POST-SCHOOLING OUTCOMES OF UNIVERSITY GRADUATES: A TAX DATA LINKAGE APPROACH

ROSS FINNIE
University of Ottawa
rfinnie@uottawa.ca

DEJAN PAVLIC
Education Policy Research Initiative
dpavic@irpe-epri.ca

NEMANJA JEVTOVIC
Education Policy Research Initiative
njevtovic@irpe-epri.ca

STEPHEN CHILDS
Education Policy Research Initiative
stephen.childs@uottawa.ca

FEBRUARY, 2015

120 University Private
Social Sciences Building, Room 5004
Ottawa, Ontario, Canada
K1N 6N5

www.epri.ca
info@irpe-epri.ca
Abstract

This paper is rooted in the construction of a new and unique dataset which links administrative data on students who graduated from the University of Ottawa (a large Canadian urban university) from 1998 through 2010 with Canadian tax record data. We track students’ post-schooling earnings on a year-by-year basis, and all graduates are followed through to 2011, which means we are able to track earnings over as much as 13 years for the earliest cohorts. We break earning profiles down by area of study and follow each graduating cohort separately, allowing us to compare patterns in starting earnings levels and earnings growth across graduating cohorts by area of study. This yields some interesting and important patterns. We also compare male-female earnings, and compare earnings quintiles across areas of study. This kind of analysis is not only useful for understanding higher education earnings premia and the returns to HE, but is also valuable for young people making schooling choices, for individual HE institutions and HE systems making program decisions, and for policy makers concerned with skills and skill shortages. The work is currently being extended to relate earnings outcomes to additional student characteristics and schooling experiences, and to include additional various additional sets of Canadian HE institutions in the analysis.
The authors would like to thank the University of Ottawa’s Institutional Research and Planning office for providing the administrative data on which this project is based. In particular, we would like to acknowledge the assistance of Pierre Mercier (Associate Vice-President, Institutional Research and Planning) and Victoria Diaz (Assistant Director, Institutional Research and Planning).

The authors would also like to thank Statistics Canada for their hard work and support during this project. In particular, many thanks go to Sylvie Michaud (Director General, Education, Labour and Income Statistics) whose support made this project possible. A large thank you to Diane Galarneau (Section Chief, Current Labour Analysis and Perspectives on Labour and Income, Statistics Canada) for her hard work during the elaboration of this project.

Additionally, we would like to thank Daniel Boothby (Chief, Special Economic Studies, Industry Canada) for his helpful comments and suggestions and Kaveh Afshar and Erika Aruja for their assistance preparing this paper.
I. **Introduction**

This paper presents the results of a descriptive analysis of the early labour market outcomes of students who graduated from the University of Ottawa, a large urban Canadian university, from 1998 through 2010. The analysis is rooted in the construction of a new and unique dataset which links administrative data on students with Canadian tax record data.

We track students’ post-schooling earnings on a year-by-year basis, and all graduates are followed through to 2011, which means we are able to track earnings over as much as 13 years for the earliest cohorts.

We break earning profiles down by area of study and follow each graduating cohort separately, allowing us to compare patterns in starting earnings levels and earnings growth across graduating cohorts by area of study. This yields some interesting and important patterns.

We also compare male-female earnings, and compare earnings quintiles across areas of study, both of which yield further patterns of interest. The quintile comparisons are particularly valuable for showing how top earners tend to bring up the averages much for some areas of study than others. Meanwhile, focusing on the middle quintiles reveals perhaps surprising similar earnings levels across areas of study which are commonly thought to be characterised by wider differences – such as business, engineering, social science, and humanities graduates.

This kind of analysis is not only useful for understanding higher education earnings premia and the returns to HE, but is also valuable for young people wanting to make informed schooling choices, for individual HE institutions and HE systems making program decisions, and for policy makers concerned with skills and skill shortages.

The work is currently being extended to relate earnings outcomes to a range of additional student characteristics and schooling experiences available in the data, including students’ finishing GPAs, and to break results down at the department level rather than at the broader faculty-level grouping studied here. Many other such lines of research could be pursued by building on the data set and analytical framework that have been developed. The work is also being extended to included different sets of additional HE institutions in the analysis.

