYMETAMODEL.......uuuuuieeeseessss cmmmmmmmms s e e ssssn e e e s smmmmmmms s s o2 222 s 22252 smmmmmmmms 25 55500222+« s s 1«22+« OO0
FIGURELO. PARTB - ALLOY METAMODEL ... ttttttttttus s sommmsmmms s o5 s s et et w5 555505 144+ 4 s s 44424244441 1 smmmmmmmms o 0 0 10O
FIGURELL. PARTC- ALLOY METAMODEL...uuuttttttttteus s smmmmmmmns s s e s e s e ss mmmmmmmm s 44445551 44+« st 04552224400 1 5 s+« 00 1 OO%
FIGUREL2. PARTD - ALLOY METAMODELiittttttttun s smmmmmms s s s s s et e es s s cmmmmmmmms s 5555505 142+ 4 s s 44244244041 1 smmmmmmmms o 00100«
FIGUREL3. TRANSFORMATIOMRCHITECTURE FOR MMV CODEGENERATION.......ceevvvvteenee s commmmmmns e s e e e s eese s mmmmmmnm s« 2 O 0
FIGUREL4. UMPLESMETAMODEL FOSTATEMACHINEDIAGRAMS.vviiueeee s emsmmmmmseeseeeeeveeevessommmsmms s sessseeeses smnnnD8
FIGURELS. VISUALREPRESENTATION OF XMV METAMODEL.........cccceeieieees e e e e eeeeeeeeees mmmmmmmmtaseaaseseseses smmmmmmnme e L L
FIGURELG. COLLISIONAVOIDANCESYSTEM ..utuuuietteetsssns s ommmmmmmns s s s e s e s e st mmmmmmmm s+ 442515510 4+ st 001420440015 smmmmmmnm ++ -0
FIGUREL7. SYMBOLIC EXAMPLE TQUUSTRATE FRONNEXT AND INTRANSITIONS OF SIMEIANDCOMPOSITE STATES....103
FIGURELS8. VISUALREPRESENTATION OF R&ELIONSHIP BETWEEN PRISITIONS INJMPLE.......ccvviiieeeererssmmmmmmmneeeeeeeen . LOB
FIGUREL9. VISUAL REPRESENTATIADE BASE TRANSITIONS......ccceiiiiiiiies e e e e eeeeeeeeess s e aaeaeaeaesess smmmmmmnmn e e LO T
FIGURE20. EXAMPLES OF HIGHEVEL TRANSITIONS.cetettuuuunse s cmmmmmmms s s s eeseeessss smmmmmmmms s s o555 00222+ s 1022220200000 LOB.
FIGURE21. MANIFESTATIONS OND-CROSSTRANSITIONS.....uuuuieeeeerrsssssmmmmmmmmr e s sssnseeese s smmmmmmmms s e+ 22 s s 20000 s smmmmmmmns o001 1O
FIGURE22. FLOW OFEXECUTION INUMPLE ... uitittietttte s ot 00 s ettt s 4445550 144+ s £ 44224400501 smmmmmmms « e L2
FIGURE23. COMPOSITE STATE WITEMPTY SET OF EMBEDDHRANSITIONS.uvvuuiieeteessssmmmmmmmms s e e eesennseses smmmmmmnns 0o oo L L
FIGURE24. ACTIVATIONBY-DEFAULT FOR SIMPLEN® NONORTHOGONAL COMISITE STATE........cceeeeeeeecmmmmmmm e 117
FIGURE25. ACTIVATIONBY-DEFAULT FOR PARALLETATES......ccetttieeeeeeeesemmmmmmmmresssssessssssssmmmmmmmnsssssssssssssss smmmmmmmms s L1 8
FIGURE26. DEMONSTRATING COMPLEX OF TRANSITIONSITO CONCURRENT STATE..........cceeevees e eeeeeeeeeeeee el 19,
FIGURE27. ACTIVATIONBY-DEFAULT FOR NOI®RTHOGONAL COMPOSISEATE ...uuuieeereerrernns s cmmmmmsmmr s eeesee s s mmmmmmen 20

FIGURE28. ILLUSTRATING INCONSIENCIES RESULTING GRI ACTIVATIONBY-DEFAULT AND HIGHEVEL TRANSITIONS..125

Page |x

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530727
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530728
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530730
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530731
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530732
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530733
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530734
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530735
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530736
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530737
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530738
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530739
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530740
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530741
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530742
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530743
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530744
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530745
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530746
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530747
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530748
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530749
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530750
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530751
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530752
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530753
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530754

FIGURE29. DEMONSTRATING DISABAG TRANSITIONS FORONFPARALLEL STATE MACHE...........cuvvveereeessmmmmmmmmreeeeeeeen L2,
FIGURE30. SYMBOLIC EXAMPLE TQUUSTRATE INCONSISNEIES WITH PARALLESM......ccceeeeiiieerrrsssmmmmmmmms s sseeeeeeeesenemnl 29,
FIGURE31. ANALYZINGMINIMAL SUBSET TADISABLEORTHOGONAIREGION........ccvvvuiieeesesmmmmmmm s oo e e e esnssn s smmmmmmmns o110 130
FIGURE32. ANALYZING A DISABLINGRANSITION SET FORN ORTHOGONAL REGIQN.......ccuuuneees s o s e e e s eeesnsnns smmmmed 33
FIGURE33. DISABLING REGIONS @RTHOGONAL STATES.....uuuuuieeeresssummmmmmmmesseesssnssss s smmmmmmnns s seeessessss smmmmmmmn oo o001 0 S
FIGURE34. AND-CROSS TRANTION EXAMPLES. .. .ueeeeeeesiuussmmmmmmmns st sesess s e s smmmmmmns s 2222241100155 mmmmmmmms 55555552522+ 4 smmmmnned

FIGURE35. AVENN DIAGRAM TO ILLURATE THE RELATIONSPS BETWEEN SETS ORANSITIONSIECESSARY FOR DISABG
ANY REGIOM\WHOSE IMMEDIATE ANESTOR I8......cii oo iiiieee oo s s 11111 s 0 LD

FIGURE36. ABSTRACT EXAMPLE TEBONSTRATE SAMEOURCE PAIRS OF TRAMIONSuuvieeeeeerrrens s commmmmmnr e eeeee o LA
FIGURE37. ABSTRACT EXAMPLE TEBMONSTRATE REGIOBROSS CASES........cccvvvvunsns s seeeessesssmmmmmmmneeseeeses s o LAG
FIGURE38. DEMONSTRATING INCONSIENCIES WITH MULTLE AND-CROSS TRANSITIONSTNE SAME ENCLOSINGTATE 148
FIGURE39. CASES OF FALSE POSIERcuuutuuieettessss mmmmmmmms s eessssassees s s s 142244444441 smmmmmmmss 4555001552444 s 1221010 s LD
FIGURE40. 2-BIT COUNTER DESIGNERASED ON ANEEROSS TRANSITION...ccvvvvunseeesees mmmmmmmms e e s eeesennns s s smmmmmmns s neeeees LOL
FIGURE41. SYMBOLIC EXAMPLE TQUUSTRATE UNREACHABTY OF STATES...uuuuututurusesssss mmmmmmmnsssssssssssssss mmmmmmnnssss 0 OD
FIGUREA2. 2-BIT COUNTER DESIGNED BASBNAL.....cooiiiiiiiieeieee s immmmmmme e s e eeeestn e s et 0122222 s e e s s mmmmmmmme e 2200100000 s o £ e
FIGUREA3. 2-BIT COUNTER DESIGN BASEINAZ......cccetvutuuneeesscommmmmmms s s e e e e s essssns smmmmmmmms 5550502222 s s ssmmmmmms s 22222255000 00 smednl e
FIGUREA4. 2-BIT COUNTER DESIGN BASEINASciiitiitiineeesssommmmmms s s e e e s seessss smmmmmmmms s 51500 e 200 s sssmmmmmms s 02200 sssssn s s smedol ol s
FIGUREAS5. VISUALREPRESENTATION GEAR TRANSMISSIOBUB-SYSTEM. .. .oiiiviviiineeeees s s s e e e s ees s smmmmmmen o 10000 QL
FIGUREAG. TRANSFORMED VERSIOR BIGUREZ0c.uvvuiiiiiieeiess cmmmmmmss e tts e s s s s 15112 e e st s s st s 000 s e e e s 0 e @ Ao
FIGUREA7. AFLAT VERSION OF CEBBE SECTION STATE IAINE........cceeeiieeeieeescmmmmmmeeeeeeeeeeeeee s cmmmmmmmmeeeeeeeeeeeeee s emmmnnnl 90
FIGURE48. ILLUSTRATINGINDER SPECIFICATION IN PARIT-CHILD ASSOCIATIONvuvvvvverresssss cmmmmmmmmsssssssssnsssssmmmmene@ 00
FIGURE49. SMULATION RESULT AFEIR INTRODUCING NOYCLE CONSTRAINT.ccvvvuuneeeeesmmmmmmmms s oo e e eeensnns s emmmmmmmnr e 02 AL
FIGURES0. SMULATIONARCHITECTUREttuuuetetteessss summmmmims s et s e e s s o s 542444241511 4 smmmmmmes o 5555001225440 s + 2+ 1+ 2L
FIGURES1. THETESTFDRIVENDEVELOPMENTTDD) ARCHITECTUREcciiiieieeee et oot a e e e e e eeee e e e s e 22220 ee 0000203
FIGURES2. HIGH-LEVELREPRESENTATION GHOMEHEATINGSYSTEM....ciivvviiiieeeieestmmmmmmmne s tvsn e s s 0000 200,
FIGURES3. THE ROOM SUBY STEN. ... cctevvtutunneessmmmmmmms s s eesseesssss s smmmmmmmms 555054222222+ smmmmmmmms « 2225555551 4+ smmmmmmmns 500 1012220 20
FIGURES4. THE CONTROLLER SEBYSTENM....uuuuuueeeeesssss s smmmmmmmnr s s s ssn e e e s e s smmmmmmmms s 22222225510+ smmmmmmms 55 12222250+ srmmmmmmn « 2+ 20 1
FIGURESS. THE FURNACE SUBYSTEM...uuuuuieettestsses s s e s e e e s s e s mmmmmmmms « 2225555551 4+ smmmmsmmns 5004222525+ 5 5 smmmmmmnms ¢+« 111 2O
FIGURES6. THE COLLISIONAVOIDANCES SUA[LOZ2]...ccciiiiiiiiiiieees oo et e e s s st e emmmmmmms e e 02200000 2ol

FIGURES 7. COMPARISON OF MODENG SOLUTIONEPER NUMBER OF TRANSDNS FOR THECOLLISIONAVOIDANCH-EATURE

FIGURES8. EXPERIMENTAIRESULTS FORLVERSUIVIETHODSuiituiiuniirtse s sommmmmmms e s s tnsesnsss s smmmmmmnms s s snsesenss s smmnmmnd £
FIGURES9. RESOURCEITILIZATION FOR THRANALYSIS ORZ....civniieiiiiriieens s sommmmsims s e s st s e sas s s s s 10 s s 1 e s 00 smmmmmmnns 21O

FIGUREGO. GRAPH OFSTATE SPACEVSNUMBER OF RANSITIONS ..uuiivtiiiinietns s mmmmmmns s e sanesssn s mmmmmsms s s s s snnsssn s s mmmmel L

Page |xi

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530755
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530756
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530757
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530758
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530759
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530760
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530761
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530761
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530762
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530763
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530764
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530765
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530766
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530767
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530768
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530769
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530770
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530771
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530772
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530773
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530774
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530775
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530776
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530777
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530778
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530779
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530780
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530781
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530782
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530783
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530783
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530784
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530785
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530786

FIGUREG1. GRAPH OFNO. OF TRANSITIONS/S. REACHABLENUMBER OFSTATEScuttririteeees s smmmmmnmme s e snsnnnnee e s smmmmmmen 222

FIGUREG2. GRAPH OFAVERAGETIME ANDREACHABLESTATES OF THIESU. ..ot e e s s 1 223
FIGURE 63. GRAPH OFAVERAGENUMBER OBBDDNODES ANIREACHABLESTATES OF THESUA ...t e 223
FIGUREG4. GRAPH OFAVERAGHVIEMORYUSAGE ANIOREACHABLESTATES OF THESUA. ... oo s a0 224,

FIGUREGS. GRAPH OF EXECUTIONMES FOR QUESTIONSRESIMPLE AND HIERARIICALSSUA OFXHOLON WATCH...... 232

FIGUREG6. GRAPH OF REQUIRED NBER OFBDDs FORSSUA(I.E.,SIMPLE AND HIERARGEAL) OF XHOLON WATCH....233

FIGUREG 7. GRAPH OF MEMORY UTHATION FORKHOLON WATCKSSUA(1.E.,SIMPLE AND HIERARGEAL)cceveeeee 233
FIGUREG8. MODEL OF THIEELECTRONICEEATINGSYSTEM.....uutttveeeeeeees s smmmmmmmme e e s e ssssssses s smmmmmmmns 55 e 52222211 smmmmmmmms 01110 230
FIGUREG9. ALLOYEQUIVALENT OF THELECTRONICEATINGSYSTEM...uuuiiiiineiirinnnscommmmmmmrseeeessnsess s mmmmmmmmn e s s snneee s o o
FIGURE70. COUNTEREXAMPLE SHOWENMULTIPLE STUDENWSITH THE SAME IDENTIES......ccvvuuiiieeeeeessmmmmmmmne e e e eeven 0 242
FIGURE71. COUNTEREXAMPLE PRODEIZAS A CONSEQUENTGEPZ........ccuiiiiiiinsscmmmmmmmne e eesnsessns s snmmmmmmne s s e ennssnn s nlbh

Page |xii

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530787
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530788
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530789
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530790
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530791
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530792
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530793
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530794
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530795
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530796
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530797

List of Tables

TABLEL. TABLE OFSYMBOLS.....cvvvvvrerrrnnnnns

TABLEZ2. MAPPING OROTATIONS AND MEANBGS......couvvivnriinnnes

TABLE3. UMPLEMULTIPLICITIES.....ccvvneivnnnnen.

TABLE4. MULTIPLICITY CONSTRATS MAPPING.......ccvvveennnnen.

TABLES. SEMANTICS OETL OPERATORS FOR MMV [69]cvvvvvveivrinnnnns

TABLEG. SEMANTICS O TLOPERATORS IN NXMV [69]cvvvvviiininnnnns

TABLE7.SUMMARY OF ATTRIBUTESF ANALYSIS ENGINES........ccvvunene.

TABLE8. ATTRIBUTEMAPPING FRONUMPLE TQALLOY........ccvvvvnnnnnnnn.

TABLE9. MULTIPLICITY MAPPINGEROMUMPLE TQALLOY.........ccvvveeeeennn.

TABLE10.CASES OMNONDETERMINISM.....cuucivvneennnnen.

TABLE11.SYMBOLIC EXAMPLE TQUUSTRATE MATCHINGEBWEEN DIFFERENT SBT.....cccvvvivvnnnnnn.

TABLE12.SYMBOLIC EXAMPLE TQUUSTRATE MATCHINGND FILTERING.....cccvvivvnneirnnns

TABLE13. ANALYSIS RESULT FORIN-DETERMINISM......cceeeeeeennnnn.

TABLE14. SUMMARY OHRESULTS ONON-DETERMINISMANALYSIS.......cvvvveeeennnns

TABLE15. ANALYSIS ANIPERFORMANCRESULTS FONARIOUSMETHODS ANIREQUIREMENTS........ccvvvnnnn..

TABLE16. SUMMARY ORANALYSIRESULTS....ccvvivvneeennnen.

TABLE17.ANALYSISRESULTS FOXHOLONWATCHSTATEMACHINEDIAGRAMS.........cvvcvvnerenn.

TABLE18. SUMMARY OFANALYSISRESULTS FORASESTUDY3......ccvvviivneiinnnes

TABLE19. ANALYSIS OF ASSOCI®NS OF THESSEATSYSTEM...cvvvivneeenn.

