Synthesis of Nitrogen-Containing Carbohydrate Derivatives and Their Use Toward Inhibiting Ice Recrystallization and Gas Hydrate Formation

Malay Doshi

B. Sc. Honours Biopharmaceutical Science, Medicinal Chemistry (Co-op) – University of Ottawa, 2010

Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Chemistry

Department of Chemistry
Faculty of Science
University of Ottawa

Candidate

Supervisor

______________________ ____________
Malay Doshi Professor Robert Ben

© Malay Doshi, Ottawa, Canada, 2016
Acknowledgements

I would like to firstly thank Dr. Robert Ben for accepting me into his lab and giving me the amazing opportunity to pursue my Ph.D studies. He constantly encouraged me to be a better researcher, problem solver and to think critically about my work. He always taught me the invaluable lesson of thinking “big picture” about the work I did and presented. He also made me a better person overall. Thank you so much for your constant guidance and mentorship throughout my studies.

The next people I need to thank are my lab mates and this list is by no means in any order. I sincerely want to thank Dr. Anna Balcerzak for all of her help in the laboratory and outside it. I will never forget everything you did for me. You weren’t just a lab mate but a true friend. Julia Meyer, thanks for all of the hilarious conversations about everything from chemistry to hilarious discussions on life. Mostly, via texts. Maddy Adam, thank you so much for editing the thesis and being an awesome friend and for the great football talks. Dr. Mathieu Leclère for teaching me and helping me learn so many techniques in the lab. Dr. John Trant for being an awesome mentor throughout my honour’s thesis and teaching me lots of useful laboratory techniques. You also instilled your enthusiasm for chemistry in me. Devin Tonelli, thanks for always having utterly useless talks about life and for all your help on the gas hydrate project. Frank Loiseau, you weren’t in the Ben lab but it was so much fun having your around. Your passion for chemistry always made me strive for more. Chantelle Capicciotti, thank you for always inspiring me to continue to push myself and learn as much as I could about my work. You really showed me what attention to detail really means and I’ll never forget that. Matt Alteen, you are always around to talk chemistry and just have chats about life. You are truly the biggest yet cool nerd I know. Jennie Briard, thank you for all of your help on the umbilical cord blood experiments and all of the fun times we have had especially at the cottage. Thomas Charlton (aka “TChar”), thanks for making me laugh and being able to discuss chemistry and geeky things. You are the biggest hipster of the lab. Jessica Poisson thanks for being a great lab mate and all the great hiking and camping talks we have had. Don’t forget those ear plugs while camping. Steph, you were a good friend in the lab and someone who would always listen to everything I had to say about life and chemistry. You always remembered dates and occasions which was something I couldn’t do. Vanessa Musca, we were bay mates and it was definitely fun having discussions about life with you. It was never boring with you around. Kyle McClymont,
your love for chemistry was contagious. Thanks for all the memories outside the lab. The last day for your co-op session is something I won’t forget. Amanda Saikaley, thanks for all the fun chemistry and non-chemistry chats we have had. Your constant energy in the lab was contagious. To the undergraduate students I was grateful to work with: Tiffany Tuen, Vikrant Singh and Allan Grant. All of your help has gone a long way towards the completion of this thesis. I’ll never forget it. To the other under grads which were part of Ben Laboratory whilst I was there. Amanda Commons, thanks for all the one liners. You were an awesome listener. Evan Perley-Robertson, you are one hell of a baker. Melody, you always had some story to talk about. I always got sucked into the stories. I would love to have you as my doctor someday.

Lastly, and most importantly, I need to thank my parents. You were there for me when I needed you the most. This thesis couldn’t have been completed without you. You have been there every step of the way and have been my true inspiration for everything. Thank you.
Abstract

Ice recrystallization during cryopreservation results in cell death and decreased cell viabilities due to cellular damage. This is a significant problem particularly in regenerative medicine where decreased cell viabilities post-thaw affect the success of the therapy. Given the success of these therapies to treat various diseases, the development of novel cryoprotectants which have the ability to inhibit ice recrystallization during freezing and thawing are urgently required. Current cryoprotectant such as dimethyl sulfoxide, is associated with cytotoxicity in the clinical settings and thus are not optimal cryoprotectants. Our laboratory is interested in the rational synthesis of non-cytotoxic small molecules which possess the property of ice recrystallization inhibition (IRI) activity.

Previously, the Ben laboratory has demonstrated that simple monosaccharides possess moderate ice recrystallization inhibition activity and that this activity is linked to hydration. The “compatibility” of the carbohydrate within the three-dimensional hydrogen bonded network of water is inversely proportional to its IRI activity. Hydration has previously been directly linked to the stereochemical relationship of individual hydroxyl groups on the carbohydrate. Additionally, it has been proposed that intramolecular hydrogen bond formation and hydrogen bonding cooperativity has a large effect on the water structure thus impacting hydration. Structure-function work has suggested that the presence of an amine as a hydrogen donor at the endocyclic position within the pyranose ring maybe beneficial to IRI activity. Thus, the first part of this thesis describes the synthesis and IRI activity of D-glucose and D-galactose based azasugars and its analogues. These azasugars have replaced the endocyclic ring oxygen with an amine. These azasugars and their analogues were found to possess moderate to potent IRI activity suggesting that hydrogen bond donation may be important for hydration and thus, IRI activity at the endocyclic ring oxygen.

During the development of these azasugars, the Ben laboratory developed carbohydrate-based surfactants and hydrogelators possessing unprecedented IRI activity. A potential use of molecules possessing IRI activity is towards the inhibition of gas hydrate formation. Gas hydrates are ice-like solids containing gases within a highly ordered network of water molecules. These gas hydrates tend to accumulate in oil and gas pipelines posing significant dangers as the build-up of solid material leads to blockages in the pipeline reducing flow. Previous work had demonstrated the use of antifreeze proteins possessing potent IRI activity in inhibiting gas
hydrate formation. However, their complex structure limits commercial use. Thus, the second part of the thesis describes the use of the azasugars, carbohydrate-based surfactants and hydrogelators in inhibiting gas hydrate formation. The effectiveness of the small molecules is compared to a commercial inhibitor PVP 10. Some of these small molecules were significantly better inhibitors of gas hydrate formation than the currently utilized inhibitor PVP 10. The low molecular weights of these small molecules, easy synthesis and potency make them excellent alternatives to PVP 10. However it was found that while some of the structural features in the small molecules may be amenable to both activities, it seems that the ability to inhibit ice recrystallization is not a good indicator of a compounds ability to inhibit gas hydrate formation.

In a continuing effort to develop novel small molecule IRIs, the Ben laboratory has develop three classes of compounds. These include: carbohydrate-based surfactants and hydrogelators, lysine-based surfactants and truncated C-linked glycopeptides. Structure-function work utilizing these compounds revealed that presence of long alkyl chains, an amide linkage and the presence of an open-alditol chain are all important to IRI activity. However, the surfactant-like nature limits their use in cryopreservation and thus prompted the discovery of phenoxyglycosides as IRI active molecules. The structural features of these recently developed small molecules were combined to generate novel small molecule IRIs which do not resemble surfactants. These novel small molecules included “disaccharides” which possessed an aryl group at the anomic position of a pyranose ring and an open-alditol chain linked via an amide bond. Additionally, N-cycloalkyl-d-aldonamides and N-phenyl-d-aldonamides were also synthesized. Of these novel small molecules, two very potent IRI active molecules were discovered: a “disaccharide” possessing an aryl group at the anomic position with the open-alditol chain of D-galactose linked via an amide bond at C3 and N-phenyl-D-arbonamide. Both of these small molecules were assessed for their ability to cryopreserve hematopoietic stem cells. Unfortunately, the additional of these compounds failed to improved percent cell viabilities as compared to DMSO.
Table of Contents

Acknowledgements ... ii
Abstract ... iv
Table of Contents .. vi
List of Figures .. ix
List of Tables .. xiii
List of Schemes ... xiii
List of Abbreviation .. xiv

Table of Contents

Chapter 1. Introduction to Ice and Ice Recrystallization Inhibitors ... 1
 1.1 Application of Ice Recrystallization Inhibition ... 1
 1.2 Properties of Ice ... 3
 1.3 Mechanisms of Ice Recrystallization ... 4
 1.4 Biological Antifreezes .. 7
 1.5 Properties of Biological Antifreezes .. 8
 1.7 Defining Potent IRI Activity ... 16
 1.8 Small Molecule Ice Recrystallization Inhibitors ... 18
 1.9 Chapter Summary ... 22
 2.0 References .. 24

Chapter 2. Goals and Objectives ... 32
 2.1 Objective 1: Inhibiting Ice Recrystallization Utilizing Monosaccharides with an
 Endocyclic Ring Nitrogen ... 32
 2.2 Objective 2: Inhibiting Gas Hydrate Formation Using Small Molecule Ice
 Recrystallization Inhibitors ... 34
 2.3 Objective 3: Synthesis of Small Molecules Possessing Potent IRI Activity Using Essential
 Structural Features ... 34
 2.3.1 Objective 3A: Combination of Essential Structural Features to Synthesize Novel
 Small Molecule IRIs ... 36
2.3.2 Objective 3B: Small Molecule IRIs with Hydrophobic Cycloalkyl Groups 37

Chapter 3. Inhibiting Ice Recrystallization Utilizing Monosaccharides with an Endocyclic Ring Nitrogen .. 41

3.1 Introduction .. 41

3.2 Retrosynthetic Analysis of Azasugars ... 48

3.3 Synthesis of the Azasugars ... 49

3.4 IRI Activity of Azasugars .. 53

3.5 Cytotoxicity of Azasugars ... 57

3.6 Chapter Summary ... 60

3.7 References ... 61

Chapter 4. Inhibiting Gas Hydrate Formation Using Small Molecule Ice Recrystallization Inhibitors ... 64

4.1 Introduction .. 64

4.2 Inhibiting Gas Hydrate Formation .. 67

4.2.1 Structure and Properties of Anti-Agglomeration Agents ... 68

4.2.2 Structure and Properties of Kinetic Hydrate Inhibitors .. 68

4.2.3 Inhibition of Gas Hydrates Using Ice Recrystallization Inhibitors .. 69

4.3 Quantifying Gas Hydrate Nucleation and its Inhibition .. 70

4.4 Inhibiting Formation of Gas Hydrates Using \(n \)-octyl-\(\beta \)-D-pyranosides .. 71

4.5 Small Molecule IRIs as Inhibitors of Gas Hydrate Formation ... 73

4.6 Thermal Hysteresis and Gas Hydrate Nucleation Inhibition .. 80

4.7 Chapter Summary ... 82

4.8 References ... 83

Chapter 5. Synthesis of Small Molecules Possessing Potent IRI Activity Using Key Structural Features ... 86
List of Figures

Figure 1-1. Structure of the hexagonal ice I₈ lattice unit illustrating the three-dimensional hydrogen bonded network of water in which make up the different planes. Also illustrated are the different axes which are part of the lattice unit. ... 4

Figure 1-2. Schematic representation of the quasi-liquid layer (QLL) between bulk water and ice. ... 4

Figure 1-3 Representation of a liquid-layer (shaded) in a curved boundary between two ice grains. Large ice grains with concave boundaries (grain 2) grow larger while small grains with convex boundaries (grain 1) decrease in size to reduce the overall degree of grain boundary curvature. Arrows indicate the direction of boundary migration. ... 6

Figure 1-4. General structure of AFGPs .. 8

Figure 1-5. Change in an ice crystal habit during recrystallization in the presence of an AF(G)P. 9

Figure 1-6. Illustrations of thermal hysteresis (TH) activity and two models of ice growth inhibition. A) An illustration of a TH gap resulting from the depression of a freezing point relative to the melting point. B) Step-Pinning Model and C) Mattress Model depicting the irreversible adsorption-inhibition mechanism of AF(G)Ps. .. 10

Figure 1-7. Structure of the first C-linked AFGP analogues. .. 11

Figure 1-8. C-linked AFGP analogues containing “custom tailored” potent antifreeze activity... 12

Figure 1-9. Structures of C-linked AFGP analogues containing various monosaccharide moieties. .. 13

Figure 1-10. IRI activity of simple monosaccharides .. 14

Figure 1-11. An illustration of the relationship between IRI activity and carbohydrate hydration. .. 16

Figure 1-12. Structure of monosaccharide ice recrystallization inhibitors 18

Figure 1-13. Structural disaccharide analogues of the native β-D-galactosyl-(1-3)-N-acetyl-D-galactosamine disaccharide found in native AFGPs .. 19

Figure 1-14. Structure of carbohydrate-based IRI active surfactants and hydrogelators. 20
Figure 1-15. Structure of lysine-based anionic and cationic surfactants .. 21

Figure 1-16. Structure of truncated C-linked AFGP analogues ... 22

Figure 2-1. A schematic representation of the insertion of water within the intramolecular hydrogen bond network of the hydroxyl groups on the pyranose ring ... 33

Figure 2-2. Structure of amino-deoxy-D-galactose derivatives ... 34

Figure 2-3. Structure of D-glucose and D-galactose based azasugars ... 34

Figure 3-1. Structures of methoxy α-C-allyl-D-galactose regioisomers previously synthesized and tested for IRI activity .. 43

Figure 3-2. Structures of amino-deoxy-D-galactose derivatives and their IRI activity 44

Figure 3-3. A schematic representation of water insertion into the weakest intramolecular hydrogen bonds of D-glucose and D-galactose ... 45

Figure 3-4. Structures of 6-deoxy-heptopyranose derivatives previously synthesized and tested for IRI activity .. 46

Figure 3-5. Structures of Myo-, Epi-, Scyllo-Inositol and the corresponding IRI activities 47

Figure 3-6. Structure of D-galactose (310) and D-glucose (311) based azasugars 48

Figure 3-7. IRI activity of azasugars 310 and 311 and amino D-galactose regioisomers 301-304.. ... 54

Figure 3-8. IRI activity of lactams 329 and 330 and N-methylated analog 331 compared to azasugars 310 and 311. Additionally, 1-deoxy-D-glucose 335 is compared to azasugar 311 56

Figure 3-9. Ice crystal habit in the presence of a) 310 (10 mg/mL) and b) 311 (10 mg/mL)....... 57

Figure 3-10. Reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) in the cytotoxicity cell viability colorimetric assay ... 58

Figure 3-11. Percent cell viability of Hep G2 cells incubated with azasugars a) 310 and b) 311 in a MTT assay .. 59
Figure 4-1. Pipeline blockage caused by gas hydrates .. 65

Figure 4-2. Cavity composition of sI, sII, sH. ... 65

Figure 4-3. Videographs of the nucleation and growth of a methane hydrate at the surface of a water droplet under high subcooling (a) and low subcooling (b) .. 66

Figure 4-4. Schematic representation of the labile cluster hypothesis.................................. 67

Figure 4-5. Structures of anti-agglomeration agents developed by Shell.................................. 68

Figure 4-6. Structure of Polyvinylpyrrolidone.. 69

Figure 4-7. DSC curve (blue line) representing of a test run for an isothermal temperature experiment (-12 °C, pink line) with 1 mM PVP 10. Inset A magnifies the observed melting event with temperature (°C) on the x-axis while heat flow (µV) is on the y-axis and Inset B magnifies the observed nucleation events with the temperature (°C) and heat flow (µV) on the y-axis while time (s) is on the axis .. 70

Figure 4-8. Cumulative heat of reaction of gas hydrate inhibitor PVP 10 and anti-agglomeration agents 126 and 127 at 1 mM ... 72

Figure 4-9. IRI activity of compounds 126-128, 401, 402, 310, 311 and 331 is shown and compared to PVP 10 ... 75

Figure 4-10. Cumulative heat of reaction of compounds 126, 128, 401 and 402 at 1 mM 77

Figure 4-11. Cumulative heat of reaction of 310, 311, 331, D-glc and D-gal at 1 mM............. 78

Figure 4-12. Correlating IRI activity (%MGS relative to PBS) with the ability to inhibit gas hydrate formation (maximum heat of reaction) ... 79

Figure 5-1. Structure of carbohydrate-based surfactants and hydrogelators, lysine-based surfactants/gelators and truncated C-linked glycopeptides ... 86

Figure 5-2. Structure of D-glucose, D-galactose and D-mannose based phenoxyglycosides 88

Figure 5-3. Structure of amino-deoxy-D-galactose regioisomers and D-glucose and D-galactose based azasugars ... 89
Figure 5-4. Structure of phenoxyglycosides linked via an amide at C3 and C6 to open-alditol chain of D-glucose and D-galactose ... 90

Figure 5-5. IRI activities of amines 501 and 504, disaccharides 502, 503, 505 and 506 and β-PMP-Glc (507) ... 96

Figure 5-6. Structure of N-cycloalkyl-D-aldonamides with varying hydrophilic and hydrophobic moieties .. 99

Figure 5-7. IRI activity of N-cycloalkyl-D-gluconamides 512-516 .. 101

Figure 5-8. IRI activities of N-cycloalkyl-D-arabonamides 517-521 and D-arabinose 102

Figure 5-9. IRI activities of 512-516. .. 103

Figure 5-10. IRI activity of N-cyclooctyl-5-amino-5-deoxy-D-gluconamides 533 and 534 105

Figure 5-11. IRI activity of N-aryl-D-aldonamides 535-537 .. 107

Figure 5-12. Dose-response curves of β-PMP-Glc and β-pBrPh-Glc 110

Figure 5-13. Dose-response curve of N-phenyl-D-arabonamide 536 111

Figure 5-14. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 22 mM 503 in varying amounts of DMSO cryoprotectant solution .. 114

Figure 5-15. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 22 mM 512, 513 and 524 in varying amounts of DMSO cryoprotectant solution 115

Figure 5-16. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 11 mM 536 in varying amounts of DMSO cryoprotectant solution 116
List of Tables

Table 1-1. Classification and structural differences between fish antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) ... 7

Table 1-2 Isentropic molar compressibilities \(10^4K_0(s), \text{cm}^3 \text{mol}^{-1} \text{bar}^{-1}\) and hydration numbers of various monosaccharides and disaccharides. Errors of molar compressibility values and hydration numbers are shown in parentheses .. 15

Table 4-1. Ice crystal habit in the presence of 126 and 127 at 1 mg/mL and 310 and 311 at 10 mg/mL .. 81

List of Schemes

Scheme 3-1. Retrosynthetic analysis of the azasugars utilizing a series of stereoinversions followed by a ring closure .. 48

Scheme 3-2. Retrosynthetic analysis of the azasugars utilizing a key ring closure would generate the corresponding lactam which could then be reduced to generate the azasugars. .. 49

Scheme 3-3. Initial synthesis toward orthogonally protected D-galactose. .. 50

Scheme 3-4. Synthetic efforts toward orthogonal protection and subsequent activation of C5-OH. .. 50

Scheme 3-5. Efforts toward the synthesis of azasugars utilizing a sequential Mitsunobu reaction followed by intramolecular cyclization. .. 51

Scheme 3-6. Formation of azasugar 310 using an intramolecular cyclization involving the condensation of a primary amide onto a ketone .. 52

Scheme 3-7. Utilization of a Swern oxidation followed by double reductive amination to generate 311 .. 53

Scheme 5-1. Retrosynthetic analysis of the synthesis of compounds 501-503. 91

Scheme 5-2. Retrosynthetic analysis of the synthesis of compounds 504-506. 92

Scheme 5-3. Synthesis of β-PMP-Glc utilizing a boron trifluoride diethyl etherate promoted glycosidation. .. 93
Scheme 5-4. Synthesis of amine 504 and subsequent coupling to afford disaccharides 505 and 506.. 93

Scheme 5-5. Synthesis of amine 501 and subsequent coupling to afford disaccharides 502 and 503.. 94

Scheme 5-6. Synthesis of N-cycloalkyl-D-aldonamides.. 100

Scheme 5-7. Synthesis of N-cyclooctyl-5-amino-5-deoxy-D-glucosamide 533 and 534 utilizing a reductive amination key step. .. 104

List of Abbreviation

7-AAD 7-Aminoacetinomycin D
α Alpha
β Beta
δ Delta
e Epsilon
¹H Proton
¹³C Carbon
AAs Anti-agglomeration agents
Ac₂O Acetic Anhydride
ACN Acetonitrile
Ac Acetate
Ara Arabinose
AFP Antifreeze protein
AFGP Antifreeze glycoprotein
Atm Atmosphere
Bn Benzyl
Br Broad
BzCl Benzoyl Chloride
BF₃·OEt₂ Boron trifluoride diethyl etherate
CMC Critical micelle concentration
CSA Camphorsulfonic acid
Cat Catalyst
DCM Dicloformethane
DIAD Diisopropyl azodicarboxylate
DMF N,N-dimethylformamide
DMSO Dimethyl sulfoxide
DSC Differential scanning calorimeter
dt Doublet of triplets
EtOH Ethanol
Gal Galactose
Glu Glucose
Hep G2 Human liver hepatocellular carcinoma cells
wt Weight percent
Chapter 1. Introduction to Ice and Ice Recrystallization Inhibitors

1.1 Application of Ice Recrystallization Inhibition

Ice recrystallization is defined as the growth of large ice crystals at the expense of small ones. It is a thermodynamically driven process resulting in an overall reduction in the free energy of the system (this process is further explained in 1.3). The phenomenon of ice recrystallization has been problematic in areas of cryopreservation of cells, tissues and frozen foods.

Cryostorage is an important process to preserve precious cell types such as red blood cells and different progenitor cells. Ice recrystallization is known to be a significant cause of cell damage and cell death especially during the thaw process of cryopreservation. The same process has been responsible for changes in texture, taste and quality in frozen foods. Freezing of foods is another well-established process used to decrease the rates of deterioration. In order to fully understand the relationship between ice recrystallization and cell damage, an explanation of cryo injury suffered during cryopreservation is required.

During cryopreservation, the formation of ice is inevitable but different cooling rates have been applied to mitigate the damage associated with ice formation. There is an optimal cooling and warming rate for each cell type that is dependent on cell permeability to water and cryoprotectants. In general, either a fast or slow cooling rate is employed during cryopreservation depending on the cell type. Usually, ice will prefer to form in the extracellular medium. The formation extracellular ice causes an osmotic pressure across the cell membrane. All solutes are excluded from the ice lattice of extracellular ice and concentrated in the extracellular medium. This causes the cell to undergo dehydration (intracellular water to external medium). Cells with less permeable membrane will rupture with increasing pressure if they cannot dehydrate fast enough. This process of dehydration is necessary as decreased intracellular water reduces the chance for lethal intracellular ice formation. However, dehydration combined with exposure to high concentrations of electrolytes is also lethal to cells. This is referred to the “solute effect” which causes irreparable damage to cell membranes.

Excessive dehydration can be prevented using cryoprotectants. Two classes of cryoprotectants are commonly employed. Non-penetrating cryoprotectants do not cross the cell membrane and thus, increase the osmolality of the extracellular medium, facilitating dehydration. Penetrating cryoprotectants readily cross the cell membrane and decrease the concentration of intracellular electrolytes while maintain greater cell volumes. In summary, cryopreservation of
cells under slow-freezing results in dehydration of the cell in response to increasing osmotic pressure. This dehydration has been shown to be detrimental to the cell.

Cryopreservation using high cooling rates traps water inside the cell promoting lethal intracellular ice formation. High cooling rates generally lead to the formation of smaller ice crystals. A high cooling rate must be accompanied by appropriate dehydration of the cell to mitigate cell death. As mentioned above, a non-penetrating cryoprotectant can be employed to facilitate cell dehydration during fast-cooling protocols. Interestingly, while intracellular ice formation has been correlated to cell death, there is evidence that intracellular ice formation is not solely responsible for cell death. Studies have indicated that the survival of cells post-cryopreservation is dependent on the warming rate utilized during thaw. It has been concluded that the cell death associated with intracellular ice formation is occurring as a result of ice recrystallization. It is reported that at -100 °C, ice recrystallization can occur, and the rate of recrystallization is proportional to temperature and inversely proportional to ice crystal size. Thus, while ice recrystallization can occur during freezing, the largest cell damage occurs during the thawing process during which higher temperatures and smaller ice crystals are present. Upon warming, the enthalpically favoured recrystallization of ice (discussed in 1.3) will occur outside and inside the cell causing stress on the membrane. Therefore, the less thermodynamically stable and smaller ice crystals will merge into larger ones which then apply stress on the cytoplasmic and plasma membranes. The result is a ruptured membrane which undoubtedly induces cell death. Ice recrystallization is not limited to cryopreservation protocols utilizing a high cooling rate. Cells with low water permeability require slow cooling rates to allow for sufficient dehydration to inhibit intracellular ice formation. However, it is often difficult to obtain a slow enough cooling rate to completely inhibit intracellular ice formation and therefore ice recrystallization will always occur and cause cell death.

Recently, the cryopreservation of certain progenitor cells such as hematopoietic stem cells has become increasingly important with recent advances in regenerative medicine therapies. Regenerative therapies have been utilized during the treatment of many medical complications such as spinal cord injury, coronary artery disease, heart attacks, stroke, various cancers, genetic diseases, immune deficiencies and blood disorders. However, the success of regenerative therapy is closely correlated to the quality and number of cells recovered post-thaw. Reduced post-thaw cell viabilities due to cryo injury caused by ice recrystallization
remains a major problem. The mechanism of recrystallization has been extensively studied in the metallurgical and material science literature.1, 27-29 However, the reasons that some compounds are better inhibitors of ice recrystallization that other are not known. Additionally, the key structural features necessary for effective ice recrystallization inhibition have not been elucidated. In order to fully understand the mechanism of ice recrystallization, an understanding of properties of ice is required.

1.2 Properties of Ice

The many different forms of ice are dependent on temperature and pressure. The most common form of ice, hexagonal (I\textsubscript{h}), is formed at atmospheric pressure and below 0 °C.30, 31 The basic structure of I\textsubscript{h} consists of six water molecules forming a chair-form when viewing from the z-axis. When viewing from the vertical axis, the structure is a boat-form containing six water molecules (\textbf{Figure 1-1}). Each water molecule is typically hydrogen bonded with four other surrounding water molecules. The typical distance between oxygen nuclei is 2.76 Å; covalently bonded hydrogens are about 1 Å from an oxygen nucleus, and the hydrogen bond length comprises the remaining 1.76 Å. Generally, one hydrogen lies between adjacent oxygen atoms in the hydrogen bond found in ice. These structures form hexagonal plates where the top and bottom faces are the basal planes, consisting of the chair-form configuration. The six equivalent side faces are called the prism face and consist of the boat-form configuration. The I\textsubscript{h} ice lattice unit is composed of four axes \(a_1, a_2, a_3\), and \(c\), and the surface of each unit has eight faces.30-33 The structure of I\textsubscript{h} is depicted in \textbf{Figure 1-1}. The basal faces are normal to the \(c\)-axis while the remaining six faces are the prism faces. At 0 °C and atmospheric pressure, ice growth is along the \(a\)-axis producing hexagonal shaped crystals which grow as sheets.30-32, 34
Figure 1-1. Structure of the hexagonal ice I₆ lattice unit illustrating the three-dimensional hydrogen bonded network of water in which make up the different planes. Also illustrated are the different axes which are part of the lattice unit.12

The water surrounding newly formed ice crystals is not as dynamic as originally hypothesized.35-39 It have been discovered that there is a semi-ordered layer of water at the interphase between solid ice and bulk water called the quasi-liquid layer (QLL).33, 35, 40-44 Figure 1-2 represents the QLL.

Figure 1-2. Schematic representation of the quasi-liquid layer (QLL) between bulk water and ice.

The thickness of the QLL is 10-15 Å thick but is highly temperature dependent.35, 42, 45 Its thickness increases as the temperature approaches the melting point.46 For example, the thickness of the QLL at -0.03 °C was measured to be 15 nm, or 40 monolayers of water. However, at -10 °C, less than a monolayer remains.36 The exact molecular nature and thickness of the QLL interface has been debated throughout the literature and a wide variety of techniques have been used to study it, including atomic force microscopy,47 X-ray diffraction,48 infrared spectroscopy,36 proton backscattering,49 Raman spectroscopy,50 quartz-crystal microbalance measurements,51 light scattering techniques,52-54 photoelectron spectroscopy,55 optical
Ellipsometry, optical reflection and mechanical measurements. Ellipsometric studies, measuring the refractive index on the basal and prism faces of ice, have suggested that the interface is more water-like in nature, rather than ice-like. In contrast, other studies have suggested that the orientation and motion of water molecules in the QLL closely resembles that of ice. The exact nature of the QLL is still not understood indicating that the equilibrium between ice and water is complicated.

1.3 Mechanisms of Ice Recrystallization

The recrystallization of ice can be explained through two different mechanisms: grain boundary migration or Ostwald ripening. A grain of I$_h$ ice (hexagonal ice) is the ordered arrangement of the water molecules in a crystalline structure (ice crystal). Grain boundaries represent the interface between differently oriented ice grains. At equilibrium, a grain of I$_h$ would have six neighbouring I$_h$ grains where the angle between the grain boundaries is 120° and all segments are straight. However, outside of equilibrium, some grains have more than six neighbours and some have fewer than six. Thus, the 120° angles require a grain boundary with curvature. A big grain (large ice crystal) tends to have more than six neighbors and thus, its grain boundary tends to be concave (bulge inwards). In contrast, a small grain (small ice crystal) tends to have fewer than six neighbours and thus, its grain boundary tends to be convex (bulge outwards). During grain boundary migration, molecules of water transfer from an unfavourable orientation to a more favourable orientation within ice grains. Smaller ice grains have convex grain boundaries resulting in higher surface energy while in contrast, larger ice crystals have concave grain boundaries and thus lower surface energy. Grain boundaries migrate to grow large ice crystals at the expense of smaller ice crystals to reduce the degree of curvature and thus reducing the overall energy in the system. Grain boundary migration is depicted in Figure 1-3.
The mechanism of grain boundary migration fails to discuss the interaction between ice, QLL and bulk water. In an ice crystal, water molecules on the surface are less stable than the water molecules in ice because the water molecules at the surface are unable to form the optimal amount of hydrogen bonds. Therefore, smaller ice crystals that have a higher surface area to volume ratio are thermodynamically less stable than large ice crystals which possess a greater volume to surface area ratio. During Ostwald ripening, ice volume is assumed to remain constant. Therefore, Ostwald ripening suggests water molecules are transferred from the surface of smaller ice crystals to bulk water, and finally to larger ice crystals. This results in an overall reduction in the free energy of the system.

Since the recrystallization of ice is detrimental to cells during the thaw process of cryopreservation, there is an increasing interest in effective ice recrystallization inhibitors. Naturally occurring biological antifreezes are very effective inhibitors of ice recrystallization. These compounds protect certain organisms, such as fish, insects and amphibians, inhabiting in sub-zero climates from cryo injury.
1.4 Biological Antifreezes

There are two mains classes of biological antifreezes: antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs). AFPs were first discovered by Scholander and colleagues who observed the survival of telost fish in water temperatures of -1.9 °C (normal freezing point of the blood serum is -0.8 °C). De Vries and Wohlschlag later attributed their survival to proteins and glycoproteins.

There are four different classes of AFPs found in fish and they differ significantly in their structures as shown in Table 1-1. AFPs have been found in many other organisms, such as the spruce budworm moth, the yellow mealworm beetle, the fire-coloured beetle and the snow flea. AFPs have also been found in plants, fungi and bacteria.

Table 1-1. Classification and structural differences between fish antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>AFGP</th>
<th>Type I AFP</th>
<th>Type II AFP</th>
<th>Type III AFP</th>
<th>Type IV AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kDa)</td>
<td>2.6-33</td>
<td>3.3-4.5</td>
<td>11-24</td>
<td>6.5</td>
<td>12</td>
</tr>
<tr>
<td>Key Properties</td>
<td>AAT repeat; disaccharide</td>
<td>Alanine-rich</td>
<td>Disulfide bonded</td>
<td>β-sandwich</td>
<td>Alanine rich; helical bundle</td>
</tr>
<tr>
<td>Natural Source</td>
<td>Antarctic; Notothenioids; northern cods</td>
<td>Right-eyed flounders; sculpins</td>
<td>Sea raven; smelt; herring</td>
<td>Ocean pout; wolfish; eel pout</td>
<td>Longhorn sculpin</td>
</tr>
</tbody>
</table>

AFGPs have homologous structures and are separated into eight classes based on their molecular weights. AFGP-1 has a molecular weight of 33.7 kDa while AFGP-8 has a molecular weight of 2.6 kDa. A typical AFGP is shown in Figure 1-4 and contains a repeating alanine-alanine-threonine tripeptide unit with the secondary oxygen of threonine glycosylated to β-D-galactosyl-(1,3)-α-N-acetyl-D-galactosamine. Some AFGP structures contain minor amino
acid variations, such as the alanine replaced by a proline or a threonine replaced by an arginine.101-106

Figure 1-4. General structure of AFGPs.

1.5 Properties of Biological Antifreezes

There are two general properties of biological antifreezes: thermal hysteresis (TH) and ice recrystallization inhibition (IRI). TH activity of AF(G)Ps was the first property described in the literature. TH is defined as the selective depression of the freezing point of a solution relative to the melting point.107-109 This activity is the direct result of AF(G)Ps binding to a seeded ice crystal which results in a localized freezing point depression.110, 111 Pure water has a melting and freezing point of 0 °C. The introduction of salts into the system will result in a colligative depression the melting and freezing points by the same amount. Salts hinder the ability of water molecules to align properly to form an ice lattice. However, in the presence of AF(G)Ps, binding causes changes to the ice crystal habit and a difference between the melting point and freezing point is observed. The difference in temperature between these two properties is known as a TH gap (Figure 1-6A) and AF(G)Ps that cause this effect are referred to as possessing TH activity. Ice crystals formed within the TH gap are neither growing nor melting. This is significant because as long as the temperature is within the TH gap, large amounts of ice will not form therefore protecting organisms inhabiting sub-zero temperatures.