II. **Literature Review**

There has been extensive theoretical and empirical work about the nature of private
returns to postsecondary education. Within the literature, two main streams of focus exist. First is on the rate of return to PSE, both public and private, and second is on earnings to PSE.

The rate of return to PSE has been extensively studied by economists, with the consensus being that PSE has positive returns to both the individual and society. To quantify this assertion for the Canadian case, Emery (2004) studies the allocation of resources to university education and finds that since 1980, the private costs have increased thus reducing the private rate of return. Emery predicts that both the private and public rate of return to university will increase given the anticipated reduction in the highly education workforce due to Canada’s aging population. Moussaly-Sergieh and Vaillancourt (2009) used Census data to find the internal rate of return to university education, estimating that male and female undergraduate degree holders see an annual return of 12 cents and 14 cents, respectively. The public can expect a return of 9 cents per dollar spent on undergraduate education, which is higher than many other forms of investment. However rates of return do vary across field of study, with the lowest returns for humanities graduates and the highest returns in health sciences. These findings are consistent with findings on earnings based on discipline.

While returns to education are indeed positive, the precise value is debated. In an effort to reconcile differing estimates, Boudarbat, Lemieux, & Riddell (2010) use census data to compare returns based on average lifetime earnings of university graduates with those who entered the workforce immediately after high school. They find that returns to education increased substantially for Canadian men, contrary to conclusions reached previously. Most of this rise took place in the early 1980s and since 1995. Returns to education also rose, albeit more modestly, for Canadian women. In a study with the same intention, Frenette (2014) calculated that for a 20 year period, the premium associated with a bachelor’s degree is $728,000 for men and $442,000 for women, while for a college certificate the premiums are $248,000 and $180,000 for men and women, respectively.

Although estimates of returns to PSE vary, there is consensus that PSE increases earnings (when compared to those without a PSE), and that earnings differ depending on field of study.

The program of study an individual chooses does matters when it comes to future earnings. Arcidiacono (2004) found a large earnings premium for certain majors even after controlling for program selection. Kelly, O’Connell and Smyth (2010) argue that technical skills
offer a premium in the labour market. They find that Computer & It, and Science graduates having above average perceived technical skills, while Arts & Humanities, Business, Law, and Social Science graduates have below average.

While estimates vary, in general it seems humanities and social science graduates earn less than those who studied health sciences, engineering, business, and information technology. Heisz (2001) used tax data for British Columbia graduates to find that annual incomes are relatively high for those with applied degrees such as health, engineering and education, but found that the earnings differences amongst fields narrowed over time. Birch, Li and Miller (2009) conclude that for Australian students, the highest starting salaries were in information technology, engineering, public health, education, management and commerce. The lowest starting salaries were in agriculture and science. However, they note these differences are modest and type of employment played a greater role than major of study in determining initial salary.

The extent to which the quality of the school effects income is debated. Using American data, Hoeskstra (2009) found that students from a selective state university received an earnings premium of 20%, thus showing there are significant economic returns to college quality. A similar conclusion is made by Brewer, Eide and Ehrenberg (1999) also find large labour market premiums for elite private school graduates and smaller premiums for middle-rated private institutions, relative to bottom-rated public schools. In contrast is a body of work suggesting otherwise. Nakamuro and Inui (2013) used Japan as a case study, as college selection in the country is based almost entirely on written exam scores. Using a dataset of twins in order to control for the effects of genetics and family background, they find that the effect of college quality of earnings is essentially zero. Focusing on Australia, Birch, Li and Miller (2009) find that there is less than a 2% difference in starting wages based on quality of school, and thus argue that grade scores and industry of employment are more significant in determining salary.

