Differences in youth and adult headform responses during simulated ice hockey impacts

A. Meehan, T.B. Hoshizaki, A. Post, J.M. Clark, L. Dawson

Neurotrauma Impact Science Laboratory, University of Ottawa, Ottawa, Canada

Introduction

Ice hockey is a fast-paced sport with a high incidence of both physical contact and injury (Spraul, 1988; Wennberg and Tator, 2003). With over 500,000 youth hockey players enrolled in minor hockey across Canada, it is imperative that safety is a top priority (Hockey Canada, 2014). Unfortunately, significantly high numbers of concussions have been reported in young hockey players (Ichlin et al., 2010). Concussions are of great concern in youth ice hockey players, who are in a critical stage of growth and development (Marchie and Casimano, 2003). Short-term effects of concussions can include fatigue, inability to concentrate, loss of memory, and headaches, all of which can severely inhibit a youth’s academic and athletic performance (Johnson, 2011).

This study will identify the differences in youth and adult headform response to various hockey impacts. It is hypothesized that youth hockey players are at higher risk of minor traumatic brain injury (mTBI) at lower impact velocities, due to their smaller head size and mass.

Methodology

Headforms: A 5th percentile (youth) male Hybrid III headform and a 50th percentile (adult) male Hybrid III headform (both with an unbiased neck) were used. Each headform was equipped with nine single-axis accelerometers in a “3-2-2-2” array (Padgaonkar et al., 1975). The accelerometers collected three dimensional impact data at 20 kHz with a TDAS Pro Lab System, using a 300 Hz filter for the purpose of analysis.

Helmets: The youth headform was fit with a small RBK 11K vinyl nitride (VN) helmet. The adult headform was fit with a medium RBK 11K VN helmet.

Collisions: A pressurized linear impactor (m=13.8 kg) was used to impact headforms with a piston, which was covered with a VN cap (Figure 1). The youth headform was impacted at 3 m/s (Lockwood and Frost, 2007), while the adult headform was impacted at 6 m/s (Marino, 1983). Each helmeted headform was impacted in five centric and non-centric sites (Table 1). Falls: A monorail drop rig was used to drop the headforms onto an anvil (Figure 2). The youth headform was dropped from a height of 144 cm, and the adult headform was dropped from 173 cm.

Results

Collisions

For all collision impacts, accelerations incurred were statistically different between youth and adults (p<0.001). Impacting the adult headform in site 3 elicited the largest mean linear and angular accelerations (29.5 g and 2361 rad/s², respectively). However, all youth headform collision impacts remained below the threshold for mTBI. Impacting the adult headform in sites 1 and 3 produced the largest mean linear and angular accelerations (56 g and 5587 rad/s², respectively). Impacts to sites 2 and 3 produced rotational accelerations that indicated 25-50% probability of incurring mTBI (Figures 3 and 4).

For falls, impacts to the front of the head produced similar accelerations between youth and adults (p=0.05), while impacts to the rear of the head produced statistically different accelerations (p<0.05). Dropping the youth headform on the front and right side produced the largest linear and angular accelerations (323.2 g and 18668 rad/s², respectively). The adult headform also experienced the largest linear and angular accelerations when dropped on the front and right side (316.8 g and 21639 rad/s²). In both youth and adults, falls on all three impact sites resulted in accelerations well above the threshold for 80% risk of injury (Figures 5 and 6).

Discussion

Impacts were simulated by recreating a reasonable representation of how the game is played at youth and adult levels. While the acceleration values incurred by the youth headform collisions did not exceed the injury thresholds proposed by Zhang et al. (2004), it is still possible that youth hockey players may be injured at lower inputs of linear and rotational acceleration. Additionally, the consequences of mTBI are much more severe in youth hockey players.

This can be explained by youths’ constantly developing brain structures. Total cerebral volume, quantity of cortical and subcortical gray matter, and quantity of white matter are constantly changing throughout a youth’s growth and development (Rhoshel et al., 2006). For example, a youth’s brain experiences a gradual loss of gray matter from age 5 to 20, corresponding with increased cognitive abilities (Figure 7). There are also differences in brain composition and development between genders (Giedd et al., 1996).

Considering the long-term effects, youth who sustain repeated mTBI can suffer from cumulative cognitive deficits and motor system dysfunction later in life (Collins et al., 2002; Beaumont et al., 2007). In addition, repeated head injuries put youth hockey players at risk of chronic traumatic encephalopathy (CTE), a progressive deterioration of brain tissue (Mckee et al., 2009). A youth’s brain is an extremely valuable asset that should be protected at all costs.

Conclusion

The results of this study demonstrated that youth hockey players experience very low risk of mTBI from collisions, but are at a very high risk from falls to the ice. In contrast, adult hockey players are at risk of incurring mTBI from collisions, and are also at a very high risk from falls to the ice. Due to their state of growth and development, the consequences of mTBI are much more severe in the youth population.

References


Acknowledgements

I would like to thank Pascale LaFrance and Fabienne Tougas for conducting the UROP program, providing the opportunity for me to conduct this research. I would also like to thank Dr. Hoshizaki for allowing me to work in the Neurotrauma Impact Science Laboratory, in addition to Dr. A. Post, J.M. Clark, and L. Dawson, for their assistance and guidance throughout this project.

Contact Information

Andrew Meehan
ameeb01@uottawa.ca