The mechanism of TH is attributed to an irreversible adsorption of AF(G)Ps to specific planes of a growing ice crystal. Binding occurs on the prism face of ice and thus ice growth occurs along the c-axis leading to spicule ice crystal shape. This change in the crystal shape is referred to as dynamic ice shaping and is illustrated in Figure 1-5.99, 107, 112-115 As the temperature is cooled beyond the TH gap, ice crystals will continue to grow as sharp spicules and eventually cause complete freezing of the solution.
Figure 1-5. Change in an ice crystal habit during recrystallization in the presence of an AF(G)P.12

The irreversible adsorption of AF(G)Ps causing a localized freezing point depression can be rationalized using the Kelvin effect.109, 113 In this effect, the AF(G)P adsorbs to an ice prism face and water molecules can only adsorb on the surface between the AF(G)P adsorption sites. As water molecules add to the surface, the radius of curvature increases. The increase of surface tension at the curved surface hinders the addition of subsequent water molecules and ice growth is stopped. However, if the temperature is decreased below the TH gap, the curvature increases to a point where the bound AF(G)P are frozen over, resulting in rapid expansion of the ice crystal, often forming spicules.109 This radius threshold before the ice over-growth occurs is known as the Kelvin radius. This effect does not affect the energetics of the melting process and thus, only the freezing point is depressed.72, 109, 115

Two models have been developed to describe how AF(G)Ps inhibit ice growth within the TH gap: the Step-Pinning Model and the Mattress Model. In the Step-Pinning Model, ice growth is thought to occur in steps advancing across a plane and AF(G)Ps pin ice growth along these steps.113 In the Mattress Model, AF(G)Ps inhibit ice growth perpendicular to the ice surface.110 The TH gap and both of these models are presented in Figure 1-6.
Figure 1-6. Illustrations of thermal hysteresis (TH) activity and two models of ice growth inhibition. A) An illustration of a TH gap resulting from the depression of a freezing point relative to the melting point. B) Step-Pinning Model and C) Mattress Model depicting the irreversible adsorption-inhibition mechanism of AF(G)Ps.12

The second property associated with biological antifreezes is ice recrystallization inhibition (IRI). IRI is the ability to maintain small ice crystals within a frozen solution. As described previously, while ice recrystallization can occur during freezing, it causes the most cellular damage during thawing in cryopreservation and thus, IRI is a highly desirable property.

While AF(G)Ps possess potent IRI activity, their use as cryoprotectants have yielded conflicting results. Cryopreservation studies utilizing AFGPs to cryopreserve pig oocytes, mouse embryos, carp spermatozoa and human platelet cells all displayed increases in cell viabilities post
cryopreservation. In contrast, high concentrations of AFGPs failed to protect an isolated rat heart during the freeze-thaw process. Overall, in the literature the use of AF(G)Ps as cryopreservatives is considered ineffective. The lack of success as effective cryoprotectants is due to the formation of speculate ice crystals which form below the TH gap which damages cells. Temperatures employed during cryopreservation are well below the TH gap. Therefore, an ideal cryoprotectant will possess the beneficial IRI activity without the damaging effects of TH.

1.6 Synthetic AFGP Analogues

The Ben laboratory was first to publish rationally designed and synthesized C-linked AFGP analogues 101-104 (Figure 1-7).

![Figure 1-7. Structure of the first C-linked AFGP analogues.](image)

These analogues possess potent IRI activity similar to AFGP-8 but do not possess the TH activity. The lack of an O-glycosidic linkage, normally found in AFGPs, made these analogues less susceptible to hydrolysis under acidic or basic conditions. Comparing their structures to AFGPs, the disaccharide is replaced with D-galactose which is α-conjugated to lysine. Lysine was chosen to mimic arginine residues commonly found in AFGPs. Additionally, glycine was used to replace alanine to avoid racemization encountered during solid-phase synthesis. Only compounds 103 and 104 were moderately IRI active. Both compounds showed a TH gap of 0.06 °C and induced dynamic ice shaping. However, a TH gap of 0.06 °C has been shown to be negligible during cryopreservation.

In a follow-up study, the Ben laboratory published two more C-linked AFGP analogues exhibiting potent IRI activity. The structure of these compounds, 105 and 106 are shown in Figure 1-8.
Both compounds 105 and 106 contain a D-galactose unit which is C-linked to four tripeptide unit repeats. Compound 106 is structurally similar to lysine derivatives 102-104 but the D-galactose is now α-conjugated to an ornithine residue. Compounds 105 and 106 both exhibited potent IRI activity at 5.5 µM and their activity was similar to that exhibited by AFGP-8 at 5.5 µM. Unlike AFGP-8, neither compound exhibited TH activity and compound 106 only exhibited very weak dynamic ice shaping. These analogues were the first examples of compounds with “custom-tailored” antifreeze activity where the two properties of biological antifreezes, TH and IRI, were decoupled.

With these analogues in hand, the Ben laboratory performed structure-function work to determine the structural features necessary for potent IRI activity. Analogues of 106 were synthesized in which D-galactose was replaced with D-glucose (107), D-mannose (108) and D-talose (109) monosaccharide moieties (Figure 1-9).
The IRI activity of 106-109 was measured using the splat-cooling assay. In the splat-cooling assay, a 10 µL solution is dropped from 2 meters high onto a pre-cooled (-78 °C) aluminum block. This causes the solution to instantaneously freeze as a thin ice wafer forming many small ice crystals in the process. This ice wafer, measuring 1 cm wide and 20 µm thick, is then transferred to a glass cover slip and onto a Peltier unit. The wafer is then warmed to -6.4 °C and annealed for 30 minutes to allow for recrystallization to occur. The presence of small ice crystals after the annealing time indicates inhibition of recrystallization has occurred, whereas large ice crystals show no inhibition of ice recrystallization. The size of the ice crystals can be quantified using a Domain Recognition Software. Commonly, analytes are assayed in a salt solution which negates non-specific IRI effects observed otherwise in pure water. The Ben laboratory uses a phosphate buffered saline (PBS) solution, which is therefore a positive control for ice recrystallization. The IRI activity of 106-109 is presented in Figure 1-9 where the y-axis of the graph represents the ice crystal mean grain size (MGS) relative to PBS. The D-galactose analogue, 106, was the most potent derivative, while D-glucose analogue 107 exhibited moderate IRI activity. D-Mannose and D-talose analogues, 108 and 109, exhibited weak IRI activity. The results illustrate the effect on IRI activity and thus the importance of the stereochemical relationship of the hydroxyl groups on the carbohydrate moiety of the glycopeptide.
A similar result was obtained when the monosaccharides were examined individually as reducing sugars. The IRI activity of the monosaccharides is shown in Figure 1-10.

Figure 1-10. IRI activity of simple monosaccharides.\(^{39}\) Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s \(t\)-test (*, \(p < 0.05\)). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

D-Galactose was the most potent inhibitor while D-glucose exhibited only moderate IRI activity, and both D-mannose and D-talose possessed weak IRI activity. The stereochemistry of the hydroxyl group is also known to influence the hydration of the carbohydrate; and therefore, hydration of a compound is important when considering IRI activity.\(^ {39}\) A concentration scan of D-galactose revealed that concentration higher than 0.0022 M was required to generate IRI activity with 0.22 M being particularly effective. Although a 0.22 M concentration results in reasonable IRI activity, viscosity issues made it technically difficult to handle within the assay. However, a 0.022 M solution showed IRI activity nearly identical to that of a 0.044 M solution, but did not present viscosity issues\(^ {39}\) and thus, a 0.022 M concentration is generally utilized within this thesis. A recent study from the Ben laboratory examined the relationship between carbohydrate hydration and IRI activity, and found a strong linear relationship between the hydration number and IRI activity. The structures of the mono- and disaccharides studied along with their hydration numbers, isentropic molar compressibility, and partial molar volume values are shown in Table 1-2.\(^ {39}\)
Table 1-2 Isentropic molar compressibilities ($10^4K_2^0(s)$, cm3 mol$^{-1}$ bar$^{-1}$) and hydration numbers of various monosaccharides and disaccharides. Errors of molar compressibility values and hydration numbers are shown in parentheses.12

<table>
<thead>
<tr>
<th>Carbohydrate</th>
<th>Molar Compressibility ($K_2^0(s)$x104, cm3 mol$^{-1}$ bar$^{-1}$)</th>
<th>Hydration Number</th>
<th>Carbohydrate</th>
<th>Molar Compressibility ($K_2^0(s)$x104, cm3 mol$^{-1}$ bar$^{-1}$)</th>
<th>Hydration Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Galactose</td>
<td>-20.8 (0.5) -20.4 (0.4)</td>
<td>8.7 (0.2)</td>
<td>D-Glucose</td>
<td>-17.6 (0.3)</td>
<td>8.4 (0.2)</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>-16.0 (0.5)</td>
<td>8.1 (0.2)</td>
<td>D-Talose</td>
<td>-11.9 (0.3)</td>
<td>7.7 (0.2)</td>
</tr>
<tr>
<td>Melibiose</td>
<td>-31.2 (1.0)</td>
<td>15.5 (0.3)</td>
<td>Lactose</td>
<td>-31.1 (0.2) -30.4 (1.0)</td>
<td>15.3 (0.3)</td>
</tr>
<tr>
<td>Trehalose</td>
<td>-30.2 (0.3)</td>
<td>15.3 (0.3)</td>
<td>Maltose</td>
<td>-23.7 (1.0)</td>
<td>14.5 (0.3)</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-17.8 (0.5)</td>
<td>13.9 (0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydration can be described as the number of water molecules that interact closely with a solute. In the 1990s, Galema et al. studied key parameters thought to dictate hydration characteristics and these were correlated to carbohydrate stereochemistry. The partial molar volumes, isentropic partial molar compressibilities and hydration numbers were determined for many commercially available mono- and disaccharides using kinetic experiments and density ultrasound measurements.$^{125-127}$ Using these values, Galema et. al. were able to quantify the “compatibility” of carbohydrates within the three-dimensional hydrogen bonded network of bulk water. The compatibility of the carbohydrate was directly related to the stereochemical relationship of the hydroxyl groups on the carbohydrate. For example, the presence of axial
hydroxyl groups on C2 and C4 of D-talose, had a higher isentropic molar compressibility value and a lower hydration number and thus fit well into the three-dimensional hydrogen bonded network of bulk water. However, with one axial hydroxyl group at C4, D-galactose, has a lower isentropic molar compressibility value and a higher hydration number. Therefore, D-galactose is a poor fit into the three-dimensional hydrogen bonded network of bulk water. \(^{125-127}\) Highy hydrated carbohydrates with a poor fit into the three-dimensional hydrogen bonded network ultimately cause disorder in bulk water and the semi-ordered QLL since carbohydrates are thought to concentrate at the interface between bulk water and the semi-ordered QLL. \(^{39}\) As stated in section 1.3, bulk water molecules transfer first to the QLL during ice recrystallization, and then from the QLL to the growing ice lattice. A carbohydrate with a poor fit in bulk water will cause a greater disturbance to its three-dimensional hydrogen bonded network, thus increasing the energy associated with the transfer of bulk water to the QLL. Therefore, IRI activity observed with carbohydrates occurred at the bulk water-QLL interface. Given that the thickness of the QLL is small and the entropy of the first hydration shell can extend out to the third hydration shell, \(^{128}\) this energy difference would be significant. Highly hydrated carbohydrates, such as D-galactose, disrupted the pre-ordering of bulk water (increase the entropy of surrounding bulk water) making it energetically unfavorable for water molecules to transfer to the QLL thus causing inhibition of ice recrystallization. \(^{39}\) The relationship between IRI activity and carbohydrate hydration is summarized in Figure 1-11.

Figure 1-11. An illustration of the relationship between IRI activity and carbohydrate hydration.

1.7 Defining Potent IRI Activity

As described above, the effectiveness of IRIs has previously been accomplished using a splat-cooling assay. This generates mean grain size (MGS) of an analyte’s ice crystals relative to a PBS positive control at a single time point. \(^{124}\) However, this approach ignores two well-known aspects of recrystallization: time dependence of crystal growth and the heterogeneous nature of
crystal sizes obtained during recrystallization. The MGS is not an accurate representation of a non-homogenous sample in which the distribution of ice crystal sizes is quite large, notably at increased time points. Recently, the Ben laboratory has developed a complimentary analysis ideally suited to measure a rate constant for the recrystallization process in the presence of IRIs when large ice volume fractions are present such as in the splat-cooling assay. In this assay, ice crystals of each wafer were grouped into equally sized “bins”, where the incremental bin size was determined by the smallest area into which all crystals could be fit at time zero. The summed area of all the crystal in each bin was then converted to a proportion of the area of the total sample, in order to emphasize the relative importance of each bin. It was observed that while most bins increased or decreased in population over time, the initial bin only decreased over time. Furthermore, this decrease could be described using a simple mono-exponential equation, providing a first order rate constant for the depopulation of the initial bin. Using previously discovered small molecule IRIs, the Ben laboratory were able to demonstrate that the rate constant varies as a function of the inhibitory concentration. A classic dose-response curve was utilized to characterize the concentration dependence on the rate-constant. Utilizing a four-parameter sigmoidal equation, parameters such as efficacy, potency (IC$_{50}$) and cooperativity (Hill slope) could be determined for each small molecule IRI. The small molecule IRIs utilized in the study proved to be full antagonists with low millimolar range IC$_{50}$ values. Additionally, the Hill slope was found to be greater than 1 and this suggested that cooperativity may be involved in the mechanism of action of these small molecule IRIs. It was suggested that these small molecules may for self-assembling structures within the QLL disfavouring the transfer of bulk water to the QLL and ultimately to ice during ice recrystallization. While this assay provides further insight to the properties of the novel small molecule IRIs, many of the small molecules discussed within this thesis were analyzed using the traditional splat-cooling with a single time-point. Therefore, the MGS obtained from the traditional splat-cooling assay will be further defined in order to accurately discuss the effectiveness of the small molecule IRIs presented within this thesis.

Compounds producing a MGS of 25% or lower relative to PBS are referred to as possessing potent IRI activity. Compounds that have moderate IRI activity produce MGS of 25-80% relative to PBS. Finally, compounds that have weak to no IRI activity produce MGS of 80-100% relative to PBS.
1.8 Small Molecule Ice Recrystallization Inhibitors

Following the report that simple carbohydrates exhibit moderate IRI activity, the Ben laboratory developed various carbohydrate derivatives with the ability to inhibit ice recrystallization. Since C-linked AFGP analogues displayed potent IRI activity, \(\alpha-C \)-linked allylated derivatives 110-113 of simple monosaccharides were assessed for IRI activity to investigate the effect of a carbon substituent at the anomeric carbon. Additionally, \(\beta-C \)-linked allylated derivatives 114-115 were also assessed.\(^{39}\) The effect of fluorine was explored in 116 and its derivatives 117-118.\(^{130}\) Other D-galactose based analogues 119-121 have also been assessed for IRI activity.\(^{130, 131}\) The structure of carbohydrate derivatives 110-121 are shown in Figure 1-12. At 22 mM, these analogues possessed only moderate IRI activity with activity not exceeding 60% MGS relative to PBS. It was concluded that simple groups at the anomeric carbon did not affect IRI activity.

![Figure 1-12. Structure of monosaccharide ice recrystallization inhibitors.](image)

Along with monosaccharide analogues, structural analogues of the disaccharide found in native AFGPs were investigated for IRI activity. These included an analogue, 122, of the native AFGPs (Figure 1-13), regioisomers of 122 where the terminal \(\beta-D \)-galactose moiety is linked to the C4-OH or C6-OH group of \(N \)-acetyl-\(D \)-galactosamine (124 and 125 respectively), and disaccharide 123 in which the C2 \(N \)-acetyl group is replaced with a hydroxyl group. Disaccharides 122-125 exhibited similar IRI activity to \(D \)-galactose. The activities of 122 and 125 were statistically indistinguishable from \(D \)-galactose. This result indicated that the \(\beta-(1,3) \) and \(\beta-(1,6) \) linkages does not greatly affect IRI activity relative to \(D \)-galactose. However, the
most IRI active disaccharide was 124, a disaccharide unlike the native AFGP. This is interesting as the native disaccharide in AFGPs possess a β-(1,3) linkage whereas the most active disaccharide possess a β-(1,4) linkage. Most importantly, these disaccharides are not glycoconjugated to the native alanine-alanine-threonine peptide and thus, it is unknown whether a glycoconjugate of 124 would be more active than the native AFGP.

As previously described, the Ben laboratory has generated compounds with “custom-tailored” antifreeze activity where the two properties of biological antifreezes, TH and IRI, were decoupled. It has been previously reported that the C2 acetamide in the native AFGP is crucial for TH activity. However, removal of the C2 acetamide to generate 123 had no effect on IRI activity as 122 and 123 had indistinguishable IRI activity. It is very interesting that the C2 acetamide was deemed important for TH activity but not for IRI activity.

![Structural disaccharide analogues](image)

Figure 1-13. Structural disaccharide analogues of the native β-D-galactosyl-(1-3)-N-acetyl-D-galactosamine disaccharide found in native AFGPs.

Utilizing the structure-function worked described above, the Ben laboratory continued its efforts to generate potent small molecule IRIs which lack the detrimental TH activity. In 2012, the Ben laboratory demonstrated that small molecule carbohydrate-based surfactants and hydrogelators exhibit very potent IRI activity. It was the first report of small molecules exhibiting very potent IRI activity. Many of the compounds showed much more potent IRI activity than their parent reducing sugars. It was hypothesized that compounds such as surfactants and hydrogelators have the ability to disturb the structure of bulk water and therefore may also be effective IRIs. The structures of these compounds are shown in Figure 1-14.
After assessing non-ionic surfactants 126 and 127 for IRI activity, it was found that D-galactose based surfactant (127) exhibited potent IRI activity even at 11 mM. D-Glucose based surfactant (126) was only moderately IRI active. In addition to surfactants, hydrogelators of the N-octyl-D-aldoamides, 128 and 129, were assessed for IRI activity. The D-glucose derivative was found to have unprecedented potent IRI activity at a low concentration of 0.5 mM (all other compounds were tested at 22 mM). To date, this is the most active small molecule IRI.

Interestingly, the D-galactose derivative was found to be only weakly active at 0.5 mM. This trend is the opposite of that seen when testing D-glucose and D-galactose as reducing sugars. N-methylated analogues 130 and 131 exhibited weak activity which demonstrated the importance of the hydrogen linked to the amide nitrogen. Compound 132 exhibited weak IRI activity and highlighted the importance of the amide bond. None of these compounds were found to exhibit TH activity or dynamic ice shaping and thus were not binding to ice. This was later confirmed with solid-state NMR studies. This was the first example of small molecules exhibiting “custom-tailored” antifreeze activity on par with AFGPs and their analogues.

Another class of surfactants possessing potent IRI activity developed by the Ben laboratory was based on low-molecular weight organogelators. The structure of lysine based analogues is displayed in Figure 1-15. For surfactants 133-142, the α- and ε-amino

Figure 1-14. Structure of carbohydrate-based IRI active surfactants and hydrogelators.
terminals were acylated with alkyl chains of different lengths. Additionally, the carboxylic acid was converted to a lithium, sodium or potassium carboxylate salt to improve solubility and thereby creating an anionic lysine surfactant.

Figure 1-15. Structure of lysine-based anionic and cationic surfactants.

Assessment of the lysine surfactants possessing a sodium carboxylate salt revealed that the most potent analogues had an eleven carbon alkyl chain at R₂ (137-140). These analogues were tested at 22 mM in a 0.5 mg/mL NaCl standard solution. Interestingly, the alkyl chain at R₁ did not significantly affect IRI activity. The nature of the carboxylate salt had an impact on IRI activity, as the IRI activity of carboxylic acid 142 was lower than the activity of the carboxylate salt of direct analogue 138. Conversion of 135-138 to either a lithium or potassium carboxylate salt affected IRI activity compared to their corresponding sodium carboxylate salts. During the study of carbohydrate-based surfactants, it was noticed that the presence of the amide bond was important to activity. Similarly, removing the carbonyl group from the amide bond in 134 to generate 143, resulted in a loss in IRI activity.

Cationic lysine derivatives possessing alkyl esters of various lengths (144-149) were also assessed for their IRI activity. These derivatives possessed both amines as hydrochloride salts. At 22 mM in a 0.5 mg/mL NaCl solution, the most IRI active analogue contained a ten carbon chain (147). Interestingly, increasing this alkyl chain to twelve or fourteen carbons (148 and 145 respectively), resulted in a decrease in IRI activities. An overall analysis of the studies utilizing compounds with long alkyl chains demonstrates the importance of hydrophobic moieties to IRI activity. Additionally, the position and size of these domains also affect IRI
activity. A delicate balance between hydrophobic and hydrophilic moieties is required for potent IRI activity.100

Of all the carbohydrate-based analogues discussed up to now, C-linked AFGP analogues \textbf{105} and \textbf{106} were one of the most potent IRI active compounds. Thus, the C-linked AFGP analogue \textbf{106} was truncated to determine the smallest sub-unit that can exhibit potent IRI activity.140 The structures of truncated analogues of \textbf{106} are shown in Figure 1-16. Compounds \textbf{150-163} contain alkyl chains from one to sixteen carbons. Ionizable groups such as amine and carboxylic acid groups as well as alcohol groups were explored in \textbf{164-166}. Additionally, structurally diverse groups such as branched alkyl chains (\textbf{167-170}), rings (\textbf{171-172}), and various alkenes and alkynes (\textbf{173-177}) were also examined.

![Figure 1-16. Structure of truncated C-linked AFGP analogues.](image)

When derivatives containing alkyl chain analogues were assessed for IRI activity at 22 mM in PBS, compounds containing seven (\textbf{157}) and eight (\textbf{158}) carbons atoms, exhibited potent IRI activity. The analogues containing nine and ten carbon atoms (\textbf{159} and \textbf{160}) were tested at a lower concentration (5.5 mM) due to solubility problems and these were even more active than \textbf{157} and \textbf{158} at the same concentration. Even at 5.5 \(\mu\)M, the analogues with the longest alkyl chains, \textbf{162} and \textbf{163}, were as active as D-galactose at 22 mM while \textbf{157-161} had substantially decreased IRI activity at the 5.5 \(\mu\)M concentration. The ionizable groups did not improve IRI activity as \textbf{164} and \textbf{165} were only moderately active. However, a slight improvement in activity was observed in the presence of an alcohol (\textbf{166}). Compounds containing unsaturated alkyl
chains (173-177) were only moderately IRI active. Once again, it was concluded that hydrophobic moieties are beneficial for IRI activity and that small molecule ice recrystallization inhibitors with potent IRI activity can be developed.140

1.9 Chapter Summary

In summary, the utilization of cryopreservation as a process for the long term storage of many biological systems has great importance in many different industrial applications. Improvement of current cryopreservation has driven the search and use of novel cryoprotectants possessing high IRI activity. Thus far the use of highly IRI active compounds as cryoprotectants has been limited to AF(G)Ps, “custom-tailored” C-linked AFGP analogues and polymers. The use of small molecules during cryopreservation has been limited to simple carbohydrates possessing moderate IRI activity. Thus, there is continuous interest in the development of novel small molecules IRIs capable of acting as cryoprotectants in commercial applications. To date, small molecules possessing potent IRI activity is limited to carbohydrate-based molecules possessing large hydrophobic moieties which resemble organogelators or surfactants. Given that surfactants are likely detrimental to cell membranes, there is a need to further expand the variety of carbohydrate-based small molecule IRIs. As the application of novel IRI active molecules continues to expand, further development of small molecule IRIs will have a significant impact in many different commercial applications.
2.0 References

Chapter 2. Goals and Objectives

As previously discussed in section 1.1, cryostorage is a critical process in modern health care which is spawning the emergence of stem cell and regenerative therapies. The number of human specimens available for clinical use, however, is limited by a lack of ideal preservation methods. Additionally, the lack of ideal preservation methods has also led to a loss in function of these stem cells post-thaw. Therefore, improved cryopreservation methods that maintain greater cell viabilities are very important. The most significant cause of decreased cell viability and impaired function during cryopreservation is direct mechanical damage due to ice recrystallization. While the use of cryoprotectants such as DMSO is effective to increase post-thaw viabilities, it has been shown that these cryoprotectants exhibit cytotoxicity.

Consequently, the Ben laboratory is interested in the rational design and synthesis of novel non-cytotoxic small molecules as potent inhibitors of ice recrystallization. Another use of these small molecules is the inhibition of the formation of gas hydrates. A gas hydrate is defined as a highly ordered network of hydrogen bonded water molecules encompassing a gas molecule. These hydrates cause blockages within oil and gas pipelines causing safety concerns and pipeline shutdown. Many different types of gas hydrates can be formed (dependent on the gas molecule) yet they all consist of about 85% water on a molecular basis. Thus, many properties are shared between gas hydrates and ice. Given the similarities to ice, IRI active molecules such as AFPs have been utilized to inhibit the formation of problematic gas hydrates. Unfortunately, difficulties associated with obtaining large quantities of these complex proteins have limited their use.

The design of small molecules IRIs is a relative new field and as such, work is required to determine the key structural features required for IRI activity. The following goals and objectives outline various nitrogen-containing carbohydrates as ice recrystallization inhibitors as well as their use in inhibiting problematic gas hydrates found in oil and gas pipelines.

2.1 Objective 1: Inhibiting Ice Recrystallization Utilizing Monosaccharides with an Endocyclic Ring Nitrogen

Previously, the Ben laboratory has demonstrated the relationship between hydration of carbohydrates and their ability to inhibit ice recrystallization. A highly hydrated carbohydrate was found to be a poor fit into the three-dimensional hydrogen bonded network of bulk water and resulting in inhibition of ice recrystallization. Hydration was related to the relative
orientation of the hydroxyl groups within the pyranose ring. D-Galactose was found to be the most hydrated and thus the most IRI active monosaccharide tested by the Ben laboratory.11 In addition, through an examination of mono-, di-, and trihydrates of simple carbohydrates, Simons \textit{et al.} have proposed that the hydration of a carbohydrate may be governed by the strength of the intramolecular hydrogen bond network within the pyranose ring. This hypothesis was based on the energy difference observed from the incorporation of a single water molecule within the intramolecular hydrogen bond network of the pyranose ring. It was found that the first water molecule incorporated between the weakest intramolecular hydrogen bond in order to limit the disruption of the intramolecular hydrogen bond network. In β-phenyl-D-glucose, water inserts between the C4-OH and C6-OH whereas in β-phenyl-D-galactose it inserts between C6-OH and the endocyclic ring oxygen (Figure 2-1).12, 13

\textbf{Figure 2-1.} A schematic representation of the insertion of water within the intramolecular hydrogen bond network of the hydroxyl groups on the pyranose ring.

Therefore, individual hydroxyl groups may be important positions for the addition of water molecules to the intramolecular hydrogen bond network of pyranose rings. Through MD simulations, Dashnau has also demonstrated that intramolecular hydrogen bond formation and hydrogen bonding cooperativity has a large effect on the structuring of water.14 All of these studies clearly suggest that individual hydroxyl groups within the pyranose ring is important to this intramolecular hydrogen bond network and therefore, individual hydroxyl group may have a large impact on hydration and ultimately IRI activity. Based upon this precedent, the Ben laboratory prepared a number of derivatives of D-galactose by systematically replacing individual hydroxyl groups with an amine. At a pH of 7.4 (that used in the splat-cooling assay), an amine substituent may be protonated and thus, the amine substituent could only act as a hydrogen bond donor. Previous structure-function work had suggested that the presence of a
hydrogen bond donor within the ring may be important to IRI activity. The structures of the synthesized amino derivatives are shown in Figure 2-2.

![Figure 2-2. Structure of amino-deoxy-D-galactose derivatives.](image)

It was found that the presence of an amine at C3 was the most beneficial to IRI activity (IRI activity of amino-deoxy-D-galactose derivatives will be further discussed in Chapter 3). This result demonstrated that simple structural modifications significantly affect IRI activity and further emphasis that individual hydroxyl groups can largely impact IRI activity. Thus, it is imperative to explore other simple modifications to the pyranose ring. All of the investigated amino-deoxy-D-galactose derivatives possess an endocyclic oxygen within the pyranose ring. Simons has shown that the ring oxygen plays a key role in hydrogen bonding to surrounding water molecules (Figure 2-1).12,13 With this in mind, it was imperative to replace the endocyclic oxygen to an amine within the pyranose ring. This simple structural modification may lead to highly IRI active compounds. Therefore, objective 1 involved the synthesis of azasugars (Figure 2-3) to further examine the role of the ring heteroatom in the interaction of carbohydrates with bulk water.

![Figure 2-3. Structure of D-glucose and D-galactose based azasugars.](image)

Compared to D-glucose and D-galactose, these azasugars possess a ring heteroatom bonded to hydrogen atom. The ring nitrogen can be utilized as a chemical handle for structural modifications which are not possible in a pyranose ring possessing a ring oxygen.

2.2 Objective 2: Inhibiting Gas Hydrate Formation Using Small Molecule Ice Recrystallization Inhibitors

Gas hydrates are ice-like solids containing gases within a highly-ordered network of water molecules.8 Of the many different forms of gas hydrates, those containing a single molecule of methane are known as sI hydrates.10 Hydrates pose a major problem in the
petroleum industry due to safety concerns and requirement of shutdown of the pipeline whilst the blockage is removed.9,10

Gas hydrate formation is prevented using two classes of compounds: thermodynamic inhibitors (THIs) and low-dosage hydrate inhibitors (LDHIs). THIs act as additives and induce a colligative freezing point depression. Generally, THIs are effective at 20-50 wt\%. Such large concentrations impose significant financial implications, exacerbated by the difficulty in recovering or recycling the THIs post-addition.10 Consequently, LDHIs are a cost-effective alternative. There are two classes of LDHIs: the kinetic gas hydrate inhibitors (KHIs) and anti-agglomeration agents (AAs). KHIs inhibit the nucleation and growth of gas hydrates while AAs reduce the propensity of small clusters of gas hydrates to aggregate and form blockages in pipelines.9 While most KHIs are water-soluble polymers, recent work has shown that antifreeze proteins can inhibit the growth of gas hydrates.15 Given the similarity between ice and gas hydrates, utility of AFPs as gas hydrate formation inhibitors is not surprising. As mentioned previously (section 1.5), AFPs possess two antifreeze properties: TH and IRI. The ability of AFPs to inhibit gas hydrate formation has been shown to be independent of their TH activity.15 However, the difficulty associated with obtaining large quantities of these compounds prevents their use on industrial scale. Consequently, the goal was to investigate whether small molecule inhibitors of ice recrystallization could also inhibit the formation of gas hydrates. In contrast to AFPs, large scale synthesis of small molecule ice recrystallization inhibitors is facile. Investigation of the ability of small molecule IRIs to inhibit gas hydrate formation will give insight into the structural features required for inhibition and thus facilitate future development of these molecules.

2.3 Objective 3: Synthesis of Small Molecules Possessing Potent IRI Activity Using Essential Structural Features

Glycopeptides previously prepared by the Ben laboratory possessing potent IRI activity are not amendable to large-scale synthesis due to their size and complexity. The identification of simple small molecule ice recrystallization inhibitors with potent IRI activity has therefore been an important goal in the Ben laboratory. Recent work has led to the discovery of three classes of potent inhibitors of ice recrystallization: carbohydrate-based surfactants and hydrogelators, lysine-based surfactants/gelators and truncated C-linked glycopeptides.16-18 Their general structures are shown in Figure 2-4.
Figure 2-4. Structures of carbohydrate-based surfactants and hydrogelators, lysine-based surfactants/gelators and truncated C-linked glycopeptides.

Structure-function study of the small molecules presented in Figure 2-4 revealed essential structural features which are important to IRI activity. These included: long alkyl chains, an amide linkage and an open-alditol chain. The surfactant nature of some of these compounds prevents their general use in cryopreservation because their surfactant-like properties can be detrimental to cells and solubilize cell membranes. Additionally, the long alkyl chain has also been shown to reduce the solubility of these compounds in aqueous solutions. As a surfactant, many of these compounds have the ability to form micelles in solution. However, it has been demonstrated that the ability to form micelles is independent of IRI activity. For example, carbohydrate-based non-ionic surfactant β-octyl-D-galactopyranoside was highly IRI active at a concentration well below its critical micelle concentration (CMC) while β-octyl-D-glucopyranoside did not exhibit IRI activity well above its CMC value. Furthermore, it has been demonstrated that IRI activity is not correlated to the ability to form micelles for structurally different non-ionic and anionic surfactants and anti-ice nucleating agents. Therefore, removal of the surfactant nature of some of these compounds will not be detrimental to IRI activity and may help the cytotoxic profile of these types of compounds. Therefore, compounds lacking long alkyl chains were explored for their IRI activity.

2.3.1 Objective 3A: Combination of Essential Structural Features to Synthesize Novel Small Molecule IRI

Recently, the Ben laboratory has utilized IRI-active phenoxyglycosides to reduce glycerol concentrations during the cryopreservation of red blood cells. These results demonstrate that small molecules lacking long alkyl chains are capable of potent IRI activity and...
have potential as novel cryoprotective agents. Based on this precedent, a number of small molecules have been generated which combine the essential features of phenoxyglycosides, D-galactose amino derivatives and carbohydrate-based hydrogelators to generate potentially highly IRI active compounds which lack a long alkyl chain (Figure 2-5). The goal of objective 3A is the synthesis and the complete IRI profiling of these small molecules. Their potential use as cryoprotectants will also be explored.

![Figure 2-5. Structure of phenolic glycosides linked to open-alditol form of carbohydrates.](image)

2.3.2 Objective 3B: Small Molecule IRIls with Hydrophobic Cycloalkyl Groups

While the presence of a long alkyl chain may be detrimental to solubility, the presence of a hydrophobic moiety is known to be important for IRI activity. Other structure-function work has shown that an ideal balance between hydrophilicity and hydrophobicity is required for potent IRI activity. For example, modification to the alkyl chain length or modification of the carbohydrate head group in carbohydrate-based hydrogelators were shown to impact IRI activity. Thus, small molecules with varying hydrophobic and hydrophilic components were synthesized to elucidate the ideal structural features required for potent IRI activity. These compounds are shown in Figure 2-6. A hydroxyl group from the D-gluconamide analogues was either removed or replaced with an amine. It was hypothesized that modifications to the hydrophilic portion may affect hydrogen bond capability and hydration of these molecules. In order to circumvent the poor solubility and surfactant-like properties of previous small molecules possessing long alkyl chains, cyclic alkyl rings were chosen as the hydrophobic component. It was hypothesized that these cyclic rings will maintain the required hydrophobicity whilst their
cyclic nature will minimize their ability to act as surfactant-like molecules. The goal of objective 3B will be the synthesis and the complete IRI profiling of these small molecules. Their potential use as cryoprotectants will also be explored.