Returns to PSE also vary based on the extent of PSE education. In general, Bachelor’s degrees offer the highest returns. Master’s and PhD’s are provided less returns, with some degrees actually offering negative returns. These differences are again based mainly on field of study. In Canada, Stark (2007) finds that the highest MA returns are for commerce and education graduates, while returns to engineering MA’s are actually negative. PhD’s offer less of a return than MA’s, with PhDs in the sciences offering the highest returns compared to non-science
programs. For Spanish data on PhD graduates, Di Paolo and Mane (2013) find there is financial penalization for those who are overqualified and overskilled. This is consistent with the work of Ferrer and Riddell (2002) who find that the marginal impact of a doctorate on earnings is small or insignificant.

While there is consensus in the literature that PSE provides positive private and public returns, and field of study is important in determining earnings, there is still debate as to the extent of these returns, and as to the factors that contribute to differences in salaries. These differences are due to lack of comprehensive data and the various econometric models employed by the researchers. The Education Policy Research Initiative hopes to provide a robust analysis of labour market outcomes by using a new dataset that links records from the University of Ottawa to tax records from Statistics Canada to track income of graduates based on field of study over time.

III. Context

The paper uses the administrative data of only one post-secondary education (PSE) institution, serving as a pilot project to demonstrate the worth of linking PSE institutional data to tax record data. In doing so, we are able to provide data on labour market outcomes that is more accurate than the small and biased samples on graduates currently carried out by post-secondary education (PSE) institutions themselves and more accurate than using Census data. Using a data linkage strategy, we are able to answer the following questions: Which graduates are doing well in the labour market, and which not so well? How do earnings patterns evolve over the years following graduation, taking into account experience on future earnings? Have earnings patterns changed over time (i.e., across graduating cohorts)?

Those areas of study where graduates have received higher earnings (and increasing over time) presumably represent areas where there is strong demand for the skills obtained by studying those disciplines, and the converse could be inferred for those earning less. This kind of information could help inform a range of policies relating to labour markets and the PSE system, as students are likely to be drawn to areas of high demand (where their skills are presumably needed) and PSE institutions have incentives to respond with the programs they offer.

Such dynamics – the flow of students into disciplines where labour market demand is
high – are a central element of the standard human capital model of skill acquisition and (related) post-schooling outcomes, which leads to human resources going where they will be most productive. However, this can only happen to the degree that there is accurate information on labour market outcomes, which is an area where there currently exist significant shortcomings, including for individual PSE institutions, individual provinces and Canada as a whole. This project aims to provide a new and accurate source of information that will be useful for young people making schooling choices, PSE institutions, employers and education policy makers.

IV. Data and Methodology

This section describes the creation of the dataset which links administrative University of Ottawa data with tax data and the steps taken to undertake the final analysis. Addressed below are the creation of the measure of earnings, the sample inclusions and censoring strategy for graduates that do not file taxes and those that return to school, and the construction of the faculty groups.

IV.1. Creation of Linked Dataset

The University of Ottawa’s Institutional Research and Planning (IRP) office provided Statistics Canada with the administrative data on all graduating students from the University of Ottawa between the years 1998 and 2010. These data include specific information on students such as gender and program of study, among others. The University also provided a separate file that included the individual student identifiers required to link students to the tax data (e.g., full name, precise date of birth, and geographical information). At no point were the two files containing student information at Statistics Canada at the same time, further ensuring a high level of student-privacy and confidentiality. Identifiable, individual-level student information was destroyed after the linkage was completed by Statistics Canada and the analysis file does not include any of the above-mentioned student identifiers. Additionally, researchers were not given direct access to micro records and instead worked with an analyst at Statistics Canada.

Statistics Canada’s tax record data for this study is available from 1998 to 2011. This tax data represents the adult population very well as the rate of tax filing in Canada is very high. Upper and middle-income Canadians are required to file; whereas lower-income Canadians have strong financial incentives to file as they can recover a part of their income tax and other payroll
tax deductions made throughout the year, or receive various tax credits. As a result, over 99 percent of graduating students at the University of Ottawa could be matched to at least one tax year record. The final dataset consists of 82,000 University of Ottawa graduates.

IV.2. Statistics Canada Disclosure Rules

The results below follow Statistics Canada’s disclosure rules. These rules state that where observation counts are lower than 15 the results must be suppressed. Furthermore, to protect individual privacy, all counts are rounded to the nearest 10 and final earnings to the nearest $100.