TABLE20. COMPARISON BETWEENMPLE ANDALLOY OF ESEAT SYSTEM.ceuvvvvnivnneinnnns

TABLE21. RESEARCHQUESTION FOR THEURVEY.......cuvveernennnnes

TABLE22. SELECTECSOURCESORLITERATURESEARCH......cvvniviinnnas

TABLE23. CATEGORIES OKEYWORDS........cvvevnnnnen.

TABLE24. INCLUSIONDRITERIA FOR THIS SR Y. ...cvutiivneenneenss s s s e sanssenns

TABLE25. COMPARISON OBOFTWAREVERIFICATIONTOOLS WITHD UR WORB.c.vveveerenen

TABLE26. SUMMARY OH OOL ONSUPPORT FORND-CROSSTRANSITIONS ANINONDETERMINISM.....vvvvveeenenenn.

e XX
——Y
-19..
——)
48.
A49..
..20..
Y AC
L4
151
ceunl D6
.156
..209.
..210.
S K<)
e 222
—)
27
e 238
.240
-246.
247
247
.--248
emnmnnni2D8
p—i 1)

Page |xiii

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530799
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530800
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530801
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530802
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530803
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530804
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530805
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530806
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530807
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530811
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530813
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530815
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530818
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530819
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530820
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530821

Table of Listings

LISTING1. EXAMPLEMODEL OFOLASSDIAGRAMIN UMPLE........vtteeuereees comemmmmms e esee e eee e cmmmmmmmms e e s e e mmammmnmn oo Ll
LISTING2. UMPLES GRAMMAR FOR/ARIABLEDECLARATION.vveveveve s semmmmmnms oo sse s s smmmmmnmms 5500 smmmmmmmns o0 ol
LISTING3. GENERALSYNTAX FOFSPECIFYINGKEYS INUMPLE.uuettireeiie e s e s et v+« - 20
LISTING4. PARTIALMODEL OFHOMEHEATINGSYSTEM....ceetiiiiiiittreeesmmmmmmms s seeese e s s e s cmmmmmmmms 1 se st smmmmmmms e s 1020000 20010
LISTINGS. UMPLESB TRANSTIONNOTATION. ¢..c.vevvavseess s onmmmmmms s ssese s smmmmmmms 55105 s smmmmmmnns 45015250 1514 semmmmnmns o 28

LISTINGE. UMPLES STATENOTATION. ...eevveeteeeeseeeeseemmmmmse s s e esese e s s s e+ as st a2 s e s smmmmmmne e 2 s a1 nes e s ommmmmmmen e enenenes 300 0s

LISTING7. UMPLEBNOTATION FORBTATEMACHINEeeeeeeeeeee s s emmee e e e e eeee s s emmmmmes e e s nnneee s s s e e e nenneeeseeen3Qlees

LISTING8. LETTERTEMPLATEEXPRESSED INIMPLE.ccuuuuiiieeteestmmmmmmne e e e eessssn e s emmmmmmms 0 122222 e s 005 s+ s 2205000 e s e s o Qdav00s

LISTINGS. THE GRAMMAR OF ALLBYLANGUAGE.cuveeveeresvmmmmmmmmseessesseensssmmmmmmnms s essesssasssssmmmmmmnms s ensesssesssssmmmnn 3
LISTINGL0. MODELLINGEXAMPLE INALLOY.cttteeeeeeeeeeeee s s e e e e e e e e s s 41141222222+ 111111111112+ smmmmmmm « 13D
LISTING11. HEAT CONTROLLEFSTATE TRANSITIONSYSTEM....cciiiiiiiiiieieses oo e e e eeeeteee e et s s 2222222 e 222+ 2 emmmmmnmn e+« B0
LISTING12. MODULE'SSRAMMARN NUXMV.......utiiititeiuteees o s veessvee e s smmmnmmmns 222110221000« smmmmmmems 2500010000000 b0
LISTING13. TEXTUALREPRESENTATION OF THEARTIALMETAMODEL OBJMPLEccvvvveeeevees o s stveeeeenvve s smmmenmenD L
LISTING14. TEXTUALREPRESENTATION OF THEARTIALMETAMODEL OPLLOY......cvvveeeeierreee s smmmmmmmms e eeesnsseee s smmmmmmmes 02

LISTING15. PARTIALMETAMODEL OSTATEMACHINE INUMPLE.ccuuiivtiitnses s s st sesane s s s st s e s s s nn s s s smmmnmeO

LISTING16. TEXTWAL REPRESENTATION OF THEIXMY METAMODELccvuiiittiienns s mmmmmmnns s sesanessnns s mmmmmmmns st essnssssaseand Ohoes

LISTING17. EXAMPLE OF ASSOCIANBACT CONSTRAINNONNUMERIQcvvvvrerrreresssommmmmmmnsssssssssssssss s s ssessssss o Dors
LISTING18. EXAMPLE OF ASSOCIATNEACT CONSTRAINNUMERIQvvvvvvvrrereressssmmmmmmmnsssssssssssssss ommmmmmmnsssssssssssssssomnds dons
LISTING19. ALLOY SIGNATURE FROBILASSES........uuuteveeeeesssmmmmmmmr s s eeesssssssss mmmmmmmms s s ssssesse s s smmmmmmmms o222 221200155« smmmmmmmms « (43
LISTING20. ASYMMETRIC ASSOCIATEXAMPLE......cciiitieieeeee e s e e e e e e e e e e e e e s e e e e e e e e e e e e s et s s a1 e s e e e e e e e s emmmmiD O

LISTING21. SYMMETRICASSOCIATIONEXAMPLEcvuittnietsess s s s s ss s e st s e s smmmmmmms s s 2555+ 2 40 s 2+ st 2550005210 s+ ¢ smmmmmeD.

LISTING22. AN EXAMPLE OF BDIRECTIONALITY FACT .uuituuiituittnn s mmmmmmmns s ssssnsssss s smmmmmmmms s s s bsssssss s smmmmmmmnsssssssssessns 2nees

LISTING23. AN EXAMPLE ONUMERICBOUNDFAQEXACT VALUE.evtttiaasiiiuets nmmmmmms s sstssee e e e e s smmmmmmmt 222141t DD

LISTING24. AN EXAMPLE ONUMERICBOUNDFACIRANGE VALUE.utveteeitteeee s mmmmmmms e e seteee e st e+t s e

LISTING25. THE GENERALHIERARCHYCONSTRAINT ... tttutttvneetsssss sommmmmms s s s s s e sen s s s smmmmmmmis s s 55 s 520 s+ 4 st s 50 e s s vnne s dQhunas

LISTING26. TEXTUALREPRESENTATION GBOLLISIONAVOIDANCESYSTEM ...iivniivniernesnss cmmmmmmmms s e sssnsesns s smmmmmmmen s s seee s .
LISTING27. THE MATCHMAKING ALGORITHM. . ..vuuetunietnsss s s s st essns st smmmmmmins s+ 55 s 5201 s 545 smmmmmmsnt s+ 255005100024 smmmmmmnede DS

LISTING28. THE EXPLORATION ALGOMRIM ...uuiitniiruniirnsesss sommmmmmnn s s s esss e sss smmmmmmmns s s s 55 sss0s s s s smmmmmmmns s s s o0 e s s s e s s smmmmmmans s o D4

Page |xiv

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530824
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530825
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530826
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530827
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530828
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530829
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530830
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530831
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530832
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530833
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530834
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530835
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530836
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530837
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530838
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530839
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530840
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530841
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530842
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530843
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530844
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530845
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530846
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530847
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530848
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530849
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530850
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530851

LISTING29. THE FILTERING ALGORKHM.ceeteettiuuerressemmmmmmmms s seeeeee e s s smmmmmmnns s 41 s snsseeeom

LISTING30. UMPLE REPRESENTATIADF2-BIT COUNTER SYSTEM.....cccvvvvrrrenen.

LISTING31. TEXTUALREPRESENTATION QBAR TRANSMISSIOKBUB-SYSTEM......cccvvvvvvnnnnnn.
LISTING32. THE SMV EQUIVALENT @PURSE REGISTRATIGMSTEM......c.cvviieeeerens
LISTING33. THE ROOT STATE MACHENDF TRANSMISSION BASYSTEM........ccvvvvvnnnnnn.
LISTING34. TRANSMISSION MODULE.....cccceeiiuuuresssommmmmmms s ssseeeseee s smmmmmmms e 22 s snsssees
LISTING35. PARKANDNEUTRAL MODULE.vvvtteeeeessss commmmmmm s s s sses e e e s« emmmmmmms s s 2222250 nnssom
LISTING36. WRAPPER ANIMAIN MODULES FOR INSNTIATION PURPOSES............c.cv....

LISTING37. REACHABILITY SPECIFATION FOR TRANSMISEN SYSTEM....ccuvvvvnrennneee.

reeen 197
— e
weeneee 181
191..
A193.
195,

SR e 51

196
A97.

Page |xv

file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530852
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530853
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530854
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530855
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530856
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530857
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530858
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530859
file:///C:/Users/Normalthing/Dropbox/PhD%20Proposal%20-%20Opeyemi%20Adesina/OpeyemiThesisProposal/Adesina_Opeyemi_2017_thesis.docx%23_Toc487530860

List of Definition s

DEFINITIONL. GLOBALCONFIGURATION. ¢..ctttteestuuesstssommmmmmms s ss e e e e e s smmmmmmmms s+ 24444255555+ smmmmmmmms 555555555244 4 smmmmmmmms 4441110
DEFINITIONZ - TRANSFORMATION. ...1tuuteeetesssss smmmmmmmms e sss e e s s s s 42244555551 smmmmmmmms 55505 525252+ # ssmmmmmms + 2222220500000 el s 1
DEFINITION3 Z TRANSFORMATIOMREFINITION.utttvettteess s cmmmmmmm 41t ¢ s 55554444412 s 14 e e e
DEFINITIONA Z TRANSFORMATIORRULEttt smmmmirms o st it s
DEFINITIONS Z ENDOGENOUTRANSFORMATION. 1.1 tttetetesttss s smmmmmmmes s 11004+ 4+ s 444445455511 4 smmmmmmes 550050424000
DEFINITIONG Z EXOGENOUTRANSFORMATION. ... etttttttttuss s st s 444+ a s s e es s s 444555505 444+ s 1014224400 0000
DEFINITION7 - VERTICALTRANSFORMATION.ceiitiiiiieees emmmms s e e eeeeeeesss mmmmmmmms a2 e e e s e ee e e s s s e s e e e eaaeaeees
DEFINITION8 Z HORIZONTALTRANSFORMATION. ... etttteeeesscmmmmsns e e e e e s 4 s s s 5555252444+ smmmmmms o222+ 2 2010008
DEFINITIONS. STATEMACHINESYSTEMUNDERANALYSIFSSUA)IN UMPLE.....ccoiiiiiieiiiies e s
DEFINITIONLO. STATEMACHINE INUMPLEitiittiittti s s sommmssms 00 a et s 44555501 144+ s 10112 e 1 a0 s e00s
DEFINITIONLL. SOURCESTATE (OR FROM STADE ...cieiiiiieieieieee e s o a2 2 e e a2 e e e e e e s st 2222222222222+ s 1222222222202
DEFINITIONL2. DESTINATIONSTATE (OR NEXT STAT . 1. et iteieieeeeeeee e s o s 2 2 e e e e e e e e e s s s 222222222222+ e 1111200
DEFINITIONL3. IN-TRANSITION OBTATE ... ccittttuuuteeesees mmmmmmms e e s e eetsssn s ot 55 4222224252 mmmmmmmm + 25525 150000 1e
DEFINITION14. EMBEDDEDTRANSITIONS OBTATE.....ciciiieieieeeee et e e e e e e e e e e e e s s s e 12 e e e e s e s s a1 e e
DEFINITIONLS. HIGHLEVELTRANSITION......ccoiiiiiiiiiie e e e e e e e e e e e e s 222222 e e e e e e s e a2 e e e e e e e eaaas
DEFINITIONLG. AND-CROSSTRANSITIONS ...t ttttuuuneeeseesmmmmmmms s e e s eesesss s smmmmmmns 5 4454444444 emmmmmmmm s+ 4400 100000 1s
DEFINITIONL 7. UNUSUALTRANSITIONS ..ot ttttttuuteeses s smmmmmmms s e e e e ee s smmmmmmns 5554054544+ ¢ 4 s 4+ 445555551 4+ s 5 1 11
DEFINITIONL8. ENABLINGTRANSITIONS OF BTATE.....ietuuttuuieesesesmmmmmmmmnsseessesssssss s smmmmmmmns 5505 eessees s mmmmmmmn s e ssessssnns
DEFINITIONLO. STEP OFEXECUTION. c...tuuueeeessessess smmmmmmmms s 2222 s e e e s+ o s 42225555511 smmmmmmmms 55545 425222+ + smmmmmmms + 222552010
DEFINITION20. MICRGSTEP OFEXECUTION.....ccevttuuueeeesees mmmmmmmms e+ e s eessssn s s smmmmmmmns 0 4422224225 mmmmmmm « 22555550001
DEFINITION21. MACROSTEP OFEXECUTION ...1ttuuueetsesssss s summmmmmms 225 s e e e s e s oo+ 22222225552 4 smmmmmmmes £ 5 5550052225250
DEFINITION22. ACTIVESTATE OF ASTATEMACHINE.uuuuuiiiittiestess st et s e e e s s s s 12244 e e 2551 smmmmms 55500100
DEFINITION23. AND-CROSS TRANSITION VHTA TARGET REGION BER THAN THE ..uvuuuiiiiieeirtees s s e s e e e s eean
DEFINITION24. PARALLELTRANSITIONS OF AQRTHOGONAISTATE. .. .uuutvvtrtursssssssimmmmmsmnsssssssssssssss mmmmmmmnsssssssssssssses

DEFINITION25. ENABLEDNESS OF TRANBDNS OF ABSUA ... cen it ete e ettt s et s s s s e s b e

29..

—_Y

D2
—-VA
s D3
emeee23
102,
102
cennmnmmms - 102
105..
cennmnmmms - 107
cennmnmmn -+ 109
109
A110.
110
J—
—
116.
weenl 36
145..

e emmmmennme - 100

Page |xvi

List of Research Questions

RESEARCHIUESTIONL........uviueeveeese s commmmmmes s eeeees e e mmmmmmmns 1222 s a1 s s s smmmmmmms 22525212222 smmmnmmnm s 21221210202 smmmmmmmms s e s s ass e Ohres

RESEARCHDUESTIONZciititttuuueeees s eommmmmms s e e+ s e ee 2t smmmmis 555454424444+ mmmmmmms £+ 4555555511 4+ smmmmmIE £ 55545 5224455+ Smmmmmmmmn + 2 4
RESEARCHIUESTIONSttt s s 5 55 mimsimsims 5555 mimsimirmt 5 555555551 Smmmint £ 515

RESEARCHDUESTIONA ... titttttutteeees s o+ 2244422222 smmmmins 555454424444+ smmmmmmms £+ 4545555511 4 4 smmmmmIE £ 55545 5224455+ mmmmmmmne + 2 4

120
124
129

Page |xvii

List of Propositions

PROPOSITION.. SUFFICIENTCONSTRAINT FORCTIVATIONBY-DEFAULT.....c.civviiiieeeeeees e e e e eeee e .20

PROPOSITIONR. SUFFICIENT SUBSET ORANSITIONS OF THESUAFOR DISABLING A NGRARALLEL SUBSTATE MACHINEL24

Page |xviii

TABLE 1. TABLE OF SYMBOLS

Symbol | Formula | Explanation
® A finite set of attributes of the SSUA
Y The universal set of states of theSSUA
0 The universal set of state machines forming the SSUA
a The root state machine of the SSUA
2 The universal set of transitions of the SSUA
Y The universal set oftransitions of state machine A.
£ The name of the state machine A
Y Finite set of top-level states of state machine A
i The initial state of state machine A
a A finite set of labels enclosed in A
Y A universe of states embedded in a state machine A
(0] A set of embedded transitions of state machine A
r [a The trigger ‘Q(or event) on transition label & GHICLD
® 0 ¢ maps transition Oto its destination state (see Definition 12)
"0 "00 "Omaps transition oOto its set of source state(s)see Definition 11)
\ | 0 | maps state machined to its type (i.e., simple or hierarchical)
f [f maps statei to its number of sub-state machines
! "0 " maps state machined to its parent state
L L(t) L maps transition t = (x, y, z) to y (i.e., its label)
o WO If dthen &
P ALINA &is true if and only if Qis true
r or o o is an immediate descendant of state machine®
$ 0S80 0 is an element of the set of descendants of state machin® (including 6)
r or 6 0 is a descendant state machine o
s 0rg0 o is parallel to state machine 6
W AW ¢is an immediate descendant of statec
W OW® &is an element of the set of descendants of stateb(including &)
W AW Gis a descendant of®
N N wis defined as an element of sett
! o wis defined as any element of seté
m m wis defined as some elements of setd
y Yo The set of in-transitions of state w(see Definition 13)
n n® The set of embedded transitions of statew(see Definition 14)
H H(s) The set of high-level transitions of state s (see Definition 15)
Y} Wi The set of and-cross transitions of an orthogonal statei (see Definition 16)
\ N The set of unusual transitions for an orthogonal state i (see Definition 17)
. A The set of enabling transitions of state w(see Definition 18)
A A0 The fully qualified name of state (or sub -state) machined
¥ t of The active state of state (or substate) machine¢ at step ‘(see Definition 21)
DH DH(M) The set of high-level transitions that will disable state machine M (see Definition 22)
IH IH(A) The set of ignorable high-level transitions for sub -state machine A (see Equation 14)
] (A, s) The set of and-cross transitions with target regions other than A
(0] 00 The set of disabling transitions for state (or sub-state) machine 0
1 1 ih The set of parallel transitions of 0 in statei (see Definition 23)
n na The guard "Qon transition label & SGITLD
e ne ® ¢and care non-overlapping guard statements
o The set of embedded states ofl (see Equation23)
A N(s) N maps a top-level state sto its state machine.