Figure 2-6. Structure of open-alditol carbohydrates containing cyclic alkyl rings.
2.4 References

Chapter 3. Inhibiting Ice Recrystallization Utilizing Monosaccharides with an Endocyclic Ring Nitrogen

3.1 Introduction

An important goal of the Ben laboratory is to rationally synthesize small molecules that function as ice recrystallization inhibitors. As mentioned in section 1.1, compounds with the ability to inhibit ice recrystallization have many industrial applications. Previous work by the Ben laboratory has shown that simple monosaccharides possess moderate ice recrystallization inhibition (IRI) activity and that this activity is linked to hydration. In general, hydration is described as water molecules that interact closely with a solute. In the 1990s, Galema et al. studied key parameters thought to dictate hydration characteristics and these were correlated to carbohydrate stereochemistry. The partial molar volumes, isentropic partial molar compressibilities and hydration numbers were determined for many commercially available mono- and disaccharides using kinetic experiments and density ultrasound measurements (Table 1-2). The hydration number represents the number of water molecules that are hydrogen bonded and tightly bound to the solute. These water molecules are part of the primary hydration shell or layer of the carbohydrate. They are generally referred to being non-compressible. As such, they are indicative of the number of water molecules that are interacting with the other hydration layers and bulk water. Partial molar compressibility is a measure of the ability of the water in the outer hydration layers to compress. For a hydrophobic compound, water in the hydration layer forms tighter hydrogen bonds with nearby water molecules. Thus, the hydration layer is more dense and less compressible, thereby decreasing the partial molar compressibility value of the compound. A lower partial molar compressibility means that the hydration layer of a solute does not resemble the bulk water. The total volume of a solute and its surrounding hydration shells that is able to displace a solution of bulk solvent is referred to as the partial molar volume.

Using these measurements, Galema et al. were able to quantify the “compatibility” of carbohydrates within the three-dimensional hydrogen bonded network of bulk water. The compatibility of the carbohydrate was directly related to the stereochemical relationship of the hydroxyl groups on the carbohydrate. For example, the presence of axial hydroxyl groups on C2 and C4 of D-talose, had a higher isentropic molar compressibility value and a lower hydration number and thus fit well into the three-dimensional hydrogen bonded network of bulk water.
However, with only one axial hydroxyl group at C4, D-galactose, has a lower isentropic molar compressibility value and a higher hydration number. Therefore, D-galactose is a poor fit into the three-dimensional hydrogen bonded network of bulk water.2,4 This poor fit disrupts the ordering of bulk water molecules and decreases their ability to incorporate into the ice lattice and ultimately inhibiting ice recrystallization.1 Tam et. al. discovered that the absolute hydration number of a carbohydrate does not accurately predict its IRI activity. Thus, a new parameter termed the hydration index was developed. The hydration index is the hydration number divided by the molar volume of the carbohydrate. The hydration index now takes into account the number of water molecules tightly bound to a carbohydrate and the volume of a particular solute and ultimately the concentration of hydrated water molecules.1 The hydration index correlates well with IRI activity of many commercially available mono- and disaccharides. Furthermore, Tam et. al., proposed that carbohydrates are able to disrupt the preordering of water by acting at the interface between bulk water and the quasi-liquid layer of water (the nature of the quasi-liquid layer has been described previously in section 1.2).

Dashnau has shown that intramolecular hydrogen bond formation and hydrogen bonding cooperativity has a large effect on the water structure in the first hydration shell.5 Additionally, it has been proposed that a highly hydrated carbohydrate causes water in the surrounding hydration layers to become sequestered and less able to be integrated into the ordered hydrogen bond network of ice.5 This suggests that the relative position of each hydroxyl group on a pyranose ring affects the ability of these groups to participate in intramolecular hydrogen bonding, and ultimately, impacts the interaction with bulk water. The C4-OH of a pyranose ring was shown to be particularly important because it is able to be involved in several different hydrogen bond networks. The formation of an intramolecular hydrogen bond between C2-OH and C4-OH in D-talose has been observed. This intramolecular hydrogen bond is suggested to account for the observation that D-talose is more hydrophobic and less hydrated than D-galactose or D-glucose. Given that the relative position of each hydroxyl group on a pyranose affects the ability of these groups to participate in intramolecular hydrogen bonding, one way to disrupt this effect is to prevent the various hydroxyl groups from participating in hydrogen bond formation by removing the ability to function as a hydrogen bond donor or acceptor. To this end, Chaytor systematically methylated individual hydroxyl groups on α-C-allyl-D-galactose and these derivatives were tested for IRI activity (Figure 3-1).6
Figure 3-1. Structures of methoxy α-C-allyl-D-galactose regioisomers previously synthesized and tested for IRI activity.

It was hypothesized that methylation of the hydroxyl groups would ensure that the methylated hydroxyl group would function only as a hydrogen bond acceptor and not a donor\(^7\) thus disrupting the intramolecular hydrogen bond network which is important for hydration of the molecule.\(^5\) At 22 mM, all of the methylated α-C-allyl-α-D-galactose derivatives exhibited weak IRI activity. These results suggest that the presence of hydrogen bond donors within the pyranose ring is extremely important for IRI activity and possibly the hydration of the carbohydrates.\(^6\) The hydration numbers of the methylated α-C-allyl-α-D-galactose derivatives is unknown and thus, a link between IRI activity and hydration could not be made. Since hydrogen bond donating groups maybe important to IRI activity, the Ben laboratory decided to explore replacement of the hydroxyl groups within the pyranose ring to hydrogen bond donors such as an amine. The PBS solution utilized in the splat-cooling assay is at a pH of 7.4. Carbohydrates possessing an amine such as D-galactosamine will be protonated at this pH and this protonation removes the lone pair (on the nitrogen) required for hydrogen bond acceptance. Therefore, an amine substituent is ideally suited to investigate the importance of hydrogen bond donation on IRI activity.

Previously structure-function work by the Ben laboratory had observed that replacement of the C2-OH on D-galactose to an amine resulted in a slight decrease in IRI activity as compared to D-galactose.\(^8\) A similar observation has been made by Uedaira were the rotational correlation time, a measure of carbohydrate hydration, decreased for D-glucosamine relative to D-glucose.\(^9\) Considering that carbohydrate hydration correlates to IRI activity, it may have been expected (from work done by Uedaria) that an amine at C2 of D-galactose would lead to decreased IRI activity. However, as Galema and Dashnau have both demonstrated the importance of the axial C4-OH on pyranose rings to hydration and intramolecular hydrogen bond network of a carbohydrate,\(^2,5\) it is important to replace the C4-OH on D-galactose with an amine. An amine at C4 may provide increased hydrogen bond donating to the pyranose ring and thus possibly
increase hydration impacting IRI activity. Given that individual hydroxyl groups may affect hydration, it is important to replace the other hydroxyl groups on D-galactose to amines. The structures of the amino derivatives 301-304 (synthesized by Leclère and Tonelli10) as well as the corresponding IRI activities are shown in Figure 3-2. The free reducing sugar was chosen to allow for direct comparison to D-galactose.

\textbf{Figure 3-2} Structures of amino-deoxy-D-galactose derivatives and their IRI activity. Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s \textit{t}-test (***, \textit{p} < 0.001). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (\textit{n} = 3) and error bars indicate standard error of the mean (SEM).

The IRI activities of amino derivatives 301, 303 and 304 were all similar yet weaker than the activity of D-galactose. However, 302 containing an amino substitution at C3, was moderately IRI active and exhibited improved IRI activity over D-galactose. This suggests that the presence of an amine at C3 is beneficial to IRI activity. Additionally, this also suggests that the presence of hydrogen bond donors within the pyranose ring may also be beneficial to IRI activity. Interestingly, 303, possessing an amine at C4 possessed decreased IRI activity than 302. This was not expected as the importance of the C4-OH to hydration and thus IRI activity
has been previously demonstrated.2-4 However, the hydration numbers or hydration characteristics are currently unknown for these series of compounds and thus, the impact of the amine on hydration cannot be determined at this time. In a PBS solution with pH equaling 7.4, compounds 301-304 will have a protonated amine (pKa is approximately 6.5-8.0 as measured in water11), although the nature of the negative counterion is not fully known. The negative counterion of the protonated amine may exchange with others found in PBS. The importance of the counterion to IRI activity has been previously studied by the Ben laboratory during the study of lysine-based surfactants.12 Due to time restraints, the nature and effect of the negative counterion for amino D-galactose derivatives has not been fully assessed and should be examined in the future. Additionally, the presence of a compound possessing an amine may impact the pH of a PBS solution. However, given that the pKa of the protonated amine present on 301-304 is similar to a pH of 7.4, the addition 301-304 will minimally impact the pH of the PBS solution. A link or lack thereof between changes in the pH of the PBS solution and IRI activity has not been established and should be examined in the future.

The improved IRI activity exhibited by 302 demonstrates that strategic placement of an amine substituent on a pyranose ring can be beneficial to IRI activity. The only regioisomer of the amino-deoxy-D-galactose derivatives not been previously synthesized is the replacement of the ring oxygen with an amine. Through an examination of mono-, di-, and trihydrates of simple carbohydrates, Simons et. al. have proposed that the hydration of a carbohydrate may be governed by the strength of the intramolecular hydrogen bond network within the pyranose ring. This hypothesis was based on the energy difference observed from the incorporation of a single water molecule within the intramolecular hydrogen bond network of the pyranose ring (Figure 3-3).
It was found that the first water molecule incorporated between the weakest intramolecular hydrogen bond in order to limit the disruption of the intramolecular hydrogen bond network. In β-phenyl-d-glucose, water inserts between the C4-OH and C6-OH whereas in β-phenyl-D-galactose it inserts between C6-OH and the endocyclic ring oxygen (Figure 3-3). This suggested that hydroxyl groups at C4 and C6 and the endocyclic ring oxygen on a pyranose ring are important in interacting with water. As mentioned previously, structure-function work has been carried out on the C4-OH with the 4-amino-4-deoxy-D-galactose and methylated α-C-allyl-D-galactose derivatives. To further explore the importance of the C6-OH, Capicciotti synthesized the 6-deoxy-heptogalactopyranose derivative 305 and the compound was assayed for IRI activity (Figure 3-4). The 6-deoxy-heptoglucopyranoside derivative 306 was prepared to compare to 305. These derivatives place the C6-OH (found in a traditional pyranose ring) spatially away from the rest of the hydroxyl groups and thus possibly disturbing the intramolecular hydrogen bond network of d-glucose and d-galactose. Much like the hypothesis governing the synthesis of the methylated α-C-allyl-D-galactose derivatives, it was initially expected that disturbing this intramolecular hydrogen bond network would lead to an increase in IRI activity.

![Figure 3-4](image-url)
Figure 3-4. Structures of 6-deoxy-heptopyranose derivatives previously synthesized and tested for IRI activity. Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s t-test (*, *p < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).
At 22 mM, 6-deoxy-heptose derivatives 305 and 306 exhibited weak IRI activity and were less potent IRIs than their parent monosaccharides. NMR studies were able to show that the solution conformations of 305 and 306 (Figure 3-4) blocked the site of water insertion present in the parent monosaccharides through intramolecular hydrogen bonding to the ring oxygen.18 These results suggest that the ring heteroatom is crucial for IRI activity. In order to examine the importance of the ring oxygen, inositols 307-308 (generously provided by Dr. Mark Nitz from the University of Toronto) were tested for IRI activity (Figure 3-5). Lacking a ring oxygen, these inositols were hypothesized to be possess poor IRI activity.

Figure 3-5. Structures of Myo-, Epi-, Scylo-Inositol and the corresponding IRI activities.18 Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s t-test (*, p < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

At 22 mM, all of the inositols exhibited similar IRI activity to PBS and thus reinforcing the idea that the ring heteroatom is necessary in the hydrogen bonding to water. Based on the IRI activity of 3-amino-3-deoxy-D-galactose, it was hypothesized that replacing the ring oxygen with
a secondary amine may result in better hydrogen bond donation resulting in improved IRI activity. Thus, azasugars 310 and 311 (Figure 3-6) were synthesized and assayed for IRI activity. Initial effort was placed toward the synthesis of D-galactose based azasugar (310) in order to compare its IRI activity to 301-304. To compare differences between D-galactose and D-glucose, D-glucose based azasugar (311) was also synthesized and assayed for IRI activity.

Figure 3-6. Structure of D-galactose (310) and D-glucose (311) based azasugars.

3.2 Retrosynthetic Analysis of Azasugars

Two synthetic approaches were envisioned for the preparation of azasugars 310 and 311. The first strategy is presented in Scheme 3-1 and the second in Scheme 3-2.

Scheme 3-1. Retrosynthetic analysis of the azasugars utilizing a series of stereoinversions followed by a ring closure.

The key sequence in Scheme 3-1 involves two stereoinversions of the stereocenter at C5. These stereoinversions could be achieved through a series of Mitsunobu or S_N2 reactions. Once the desired stereocenter is set, a ring closure via a reductive amination would generate the corresponding azasugar. In the forward direction, the aldehyde will be protected utilizing a thioacetal. A similar approach was previously utilized by Martin during the synthesis of related azasugars.19
Scheme 3-2. Retrosynthetic analysis of the azasugars utilizing a key ring closure would generate the corresponding lactam which could then be reduced to generate the azasugars.

The second synthetic strategy involving with the lactam as a key intermediate to be generated from a ring closure by the amide nitrogen onto a C5 ketone. This strategy was previously utilized by Overkleeft during their synthesis of a family of azasugars. The ketone could be formed through an oxidation of the C5 alcohol. The amide could be produced from a ring opening of the orthogonally protected lactone that would have been previously generated from an oxidation of the free reducing sugar.

3.3 Synthesis of the Azasugars

Initial efforts were placed towards the synthetic strategy shown in Scheme 3-1. To begin the synthesis, d-galactose was converted into its diethylidithioacetal derivative, 312, in 47% yield upon treatment with HCl and ethanethiol (Scheme 3-3). C6-OH and C5-OH were protected as isopropylidene using 2,2-dimethoxypropane and camphorsulfonic acid (CSA). The remaining hydroxyl groups were then acetylated using pyridine and acetic anhydride generating 313 in 42% yield over two steps. Deprotection of the isopropylidene under mild acidic or Lewis acidic conditions (pyridinium p-toluenesulfonate, oxalic acid or tin (II) chloride) led to a complex mixture of products resulting from acetate migration.
Scheme 3-3. Initial synthesis toward orthogonally protected D-galactose.

In an alternative synthetic route, benzoyl protecting groups were chosen (Scheme 3-4). Using standard benzylation conditions, 314 was furnished in 44% yield over two steps. Deprotection of the isopropylidene using tin (II) chloride was also successful. Interestingly, during the deprotection of the isopropylidene, it was observed that products as result of protecting group migration had decreased as compared to 313. While benzoyl groups are slightly more stable to basic conditions, the reason for decreased migration of the protecting group is unclear. Silylation of C6-OH was successful utilizing TBSOTf and 2,6-lutidine. However, subsequent triflation of C5-OH was unsuccessful and led to degradation. Upon successful triflation, a series of stereoinversions followed by deprotection would have generated the azasugars. However, due to the low yields and problematic steps of this synthetic pathway, this route was abandoned.

Scheme 3-4. Synthetic efforts toward orthogonal protection and subsequent activation of C5-OH.
A report by Martin demonstrated the use of sequential Mitsunobu reactions to successfully substitute C5-OH with a protected amine possessing the desired stereochemistry. This approach was therefore chosen as the next synthetic route towards the azasugars (Scheme 3-5). The synthesis began with a Wittig methylenation of tetra-O-benzyl-D-galactopyranoside to give heptenitol 316 in 60% yield. Inversion of the C5 stereochemistry was achieved using p-nitrobenzoic acid under Mitsunobu conditions in 78% yield. Following transesterification under basic conditions, the desired stereochemistry at C5 was set using phthalimide as the nucleophile in a second Mitsunobu reaction in 75% yield. Deprotection of the thalamide using hydrazine and subsequent re-protection with a carboxybenzyl group generated 320 in 60% yield over two steps. However, intramolecular cyclization of 320 using mercury (II) trifluoroacetate followed by treatment with iodine was unsuccessful. It was expected that removal of the protecting groups followed by hydrolysis of the carbamate would generate the desired azasugar. Different modes of activation of the alkene in 320 were explored. Conversion of the alkene to an epoxide using mCPBA or iodonium (using iodine or N-iodosuccinimide) was unsuccessful and only starting material could be detected in the crude NMR. The lack of activation of the alkene cannot currently be accounted for.

Scheme 3-5. Efforts toward the synthesis of azasugars utilizing a sequential Mitsunobu reaction followed by intramolecular cyclization.
A new route was necessary in order to achieve the intramolecular cyclization toward the synthesis of the azasugars. Pandit has demonstrated similar intramolecular cyclizations could be achieved through the condensation of a primary amide with a ketone.⁰²⁰ Consequently, a new route was proposed towards the azasugars (Scheme 3-6) which involves the formation of lactam structures which could be interesting targets for testing the hydrogen bond capability of the ring nitrogen.

Scheme 3-6. Formation of azasugar 310 using an intramolecular cyclization involving the condensation of a primary amide onto a ketone. Compound 310 was isolated as the free amine with the use of ammonium hydroxide during flash chromatography (Chapter 6).

Oxidation of tetra-O-benzyl-D-galactopyranoside 315 using the Ley-Griffith oxidation⁰²¹ led to the corresponding lactone 321. The lactone was then opened using ammonia to afford the amide 322 in 50% yield over two steps. Oxidation of the C5-OH by DMSO and acetic anhydride (Albright-Goldman conditions⁰²²) followed by reduction with sodium cyanoborohydride and formic acid led to lactam 323 in 65% yield over two steps. LiAlH₄ reduction of 323 led to the protected azasugar 324 in 98% yield. Finally, the D-galactose based azasugar 310 was formed in 96% yield by deprotection of the benzyl group using standard conditions. With the successful synthesis of the azasugar 310, attention was turned toward the synthesis of D-glucose based azasugar 311. While the synthetic route in Scheme 3-6 was successful in the production of 310, focus was placed on a more efficient synthesis that would generate suitable amounts of material required for IRI and cytotoxicity studies. Aerts and Overkleeft reported the synthesis of D-glucose based azasugar 311 in three steps from tetra-O-benzyl-D-gluconopyranoside.⁰²³ To our knowledge, this was the shortest reported synthesis of 311 to date and thus was the chosen synthetic route (Scheme 3-7).
Scheme 3-7. Utilization of a Swern oxidation followed by double reductive amination to generate 311. Compound 311 was isolated as the free amine with the use of ammonium hydroxide during flash chromatography (Chapter 6).

LiAlH₄ reduction of tetra-<i>O</i>-benzyl-<i>D</i>-glucopyranoside 325 led to glucitol 326. Swern oxidation of 326 followed by reductive amination using sodium cyanoborohydride and ammonium formate efficiently led to protected <i>D</i>-glucose based azasugar 328 in 73% yield over three steps. Finally, deprotection of the benzyl groups using standard conditions led to the <i>D</i>-glucose based azasugar 311 in 95% yield.

3.4 IRI Activity of Azasugars

With the azasugars in hand, attention was turned toward their IRI activity. The IRI activities of azasugars 310 and 311 along with amino <i>D</i>-galactose regioisomers 301-304 are presented in Figure 3-7.
Figure 3-7. IRI activity of azasugars 310 and 311 and amino D-galactose regioisomers 301-304. Asterisks indicates a statistical significant difference between samples (within each set) and is defined by unpaired Student’s t-test (*, *p < 0.05, ***, *p < 0.001). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

D-Galactose based azasugar 310 possessed moderate IRI activity; comparable to 3-amino-3-deoxy-D-galactose 302. Compounds 302 and 310 possessed the highest IRI activity of all the amino-deoxy-D-galactose regioisomers tested. When comparing IRI activity of D-galactose and D-glucose based azasugars, 311 possesses potent IRI activity whereas 310 possesses only moderate activity. This is surprising since D-galactose possesses higher IRI activity than D-glucose. However, the Ben laboratory has previously reported that D-glucose based small molecules can possess higher IRI activity than D-galactose based small molecules. The reasoning behind this result is currently unclear. At a pH of 7.4, endocyclic nitrogen in 310 and 311 will be protonated thus it will only be able to participate in hydrogen bond donation suggesting that hydrogen bond donors at the endocyclic position may be beneficial to IRI activity. Given the protonated state of the nitrogen in 310 and 311, the nature of the negative counterion may also be important to IRI activity. As previously discussed with compounds 301-
the nature of this counterion is currently unknown. Hydration characteristics of these azasugars are also unknown and thus the influence of hydration cannot be elucidated at this time. Considering the effect of replacing the counterion on IRI activity was previously examined for lysine-surfactants, the nature of the counterion in 301-304, 310 and 311 and its hydration needs future examination in the future. Additionally, as mentioned previously with 301-304, the presence of an amine may affect the pH of the PBS solution. However, the pKa of the protonated forms of 310 and 311 is approximately 6.7-8.0 as measured in water and thus, should minimally affect the pH of the PBS solution. A link or lack thereof between changes in pH of the PBS solution and IRI activity is currently unknown and needs future exploration. Other future work should include synthesis of hemiaminal analogues of 310 and 311. These structures would be interesting comparisons to 301-304 since those are present as the free reducing sugars. This will investigate if the presence of a hydroxyl group at the anomeric carbon is important to IRI activity. It has been previously demonstrated that compounds with substitutions at the anomeric carbon such as long alkyl chains or various aryl groups possess potent IRI activity and thus, anomeric substitutions may play a large role in IRI activity.

To further investigate the importance of the ring nitrogen to act as a hydrogen bond donor, lactams 329, 330 and N-methylated analogue 331 were synthesized and assayed for IRI activity (Figure 3-8). Due to resonance, the ring nitrogen in lactams 329 and 330 were expected to remain unprotonated and thus is able to act as a hydrogen bond donor and acceptor. However, in solution, protonated forms of compounds 310 and 311 will possess two N-H bonds whereas the lactams 329 and 330 possess only one. Therefore, hydrogen bond donating ability was expected to be decreased in the lactam analogues. Therefore, the lactams should have decreased IRI activity as compared to azasugars 310 and 311. The additional methyl group on 331 increases the steric bulk on the ring nitrogen. Given that protonation of the ring nitrogen must be accompanied by a negative counterion for stability, the additional steric bulk 331 will cause steric hindrance disfavouring the presence of the negative counterion. Additionally, the presence of the hydroxyl groups on the azasugars likely increase the acidity (through induction) of the protonated ring nitrogen. In combination with the additional steric bulk of the methyl groups, 331 may exist mostly in the unprotonated form. Therefore, N-methylated analog 331 was expected to only act as a hydrogen bond acceptor, much like the methylated α-C-allyl-D-galactose regioisomers tested by Chaytor, and thus also possess decreased IRI activity. Given
that the azasugars lack a substituent at the anomeric center, it is important to determine the impact of this on IRI activity. Thus, 1-deoxy-D-glucose (335) was synthesized and its activity was compared to D-glucose based azasugar 311. Unfortunately, due to time restrictions, 1-deoxy-D-galactose was not synthesized.

Figure 3-8. IRI activity of lactams 329 and 330 and N-methylated analog 331 compared to azasugars 310 and 311. Additionally, 1-deoxy-D-glucose 335 is compared to azasugar 311. Asterisks indicates a statistical significant difference between samples (within each set) and is defined by unpaired Student’s t-test (*, p < 0.05, ***, p < 0.001). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

Modifications made to the structure of the azasugars resulted in a loss of IRI activity. However, the improvement in activity (as compared to the N-methylated analogue) demonstrated by lactam 330 suggests that the hydrogen bond donating ability of the ring nitrogen in 311 plays a larger role than the hydrogen bond accepting ability. As the ability for the endocyclic ring nitrogen to act as a hydrogen bond donor increases, this causes the IRI activity to increase. Finally, 1-deoxy-D-glucose 335, possessed little to no IRI activity suggesting that the lack of a
substituent is likely not important and maybe detrimental to IRI activity. This further supports that the endocyclic ring amine may be crucial for IRI activity.

Since 310 and 311 possess moderate to potent IRI activity, it is important to explore whether these azasugars were binding to ice in a similar manner to AF(G)Ps. The TH activity of the most IRI active azasugars, 310 and 311, was examined using nanolitre osmometry. The ice crystal habit of 310 and 311 is shown in Figure 3-9. Neither 310 nor 311 displayed changes to ice crystal habit suggesting that these compounds do not interact with ice. This is consistent with the lack of TH activity for the potently IRI active carbohydrate-based and lysine-based surfactants and hydrogelators. Additionally, this result is also consistent with C-linked AFGP analogues which possessed potent IRI activity but do not possess TH activity. Thus, these azasugars exhibit “custom-tailored” antifreeze activity and may be ideally suited for future application in cryopreservation.

![Figure 3-9](image)

Figure 3-9. Ice crystal habit in the presence of a) 310 (10 mg/mL) and b) 311 (10 mg/mL).

3.5 Cytotoxicity of Azasugars

The cytotoxicity of 310 and 311 was examined. Cytotoxicity is an important property to consider for any small molecules which may be used in cryopreservation studies. Cytotoxicity of azasugars was determined using an MTT assay using Hep G2 cells (human liver carcinoma). Hep G2 cells were chosen due to their use as models for cryopreservation using monosaccharides. In an MTT assay, Hep G2 cells are grown to confluency in a 96 well plate. Next, the compounds are incubated with Hep G2 cells at different concentrations for 24 hours. The MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is added to the solutions and only living cells are able to reduce the MTT to a purple-coloured formazan dye which precipitates out of solution (Figure 3-10). This assay screens for mitochondrial function since the reduction of the MTT reagent is accomplished by mitochondrial and cytosolic enzymes which use cellular reducing equivalents such as NADH. Solubilisation of
the formazan using isopropanol allows for the absorbance of the dissolved formazan to be measure and thus, the concentration at which the compound is toxic can be deduced.

![Figure 3-10](image.png)

Figure 3-10. Reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) in the cytotoxicity cell viability colorimetric assay.

The MTT assay has a few disadvantages which have limited its use. One major disadvantage is that the reduction of tetrazolium reflects cell metabolism and not cell number. The rate of MTT reduction can change with culture conditions and physiological state of the cell.\(^{27}\) Additionally, cells growing rapidly as a monolayer will have a different metabolic rate that those that have undergone differentiation, grown into a confluent monolayer.\(^{29}\) The factors need consideration during the use of this assay. Another disadvantage is that assay conditions that affect the reduction of MTT reagent result in increased background absorbance and assay artifacts. A variety of chemical compounds are known to interfere with the assay. These are generally reducing compounds leading to non-enzymatic reduction of MTT to formazan. Examples include ascorbic acid, glutathione, coenzyme A and dithioreitol.\(^{30-33}\) Chemicals that uncouple the electron transport from oxidative phosphorylation of ATP are also known to interfere with the assay.\(^{34}\) Finally, long-term exposure to the MTT reagent to light and elevated pH of culture medium may also result in production of formazan.\(^{27}\) This interference is mitigated by using appropriate control such as wells containing the MTT reagent and test compound in cell medium with cells present. Lastly, the MTT reagent itself is also known to be somewhat cytotoxic to cells. It has been shown to be cytotoxic to eukaryote cells and cause a dramatic change in cell morphology. This cytotoxicity has been associated with the diversion of important reducing equivalents such as NADH. NADH is required in many critical cellular functions.\(^{29}\) Additionally, the formazan crystals have also been associated with causing damage to cell membranes.\(^{35}\) While many disadvantages are present, the broad application of this assay is based on its simplicity of the homogenous protocol, which utilises adding two reagents to the assay well and does not require additional steps such was cell washing. This assay is also ideally suited
for a 96 well plate format and thus has found application in high-throughput screening studies. Cytotoxicity results of 310 and 311 at 0.5 mM-22 mM are presented in Figure 3-11.

Figure 3-11. Percent cell viability of Hep G2 cells incubated with azasugars a) 310 and b) 311 in a MTT assay. Asterisks indicates a statistical significant difference between samples and is defined by unpaired Student’s t-test (*, p < 0.05, ***, p < 0.001). Statistical significant difference between the MEM control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

Compound 310 was highly toxic at concentrations as low as 5 mM whereas 311 was nontoxic at higher concentrations. Only at 22 mM of 311 did cell viabilities decrease to 40% for 311. The difference in cytotoxicity between 310 and 311 is not surprising since 311 is used to treat a number of diseases. Interestingly, with only one structural change (an axial C4-OH) 310
possess a drastically different cytotoxicity profile than 311. The Ben laboratory has previously shown that the cytotoxicity profiles of D-glucose and D-galactose were very similar and neither compound was highly cytotoxic even up to high concentrations such as 500 mM.41 Therefore, the cytotoxicity of 310 is specific to pyranose azasugars. This is not surprising as 310, 311 as well as other structurally similar azasugars are well known inhibitors (transition state mimics) of the highly important glycosidase family of enzymes. These enzymes play a crucial role in the breakdown of complex carbohydrates.42 With its low cytotoxicity and potent IRI activity, 311 should be further explored as a cryoprotective agent.

3.6 Chapter Summary

In summary, the work described in this chapter described the impact of simple structural modifications to monosaccharides have on hydrogen bond capability and IRI activity. Specifically, systematic amino substitutions on D-galactose were explored for their IRI activity and an amino substitution of the C3-OH (302) was found to be the most potent. Amino groups were chosen because at a physiological pH, this group would be protonated and thus only be able to act as a hydrogen bond donor. Previous structure-function work had suggested that hydrogen bond donation may be an important feature for IRI activity. Further structure-function work suggested that replacement of the ring oxygen by an amine in D-galactose and D-glucose (azasugars) may generate potent IRI active small molecules. The synthesis of azasugars was efficiently accomplished through a reductive intramolecular cyclization. The moderate to potent IRI activity of the synthesized azasugars suggested the hydrogen bond donating capability of the ring heteroatom is important to IRI activity with D-glucose based azasugar 311 being the most potent azasugar. Given the likely protonated state of 310 and 311 at a pH of 7.4, the nature of the negative counterion needs future investigation. The importance of the counterion to IRI activity has been established by the Ben laboratory with lysine-based surfactants. Additionally, the relationship between changes in pH and IRI activity requires addressing. Modification to the endocyclic ring nitrogen such as methylation or modification to the electronics (lactams 329 and 330) resulted in a decrease in IRI activity as compared to the parent azasugar. Finally, cytotoxicity studies using Hep G2 cells suggested that the glucose based azasugar should be further explored as a cryoprotective agent due to its low toxicity.
3.7 References

Chapter 4. Inhibiting Gas Hydrate Formation Using Small Molecule Ice Recrystallization Inhibitors

4.1 Introduction

Gas hydrates are ice-like solids containing gases within a highly ordered network of water molecules.\(^1\) The similarity of gas hydrates to ice becomes evident considering that a gas hydrate consists of about 85% water on a molecular basis. Thus, many of the hydrate structural properties resemble those of ice I\(_h\).\(^1\) For example, hydrate hydrogen bonds average only 1% longer than those in ice and the O-O-O angles differ from ice tetrahedral angles by 3.0-3.7° in two common gas hydrate structures.\(^1\) However, the reorganization of water molecules is drastically different between gas hydrates and ice. For example, the diffusion rates of water molecules in gas hydrates are much higher than those found in ice I\(_h\). This difference in diffusion rates has been linked to an increase in mechanical strength for gas hydrates. The biggest difference between these two solids is that ice is a pure component and gas hydrates will not form without the proper gas molecules.\(^1\)\(^1\) Furthermore, gas hydrates are supported by the repulsion forces imparted on the water molecules by the guest gas molecule.\(^2\)

These hydrates can form at ambient temperatures (less than 27 °C) and moderate pressures (> 0.6 MPa or 87 psi); conditions frequently found in oil and gas pipelines.\(^3\) These materials were initially discovered by Sir Humphrey Davy in 1811 through the crystallization of a cold aqueous solution of chlorine.\(^4\) Hydrates are problematic in the petroleum industry as they can produce pipeline blockages causing safety concerns and shutdowns of the pipeline during the removal of the blockage.\(^5,6\) Figure 4-1 shows a pipeline blockage caused by gas hydrates. Decomposition of the natural occurring gas hydrates due to drilling through hydrate zones has also caused major concerns. Drilling through hydrate zones is generally performed for gas production from there naturally occurring hydrates or for oil and gas production from reservoirs located below the in-situ hydrates. This drilling has caused uncontrolled gas release, blowouts and fires through and outside the drilling columns.\(^1,7,8\) Thus, gas hydrates are highly problematic.
Three structures of gas hydrates have been discovered: sI (cubic), sII (cubic) and sH (hexagonal), and the size of the gas molecule determines which structure is formed. The structures of sI and sII hydrates were first elucidated by von Stackelberg and coworkers through crystal diffraction studies. Following this work, Mak, McMullan and Jeffrey completed additional diffraction studies and provided more conclusive evidence for the structures. The structure of sH was discovered by Ripmeester using solid state NMR studies. The different structures of a unit cell of gas hydrates are represented in Figure 4-2.
The formalism A^B is used to describe the structure of a cavity where A represents the number of hydrogen bonded edges of the face and B represents the number of faces with A sides. Thus, the cavity 5^{12}, a common cavity found in each gas hydrate structure, results from the combination of 12 pentagonal units. A sI hydrate comprises of two 5^{12} cavities and six $5^{12}6^2$ to form a unit cell comprised of 46 water molecules. A sII hydrate is made from sixteen 5^{12} and eight $5^{12}6^4$ cavities to form a unit cell with 136 water molecules. Finally, sH comprises of three 5^{12}, two $4^35^66^3$ and one $5^{12}6^8$ cavity to form a unit cell containing 34 water molecules. sI can accommodate small gases such as methane whereas sII and sH can accommodate larger guest molecules. In order to fully understand the different forms of gas hydrates, an explanation of the mechanism of gas hydrate formation is required.

Gas hydrate formation is known to be stochastic in nature making the study of gas hydrates difficult. Gas hydrate nucleation is thought to occur at the interface of water and gas in the presence of high concentrations of both, gas and water. The site of nucleation has been confirmed by Ohmura using videographs to study nucleation of crystals in a water-gas system. A water droplet was placed onto a Teflon stage inside a test cell and the atmosphere within the cell was replaced with methane, ethane or propane. Finally, the temperature was reduced to induce nucleation of gas hydrates (Figure 4-3).