IV.3. Measure of Earnings

To measure labour market outcomes this analysis focuses on total before-tax earnings, created by combining three measures of each graduate’s yearly income. We combine the earnings from the T4 slips with any declared self-employment income and other employment income. The focus on before tax income ensures that the effects of various tax credits and transfer programs, which would disproportionately affect the after tax earnings of some types of graduates, are not captured. For example, individuals with children could claim a tax credit that would raise their after tax earnings relative to those that do not have children and have the same level of before tax earnings.

In order to track each individual’s earnings over time, and to capture the effects of labour market experience on earnings, this analysis will examine earnings on a cohort-by-cohort basis by year after graduation. As an example: for a student who graduated in 1998 (the 1998 cohort), we observe their earnings at one year after graduation, i.e. in fiscal/tax year 1999, and follow them on a yearly basis for as long as we have earnings information. For this earliest cohort, we have earnings information spanning 13 years (until 2011), while for later cohorts we have less information; for example, for the 1999 cohort, we have 12 years of earnings information, for the 2010 cohort, we have only 1 year of earnings information.

As part of the analysis we also examine the change in earnings in the 1st year after graduation between cohorts. This serves as a measure of the labour market value of new entrants into the labour force and allows us to capture the effects of the business cycle on the earnings of recent graduates. In the cases where the analysis is focused on 1st year earnings, as above, the fiscal year following the year of graduation is considered year 1 but the findings are presented on
a yearly basis (i.e. 1999 through to 2011).

We focus on mean earnings in this paper. All earnings are Consumer Price Index (CPI) adjusted to 2011 dollars.

IV.4. Sample Inclusions and Censoring

Since we want to include only individuals that worked in a given year, we censor graduates whose total before tax earnings are lower than or equal to $1,000, under the assumption that earnings below $1,000 represent an individual that did not work in that fiscal year. We exclude individuals that did not file taxes in a given year, but allow them to return into the sample for all years for which there is tax information for them.

Additionally, individuals are censored if they returned to school in any given year and for all subsequent years thereafter. We consider individuals to have returned to school if they claim more than $100 in tuition expenses in a given tax year. This approach ensures that we do not include those who returned to school to upgrade their skills, as we would expect these individuals to obtain an earnings premium compared to those who have not completed additional schooling.

Graph 1 presents the effects of the censoring strategy on the sample of the 1998 cohort of

As Graph 1 demonstrates, in the 1st year after graduation around 35% of graduating students of the 1998 cohort are censored because they were found to be in school (i.e. they claimed at least $100 in education deductions in the 1st full year after graduation). For each additional year after graduation, a significantly smaller number of graduates returned to school, but the total proportion grows over time due to the fact that this censoring criterion is cumulative (those that returned to school in the 1st year after graduation are counted in all subsequent years). Around 10% of the sample is censored in the 1st year after graduation because these individuals did not file their taxes in that year. The number of graduates that did not file their taxes remains roughly the same for this cohort for each year after graduation. An even smaller number (around 4%) was censored in every year due to the fact that these individuals earned less than $1,000 in that year. For the 1998 cohort, the total sample size in the 1st year after graduation is around 50% of the total number of graduates in that cohort, totalling around 1,150 graduates. By year 13 after graduation, the total sample is reduced to a quarter of the total number of graduating students,
which was around 600 (similar information on other cohorts can be found in the appendix).

IV.5. Employment Rates

Due to the relatively small sample size of graduates from each faculty and Statistics Canada disclosure rules, we are unable to generate meaningful employment rates. Employment rates were generated by dividing the number of graduates with earnings in a given year (generally the 1st year after graduation) by the sum of the number of graduates with earnings and the number of graduates with no earnings, for each cohort. For almost all cohorts of graduates in almost every faculty very few graduates were unemployed, generating employment rates that were 100% due to the Statistics Canada rounding requirements. In order to generate meaningful employment rates in the future, we would need a larger sample size by including more post-secondary education (PSE) institutions in the analysis.