Page |xix

1 Introduction

In this thesis, we demonstrate thavelopers can use a single formalisrd€rivative of UML) to
generatecode forboth formal methods and executable systeirurthermore, waise formal
methods to prove some properties such systemsand demonstrate usefulness asfdcross

transitiors as defined by Harél statechart semanti¢$].

As the complexity of realvorld software systems growalentlessly, the risk of project and system
failure remains unabated. This phenomenon is domain independent, as aut{Zzhatealth[3],

and businespl] examples attest.

Christel and Joo<Riete [5] stated

AOur reliance on t he functioning of I
Communication Technology) is growing rapidly. These systems are becoming

more and more complex and are massively encroaching on daily life via the

Internet and all kinds of embedded systems such as smart cardd)ethdnd

computers, mobile phones,andhighihd t el evi si on sets. O

Unfortunately, expecting human beings develogngh systems to prevent failures by detecting
faults is unreasonable unless the humans are supported by sophisticated tools. Such tools must
match increasing complexity by increasing the use of abstractions with rigorous mathematical

underpinnings.

Tools enabling sound mathematical analysis of software, collectively ctdiedal methods
(discussed below) have been available for decades. However, their uptake has been slow since
they tend to be too hard for all but the most accomplished computer ssiémtiste, tend not to

scale well, and tend to be somewhat spguispose.

Another set of tools and techniques in the field caNemtle}Driven Engineering MDE), also
discussed below, combats complexity by allowing relatively easy specification andtigeneia

systems, bypassing the need for humans to understand what is being generated.

Page |1

To some extent, MDE and formal methods are becoming connsated, MDEtools aremore

and more being givesolid formal semantics. However, the easteatse modelingechniques

tend not to be well integrated with state of the art formal methods. This is the issue we address in
this thesis.

Our objective is to allow developers to employ the dagyse modeling language technology
Umple to generate systems, while detegn to stateof-the-art formal methodstools to
transparently analyse such systems. In doing so, we hope to increase the applicability of formal
methods, and hence improve the quality of softegstems

1.1 Model-Driven Engineering

MDE [6] has energed as a disciplined approach to addngsoftware complexity and effectively
represenhg domain concepts, architectural concepts and other aspects of abstract design. MDE
advocates both genealirpose and domaispecific modeling languages, model transformation

and code generators as means sdmaging complexity of the software industry.

A domainspecific language helps formalize structural and behavioral requirements of objects in
target domains. Transformation engines and generators provide mechanisms that facilitate analysis
and synthesis of domaspecific artefacts.

Advances in MDE yialed the Unified Modelling Language (UMJ]i n t he mi d 199060
remains a key standard for representingicstand dynamic aspects of software systems, but its
current semantics is setfarmal [8]. UML is widely taught because its core concepts, such as

class diagramand state diagrams are simple, yet powerful. Much of its use is informaifnply

drawing of pictures) however, due to tool weakneg9¢sThe Umple technology has been
developed to solve certain UML tool problems while retgnand enhancing the ability to

generate software. We will discuss Umple in detaBéation2.1

1.2 Formal Methods

Formal methods provide strong matiedical discipline with the promise of ensuring correctness

of software systemgl0], whenit is applied correctlyn contexts where proof is possiblehey

Page |2

offer notations to express software abstractions with unambiguous semantics and sound

mathematical principles to reason about correctness of software.

According to Ouimetand Landquisf11], formal verification of systems (i.e. hardware and
software) has gained tremendous attention sin

costs Intel Corporation a loss of $475 million in recall of faulty chips in 198}

Advances in formal methods for software engineering have given birth to various approaches

including theorem proving, model checking, and static analysis.

1.2.1 Theorem proving

Theorem proving[13]i [22] provides a deductive approach to the certification of program
correctness. It opiires the definition of a set of calculi targeted to programming language
constructs. Verification of a correctness property is thus subjected to proofs using these calculi
(i.e., the deductive verification approadB3]). A program is correct with a set of calculi if and

only if the established preondition holdsefore program execution and the peshdition holds

after the program execution terminatésdvance in theorem provinghawe given birth to
interactive(e.g.,[16], [17], [19]i [21]) and automatede.g.,[22]) theorem proving approaches.
Although theorem proving approaches guarantee absolute correctness for certain aspects of a
system, their adoption in the industrial settings is low. Their major limitation is that they demand
user guidancén the search for solutions and have inadequate support for automation. Another

limitation is that each technique considers only a subset of aspects of a program.

1.2.2 Static analysis

Static analysig[24]i[29] is another formdatable approach. A goal of some static analysis
techniques is to automatically computecessary precualitions along all paths of a program
without execution. According t¢26], necessary preconditions aaeset of constraintgany
violation of which will lead to an error in subsequent program exeqgufidre major benefit of
this approach is its potential to addrsesalability issues certifyingthecorrectness of largscale
software system Despite its potential to address scalahilibe approach is limited in several
ways. Current solutionsf this approach targ@rogram source codmit not highetlevel software

abstractions such as state maebl and class models, etc. Another limiting factor is that to realize

Page |3

precision and scalability, solutions are tailored to a specific problem domain ,(e@gonics,
automotive, etc.). To make matters worse, most interesting questions about progratnessrec
areundecidablg30].

1.2.3 Model checking

Model checkind5], [31]i [36] is a formal technique with the goal of automatically executing and
analyzing software abstractions before the actual system is built. The approach ibasedeand

is rooted in the principle afxhaustive explorain. According to5], model checking explores all
possible system states inbaute-force manner. It requires the model and requirements of the
systemunder analysis (SUA) model to be expressed in the dialect of the particular model checking
engine and logic formalism such as C[BIZ] or LTL [38]. The model and its requirements are fed
into themodel checketto determine whether the model conforms to its requirements. The failure

of the model to conform to its requirements will produceanterexample

Counterexamples are used as feedback to assist the user in certifying or correcting the SUA. The
describe execution paths that lead from the initial system state to states that violate the requirement.

Analysis engines either depend explicit-state enumeratioar symbolicapproaches. With the
explicit-state enumeration, program states tend toeass exponentially. On the other hand,
symbolic approaches (e.g. SA39], OBDDs[40], AlGs [41], [42]) efficiently represent sets and

relations as Boolean formulas.

Model checking approaches hasteong mathematical underpinnggnd give results that can be
trusted (are sound). The benefits of the approaches includagbef integration witnexisting
development cyclandautomatic verificationHowever, they Ave limited capability to support
verification ofdataintensivesystems and suffer from a state explosion problem.

1.2.4 Limitations on adoption

Despite the attention and potential of formal methods to guarantdedeugpftware systems, their
adoption for indstrial and teaching purposes is poor. The following are the major problems we

observed that limit the adoption of formal methods for software verification purposes:

Page |4

There arenumerous formal languagesach with its own advantages and areas of appligabili
(e.g., some languages are specialized for specific domains, while others are focused on dynamic

or static aspects of design).

The languages and tools for formal methods are complex, resulting in a high level of expertise and

cognitive effort required tarite and understand them.

Manual creation of formal specifications becomes increasingly-prome as systems become

|l arge due to the sheer amount of for mal | angu
to expect engineers to create forrspécifications for large modern systems that are both correct

and can be correctly manually translated into a correct functioning system. Automation is needed

for both correctness checking, and translation into correct systems. A key objective of this thes

is to allow both to be achieved, starting from one common specification, written in a simpler

language.

Formal methods are taught to some extent in universities, but not universally due to their

complexity and the lack of needed support tools that eagabily used by students.

Nonetheless, aeport by the National Aeronautics and Space Administration (NASA) and the
Federal Aviation Authority (FAA) after an investigation into the use of formal methods stated (see

pg. 7 of[5]):

AFormal methods should be part of the education of every computer scientist
and software engineer, just as the branch of applied maths is a necessary part
of the educationofbll ot her engineers. o

1.3 Problem Statementand Research Direction

We summarize the problem to be tackled in this thesis as follows:
Formal methods are too difficult to use by ordinary developers, and unsuitable
to directly teach in lowelevel university course due to complexity,

scalability and toosuitabilityissues. Thus, formal methods have low adoption
levels.

Page |5

Our toplevel research question derived from this is:

Research Questiod

How can we improve the adoptionformal methods, both in industry and in
teaching, by overcoming some of the complexity, while maintaining analysis
capabilities an@nhancingcalability?

Our working hypothesis for the thesis is the following:

It should be possible to make formal methmdsre usable by hiding their
complexity in a similar manner to how the complexity is hidden in other
development technologies: By wrapping them in simpler abstractiens
succinctmodeling constructsand generating both executable code and formal
metods code from those simpler abstractioterenecessaryt-or example,

a complex behaviour of a system mayabstractedh a state machingimple

or hierarchical) relationships between classes can be abstracted in
associationsand so on

Page |6

Informal
Req.

Verification

Program Code

Complete
System

UML Model

Verification
Program Code

Complete
System

Informal
Req.

Verifiable Formal
Properties Methods Code |l

Verification

UML Model

Program Code

Complete
System

Informal
Reqg.

Methods Code Umple Model

Verifiable
Properties

Verification

Program Code

Complete
System

Key:

IERRYTTTTTTRY 3 F e e d b a C k

_—> Aut omati c

=== => Manual

tran:t

FIGURE 1. USAGES OFFORMAL METHODS

Where:
(a) Traditional Usage;

(b) Usage with MDE;

(c) Roundtrip Engineering Usage; and

(d) Proposed Usage.

Page |7

By ofor mal met hods coded in this context we

language.

More specifically, we hypothesize that we can generate formal methods code corresponding to
simple models based on UML class diagrams and state diagrainssexithe power of the formal

met hods tools 6behind the scenesdé to find def

Our objective is to explore how to develop technologshtowthat the hypothesized capability is
achievable.

To help explain the gaps our work addressesprgsent various usages of formal methods for
software development iRigure 1. This allows us to compare various usages of formal methods
with the usage we advocatehé&se are: traditional usage of formal methods; usage of formal
methods with MDE; roundtrip engineering and the usage advocated for using formal methods with
MDE in this thesis.

In Figurel(a), we present the traditional usage of formal methods for software development. The
approach does not automate most of the transformations except the transformation to machine code
or bytecodes done by a compiler. The starting psitiie requirements, which are informal but

later developed manually into a visual model (i.e., static and behavior). Then a formal specification
of the model and properties are created manually from the model. The specification and the
properties are fonally analyzed to discover and fix defects. The formal specification and the
model is then turned manually into code (e.g., C, Java, etc.) and compiled into a working system
automatically. A typical example of this usage is applied by Chan[dB]al

This approach tafs not to be scalable and to be eporne. For example, applying this approach

on an industriabcale automotive system arduous That is, the manual creation of perfectly
consistent models, formal specifications and code may delaytéhimarket or mke the project
infeasible. Similarly, keeping track of changes made to the model, code and formal specification
is difficult to guarantee. Maintaining consistent model artifacts whenever there is a change may be

unrealistic.

An approach to more closely moecting MDE with formal methods is presentedrigure 1(b).
This approach involves manual creation of a visual (and sometimes textual) representation of the
model fom informal requirements in a language such as UML, this is not generally considered a

formal model becaudermal verification (e.g., model checking) cannot be applied to such model

Page |8

Nonetheless the tool managing the model maintains a magftonessable representation of the
model, which is then used for automatic generation of code (e.g., Java). To formally analyze
systems with this approach, the formal specification and properéedsm created manually and
passed to an analyzer for analysis. The limitations of this approach for formal analysis of SUD
include scalability and consistency between model and formal specifications. In other words,
although the code may be synchronizeith the model, the formal specification must still be

manually kept in synch with the model.

Another approach often adopted for software developmentisdtrip engineering(seeFigure

1(c)) with automatic codgeneration. According to Klein et. §4], roundtrip engineering
provides cpabilitiesthat facilitate manual editing of generated code such that the changes made
to it are reflected back in the model. Roung@ engineering support attempts to guarantee
consistency between code and model. However, it is still an issue to meariaistency between

model and formal specifications of the SUD.

We present an approach that maintains consistency between model aras eoeleas thenodel

and formal specification. This is illustrated with the diagram presentdelgumre 1(d). Our

approach implements the modamlde duality principle such that a model and code blend into one
extended model. We express the model/program textually as an Umple prdigganwith
extension<ump) which is then parsed and analyzed. The Umple compiler produces an Umple
Internal Representation (UIR) of the model/program. We have developed code generators to
automatically generate both the final executable system, andlfgpacifications of static and
dynamic behaviors of the SUD from the UIR. The
are applied to it; formal verification is performed on a formal model that is automakeglin

synch with the Umple model.

Weuse Umple in our work for a variety of reasons. It implements bt duality as described
above; we have full access to it as an experimental testbed, and it meshes well withbhseidxt
software development methods, such as automated testingreéhaidely used in industry. Its
capability to automatically generate formal specifications enisascalability of formal

representations and guarantees consistency between model and formal specifications.

To limit the scope our research, we decided to limit the models we would investigate to class

diagrams and state diagrams. These specific modeling abstractions are widely taught, readily

Page |9

understandable and, taken together, are at the core of the designs of a langmproijsystems.
We chose to work on both to generalize our work to more than one type of model and formal

method.

Despite the improvements our work offers, we deem it important to discuss its limitations.
Currently, he analyst is required to addtiors (e.g., assignments to variables in response to
events)manually to the generated formal specificatitmgnable exhaustive analys&milarly,

the analysis of algorithimlogic embedded in the model is out of the scope of this work. The focus

of our wak is the discovery of defects at the modeling (i.e., abstract or high) level but not at the
generated ode (i .e., low) | evel. Hence, we encour a

for testdriven development (TDD) to manage this aspect.

1.4 Choiceof Tools

We had to choose the tools on which we would base our work. For the formal methods tools our
selection criteria included that the tool must be actively developed and researched, capable of a
wide range of mathematical reasoning. It was also impbtb choose onlgnalyss engines that

require no useguidance or inventioto createnathematical lemmas in the process of proof search.
Fortheselection of the modalriven tool, we needed it to be open source (so we can modify it to

integrate the fomal methods), easy to use and capable of full system generation.