Figure 4-3. Videographs of the nucleation and growth of a methane hydrate at the surface of a water droplet under high subcooling (a) and low subcooling (b).
It was demonstrated that nucleation occurs at random points along the surface of the water droplet and critical sized nucleation was followed by polycrystalline growth. Three different mechanisms have been suggested to describe gas hydrate nucleation: the labile cluster hypothesis, 23 interfacial nucleation 24, 25 and local structuring.2 The labile cluster hypothesis was first proposed by Sloan and Christiansen23 (Figure 4-4). 23

![Figure 4-4. Schematic representation of the labile cluster hypothesis.23]

Guest gas molecules are dissolved in water where metastable (below critical size) labile clusters form. These structures can dissipate or agglomerate to attain a critical size where growth of gas hydrates can occur.23 In the interfacial nucleation hypothesis (proposed by Long and Kvamme), gas molecules are transported to water cages through surface diffusion where gas hydrates can undergo nucleation.1 Finally, the local structuring nucleation hypothesis suggests that gas molecules assemble (through thermal fluctuation) in a configuration required for gas hydrate formation. This arrangement of gas molecules results in a disturbance of bulk water thereby generating a critical nucleus upon which growth can occur.26

4.2 Inhibiting Gas Hydrate Formation

Given the disruptive nature of gas hydrates, the petroleum industry continues to research inhibitor species to prevent or delay large-scale gas hydrate formation. In general, prevention of gas hydrates is accomplished with two general types of compounds: thermodynamic hydrate inhibitors (THI) and low-dosage hydrate inhibitors (LDHI). In the presence of a THI, gas hydrate formation requires higher pressures and lower temperatures. Methanol is a common THI;
however, 20-50 wt% is generally required to be effective. In addition to the large volumes, difficulties in recovering or recycling the methanol post-addition brings significant financial implications. Consequently, LDHIs are a cost-effective alternative as they are effective at low concentrations (0.01-5 wt%). There are two classes of LDHI: anti-agglomeration agents (AAs) and kinetic gas hydrate inhibitors (KHI). AAs prevent the aggregation of small clusters of gas hydrates into forming a blockage while KHI inhibits the rate of nucleation and growth of gas hydrates. The structure and properties will now be discussed.

4.2.1 Structure and Properties of Anti-Agglomeration Agents

Two types of AAs are known: 1) The French Petroleum Institute (IFP) type that provides a special kind of water-in-oil emulsion which does not agglomerate upon gas hydrate formation, and 2) The Shell type that have a hydrate-philic head and a long hydrophobic tail. The IFP have discovered amphiphilic compounds that form a water-in-oil emulsion, which confine the gas hydrate to water droplets. This confinement effectively prevents their agglomeration. However, the AAs developed by the IFP still await field trial (structure of AAs developed by IFP is not released within the patent). The AAs developed by Shell are also amphiphilic compounds where the hydrate-philic end of the AA is dissolved within the gas hydrate while the hydrophobic end is dissolved in the hydrocarbon liquid (oil). The chemical spacer between the two ends of the AA provides separation of the gas hydrate and prevents agglomeration from occurring. The structures of two types of AAs developed by Shell are shown in Figure 4-5.

![Figure 4-5. Structures of anti-agglomeration agents developed by Shell.](image)

4.2.2 Structure and Properties of Kinetic Hydrate Inhibitors

One major drawback of AAs is the requirement for continual agitation for optimal effectiveness. Additionally, within the context of gas pipelines, the application of AAs is not possible since they require a liquid hydrocarbon phase (gas pipelines contain little to no liquid...
hydrocarbon phase). Based on these setbacks, the development of novel KHIs is essential. The majority of KHIs are water-soluble polymers. Polyvinylpyrrolidone (PVP, Figure 4-6) is an example of a KHI developed by Shell in conjunction with the Colorado School of Mines. Figure 4-6. Structure of Polyvinylpyrrolidone.

Testing of PVP by Shell was completed using a ball-stop rig with a THF hydrate as a model system. A ball-stop rig measures the time required for a metal ball to cease movement through a cooled cell containing a hydrate-forming liquid containing an inhibitor. The formation of a hydrate blockage causes ball movement to cease. While high molecular weights of PVP were effective at inhibiting the ball movement for 6 hours, low molecular weight PVP 10 (10,000 g/mol) was also an effective inhibitor. It has been shown that the PVP with a lower molecular weight such as PVP 10, had a pronounced effect on disturbing the structure of bulk water and thus had a greater inhibition of gas hydrate nucleation. Along with PVP, recent work has led to the discovery that polyvinylcaprolactam and various branched polyester amides can also function as KHIs.

4.2.3 Inhibition of Gas Hydrates Using Ice Recrystallization Inhibitors

Whilst LDHIs offer economic benefits in comparison to THIs, further development is required to improve biodegradability as well as performance under extreme conditions. It has been reported that deeper sea gas and oil fields will be exploited in the near future and thus, there is a need for high performance gas hydrate inhibitors. Recently, Walker and Ripmeester demonstrated the use of antifreeze proteins as gas hydrate formation inhibitors. Given the structural similarity between ice and gas hydrates, the use of AFPs is not surprising. As stated in section 1.5, AFPs possess two antifreeze activities: IRI and TH. It has been demonstrated that TH activity was not necessary for inhibition of gas hydrates. While IRI active AFPs are inhibitors of gas hydrates, the difficulty associated with obtaining them on large scale has prevented their use in the industry. Consequently, it was hypothesized that small molecules recently developed by our laboratory possessing potent IRI activity and lacking TH activity may...
be effective inhibitors of gas hydrate formation. Their low molecular weight (< 300 g/mol) makes them ideal candidates since a lower weight percent concentration may be needed to achieve potent inhibition of gas hydrates. Additionally, the small molecule IRIs are easy to synthesize on large scale. Therefore, initial efforts were placed toward using these compounds to inhibit methane gas hydrates (sI); as these tend to be problematic in the petroleum industry.

4.3 Quantifying Gas Hydrate Nucleation and its Inhibition

The driving force for gas hydrate nucleation increases as temperature decreases. As a gas hydrate undergoes nucleation, heat is released and a differential scanning calorimeter (DSC) is used to track this evolution of heat.

This approach has been shown by Walker and Ripmeester to be an effective method for quantifying gas hydrate nucleation.

Figure 4-7 is a representative of an isothermal analysis using PVP 10 at 1 mM.

![DSC curve](image)

Figure 4-7. DSC curve (blue line) representing a test run for an isothermal temperature experiment (-12 °C, pink line) with 1 mM PVP 10. **Inset A** magnifies the observed melting event with temperature (°C) on the x-axis while heat flow (µV) is on the y-axis and **Inset B** magnifies the observed nucleation events with the temperature (°C) and heat flow (µV) on the y-axis while time (s) is on the axis.
Twelve solutions of PVP 10 were prepared by dissolving PVP 10 in distilled water at 1 mM. The solutions are then confined in silica gel and placed in twelve borosilicate tubes. Silica gel was chosen because it increases the water-gas interface and thus facilitates gas hydrate nucleation. These samples were then placed under 100 bar of methane gas and allowed to stand; saturating the liquid phase with methane. Based on literature precedent, a sl gas hydrate was assumed under an atmosphere of methane gas. Upon cooling, sharp exothermic peaks (represented by the blue line) represent nucleation events. The sharp profiles of the exothermic peaks indicates that crystal nucleation was followed by rapid growth due to large surface area of the sample, small sample volume and high driving force for hydrate formation. Therefore, the position of the peaks represents nucleation events while the area under the curve represents growth. The pink line represents the temperature profile of the experiment. As multiple nucleation events are possible in a single sample, the number of exothermic peaks is often larger than twelve. Trials containing fewer than twelve exothermic peaks represent instances where nucleation did not occur in some samples. During the warming phase, a single negative peak corresponding to the warming event is observed (Figure 4-7, Inset A). This negative peak is representative of a single gas hydrate and under an atmosphere of methane, it is a sl gas hydrate. It is important to note that no warming peak corresponding to ice was observed. This suggests that the hydrate formation is a homogenous process forming only a sl gas hydrate. Each experiment is repeated three times with a total of 36 trials for each sample. The integrated average of the area under the exothermic peaks was used to generate a total cumulative heat of reaction. This cumulative heat of reaction directly correlates to gas hydrate growth. The time to the first nucleation event (first positive value for the cumulative heat of reaction) represents the induction time and thus indicates the degree to which initial gas hydrate nucleation is delayed. Therefore, the use and analysis of this assay determines two properties of a KHI: the ability to delay the first nucleation event and its ability to inhibit gas hydrate formation.

4.4 Inhibiting Formation of Gas Hydrates Using n-octyl-β-D-pyranosides

n-Octyl-β-D-pyranosides 126 and 127 are known inhibitors of gas hydrates in addition to the potent IRI activity of *n*-octyl-β-D-galactopyranoside 127. As stated in section 4.2.3, AFPs are potent inhibitors of ice recrystallization and effective inhibitors of gas hydrate formation. Their ability to inhibit gas hydrate formation is independent of their TH activity.
Octyl-β-d-pyranosides 126 and 127 (as well as other small molecules developed by our laboratory) do not possess TH activity;44 suggesting that some of the structural properties necessary for IRI activity may also be important for inhibiting gas hydrate formation (initial nucleation followed growth). Thus, small molecules IRIs developed by our laboratory are ideal molecules to investigate the possibility of a correlation between IRI activity and performance as inhibitors of gas hydrate formation. Inhibition of gas hydrate formation was measured for both 126 and 127. PVP 10 and water are utilized as negative and positive controls respectively for gas hydrate formation. Initial experiments utilized a sample concentration of 1 mM.34 The cumulative heat of reaction in Joules generated by 126 and 127 is presented in Figure 4-8.

![Figure 4-8](image)

Figure 4-8. Cumulative heat of reaction of gas hydrate inhibitor PVP 10 and anti-agglomeration agents 126 and 127 at 1 mM. The result for each compound is based on the integrated average of 36 trials at -12 °C. Time = 0 minutes represents the start of the cooling phase.
126 and **127** are significantly better inhibitors of gas hydrate formation than PVP 10. Based upon the relative areas under each curve, the inhibition by **126** and **127** is approximately ten times greater than the commercial inhibitor PVP 10. It should be noted that t = 0 minutes represents the start of the cooling phase. Thus, the time to the first positive value for the heat of reaction represents the onset time for nucleation. A key measure for KHI performance is the delay of the first nucleation event.**6** **126** and **127** are both able to delay the first nucleation event for significantly longer time than PVP 10. This degree of inhibition of gas hydrate formation is very impressive when considering the lower molecular weights of **126** and **127**. **126** and **127** have molecular weights of roughly 300 g/mol, which are significantly less than 10,000 g/mol for PVP 10. A 1 mM solution of PVP 10 corresponds to a 1% w/v solution (10 mg/mL), whereas a 1 mM solution of **126** and **127** corresponds to a 0.03% w/v solution (0.29 mg/mL). The lower weight percent concentration makes **126** and **127** ideal candidates for commercial use.

Interestingly, little difference is observed between the inhibition of gas hydrate formation activity of **126** (a D-glucose analogue) and **127** (a D-galactose analogue). This is surprising as the Ben laboratory has previously demonstrated that D-galactose analogue **127** is a significantly better inhibitor of ice recrystallization than the D-glucose analogue **126**.**44** This suggests that the structural requirements for IRI may not be the same as those for gas hydrate formation inhibition. The differences in structural requirements may be expected considering the lack of bulk water within pipelines.

4.5 Small Molecule IRIs as Inhibitors of Gas Hydrate Formation

Given the gas hydrate inhibition activity of **126** and **127**, other IRI active small molecules were investigated for their ability to inhibit gas hydrate formation. Previous work investing the IRI activity of *n*-octyl-β-D-pyranosides has demonstrated the importance of long alkyl chains to IRI activity. Within this study, other compounds possessing long alky chains such as *N*-octyl-D-gluconamide (**128**) were found to be highly IRI active. This was the first report of small molecules exhibiting “custom-tailored” antifreeze activity on par with AFGPs and their analogues.**44** The importance of long alkyl chains to IRI activity has been demonstrated with truncated C-linked D-galactose derivatives and lysine-based surfactants.**45, 46** The IRI activity of the C-linked D-galactose derivatives and lysine-based surfactants has been previously discussed in Chapter 1. Along with compounds possessing long alkyl chains, azasugars **310** and **311** have
also been shown to be IRI active molecules with 311 possessing potent activity. In contrast to compounds 126-128, these azasugars lack the long alkyl chains yet still possess moderate to potent IRI activity. Consequently, the following were investigated: a) the relationship between hydrophobic alkyl chains of different lengths and IRI activity and b) whether small molecule IRIs would also inhibit the nucleation of gas hydrates. This will help elucidate if the important structural feature present in small molecule IRIs are necessary for inhibition of gas hydrate formation. Specifically, the presence of long alkyl chains, an open-aliditol chain, pyranose rings possessing either an endocyclic oxygen or nitrogen will be examined.

The IRI activity of compounds 128, 401, 402, 310, 311 and 331 is shown in Figure 4-9. While the activity of 128, 310, 311 and 331 has been presented previously (in independent publications and within this thesis), it is presented again to facilitate an accurate discussion of the relationship between IRI activity of these small molecules and their ability to inhibit gas hydrate formation.
Figure 4-9. IRI activity of compounds 126-128, 401, 402, 310, 311 and 331 is shown and compared to PVP 10. Asterisks indicates a statistical significant difference between samples (within each set) and is defined by unpaired Student’s t-test (*, p < 0.05, **, p < 0.01, ***, p < 0.001). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

Compounds 128 and 401 exhibited very potent IRI activity at concentrations as low as 0.5 mM. Both of these compounds are significantly more IRI active than PVP 10 at 1 mM and possess comparable IRI activity to PVP 10 at 22 mM. Compound 128 could only be tested at 0.5
mM due to poor solubility. The benefit of long alkyl chains on IRI activity is apparent when comparing compounds 128 to 402. Compound 128, containing an eight carbon chain, possesses potent IRI activity whereas 402, with a three carbon chain, has poor IRI activity. As discussed in Chapter 3, azasugars containing an endocyclic nitrogen within the pyranose ring possess moderate to potent IRI activity. Azasugars 310 and 311 exhibited more potent IRI activity than a 1 mM solution of PVP and 311 possessed potent IRI activity similar to a 22 mM solution of PVP 10. Azasugars 310 and 311 also exhibited similar IRI activity to the known gas hydrate formation inhibitors 126 and 127 as well as to the potent inhibitors of ice recrystallization, 128 and 401. With these azasugars and alditol derivatives demonstrating potent IRI activity, their performance as inhibitors of gas hydrate formation was investigated. First the alditol derivatives containing different alkyl chain lengths were examined and compared to water, PVP 10 and 126.
Figure 4-10. Cumulative heat of reaction of compounds 126, 128, 401 and 402 at 1 mM. Water and PVP 10 (1 mM) are included as representative controls. The result for each compound is based on the integrated average of 36 trials at -12 °C. Time = 0 minutes represents the start of the cooling phase.

Compounds 128, 401 and 402 all exhibit similar onset time (time to the first nucleation event) as known gas hydrate formation inhibitor 126. Compounds containing six and three carbon chains (401 and 402 respectively) exhibited comparable gas hydrate formation ability to the commercial inhibitor PVP 10. Compound 128 with an eight carbon chain showed an improvement in its ability to inhibit gas hydrate formation relative to 401 and 402. However 126, also containing an eight carbon chain, is a much better inhibitor of gas hydrate formation than 128. This shows that the presence of a pyranose ring is important in determining a good inhibitor of gas hydrate formation. Replacement of the pyranose ring in n-octyl-β-D-glucopyranoside to an open-alditol chain in N-octyl-D-gluconamide (126 versus 128) led to a decrease in gas hydrate formation inhibition activity. Thus, it is imperative to assay small molecule IRIs possessing a pyranose ring and lacking a long alkyl chain to examine if the activity can be retained. Therefore,
azasugars 310 and 311 were assayed for their ability to inhibit gas hydrate formation. Additionally, as discussed previously, simple monosaccharide reducing sugars such as D-glucose and D-galactose also possess IRI activity. Thus, D-glucose and D-galactose will also be assayed for their ability to inhibit gas hydrate formation (Figure 4-11).

Figure 4-11. Cumulative heat of reaction of 310, 311, 331, D-glc and D-gal at 1 mM. Water and PVP 10 (1 mM) are shown as representative controls. The result for each compound is based on the integrated average of 36 trials at -12 °C. Time = 0 minutes represents the start of the cooling phase.

D-Glucose and D-galactose failed to delay the initial nucleation event (onset time was similar to water and PVP 10). Additionally, D-glucose and D-galactose also failed inhibit gas hydrate formation and exhibited similar activity to water which was a positive control for gas hydrate formation. Azasugars 310 and 311 were very effective inhibitors of gas hydrate formation and their activity is comparable to 126 and 127. The azasugars also possessed similar onset times to 126 and 127. Interestingly, the N-methylated version (331) of 311 is only marginally more effective at inhibiting gas hydrate formation than PVP 10. However, 331 was able to delay the first nucleation event to the same degree as 311 and 126. As previously demonstrated, 331 possessed worse IRI activity than 311 and the same trend is observed in
inhibiting gas hydrate formation. Most of the small molecule IRIs examined for gas hydrate formation inhibition also inhibited ice recrystallization to some degree. However, given that not all potent inhibitors of ice recrystallization were able to act as potent inhibitors of gas hydrate formation, IRI activity was correlated to the ability to inhibit gas hydrate formation. Figure 4-12 shows the IRI activity as percent mean grain size as well as the maximum heat of reaction for formation of gas hydrates for all of the compounds assayed. As stated in section 1.7, potent IRI activity is defined as < 25% mean grain size and an effective inhibitor of gas hydrate formation is defined as compounds which exhibit more potent activity than PVP 10 (commercial inhibitor). These strict definitions generate four unique quadrants.

![Figure 4-12](image)

Figure 4-12. Correlating IRI activity (%MGS relative to PBS) with the ability to inhibit gas hydrate formation (maximum heat of reaction).

Quadrant C is the most important as it represents compounds with ideal structural features required for potent IRI activity and very effective inhibition of gas hydrate formation. Four of the ten small molecules tested belong to this quadrant. These include alditol derivatives 128 and 401, pyranose derivative 127 and azasugar 311. An overall analysis of Figure 4-12 clearly demonstrates that a compound with potent IRI activity may not necessarily have the ability to inhibit gas hydrate formation. For example, compounds 126 (n-octyl-β-D-glucose) and 127 (n-octyl-β-D-galactose) are equally effective at inhibiting gas hydrate formation (< 4 J) but only 127 is a very effective inhibitor of ice recrystallization. Similarly, alditol derivative 402 possessing a three hydrocarbon chain and azasugar derivative 331 (the N-methyl version of 311)
are poor inhibitors of ice recrystallization but are just as effective at inhibiting gas hydrate formation as PVP 10. Finally, the IRI activities of alditol 402 and \(n\)-octyl-\(\beta\)-D-pyranoside 126 are approximately the same (80% MGS relative to PBS). While both compounds inhibit gas hydrate formation, 126 is as effective as 127 yet the IRI activities of 126 and 127 are very different. Out of the ten compounds tested for IRI activity and inhibition of gas hydrate formation, only four of the ten are effective inhibitors of both processes (quadrant C), eight of the ten are effective inhibitors of gas hydrate formation but only four of these ten are potent inhibitors of ice recrystallization.

4.6 Thermal Hysteresis and Gas Hydrate Nucleation Inhibition

Three mechanisms have been proposed for KHLs and their inhibition of gas hydrates: 1) adsorption onto the surface of the growing crystal structure, 2) binding to a pre-critical nucleus preventing it from reaching critical size and 3) structuring of water molecules to prevent nucleation from occurring. Adsorption onto the gas hydrate surface for PVP 10 is thought to occur through hydrogen bonding between the amide of PVP 10 and the gas hydrate surface. The adsorption hypothesis was tested using an ethylene oxide hydrate (sI hydrate structure). Uninhibited ethylene oxide hydrate crystals are dodecahedral with rhombic \{110\} faces. In the presence of low concentrations of the inhibitor (< 0.1 wt%), the octahedral shape changes to a 2-dimensional hexagonal morphology. Use of higher concentrations of the inhibitors led to complete inhibition of crystal growth. In this study, ethylene oxide hydrate was used as a model for a sI gas hydrate (such as a methane hydrate) in order to avoid the use of high pressures. While an ethylene oxide hydrate is not a true gas hydrate, this study suggests that adsorption of PVP 10 to a sI gas hydrate surface may lead to a change in crystal morphology. This type of change in crystal morphology as a result of adsorption onto the surface of gas hydrates is similar to the dynamic ice shaping commonly observed with the adsorption onto the surface of ice with AFPs. Previous work has shown that the TH activity of AFPs does not correlate well to the ability to inhibit gas hydrate formation. Given the similarity between ice and gas hydrates, the compounds exhibiting potent ability to inhibit gas hydrate formation (126, 127, 310, 311) were tested for their TH activity using a nanoliter osmometer. Single ice crystals grown in the presence of molecules that do not interact with the ice crystal surface are “disk-like”. TH measurements and single ice morphologies are shown in Table 4-1.
Table 4-1. Ice crystal habit in the presence of 126 and 127 at 1 mg/mL and 310 and 311 at 10 mg/mL.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Melting Point (°C)</th>
<th>Freezing Point (°C)</th>
<th>Ice Crystal Habit</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image of molecule 126]</td>
<td>-0.09</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>![Image of molecule 127]</td>
<td>-0.05</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>![Image of molecule 310]</td>
<td>-0.33</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>![Image of molecule 311]</td>
<td>-0.24</td>
<td>-0.24</td>
<td></td>
</tr>
</tbody>
</table>

The TH activity and dynamic ice shaping capabilities of 126 and 127 have been previously reported.\(^{44}\) As seen in Table 4-1, none of the compounds interact with the ice surface. Based on this, it is unlikely that these compounds are capable of directly interacting with the surface of gas hydrates. Unfortunately, the current DSC based assay utilized in studying the gas hydrate formation inhibition ability of small molecule IRIs, does not give insight into their exact mode of action. The Ben laboratory has previously demonstrated that the IRI activity of D-galactose and D-glucose results from their ability to disrupt the structure of bulk water through hydration. Therefore, future work investigating the mode of action of these small molecule IRIs towards inhibiting gas hydrate formation should be focused towards the disruption of water molecules surrounding a sI gas hydrate.
4.7 Chapter Summary

The use of small, carbohydrate-based molecules to inhibit gas hydrate formation was demonstrated. This may have potential applications in the petroleum industry since a few of these small molecules are significantly better inhibitors of gas hydrate formation than the commercial inhibitor PVP 10. The low molecular weights, facile synthesis and potency of these compounds make them ideal candidates for commercial use. Certain structural features of these compounds, such as a six membered ring especially one containing a nitrogen heteroatom, appear to be crucial in the inhibition of gas hydrate formation. Unlike molecules with IRI activity, the presence of an alkyl chain was not necessary for the inhibition of gas hydrate formation. In conclusion, while some of the structural features within these molecules may be amenable to both activities; it seems that the ability to inhibit ice recrystallization is not a good indicator of a compound’s ability to inhibit gas hydrate formation. Overall, further studies are required to elucidate the mechanism of action of gas hydrate formation inhibition of these small molecules.
4.8 References

Chapter 5. Synthesis of Small Molecules Possessing Potent IRI Activity Using Key Structural Features.

5.1 Structural Features of Small Molecules Exhibiting “Custom-tailored” IRI Activity

An important goal for the Ben laboratory is the development of novel small molecule IRIs. As previously discussed, compounds possessing potent IRI activity is very important in industrial applications such as cryopreservation of precious cells. Recent work has led to the discovery of three classes of small molecule potent inhibitors of ice recrystallization: carbohydrate-based surfactants and hydrogelators, lysine-based surfactants and truncated C-linked glycopeptides. Their general structures are shown in Figure 5-1.

Figure 5-1. Structure of carbohydrate-based surfactants and hydrogelators, lysine-based surfactants/gelators and truncated C-linked glycopeptides.

As previously discussed in chapter 1, highly hydrated carbohydrates generally exhibited moderate IRI activity. Hydration was attributed to the ability of these molecules to disrupt the structure of bulk water. Based on this precedent, it was hypothesized that other molecules with the ability to alter the structure of bulk water, such as surfactants, hydrogelators and organogelators may also be effective inhibitors of ice recrystallization. Initially, the carbohydrate-based surfactants, \(n \)-octyl-\(\beta \)-D-pyranosides 126 and 127 were assayed for IRI their activity. It was found that \(n \)-octyl-\(\beta \)-D-glucopyranoside 126 exhibited weak IRI activity comparable to D-glucose. However, \(n \)-octyl-\(\beta \)-D-galactopyranoside 127 was highly IRI active.
even at 11 mM (normally the splat-cooling assay utilizes a concentration of 22 mM).1 Replacement of the pyranose ring found in \textit{n}-octyl-\textit{\beta}-D-pyranosides 126 and 127 to an open-alditol chain while maintaining the eight carbon alkyl chain led to \textit{N}-octyl-D-aldonamide 128. This hydrogelator was found to exhibit unprecedented potent IRI activity at a low concentration of 0.5 mM. To date, this is the most active small molecule IRI. Methylation of the amide nitrogen led to compounds possessing weak IRI activity. Additionally, replacement of the amide linkage with an ether linkage also led to a decrease in IRI activity. This demonstrated that the amide linkage is important to IRI activity.1 Neither of the carbohydrate-based surfactants or hydrogelators displayed thermal hysteresis activity or dynamic ice shaping capabilities as a result of binding to ice and thus, these compounds were the first example of small molecules exhibiting “custom-tailored” antifreeze activity on par with AFGPs and their analogues.1 Overall, along with long alkyl chains, this work has highlighted the importance of an open-alditol chain and an amide linkage.

The importance of alkyl chains has been demonstrated by the lysine-based surfactants and truncated C-linked glycopeptides.2,4 The presence of long alkyl chains (longer than nine carbons) to the \textepsilon-amino group of the lysine-based surfactants resulted in potent IRI activity. The presence of seven carbon chains or longer conjugated to the amide bond resulted in potent IRI activity for the truncated C-linked glycopeptides.3 Once again, both of these compounds utilize an amide linkage and thus, it is clearly important to IRI activity. Additionally, these studies have demonstrated the importance of a hydrophobic moiety such a long alkyl chain to IRI activity.

While these compounds exhibit potent IRI activity, the presence of the long alkyl chains gives them a surfactant-like nature. This surfactant-like nature can be detrimental to cells and solubilize cell membranes.6-12 Furthermore, as a surfactant, many of these compounds have the ability to form micelles in solution. However, it has been demonstrated that the ability to form micelles is independent of IRI activity.1,2 For example, carbohydrate-based non-ionic surfactant \textit{n}-octyl-\textit{\beta}-D-galactopyranoside was highly IRI active at a concentration well below its critical micelle concentration (CMC) whereas \textit{n}-octyl-\textit{\beta}-D-glucopyranoside did not exhibit IRI activity well above its CMC value.1 Additionally, it has been demonstrated that IRI activity is not correlated to the ability to form micelles for structurally different non-ionic and anionic surfactants and anti-ice nucleating agents.1,2 Therefore, removal of the surfactant-like nature of
some of these compounds will not be detrimental to IRI activity and may help the cytotoxicity profile of these types of compounds.

Based on this precedent, other hydrophobic moieties were explored by the Ben laboratory to generate small molecules with potent IRI activity. An aryl ring was chosen as the hydrophobic moiety and phenoxyglycosides were synthesized and assayed for their IRI activity (Figure 5-2). These aryl rings will maintain the necessary hydrophobic moiety required for IRI activity whilst removing the long alkyl chains which facilitated the surfactant-like properties of previous small molecule IRIs.

![Figure 5-2](image-url)
Figure 5-2. Structure of D-glucose, D-galactose and D-mannose based phenoxyglycosides.

β-PMP-Gal and β-PMP-Man both exhibited weak IRI activity. However, β-PMP-Glc exhibited potent IRI activity and was significantly more active than β-PMP-Gal and β-PMP-Man. β-PMP-Glc exhibited IRI activity (at equimolar concentrations) to previously reported carbohydrate-based surfactant, n-octyl-β-D-galactopyranoside 127. As previously discussed, our laboratory has correlated IRI activity to carbohydrate hydration where an increase in carbohydrate hydration leads to an increase in IRI activity. This trend was used to explain the difference in IRI activity of D-glucose and D-galactose based surfactants 126 and 127 respectively. D-Galactose exhibits higher IRI activity than D-glucose due increased hydration. Based on this precedent, it is surprising that β-PMP-Glc is more active than β-PMP-Gal. It was also surprising that β-PMP-Gal and β-PMP-Man both possessed identical IRI activity despite the difference in hydration between the parent reducing sugars. Unfortunately, hydration number or molar compressibilities of these phenoxyglycosides is unavailable and a correlation between IRI activity of these compounds and their hydration characteristics is not presently possible. However, a plausible explanation is that hydration characteristics of the molecules are altered by the aryl ring. These results demonstrated that the presence of a methoxyphenyl group at the anomeric carbon is beneficial to IRI activity and compounds lacking long alkyl chains can also possess potent IRI activity. These IRI active phenoxyglycosides have been successfully utilized.
to reduce glycerol concentrations during the cryopreservation of red blood cells.13 This further demonstrates the utility of small molecule IRIs lacking long alkyl chains in cryopreservation.

Another class of small molecule IRIs lacking long alkyl chains has been discussed within this thesis. This includes the carbohydrates possessing an amine such as the amino D-galactose derivatives and pyranose azasugars.

![Figure 5-3. Structure of amino-deoxy-D-galactose regioisomers and D-glucose and D-galactose based azasugars.](image)

The amine present in these molecules was thought to be protonated at pH of 7.4 in the PBS solution utilized in the splat-cooling assay and thus, would be able to function as hydrogen donors rather than acceptors. The importance of hydrogen bond donation to interacting with bulk water and affecting hydration and IRI was suggested with previously weak IRI activity of α-C-allyl-D-galactose derivatives (chapter 3).15 Additionally, the presence of a compound possessing an amine may impact the pH of a PBS solution. However, given that the pKa of the protonated amine (approximately 6.5-8.0 as measured in water16) present on 301-304 is similar to a pH of 7.4, the addition 301-304 will minimally impact the pH of the PBS solution. A link or lack thereof between changes in the pH of the PBS solution and IRI activity has not been established.

IRI activity of 301-304 and azasugars 310 and 311 revealed that the presence of an amine at C3 on D-galactose and the presence of an endocyclic ring nitrogen (310 and 311) were important to IRI activity. Compounds 302, 310 and 311 exhibited moderate to potent IRI activity and thus demonstrate that small molecule IRIs can be developed without the need for long alkyl chains and a surfactant-like nature.

5.2 Combination of Essential Structural Features to Synthesize Novel Small Molecule IRIs

An overall analysis of these studies reveals that the following structural features (aside from long alkyl chains) are important to IRI activity: an amide linkage, the presence of an open-alditol chain, pyranose rings possessing a p-methoxylphenyl moiety at the anomeric carbon and
pyranose rings possessing an amine either at the C3 position or at the endocyclic position. In an effort to develop other novel small molecule IRIs, these structural features were combined to generate potentially highly IRI active compounds (Figure 5-4).

Figure 5-4. Structure of phenoxyglycosides linked via an amide at C3 and C6 to open-alditol chain of D-glucose and D-galactose.

The small molecules presented in Figure 5-4 contain the p-methoxylphenyl moiety at the anomeric carbon found in β-PMP-Glc. The C3-OH was replaced for an amine in compounds 501-503 due the moderate IRI activity exhibited by 3-amino-3-deoxy-D-galactose (302). The IRI activity of 302 was identical to D-galactose based azasugar 310. The C6-OH was substituted for an amine in compounds 504-506 due to synthetic accessibility. Amine 501 and 504 were coupled to open-alditol chain of D-glucose (502 and 505) due to the potent IRI exhibited by the N-octyl-D-gluconamide hydrogelators 128. Compounds 503 and 506 possess the open-alditol chain of D-galactose. Previous work has demonstrated that the D-galactose based hydrogelator, N-octyl-D-galactonamide, exhibited weak IRI activity whereas N-octyl-D-gluconamide possessed potent IRI activity at equimolar concentrations. However, the structural targets presented in Figure 5-4 are drastically different than the carbohydrate-based hydrogelators previously examined for IRI activity. Additionally, D-galactose and its derivative n-octyl-β-D-galactopyranoside possess higher IRI activity than D-glucose and its derivative n-octyl-D-glucopyranoside. Thus, the open-alditol chain of D-galactose requires further investigation. These open-alditol chains have been
linked via an amide because an amide linkage has been previously demonstrated to be important to IRI activity. The synthesis of these small molecules was envisioned according to the retrosynthetic analysis presented in Scheme 5-1 and Scheme 5-2.

Scheme 5-1. Retrosynthetic analysis of the synthesis of compounds 501-503.

Disaccharides 502 and 503 were thought to arise from nucleophilic attack of amine 501 onto the appropriate lactone. Amine 501 was thought to be furnished from a reductive amination of a ketone at C3. Following a report on selective oxidation of unprotected glycosides using a palladium catalyst, this ketone was envisioned to arise from a selective oxidation of β-PMP-Glc. β-PMP-Glc was thought to be furnished from a glycosidation of β-D-glucose pentacetate.
Similar to 502 and 503, disaccharides 505 and 506 were thought to arise from nucleophilic attack of amine 504 onto the appropriate lactone. Amine 504 could be generated from an azide at C6 using a Staudinger reduction. The azide can be generated from an SN2 displacement of a tosylate at C6 of β-PMP-Glc. Once again, β-PMP-Glc can be furnished from a glycosidation of β-D-glucose pentaacetate.

The synthesis began by generating β-PMP-Glc through the glycosidation of β-D-glucose pentacetate using boron trifluoride diethyl etherate as a Lewis acid and p-methoxyphenol as the nucleophile to afford the glycosidated product. Deprotection of the acetate groups was carried out in basic methanol to form β-PMP-Glc (507) in 74% yield over two steps (Scheme 5-3).

With β-PMP-Glc in hand, initial efforts were towards the synthesis of amine 504 and disaccharides 505 and 506 because of what should be an efficient synthesis (Scheme 5-2).

Scheme 5-4. Synthesis of amine 504 and subsequent coupling to afford disaccharides 505 and 506.

As shown in Scheme 5-4, conversion of β-PMP-Glc to tosylate 508 was accomplished using p-toulenesulfonfyl chloride and pyridine in 69% yield. Subsequent conversion of the tosylate to the azide is achieved using sodium azide in DMF in 64% yield. Staudinger reduction of the azide furnishes amine 504 in 45% yield. Coupling of amine 504 with the appropriate lactone in
refluxing methanol gave disaccharides 505 and 506 in 31% and 28% yields respectively. With compounds 504-506 in hand, attention was turned towards the synthesis of the amine 501 and disaccharides 502 and 503.

Scheme 5-5. Synthesis of amine 501 and subsequent coupling to afford disaccharides 502 and 503.