IV.6. Definition of Faculty Groups

This analysis is confined to only graduates who obtained a bachelor degree and excludes individuals that graduated with advanced degrees. Bachelor degrees which cannot be entered directly from high school (e.g. education or law) are excluded. Given that we also have information about graduate degree holders from the University of Ottawa, future analyses could be undertaken to examine the outcomes of graduates with advanced degrees.

Using the Classification of Instructional Programs (CIP) codes, the entire bachelor degree holding sample is divided into the following eight faculty groups. Table 1 demonstrates the correspondence between the faculty groups and the CIP codes.

<table>
<thead>
<tr>
<th>Faculty Group Name</th>
<th>CIP Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>52</td>
</tr>
<tr>
<td>Health</td>
<td>51</td>
</tr>
<tr>
<td>Social Science</td>
<td>42, 44, 45</td>
</tr>
<tr>
<td>Mathematics and Natural Sciences</td>
<td>26, 27, 40, 41</td>
</tr>
<tr>
<td>Engineering and Computer Sciences</td>
<td>11, 14, 15</td>
</tr>
<tr>
<td>Humanities</td>
<td>5, 9, 16, 22, 23, 24, 38, 39, 54, 55</td>
</tr>
<tr>
<td>Other</td>
<td>All other not included above</td>
</tr>
</tbody>
</table>
The “All” faculty group examines the labour market outcomes of all graduates included in the analysis and provides us with an institutional (University of Ottawa) average, or sample mean, which we use for comparative purposes.

V. Descriptive Statistics

V.1. Number of Graduates

As Graph 2 demonstrates, the total number of bachelor degree graduates from the University of Ottawa increased over the 13-year period from 2,300 to 4,570, representing a 99% increase. The first 4 cohorts registered modest yearly increases in graduates, with the number of graduates in the 2001 cohort actually falling relative to the 2000 cohort. Subsequent cohorts, however, registered yearly increases of around 200 graduates until 2007. The largest year-over-year increase in the number of graduating students occurred with the 2007 cohort, when around 400 more students graduated than in the 2006 cohort. This result is most likely caused by the double-cohort of high school graduates from Ontario, many of whom would have been graduating in 2007.

The largest faculty group was the Social Sciences, representing slightly more than 25% of the entire sample of the graduating class of 1998 for each year after graduation (see Graph 3). The next largest group was composed of graduates from Humanities programs, representing close to 20% of the sample. Graduates from Business, Engineering and Computer Sciences, and Health, each represented around 12.5% of the total number of graduates included in the sample. Finally, Other, and Mathematics and Natural Sciences faculty groups had the smallest share of graduates in the 1998 graduating class.

V.2. Earnings by Cohort

This section examines earnings on a year-by-year basis following graduation for different cohorts of graduates (defined with respect to the year they finished their studies). As mentioned above, this analysis uses tax information in fiscal years 1999 and 2011. The first cohort (1998) has a complete profile of 13 years, while later cohorts have smaller earnings profiles. We have
focused on cohorts 1998, 2000, 2004 and 2008 throughout most of this paper. The earnings profiles of the remaining cohorts are presented in the appendix.

1. **1998 Cohort - A complete profile**

 The 1998 cohort of graduates from the University of Ottawa pooled together (All group) entered the labour force with earnings of around $42,000 (see Graph 4). These graduates saw their earnings increase year-over-year for all but one year (year 12 after graduation), reaching mean earnings of around $80,000 by year 13 after graduation.

 On average, graduates from Engineering and Computer Sciences programs had the highest earnings in the 1st year after graduation of all the faculty groups examined in this cohort (around $62,000). These graduates saw rapid increases in their yearly earnings leading up to the bursting of the dot-com bubble in 2001 (year 3 after graduation). The effects of the bust were evident in the substantial decreases in earnings in the 4th and 5th years after graduation (fiscal years 2002 and 2003). Nonetheless, in the 13th year after graduation these graduates were amongst the top earning faculty group examined in this cohort, with mean earnings just below $100,000.