For all tools, we needed them to be scalable to systems of very large size (with the understanding

that the formal method code would have to be automatically generated).

We have developegimodular encoding approach that allows reasoaba@uttemporal properties
on moderately complex state machiedek, and static properties in class diagra@t solution
automatically generates the formal representation of systems; thus, the aridigje systems

is possible and users are shielded from mathematical notations.

As a formal method and tool set for analysing dynamic properties of systems, we seidcted
[45] or its variant NuSM\[32] for systems with unbounded variableg)Xmwvs a new symbolic
model checking tool for the verification of fair, finitend infinite state synchronous systems. Its
major goal is to address complexity characteriziatxintensivesystems and preserve automated
analysis benefits of model checking approdtiextends NuSMM32], a stateof-the-art model
checker for the specification and verification of finite state systems{mv inherits basic

Page |10

verification techniques of NUSMV but extends its native language Wittounded Integeand
Real data types for the specification of infinite domains. To enableiva&tidn of the newly

supported domainsuXmvintegrates Satisfiability Modulo Theory (SM46]) algorithms.

nuXmvhad been adopted for the verification of varioupligptions in academic and industrial
contextg31], [47]i [50]. Among other statef-the-art model checking tools, performance results

show that nuXmv is highly competitiyé5], [51].

To enable analysis of static aspects of systems, we selectedZ2loy his implementsa first

order logic language for expressing software abstractions, simulating and checking requirements of
software system§b3]. It provides mechanisms for expressing transitive closure, universal and
existential quantifications, predicates, functions, relations, invariance, multiplicities, inheritance,
and so on. With these mechanisms, Alisysuitable for representing object models, simple and
complicated constraints, and operations manipulating the structures dynamically. Hence, it is

mostly suitable for specifying and validating structural properties of soffa@fe

Verification and validation of systems with Alloy is fully automatic with instant feedback from its
SAT-based malyzer. It adoptabounded verification strate@s a means of handlimgdecidability
issues.Hence, Alloy issoundbut incomplete The Alloy analyzer is capable of discovering
inconsistencies via simulations, and counterexamples by checking asseértiensimulation
mechanism provided by Alloy allows detection of situations when no instance of the specified
mod el exists within the defined scope. On the
compromised, the analyzer generates a courasmgbe. Alloy has gained significant attention in
academic research work on formalizing UML class diagif&dis System construction with Alloy

is based on the following notions: signature, fields, facts, functions, predicates, and assertions.

As the MDE tool we will use Umpl¢s5]i [58] as the master language for representing and
generatingreavor | d soft ware syst enosd.e Idtu ad u pp/dr tpsr itnice
that it represents software models, not only as diagrams but also equally easily and interchangeably

in textual form[55].

Umple allows developers to model static and dynamic views of software systems and
automatically generates Java, C++, Ruby, Php, etc. code from the system model. Umple achieves

this by providing constructs and environments to express a rich subset of Unified Modeling

Page |11

Language (UML)[7], sud as class models; state machine models; and composite structure
models. It provides code generation for UML associations that fully supports referential integrity
and multiplicity constraints; and it supports unlimited hierarchically nested and conaiatent

diagrams.

1.5 Contributions

As discussed above, the goal of this work is to integrate formal methods in a usable way with
modeldriven engineering to allow formal analysis of software abstractions (e.g., UML state
machine diagrams and static class eisg and enhance adoption of formal methods for software
engineering education and industrial practices. To be specific, we intend to bridge the gaps
between model and code, and model and its formal representations. This general goal requires
solving varous subproblems, each of which is a distinct contribution. Therefore, we highlight the

contributions of this thesis as follows:

a) The overall approach of facilitating formal analysis by having the developer
model the complete system in a simple moddimguage (in our case, Umple),
and systematically generating formal methods from this for verificptioposes
while at the same time generating the final system from the same model, thus
preventing the need for#implementation;

b) A novel approach to endestate machindased systenmeven in the presence of
andcross transitions for symbolic model verification (F&9]);

c) A fully automated approach to certifystatemachine based systambe free of
nortdeterminism even in the presence of unbounded variables and multiple and
cross transitions in the same enclosing state[Gde

d) A comparative study of arckoss transitions and various alternative approaches
that can substitute aratossing for modeling state machine diagrams [GER;

e) An empirical study of the impact of abstraction on some performance parameters
(e.g,execution ti me, me mo ro/f uBiamgear ya nkle cti k@ on
Di ag rBDb;sand

f) Transformation tools from Umple (anérce from UML) to SMV and Alloy.

Page |12

We summarize the contributions of this work in the following thesis statement:

Thesis Statement: Both executable code and formal methods ocale be
generated from the same hitgvel model, therefore allowing developers to
perform formal analysis and production affinal system from the same
abstract source. It is possible to automatically analyze modaissponding
to the final systenfor nondeterminismand consistencgven in the presence
of unbounded variables and aomss transitions. Anrdross transitions
provide useful highevel abstraction and are applicable to modelingweald
problems that characterizesoftware productsA set d non-conflicting
transitions is computable to enable and disable states arstatalbmachines
of these system®or model checking purposeBy comparatively studying
performance of various means of higivel abstractionst can be shown that
high-level abstractios do not alwaydranslate tgperformance benefits during
model checking.

1.6 Limitations of the work

Wetackle a general problem, but our work is limited in the following ways:

1 We are focusing on class diagrams and state diagrams as represematddimple. This
means that any concept not representable in Umple will not be representable or analysable
when we generate formal methods code. Umple models, although broadly capable of
representing many aspects of systems, are not as generalizegpasalaprogramming
language. Our approach does not attempt to generate formal methods from programming
language codembedded in Umple. And our approach does not purport to be able to
analyse systems where injected programming language code alters th&ncple
modeling semantics whi ch i s possi bloeentad code ipjectdmp | e 6 s
capabilities

1 Umple assumes certain semantics for state machines and class diagrams; other tools may
adopt slightly different semantics. We have focused on gengatialysis code to match

Umple semantics.

1.7 Thesis Outline

The following is an outline that summarizes contents of chapters of this work:

Page |13

Chapter 2 presents backgrod information about techniques and technologies required

to understand this research. The technologies we survey are Umple, Alloy and nuXmv.

Chapter 3 presents processes involved in transformation engineering. Particularly, we
present our approach to automatically generate formal specifications of software

abstractions expressed in Umple.

Chapter 4 presents formal specification of Umple class models in Alloy for the purpose

of analysis. Umple class models includesses attributes and associatioa These
modeling constructs are formally specifi et
focuses on attribute and multiplicity mappings, constraint specifications, and-object

oriented design patterns.

Chapter 5 presents our approach to formalize state machines in Umple. Particularly, it
discusses our methods to compute the set of enabling and disabling transitions for states

and substate machines in Umple.

Chapter 6 presents our approach to raise the qualitystate machinesystems under
analysis $SUA9 expressed in Umple. We focus on discovering-determinism ad
reachability of states.

Chapter 7 presents the transformation of state machine models by example. This involves

the mapping of each Umple state machine coostauits equivalent SMV construct.

Chapter 8 presents our approach to verify and validate our work. For verification purposes,

we proposed simulation and rigoraestdriven development.

Chapter 9 presentsa survey of related work and a comparative study of solutions closely

related to our work.

Chapter 10 presents concluding remarks and directions for future research.

Page |14

2 Background

In this chapter, we present background information about techniques and technologies required to

understand the rest of this thesis. The technologies we wikgane Umple, Alloy and nuXmv.

When discussing grammars we will use a simplified notation developed for this thesis to facilitate

unified representations across the three technologies; it is based on the core Umple fajhmar

although when we presahe Umple grammar we will present a simplified view. We will illustrate

some concepts with simple exampl&sble 2 introduces notations and semantics adopted for

discussion.
TABLE 2. MAPPING OF NOTATIONSAND MEANINGS
SymBOL MEANING
? optional (zero or one; UML equivalento 0 . . 1 6)
* any number (zero anore; UML equivalenf 6 0 . . * 0)
+ mandatory (one or more; UML equivalénb 1 . . * 6)
[[€11 nonterminal symbol, referring to another rule
[€] terminal symbol that can match any simple alphanumr
identifier
| logical ORoperator
& logical AND-operator
other things of no interest to us when discussing concepts
[xxx J* any number of HAXxXXxx0

[= typeName: valud € an enumeration of possible values

To ease readability of code in listingegmple sta¢ names and terminal symbols arerdu

composite state narmand norterminal symbols arm green class, signature, and module names

are inbrownand keywords are inlue.

Page |15

2.1 Umple

Umple is a modebriented programming technology for the development ofweald software
systems. It supportsemodelcode dualityprinciple by representing software models, not only as
diagrams but also as tepg5]. Umple allows developers to model static and dynamic views of
software systemand automatically generates code in languages like Java, C++, Ruby, Php from
the model. Umple achieves this by providing constructs and environments to express a rich subset
of Unified Modeling Language (UML)7], such as class models; state machine models; and
composite structure models. It also allows direct expression of some concepts not in UML, such

as certairpatterns, and algorithmic code in native languages like Java.

Umple was explicitly designed to be simple to use while generatinepiglity code. People used
to UML diagrams can draw them using Umple (or can import them into Umple from other UML
tools),but many people who are used to textual coding can also use Umple, since its lightweight

syntax for UML constructs can be blended with programming language code.

We will discuss below how Umple handles the notions of state machines and class models, since

these will be particularly relevant to this work.

Group
+numberOfMembers : Integer
MAX_NUMBER_OF_PEOPLE:Integer
groupName:String
+meetingTime: Time
+maxNumReached:Boolean

studentp..1 wvife * vehiclep * bank 1 functionalfreas * +meetingDate: Date
+numberOfM eetings SoFar:Integer

hu .1

Student
+identity : Integer Person Vehicle Bank FunctionalArea
+names:String

colirses * wheels 2..* acdounts * faglities *

Coutss Employee Wheel Account Facility

Nith *
mutua llyExclusiveWith facilitiep *

facilityType 0..1

Facilty Type

FIGURE 2. VISUAL REPRESENTATIONOF UMPLE CLASS MODEL (LISTING 1).

Page |16

O© 00O ~NOOTLPA, WN P

A A DA DD OWWWWWWWWWWNDNNDNNDNDNMNMNMNNNNREPERPRPEPRPEPRERRERELPR
P WONPFPOOO~NOUURA,WNPOOONOOUPMWNRPEPOOONOOOGMWDNDLEREDO

//lUmple Classes
classPerson { abstract }
classBank { singleton }
classAccount { }

/IDirected associations in Umple
classFacilityType {}
classFacility {*-> 0..1FacilityType ; }

/IBi-directional association
classFunctionalArea { * -- * Facility ; }

/lIndependent association
associatioq 1 Bank -- * Account; }

/IComposition association
classWheel { }
classvehicle { * <@>2..* Wheel; }

/IReflexive associations
classPerson{0..1 husband-- 0..* Personwife; } // (asymmetric)
classCourse { * selfmutuallyExclusiveWith; } // (symmetric)

//[Umple Attributes

classGroup {

IntegernumberOfMembers;
constintegerMAX_NUMBER_OF_PEOPLE = 20;
immutablegroupName;

TimemeetingTime;

BoolearmaxNumReached;

Date meetingDate;
autouniquenumberOfMeetingsSoFar;

}

/ISpecialization and generalization
classEmployee { isA Person; }

//Other associations

classStudent {

0..1sorted{ identity } -- * Course; //sorted association
Integeridentity ;

String [] names; //arrays

key { identity }

}

LISTING 1. EXAMPLE MODEL OFCLASS DIAGRAMS IN UMPLE

Page |17

2.1.1 Umple Class Models

Umple provides constructs for representing most constituents of the UML class models, and some
conceptghat go beyond class models. The constructs are sufficient to express structural properties
of any kind of objecbriented system. These include attributes, associations with multiplicity, keys

and various patterns such as singleton.

Figure2 is the visual representation of the code presantesting 1 (see below)As is standard

in ObjectOriented programming and modeling, a class defines a reusable entity in an object
oriented system whose instances can be created-ahmeinA class in Umple may be stereotyped

in various ways, such asstractOr singleton An abstract classs a class that cannot bestantiated

at runtime, but instances of its nabstract subclasses can be created. This can be realized in
Umple with theabstractkeyword. Asingleton classs constrained to have at maste instance at
runtime, and is specified by thegletonkeyword in the Umple class definition. Classes without
any of the above keywords are not limited in terms of the number of instances createtthat.run
Lines 24 of Listing 1 demonstrate the specification of various kinds of classes in Umple. This
example defines the structural relationships of some objects in a bank subsystem with emphasis
on Umple syntax for representing higjited class typesn the discussion that follows we will

use the textual representation of Umple presentédsiimg 1 as a basis for explanations.

2.1.2 Associations

As in UML, an association models the mapping of instances of one class to instances of another
(or possibly the same) class. Umple supports only binary associations. A reflexive association
involves two ends with the same class; while a-reflexive associan involves two different

classes. Reflexive and noeflexive associations can eitheri@directional -8 6, e. g. see
meaning that they can be navigated in only one direction, ob&lsectional(-éd , e.g. see
11). An association may be definedcasnposition(-6@> or <@>0 , e. g. see |line

that the composed objects are to be destroyed when the composing object is destroyed.

Each association end defines an optional role namea anmandatory multiplicity of the class it
describes. Multiplicities in Umple allow developers to constrain the cardinalities of objects

collaborating with each other in an association. A multiplicity defines both the lower and upper

Page |18

bounds of the number afstances of objects allowed at #time. Table3 presents the syntax and

semantics of multiplicities in Umple.

TABLE 3. UMPLE MULTIPLICITIES

UMPLE SYNTAX MEANING OR SEMANTICS
1.* Mandatory many
or0Q. Any number
1 Mandatory
0.1 Optional
n..m Range()
n..norn Exact()

Umple supports both inline and independent definitions of associations. An inline association
refers toan association defined within one of the collaborating classes. On the other hand, an
independent association refers to association defined outsia¢é #rgycollaborating classes. The
following is a discussion on Umple constructs for the representation of various types of
associationunidirectional, bidirectional, composition, reflexive, and symmet#itexive; and

independent.

It should be noted thaimple associations, along with generalization and attributes (discussed
shortly) have been part of the Umple language since its beginning in 2006, and were originally
developed by PhD student Andrew Forwfgd], and Masters student Dusan Brestovarj6iy.

Many other students contributed enhancements to them over the years.

2.1.2.1 Unidirectional associations

The example o line 8 illustrates the syntax of unidirectional association in Umple. It models the
relationship between facilityr{cility) and its type (i.e.FaciityType). The representation of
unidirectional association is orientatigpecific. Aright navigationimpliesright orientationand

left navigationimpliesleft orientation The implication of unidirectionality in this example is that

Page |19

Facility stores information about its type; kbt reference toaciity is insignificant toracilityType,

SOFaciltyTypes do not store lists of themacilities.

2.1.2.2 Bidirectional associations

As opposed to the unidirectional associatiordibéctional associationglenoted ag--0) involve
classes where references to the instances of each associated class are accessible to each other. Line
11 of Listing 1illustrates the syntax for representing this kind of association in Umple. It defines

a bidirectional relationship between clessacility andrunctionalArea.

2.1.2.3 Independent association definition

Associations in Umple may not necessarily be specifiedle® (e.g, as specified otine 11
Listing 1). Their specification may be defined independently. Lin®flldisting 1 is an example

of independent association definition betweei andaccount.

2.1.2.4 Composition

A composition is a kind of association. Like other associations, it involves two collaborating
objects ¢ompositeandparty. The composite object is composed iofiger parts. Its semantics
implies that instances of simpler object should be deleted upon the deletion of the composite.
Generally speaking, this implies-partof relationship in the software engineering context. To
specify composition; the diamond goen the composite end, which could be visually located on
the right or the left. With this kind of association, Umple allows the definition to be specified
independently. Line 18 illustrate the syntax of composition associatiint-¢riented such that:

vehicle is thecomposite class andheel is one its elements

2.1.2.5 Asymmetric-reflexive associations

A reflexive association is a kind of association whose ends reference the same class. A typical
example is a model of classsonsuch thahusbandandwife are different kinds of persons playing
different roles. The illustration on line aif Listnglde monstrates Umpl eds
representing this scenario. Nobat this is an asymmetric reflexive association, since the two ends

have different role names.