To begin the synthesis of 501, C3-OH of β-PMP-Glc was oxidized using the catalytic selective oxidation developed by de Vries and Minnaard in 98% yield. The oxidation of the C3-OH was the only product observed using [(2,9-dimethyl-1,10-phenanthroline)-Pd(µ-OAc)]2(OTf)2 (Scheme 5-5) as the catalyst. This catalyst was synthesized according to
Waymouth.18 This selectivity is remarkable considering the lack of protecting groups on C2-C6. An explanation for the regioselectivity is currently unavailable but a plausible explanation is a kinetically controlled coordination of the catalyst to the C3-OH group, followed by deprotonation and subsequent hydride abstraction. Simultaneous coordination to the C4-OH group could also possibly assist with the regioselectivity.17 The ketone was then converted to the oxime using methoxyamine hydrochloride and sodium bicarbonate in 78\% yield. Reduction of the oxime using the following conditions: lithium aluminium hydride, sodium borohydride, platinum (IV) oxide and hydrogen gas or L-selectride were all unsuccessful. Fortunately, using the borane-THF complex as the reducing agent successfully gave amine \textbf{501} in 44\% yield. Coupling of amine \textbf{501} with the appropriate lactone in refluxing methanol gave disaccharides \textbf{502} and \textbf{503} in 34\% and 38\% yields respectively. With successful synthesis of \textbf{501-506} in hand, attention was turned toward their IRI activities, which are presented in \textbf{Figure 5-5}.
Figure 5-5. IRI activities of amines 501 and 504, disaccharides 502, 503, 505 and 506 and β-PMP-Glc (507). Asterisks indicate a statistical significant difference between samples and is defined by unpaired Student’s t-test (*, p < 0.05, **, p < 0.01, ***, p < 0.001). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

Amines 501 and 504 exhibited moderate IRI activity; however, they were significantly less potent than β-PMP-Glc (507). This is surprising as an amine at C3 on d-galactose possessed increased IRI activity as compared to the other amino-deoxy-d-galactose derivatives 301, 303 and 304 (amines at C2, C4 and C6 respectively). Thus, it was hypothesized that the presence of an amine at C3 on β-PMP-Glc may increase the IRI activity of β-PMP-Glc. Disaccharides 502, 505 and 506 all possessed moderate to weak IRI activity while 503 exhibited potent activity.
Additionally, 503 exhibits increased IRI activity over β-PMP-Glc (507). Disaccharides 502 and 505 both possess similar IRI activity to amines 501 and 504. This suggests that the presence of the open-alditol chain of D-glucose is not beneficial to IRI activity for these series of compounds regardless of substitution. This is highly surprising given that the hydrogelators N-octyl-D-gluconamide was one of the potent inhibitors of ice recrystallization known to date. The drastic difference in IRI activity between 503 and 506 and the improvement in activity over β-PMP-Glc clearly suggests that the presence on an open-alditol chain of D-galactose at C3 on the structure of β-PMP-Glc is highly beneficial to IRI activity.

Overall, these specific hydrophilic modifications to the structure of β-PMP-Glc generally led to a decrease in IRI activity. Unfortunately, hydration number or molar compressibility of β-PMP-Glc or compounds 501-506 is unavailable and thus, a correlation between the IRI activities of these compounds and their hydration characteristics is not presently possible. The mode of action β-PMP-Glc and 503 utilize towards inhibiting ice recrystallization requires future investigation. Along with changes to hydration, the addition of carbohydrates possessing an amine to the PBS solution may affect the pH of the solution. In chapter 3, it was reasoned that the pKa of the protonated amine present in amino-deoxy-D-galactose derivatives and azasugars was similar to a pH of 7.4 and thus should minimally affect the pH of the solution. However, amines 501 and 504 have a dramatically different structure (due to the aryl group at C1) than those discussed in chapter 3 and therefore, may possess a different pKa. Unfortunately, the pKa of the protonated amine present in 501 and 504 is unknown and thus, their impact on pH of the PBS solution and consequently, IRI activity, cannot be presently discussed.

5.3 Synthesis and IRI Activity of N-cycloalkyl-D-aldonamides

To date, carbohydrate-based hydrogelators such as N-octyl-D-gluconamide (128), has demonstrated to be one of the most potent small molecule IRIs. From this study, the presence of a long alkyl chain, an amide linkage and an open-alditol chain were all demonstrated to be important to IRI activity. Within this study, N-octyl-D-galactonamide was also investigated for IRI activity and it was found that it exhibited only moderate IRI activity. Interestingly, N-octyl-D-gluconamide and N-octyl-D-galactonamide only differ by a single stereocenter. This suggested that the carbohydrate head group is influential on IRI activity. Considering this drastic difference in activity, Capicciotti synthesized analogues of N-octyl-D-gluconamide utilizing different head
groups including L-mannose and D-gulose as the head groups.19 Additionally, given the importance of long alkyl chains, analogues of \(N\)-octyl-D-gluconamide were synthesized in which the length of the alkyl chain was shortened to either a hexyl or propyl alkyl chains. The IRI activity of \(N\)-hexyl- and \(N\)-propyl-D-gluconamide at 22 mM has been presented within chapter 4 and has been compared to \(N\)-octyl-D-gluconamide at 0.5 mM. During the study, Capicciotti observed that the length of the alkyl chain affected the IRI activity. The propyl derivative exhibited weak IRI activity at 22 mM whereas the IRI activity of the hexyl derivative significantly increased at 22 mM. However, at 11 mM the hexyl derivative exhibited a drastic loss in activity. Increasing the alkyl length from six to eight led to the highly IRI active \(N\)-octyl-D-gluconamide.19 These results clearly suggest that there is a balance between hydrophilicity (carbohydrate moiety) and hydrophobicity (alkyl chain). A similar effect was observed when the carbohydrate head group of \(N\)-octyl-D-gluconamide was replaced with either the open-alditol chain of D-galactose, L-mannose or D-gulose. These head group modify the stereochemistry of the carbohydrate moiety of \(N\)-octyl-D-gluconamide. Replacement of the carbohydrate head group generally led to a significant loss in IRI activity (all were tested at 0.5 mM).19 Again, these results suggested that a balance is required between hydrophilicity and hydrophobicity. Similar observations have also been made with lysine-based surfactants and truncated C-linked AFGP analogues. IRI activity was dependent on factors such as length of alkyl chains and position and mode of attachment of alkyl chains.2-4

While many of the small molecules discussed till now possess potent IRI activity, they also possess structures resembling surfactants. As previously discussed, this surfactant nature can be detrimental to cells and solubilize cell membranes.6-12 Given the cytotoxic nature of surfactant-like molecules, the goal was to design small molecules possessing potent IRI activity, high solubility in an aqueous solution and a non-surfactant type structure. With these properties in mind, \(N\)-cycloalkyl-D-aldonamide type small molecules (\textbf{Figure 5-6}) were explored for IRI activity.
Figure 5-6. Structure of N-cycloalkyl-D-aldonamides with varying hydrophilic and hydrophobic moieties.

Aldonamides in Figure 5-6 were chosen as the importance of an open-alditol chain to IRI activity has already been established. Cycloalkyl rings were utilized as they would maintain the required hydrophobicity whilst removing the surfactant-like nature associated with the hydrogelators. The ring size and the number of hydroxyl groups were varied for each aldonamide to in order to determine the ideal balance of hydrophilicity and hydrophobicity required for potent IRI activity. The synthesis of the N-cycloalkyl-D-aldonamides is outlined in Scheme 5-6.
Scheme 5-6. Synthesis of N-cycloalkyl-D-aldonamides.

The synthesis of 512-516 occurs through the opening of δ-gluconolactone with the appropriate cycloalkylamine in 32-54% yield. 517-521 were generated in a two-step manner. 2,3,5-tri-O-benzyl-D-arabino-1,4-lactone was activated using trimethylaluminium and nucleophilic attack with the appropriate cycloalkylamine formed the benzylated amide. The benzyl groups were then removed under standard conditions generating the product in 54-83% yield over two steps. Formation of 524-528 required the production of ester 522. The synthesis of 522 began with a stabilized wittig of the Garner aldehyde to form α,β-unsaturated ester 522 in
80% yield. Sharpless dihydroxylation of 522 generated diol 523 in 80% yield. The Sharpless dihydroxylation was performed in the presence of methanesulfonamide as it is known to facilitate the hydrolysis of the key osmate ester (formed during the reaction). The ester moiety in 523 was activated using trimethylaluminium and nucleophilic attack with the appropriate cycloalkylamine furnished the protected amide. The isopropylidene and Boc groups were deprotected using acidic methanol to form 524-528 in 21-76% yield over two steps. With successful synthesis of the N-cycloalkyl-D-aldonamides in hand, attention was turned towards their IRI activity. N-Cycloalkyl-D-gluconamides 512-516 were first assayed for IRI activity (Figure 5-7).

![Chemical Structures](image)

Figure 5-7. IRI activity of N-cycloalkyl-D-gluconamides 512-516. Asterisks indicate significant different defined by unpaired Student’s t-test (*, p < 0.05). Asterisks indicate a statistical significant difference between samples and is defined by unpaired Student’s t-test (p < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

All N-cycloalkyl-D-gluconamides exhibited moderate activity. With a cyclooctyl ring and cycloheptyl ring, 512 and 513 exhibited the highest IRI activity of all N-cycloalkyl-D-gluconamides. 512 and 513 exhibited only a marginal improvement in activity over 516, which possesses a cyclopropyl ring. This is very surprising as it has been previously been demonstrated
that N-octyl-D-gluconamide is a potent inhibitor of ice recrystallization while N-propyl-D-gluconamide is a significantly weak inhibitor. This suggested that the presence of a large hydrophobic moiety is beneficial to IRI activity. With changes in ring size only marginally impacting IRI activity, attention was turned toward the influence of the hydrophilic group on IRI activity. Thus, a single hydroxyl group was removed from compounds 512-516 to generate D-arabinose derivatives 517-521. The IRI activities of D-arabinose and its derivatives 517-521 are presented in Figure 5-8.

![Figure 5-8](image)

Figure 5-8. IRI activities of N-cycloalkyl-D-arabonamides 517-521 and D-arabinose. No statistical difference between the samples could be defined by unpaired Student’s t-test (p < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

All of the N-cycloalkyl-D-arabonamides exhibited moderate yet decreased activity as compared to N-cycloalkyl-D-gluconamide. No statically relevant difference between the IRI activity of these derivatives could be determined. The loss of a hydroxyl may have impacted the hydration of these N-cycloalkyl-D-arabonamides by impacting their hydrogen bond ability. Unfortunately, hydration characteristics of these small molecules are not known. In order to further study the importance of the carbohydrate head group, a single hydroxyl group in N-
cycloalkyl-D-arabonamides was replaced with an amine to generate compounds 524-528. As previously demonstrated with amino D-galactose derivatives and azasugars, the presence of an amine is beneficial to IRI activity possibly due to the improved ability to participate in hydrogen bond donation with bulk water. Compounds 524-528 were assayed for IRI activity and the results are presented in Figure 5-9.

![Chemical structure of compounds 524-528](image)

Figure 5-9. IRI activities of 512-516. Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s t-test (*, p < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

Compounds 524-528 exhibited moderate IRI activity. Similar to the previously assayed N-cycloalkyl-D-aldonamides, the substitution of different cycloalkyl groups does not cause a drastic change in IRI activities of 524-528. Interestingly, 524, possessing the cyclooctyl ring exhibited the highest IRI activity out of 524-528. Additionally, 524-528 exhibited improved activities as compared to the N-cycloalkyl-D-arabonamides. The presence of an amine may have helped the hydrogen bond donation ability of the hydrophilic group thus possibly disturbing bulk water and ultimately affecting hydration and IRI. However, hydration characteristics for these
compounds need future investigation in order to correlate to IRI activity. The addition of a protonated amine may also impact the pH of the PBS solution and consequently impact IRI activity. However, the pKa of 524-528 is currently unavailable. Additionally, the impact of pH on IRI activity is also unknown. Thus, the change in pH as a result of the addition of 524-528 and subsequent impact on IRI activity cannot be presently discussed. In order to further explore the benefits of an amine substitution to N-cycloalkyl-D-aldonamides, a hydroxyl group on N-cyclooctyl-D-gluconamide was replaced with an amine to generate N-cyclooctyl-5-amino-5-deoxy-D-gluconamides 533 and 534. The amino substitution in 533 and 534 is a similar to the amine substitution found in the IRI active azasugars. Additionally, a cyclooctyl ring was chosen as this hydrophobic moiety generated the most IRI active compounds within the N-cycloalkyl-D-aldonamides assayed for IRI activity. Therefore, these structural features in 533 and 534 may lead to potent inhibitors of ice recrystallization. The synthesis is shown in Scheme 5-7.

Scheme 5-7. Synthesis of N-cyclooctyl-5-amino-5-deoxy-D-gluconamide 533 and 534 utilizing a reductive amination key step.

Nucleophilic attack by cyclooctylamine onto activated lactone 529 affords amide 530 in 81% yield. The free alcohol in 530 is oxidized using a Dess-Martin oxidation followed by a reductive amination using benzylamine and sodium cyanoborohydride to generate a separable mixture of diastereomers 531 and 532 in 27-32% yield over two steps. Unfortunately, the stereochemical assignment of the reductive amination was not possible through NMR studies. Both diastereomers were deprotected using standard debenzylation conditions to form 533 and
534 in 94-96% yield. Both diastereomers were assayed for IRI activity which is presented in Figure 5-10.

![Chemical structure](image)

Figure 5-10. IRI activity of *N*-cyclooctyl-5-amino-5-deoxy-D-gluconamides 533 and 534. No statistical significant difference between samples could be defined by unpaired Student’s *t*-test (*p* < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

The IRI activity of both diastereomers is similar to that of PBS. This is very surprising as the amine substitution is at the C5 position is a similar substitution found in the IRI active azasugars previously discussed. Both diastereomers are significantly less active than *N*-cyclooctyl-D-gluconamide 512. An amino substitution was beneficial to the IRI activity of *N*-cycloalkyl-D-arabonamides 517-521 but was detrimental to the IRI activity of *N*-cyclooctyl-D-gluconamide 512. While the influence of hydration or changes to pH of PBS (as a result of the addition of 533-534) on IRI activity is unclear for these *N*-cycloalkyl-D-aldonamides, these results clearly demonstrate that small structural changes can have a large influence on IRI activity. Further work is required to determine the influence these substitutions have on the three-dimensional hydrogen bonded network of bulk water.
5.3.1 Summary of the IRI Activity of \(N\text{-cycloalkyl-}\text{d-aldonamides}\)

While our laboratory has reported that compounds containing hydrophobic moieties conjugated to an aldonamide possess potent IRI activity, the utilization of cycloalkyl groups as the hydrophobic portion failed to produce small molecules with potent IRI activity. Changes to the hydrophilic portion of the aldonamides such as removal of a hydroxyl group or substitution of a hydroxyl group with an amine, had a larger impact on IRI activity. Removal of a hydroxyl group generally led to a loss in IRI activity. An amine substitution resulted in a marginal improvement in IRI activity with the \(N\text{-cycloalkyl-}\text{d-arabonamides}\) but was detrimental to the activity of \(N\text{-cyclooctyl-}\text{d-gluconamide}\). Overall, the utilization of cycloalkyl groups as the hydrophobic moiety conjugated to aldonamides failed to generate small molecules with potent IRI activity.

5.4 Synthesis and IRI Activity of \(N\text{-aryl-}\text{d-aldonamides}\)

With compounds 503 and \(\beta\text{-PMP-Glc}\) exhibiting potent IRI activity, the utilization of an aryl moiety as the hydrophobic component required further exploration. Our laboratory has previously demonstrated \(N\text{-aryl-}\text{d-aldonamides}\) as potent inhibitors of ice recrystallization.21 Based on this precedent, \(N\text{-aryl-}\text{d-aldonamides}\) 535-537 were synthesized and assayed for IRI activity (Figure 5-11). Initially, a phenyl ring was chosen as the aryl ring because it is the simplest aryl ring and allows for direct comparison to the cyclohexyl ring previously utilized.
Figure 5-11. IRI activity of *N*-aryl-d-aldonamides 535-537. 536 was tested at 11 mM due to insolubility. Asterisk indicates a statistical significant difference between samples and is defined by unpaired Student’s *t*-test (***, *p* < 0.05). Statistical significant difference between the PBS control and samples is not shown. Samples have been run in triplicate (n = 3) and error bars indicate standard error of the mean (SEM).

While 533 and 537 exhibited weak IRI activity, arabonamide, 536, exhibited potent IRI activity. 536 possesses similar IRI activity to *N*-alkyl-d-gluconamides 156 and 401 (known hydrogelators) and phenolic-glycoside, β-PMP-Glc (507). With 6.5% MGS relative to PBS, it is one of the most potent inhibitors of ice recrystallization assayed throughout this thesis. 536 possesses one less hydroxyl group than 535 and also possesses one of the simplest hydrophobic moieties. The activity of 536 suggests that a fine balance of hydrophobicity and hydrophilicity is required for potent IRI activity. With potent IRI activity, further investigation of this compound’s activity is required.
5.5 Kinetic Profile of the IRI Activity of N-phenyl-D-arabonamide

Given the importance of ice recrystallization inhibition to many commercial and medical applications, it is not surprising that many methods have been developed to assess this process. These include the capillary method, wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and the splat-cooling assay. During the capillary method, many samples can be run simultaneously and thus, direct comparison of samples can be performed whilst running the assay. However, this method does not provide any quantification of IRI activity. Instead, it only indicates the presence of IRI activity. WAXS and DSC methods provide evidence of freezing point depression in the presence of antifreezes, as well as the morphology of ice crystals. Again, these are qualitative assessments and not a quantitative assessment of IRI activity. The splat-cooling assay is the most commonly utilized method for assessing IRI and is currently used by the Ben laboratory. In this assay, recrystallization is observed by monitoring the change in ice crystal size where the presence of smaller ice crystals indicates a greater degree of activity. The details of this assay have been presented in chapter 1. Commonly, analytes are assayed in a salt solution which negates non-specific IRI effects observed otherwise in pure water. The Ben laboratory uses a phosphate buffered saline (PBS) solution, which is therefore a positive control for ice recrystallization. The presence of other solutes ensures that the solution is liquid at the annealing temperature and that the eutectic point is below this temperature. Liquid is therefore present between ice crystal boundaries and liquid inclusions can be formed, where inhibitors become concentrated. Ice crystal size in the splat-cooling assay is quantified by measuring the mean largest ice grain dimension along any axis or by measuring mean ice grain area. This generates mean grain size (MGS) of an analyte’s ice crystals relative to a PBS positive control at a single time point. However, this approach ignores two well-known aspects of recrystallization: time dependence of crystal growth and the heterogeneous nature of crystal sizes obtained during recrystallization. The MGS is not an accurate representation of a non-homogenous sample in which the distribution of ice crystal sizes is quite large, notably at increased time points. Given these limitations, interest has grown in developing a method for studying the kinetics and rate of ice recrystallization and its inhibition. Recently, Koop and coworkers have investigated the kinetics associated with IRI using AF(G)Ps. They were able to generate “dose-response” curves to better quantify activity. Utilizing a time-dependence on the measurement of IRI activity takes into account the time dependence of
crystal growth and heterogeneity in crystal sizes during recrystallization. However, in their approach, the ratio of ice to unfrozen fraction is small and thus it is not an accurate representation of a frozen sample commonly found during cryopreservation.36 Thus, the Ben laboratory has developed a complimentary analysis ideally suited to measure a rate constant for the recrystallization process in the presence of IRIs when large ice volume fractions are present such as in the splat-cooling assay.33

In this assay, ice crystals of each wafer were grouped into equally sized “bins”, where the incremental bin size was determined by the smallest area into which all crystals could be fit at time zero. The summed area of all the crystal in each bin was then converted to a proportion of the area of the total sample, in order to emphasize the relative importance of each bin.33 It was observed that while most bins increased or decreased in population over time, the initial bin only decreased over time. Furthermore, this decrease could be described using a simple mono-exponential equation, providing a first order rate constant for the depopulation of the initial bin.33 Using previously discovered small molecule IRIs, such as β-PMP-Glc and β-pBrPh-Glc, the Ben laboratory were able to demonstrate that the rate constants vary as a function of the inhibitory concentration. A classic dose-response curve was utilized to characterize the concentration dependence on the rate-constant. Utilizing a four-parameter sigmoidal equation, parameters such as efficacy, potency (IC\textsubscript{50}) and cooperativity (slope) could be determined for each small molecule IRI. It was observed that at low concentration of the small molecule, the rate for the depletion of the initial bin was indistinguishable from that of PBS. Thus the rate constants were normalized by dividing the PBS rate constant and the top plateau was set to \(k_{\text{norm}} = 100 \). At high concentrations of the small molecule IRIs, complete suppression for the depletion on the initial bin was observed and thus, these compounds were acting as full antagonists and thus possessed excellent efficacy. These observations simplified the fitting of the small molecule IRIs. The sigmoidal dose response curves of β-PMP-Glc and β-pBrPh-Glc are shown in Figure 5-12.
Figure 5-12. Dose-response curves of β-PMP-Glc and β-pBrPh-Glc. Normalized rate constants were measured in triplicate and error bars represent SEM. A two-parameter sigmoidal curve was used to fit the data. Analysis of the dose-response curves generated IC$_{50}$ values for β-PMP-Glc and β-pBrPh-Glc. β-PMP-Glc has an IC$_{50}$ value of 16.3 ± 1.4 mM while the IC$_{50}$ value for β-pBrPh-Glc is 14.8 ± 2.2 mM. In contrast, a complete sigmoidal curve could not be defined for d-galactose, a moderate inhibitor of ice recrystallization, even at concentration up to 100 mM. Finally, the slope between the plateaus was also determined for β-PMP-Glc (5.1 ± 0.8) and β-pBrPh-Glc (3.1 ± 0.6). This slope is referred to a Hill slope and because its value for both inhibitors was greater than 1, it suggests possible cooperativity in their inhibition mechanism. In contrast, d-galactose, did not show significant cooperativity. The cooperativity for β-PMP-Glc and β-pBrPh-Glc was possibly attributed to their ability to form self-assembling structures in solution. As previously discussed, the IRI activity of simple carbohydrates is attributed to their ability hydration as a result of their ability to disrupt bulk water within the QLL between bulk water and ice. Therefore, the cooperativity in β-PMP-Glc and β-pBrPh-Glc possibly results in the formation of self-assembling structures within the QLL. These structures are known to increase the ordering of bulk water. Given that diffusion of water molecules of an ordered crystal to less ordered water is favoured, the relative ordering of bulk water via cooperativity between small molecules would result in the diffusion process being less favored overall.

Using the new method developed by the Ben laboratory, the dose-response curve of N-phenyl-d-arabonamide 536 was generated and is displayed in Figure 5-13.
Figure 5-13. Dose-response curve of \(N \)-phenyl-\(d \)-arabonamide 536. Normalized rate constant were measured in triplicate and error bars represent SEM. A two-parameter sigmoidal curve was used to fit the data.

A complete sigmoidal curve could not be fit to the data due to insolubility of 536 past 11 mM. As evidence from the dose-response curve, 536 exhibits excellent efficacy (\(k_{\text{norm}} \) is close to zero at the bottom plateau of the sigmoidal curve). It is possible that 536 may exhibit full antagonism however; additional data points would be required to support this claim. The excellent efficacy is similar to that displayed by \(\beta \)-PMP-Glc and \(\beta \)-\(p \)BrPh-Glc.\(^{33} \) 536 also exhibited an \(IC_{50} \) value of 8.3 mM and a Hill slope of 6.0 ± 0.7. The \(IC_{50} \) value is similar to the \(IC_{50} \) of \(\beta \)-PMP-Glc and \(\beta \)-\(p \)BrPh-Glc which are 16.3 ± 1.4 mM and 14.8 ± 2.2 mM respectively. While other small molecules developed by our laboratory must be assayed using this new method, this demonstrates that 536 is one of the more potent IRI active compounds discovered by our laboratory. The large Hill slope of 536 also suggests that the mechanism of action towards inhibiting ice recrystallization may involve an element of cooperativity. Much like \(\beta \)-PMP-Glc and \(\beta \)-\(p \)BrPh-Glc, it is possible that 536 may form self-assembling structures in solution. However, the nature of these structures is unknown and future work is required towards uncovering the exact mechanism of action of 536.

Given, the utility in developing a kinetic profile of IRI active compounds, future work must be devoted to the kinetic profiling of other potent inhibitors of ice recrystallization including \(\beta \)-galactose based azasugar 310, \(\beta \)-glucose based azasugar 311 and disaccharide 503. Along with providing a detailed description of the IRI activity exhibited by these compounds, utilizing this novel kinetic approach may also provide insight into their mechanism of action.
5.6 Cryopreservation of Human Umbilical Cord Blood

As discussed in Chapter 1, cryopreservation is an important, simple and economic solution for long-term storage of biological materials. A major drawback of this process is the presence of cell death during the freeze-thaw cycle. This decreased viability is the result of either cell necrosis due to intracellular ice formation, mechanical damage to external cell membranes by either ice or osmotic flux, or cold-induced apoptosis.37-39 Umbilical cord blood (UCB) banking has become a common practice in the past decade due to two applications. First, stem cells from cord blood are regarded as a practical alternative to autologous bone marrow stem cells40 and second, the success of new stem cell-based regenerative therapies has increased in the past decade. However, decreased cell viabilities post-thaw is a current issue in regenerative therapies.41, 42 Lower cell viabilities post-thaw result in a lower proportion of viable cells prior to transplant.41, 42 Therefore, improved cryopreservation protocols are required. Currently, clinical protocols for UCB cryopreservation utilize a 10\% dimethyl sulfoxide (DMSO) cryoprotectant solution. In clinical settings, however, DMSO is found to be highly cytotoxic.43-45 Simple mono- and disaccharides have been investigated as potential UCB cryoprotectants.46-48 These studies have explored the use of carbohydrate alone or in combination with DMSO. The novel small molecule IRIs identified in this chapter were investigated for their use as cryoprotectants of UCB using decreased amounts of DMSO was explored.

The cryopreservation experiments were carried out according to the protocols utilized commonly within clinics. This work was completed with the assistance of a fellow doctoral student, Jennie Briard. The procedure is based on the previous method developed by Rubinstein.49 Whole UCB units were obtained and processed to obtain volume reduced leukocyte concentrates (LCs). Red-blood cells were sedimented by rouleaux formation using a sedimentation agent such as pentastarch (Pentaspan) or hydroxyethylstarch.49, 50 A leukocyte rich buffy coat supernatant (separated using centrifugation) is removed and centrifuged to pellet the leukocyte from plasma. The leukocytes are then resuspended in plasma to provide the LC for the cryopreservation experiments. The processed LC that are hematopoietic stem cells ranges from 0.1\%-1\% of total leukocytes present.49-52 Following re-suspension, the LCs were then cryopreserved utilizing a cryoprotectant solution containing the small molecule IRIs with or without DMSO. A standard freezing rate of 1°C/min to -80 °C is employed followed by storage in liquid nitrogen at -196 °C.49, 50 They are then thawed using a fast-thaw (37 °C) protocol. These
are the optimal freezing and thawing rates for HSCs and have been previously determined by the Ben laboratory.19 As previously discussed, an optimal cooling and thawing rates for each cell type are necessary to mitigate cryo injury. The mechanism by which this cryo injury occurs has been discussed in detail in chapter 1. Post-thaw HSC viability was determined using flow cytometry using ISHAGE guidelines.53 In flow cytometry, cells are passed through a laser in a fluid stream and when the cells pass through the laser intercept, they scatter light. Any fluorescent molecules present on the cell undergo fluorescence and the scattered and fluorescent light is collected by appropriately positioned lenses. A combination of beam splitters and filters steer the light to the detector. The detector produces electronic signals proportional to the optical signals striking them.54 All human leukocytes and HSCs express the leukocyte common antigen, CD45, on their cell surfaces. HSCs also express the CD34 antigen and this antigen is not present on mature leukocytes. Thus, fluorescently tagged antibodies for both CD45 and CD34 can be employed to identify the cell population within the leukocytes that are HSCs using a specific gating strategy with flow cytometry.53 HSCs are identified as CD45+ and CD34+ cells, whereas remaining leukocytes (or total mononuclear cells) are CD45+ but CD34−. By also employing 7-aminoactinomycin D (7-AAD) in the flow cytometric analysis, post-thaw cell viabilities of both of the HSCs present in the LC can be quantified. 7-AAD intercalates in double-stranded DNA. Although 7-AAD does not readily pass through cell membranes, cell can be marked as 7-AAD-positive if their membranes have been compromised or damaged due to cryo injury. It is assumed that a compromised or damaged cell membrane is an indicator of non-viable cells.54

Of the compounds exhibiting moderate to potent IRI activity in this chapter, only those possessing IRI activity of 0-50% MGS relative to PBS were explored for their ability to act as cryoprotectants during the cryopreservation of UCB. The first small molecule explored was disaccharide 503 which exhibited potent IRI activity with 12.8% MGS relative to PBS. Figure 5-14 displays post-thaw viability of CD34+ cells (HSCs). Statistically significant differences within the control and samples (for all compounds assayed) results were determined using an unpaired Student’s \textit{t}-test ($p < 0.05$). Additionally, statistically significant difference between the control and sample results were also determined using the same test.
Figure 5-14. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 22 mM 503 in varying amounts of DMSO cryoprotectant solution. Samples were run in duplicate (n = 2). Asterisks indicate a statistical difference between the sample and its respective control DMSO solution. Control solution containing 0% and 2% DMSO concentrations were statistically different from the rest of the control solution. Statistically significant difference is defined by unpaired Student’s t-test (*, p < 0.05, **, p < 0.01).

The post-thaw percent viabilities with the addition of 503 decreased overall as compared to the control DMSO cryoprotectant solution lacking 503. The post-thaw percent viabilities for 503 utilizing 0 and 2% DMSO were statistically lower than the respective control solutions lacking 503. Additionally, the post-thaw viabilities with 503 utilizing 5 and 10% DMSO were statistically similar to the control 5 and 10% DMSO solutions lacking 503. Therefore, the addition of 503 offered no additional improvement to the cryoprotective ability of DMSO. In certain cases, the addition of 503 led to decreased post-thaw cell viabilities suggesting that 503 is possibly detrimental to cell membranes and thus cytotoxic to cells. While a small molecule may be generally damaging to cell membrane, this damage can occur during the freezing process as well. During the slow cooling (1 °C/min), ice will prefer to form in the extracellular medium. The formation extracellular ice causes an osmotic pressure across the cell membrane. All solutes including small molecules are excluded from the ice lattice of extracellular ice and concentrated in the extracellular medium. This concentration of small molecule increase outside the cell membrane may cause damage to cell membranes. Unfortunately, the exact nature of the
cytotoxicity of 503 is currently unclear and requires future studies. Next, the N-cycloalkyl-d-aldonamides were explored for their cryopreservation ability (Figure 5-15).

![Graph](image)

Figure 5-15. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 22 mM 512, 513 and 524 in varying amounts of DMSO cryoprotectant solution. Samples were run in duplicate (n = 2). Asterisks indicate a statistical difference between the sample and its respective control DMSO solution. Control solution containing 0% and 2% DMSO concentrations were statistically different from the rest of the control solution. Statistically significant difference is defined by unpaired Student’s t-test (*, p < 0.05, **, p < 0.01, ***, p < 0.001).

Compounds 512 and 513 exhibited similar post-thaw cell viabilities to each other. No statistically significant difference in post-thaw cell viabilities was observed between the control, 512 and 513 samples using the various DMSO concentrations. Compound 524 exhibited exceptionally poor post-thaw cell viabilities. All viabilities were statistically decreased as compared to their respective control using DMSO at different concentrations lacking 524. The exceptionally poor post-thaw percent viabilities of 524 suggests that this compound may be particularly cytotoxic. Much like 503, compound 524 may be damaging the cell membrane and thus causing cytotoxicity to cells. However, the nature of this cytotoxicity requires future experiments for example the use of the MTT assay. The MTT assay will determine if the
cytotoxicity is the potential result of a loss in mitochondrial function. Finally, the quite potent N-phenyl-D-arabonamide 536 was assessed for its cryoprotective ability (Figure 5-16).

Figure 5-16. Post-thaw % cell viability of HSCs (CD34+ cells) cryopreserved with 11 mM 536 in varying amounts of DMSO cryoprotectant solution. Samples were run in duplicate (n = 2). No statistically significant difference between the sample and its respective control DMSO solution could be defined using an unpaired Student’s t-test (p < 0.05).

With potent IRI activity, 536 was hypothesized to be a beneficial cryoprotectant and display higher post-thaw percent viabilities compared to the control DMSO cryoprotectant solution lacking 536. Unfortunately, no statistically significant difference in the post-thaw cell viabilities was observed between the control lacking 536 and the sample with 536 at the various DMSO concentrations. This is surprising as the Ben laboratory has previously demonstrated the use of “custom-tailored” IRI active C-linked AFGP analogues to increase post-thaw cell viabilities of embryonic liver cells (over a DMSO control). Embryonic liver cells were chosen as they can model stem cells.60 Additionally, it has been demonstrated that IRI active mono- and disaccharides exhibiting minimal cytotoxicity significantly increased post-thaw cell viabilities of CD34+ hematopoietic progenitor cells and human embryonic liver cells compared to less IRI active carbohydrates. Both of these studies demonstrate the correlation of IRI activity to increases in post-thaw cell viabilities.61, 62 Due to a lack of significant improvement in post-thaw cell viability using 536, the role of 536 during cryopreservation and its possible cytotoxicity to the cell membrane requires further investigation in future work.
5.7 Chapter Summary

A goal of the Ben laboratory is the development of novel small molecules with potent IRI activity. Given the inherent surfactant-like nature of previously developed small molecules, attention was placed toward the synthesis of small molecule IRIs not resembling surfactants in structure whilst possessing hydrophobic and hydrophilic groups. Previous work with phenoxyglycosides, such as β-PMP-Glc, led to the design and synthesis of disaccharides containing a p-methoxyphenyl group at the anomeric center. The C3-OH and C6-OH were substituted for amines (based on work discussed in Chapter 3) and these amines were conjugated to open-aldotol chains of D-glucose and D-galactose. The presence of an amine and the additional hydroxyl groups were thought to improve the overall hydration of the molecule. Unfortunately, only one potent IRI was found. Thus, attention was shifted to N-cycloalkyl-D-aldonamide compounds. The cycloalkyl ring was chosen to maintain the hydrophobic nature of the long alkyl chains found in the previously IRI active N-alkyl-D-aldonamides whilst lacking their surfactant-like nature. Varying the ring size and hydrophilicity of the N-cycloalkyl-D-aldonamide resulted in moderate inhibitors of ice recrystallization but no potent activity was observed. Fortunately, replacing the cycloalkyl ring with a phenyl ring generated N-phenyl-D-arabonamide as one of the most IRI active molecules synthesized in this thesis. Kinetic analysis using a new method developed by our laboratory revealed an IC\textsubscript{50} value of 8.3 mM for N-phenyl-D-arabonamide. This was one of the lowest IC\textsubscript{50} values measured. Additionally, it was demonstrated that N-phenyl-D-arabonamide was a full antagonist (excellent efficacy) of the ice recrystallization process. Its IRI activity was also attributed to cooperativity and it was speculated that N-phenyl-D-arabonamide may for self-assembling structures capable to disrupting the bulk water around it and ultimately leading to potent IRI activity. With the generation of many moderate and a few potent inhibitors of ice recrystallization, their ability to act as cryoprotective agents during the cryopreservation of umbilical cord blood was explored. Unfortunately, none of the small molecules were able to improve the cryoprotective ability of a DMSO cryoprotectant solution. Future work requires the investigation of the further development of small molecules containing aryl groups as novel cryoprotectants.
5.6 References

54. Biosciences, B., In San Jose, California, 2000; Vol. 11-11032-01.

Chapter 6. Experimental Procedures and Characterization Data

6.1 General Experimental Conditions

All anhydrous reactions were performed in flame-dried glassware under a positive pressure of dry argon. Air or moisture-sensitive reagents and anhydrous solvents were transferred with oven-dried syringes or cannulae. All flash chromatography was performed with E. Merck silica gel 60 (230-400 mesh). All solution phase reactions were monitored using analytical thin layer chromatography (TLC) with 0.2 mm pre-coated silica gel aluminum plates 60 F254 (E. Merck). Components were visualized by illumination with a short-wavelength (254 nm) ultra-violet light and/or staining (ceric ammonium molybdate, ninhydrin stain, potassium permanganate, or phosphomolybdate stain solution).

All solvents used for anhydrous reactions were distilled. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium/benzophenone under nitrogen. Dichloromethane and acetonitrile were distilled from calcium hydride. N,N-dimethylformamide (DMF) was stored over activated 4Å molecular sieves under argon.

1H (300, 400 or 500 MHz) and 13C NMR (76 or 100 or 125 MHz) spectra were recorded at ambient temperature on a Bruker Avance 300, Bruker Avance 400, Bruker Avance 500, or Varian Inova 500 spectrometer. Deuterated chloroform (CDCl3), methanol (CD3OD), DMSO (DMSO-d6) or water (D2O) were used as NMR solvents, unless otherwise stated. Chemical shifts are reported in ppm downfield from trimethylsilane (TMS) or the solvent residual peak as an internal standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet and br, broad. Low resolution mass spectrometry (LRMS) was performed on a Micromass Quatro-LC Electrospray spectrometer with a pump rate of 20 μL/min using electrospray ionization (ESI).

6.2 Ice Recrystallization Inhibition (IRI) Assay

Sample analysis for IRI activity was performed using the “splat-cooling” method as previously described.1 In this method, the analyte was dissolved in phosphate buffered saline (PBS) solution and a 10 μL droplet of this solution was dropped from a micropipette through a two meter high plastic tube (10 cm in diameter) onto a block of polished aluminum precooled to approximately -80 °C. The droplet froze instantly on the polished aluminum block and was
approximately 1 cm in diameter and 20 μm thick. This wafer was then carefully removed from
the surface of the block and transferred to a cryostage held at -6.4 °C for annealing. After a
period of 30 min, the wafer was photographed between crossed polarizing filters using a digital
camera (Nikon CoolPix 5000) fitted to the microscope. A total of three images were taken from
each wafer. During flash freezing, ice crystals spontaneously nucleated from the supercooled
solution. These initial crystals were relatively homogeneous in size and quite small. During the
annealing cycle, recrystallization occurred, resulting in a dramatic increase in ice crystal size. A
quantitative measure of the difference in recrystallization inhibition of two compounds X and Y
is the difference in the dynamics of the ice crystal size distribution. Image analysis of the ice
wafers was performed using a novel domain recognition software (DRS) program. This
processing employed the Microsoft Windows Graphical User Interface to allow a user to visually
demarcate and store the vertices of ice domains in a digital micrograph. The data was then used
to calculate the domain areas. All data was plotted and analyzed using Microsoft Excel. The
mean grain (or ice crystal) size (MGS) of the sample was compared to the MGS of the control
PBS solution for that same day of testing. IRI activity is reported as the percentage of the MGS
(% MGS) relative to the PBS control, and the % MGS for each sample was plotted along with its
standard error of the mean. Large percentages represent a large MGS, which is indicative of poor
IRI activity.

6.2.1 Kinetic Measurement of IRI Activity

The “splat-cooling” assay is run as in section 6.2. However, the anneal time is reduced from
30 min to 5 min. The rate constants / initial rates were determined for 6-8 concentrations of ice
recrystallization inhibitors in PBS buffer, two log units or the highest possible concentration in the
case of solubility issues. For each sample concentration, triplicate wafers were prepared and single
image was obtained for each wafer. The images recorded at each time point was analyzed using
ImageJ. Specifically, all crystals within the field of view were circled, excluding those only partially
visible at the image boundary. The area of each circled crystal was calculated using ImageJ and
corrected for the appropriate magnification factor of the objective lens. These crystals were then
sorted into discrete bins using a programmed Excel spreadsheet designed by Professor Jeffrey
Keillor. Bin sizes were assigned in increments of 0.001 mm², as it was observed that at time zero, all
ice crystals could be just contained within this bin. In this way, subsequent crystal growth would
result in larger crystals moving out of Bin 1 and into higher bins. The relative importance of each bin
was determined by summing the area of each crystal within that bin, and dividing by the sum of the areas of all crystals within the field of view. In this way, the proportionate area of each bin was calculated for every sample wafer. The average rate constant measured in triplicate at zero inhibitor concentration (i.e. in PBS buffer alone) was used to normalize the rate constants measured in the presence of inhibitor. This provided, for each inhibitor, a set of normalized rate constants, k_{norm}, versus inhibitor concentration, [I], whose log values were used in dose-response fitting according to the following equation:

$$k_{\text{norm}} = \frac{100}{1 + n \times 10^{\log \text{IC}_{50} - \log [I]}}$$

This sigmoidal equation was fitted with 2 parameters in GraphPad. In this two-parameter sigmoidal equation, IC$_{50}$ is the concentration of the inhibitor that gives 50% antagonism and n is the Hill slope.

6.3 Thermal Hysteresis (TH) Assay

Nanoliter osmometry was performed using a Clifton nanoliter osmometer (Clifton Technical Physics, Hartford, NY), as described by Chakrabartty and Hew. All of the measurements were performed in doubly distilled water. Ice crystal morphology was observed through a Leitz compound microscope equipped with an Olympus 20× (infinity-corrected) objective, a Leitz Periplan 32X photo eyepiece, and a Hitachi KPM2U CCD camera connected to a Toshiba MV13K1 TV/VCR system. Still images were captured directly using a Nikon CoolPix digital camera.

6.4 Gas Hydrate Formation Inhibition DSC Measurements

Through differential scanning calorimetry (Setaram Inc, m-DSC VII) methane hydrate nucleation was observed. Samples were prepared by injecting 1 µL of test solution into approximately 1.8 mg of silica gel isolated in a 1 mm diameter borosilicate capillary tube. 12 capillaries containing identical samples were then loaded into a DSC cell and pressurized to 100 Barr under methane. Starting at 20 °C the DSC was cooled to -12 °C at -0.0085 °C/sec. The cell was then kept at -12 °C for 20 hours before being heated to 20 °C 0.0085 °C/sec. This trial is repeated three times sequentially, resulting in 36 trials for each test solution. Test solutions are prepared from 5 mM stock solutions and are tested at all desired concentrations. n-Octyl-β-D-pyranosides 126 and 127 and N-alkyl-D-gluconamides 128, 401 and 402 were previously
synthesized by fellow doctoral student Chantelle Capicciotti. Experimental procedures and full characterization of 126-128, 401 and 402 can be found within her Ph.D thesis.4

6.5 Hep G2 Cell Culture

Hep G2 cells (human liver hepatocellular carcinoma cells, ATCC, HB-8065) were cultured in Eagle’s minimum essential media (MEM) supplemented with 10% FBS (fetal bovine serum), 1% non-essential amino acids, 1 mM sodium pyruvate and 1% penicillin-streptomycin in 75cm2 Corning® flasks. Cells were incubated in a 37°C incubator supplied with 5% CO\textsubscript{2}. Passages 5-18 were used in this study. No evidence of overgrowth or morphological changes consistent with apoptosis was observed. All cells were removed from the plates using 3 mL Accutase solution for use in experiments. The media was changed every two days and the cells were split every seven days. The splitting involved removing media solution from flasks, adding 3 mL of Accutase solution and incubating at 37°C for 5 min. The detached cells were transferred to a 50 mL falcon tube and pelleted at 1000 rpm for 5 min. The media was discarded from falcon tubes and the pellet was resuspend in 5 mL of MEM and agitated to disperse cells. A 1/8 dilution of the cell solution was counted with a hemocytometer with trypan blue as a dye. The cell solution was transferred to a new flask and 20 mL of RPM1 was added.

6.6 MTT assay with HepG2 Cells

The MTT assay was performed as described previously.5 Hep G2 cells were plated in 96-well plates and treated with 100 μL of compound MEM solution and incubated at 37°C for 16 h with 5% CO\textsubscript{2}. Cells incubated with MEM without compound were used as a negative control, and cells supplemented with 1% Triton-X were used as a positive control. Following incubation, the supplemented media was removed and 200 μL of fresh media and 50 μL of MTT solution (5 mg/mL) in HBSS (Hank’s balanced salt solution) were added and the plates were incubated at 37°C with 5% CO\textsubscript{2} for 3 h. The plates were then centrifuged, the media aspirated and 200 μL of MTT solubilization solution (10% Triton X-100, 0.1 N HCl in isopropanol) was added to each well. The plates were incubated at room temperature in the dark for 2-4 h and the absorbance of each well was then read at a wavelength of 570 nm with a multiwell plate reader (AD 34°C Absorbance Detector, Beckman Coulter, Inc., Mississauga, ON). Viability was reported as a percentage of the control. All experiments were repeated at least three times in 10 consecutive wells for each condition.
6.7 Collection and Processing of Cord Blood

Umbilical cord blood was collected following healthy term delivery and informed consent from mothers, in accordance with institutional approval from the Research Ethics Board of The Ottawa Hospital. Cord Blood was processed as according to Rubinstein’s method to obtain leukocyte concentrates (LCs). 10% pentastarch (Pentaspan) was added to the cord blood aliquoted into 50 mL Falcon tubes in the collection bag to obtain a final concentration of 2% and was incubated at room temperature for 10 min. The cord blood was then centrifuged at 52 g at 10°C for 15-20 min depending upon the volume of cord blood. The buffy coat aliquoted into 50 mL Falcon tubes to removes this layer from the packed RBCs and this buffy coat layer was then centrifuged at 400 g for 10 min at 10°C. The plasma was removed and stored in a separate Falcon tube and the packed leukocytes were resuspended in 20 mL of plasma resulting in the leukocyte concentrate (LC). Total mononuclear cell counts and CD34+ cell concentrations and viability were then determined by flow cytometry.

6.8 Cryopreservation of UBC, Thawing and Flow Cytometry

Cryopreservation of the LCs obtained from processed UCB was performed similarly to protocols described previously. Aliquots of LCs containing 4×10^6 total mononuclear cells were added to 1.5 mL Eppendorf tubes and cells were pelleted by centrifugation for 10 min at 400 g and 10 °C. The supernatant was removed and the cells were resuspended in 80 μL plasma. To this, 20 μL of cryo-solution supplemented with 5% (w/v) Dextran were added to afford a final concentration of cryo-solution as indicated in the text supplemented with 1% (w/v) Dextran. The cryo-solutions added (20 μL) were at 5 times the desired concentration as they were diluted to the appropriate amount when added to the mononuclear cells suspended in plasma (80 μL). Cell suspensions were transferred to 2 mL cryogenic vials and placed in a “Mr. Frosty” freezing container. The container was placed in a -80°C freezer for 16 h to provide a cooling rate of 1°C/min. Samples were then stored in the vapor phase of liquid nitrogen (−196°C) for a minimum of 24 hours. Following storage, samples were either rapidly thawed in a 37°C water bath with gentle agitation or thawed slowly at room temperature for flow cytometry analysis.

Flow cytometric analysis of UCB was conducted as according to the ISHAGE guidelines. After cryopreservation and thawing, cell suspensions were diluted with 900 μL of DPBS and 200 μL were transferred to polystyrene flow cytometry tubes. 8 μL of CD45-FITC
and 8 μL of CD34-PE were added and the samples were vortexed and incubated in the dark for 10 min. 8 μL of 7-AAD was then added and the samples were vortexed and incubated in the dark for 5 min. Following incubation, 20 μL of CountBright counting beads were added and samples were diluted to 1 mL with 1X RBC lysing buffer. Flow cytometry analysis was carried out on a Beckman Coulter FC500 flow cytometer. Data analysis and gating strategies were carried out as according to the ISHAGE guidelines. Viability of CD34+ cells was determined by the total number CD45+/CD34+ cells that were 7-AAD-. Time between thawing and analysis by flow cytometry was less than 1 h. All samples were tested in duplicates.

6.9 Characterization Data and Spectra

D-galactose diethyldithioacetal (312)

D-galactose (20.1 g, 112 mmol) was dissolved in a 37% (v/v) solution of aq. HCl (30 mL) and ethanethiol (20 mL, 277 mmol) was added to the mixture. After 5 min, ice-water is added to the reaction till a precipitate formed. The precipitate was then filtered and rinsed with EtOH. The remaining solid is then recrystallized from EtOH to give a 312 brown solid (14.8 g, 46% yield).

1H NMR (300 MHz, CD$_3$OD): δ 4.00 (d, J = 9.2 Hz, 1H), 3.85 (m, 3H), 3.68 (dd, J = 13.2, 9.2 Hz 2H), 3.43-3.41 (m, 1H), 2.64-2.55 (m, 4H), 1.16 (t, J = 7.4 Hz, 6H).

13C NMR (125 MHz, CD$_3$OD): δ 72.3, 70.6, 70.2, 70.0, 63.8, 55.3, 24.9, 24.3, 15.1, 15.1. LRMS (ESI): m/z calcd. for C$_{10}$H$_{26}$NO$_5$S$_2$ [M+NH$_4$]$^+$ 304.4, found 304.8. All spectral data was consistent with that reported in the literature.
5,6-\textit{O}-isopropylidene-2,3,4-acetyl-\textit{d}-galactose diethyl dithioacetal (313)

\begin{align*}
\text{312} & \ (3.93 \text{ g}, 13.7 \text{ mmol}) \text{ was dissolved in DMF (50 mL) and 2,2-dimethoxypropane (1.8 mL}, \\
& 14.3 \text{ mmol}) \text{ and camphorsulfonic acid (13.9 mg, 0.06 mmol) were added to the mixture. The} \\
& \text{reaction was monitored by TLC till starting material was consumed. The reaction is then} \\
& \text{quenched with trimethylamine and concentrated in vacuo. The mixture is then dissolved in} \\
& \text{pyridine (30 mL) and acetic anhydride (10 mL) and the mixture was stirred overnight. The} \\
& \text{mixture is the concentrated in vacuo. and purified by flash chromatography to give 313 as a clear} \\
& \text{oil (2.61 g, 42\% yield over two steps).}{}^1\text{H NMR (300 MHz, CDCl}_3): \ \delta \ 5.75 \text{ (dd, } J = 7.8, 2.1 \text{ Hz,} \\
& 1H), 5.29 \text{ (dd, } J = 7.7, 3.8 \text{ Hz } 1H), 4.17-4.11 \text{ (m, } 1H), 3.95 \text{ (dd, } J = 8.7, 6.7 \text{ Hz, } 1H), \\
& 3.87 \text{ (d, } J = 8.1 \text{ Hz, } 1H), 3.73 \text{ (dd, } J = 8.7, 5.7, 1H), 2.75-2.55 \text{ (m, } 4H), 2.11 \\
& (s, 3H), 2.10 \text{ (s, } 3H), 1.38 \text{ (s, } 3H), 1.29 \text{ (s, } 3H), 1.24-1.18 \text{ (m, } 6H).{}^{13}\text{C NMR (125 MHz, CDCl}_3): \ \delta \ 170.3, 170.0, 169.5, 109.7, 74.1, 70.8, 70.4, 70.2, 65.8, 52.0, 26.0, 25.4, 25.1, \\
& 24.9, 21.1, 20.9, 20.8, 14.3, 14.1. \text{ LRMS (ESI): } m/z \text{ calcd. for C}_{19}H_{32}N_{\text{a}}O_{8}S_{2} [M+Na]^{+} 457.6, \\
& \text{found 457.8.}
\end{align*}

5,6-\textit{O}-isopropylidene-2,3,4-benzoyl-\textit{d}-galactose diethyl dithioacetal (314)

\begin{align*}
\text{312} & \ (3.90 \text{ g}, 13.6 \text{ mmol}) \text{ was dissolved in DMF (50 mL) and 2,2-dimethoxypropane (1.8 mL,} \\
& 14.3 \text{ mmol) and camphorsulfonic acid (13.9 mg, 0.06 mmol) were added to the mixture. The} \\
& \text{reaction was monitored by TLC till starting material was consumed. The reaction is then} \\
& \text{quenched with trimethylamine and concentrated in vacuo. The mixture is then dissolved in} \\
& \text{pyridine (4.2 mL) and benzoyl chloride (3.1 mL, 40.2 mmol) was added. The reaction was stirred} \\
& \text{overnight and toluene was added and the mixture was concentrated in vacuo. The resulting syrup} \\
& \text{was dissolved in EtOAc, washed H}_2\text{O (2x), the organic layer was dried with MgSO}_4, \text{ filtered and} \\
& \text{concentrated in vacuo. The resulting oil is then purified by flash chromatography to give a 314 as} \\
& \text{a clear oil (3.83 g, 44\% yield over two steps).}{}^1\text{H NMR (400 MHz, CDCl}_3): \ \delta \ 8.11-8.07 \text{ (m, } 2H), \\
& 7.96-7.88 \text{ (m, } 4H), 7.60-7.50 \text{ (m, } 1H), 7.50-7.40 \text{ (m, } 4H), 7.34-7.23 \text{ (m, } 4H), 6.25 \text{ (dd, } J = 5.32, \\
& 2.5 \text{ Hz, } 1H), 5.91 \text{ (dd, } J = 7.1, 2.5 \text{ Hz, } 1H), 5.60 \text{ (dd, } J = 5.2, 4.0 \text{ Hz, } 1H), 4.50 \text{ (td, } J = 6.54, \\
& 6.53, 4.01 \text{ Hz, } 1H), 4.18 \text{ (d, } J = 7.10 \text{ Hz, } 1H), 4.05 \text{ (dd, } J = 8.7, 6.7 \text{ Hz, } 1H), 3.83 \text{ (dd, } J = 8.7, \\
& 6.7, 1H), 2.75-2.55 \text{ (m, } 4H), 1.40 \text{ (s, } 3H), 1.30 \text{ (s, } 3H), 1.16 \text{ (td, } J = 7.4, 2.4 \text{ Hz, } 6H).{}^{13}\text{C NMR (100 MHz, CDCl}_3): \ \delta \ 165.7, 165.4, 165.4, 133.4, 133.4, 133.0, 130.0, 129.9, 129.8, 129.7, 129.6,
\end{align*}
129.3, 128.5, 128.3, 128.2, 109.9, 74.8, 72.1, 71.8, 71.6, 65.9, 52.4, 26.2, 25.5, 25.4, 25.1, 14.3, 14.2. LRMS (ESI): \(m/z \) calcd. for \(C_{34}H_{38}NaO_8S_2 [M+Na]^+ \) 638.8, found 638.5.

3,4,5,7-tetra-O-benzyl-1,2-dideoxy-D-galacto-hept-1-enitol (316)

Methyltriphénylphosphonium bromide (3.97 g, 11.1 mmol) was suspended in toluène (60 mL) and cooled to 0 °C and 2.5 M butyllithium in hexanes (4.5 mL, 11.1 mmol) was added dropwise. A solution of 315 (1.99 g, 3.70 mmol) in toluène (16 mL) was cannulated to the reaction and this mixture was then stirred for 48 h at rt. The reaction was quenched with acetone (20 mL), the mixture is diluted with ether and extracted with water. The aqueous layer is extracted with ether (2x), the organic layers were combined, dried with MgSO\(_4\), filtered and concentrated in vacuo. The residue was purified by flash chromatography to give 316 as a syrup (1.19 g, 60% yield).

\(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.34-7.14 (m, 20H), 5.86 (ddd, \(J = 17.9, 10.1, 7.9 \) Hz, 1H), 5.39-5.23 (m, 2H), 4.76-4.72 (m, 2H), 3.83-3.76 (m, 2H), 3.49 (ddd, \(J = 17.6, 9.4, 6.3 \) Hz, 2H), 3.00 (d, \(J = 5.4 \) Hz, 1H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta \) 138.3, 138.2, 138.2, 138.1, 135.8, 128.4, 128.2, 128.1, 127.8, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1, 127.0, 126.9, 126.8, 126.7, 126.6, 123.5, 119.3, 81.7, 80.7, 78.8, 74.7, 74.6, 73.2, 73.0, 70.6, 68.8. LRMS (ESI): \(m/z \) calcd. for \(C_{35}H_{38}KO_5 [M+K]^+ \) 577.8, found 577.4. All spectral data was consistent with that reported in the literature.

3,4,5,7-tetra-O-benzyl-1,2-dideoxy-6-O-(4-nitrobenzoyl)-L-altro-hept-1-enitol (317)

316 (129 mg, 0.239 mmol), triphenylphosphine (188 mg, 0.717 mmol) and 4-nitrobenzoic acid (159 mg, 0.956 mmol) were dissolved in THF (20 mL) at 0 °C. DIAD (0.2 mL, 0.956 mmol) was added dropwise and the reaction was stirred overnight. The reaction was then concentrated in vacuo and purified by flash chromatography to give 317 as a syrup (128 mg, 78% yield). \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta \) 8.28 (d, \(J = 8.9 \) Hz, 2H), 8.15 (d, \(J = 8.9 \) Hz, 2H), 7.50-7.30 (m, 20H), 6.08 (ddd, \(J = 17.9, 10.1, 7.9 \) Hz, 1H), 5.97 (dd, \(J = 7.4, 2.8 \) Hz, 1H), 5.56-5.45 (m, 2H), 4.96-4.84 (m, 8H), 4.30-4.22 (m, 2H), 4.07-4.05 (m, 2H) 3.90 (t, \(J = 5.2 \) Hz, 1H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta \) 163.9, 150.5, 138.3, 138.3, 138.2, 138.1, 135.8, 135.7, 130.8, 128.4, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 123.5, 119.3, 81.7, 80.7, 78.8, 74.7, 74.6, 73.2, 73.0, 70.6, 68.8. LRMS (ESI): \(m/z \) calcd. for \(C_{42}H_{41}NaO_5 [M+Na]^+ \) 710.8, found 710.3. All spectral data was consistent with that reported in the literature.
3,4,5,7-tetra-O-benzyl-1,2-dideoxy-1-altro-hept-1-enitol (318)

317 (358 mg, 0.521 mmol) was dissolved in MeOH (20 mL) and a few drops of a solution NaOMe in MeOH (1 M) till pH = 9. Once the starting material is consumed as seen by TLC, Amberlite® IR-120 (H⁺) ion exchange resin is added till pH = 7. The resin is removed by filtration and washed with MeOH and the filtrate was concentrated in vacuo. to give 318 as a clear oil. This compound was used without further purification.

3,4,5,7-tetra-O-benzyl-1,2,6-trideoxy-6-phthalimido-D-galacto-hept-1-enitol (319)

318 (855 mg, 1.24 mmol), triphenylphosphine (1.30 g, 4.97 mmol) and phthalimide (732 mg, 4.97 mmol) was dissolved THF (170 mL). DIAD (1 mL, 4.97 mmol) was added dropwise to the mixture and the reaction was stirred overnight. The mixture was then concentrated under vacuo. and the resulting residue was triturated with ether. The precipitate was removed by filtration and the filtrate was concentrated under vacuo. and the resulting residue was purified by flash chromatography to give 319 as a syrup (605 mg, 73% yield. 1H NMR (300 MHz, CDCl₃): δ 7.71-7.62 (m, 4H), 7.39-6.98 (m, 20H), 5.92 (ddd, J = 17.9, 10.1, 7.9 Hz, 1H), 5.40-5.34 (m, 2H), 4.92 (dt, J = 9.3, 5.1 Hz, 1H), 4.81 (s, 2H), 4.63 (d, J = 11.8 Hz, 1H), 4.54 (d, J = 11.8 Hz, 1H), 4.41-4.26 (m, 4H), 4.21 (dd, J = 8.3, 2.8 Hz, 1H) 4.09-4.00 (m, 2H), 3.79-3.73 (m, 2H). 13C NMR (75 MHz, CDCl₃): δ 168.7,138.5, 138.5, 138.0, 138.0, 135.8, 135.5, 133.5, 132.1, 128.3, 128.2, 128.2, 128.0, 127.8, 127.7, 127.6, 127.4, 127.2, 123.0, 119.5, 83.0, 81.4, 74.7, 73.1, 72.4, 70.7, 67.0, 52.2. LRMS (ESI): m/z calcd. for C₄₃H₄₂O₆ [M+H]+ 667.8, found 667.7. All spectral data was consistent with that reported in the literature.
3,4,5,7-tetra-O-benzyl-1,2-dideoxy-6-[(benzoylcarbonyl)amino]-1,2,6-trideoxy-D-galacto-1-enitol (320)

319 (623 mg, 0.931 mmol) and hydrazine hydrate (2.5 mL) are dissolved in MeOH (60 mL) and heated to 67°C for 1h. The reaction is then concentrated in vacuo. and dissolved in THF (120 mL) and saturated NaHCO₃ (2.5 mL) was added and the reaction is stirred for 5min. N-(benzoylcarbonyloxy)succinimide (349 mg, 1.40 mmol) was added in one portion at 0°C and the reaction is stirred for 3h at 0°C. The reaction was then concentrated in vacuo. and purified by flash chromatography to give 320 as a yellow oil (300 mg, 48% yield over two steps). ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.24 (m, 23H), 7.15-7.13 (m, 2H), 6.02 (dd, J = 17.9, 10.1, 7.9 Hz, 1H), 5.15-5.06 (m, 3H), 5.15-5.06 (m, 2H), 4.71-4.35 (m, 8H) 4.18-4.14 (m, 1H), 4.10-4.08 (m, 1H), 3.66-3.58 (m, 2H), 3.54-3.48 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): 156.1, 138.4, 138.4, 138.1, 136.6, 136.2,128.5, 128.4, 128.3, 128.3, 128.1, 128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 127.5, 118.9, 81.4, 80.5, 75.9, 75.1, 73.6, 72.9, 70.2, 69.6, 66.7. LRMS (ESI): m/z calcd. for C₄₃H₄₆O₆ [M+H]⁺ 671.8, found 671.3. All spectral data was consistent with that reported in the literature.

2,3,4,6-tetra-O-benzyl-D-galactono-δ-lactone (321)

315 (5.03 g, 9.30 mmol) in 50 mL acetonitrile was added tetrapropylammonium perruthenate (176 mg, 0.501 mmol) and N-methylmorpholine-N-oxide (1.63 g, 13.9 mmol). This solution was stirred till TLC indicated complete consumption of the starting material. The crude mixture was filtered over Celite® and concentrated under vacuo. The resulting crude mixture was diluted with ethyl acetate and washed 2x with a saturated solution of sodium thiosulfate. Afterwards, it was washed with brine, dried over magnesium sulfate and concentrated in vacuo. The product was used for further reactions without further purification.
2,3,4,6-tetra-O-benzyl-D-galactonamide (322)

Compound 321 (3.12 g, 5.79 mmol) was dissolved in 40 mL solution of methanol saturated with ammonia. The resulting mixture was stirred at room temperature for 1.5 h under argon atmosphere. The reaction mixture was then concentrated in vacuo. Recrystallization of the resulting white solid from ethyl acetate and petroleum ether afforded 322 as a white powder (2.56 g, 50% yield over two steps). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.33-7.17 (m, 20H), 6.62 (bs, 1H), 5.54 (bs, 1H), 4.71-4.32 (m, 8H), 4.19-4.14 (m, 3H), 3.90 (dd, \(J = 8.3, 1.4\) Hz, 1H), 3.59 (dd, \(J = 9.3, 6.6\) Hz, 1H), 3.51 (dd, \(J = 9.4, 6.5\) Hz, 1H), 2.49 (bs, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 174.8, 137.9, 137.9, 137.7, 136.7, 128.6, 128.4, 128.4, 128.2, 128.0, 127.8, 127.7, 127.4, 79.7, 79.3, 77.2, 75.0, 73.7, 73.3, 73.2, 71.3, 69.2. LRMS ESI-MS \(m/z\) calcd for C\(_{34}\)H\(_{37}\)NO\(_6\) [M + H]\(^+\): 556.3, found 557.3. All spectral data was consistent with that reported in the literature.\(^{11}\)
2,3,4,6-tetra-O-benzyl-d-galactono-δ-lactam (323)

322 (2.56 g, 4.61 mmol) was dissolved in 19 mL of dimethyl sulfoxide and 11 mL of acetic anhydride. The mixture was stirred overnight. After, 60 mL of water was added and the mixture is stirred for 15 more minutes during which a yellow oil precipitated. The water layer was removed and the residue was extracted with water 3x. The residue was dissolved in dichloromethane and extracted with brine 2x. The organic fractions were combined and dried over MgSO₄ and concentrated in vacuo. The product (2.11 g, 83% yield) was used for further reactions without further purification. This mixture was dissolved in 60 mL of acetonitrile and 15 mL of formic acid. To this mixture, sodium cyanoborohydride (1.19 g, 18.9) was added and the reaction was refluxed for two hours. The mixture was then cooled in ice and the reaction was quenched by adding aq. HCl-solution (0.1 M). After stirring for 15 minutes, the mixture was poured into a mixture of ethyl acetate/ saturated aqueous NaHCO₃ solution (1:1, 200 mL). The water layer was separated and extracted with ethyl acetate; the combined organic fractions were then washed with brine and dried over MgSO₄ and concentrated in vacuo. Flash chromatography gave 323 as a yellow syrup (1.61 g, 65% yield over two steps). ¹H NMR (CDCl₃, 300MHz): δ 7.48-7.26 (m, 20H), 5.30 (br s, 1H), 5.26 (d, J = 11.3 Hz, 1H), 4.96-4.44 (m, 8H), 4.03 (br s, 1H), 3.86 (dd, J = 9.2 Hz, 1.4 Hz, 1H), 3.61-3.58 (m, 2H) 3.51-3.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 138.4, 138.2, 138.0, 137.5, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 80.7, 77.5, 77.5, 77.2, 76.9, 75.4, 74.2, 73.6, 73.1 53.6. LRMS ESI-MS m/z calcd for C₃₄H₃₆NO₅ [M + H]⁺: 538.7, found 538.2. All spectral data was consistent with that reported in the literature.¹¹
2,3,4,6-tetra-O-benzyl-1,5-dideoxy-1,5-imino-D-galactitol (324)

323 (210 mg, 0.391 mmol), was dissolved in 10 mL THF. Then, lithium aluminiumhydride (53.6 mg, 1.41) was added and the reaction mixture was stirred for 3 hours at 70°C under argon atmosphere. The reaction mixture was then poured into a stirred mixture of 50 mL ice water and 50 mL diethyl ether. After stirring for 10 minutes 75 mL sodium hydroxide solution (0.5 M) was added and the mixture was stirred for another 10 minutes. The water layer was then removed and extracted with 25 mL of diethyl ether (2x); the combined organic fractions were washed with brine and water. Flash chromatography gave 324 as a light yellow oil (198 mg, 98% yield).

1H NMR (CDCl3, 300MHz): δ 7.40-7.25 (m, 20H), 4.90 (d, J = 11.4 Hz, 1H), 4.78 (d, J = 12.0 Hz, 1H), 4.73 (d, J = 9.7 Hz, 1H), 4.64 (d, J = 11.6 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 4.47 (d, J = 11.8 Hz, 1H), 4.46 (d, J = 11.8 Hz, 1H), 4.00-3.95 (m, 1H), 3.90 (ddd, J = 9.8, 9.8, 5.3 Hz, 1H), 3.53 (dd, J = 8.9, 6.7 Hz, 1H), 3.47 (dd, J = 9.2, 2.6 Hz, 1H), 3.34-3.41 (m, 1H), 3.31 (dd, J = 13.3, 4.6 Hz, 1H), 2.86 (t, J = 7 Hz, 1H), 2.52 (dd, J = 10.4, 2.4 Hz, 1H).