Page |20

2.1.2.6 Symmetric-reflexive association

A symmetricreflexive association is a special kind of reflexive association in which both ends act
in the same capacity. Foxample, a set of mutualgxclusive courses in a university can be
represented with this association. The code in linef 2isting 1 illustrates its syntax and diagram

in Umple.

2.1.3 Other AssociationRelated Constructs

Umple providesthe sorted construct with the intention of succinctly representing the notion of
association without specifying multiplicity elements such as: rseltiseqance, set, ordereskt,

array, etc. For example, on line dflListing 1 we present an example of a sorted association. The
association models the relationship bemwvetassessiudent and course, such that instances of
students in the association are sorted based on the values of identity attribute. Similarly, the case

of array is expressed on line 42. The example presents array of names ¢ofity@es an attribu

of Student.
1 | AttributeDefinition -: [[AttributeStereotype 1] [AttributeType 1]? AttribteName;
2 | AttributeStereotype -: [=type: const| immutable | lazy| settable] autounique |
3 | defaulted 6 ¢
4 | AttributeType -: [= String| Integer| Boolean| Double| Float| Date| Time 6 ¢

LISTING 2. UMPLEGS GRAMMAR FOR VARIABLE DECLARATION

2.1.4 Umple Attributes

An attribute defines a property of a class. As in UML, the Umple notion of attributes extends fields
in objectoriented programming languages. The extension adds methods for altering or
constraining values or state of an attribute. Umple allows develtpeisscribe attributes of a
class using different data types (primitive and-pomitive). These includestring, Integer, Booleap

Doublg Time, Date, €tC. Lines B-32 of Listing lillustrate attribute definitions in Umple. We illustrate
usage of attribie types and stereotypes in Umple by this example. It defines a ¢tassip with

various properties. The general syntax for represeatingutes in Umple is given inisting 2. It

Page |21

presents the grammar for attribute definitions in Umple. The following discussion focuses on

Listing 2 unless explicitly stated.

A constattributemp | i es t hat the value of the attribute
in C and Java). The semanticsiohutable qualifier implies that the attribute value is set during
construction and remains unchanged throughout the life of thetdhjparticular, these attributes

are nonstaticwith private accesand an assumption that thtribute cannot be modified within
theclassUmpl e achieves this by ensuring no O6setd
immutable. It is techically possible for a programmer to violate immutability by directly
modifying a variable, although Umple best practice is that they must always use set methods.
Violation of similar best practices would also render the formal analysis discussed ipastker

of this thesis invalid. This is much the same as if a Java programmer were to use reflection to
bypass the &éprivated declaration on a method
violations of this best practice by scanning usdtten methals.

The semantics of antouniqueattribute implies that every object of the class created afimenis
allocated a unigue value for the attribute. The value can be qgeriede . , vi a hHuhe O6ge
cannotbeset.For example, on line 32 the numberOfMeetingsSoFar is unique because the creation

of a new group implies an increment in the number of meetings that take place.

As in typical Gfamily programming languages, a developer would normally explicitly specify a
data type for an attribute (e.ine 26 ofListing 1). Acceptable data types are defined on line 4. It

is also possible to specify any other class as an attrijgoe but the general recommendation is

to only do this with classes that themselves have no associations. An example might be an Address

class that has street, city and postalCode attributes.

By default, when the type of an attribute is omitted in a dettar, the Umple compiler sets the
type as Strinde.g, see line 28 oListing 1). This allows rapid fredorm modeling. An exception
to default attribute type is @se withautouniquequalifier (e.g, see line 32 oListing 1). The Umple

compiler defaultsutouniqueattributes to integer.

Another kind of attribute in Umple is the state machine. Umple considers state machines embedded

in a class as attributes ofetltlass, whose values are an enumeration of the possible states. The

Page |22

discussions of state machines are deferred to Seztilo® For more details on the syntax and

semantics of Umple attributes, readers should consult the Umple user pe&hual

1 | DataType EOOUDEUUT - EOIl nOWEOOUPEUUT - EQT | Owo OwEUVOUPEUDT -
2 | keyt WEOOUDEUUI - EOI nOWEUOUOUDPEUUT - EOT | Owé OWEUUUDEUUI - E

LISTING 3. GENERAL SYNTAX FOR SPECIFYINGKEYS INUMPLE

2.1.5 Keys

Umple provides constructs for the specification of which attributes (or associations with a 1 end)
make upthe primary key. This specification requires a-gedined attribute to be qualified with

k e y wee distidg 3 is a general syntax for specifying a key.

The synta implies that the attributesgged asey must exist in the class. For example, attribute
identity (see line 41 oListing 1) is further qualified as key attribute (line 43La$ting 1) for class

student. The semantics impligbat no two students can be associated with the same identity.

2.1.6 Specialization and Generalization

As in UML and objecbrientation in general, the notion of generalization involves creating a new
class (known as superclass) to represent characteristics@oto a group of classes. On the other

hand, specialization involves making a new class as a subclass of another class (its superclass)
whenever the new class shares some properties (e.g. attributes, associations, methods) with the

existingclass (i,essper cl ass). Umpl eds notatied kewywbdbndi c

Lines 3-36 illustrate the syntax of specialization in Umple. It models diamployeeas a special
kind (i.e. subclass) oferson (i.e. superclass). This representation a&splto the notion of

generalization; but the semantics must be preserved.

2.1.7 Constraints in Umple

Umple facilitates the representation of various kinds of constraints. Some, such as multiplicity
constraints are built i n tdiog staten mackire guards) class n ot ¢
invariants and method preconditions, are written in as Boolean expressions and can be mapped to

a subset of Object Constraint Language (OCL); they can constrain various Umple constructs and

Page |23

appear surrounded by square beisks8]. The following are the types of constraints present in

Umple, organized by the constrained element.

1.

2.

Association The multiplicities on associations constrain the upper and lower bounds of
the number of collaborating objects. The directionality of an association constrains whether
an end should store information about its collaborator or not. Reflexivity and symmetricity
define further constraints on associations. Class invariants (writsgjuare brackets) can

also constrain associations.

Attributes: Properties (stereotypes) of attributes such as immutability, uniqueness,
constant, and laziness constrain various aspects of attribute changeability: Immutability
constrains variables such that no change can be made after initial setting. Laziness relaxes
the normal requirements that the attribute be set at instance creation. Uniqueness constrains
two objects of the same class to have the same value for the attributeirdqueness
constrains the system to determine the vafube attributdor every gven instance of its
containing classin addition to the above any class invariant can constrain values of the

attribute during system execution.

State Machines State transitions (see next section) may be controlled by a guard; a
Boolean expression whosgaluation determines whether the transition executes or not. A

transition controlled by a guard executes only if the controlling guard condition is satisfied.

Method preconditions. A method precondition constrains whether the method is allowed

to run.

2.1.8 Umple State Machines

The representation of dynamic aspects of software systems is facilitated in Umple by providing

support for an extended subset of UML state machines. These are graphs of states and transitions

[7]. The notion of state machines as facilitated by Umple provides constructs to represent states

(simple, composite, and orthogonal), transitioreglar, guarded, higlevel), and events. State

machines in Umple can either be simple or hierarchical. A simple state machine is composed of a

set of simple states. For a hierarchical state machine, there are one or more composite or orthogonal

substates.

Page |24

State machines ardesigned to be textually specified in Umple, while their diagrammatic
representations are automatically generated as Graj@®djimmages. We present axtract of the

home heating system state machine bgtl.@al[66]t o f aci | it ate readerso un
state machine representation both in textual and diagrammatic forms. Our discussions of the
notions of state machine and syntax will be based on this example. It expressestiemetains

facilitated by Umple but relevant to our work. These include concurrency, transitions, states,

guards, and actions.

Listing 4 is atextual representatioof the system under discussi@tate machiné sm is defined
as an at t r HehbtGanteollefoHigure3lisaasdmgratmatic representation of the state
machine automatically generated from the codesting 4. This will be used to discuss some of

the notions of state machine as facilitated by Umple.

Page |25

© 00N O~ WN PR

classHeatController {
IntegersetTemp;
IntegeractualTemp;
IntegervalvePos;
IntegerwaitedForCool;
IntegercoolDownTimer;
BoolearfurnaceRunning;
Boolearactivate;
Booleardeactivate;
BoolearrequestHeat;
BoolearfurnaceReset;

sm {
house {
heatReq{
idleHeat {

[(actualTemp - setTemp) > 2]/ { valvePos-; waitedForCool = 0; } ->waitForCool ; //t1

}

waitForCool {

[(valvePos = 0) & (coolDownTimer == waitedForCool)] /{ valvePos--; waitedForCool = 0; }
->waitForCool ; //t2

[waitedForCool < coolDownTimer] / { waitedForCool++; } ->waitForCool ; //t3

['((actualTemp - setTemp) > 2)]->idleHeat; //t4

H}
Il

controller {

off { heatSwitchOn ->controllerOn ; } //t5

controllerOn {

heatSwitchOff / { deactivate =true; }-> off; //t6
furnaceFault -> error; //t7

idle {

[requestHeat ==true] / { activate =true; } -> heaterActive; //t9

}

heaterActive {
[requestHeat ==false] / { deactivate =true; }->idle; //t10
actHeater {
[furnaceRunning == true] ->heaterRun; //t11

}

heaterRun { }

1}

error { userReset / { furnaceReset #rue; } -> off; } //t8

b33

LISTING 4. PARTIAL MODEL OFHOME HEATING SYSTEM

Page |26

house

controller

controllerOn

t7: furnaceFault t9: [requestHeat ==true] / {...} t10: [requestHeat == falsq

heaterActive

actHeater

1/{..} | t11: [furnaceRun == trw

heaterRun

t5: heatSwitchOn

t8: userReset/ {...}

t6: heatSwitchOff / {...}

_\
(a)
€ | 777777777777777777777777777777777777
I
|
™
I
: heatReq
|
|
|
|
|
|
I
Il idieHeat
I
] tl: [(actualTemp - setTemp) > 2]/ {...}) t& [({actualTemp - setTemp) <= 2)]
waitForCool =12 [(valvePos != 0) && (coolDownTimer == waitedForCool[Jl7 1 t3: [waitedForCool < coolDownTimer] / {...}
~
_/
(b)
FIGURE 3. VISUAL REPRESENTATION OF THEHOME HEATING STATE MACHINE.
where

(a) The LeftView of the State Machine.
(b) The RightView of the State Machine.

To allow detaikddiscussions on the notions of state machines supported in Umple, wethall
subsequent sections provide details alstaies (terminal, simple, nesrthogonal and orthogonal

composit¢ , transi t i onralrepreserdatiod of gsthteendashinesn t e

State machines were added to Umple by PhD student Omar Bad{&8¢iand have been

improved by many others in subsequent years.

2.1.9 Transitions

As in UML, an Umple transition has a source s
(i.e. executes) when a specified event occurs and any associated guard evaltiates to
Transitions in Umple can either be: auto, or normal transitiatts ttwe former being triggered
immediately upon entry into theourcestate.Listing 5 presents the grammar of the various

transitions supported by Umple for statectmae definition.

Several transi-poi oanrse, sisimogw. ntheaidtagedenclosyng thie transition is
referred t gwhideshe talyet stabessafuerrcreedd t o a sortransgiond de st i n
on line28 ofListing4, #fi dl e0 amd affrleedttesr Aotuirwe and desti

0 is abasic transitiobecause ihas noguard statement.

transition :- [[standAloneTransition]]|[[autoTransition J]|[[hormalTransition]]
autoTransition :- [[guard]]?[[transitionCore]][stateName];
normalTransition :- [[activity J]?[[eventSpecification]]?[[transitionCore]]
[stateName];
eventSpecification:- ([[eventDefinition]][[guard]]|[[guard]]
[[eventDefinition J]|[=unspecified][[guard]]|[[eventDefinition]])
transitionCore :- ([[action]]->| ->[[action]]| ->)
eventDefinition -: [[afterEveryEvent]]|[[afterEvent]]|[event]| &
guard: [[**guardRepresentation]]
action: /[**actionRepresentation]+

© 00 ~NO O~ WwN PR

=
o

LISTING 5. UMPLEGS TRANSITION NOTATION

A guarded transition has a Boolean expressomtrolling whether or not a transition is taken
whenever an everdccursor automatically taken wdnever it is an auttransition. A transition
withoutatrigger (ora controllingevent) is regarded as an attansition. For exampl®, on line

33 ofListing 4 is an autdransition,because it is not controlled by any evamid guardetecause

Page |28

a guard statement controls its executilonparticular, the guard controls its execution: whenever

the transition is enabled and the guard evaluatesedhen the transition executes.

On the other hand, a transition with a triggering event becomes enabled whenever the event occurs
and sourcetate is in thglobal configuratior{or active), and the guard (if any) evaluateste.
At this point, the transition executes and the global configuration reflects the target state of the

transition in the next step.

Definition 1. Global Configuration

A global configuration of an Umple state machibeis a quadruple
@ Y 'O wOsuch that) is the set obubstate machinegincluding the
root), "Y is the universal set of staté®, is a set of execution steasd® is a

finite set of pairse b Osuch that is a variable name and is its value

The following expression defines the configuration of 8uW/Sat stepQvhere
submachined is in statei , variable¢ is evaluated to valud , andhQ
are the number of variables and sofachines respectivelyhis definition is

further used in defining notions presentedifinition 19.

o~

ft 18 r g i Fog@d
A high-level transition is any kind of transition defined outside ofstalbes in a composite state,
but which has effect in all the sigtates (e.g0 , line 2 of Listing 4).

0 18 0 GOV I8 hv

2.1.10 States
Umple provides constructs for the specification of various kinds of states. These include: initial,

end, simple, northogonal composite, and orthogonal states.

An example of a simple stateiis d| e 0 d e f 31s38 of Ligting 4; lan exarplenon

orthogonac o mposi teosttadlel € sOMmo840& Eistngd.d i n | i nes

Orthogonal states (e,gi h o us e 0 d e fl4-48 df ldsting 4) existiwhes 8vo or more sub
states all become activated whenever control is transferred to theit. pameexample, subtates
Acontroll erdo and Aheat ReqoO become activated
execution of sulstates occurs concurrently. Child states of -aghogonal composite and

orthogonal states may be simple, composit@rthogonal themselves.

Page |29

W

By default, the first state (i,esimple or composite) defined within an Umple state machine at any

level of the hierarchy is regarded as its initial state,(e.dqpe st at e nNilé&18enHe at O

Listing4) . I n particular, AidleHeato is the initieé
Listing 6 is statr ammédmpdefi ning 0

1 | state-: [final]stateName|{[[stateInternal]]*}

2 | statelnternal-: [[stateEntity]]|[[standAloneTransition ¢ ¢ f 0

3 | stateEntity-: [[=|[]II[[entryOrExitAction]]|[[autoTransition]]|

4 | [[transition][activity)|[[state¢ ¢ hH O wd

5 | entryOrExitAction -: [=type: entry| exif]/[actionRepresentation]+

6 | activity -: do[**actionRepresentation]

LISTING 6. UMPLEGS STATE NOTATION

2.1.11 Transformed Internal View of Umple State Machines

To facilitate execution and prevent a combinatorial explosion of states, Umple transforms a
hierarchical state machine (e.§.s moListmd 4) internally into a collection of state machines
[67]. For each nomrthogonal composite state, there is a corresponding state machine such that its
substates become the states of the state machine when active.

Umpl e introduces a special énull 6 state for e
in their 6énull 6 state until they are activate

is also a corresponding state machine.