13C NMR (100 MHz, CDCl3): δ 138.6, 138.6, 138.5, 137.8, 128.4, 128.4, 128.3, 128.2, 128.2, 128.0, 127.8, 127.5, 74.4, 74.1, 73.4, 73.2, 72.8 58.2. LRMS ESI-MS m/z calcd for C34H37NO4 [M + Na]+: 546.7, found 546.5. All spectral data was consistent with that reported in the literature.

d-galacto-1-deoxynojirimycin (310)

Boron trichloride (2.5 mL, 1M in CH2Cl2) was added to a cooled (0 °C) solution of compound 324 (198 mg, 0.378 mmol) in CH2Cl2 (4 mL). The reaction mixture was stirred for 20 hours at 0 °C after which MeOH (0.5 mL) was carefully added. The reaction mixture was concentrated and co-evaporated with toluene. Flash column purification of the residue over aluminaoxime (with ammonium hydroxide added to the solvent system) provided 310 as a colorless oil (59.2 mg, 96% yield). 1H NMR (300 MHz, D2O): δ 3.87 (d, J = 2.6 Hz, 1H), 3.62 (dt, J = 10.6, 5.2 Hz, 1H), 3.43-3.55 (m, 2H), 3.30 (dd, J = 9.9, 3.3 Hz, 1H), 3.00 (dd, J = 12.9, 5.6, 1H), 2.68 (t, J = 6.8 Hz, 1H), 2.29 (dd, J = 10.9, 1.5 Hz, 1H). 13C NMR (100 MHz, D2O): δ 74.8, 69.0, 67.8, 61.1, 58.8, 48.8. LRMS ESI-MS m/z calcd for C6H14NO4 [M + H]+: 164.2, found 164.2, 186.1. All spectral data was consistent with that reported in the literature.
2,3,4,6-tetra-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol (326)

325 (1.21 g, 2.24 mmol) was dissolved in THF (15 mL) and LiAlH₄ (297 mg, 7.83 mmol) was added in small portions at 0°C. The reaction mixture was stirred overnight, allowing it to warm to rt. The excess LiAlH₄ was quenched via Fieser quench. The mixture was diluted with EtOAc and washed with sat. aq. NH₄Cl (3×). The organic phase was dried with MgSO₄ and concentrated in vacuo. The crude was not purified and carried onto the next step.
A solution of oxalylchloride (0.6 mL) in DCM (7.4 mL) was cooled to -78°C. After dropwise addition of a solution of DMSO (0.7 mL) in DCM (4.6 mL) over 10 minutes, the reaction mixture was stirred for 40 minutes while being kept below -70 °C. Next, a dry solution of the glucitol intermediate 326 (1.21 g, 2.24 mmol) in DCM (3.7 mL) was added dropwise to the reaction mixture over a 15 minute period, while keeping the reaction mixture below -70°C. After stirring the reaction mixture for 2 hours below -65°C, Et₃N (3 mL) was added dropwise over a 10 minute period, while keeping the reaction mixture below -65 °C. After addition, the reaction mixture was allowed to warm to -5 °C over 2 hours. The Swern reaction mixture was concentrated at a moderate temperature (~30 °C) with simultaneous co-evaporation of toluene (3x). The residue was dissolved in MeOH (37 mL) and NH₄HCO₂ (2.32 g, 36.8 mmol) was added. The mixture was cooled to 0 °C and stirred until all NH₄HCO₂ had dissolved. Activated 3Å molsieves (10 g/mmol) were added and reaction mixture was stirred for 20 minutes, after which NaBH₃CN (463 mg, 7.36 mmol) was added. The reaction mixture was kept at 0 °C for one hour after which the cooling source was removed and the reaction was stirred for an additional 20 hours. After removal of the mol. sieves by filtering over Celite®, the filtrate was concentrated, dissolved in EtOAc and washed with sat. aq. NaHCO₃. The aqueous phase was back-extracted with EtOAc (3x) and the combined organic layers were dried with MgSO₄ and concentrated in vacuo. and purified by flash chromatography giving 328 as a light yellow crystalline solid (856 mg, 73% yield over three steps). ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.14 (m, 20H), 4.97 (d, J = 12.9 Hz, 1H), 4.87-4.82 (m, 2H), 4.68 (d, J = 11.7 Hz, 1H), 4.64 (d, J = 11.7 Hz, 1H), 4.48 (d, J = 11.0 Hz, 1H), 4.45 (d, J = 11.8 Hz, 1H), 4.40 (d, J = 11.8 Hz, 1H), 3.65 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 3.57-3.45 (m, 3H), 3.34 (dd, J = 8.8 Hz, 1H), 3.22 (dd, J = 12.2 Hz, 4.9 Hz, 1H), 2.53 (ddd, J = 9.8, 5.9 Hz, 2.6 Hz, 1H), 2.49 (dd, J = 12.2 Hz, 10.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 138.5, 138.4, 138.0, 128.4, 128.4, 128.3, 128.0, 127.9, 127.8, 127.8, 127.6, 127.5, 87.3, 80.5, 80.1, 75.6, 75.2, 73.4, 72.8, 70.2, 59.7, 48.1. LRMS ESI-MS m/z calcd for C₃⁷H₄₃NNaO₄ [M+Na]⁺: 546.7, found 546.5. All spectral data was consistent with that reported in the literature.¹²
D-gluco-1-deoxynojirimycin (311)

A solution of 328 (150 mg, 0.285 mmol) in EtOH (10 mL) was acidified to pH ~2 with 1M aq HCl. Pd/C (10 wt%, 30.3 mg) was added and the mixture was exposed to 4 bar of hydrogen for 20 hours. The reaction mixture was filtered over Celite® and the filter cake was rinsed successively with MeOH (4×20 mL) and H₂O (2×20 mL). The combined filtrate was concentrated and co-evaporated with MeOH (3×50 mL). The residue was purified by flash column chromatography with aluminum oxide (ammonium hydroxide added to the solvent) to provide 311 as a colorless oil (46.7 mg, 98% yield).

1H NMR (300 MHz, D₂O) δ 3.77 (dd, J = 12.7, 3.2 Hz, 1H), 3.70 (dd, J = 12.8, 5.3 Hz, 1H), 3.60 (ddd, J = 10.5, 5.2, 3.1 Hz, 1H), 3.44-3.39 (m, 1H), 3.36-3.30 (m, 2H), 3.04-2.99 (m, 1H), 2.82-2.76 (m, 1H).

13C NMR (100 MHz, D₂O) δ 76.1, 67.8, 67.0, 60.0, 57.7, 45.9.

LRMS ESI-MS m/z calcd for C₆H₁₄NO₄ [M+H]⁺: 164.2, found 164.1. All spectral data was consistent with that reported in the literature.

D-galactono-δ-lactam (329)

323 (206 mg, 0.383 mmol) was dissolved in EtOH (6 mL). Pd(OH)₂/C (20.3 mg) was added to the mixture and exposed to 20 bar of hydrogen overnight. The reaction mixture was filtered over Celite® and the filter cake was rinsed successively with MeOH (4×20 mL) and H₂O (2×20 mL). The combined filtrate was concentrated in vacuo to provide 329 as a brown solid (41.4 mg, 61% yield).

1H NMR (300 MHz, D₂O) δ 4.12-4.07 (m, 2H), 3.82 (dd, J = 10.1, 2.5 Hz, 1H), 3.70-3.62 (m, 1H), 3.58-3.53 (m, 2H). 13C NMR (125 MHz, D₂O): δ 173.5, 72.1, 69.2, 67.7, 60.8, 54.7. LRMS ESI-MS m/z calcd for C₃₄H₃₆NO₅ [M + H]⁺: 538.7, found 538.3. All spectral data was consistent with that reported in the literature.

2,3,4,6-tetra-O-benzyl-D-glucono-δ-lactone (332)

325 (3.04 g, 5.62 mmol) and 4-methylmorpholine-N-oxide (975 mg, 8.32 mmol) was dissolved in acetonitrile (30 mL) containing activated 4Å molecular sieves. This mixture was stirred for 1h and tetrapropylammoniumperruthenate (98.8 mg, 0.281 mmol) was added and this solution was stirred till TLC indicated complete consumption of the starting material. The crude mixture was filtered over Celite® and concentrated under vacuo. The resulting crude mixture was diluted with ethyl acetate and washed (2x) with a saturated solution of sodium thiosulfate. Afterwards, it was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. This gave 332 as a clear oil (1.33 g, 44% yield). The crude product was not purified at this stage and carried forward to the next reaction.
2,3,4,6 tetra-O-benzyl-d-gluonamide (333)

332 (1.33 g, 2.47 mmol) was dissolved in 50 mL of an 8N ammonia in MeOH. After stirring for 1.5 hour under nitrogen atmosphere the reaction mixture was concentrated in vacuo. Recrystallization of the resulting white solid from ethyl acetate and petroleum ether afforded 333 as white crystals (1.33 g, 97% yield). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.36-7.24 (m, 20H), 6.62 (br s, 1H), 5.45 (br s, 1H), 4.75-4.49 (m, 8H), 4.26 (d, \(J = 3.4\) Hz, 1H), 4.15-4.07 (m, 1H), 3.92-3.88 (m, 2H), 3.65 (dd, \(J = 9.5, 2.9\) Hz, 1H), 3.61 (dd, \(J = 9.5, 5.3\) Hz, 1H), 2.82 (br s, 1H).

13C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 173.9, 138.1, 138.0, 137.7, 136.7, 129.0, 128.6, 128.4, 128.3, 128.2, 128.0, 127.8, 127.7, 125.3, 80.6, 79.6, 77.6, 75.2, 74.1, 73.7, 73.4, 71.3, 71.0. LRMS ESI-MS \(m/z\) calcd for C\(_{34}\)H\(_{38}\)NO\(_6\) [M + H]\(^+\): 556.7, found 556.6. All spectral data was consistent with that reported in the literature. \(^{11}\)

2,3,4,6-tetra-O-benzyl-d-glucono-\(\delta\)-lactam (334)

333 (1.33 g, 2.39 mmol) was dissolved in 10 mL dimethyl sulfoxide and 5 mL acetic anhydride and stirred under a nitrogen atmosphere for 12 hours. 40 mL water was added and the mixture was stirred for another 15 minutes during which yellow oil precipitated. The water layer was then removed and the residue was dissolved in dichloromethane and extracted with brine. The organic fractions were dried with MgSO\(_4\) and concentrated in vacuo. to give 1.21 g of a yellow syrup. The crude product was not purified at this stage and carried forward to the next reaction. The product were dissolved in 20 mL acetonitrile and 5.3 mL formic acid was added. Sodium cyanoborohydride (227 mg, 3.61 mmol) was added and the reaction mixture was refluxed for 2h. After stirring for 15 minutes, the mixture was poured into a mixture of ethyl acetate / saturated aqueous NaHCO\(_3\) solution (1:1, 100 mL). The aqueous layer was separated and extracted with ethyl acetate. The combined organic fractions were then washed with brine and dried over MgSO\(_4\), filtered and concentrated in vacuo. the resulting white solid was recrystallized from ethyl acetate and petroleum ether to give 334 as white powder (861 mg, 67% yield over three steps). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.41-7.15 (m, 20H), 5.95 (br s, 1H), 5.14 (d, \(J = 11.3\) Hz, 1H), 4.86-4.69 (m, 4H), 4.48-4.42 (m, 3H), 3.98 (d, \(J = 8.0\) Hz, 1H), 3.89 (t, \(J = 7.8\) Hz, 1H), 3.56-3.48 (m, 3H), 3.27-3.23 (m, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 170.4, 138.0, 137.8, 137.5, 137.2, 128.5, 128.4, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 82.3, 78.7, 77.1, 74.7, 74.6, 74.6, 73.3, 70.0, 53.7. LRMS ESI-MS \(m/z\) calcd for C\(_{34}\)H\(_{36}\)NO\(_5\) [M + H]\(^+\): 538.7, found 538.3. All spectral data was consistent with that reported in the literature. \(^{11}\)
D-glucono-δ-lactam (330)

334 (84.8 mg, 0.158 mmol) was dissolved in EtOH (3 mL). Pd(OH)$_2$/C (10.4 mg) was added to the mixture and exposed to 20 bar of hydrogen overnight. The reaction mixture was filtered over Celite$^\text{®}$ and the filter cake was rinsed successively with MeOH (4×10 mL) and H$_2$O (2×10 mL). The combined filtrate was concentrated in vacuo to give 330 as a brown solid (19.9 mg, 71% yield). 1H NMR (300 MHz, D$_2$O) δ 3.87-3.79 (m, 2H), 3.65-3.57 (m, 4H), 3.23-3.19 (m, 1H). 13C NMR (125 MHz, D$_2$O): δ 173.3, 73.2, 70.5, 67.4, 60.1, 56.8. LRMS ESI-MS m/z calcd for C$_{34}$H$_{36}$NO$_5$ [M + H]$^+$: 538.7, found 538.3. All spectral data was consistent with that reported in the literature.11

N-methyl-D-gluco-1-deoxynojirimycin (331)

Formaldehyde (43.1 mg, 0.12 mL of a 35 wt% solution in water 1.43 mmol) and NaCNBH$_3$ (54.1 mg, 0.861 mmol) were successively added to a solution of 328 (150 mg, 0.287 mmol) in CH$_3$CN/AcOH (3 mL, 30:1, v/v). The reaction mixture was stirred for 20 hours after which sat. aq. NaHCO$_3$ (10 mL) was added and the resulting mixture was extracted with Et$_2$O (3×10 mL). The combined organic phases were dried (Na$_2$SO$_4$) and concentrated to provide the crude N-methylated intermediate. The crude intermediate was co-evaporated with dichloroethane and dissolved in CH$_2$Cl$_2$ (3.6 mL). The solution was cooled to 0 °C and BCl$_3$ (3.9 mL, 1 M in CH$_2$Cl$_2$) was added. After stirring for 20 hours at 0 °C MeOH (5 mL) was carefully added. The mixture was concentrated and co-evaporated with toluene. The residue was purified by flash chromatography (containing ammonium hydroxide in the solvent) to produce 331 as a colorless oil (16.1 mg, 10.7% yield over two steps). 1H NMR (300 MHz, D$_2$O) δ 3.95-3.83 (m, 2H), 3.69-3.60 (m, 1H), 3.53-3.50 (m, 1H), 3.40-3.33 (m, 2H), 2.94-2.84 (m, 2H), 2.79 (s, 3H). 13C NMR (100 MHz, D$_2$O) δ 72.6, 69.8, 66.1, 64.3, 59.0, 57.1, 40.8. LRMS ESI-MS m/z calcd for C$_7$H$_{12}$NaO$_4$ m/z [M+Na]$^+$ 200.2, found 200.5. All spectral data was consistent with that reported in the literature.13

139
1-deoxy-\(\alpha\)-glucose (335)

\[
\begin{align*}
\text{AcO} & \quad \text{O} \\
\text{AcO} & \quad \text{O} \\
\text{Br} & \quad \text{O}
\end{align*}
\]

1) \text{PdCl}_2, \text{triethylsilane} \\
2) \text{NaOMe, MeOH}

toluene (15 mL). Triethylsilane (1.8 mL, 11.1 mmol) and palladium chloride (71.1 mg, 0.402 mmol) were then added and the reaction was stirred till the starting materials were fully consumed. The reaction was then concentrated in \textit{vacuo}. and filtered over a pad of silica gel and concentrated in \textit{vacuo}. and dissolved in MeOH (20 mL). A 1 M NaOMe/MeOH solution was then added to pH = 9 and the reaction is left to stir overnight. The reaction is quenched using Amberlite® IR-120 acidic resin till pH = 7. The solution is then filtered and concentrated in \textit{vacuo}. to give 335 as a white solid (198 mg, 64% yield over two steps). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 3.85 (d, \(J = 11.1, 5.6\) Hz, 1H), 3.75 (dd, \(J = 12.1, 1.7\) Hz, 1H), 3.56-3.42 (m, 2H), 3.33-3.20 (m, 3H), 3.18-3.1 (m, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 80.2, 77.4, 69.7, 69.3, 68.8, 60.9. LRMS (ESI): \(m/z\) calcd. for C\(_6\)H\(_{12}\)NaO\(_5\) [M+Na]\(^+\) 187.2, found, 187.4.

4-methoxyphenyl-\(\beta\)-\(\alpha\)-gluconopyranoside (507)

\[
\begin{align*}
\text{AcO} & \quad \text{O} \\
\text{AcO} & \quad \text{O} \\
\text{AcO} & \quad \text{O}
\end{align*}
\]

1) \text{BF}_3\cdot\text{OEt}_2, \quad \beta\text{-methoxyphenol} \\
2) \text{NaOMe, MeOH}

\(\beta\)-\(\alpha\)-glucose pentacetate (5.14 g, 13.2 mmol) was dissolved in DCM (50 mL) and Boron trifluoride diethyl etherate (3.2 mL, 25.6 mmol) was added to the mixture. The solution was stirred overnight. The reaction is the quenched with saturated NaHCO\(_3\) and the mixture is diluted with DCM and extracted with saturated NaHCO\(_3\) (2x). The organic layers were combined and dried with MgSO\(_4\), filtered and concentrated under \textit{vacuo}. The syrup is then dissolved in a minimum amount of EtOAc and heptanes are added till a white solid formed. This white solid was removed through filtration and dissolved in MeOH (50 mL). A 1 M NaOMe/MeOH solution was then added to pH = 9 and the reaction is left to stir overnight. The reaction is quenched using Amberlite® IR-120 acidic resin till pH = 7. The solution is then filtered and concentrated in \textit{vacuo}. to give 507 as a white solid (2.79 g, 74% yield over two steps). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 6.98 (d, \(J = 8.8\) Hz, 2H), 6.84 (d, \(J = 8.8\) Hz, 2H), 4.87 (d, \(J = 7.6\) Hz, 1H), 3.79 (dd, \(J = 12.4, 2.1, 1\)H), 3.67 (s, 3H), 3.60 (dd, \(J = 12.4, 5.8, 1\)H), 3.49-3.31 (m, 4H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 155.0, 150.8, 118.1, 115.0, 101.1, 76.0, 75.5, 72.9, 69.4, 60.5, 55.7. LRMS (ESI): \(m/z\) calcd. for C\(_{13}\)H\(_{18}\)NaO\(_6\) [M+Na]\(^+\) 293.2, found, 293.1.
6-tosyl-4-methoxyphenyl-β-D-gluconopyranoside (508)

507 (986 mg, 3.44 mmol) was dissolved in pyridine (50 mL). The resulting solution was left to stir at 0 °C for 20 minutes. p-Toluenesulfonyl chloride (1.33 g, 6.98 mmol) was added to the solution and was left to stir overnight. The resulting mixture was diluted with DCM and extracted twice with saturated NaHCO₃. The organic layer was dried with MgSO₄, filtered, and concentrated in vacuo. The resulting oil is then purified by flash chromatography to give a 508 as a white solid (1.05 g, 69% yield).

1H NMR (300MHz, CDCl₃): δ 7.76 (d, J = 8.4 Hz, 2H), 7.25-7.22 (m, 2H), 6.92 (d, J = 9.1 Hz, 2H), 6.78 (d, J = 9.1 Hz, 2H), 4.69 (d, J = 7.1 Hz, 1H), 4.34-4.26 (m, 2H), 3.75 (s, 3H), 3.59-3.58 (m, 4H), 2.38 (s, 3H).

13C NMR (100MHz, CDCl₃): δ 155.6, 150.8, 145.0, 132.5, 129.8, 128.0, 118.5, 114.5, 101.7, 75.9, 73.6, 73.3, 69.3, 68.4, 55.6, 21.6. LRMS (ESI): m/z calcd. for C₂₀H₂₅O₇ [M+H]+ 441.5, found, 441.6.

6-azido-6-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (509)

508 (2.58 g, 5.85 mmol) was dissolved in dry N,N-dimethylformamide (50 mL) and sodium azide (1.33 g, 20.5 mmol) was added. The reaction was then refluxed at 130 °C overnight. The resulting mixture was then concentrated in vacuo. The resulting brown syrup is then purified by flash chromatography to give a 509 as a clear oil (1.16 g, 64% yield).

1H NMR (300MHz, CDCl₃): δ 7.05 (d, J = 9.1 Hz, 2H), 6.84 (d, J = 9.1 Hz, 2H), 4.78 (d, J = 7.7 Hz, 1H), 3.76 (s, 3H), 3.60-3.55 (m, 1H), 3.53-3.49 (m, 1H), 3.46-3.40 (m, 3H). 13C NMR (100MHz, CDCl₃): δ 155.4, 151.6, 118.2, 114.0, 102.2, 76.2, 75.3, 73.5, 70.8, 54.5, 51.4. LRMS (ESI): m/z calcd. for C₁₃H₁₇KN₃O₆ [M+K]+ 350.4, found, 350.6.

6-amino-6-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (504)

509 (411 mg, 1.32 mmol) was dissolved in a solution of THF/water (10 mL, 10:1.5), the resulting solution was stirred for 20 minutes. triphenylphosphine (691 mg, 2.63 mmol) was added and the reaction was stirred overnight. The solution was then concentrated in vacuo. and the resulting yellow oil is then purified by flash chromatography to give a 504 as a yellow solid (169 mg, 45% yield).

1H NMR (300MHz, D₂O): δ 7.01 (d, J = 9.1 Hz, 2H), 6.88 (d, J = 9.1 Hz, 2H), 4.96 (d, J = 7.4 Hz, 1H), 3.70 (s, 3H), 3.47 (t, J = 8.1 Hz, 2H), 3.41-3.28 (m, 3H), 3.07 (dd, J = 13.6, 8.8 Hz, 1H). 13C NMR (75MHz, D₂O): δ 154.8, 150.4, 118.2, 115.0, 101.0, 74.9, 72.6, 71.7, 71.0, 55.7, 40.2. LRMS (ESI): m/z calcd. for C₁₃H₂₀O₆ [M+H]+ 286.3, found, 286.9.
N-gluconoamide-6-amino-6-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (505)

504 (112 mg, 0.386 mmol) and δ-gluconolactone (82.5 mg, 0.463 mmol) were dissolved in MeOH (10 mL) and the mixture is then refluxed overnight. The mixture is then concentrated in vacuo and the resulting solid was recrystallized from boiling EtOH to give 505 as a white solid (55.5 mg, 31% yield). \(^1\)H NMR (300MHz, D_2O): δ 6.97 (d, J = 9.0 Hz, 2H), 5.85 (d, J = 9.0 Hz, 2H), 4.87 (d, J = 7.6 Hz, 1H), 4.20 (d, J = 3.7 Hz, 1H), 3.93 (t, J = 2.9 Hz, 1H), 3.68 (s, 3H), 3.64-3.50 (m, 6H), 3.46-3.37 (m, 3H), 3.27 (t, J = 8.9 Hz, 1H). \(^1^3\)C NMR (75MHz, D_2O): δ 174.6, 154.7, 150.6, 118.2, 114.9, 101.0, 75.0, 74.0, 73.2, 72.8, 71.9, 71.0, 70.6, 70.3, 62.5, 55.7, 39.5. LRMS (ESI): m/z calcld. for C_{19}H_{29}N_{Na}O_{12}[M+Na]^+ 486.4, found, 486.8.

N-galactonoamide-6-amino-6-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (506)

504 (112 mg, 0.386 mmol) and D-galactono-1,4-lactone (82.5 mg, 0.463 mmol) were dissolved in MeOH (10 mL) and the mixture is then refluxed overnight. The mixture is then concentrated in vacuo and the resulting solid was recrystallized from boiling EtOH to give 506 as a white solid (50.1 mg, 28% yield). \(^1\)H NMR (300MHz, D_2O): δ 7.10 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 5.06 (d, J = 7.6 Hz, 1H), 4.30 (d, J = 3.7 Hz, 1H), 4.02-3.89 (m, 1H), 3.78 (s, 3H), 3.75-3.63 (m, 4H), 3.60-3.54 (m, 2H), 3.44-3.38 (m, 3H) 3.15 (dd, J = 13.4, 9.2 Hz, 1H). \(^1^3\)C NMR (75MHz, D_2O): δ 176.5, 154.6, 150.7, 118.2, 114.9, 101.0, 75.0, 74.0, 73.2, 72.8, 71.9, 71.0, 70.6, 70.3, 62.5, 55.7, 39.5. LRMS (ESI): m/z calcld. for C_{19}H_{29}N_{Na}O_{12}[M+Na]^+ 486.4, found, 486.5.
4-methoxyphenyl-β-D-ribo-hexapyranoside-3-ulose (510)

507 (99.9 mg, 0.349 mmol) and benzoquinone (113.5 mg, 1.05 mmol) were dissolved in a mixture of ACN/H$_2$O (11 mL, 10:1). [(2,9-dimethyl-1,10-phenanthroline)-Pd(μ-OAc)$_2$(OTf)$_2$] (1.83 mg, 0.00175 mmol) is then added to the reaction and it was stirring overnight. Toluene (5 mL) is then added to the reaction and the mixture is extracted with water (2x). The combined aqueous layers were washed with diethyl ether and the aqueous layer is then filtered and concentrated in vacuo. The resulting brown solid is then purified by flash chromatography to give a 510 as a white solid (97.2 mg, 98% yield). 1H NMR (300MHz, CD$_3$OD): δ 7.10 (d, $J = 9.2$ Hz, 2H), 6.86 (d, $J = 9.2$ Hz, 2H), 4.85 (d, $J = 7.6$ Hz, 1H), 4.39 (dd, $J = 7.8$, 1.7 Hz, 1H), 4.33 (d, $J = 10.1$, 1.7 Hz, 1H), 3.97 (dd, $J = 12.1$, 2.2, 1H), 3.83 (dd, $J = 12.1$, 4.8 Hz, 1H), 3.76 (s, 3H), 3.49-3.44 (m, 1H). 13C NMR (75MHz, D$_2$O): δ 205.1, 118.1, 114.1, 103.4, 76.9, 76.7, 72.1, 60.9, 54.6. LRMS (ESI): m/z calcd. for C$_{13}$H$_{17}$O$_7$ [M+H]$^+$ 285.3, found, 285.6.

E/Z-methyl-3-O-methyloxime-4-methoxylphenyl-β-D-gluconopyranoside (511)

510 (1.06 g, 3.73 mmol) and NaHCO$_3$ (1.25 g, 14.9 mmol) was dissolved in MeOH (50 mL). O-methylhydroxylamine hydrochloride (1.25 g, 14.9 mmol) was added and the reaction was refluxed for 2h. The salts were then filtered and the filtrate was concentrated in vacuo. The resulting residue was extracted with hot ethyl acetate and concentrated in vacuo. The resulting yellow solid is then purified by flash chromatography to give 511 as a white solid (913 mg, 78% yield). 1H NMR (300MHz, D$_2$O): δ 6.99-6.96 (m, 4H), 6.88-6.85 (m, 4H), 5.43 (d, $J = 5.1$ Hz, 1H), 4.41 (d, $J = 5.6$ Hz, 1H), 4.28 (d, $J = 3.8$ Hz, 1H), 3.94-3.91 (m, 2H), 3.83 (s, 3H), 3.82 (s, 3H), 3.69-3.68 (m, 8H), 3.62 (dd, $J = 12.1$, 4.2 Hz, 1H), 3.56-3.51 (m, 2H). 13C NMR (75MHz, D$_2$O): δ 183.7, 155.1, 154.6, 154.1, 150.1, 149.9, 118.4, 118.1, 116.3, 115.0, 115.0, 110.6, 99.1, 78.5, 76.4, 69.6, 66.2, 64.9, 62.2, 62.1, 62.0, 61.4, 61.1, 55.7. LRMS (ESI): m/z calcd. for C$_{19}$H$_{20}$NO$_7$ [M+H]$^+$ 314.3, found, 314.7.
3-amino-3-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (501)

511 (302 mg, 0.964 mmol) was dissolved in THF (5 mL). 1M Borane-THF complex (5 mL, 4.82 mmol) was then added and the reaction was stirred overnight. MeOH is then added dropwise till the evolution of gas has ceased. The mixture is then concentrated in vacuo and purified by flash chromatography to give 501 as a yellow solid (121 mg, 44% yield).

1H NMR (300MHz, D$_2$O): δ 6.99 (d, $J = 9.1$ Hz, 2H), 6.86 (d, $J = 9.1$ Hz, 2H), 4.90 (d, $J = 7.9$ Hz, 1H), 3.78 (dd, $J = 12.3$, 2.3 Hz, 1H), 3.68 (s, 3H), 3.61 (dd, $J = 12.3$, 5.9 Hz, 1H), 3.49 (ddd, $J = 8.8$, 5.9, 2.4 Hz, 1H), 3.34-3.22 (m, 2H), 2.78 (t, $J = 9.8$ Hz, 1H).

13C NMR (75MHz, D$_2$O): δ 154.6, 150.8, 118.1, 114.9, 101.5, 77.1, 72.4, 68.9, 60.5, 57.5, 55.7.

LRMS (ESI): m/z calcd. for C$_{13}$H$_{19}$NNaO$_6$ [M+Na]$^+$ 308.3, found, 308.2.

N-gluconoamide-3-amino-3-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (502)

501 (50.7 mg, 0.178 mmol) and δ-gluconolactone (41.2 mg, 0.196 mmol) were dissolved in MeOH (10 mL) and the mixture is then refluxed overnight. The mixture is then concentrated in vacuo and the resulting solid was recrystallized from boiling EtOH to give 502 as a white solid (25.6 mg, 31% yield).

1H NMR (300MHz, D$_2$O): δ 7.00 (d, $J = 9.1$ Hz, 2H), 6.87 (d, $J = 9.1$ Hz, 2H), 5.01 (d, $J = 7.8$ Hz, 1H), 4.26 (d, $J = 4.0$ Hz, 1H), 4.03-3.97 (m, 1H), 3.94-3.91 (m, 1H), 3.80 (dd, $J = 12.1$, 1.6 Hz, 1H), 3.70 (s, 3H), 3.66-3.60 (m, 4H), 3.57-3.47 (m, 4H).

13C NMR (75MHz, D$_2$O): δ 175.4, 154.7, 150.8, 118.2, 115.0, 101.6, 73.5, 71.9, 71.1, 70.7, 70.3, 69.4, 67.6, 62.6, 57.6, 57.0, 55.8.

LRMS (ESI): m/z calcd. for C$_{19}$H$_{29}$NNaO$_{12}$ [M+Na]$^+$ 486.4, found, 486.7.
N-galactonoamide-3-amino-3-deoxy-4-methoxyphenyl-β-D-gluconopyranoside (503)

501 (115 mg, 0.403 mmol) and D-galactono-1,4-lactone (93.3 mg, 0.524 mmol) were dissolved in MeOH (10 mL) and the mixture is then refluxed overnight. The mixture is then concentrated in vacuo, and the resulting solid was recrystallized from boiling EtOH to give 503 as a white solid (52.3 mg, 28% yield).

1H NMR (300MHz, D2O): δ 6.97 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.98 (d, J = 7.6 Hz, 1H), 4.40 (d, J = 3.7 Hz, 1H), 3.94 (t, J = 2.9 Hz, 1H), 3.85-3.78 (m, 2H), 3.23 (s, 3H), 3.64 (dd, J = 12.2, 5.2 Hz, 1H) 3.59-3.51 (m, 6H).

13C NMR (75MHz, D2O): δ 176.6, 154.7, 150.7, 118.1, 115.0, 101.6, 77.1, 70.9, 70.5, 70.8, 70.5, 69.9, 63.1, 60.4, 57.1, 55.7.

LRMS (ESI): m/z calcd. for C19H29NNaO12 [M+Na]+ 486.4, found, 486.5.

General procedure for the synthesis of N-cycloalkyl-D-glucoanamide

To a solution of D-gluconic acid-δ-lactone (998 mg, 5.61 mmol) in MeOH (30 mL) was added cycloalkylamine (1 eq.). The mixture was refluxed overnight then cooled in an ice bath. The precipitate was filtered off and washed with cold EtOH to afford a white powder.

N-cyclooctyl-D-gluconoamide (512)
925 mg, 54% yield. 1H NMR (400 MHz, D2O): δ 4.12 (d, J = 4.1 Hz, 1H), 3.91 (dd, J = 4.0, 3.0 Hz, 1H), 3.80-3.75 (m, 1H), 3.67 (dd, J = 11.6, 2.8 Hz, 1H), 3.61-3.48 (m, 3H), 1.63-1.51 (m, 15H). 13C NMR (100 MHz, D2O): δ 172.4, 73.4, 72.1, 71.1, 70.3, 62.6, 49.8, 31.4, 31.4, 26.5, 25.0, 23.3. LRMS (ESI): m/z calcd. for C14H27NNaO12 [M+Na]+ 328.4, found, 328.6.

N-cycloheptyl-D-gluconoamide (513)
834 mg, 51% yield. 1H NMR (400 MHz, D2O): δ 4.13 (d, J = 4.0 Hz, 1H), 3.94 (t, J = 3.4 Hz, 1H), 3.78-3.68 (m, 2H), 3.65-3.55 (m, 2H), 3.51 (dd, J = 11.6, 6.1 Hz 1H), 1.77-1.67 (m, 2H), 1.55-1.30 (m, 10H). 13C NMR (100 MHz, D2O): δ 172.5, 73.4, 72.1, 71.1, 70.3, 62.6, 50.9, 34.0, 34.0, 27.5, 23.7. LRMS (ESI): m/z calcd. for C13H25NO6 [M]+ 291.3, found, 291.2.
N-cyclohexyl-D-gluconoamide (514)

498 mg, 32% yield. 1H NMR (400 MHz, D$_2$O): δ 4.13 (d, $J = 4.0$ Hz, 1H), 3.93 (t, $J = 3.0$ Hz, 1H), 3.69 (dd, $J = 11.6$, 2.7 Hz 1H), 3.64-3.60 (m, 1H), 3.57 (dd, $J = 7.8$, 2.9 Hz, 1H), 3.52 (dd, $J = 11.6$, 6.1 Hz 2H), 1.73-1.56 (m, 4H), 1.51-1.45 (m, 1H), 1.23-0.97 (m, 5H). 13C NMR (100 MHz, D$_2$O): δ 172.9, 73.4, 72.1, 71.0, 70.3, 62.6, 48.8, 31.9, 31.8, 24.9, 24.4. LRMS (ESI): m/z calcd. for C$_{12}$H$_{24}$NO$_6$ [M+H]$^+$ 278.3, found, 278.6.

N-cyclopentyl-D-gluconoamide (515)

561 mg, 38% yield. 1H NMR (400 MHz, D$_2$O): δ 4.13 (d, $J = 4.0$ Hz, 1H), 4.11-3.90 (m, 2H), 3.69 (dd, $J = 11.6$, 2.7 Hz 1H), 3.65-3.60 (m, 1H), 3.57 (dd, $J = 7.7$, 2.9 Hz 1H), 3.51 (dd, $J = 11.6$, 6.1 Hz 1H) 1.85-1.75 (m, 2H), 1.32-1.61 (m, 6H). 13C NMR (100 MHz, D$_2$O): δ 173.4, 73.4, 72.1, 71.1, 70.3, 62.6, 51.2, 32.1, 32.0, 23.4. LRMS (ESI): m/z calcd. for C$_{11}$H$_{21}$NNaO$_6$ [M+Na]$^+$ 286.3, found, 286.1.

N-cyclopropyl-D-gluconoamide (516)

567 mg, 43% yield. 1H NMR (400 MHz, D$_2$O): δ 4.13 (d, $J = 4.0$ Hz, 1H), 3.93 (t, $J = 3.0$ Hz 1H), 3.69 (dd, $J = 11.6$, 2.7 Hz 1H), 3.65-3.55 (m, 2H), 3.57 (dd, $J = 7.7$, 2.9 Hz 1H), 3.51 (dd, $J = 11.6$, 6.1 Hz 1H) 2.51-2.47 (m, 1H), 0.67-0.61 (m, 2H), 0.47-0.40 (m, 2H). 13C NMR (100 MHz, D$_2$O): δ 176.1, 73.2, 71.9, 71.0, 70.4, 62.6, 21.8, 5.4, 5.4. LRMS (ESI): m/z calcd. for C$_{9}$H$_{17}$KNO$_6$ [M+K]$^+$ 274.3, found, 274.1.

General procedure for the synthesis of N-cycloalkyl-2,3,5-tri-O-benzyl-D-arabinoamide

Cycloalkylamine (1.1 eq.) is dissolved in toluene (10 mL for 0.3 mmol of lactone) and trimethylaluminium (2 eq.) is added to the reaction and stirred for 1h. The ester (1 eq. in 5 mL of toluene) is then added and the reaction is then stirred overnight till the starting ester is fully consumed by TLC. The reaction is the quenched with 10% HCl dropwise and stirred for 30min till a white precipitate is formed. The precipitate is then filtered over Celite® and the mixture is portioned between EtOAc and water. The layers are separated and the aqueous layer is extracted with EtOAc (2x), dried with MgSO$_4$, filtered and concentrated in vacuo. The resulting syrup was then purified by flash chromatography.
N-cyclooctyl-2,3,5-tri-O-benzyl-d-arabinoamide (538)

55.9 mg, 88% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 7.40-7.00\) (m, 15H), 6.75 (d, \(J = 8.5\) Hz, 1H), 4.65 (d, \(J = 11.4\) Hz, 1H), 4.55 (t, \(J = 11.6\) Hz, 2H), 4.45-4.35 (m, 3H), 4.27 (d, \(J = 2.0\) Hz, 1H), 4.05 (dd, \(J = 8.8, 2.0\) Hz, 1H), 3.92-3.87 (m, 2H), 3.60 (dd, \(J = 9.6, 3.2\) Hz, 1H), 3.50 (dd, \(J = 9.6, 3.2\) Hz, 1H), 1.70-1.40 (m, 15H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 169.9, 137.8, 137.7, 137.0, 128.8, 128.7, 128.5, 128.4, 128.2, 128.2, 127.9, 127.9, 127.7, 110.0, 80.0, 74.7, 74.5, 73.3, 70.5, 69.3, 49.0, 31.8, 31.7, 27.2, 27.2, 25.2, 23.5. LRMS (ESI): \(m/z\) calcd. for C\(_{34}\)H\(_{44}\)NO\(_5\) [M+H]\(^+\) 546.7, found, 545.2.

N-cycloheptyl-2,3,5-tri-O-benzyl-d-arabinoamide (539)

58.1 mg, 91% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 7.40-7.10\) (m, 13H), 6.75 (d, \(J = 8.3\) Hz, 1H), 4.65 (d, \(J = 11.4\) Hz, 1H), 4.59-4.50 (m, 2H), 4.45-4.35 (m, 4H), 4.05 (dd, \(J = 8.8, 2.0\) Hz, 1H), 3.95-3.85 (m, 2H), 3.60 (dd, \(J = 9.6, 3.2\) Hz, 1H), 3.50 (dd, \(J = 9.5, 4.5\) Hz, 1H), 1.85-1.77 (m, 2H), 1.60-1.20 (m, 11H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 169.9, 137.9, 137.7, 137.0, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 128.2, 127.9, 127.8, 127.7, 104.5, 80.0, 79.7, 74.7, 74.5, 73.3, 70.6, 69.4, 50.0, 35.8, 34.8, 28.0, 28.0, 25.2, 23.9, 23.9. LRMS (ESI): \(m/z\) calcd. for C\(_{33}\)H\(_{41}\)NaNO\(_5\) [M+Na]\(^+\) 554.7, found, 554.5.

N-cyclohexyl-2,3,5-tri-O-benzyl-d-arabinoamide (540)

42.2 mg, 68% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 7.36-7.17\) (m, 15H), 7.16 (d, \(J = 8.7\) Hz, 1H), 4.65 (d, \(J = 11.4\) Hz, 1H), 4.56-4.52 (m, 2H), 4.43-4.27 (m, 4H), 4.02 (dd, \(J = 8.9, 1.9\) Hz, 1H), 4.01-4.00 (m, 1H), 3.60-3.58 (m, 1H), 3.57 (dd, \(J = 9.6, 3.3\) Hz, 1H), 3.48 (dd, \(J = 9.6, 4.7\) Hz, 1H), 1.77-1.03 (m, 10H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 170.3, 137.8, 137.7, 137.0, 128.8, 128.7, 128.4, 128.4, 128.2, 127.9, 127.8, 127.7, 79.7, 79.6, 74.7, 74.5, 73.3, 70.5, 69.3, 47.7, 32.9, 32.8, 29.7, 25.4, 24.6. LRMS (ESI): \(m/z\) calcd. for C\(_{32}\)H\(_{39}\)NaNO\(_5\) [M+Na]\(^+\) 540.7, found, 540.9.

N-cyclopentyl-2,3,5-tri-O-benzyl-d-arabinoamide (541)

44.1 mg, 73% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 7.40-7.20\) (m, 15H), 6.74 (d, \(J = 8.7\) Hz, 1H), 4.71 (d, \(J = 11.5\) Hz, 1H), 4.59-4.51 (m, 2H), 4.50-4.32 (m, 4H), 4.20 (sextet, \(J = 6.9\) Hz, 1H), 4.07-4.04 (m, 1H), 3.95-3.93 (m, 1H), 3.65-3.62 (m, 1H), 3.55 (dd, \(J = 9.6, 3.3\) Hz, 1H), 3.54 (dd, \(J = 9.6, 4.7\) Hz, 1H), 1.95-1.85 (m, 2H), 1.60-1.50 (m, 4H), 1.35-1.20 (m, 2H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 170.8, 137.8, 137.7, 137.0, 128.7, 128.7, 128.4, 128.4, 128.2, 128.2, 127.9, 127.8, 127.7, 79.7, 74.7, 74.5, 73.3, 70.5, 69.3, 50.6, 33.1, 32.8, 23.6, 23.5. LRMS (ESI): \(m/z\) calcd. for C\(_{31}\)H\(_{38}\)NO\(_5\) [M+Na]\(^+\) 504.6, found, 504.2.

N-cyclopropyl-2,3,5-tri-O-benzyl-d-arabinoamide (542)

33.7 mg, 59% yield. This compound was considered pure enough to be used crude to the next step.
General procedure for the synthesis of N-cycloalkyl-d-arabinoamide

N-cycloalkyl-2,3,5-tri-O-benzyl-d-arabinoamide (1 eq.) is dissolved in EtOH (3 mL). Pd/C (10 mol %) is then added to reaction and the mixture is then exposed to 20 barr of hydrogen with vigorous stirring overnight. The reaction is then filtered over Celite® and concentrated in vacuo. The resulting syrup was recrystallized from MeOH/diethyl ether.

N-cyclooctyl-d-arabinoamide (517)
22.8 mg, 94% yield. 1H NMR (500 MHz, D$_2$O): δ 4.24 (d, J = 1.8 Hz, 1H), 3.82-3.78 (m, 1H), 3.73 (dd, J = 3.4, 2.8 Hz, 1H), 3.61 (dt, J = 6.2, 2.8 Hz, 1H), 3.53 (dd, J = 11.8, 6.2 Hz, 1H), 1.79-1.38 (m, 14H). 13C NMR (100 MHz, D$_2$O): δ 173.4, 71.4, 70.7, 70.6, 62.9, 49.7, 31.4, 31.3, 26.5, 26.5, 25.0, 23.2, 23.1. LRMS (ESI): m/z calcd. for C$_{13}$H$_{25}$NNaO$_5$ [M+Na]$^+$ 298.4, found, 298.2.

N-cycloheptyl-d-arabinoamide (518)
21.2 mg, 87% yield. 1H NMR (500 MHz, D$_2$O): δ 4.20 (s, 1H), 3.69-3.66 (m, 2H), 3.60-3.55 (m, 1H), 3.49 (dd, J = 11.4, 6.3 Hz, 1H), 3.18-3.14 (m, 1H), 1.71-1.34 (m, 12H). 13C NMR (100 MHz, D$_2$O): δ 173.4, 71.4, 70.6, 62.9, 50.7, 34.4, 33.9, 27.4, 23.6. LRMS (ESI): m/z calcd. for C$_{12}$H$_{23}$NNaO$_5$ [M+Na]$^+$ 284.3, found, 284.6.

N-cyclohexyl-d-arabinoamide (519)
13.9 mg, 81% yield. 1H NMR (500 MHz, D$_2$O): δ 4.21 (d, J = 1.6 Hz, 1H), 3.69-3.66 (m, 2H), 3.58 (dt, J = 6.2, 2.8 Hz, 1H), 3.48 (dd, J = 11.4, 6.3 Hz, 1H), 3.18-3.14 (m, 2H), 1.66-1.42 (m, 5H), 1.19-1.00 (m, 5H). 13C NMR (100 MHz, D$_2$O): δ 173.9, 71.4, 70.6, 70.6, 62.9, 48.7, 31.9, 31.8, 24.8, 24.3. LRMS (ESI): m/z calcd. for C$_{12}$H$_{21}$NKO$_5$ [M+K]$^+$ 286.3, found, 286.5.

N-cyclopentyl-d-arabinoamide (520)
19.6 mg, 86% yield. 1H NMR (500 MHz, CD$_3$OD): δ 4.31 (s, 1H), 4.18-4.10 (m, 1H), 3.81-3.76 (m, 1H), 3.67-3.57 (m, 2H), 1.95-1.90 (m, 2H), 1.75-1.46 (m, 6H). 13C NMR (100 MHz, D$_2$O): δ 174.3, 72.0, 71.3, 70.9, 63.5, 50.7, 32.2, 23.3, 23.3. LRMS (ESI): m/z calcd. for C$_{12}$H$_{20}$NO$_5$ [M+H]$^+$ 234.3, found, 234.8.

N-cyclopropyl-d-arabinoamide (521)
11.2 mg, 92% yield. 1H NMR (500 MHz, CD$_3$OD): δ mixture of rotamers: 4.29 (d, J = 1.3 Hz, 1H), 3.80-3.76 (m, 2H), 3.81-3.64-3.58 (m, 2H), 2.70-2.65 (m, 1H), 0.73-0.70 (m, 2H), 0.55-0.52 (m, 2H). 13C NMR (100 MHz, D$_2$O): δ mixture of rotamers: 176.5, 175.3, 81.5, 74.2, 72.8, 72.0, 71.2, 70.9, 63.4, 59.5, 21.9, 21.8, 5.3, 5.3, 5.2, 5.2. LRMS (ESI): m/z calcd. for C$_8$H$_{15}$NNaO$_5$ [M+Na]$^+$ 228.2, found, 228.6.
Garner Aldehyde

Garner aldehyde was prepared as previously described.14 All spectral data was consistent with that reported in the literature.14

(S, E)-\textit{tert}-butyl-4-(3-methoxy-3-oxoprop-1-en-1-yl)-2,2-dimethyloxazolidine-3-carboxylate (522)

\[
\text{O} \quad \text{NBoC} \quad \text{H} \quad \text{Ph3P} \quad \text{CO} \quad \text{OMe} \quad \text{O} \quad \text{NBoC} \quad \text{OMe} \\
\]

Garner aldehyde (1.67 g, 7.28 mmol) was dissolved in DCM (60 mL) and methyl (triphenylphosphoranylidene)acetate (3.14 g, 9.46 mmol) was added to the mixture. The reaction was stirred overnight and concentrated in vacuo. The mixture is then purified by flash chromatography to give 522 as a clear oil (1.66 g, 80% yield).

\[
\text{H NMR (300MHz, } C_6D_6) \text{ major rotamer: } \delta 6.86 \text{ (dd, } J = 15.6, 7.0 \text{ Hz, 1H}), 5.90 \text{ (d, } J = 15.6 \text{ Hz, 1H}), 3.86 \text{ (t, } J = 6.2 \text{ Hz, 1H), 3.45 (d, } J = 6.8 \text{ Hz, 1H), 3.34 (s, 3H), 3.24 (d, } J = 9.1 \text{ Hz, 1H), 1.63 (s, 3H), 1.48 (s, 3H), 0.81 (s, 9H). Minor rotamer: } \delta 6.97 \text{ (dd, } J = 15.6, 7.0 \text{ Hz, 1H), 6.09 (d, } J = 15.6 \text{ Hz, 1H), 4.24 (t, } J = 6.2 \text{ Hz, 1H), 3.46 (d, } J = 6.8 \text{ Hz, 1H), 3.28 (s, 3H), 3.23 (d, } J = 9.1 \text{ Hz, 1H), 2.06 (s, 3H), 1.36 (s, 3H), 0.81 (s, 9H).}
\]

\[
\text{C NMR (75MHz, } C_6D_6) \text{ mixture of rotamers: } \delta 165.7, 151.3, 146.1, 128.8, 128.0, 125.2, 122.0, 94.1, 79.4, 66.9, 57.9, 50.5, 27.9, 27.3, 26.8, 26.4, 23.8, 20.8 \text{. LRMS (ESI): } m/z \text{ calcd. for } C_{14}H_{23}NNaO_5 \text{ [M+Na]}^+ 308.3, \text{ found, 308.8.}
\]

(R)-\textit{tert}-butyl-4-((1R, 2S)-1,2-dihydroxy-3-methoxy-3-oxopropyl)-2,2-dimethyloxazolidine-3-carboxylate (523)

\[
\text{OMe} \quad \text{t-BuOH/H}_2\text{O (1:1)} \quad \text{AD-Mix-β} \quad \text{OMe} \\
\]

522 (3.06 g, 10.7 mmol) was dissolved in \textit{t}-BuOH/H\textsubscript{2}O (1:1, 100 mL). Methane sulfonamide (1.02 g, 10.7 mmol) and AD-mix-β (14.3 g) was added to the mixture and the reaction was stirred vigorously overnight. Sodium sulfite (233 mg) is added to the reaction and the reaction is stirred for 20 min. The reaction is diluted with DCM and the layers were separated. The aqueous layer is then re-extracted with DCM. The organic layer is dried with MgSO\textsubscript{4}, filtered and concentrated in vacuo. The mixture is then purified by flash chromatography to give 523 as a clear oil (2.73 mg, 80% yield). 1H NMR (300MHz, \textit{C}_6\text{D}_6) \text{ mixture of rotamers: } \delta 4.71 (d, } J = 4.8 \text{ Hz, 1H), 4.24 (d, } J = 7.1 \text{ Hz, 3H), 4.16 (dd, } J = 12.8, 4.5 \text{ Hz, 2H), 3.98 (dd, } J = 9.1, 4.9 \text{ Hz, 1H), 3.90-3.82 (m, 2H), 2.69 (d, } J = 10.1 \text{ Hz, 1H), 1.55 (s, 3H), 1.50 (s, 3H), 1.47 (s, 9H). 13C NMR (75MHz, \textit{C}_6\text{D}_6): \delta 171.4, 94.2, 82.0, 73.2, 70.4, 65.5, 61.5, 58.9, 28.3, 27.5, 24.0. LRMS (ESI): \textit{m/z} calcd. for C\textsubscript{14}H\textsubscript{25}NK\textsubscript{O}\textsubscript{7} [M+K]+ 354.8, found, 354.6.
General procedure for the synthesis of (2S, 3R, 4R)-4-amino-N-cycloalkyl-2,3,5-trihydroxypentanamide

Cycloalkylamine (1.1 eq.) is dissolved in toluene (10 mL for 0.3 mmol of ester) and trimethylaluminium (2 eq.) is added to the reaction and stirred for 1h. The ester (1eq. in 5mL of toluene) is then added and the reaction is then stirred overnight till the starting ester is fully consumed by TLC. The reaction is the quenched with 10% HCl dropwise and stirred for 30min till a white precipitate is formed. The precipitate is then filtered over Celite® and the mixture is portioned between EtOAc and water. The layers are separated and the aqueous layer is extracted with EtOAc (2x), dried with MgSO$_4$, filtered and concentrated in vacuo. The resulting syrup is dissolved in 1:1 mixture of petroleum ether and EtOAc and passed through a pad of silica. The eluted product is then concentrated in vacuo. and dissolved in MeOH and 10% HCl is added till pH = 2. The reaction is stirred overnight and concentrated in vacuo. the resulting syrup is recrystallized from MeOH/diethyl ether to afford the product as a solid.

(2S, 3R, 4R)-4-amino-N-cyclooctyl-2,3,5-trihydroxypentanamide (524)
56.9 mg, 61% yield. 1H NMR (300 MHz, D$_2$O): δ 4.12 (d, $J = 4.1$ Hz, 1H), 4.09 (dd, $J = 4.0, 3.0$ Hz, 1H), 3.83-3.84 (m, 1H), 3.73-3.77 (m, 1H), 3.48-3.42 (m, 1H), 1.70-1.30 (m, 14H). 13C NMR (100 MHz, D$_2$O): δ 171.8, 71.6, 68.2, 67.9, 58.2, 55.3, 49.9, 31.5, 31.4, 26.5, 25.9, 25.1, 23.3, 22.9. LRMS (ESI): m/z calcd. for C$_{13}$H$_{27}$ClN$_2$O$_4$ [M+Na]$^+$ 333.8, found, 333.3.

(2S, 3R, 4R)-4-amino-N-cycloheptyl-2,3,5-trihydroxypentanamide (525)
67.7 mg, 76% yield. 1H NMR (500 MHz, D$_2$O): δ 4.08 (d, $J = 2.4$ Hz, 1H), 4.06 (dd, $J = 5.5, 2.3$ Hz 1H), 3.83 (dd, $J = 12.2, 4.1$ Hz, 1H), 3.71-3.63 (m, 2H), 3.43-3.38 (m, 1H), 1.71-1.63 (m, 2H), 1.50-1.25 (m, 10H). 13C NMR (100 MHz, D$_2$O): δ 171.9, 71.4, 68.1, 58.1, 55.2, 51.0, 34.0, 33.9, 27.4, 23.6. LRMS (ESI): m/z calcd. for C$_{12}$H$_{25}$ClN$_2$O$_4$ [M]$^+$ 296.8, found, 296.6.

(2S, 3R, 4R)-4-amino-N-cyclohexyl-2,3,5-trihydroxypentanamide (526)
49.2 mg, 57% yield. 1H NMR (300 MHz, MeOD): δ 4.10 (d, $J = 3.1$ Hz, 1H), 4.05 (dd, $J = 5.4, 3.1$ Hz 1H), 3.91 (dd, $J = 11.5, 4.3$ Hz, 1H), 3.80-3.70 (m, 2H), 3.40-3.35 (m, 1H), 1.50-2.00 (m, 5H), 1.40-1.10 (m, 5H). 13C NMR (100 MHz, D$_2$O): δ 172.3, 71.5, 68.1, 58.1, 55.2, 48.9, 31.9, 31.7, 24.8, 24.4. LRMS (ESI): m/z calcd. for C$_{11}$H$_{23}$ClN$_2$O$_4$ [M]$^+$ 282.8, found, 282.4.
N-cyclooctyl-2,3,4,6-tetra-O-benzyl-D-gluconamide (530)

Cyclooctylamine (0.03 mL, 0.212 mmol) is dissolved in toluene (10 mL) and trimethylaluminium (0.2 mL, 0.386 mmol) is added to the reaction and stirred for 1h. 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactone (104 mg, 0.193 mmol) is then added and the reaction is then stirred overnight till the starting material is fully consumed by TLC. The reaction is then quenched with 10% HCl dropwise and stirred for 30 min till a white precipitate is formed. The precipitate is then filtered over Celite® and the mixture is partitioned between EtOAc and water. The layers are separated and the aqueous layer is extracted with EtOAc (2x), dried with MgSO₄, filtered and concentrated in vacuo. The resulting syrup is then purified by flash chromatography to give 530 as a clear oil (91.2 mg, 71% yield).

NMR Spectroscopy

- **1H NMR (300 MHz, DCl₃):** δ 7.36-7.21 (m, 20H), 6.66 (d, J = 7.7 Hz, 1H), 4.72-4.50 (m, 8H), 4.26 (d, J = 3.3 Hz, 1H), 4.11 (dd, J = 5.7, 3.0, 1H), 4.00-3.93 (m, 2H), 3.87 (dd, J = 7.4, 5.8 Hz, 1H), 3.67 (dd, J = 12.9, 3.3 Hz, 1H), 3.61 (dd, J = 10.1, 5.3 Hz, 1H), 1.79-1.41 (m, 15H).

- **13C NMR (100 MHz, DCl₃):** δ 169.5, 138.2, 138.1, 137.9, 136.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.7, 80.6, 80.1, 77.2, 75.1, 74.0, 73.4, 71.5, 71.1, 49.1, 32.1, 31.9, 27.2, 25.3, 23.5.

LRMS (ESI): m/z calcd. for C₄₂H₃₁NNaO₆ [M+Na]⁺ 868.8, found, 868.3.
N-cyclooctyl-2,3,4,6-tetra-O-benzyl-n-benzyl-5-amino-5-deoxy-D-gluconamide (531 and 532)

530 (51.2 mg, 0.0769 mmol) is dissolved in DCM (10 mL) and NaHCO$_3$ (25.9 mg, 0.308 mmol) is added. Dess-Martin periodinane (65.3 mg, 0.154 mmol) is then added and the reaction is stirred for 1h. The reaction mixture is then diluted with 10 mL of diethyl ether and then a 1:1:1 mixture of saturated Na$_2$S$_2$O$_3$ (5 mL), saturated NaHCO$_3$ (5 mL) and water (5 mL) is added slowly. The resulting biphasic mixture is stirred vigorously for 1h resulting in two clear layers. The layers are separated and the aqueous layer is extracted with diethyl ether (3x). The organic layers are then dried with MgSO$_4$, filtered and concentrated in vacuo. The resulting syrup is dissolved in THF (10 mL). Benzylamine (0.01 mL, 0.0923 mmol) and sodium cyanoborohydride (5.80 mg, 0.0923 mmol) is added to the reaction. Glacial AcOH is then added dropwise till pH = 2 and the reaction is refluxed overnight. The reaction is then cooled to rt and concentrated in vacuo. The resulting syrup is then purified by flash chromatography.

N-cyclooctyl-2,3,4,6-tetra-O-benzyl-n-benzyl-5-amino-5-deoxy-D-gluconamide (531)

15.7 mg, 27% yield. 1H NMR (300 MHz, CDCl$_3$): δ 7.26-7.19 (m, 25H), 6.66 (d, J = 7.4 Hz, 1H), 4.76 (d, J = 11.0 Hz, 1H), 4.67 (d, J = 11.0 Hz, 1H), 4.54-4.36 (m, 8H), 4.19 (dd, J = 7.9, 2.4 Hz, 1H), 4.11 (d, J = 2.4, 1H), 3.95-3.92 (m, 1H), 3.87 (dd, J = 8.1, 2.1 Hz, 1H), 3.73 (dt, J = 6.3, 1.8 Hz, 1H), 3.46 (dd, J = 9.0, 6.3 Hz, 1H), 3.34 (dd, J = 9.0, 6.3 Hz, 1H), 1.79-1.30 (m, 15H). 13C NMR (100 MHz, CDCl$_3$): δ 169.1, 138.1, 138.1, 138.0, 136.5, 128.7, 128.4, 128.4, 128.2, 128.2, 128.0, 127.8, 127.7, 127.6, 80.4, 80.0, 78.2, 75.6, 74.9, 74.0, 73.2, 71.1, 69.3, 49.2, 32.1, 31.2, 27.2, 25.3, 23.5. LRMS (ESI): m/z calcd. for C$_{49}$H$_{59}$N$_2$O$_5$ [M+H]$^+$ 756.0, found, 756.4.

N-cyclooctyl-2,3,4,6-tetra-O-benzyl-n-benzyl-5-amino-5-deoxy-D-gluconamide (532)

18.6 mg, 32% yield. 1H NMR (300 MHz, CDCl$_3$): δ 7.34-7.19 (m, 25H), 6.66 (d, J = 8.3 Hz, 1H), 4.67-4.36 (m, 10H), 4.24 (d, J = 2.6, 1H), 4.09-4.07 (dd, J = 5.7, 2.8 Hz, 1H), 3.94-3.91 (m, 2H), 3.84 (dd, J = 7.6, 6.0 Hz, 1H), 3.64 (dd, J = 9.6, 2.7 Hz, 1H), 3.34 (dd, J = 9.8, 5.5 Hz, 1H), 1.73-1.34 (m, 15H). 13C NMR (100 MHz, CDCl$_3$): δ 169.5, 138.2, 138.1, 138.0, 136.5, 128.7, 128.4, 128.5, 128.5, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 127.7, 127.6, 80.6, 80.1, 77.2, 75.1, 74.0, 73.4, 71.1, 49.2, 32.0, 31.8, 27.2, 25.3, 23.5. LRMS (ESI): m/z calcd. for C$_{49}$H$_{58}$N$_2$NaO$_5$ [M+Na]$^+$ 778.0, found, 778.2.
General procedure for the synthesis of N-cyclooctyl-5-amino-5-deoxy-d-gluconamides (533 and 534).

531 or 532 (1 eq.) is dissolved in EtOH (3 mL). Pd/C (10 mol %) is then added to reaction and the mixture is then exposed to 20 bar of hydrogen with vigorous stirring overnight. The reaction is then filtered over Celite® and concentrated in vacuo. The resulting syrup was recrystallized from MeOH/diethyl ether.

N-cyclooctyl-5-amino-5-deoxy-d-gluconamide (533)
5.95 mg, 94% yield. 1H NMR (300 MHz, D$_2$O): δ 4.10 (d, $J = 2.4$ Hz, 1H), 3.85 (dd, $J = 6.6, 2.9$ Hz 1H), 3.79-3.75 (m, 1H), 3.68-3.65 (m, 1H), 3.59 (dd, $J = 6.6, 2.9$ Hz, 1H), 3.54 (dd, $J = 11.4, 4.6$ Hz, 1H), 3.50 (dd, $J = 11.4, 7.5$ Hz, 1H), 1.64-1.34 (m, 15H). 13C NMR (100 MHz, D$_2$O): δ 172.5, 71.8, 71.6, 71.3, 71.0, 62.7, 49.7, 31.3, 31.3, 26.4, 26.4, 25.0, 23.1. LRMS (ESI): m/z calcd. for C$_{14}$H$_{28}$N$_2$NaO$_5$ [M+Na]$^+$ 327.4, found, 327.7.

N-cyclooctyl-5-amino-5-deoxy-d-gluconamide (534)
7.21 mg, 96% yield. 1H NMR (300 MHz, D$_2$O): δ 4.13-4.05 (m, 2H), 3.87 (dd, $J = 12.5, 3.3$ Hz 1H), 3.80-3.75 (m, 1H), 3.75-3.65 (m, 1H), 3.47-3.40 (m, 1H), 1.70-1.30 (m, 14H). 13C NMR (100 MHz, D$_2$O): δ 171.9, 71.6, 68.3, 58.2, 55.3, 49.9, 31.5, 31.4, 26.5, 25.1, 23.3. LRMS (ESI): m/z calcd. for C$_{14}$H$_{28}$N$_2$KO$_5$ [M+K]$^+$ 343.4, found, 343.3.

N-phenyl-d-gluconamide (535)

This compound was prepared by a fellow doctoral student Jennie Briard and was tested for IRI activity following the general experimental condition described previously. 15
N-phenyl-2,3,5-tri-O-benzyl-d-arabinoamide (543)

Aniline (0.012 mL, 0.13 mmol) was dissolved in toluene and trimethylaluminium (0.13 mL, 0.262 mmol) was added. The reaction was then stirred for 1h. 2,3,5-tri-O-benzyl-d-arabino-γ-lactone (49.8 mg, 0.119 mmol) was then added to the reaction and was stirred overnight. The reaction is the quenched with 10% HCl dropwise and stirred for 30min till a white precipitate is formed. The precipitate is then filtered over Celite® and the mixture is portioned between EtOAc and water. The layers are separated and the aqueous layer is extracted with EtOAc (2x), dried with MgSO₄, filtered and concentrated in vacuo. The resulting syrup is then purified by flash chromatography to give a 543 as a yellow oil (45.4 mg, 63% yield).

1H NMR (300 MHz, CDCl₃): δ 8.51 (s, 1H), 7.50-7.00 (m, 20H), 4.75 (d, J = 11.3 Hz, 1H), 4.65 (d, J = 11.3 Hz, 1H), 4.51-4.28 (m, 5H), 4.07 (dd, J = 8.9, 2.0 Hz, 1H), 4.00-3.97 (m, 1H), 3.65 (dd, J = 9.6, 3.2 Hz, 1H), 3.58 (dd, J = 9.6, 3.2 Hz, 1H).

13C NMR (100 MHz, CDCl₃): δ 169.9, 137.6, 137.3, 137.2, 136.7, 129.0, 128.7, 128.5, 128.2, 128.0, 124.5, 119.5, 80.0, 79.9, 74.9, 74.8, 73.4, 70.4, 69.3.

LRMS (ESI): m/z calcd. for C₃₉H₃₉NNaO₅ [M+Na]⁺ 624.7, found, 624.5.

N-phenyl-d-arabinoamide (536)

This compound was synthesized according to ‘General procedure for the synthesis of N-cycloalkyl-d-arabinoamide’ to give 88.9 mg in 97% yield. 1H NMR (500 MHz, CD₃OD): δ 7.63 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 6.9 Hz, 2H), 7.12 (t, J = 6.9 Hz, 1H), 4.50 (s, 1H), 3.95 (d, J = 8.3 Hz, 1H), 3.85 (d, J = 10.4 Hz, 1H), 3.74-3.65 (m, 2H).

13C NMR (100 MHz, CD₃OD): δ 173.0, 137.6, 128.4, 124.0, 119.9, 72.2, 71.4, 71.2, 63.5.

(2S, 3R, 4R)-4-amino-N-phenyl-2,3,5-trihydroxypentanamide (537)

This compound was synthesized according to “General procedure for the synthesis of (2S, 3R, 4R)-4-amino-N-cycloalkyl-2,3,5-trihydroxypentanamide” to give 65.1 mg in 62% yield. 1H NMR (300 MHz, D$_2$O): δ 7.44-7.40 (m, 3H), 7.29-7.27 (m, 2H), 4.18 (d, J = 2.3 Hz, 1H), 4.15 (dd, J = 5.6, 2.5 Hz, 1H), 3.71 (m, 2H), 3.47-3.43 (m, 1H). 13C NMR (100 MHz, D$_2$O): δ 175.9, 130.0, 129.0, 122.8, 71.4, 68.2, 58.3, 55.3. LRMS (ESI): m/z calcd. for C$_{11}$H$_{18}$ClN$_2$O$_4$ [M+H]$^+$ 276.7, found, 276.9.
6.9.1 Spectroscopic Data
7.0 References

Conclusions

The overall aim for this thesis was the synthesis of novel small molecule ice recrystallization inhibitors and the elucidation of the structural features required for potent IRI activity. These molecules have potential use as novel cryoprotectants and also as inhibitors of formation of gas hydrates which are an ice-like solid. In particular, the goals of this study were: (1) examine the role of hydrogen bond donation at the endocyclic position within a pyranose ring towards IRI activity; (2) Use of recently discovered small molecule IRIs towards inhibiting gas hydrate formation to determine structural features required to inhibit both processes; and (3) synthesis of non-surfactant like small molecule IRIs through the combination of structural features required for potent IRI activity.

The first goal was achieved through the synthesis of azasugars which possessed an amine in place of the ring oxygen. Amines were hypothesized to be protonated at a pH of 7.4 (pH of PBS) and thus possibly only act as hydrogen bond donors. Structure-function work suggested that the presence of hydrogen bond donation at the endocyclic position maybe important to IRI activity. The azasugars possessed moderate to potent IRI activity. Analogues of the azasugars with possibly decreased ability to act as hydrogen bond donors exhibited decreased IRI activity as compared to the azasugars. These results suggested that hydrogen bond donation at the endocyclic position may be important to IRI activity. If these amines are protonated, the negative counterion may also be playing a role in hydration and IRI activity. Furthermore, the low cytotoxicity towards the metabolic activity of Hep G2 cells of the d-glucose based azasugar suggested its further exploration as a novel cryoprotectant.

Secondly, recently developed small molecule IRIs such as the azasugars, carbohydrate-based surfactants and hydrogelators possessing long alkyl chains were investigated for their ability to inhibit gas hydrate formation. The effectiveness of the small molecules was measured using a differential scanning calorimeter to track the cumulative heat of reaction generated from the formation of a sI gas hydrate. The small molecules were compared to PVP 10 which is a commercial inhibitor. The resulted suggested that some of the small molecules were superior to the commercial inhibitor at much lower weight percent concentrations. However, an overall analysis revealed that IRI activity was not a good predictor of the ability to inhibit gas hydrate formation. It was demonstrated that the small molecules do not possess the ability to bind to ice (TH activity) and thus, it was suggested that they possibly do not bind to gas hydrates either.
The last goal of this thesis was achieved by first examining the structural features of recently developed small molecule IRIs. These included presence of long alkyl chains, an amide linkage, the presence of an open-aldotol chains, the presence of an amine at C3 on a pyranose ring and a pyranose ring possessing an aryl ring at the anomeric carbon. The combination of long alkyl chains to a polar carbohydrate head has led to a surfactant-like nature to some of these compounds which can be detrimental to cell membranes during cryopreservation. Thus, the remaining structural motifs were combined to generate a series of disaccharides where open-aldotol chains of D-glucose and D-galactose were linked to the pyranose ring of β-PMP-Glc by an amide bond either at the C3 or C6 position on the pyranose ring. These disaccharides produced only one potent inhibitor of ice recrystallization. This disaccharide possessed the open-aldotol chain of D-galactose linked to the pyranose ring of β-PMP-Glc via an amide at the C3 position.

Given that N-alkyl-D-aldonamides possessed unprecedented IRI activity, the use of other hydrophobic moieties attached to an open-aldotiol chain required further exploration. Furthermore, it has been demonstrated that a delicate balance between hydrophobicity and hydrophilicity impacts IRI activity. Based on this, a series of N-cycloalkyl and N-phenyl-aldonamides were synthesized and investigated for their IRI activity. The use of different cycloalkyl groups as the hydrophobic moiety did not impact IRI activity. Additionally, modification to the open-aldotol chain of D-glucose such as removal of a hydroxyl group or replacement of a hydroxyl group to an amine also resulted in minimal impact on IRI activity. However, N-phenyl-D-arabonamide was found to possess potent IRI activity. Further kinetic investigation of this activity demonstrated this compound to be one of the more potent inhibitors of ice recrystallization discovered by the Ben laboratory. Lastly, the use of these novel small molecules IRIs towards cryopreservation of hematopoietic stem cells was also explored. Overall, these compounds failed to demonstrate an improvement over the commercially utilized 10% DMSO cryoprotectants solution.

Overall, these studies promote the further investigation of other novel small molecule IRIs towards inhibiting ice recrystallization and gas hydrate formation. The success demonstrated by some of the molecules studied within this thesis will facilitate future studies in this field.
Claims to Original Research

1. IRI, TH and cytotoxicity profiles of azasugars and its analogues.
2. Use of small molecule IRIs to inhibit gas hydrate formation.
3. Syntheis, IRI activity and analysis of cryopreservative ability of disaacharides possessing open-alditol chains of d-glucose and d-galactose were linked to the pyranose ring of β-PMP-Glc by an amide bond either at the C3 or C6 position on the pyranose ring. Additionallly, a similar analysis of N-cycloalkyl-d-aldonamides and N-phenyl-d-aldonamides

Publications