A state machine is also generated for the roo
root is always active t hr ough ogtate machisesareconly ai ni
active when control is transferred to their parertesta any of their sultated55], [67]. Listing

7defines Umpl ebébs grammar for constructing st at

stateMachine-: [[inlineStateMachine]]|[[referencedStateMachinet ¢ f 6

inlineStateMachine-: [=queued]?[=pooled]? [-name]{([[state]]|
[[standAloneTransition]])*}

referencedStateMachine: [name] as [definitionName]({[[extendedStateMachin€]]}

;)

a s~ WD

LISTING 7. UMPLEGS NOTATION FORSTATE MACHINE

Page |30

2.1.12 Umple Template Language (UmpleTL)

The template language facilitated by Umple, called UmpleTL, aims at providinegp§tieart
support to easthe specification of templates for text generation purposes. The Umple compiler,
which is written in Umple, uses UmpleTL to generate code. UmpleTL provides various elements
such as templates, emit specification methods, and expression, code, and cblooksntA

detailed discussion of the language can be obtained[62m

1 classRefLetterRequest{

2 /I Attributes used to construct the instance

3 String fileno;

4

5 Il Letter template

6 letterTemplate <<!

7 Subject: Reference request for <<applicant>>, File #<<&leno>>

8

9 Dear <<zecipient>>,

10 | Our company, Umple Enterprise s, is hiring talented software

11 | engineers.

12

13 | We have received an application from <<=applicant>> who named you
14 | as an individual who could provide a letter of reference. Would you
15 | please reply to this letter, answering the following questions:

16 | *In what capacity do you know <<=applicant>>

17 | *For how long have you known <<=applicant>>

18 | * Describe the abilities of <<mapplicant>> in software development
19 | *What his or her strengths and weaknesses?

20 | * Please provide your phone number and suitable times to call in
21 case we need to follow up.

22

23 | Yours sincerely,

24 | <<=sender>>

25 | <<=senderSignature>>

26 | I>>

27 | <</*Specification of the method to generate*/>>

28 | emit letterTemplate(String recipient, String applicant, String sender,
29 String senderSignature) (letterTemplate);

30

31 | rows <<I<<#for (int i=0; i <= times; i++) {#>>

32 | <<=times>> times <<=i>> is <#mes*i>><<H#}H#>>I>>

33 | /I Specification of a single method to emit the result

34 | emit result(int times)(header, rows, cr); }

LISTING 8. LETTERTEMPLATE EXPRESSED INUMPLE

Page |31

In Umple, every other text embedded within a template block but outside any of the blocks
di scussed above are output fasi23dlLsting8willbehe ¢ o m

out put fAas i so.

Listing 8 is an example of a template exgged in Umple. It describes a class for generating a
reference | etter for job applicants. An attr|

template (see lines 334 of Listing 8) to facilitate discussion of code blocks.
Templates were added to Umple in 2013 by PhD students ABGmadxland Mahmoud Oralp68].

2.1.13 Templates

The template elementfisndamentahnd essential in template creation. It begink e template
name and followed by arbitrary texts of the fobmA 8 Al . For example, lines626 ofListing

8define a template witiscantembame #fAtempl atelLett er

The body encl asfedaAubtide hi ha go thditemplate hstcentent

includes other elements except the emit method specification.

2.1.14 Emit Method Specification

The emit method specification is important fortalinplates. For every template there need to be

one oreminoseatements that i nvoke the templ at e,
inside some other template, which is emitted. These methods specify the logic of output to be
generated. Just kkevery other method, an emit method may be associated with a set of arguments,
each separated from another by a comma. For example, lines 28 2%8raf 8 define an emit

met hod for Al etter Templ at eo. I ts argument s
Asender Si g nsaty. dheother arxgumentyepgeletterTemplate) references the template

of interest. It must have at least an argument specified iorttee of composition.

2.1.15 Expression Block

The expression block allows programmers to specify arbitrary expressions with the following tags

AL 0 alnad. AExpressions of this kind may referenc
of a class (e.g. lin@ of Listing 8), parameters of thenit method (e.g. line 13 dfisting 8), and

method calls. The result of the expression is substituted whenever the template method is called.

Page |32

2.1.16 Code Blocks

A code block is embeddleflo wahldoi.mm Tthh es fcolrilrewiprog
logic of the template. Its purpose is to allow conditional emission for the parts of a template, or
looping within the template. For example, line 3Listing 8 embeds a feloop construct within

the template Arowdo to compute a multiplicatio

2.1.17 Comment Block

A comment block enables developers to embed comments within the template. Anything
embedded within LMfe dwddol oawien gt rbelaotcekd fias ¢ o mme i

compiler. For instance, line 27 bisting 8 defines a comment for the emit statement.

2.2 Alloy

Alloy [52] implementsa light-weight modeling languadgasedon first-orderrelationallogic with

the goal ofexpressing software abstractions, as well as simulating and checking requirements of
software system®3]. It has formal syntax and semantitgis positioning it as a language capable

of specifying, verifying and validating safety armmbrrectnessrequirements of software
Requirementghecking,simulationsand visualizationsire realizable by the aid of i®AT-based

analyzer.

As mentioned adier (see Sectiord.4), Alloy is considered most suitable for the representation of
class models due to its provision®f mechanisms(e.g., signatures,transitive closure,
universal/existential quantificationfgcts,etc.)necessary to represadamain entitiesconstraints
and operations requiréd manipulatehe structures dynamicallyin the following, we present a
grammar otheAlloy language(i.e., Listing 9) to formally describe its constituergadthenotions

it facilitates The subset of Alloy relevant to our work is derivable from the grammiasiimg 9.

Similarly, we have categorizets core mechanisms as signatures, constraints and commands.

2.2.1 Signatures

Alloy provides the notion of signatures that can be used to represent UML classes. A signature

introduces a set of atomic objects. Itdsfinedwith the keywordsig. Any signature defined

Page |33

independently is regarded awa-level signaturef-or example, hie 10 of Listing 10is atop-level

signatureequi val ent to a BOML <cl| ass

wi t h

name

0 ~NO U WN PP

paragraph-: [[sigdecl]]|[[factdecl]]|[[predecl]]|[[fundecl]]|[[assertdecl]
| [[cmdecl]]

sigdecl-: [abstrac}? [[mult]]? sig [[varnames]] [[SIgEXxt]]? {[[body]]?}
[[block]]?

mult -: [=type: lond ond som¢

varnames-: [name][,name]*

sigExt-: extenddnam@| in [namé[+ namég*

body-: [[vardec]][,[[vardecl]][[expr]]

vardecl-: [disj]?[[varnames]] : [dis]]?[[typename]]
typename-: [=type: String| Int] ObjectName]
expr-:[[consf]]|@name] this|[[unop]][[expr]]

| [expr]] [[binop]] [[expr]]

| [expr]] [[arrowop]] [[expr]]

| [[expr]] [comma:] [[expr]]

| [expr]] [!] not]? [[compareOp]] [expr]]

| [[expr]] [[implication]] [[expr]]

| [[expr]] elsef[expr]]

| let[[letdecl]] [,[[letdecl]]]* [[blockorbar]]

| [[quant]] [[decl]] [,[[decl]]]* [[blockorbar]]

| {[[decN]L[[decl]]* [[blockorbar]] }

| (expr)| [[block]]

const: [-]?[[number]]| nond univ| iden

unop-: | not| noJ[[mult]]] set# ~| *|~

binop-: || | or] && | and <=4 iff| =3 implieq &| H -| +H <] 5] .
arrowop -: [[[mult]]] sel? ->[[[mult]]] sel?
compareop-: in| =| <] >| <4 >=

implication -: [type: = implieq

letdecl-: [name] = [[expr]]

block-: { [[expr]]* }

blockorbar-: [[block]] | | [[expr]]

quant-: all| no| sum mult

-- grammar of various kinds of constraints in Alloy...
factdecl-: fact[namg? [[block]]
predecl-: pred[[[qualName]].]? [namé [[paradecls]]? [[block]]
qgualName-: [this/]? [(name/)]* [name]
paradecls-: ([[decl]]?[,[[decl[I*)I[[[dec[, dech]]?
fundecl-: fun [[[qualname]].] [nam§ [[paradecls]]? : [[expr]] { [[expr]] }
assertdect: asserfnamé@ [[block]]
cmdecl-: [[nam@:]? [run| check? [[[qualname]]|[[block]] 1? [[scopd]
scope-: for [[number]] [but [[typescop€]][,[[typescope]]]*]
| for [[typescope]]L.[[typescope]]]*
typescope-: [exacthyj? [[numbel] [[qualnam@

LISTING 9. THE GRAMMAR OF ALLOYGs LANGUAGE

Page |34

)

©O© 00 ~NOOTLPA, WN P

GO U DDBREMDAMDNDNDIDADWWWWWWWWWWWNNNNNNNNNNRERRPRREPRRERPRPPRPR
PO OWOMNOOUDNMWNRPRPOOO®INOADNWNROOOMNOOUADWNRLOOONO®UNOWNLEREO

-- notion of singleton

one sig Organization {}

-- multiple inheritance

abstractsig Animal {}-- notion of generalization (superclass)
sig Mammal extendsAnimal {}-- notion of generalization (subclasg
sigWingedAnimal extendsAnimal {}

sig Bat extenddMammal {}

fact{ Batin WingedAnimal }

-- notion of association

sigB{}

sigA {roleName : mB}

-- notion of attribute

sig Student { age :Int, firstName : String, takes :someCourse,
supervisor: loneProfessor, studentNumber : Int, identity : Int }

{ all studentA, studentB: Student | studentA.identity != studentB.identity }

sigCourse { }

sig Professor { students: setStudent }

abstractsig Object{ }

sig Directory extendObject{}

sig File extendObject{ }

sigAlias extends-ile {}

assertA £ wo wr

-- notion of fact

factNumeric -Bounds { no student: Student | #student.takes < 1 ||
#student.takes > 7}

-- notion of function

fun grandMothers[grandChild : Persor] setPerson

{ grandChild.(mother + father).mother }

-- notion of predicates

predcoSupervision[supA : Professor, supB: ProfessorO w U Q Gilbdzr@ w U 2

EwUz8UUxI UYPUOUWAWUBUUXxI UYPUOUwWHWU U x
&& s U286 U0UUx1 UYPUOU WS whuwT

-- notion of assertion

assertUniqueldentity { nostudentl, student2: Student |
studentl.identity = student2.identity }

-- check command

checkA

checkA for 10

checlA for5 Object

checkA for 5 but 3 Directory

checlA for exactly3 Directory , exactly3 Alias, 5File

-- run command

run {}

run { } for 10

run Unigqueldentity

run Uniqueldentity for 10

run Uniqueldentity for5 Student, 1 Professor

wédwlU28U0UUxI |

LISTING 10. MODELLING EXAMPLE IN ALLOY

Page |35

To facilitate the principle of inheritance, Allgyr ov i deetesdd t key @wor d. Thi s i
definition of a set of objestthat are a subset of the set defined by the extended signature. The
example on lined, 5of Listing 10 definesatomicsignaturevammal (see lineb of Listing 10) as a

subclass ofinimal (see line4 of Listing 10).

Similarly, to support the UML n aldstracdhn kefy waol 9t r
We illustrate the definition of an abstract signature in Alloy with the example o4 dfhkisting

10. The example enforces that no instance of signature:l 6is created at rutime except those

extendng it.
TABLE 4. MULTIPLICITY CONSTRAINTS MAPPING
ALLOY SYNTAX M EANING OR SEMANTICS UML NOTATION
some
Mandatory many 1.*
set
Any number *
one
Mandatory 1
lone
Optional 0.1

Alloy provides keyveords such asne, ong somg setfor the specification of multiplicity constraints.
Table4 showsthe mapping between Alloy and UML multiplicity constraints.

Singletonsetscan berealized y pr ovi di nanedt he f ooteati sngéaat ur e.
number of objects tohat atimenThd#dexamplemiine 8 bfstirgt ed t o

10i | lustrates odanizasndseDt i on for the 06

Multiple inheritancas allowed in Alloy, but it is supported in an indirect way with an additional
constraint (e.gline 8 of Listing 10). We illustrate the specification of multiple inheritance in Alloy
with the example describirgt as awingedanimal (see line8 of Listing 10) andvammal (see line7

of Listing 10). The declaration of variables is achieved by the concepislds$ fand attributes.

Page |36

The notion of fields in Alloy defines relations among objects of the domain under specification. It
equivalently represents the notionaifributesandassociationsn the UML context. Fields of a

set are separated wittcammaopeator.

The example on linex0]111 of Listing 10illustrates the use of field declarations in the realization
of UML associations. It maps s@\oto a correspondingetfiBo (see line 1 of Listing 10). dn 6
defines the multiplicity between the collaborating sets. The roleNgafiees the role of s@& in

A.The not atoneoomsed0 ti ank df Histing 101 another association.

The types of attributes supported by Alloy inclusteing and integertypes. String types are
qualified with keywordstring andinteger types are qualified with keywebint. The example on
lines14, 150f Listing 10 demonstrates the specification of attribute types in Alloy. It defines a set
of type student. Every instance oftwudent has an attribute age of type and attributeifirstNamed

of typestring and so on.

2.2.2 Constraints

Alloy allows the specification of constraints with the following notidasts, assertion, predicae
andfunctions.According to[52], the notion ofactsemantically correlates to invariant but is richer

than invariant due to set navigation capabilitfeactionsare reusable constraints or expressions;
assertiongre implications to be checked on the model; and predicates represent constraints used

in different contexts of correctness certification.

2.2.2.1 Facts

Constraints that are assumed to hold in all casegaxfution are recommended to be placed in a
fact paragraph. Alloy allows the specification of invariants to be quantified over the set of objects.
This can be actualized by directly associating the paragraph tddtte the set. A fact may be
named or ot. There can be any number of facts in a model. The order of occurrence of fact or the

content of its paragraphs areelevant.

The example on liree25, 26 of Listing 10illustrates a named independent paragrapfacifin a
modeling contextlt models the relationship betwegndent andcourse sets in the school domain.
Each student must takeranimumof one course buamaximumof seven courses. The constraint

is specified irthefact paragraph with a nanmeNumericBounds A dependent fact is a constraint

Page |37

that is directly attached to the signature. The semantics implies that the constraint is associated
with every instance of the signature created attime. An example illustrating the specification

of thiskind of fact is on linel6 of Listing 10. Thefactis directly associated with signatuseident

(see lines 1@®f Listing 10). The keywordact and the name are not necessarily required. For
example, lined4-16 of Listing 10 define a signature and an associated fact. The fact is directly
associated with the signature on lit® Thus, the keyworéict has been omitted as well as the

name.

2.2.2.2 Functions

A function housesa set of expressi@ior reuse purposes. Like functions in other programming
languages, Alloy functions may hasay numbepf arguments. Functions are referenced by their
unique names. The body affunction defines constraintbinding results of the function. An

example illustrating the use of function is presented on B8e800f Listing 10.

The example (see lis9, 300f Listing 10) illustrates dunctionexpression for determining a set
of grandmothers of eerson. It is observable from the example that evesyonis associated with
amotherandafatherboth of typererson. The function can be referenced as grandMotthieteakes
an instance oferson - grandChildas an argument. The function retuallsthe grandmothers of
grandChild.

2.2.2.3 Predicates

Alloy predicatesare named expressions wih leastan argument. According ®2], their uses

for model analysis include:

9 to check for inclusion or exclusm of a constraint;
1 to check whether a constraint is a consequence of others; or

i to define a reusable constraint in other contexts.

To use a predicate, the basic requirement is that an expression is provided for each of its arguments.
It returns eitheMRUE or FALSE.

The example on lines2334 of Listing 10illustrates the use of a predicat®¥e definea predicate

to verify whether the model satisfies-supervisionrequirement. The predicate assumed that

Page |38

0 s up AasopBd d6ar e t he «udgnée;r vtitseomr si foft at i s wvalid,
cardinality «udens upleswed seor&® of 0

2.2.2.4 Assertions

According to[52], assertions are constraints derivable from the facts of the model. The Alloy
analyzer explores all the states of the model tdyweonformance of the assertion. It achieves this

by negating the assertion and conjoining the result with the rest of the constraints of the model.
The result of the state exploration is a counterexample, whenever the resgaemproduces

a model vith constraints defined on the model. A counterexample implies the presence of a model
error or a wrong formulation of the assertion expressions. For example, in a student management
systembébs model, a student shoulthdusaahssertio@o uni qu

verify whether the model conforms to the requirement of uniqueness of identity.

Lines 36, 370f Listing 10 define anassertiorwith the intenion of verifying whether the student

model satisfies the uniqueness property of st

2.2.3 Commands

Alloy providescommandstatements for the analysis of an abstract model expressed in its native
dialect. These includein and checkcommands. Theun command instructs the Alloy analysis
engine to search for an instance of a predicate. On the other haoettheommand instructs

the analysis engine to search for a counterexample of a gssantion To addresslecidability
issueseach command requires the specificatiosafpefor searching or exploration. However,

in thecasewherethe user specified no scope for exploration, Alloy defaults the exploration scope
to threefor all top-level signatures. Defining exact sizetof-level signatures to be created for
analysis requires the usage of keywexgtty. The following illustrate usage of commandsck
andrun in modeling context. Agooddiscussion on the use of these commands can be obtained
from [52].

2.2.3.1 Check commands

The example on lines0444 of Listing 10illustrates various ways of using threckcommandWe

obtained the example frofB2].

Page |39

The following eylains the smantics of the commands defined using the associated label and

references focus dasting 9Listing 10.

Line 40 instructs the analyzéo checktheassertion with the default of 3 instancesfct.
On line 41, the assertion overrides the default scope to create 10 instances:idior
analysis.

The assertioon line £ specifically binds the scope of analysis to 5 instancesof:.
This is semantically equivalent to the assertion on lihéf 4nd only if the scope was
bound to 5 instead of 10 instances.

The assertion on line34will create 5 instances afbject but 3 of the instances will be
Directory ; @anAlias andrile will be created as well.

On line 4, the command will create 3 instancesoofctory andalias, and 5 instances of

File.

2.2.3.2 Run commands

The example on line$7-51 illustrates varieties of usage of the command This command can

be used with predicates.

In the following, we explain informally the semantics of commands using associated indexes.

Readers should note that references focussimg 10.

T

T

T

T

The command on lind7 runs the entire model in search of possible examples using the
default scope(i.e., 3 instances of every tdpvel signature). The televel signatures
according tolte model given arebject, Animal , Professor, Course, Student, A, ands. The run
command is a mechanism for simulating models within Alloy environment. Suppose there
is no example or the model cannot be instantiated; in that case the analyzer wifi report
instance foundo

The command on liné8 will be semantically equivalent to the command on 4ié& and

only if the scope of 10 instances has not been specified for evelgvisignature.

The command on lind9 runs theUniqueldentityassertiorwith 3 instances (the default)

of Person.

The command on linB0 is semantically equivalent ime 49except the default scope is

not overridden to 10.

Page |40

1 The command on linB1 runsUniqueldentityassertion with 5 instances of Student and 1

instance of Rafessor.

2.3 nuXmv

nuXmy, asymbolic modetheckeifor the verification of fair finiteand infinite state synchronous
systemsextend NuSMV [32], a stateof-the-art model checker for the specification and
verification of finite state systemAs earlier mentioned, &dopts the basic verification techniques

of NuSMV and extends its native language witiboundednteger and real data types for the
specification of infinite domains. For the verification of the newly supported domains, nuXmv

integrates Satisfiability Modulo Theory (SM#6]) algorithrrs.

We have adopted nuXmv as a bamid engine for the analysis and simulation of correctness
properties of state machines expressed in Ulngéed on its capabilities to represent and analyze
infinite-state systemsThe following section presents an ovew of the nuXmv specification

language.

2.3.1 The input language of nuXmv- SMV

In this sectionwe present the syntax and semantics yhiSolic Model Verifier (SMV), the
specification language dhe nuXmv model checkelWe facilitate easy reading and thorough
understanding by focusing on the subset of the language relevant to this thesis. As we did with
Umple and Alloy, we have adapted the grammar of SMV to the notational style introduced in this

chapter so readers do not have to deal with more than one graioiaiion.

We assume that identifiers are wielfmed and composed from the setZAaz, 09, , $, #;}.

A comprehensive knowledge of this specification language can be obtained from the nuXmv user
manual[69]. We will focus our discussion on the following notions: variable declaration, assign
constraint, module concepts (e.g. declarations, instantiations), and logiccspiecis (e.g. LTL,

CTL, INVARSPEC).

Page |41

© 00N O WNBRE

G aoo oo oo odabddDDBSBDMDBDMBEDIDMDBEDREOMWWWWWWWWWNDNNDNNNDNMNNDNNNNRERPRRPEPEPRRRPRLPR
© 0O NS WNRPOOONOOORA,WNPEPOOOMNOOORA,WNRPEPOOOMNOOUAWNEOOOONOOGD™MWNDNDEO

MODULE HeatControllerSm (smHeatReq, smController, smControllerControllerOn,
smControllerControllerOnHeaterActive)

VAR
state : {Sm_houseg null };
event : { heatSwitchOn, heatSwitchOff, autotransition, userReset,
furnaceFault, null };
setTemp :integer,
actualTemp : integer;
valvePos :integer;
waitedForCool : integer,
coolDownTimer : integer,
furnaceRunning : boolean
activate : boolean
deactivate : boolean
requestHeat : boolean
furnaceReset :boolean;

DEFINE

sm_stable := !(event = heatSwitchOff | event = userReset

| event = heatSwitchOn | event = autotransition | event = furnaceFault);

tl := event = autotransition & smHeatReq.state =SmHeatReq_idleHeat & g1;

t2 := event = autotransition & smHeatReq.gate = SmHeatReq_waitForCool &
g2;

t3 := event = autotransition & smHeatReq.state =SmHeatReq_waitForCool &
g3;

t4 := event = autotransition & _smHeatReq.state =SmHeatReq_waitForCool &
g4;

t5 := event = heatSwitchOn & smController.state =SmController_off;

t6 := event = heatSwitchOff & smController.state =
SmController_controllerOn ;

t7 := event = furnaceFault &
smController.state = SmController_controllerOn ;

t8 := event = userReset & smController.state =SmControll er_error;

t9 := event = autotransition &
smControllerControllerOn.state = SmControllerControllerOn_idle & g5;

t10 := event = autotransition &
smControllerControllerOn.state = SmControllerControllerOn_heaterActiv e &
g6;

t11 := event= autotransition & smControllerControllerOnHeaterActive.state
=SmControllerControllerOnHeaterActive_actHeater & g7;

gl := (actualTemp- setTemp) > 2;

g2 := (valvePos != 0) & (coolDownTimer = waitedForCool);

g3 := waitedForCool < coolDownTimer;

g4 = ((actualTemp- setTemp) <= 2);

g5 = requestHeat =TRUE;

g6 := requestHeat =FALSE;

g7 := furnaceRunning =TRUE;

ASSIGN
init (state) :=Sm_houseg
nexf(state) :=case
t1|t3|t8|t10|t11|t4|t2|t6|t5|t9|t7: Sm_house
TRUE : state;
esag
init(event) :=null;
next(event) :=case
sm_stable : { heatSwitchOn, heatSwitchOff, autotransition, userReset,
furnaceFault };

Page |42

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

TRUE : null;

esag

init(setTemp) := 0;

init (actualTemp) := 0;

init (valvePos) :=0;

init (waitedForCool) := 0;
init (coolDownTimer) := 0;
init (furnaceRunning) := FALSE;
init (activate) :=FALSE,

init (deactivate) :=FALSE,
init (requestHeat) :=FALSE;
init (furnaceReset) :=FALSE;

MODULE HeatControllerSmHeatReq (sm)

VAR
state : {SmHeatReq_idleHeat, SmHeatReq_waitForCool, null };

ASSIGN
init (state) :=null ;
nexi(state) :=case
sm.t4 : SmHeatReq_idleHeat,
sm.t2 | sm.t1 | sm.t3 : SmHeatReq_waitForCool;
sm.state =Sm_house& state =null : SmHeatReq_idleHeat,
TRUE: state;
esag

MODULE HeatControllerSmController (sm)

VAR
state : {SmController_off, SmController_controllerOn , SmController_error,
null };

ASSIGN

init (state) :=null ;

nexi(state) :=case

sm.t6 | sm.t8 : SmController_off;

sm.t5 | sm.t9 | sm.t10 | sm.t11 : SmController_controllerOn ;
sm.t7 : SmController_error;

sm.state =Sm_house& state =null : SmController_off;
TRUE: state;

esag

MODULE HeatControllerSmControllerControllerOn (sm, smController)

VAR
state : {SmControllerControllerOn_idle ,
SmControllerControllerOn_heaterActive , null };

ASSIGN
init (state) :=null ;
nexi(state) :=case
sm.t6 | sm.t8 | sm.t5 | sm.t7 | sm.t9 : null;
sm.t10 :SmControllerControllerOn_idle ;
sm.t9 | sm.t11 : SmControllerControllerOn_heaterActive ;
smController.state = SmController_controllerOn & state =null :
SmControllerControllerOn_idle ;
TRUE : state;
esag

MODULE HeatControllerSmControllerControllerO nHeaterActive (sm,
smControllerControllerOn)

Page |43

122 VAR

123 state : {SmControllerControllerOnHeaterActive_actHeater ,
124 SmControllerControllerOnHeaterActive_heaterRumull };
125
126 ASSIGN

127 init (state) :=null ;

128 nexf(state) :=case

129 sm.t9 | sm.t10 : null;

130 sm.t11 :SmControllerController OnHeaterActive_heaterRun;

131 smControllerControllerOn.state = SmControllerControllerOn_heaterActive &
132 state =null : SmControllerControllerOnHeaterActive_actHeater ;

133 TRUE : state;

134 esag

135

136 | MODULE HeatControllerSm_Machine

137 VAR

138 hcsm : HeatControllerSm (hcsmHeatReq, hcsmController,

139 hcsmControllerControllerOn, hcsmControllerControllerOnHeaterActive);

140 hcsmHeatReq :HeatControllerSmHeatReq (hcsm);

141 hcsmController : HeatControllerSmController (hcsm);

142 hcsmControllerControllerOn : HeatControllerSmControllerControllerOn (hcsm,
143 hcsmController);

144 hcsmControllerControllerOnHeaterActive :

145 HeatControllerSmControllerControllerOnHeaterActive (hcsm,

146 hcsmControllerControllerOn);

147

148 | -- The following properties are specified to certify t hat this model is free of non-determinism.
149 INVARSPEQ(hcsm_Machine.hcsm.t2 & hcsm_Machine.hcsm.t4

150 ->next(hcsm_Machine.hcsmHeatReq.state =SmHeatReq_waitForCool &

151 hcsm_Machine.hcsmHeatReq.state =SmHeatReq_idleHeat))

152

153

154 | --this defines thenitial configuration of the SUA
155 LTLSPEC(hecsm_Machine.hcsm.state =Sm_house

156 & hesm_Machine.hcsmHeatReqg.state =ull

157 & hesm_Machine.hcsmController.state =null

158 & hcsm_Machine.hcsmControllerControllerOn.state = null

159 & hesm_Machine.hcsmControllerControllerOnHeaterActive.state = null)

160 SmControllerControllerOnHeaterActive_heaterRun)

161 | -- The following properties are specified to certify that non -symbolic state(s) of this model is (or are) reachable.

162 CTLSPECEH hcsm_Machine.hcsmHeatReq.state =SmHeatReq_idleHeat)

162 CTLSPECEH hcsm_Machine.hcsmHeatReq.state =SmHeatReq_waitForCool)
163 CTLSPEC Eff hcsm_Machine.hcsmController.state =SmController_off)

164 CTLSPEC Ef hcsm_Machine.hcsmController.state =SmController_controllerOn)
165 CTLSPEC Ef hcsm_Machine.hcsmController.state =SmController_error)

166 SPEC ER hcsm_Machine.hcsmControllerControllerOn.state =

167 SmControllerControllerOn_idle)

168 CTLSPEC EF hcsm_Machine.hcsmControllerControllerOn.state =

169 SmController ControllerOn_heaterActive)

170 CTLSPEC EF hcsm_Machine.hcsmControllerControllerOnHeaterActive.state =
171 SmControllerControllerOnHeaterActive_actHeater)

172 CTLSPEC EF hcsm_Machine.hcsmControllerControllerOnHeaterActive.state =
173 SmControllerControllerOnH eaterActive_heaterRun)

LISTING 11. HEAT CONTROLLER STATE TRANSITION SYSTEM

Page |44

Listinglli s an example SMV program with the purpos

notions supported by the language and those relevant to our work.

The program defines a transition systemthe heating system presentedListing 4. The system
contains several modules because the heating system is hierarchical. These are modules
corresponding to theot state machine and sstate machines of composite states, and the main
module. However, the simplest form of an SMV program contains at least a main nigding.

12is a grammar for defining SMV program specifically adapted to our work.

2.3.1.1 Module Concepts

In this section, we will discuss module declaration and instantiation. Module declarations specify

a transition system in SMV language; while module instantiatidescribe how instances of

modules are created. An example of a-nmin but comprehensive module is presented on lines

1-71 of Listing 11. By -mam o mordear egery otwez module in the program except

the fAmai nd modul ¢see lides B@&AE ofhistingrhl) o @i entry point of

execution just like programming languages kia@ily. The module represents most concepts

relevant to our work. Module instantiation inherits the properties of obgmtamtion in objeet

oriented systems. For example, lines 138, 13Qisting11def i nes fhcsmodo as ar

fHeatControllersm O. It represents a parametrizedtargtiation of a module.

Other notions facilitated by the referenced module include: variable and define declarations, and
assign constraintsVariable declarations are the SMV constructs for declaring properties in
transition systems. These are synonymwiils field declarations in conventional objemtiented
programming languages. Variable declarations are defined within a paragraph preceded by the
fvarR0 keywor d. F o r -17eok Llastimg lL1leis a VAR rparagrap with various
declarations of names and types of variables local to the module. The grammar equivalent to this

definition is presented on line 7 bisting 12.

For the purpose of modularity and conci seness,
with a common expression. For example, lines4&%f Listing 11 is an example of such a
declaration. Any variable declared in this paragraph can be seen as a macro. In essence, identifiers

in this paragraph do not contribute to the state space of tleesyatier analysis &JA). A macro

binds the identifier with the expression type and value on its-hightl side. The paragraph must
Page |45

be preceded wiANID Thelgamnkaecgrrespondingfo this definition is presented
on line 11 ofListing 12.

1 smv-program -: [[[module]]]* MODULE main [[moduleBody 1]

2 module -: MODULE [name] [([[moduleParameters]])]? [[moduleBody]]
3 moduleParameters -: [name] [, [name]]*

4 moduleBody -: [[moduleBodyPart]]+

5 moduleBodyPart -: [[varDeclaration]] | [[defineDeclaration]]

6 [[assignConstraint]] | [specification]] 6

7 varDeclaration -: VAR [[declarationStatementg]]

8 declarationStatements-: [name] : [[variableTypes]];

9 variableTypes -: [=type: integer | real | boolean] | [[enumeration]]
10 | enumeration -: { val-1[, val-n]* }

11 | defineDeclaration -: DEFINE [[defineBlock]]

12 | defineBlock -: [[name] := [[expression]]]+

13 | expression-: [constant] | [identifier]

14 | [[expression]] [[binop]] [[expression]] | [[unop]] [[expression]]
15 | ([[expression]]) | [[caseexpression]] | [=type: TRUE| FALSH
16 | next([[expression]])

17 | binop -:[=type: & | | | xor| xnor| ->| <->| =| =] <| >| <=

18 | | >=| +|-[*| /| mod

19 | unop -:[=type: !'| -]

20 | caseexpression-: casg[casebody]] esa¢

21 | casebody -: [[expression]] : [[expression]]

22 | [[casebody]] [[expression]] : [[expression]]

23 | assignConstraint -: ASSIGN [[assignBody]]

24 | assignBody -: [[[initStmt]] [[[nextStmt]]]?]+

25 | initStmt -: init(identifier) :=[[value]]

26 | nextStmt -: next(identifier) :=[[expression]]

27 | value -: [identifier] | [integerNumber] | [realNumber]

28 | specification -: [[ltl -specification]] | [ctl-specification]]

29 | INVARSPEC|[[expression]]

30 | lil-specification -: LTLSPEC[Itl -expression]]

31 | Itl-expression-: [[expression]] | [[ItiOperator]] [[Itl -expression]]
32 | [It -expression]] [[specialBinaryOperator]] [[Itl -expression]]
33 | ltlOperator -: [=G| X| F| Y| Z| H| O]

34 | specialBinaryOperator -: [=U | V| S| T]

35 | ctl-specification -: CTLSPEC][ctl-expression]] | SPEC[[ctl-expression]]
36 | ctl-expression-: [[ctlOperator]] [[expression]]

37 | [[ctiOperator]] [[ctl-expression]]

38 | [[existentialOperator]] [[[ctl-expression]] U [[ctl-expression]]]
39 | ctlOperator -: [=AG| AX| AF| EG| EX| EF]

40 | existentialOperator -: [=A | E]

LISTING 12 MODULE'SGRAMMAR IN NUXMV

Page |46

SMV allows assignment of values to state variables within an assign paragraph. In an assign
paragraph (or constraint), a variabl einios assi
(seeline 51 okisting11l) araxd { s e e-85 oiListiagsll) &dpectively. Theextstatement

e mbodicaesesaba siit at ement whi ch model Efthatdgde)mods si bl e
values (on theight-handside) to be assigned to the variable at any given step of execution of the

program. In this paragraph, at least a variable must be initialized or iteategs specified.

2.3.1.2 Logic Specification

The notion of logic specification allows developers to define requirements for the purpose of
analysis via the analysis engine. The nuXmv analysis engine accepts both lindarL(i[88])

and branching (i.eCTL [37]) time logics for the expression of system requireméhitsle LTL
specifications quantify over paths, CTL specifications quantity over the global state space of the
SUD. The benefit of dual support is to allow user the expressive power of each logic specification.
Besides these logicsuXmv also facilitates the representation of invariance.

U

2

FIGURE 4. RELATIONSHIP BETWEENEXPRESSIVEPOWERS OFCTL AND LTL

Figure4 presents the relationship betwestpressive powers of LTL ar@dTL. The implication
of the figure is to demonstrate that some requirements are only expressible in either of the logics;

while some requirements can be expressed in both logics.

A CTL statement b e gdraméseedine td) 168 ofitstmgld)o kcergrmdd r d 6
(seeline 67 ofListing11l).An LTL statement bergpreds (mestEdd |t he Kk
160 ofListing 11). To constrain the entire model to fulfil some special properties, SMV provides
"INVARSPEC" (See lines 1560 ofListing 11) keyword. We introduce the grammar to define these

specification statements on lin@ @f Listing 12

Page |47

A detailed discussion of the semantics of CTL (ergaF, AG, EG, A[é U €],E[é ué])and LTL

(e.g.G X F, Y, z, H 0 operators as obtainable frdbj, [69] are presented ihable5, Table6
respectivelyp andq are considered as formulas whose syntax conforms to the grammar described
in Listing 12. A CTL formula evaluates to true whenever it is true in all initial states. An LTL

formula evaluates to true whenever it is true at the initial ime

TABLE 5. SEMANTICS OFLTL OPERATORS FOR NXMV [69]

Notation Semantics

Xp Given times &ho, then X p=true at time tif and only if pistrueattime® o p.

Fp Given times 8o, then Fp = trueat time t if and only if pis true at some timed o,

Gp Given times &ho, then G p = trueat time t if and only if pis true attimes o o.

Yp Given times aho o , then Y p = trueat time 0 0, ifand only if pistrue attime © © pbutpis

false attime 0 .

Zp Similar to Y p but p must be true at time o .

Hp Given times &ho, then H p =true at time t if and only if pis true at all previous time steps 0 o,
Op Given times &ho, then O p =true at time t if and only if pis true in some previous time steps 6 o.
puUq Given times oo [BF, then p U q = trueat time t if and only if qis true at some timed oand pis true

for all time ¢°, such that:0 ¢® 0.

pVq Given times & [tF, then p V q = trueat time t if and only if qis true at all time steps® Ooup to and
including time step &°where pis also true. Alternatively, p may never be true but g must be true in
all time stepso o

pSq Given times & [tF, then p Sq = trueat time t if and only if qgis true attime & o6and pis true at all
time steps ¢f, such that:6 ¢ o

pTq Given times &ho %o |, then p T g = trueat time t if and only if pistrue atd oand qis true at all
time steps ¢, such that:06 o° 0o Alternatively, if phas never been true, theng must be true in all
time steps ¢f, such that: 6 o° o

Page |48

TABLE 6. SEMANTICS OFCTL OPERATORS IN NXXMV [69]

Notation Semantics

EXp Given states U Osuthzhat: s-¢ wthepn BX p=truein sif and only if pistruein Uz 8

AX p Given statesU Osuthzhat: s-¢ wthken AK p =truein sif and only if pis true in x! @V i

EFp Givenstatesi i i BH H andthereexists © i H © i A O i then EFp=true
ini ifandonlyif pistrueini .

AF p Givenstatesi i i A H andforalli © i i © i BA © i then AF p=truein i
if and only if pistrueini .

EGp Given statesi fi i andthereexists © i i © i B then EG p = trueif and only if pis true
ini.

AG p Givenstatesi fi i andforalli © i i © i 8 then EGp = trueif and only if pistruein i .

ElpUq Givenstatesi i H FBH H andthereexists © i i © i BH ©O i thenE[pUdq =

trueif and only if pistrueinall statesi i A BB H andqistrueini .

AlpU q Givenstatesi i i A H andforalli © i i © i BA © i thenA[pU ¢ =trueif
and only if pistrueinall statesi H A BH andqistrueini .

2.4 Back-end Analysis Tools

In the solution space, varieties of formal analysis tools exist. These range from model cleecking
theorem proving technologied/e will limit our survey to tools that requires no uggidance in

the search for solutionln this section, we will summarizthese technologies using some
paametes such asheunderlyingtechrology (e.g. SAT[39], BDDs[40], AlGs[42], SMT [46]);
specification logic supported (e.g. CTL, LTLJomain of analysis supported (e.g. infinite or
finite); opersource or not; orientation (stabased or everttased)

Our analysis is presented Trable 7; this indicates that nuXmf45] and AL [70] are the only

tools with capabilities of analyzing unbounded infinite types (e.g. integer and flqating
numbers). Although SAL is opesource, it is nobeing actively developed. On the other hand,
while other tools surveyed facilitate the analysis dynamic aspects, Alloy is the only tool surveyed

that facilitates the analysis of static aspects.

Page |49

TABLE 7. SUMMARY OF ATTRIBUTES OF ANALYSIS ENGINES

Q he] U,>‘
- c £ =) (SNl 29
S ® o © c Ot S5
K] = e Q3 220 20
4] 0] =] ISIe] QD 2aa S €
2 S| 8 S8 wg £as8 g5
= 5|5 = 3 n<3 =]
c o Q 0] 0 o g
1T} N 6 >
K2} =
] a}
E) S
[}
2 =
=
o
2 s | 2 o a2 | = S |k | =
< 2 | € F |O | & S|l< |a |8 |=
S c [= i =
n w [[n] - O s %) &) n M < %)
>
>§ + + + + + i + + +
S I
C =
- +
<o + + + + + + + + + +
0~ +
>
= +
ny + + + + + + + +
S ™ +
>
Q= +
oo + + + + + + + + +
< =, +
L +
RN + + + + + + + + +
= +
2_4
c = +
R + + + + +
I
=}
& +
S & + + + +
@ +
o=
=]
D — +
S8 + + + + + +
+
=
— +
E’g + + + + +
N =, *
§‘§‘ + | + + + + + T +
L
o — +
D'oB + + + +
=) +

Verification domain:p unbounded infinite typesFOLS pieeari
Temporal Logic, Computational Tree Logic, Fi3tder Logic; Underlying Technology: SAT, BDD, AIG, SM’
= Boolean Satisfiability, Binary Decision Diagrams, Aimderter Gate, Satisfiability Modulo Theory; Othe
Notations: +, ++, +++ = SuppodgePartly Supported, Fully Supported.

Page |50

2.5 Model Transformations

In this section, we present some background information on model transformations. This will
enable ugo discussn detail and position our work with related concepts. In the literature a large
amount of work has been done on this topic; we will adopt definitions from Kleppe[él]al.
because most literature (e[@2]i [74]) relies on these definitions.

Definition 2 - Transformation

A Aransformationis an automatic generation of a target model from a source
model, according to &ansformation definition {75]

Definition 37 Transformation Definition

A Atransformation definitionis a set oftransformation ruleshat together
describe how a model in the source language can be transformed into one or
more constructs inthetaegt | an[@sl age 0.

Definition 47 Transformation Rule

A Aransformation rules a description of how one or more constructshie
source language can be transformed into one or more constructs in the target
| angul@xge. o

According to the report of the working group of the Dagls&#minar on Language engineering
for ModelDriven Software Development (i.e. Mens et [@6]) five questions are key to the

discussion of model transformation. These include:
Q1.What needs to be transformed into what?
Q2.What are the important characteristics of model transformation?
Q3.What are the success criteria for a transformation language or tool?
Q4. What are the quality requirements for a transformation language or tool?
Q5. Which mechanisms can be used for ehdinsformation?

We will focus on (Q1), (Q2) and (Q5) because our work is not a transformation tool but it applies
model transformation for the purpose of code generdticeddition our discussion will be based

on Mens et al[76].
Page |51

2.5.1 Source and Target Artifacts (Q1)

This question cacerns the artifacts for transformation. For example, the source and target
programs or models. If the artifacts are source code, bytecode or machine code, they are referred
to as programs and the process is terpredram transformationOn the other handf the artifacts

are models (e.qg. state, class, composite structure, or activity diagram), the process intel@hed
transformation A hybrid of these elements is possible such as rtodelxt (M2T) or texito-

model (T2M). Consequently, program tramshation may be considered a subset of model
transformation because a model may range from abstract analysis models to concrete models of

source code.

Model transformation involves the expression of models in some modeling language such as UML
diagrams omprogramming languages for source code. The syntax and semantics of a modeling
language (e.g. Umple, Alloy, SMV) is expressed with a metamodel. Transformation processes can
be categorized intexogenousr endogenoubased on the language for expressimgsiburce and

target.

Definition 57 Endogenous Transformation

AEndogenous transformations are transform
i n the s am[@5]. Ingarticwlaa ghe dource and target models

conforms to a metenodel. For example, a model transformation between

UML state diagrams and UML activity diagrams is regardectagogenous

transformationsince both must céorm to the UML metanodel at large.

Definition 61 Exogenous Transformation

AExogenous transformations are transfor ma
using di f f e r[#]nr particalar,dhe sogreesanddarget models

conform to different metmodels. For example, a model transformation from

Umple to Alloy is regarded as an exogentassformatiorb e cause Umpl eds
metamodel di ffer s-médelom Al |l oybés met a

Transformations may also be categorized based on the abstraction levels of source and target

models. These are callgdrtical andhorizontaltransformations.

Page |52

Definition 7 - Vertical Transformation

A Avertical transformations a transformation where the source and target

model s reside at dIi7b]Adiffeem abstradlicntevela ct i on |
may be model or source code. The model is considered more abstract than

source code. The transformation at a parsing phase (i.e. T2M) such that a

program text is transformed to an abstract syntax tree (AST) is a typical

exanple ofvertical transformation

Definition 81 Horizontal Transformation

A Ahorizontal transformations a transformation where source and target

e

model s reside at t h[@5 Rraexaeplegthesavaral ct i on | ev

process of transforming Umpleds source
horizontal Similarly, the transformation between Umple Internal
Representation (UIR) talloy Internal Representation (AIR) li®rizontal

2.5.2 Characteristics of Model Transformations (Q2)

Mens et al[76] identifiedlevel of automationcomplexity of transformatigrand preservatiomas
key properties of model transformations. A clear distinction must be made on what caowdd sh
be automated or executed manually. In particular, what demandsigseention? For example,

a transformation between requirements documents and analysis models demaintirusetion

T most importantly to resolve ambiguities, incompletenessrahsistencies in the requirements.

Transformations such asefactoring (e.g. model or code level) may be considered minor
transformations but transformations involving parsers, compilers, and code generators are major

transformations.

The question of wét must be preserved is important for model transformations. In particular, what
aspects (e.g. structure or behavior) must be preserved such that these elements of the input model
are unchanged in the output modtfactoringandrestructuringdemand behaoral preservation

while the structure may be modified. On the other haefinementdemands semantics

preservation.

Page |53

c

2.5.3 Mechanisms for Model Transformation (Q5)

Mechanisms for transformation are not limited to techniques, languages, and methods adopted f
development to actualize the transformation process. A programming paradigm like procedural,
objectoriented, functional or logibased approaches or a hybrid may be applied to specify

transformations.

These mechanisms can be categorized detdarative and operationalapproacks. Declarative
approaches define relationships between the source and target models. In particular, they map
el ements of a source model t o t hwhao stmdfldba t ar g
transformed and what it should be transformed to. Declarative approaches offer particular services
like source model traversal, traceability management and automdliiettionality[73] via the

underlying reasoning emge. Thus, they tend to be more attractive to software engineers.
Examples include functional programming and logic programimfg

Operational approaches defistepsfor executing transformation process from source to target
model s. T h ey haw the t@mrsformatiendsxecuted. Mhey are most suitable for
transformations that incrementally update a model. This is achievable by itg®ufport for
sequence, selection and iteration andoperational approat¢hat aremost beneficial when it is

necessary to control tleeder of applying a set of transformatidiié].

2.6 Summary of Background

In this chapter, we have presented background on the technologies involved in this thesis. The

technologies discussed were Umple, Alloy, and nuXmv.

Umple, an MDE technology designed to be highly usable in bothateadtal visible form provides
constructs for the representation of class models and state machine models. It is designed for
integration with programming languages and code generation. We discussed the various notions
of class and state machine models thia relevant to this thesis by giving some examples
(textually and diagrammatically). Techniques discussed under class model representation include:
class diagrams, associations, attribute, specializations, and keys. The notions discussed under state

machnes of Umple include: transitions, states, and state machines themselves.

Page |54

Alloy is a specification technology for representing and analyzing structural models of software
systems. We presented a detailed discussion of Alloy, covering the following neigmeture,

field, constraint, and commands. Our discussion included textual examples for each notion. The
notion of fields focuses on how to specify associations and attributes. We discussed the notion of
constraints based on specifications of facts, tions, predicates, and assertions. The notion of

commands was discussed; in particular ctheandrun concepts.

nuXmyv is a model checking tool for the analysis of state transition systems. We began our
discussion on nuXmv with an example to illustraotions supported by the tool. The notions
discussed include: variable declaration, assign constraint, trans constraint, module concepts, and
logic specification. We discussed each notion with its grammar and semantics were discussed
succinctly. Discugens of trans constraints involve how transitions and states are represented in
nuXmyv. We discussed module concepts based on how a module can be designed and instantiated.
We presented a detailed discussion on logic specification with nuXmv. Our discasdiogic
specification focuses on linear time logic (LTL) and computational tree logic (CTL). Finally, we
presented a table comparing underlying concepts of model checking tools surveyed in the

literature.

Page |55

3 Transformation Engineering

In this chapterwe give an overview of our solution to automatically generate formal specifications
of models (state machine and class models) expressed in Umple. We will present an architecture

we have adopted for the realization of our goal.

Similarly, we will presenpartial metamodels of Umple, Alloy and SMV to facilitate the process
of model transformations and relevant architectures to illustrate specific transformations. Readers
should note that the metamodels presented follow the semantics of UML class mobeling.

simplify the representation, we exclude algorithmic logic and templates from the Umple code.

Alloy
Translator |

SMV %
Translator i |
*.java, php,
PP, ...

FIGURES5. TRANSFORMATION ENGINEERING

' umple | UR ERPECE

1 Compiler 1 Analyzer

' ' Behavioral
Aspects

Page |56