 Math and Natural Science graduates of the 1998 cohort followed a similarly volatile earnings profile as that of Engineering and Computer Sciences graduates. Earnings increased rapidly until year 4 after graduation (fiscal year 2002) – perhaps as a result of these graduates entering into sectors similar to those of the Engineering and Computer Sciences graduates – after which they entered a period of volatility with 3 years of earnings decreases registered (in fiscal years 2003, 2007 and 2010). These graduates finished with mean earnings of around $90,000 at 13 years after graduation.

 Graduates from Business programs in this cohort experienced the largest net increase in mean earnings for the 13-year period. Although these graduates had 1st year earnings roughly equivalent to the sample mean (All group), and much lower than those of the Engineering and Computer Sciences group, Business graduates of the 1998 cohort experienced, on average, much larger earnings increases year-over-year than any other faculty group examined (i.e., the slope of their earnings profile is the steepest). This group registered particularly large year-over-year increases in earnings in the first three years after graduation and in year 11 after graduation (fiscal years 2008 and 2009). The latter increase appears to be driven by the top earning 20% in
this faculty group (see Quintiles section). Business graduates of the 1998 cohort finished the 13 year period with earnings close to $100,000.

Health, Humanities and Social Science graduates from the 1998 cohort had roughly similar earnings profiles. Although graduates from Health programs had significantly higher 1st year earnings ($52,000 compared to $35,000 for Social Sciences and $37,000 for Humanities), each of these faculty groups experienced increasing earnings year-over-year with little volatility during the course of the 13 years examined. Although Health graduates started with higher earnings, they finished with earnings similar to those of the Humanities group (around $70,000), while the Social Sciences graduates registered the highest increase over the 13 years, finishing with earnings close to $75,000.

Finally, the Other faculty group, which includes graduates from programs as varied as Fine Arts and Agriculture, had the lowest 1st year earnings (around $30,000) and the lowest earnings at year 13 after graduation (around $60,000) of all the faculty groups.

2. 1998 Cohort – Confidence Intervals

In order to understand how precise the estimates for mean earnings are, we look at the 95% confidence interval for each group. The confidence interval reflects the underlying distribution of earnings for each group (e.g., the larger the confidence interval and greater the distribution) as well the sample size (e.g., small sample sizes can lead to large confidence intervals).

Faculty groups in the 1998 cohort with the largest differences between the upper and lower limits of actual earnings were Mathematics and Natural Sciences, and Business (see Graph 5). Business graduates began the 13-year period with a very tight confidence interval, but in the final year of analysis there was a $40,000 difference between the upper and lower limit. This result appears to be primarily driven by the fact that there were large differences in earnings among graduates of this group later on in their careers. The result for the Mathematics and Natural Sciences group is most likely driven by a small sample size, as this is the smallest of all faculty groupings.

Engineering and Computer Sciences, and Other graduates had moderate differences between the upper and lower limits of actual earnings for all the years after graduation (around $7,000). This result is probably driven by a combination of considerable differences in observed
earnings for these graduates and the relatively small sample sizes of each group.

Graduates of the Humanities, Social Sciences and Health programs had narrow confidence intervals. As Humanities and Social Sciences are two of the largest faculty groups, the large sample sizes are likely to explain some of the small difference in variance. However, the results also suggest a relatively tight distribution in incomes, and this is especially true among graduates of Health program, who are fewer in number but whose incomes appear to be most evenly distributed (see the Distribution of Earnings section).

Looking at the confidence intervals in this way allows us to solidify some of the initial findings above. For example, the upper limit of actual earnings for the Humanities, and Other groups is lower than the lowest limit for the Business, and Engineering and Computer Sciences groups.

3. **Cohorts Compared - the 1998 and 2004 Cohorts together**

In order to examine whether the starting earnings and earnings growth of graduates changed over time, we compared the mean earnings of 1998 cohort with those of 2004 cohort. As graph 6 illustrates, the starting earnings and earnings growth for the next 6 years were generally similar between two cohorts in different fields of study with the notable exception of the Engineering and Computer Sciences and Business graduates, who had higher starting earnings and at times faster earnings growth in the 1998 cohort.

The 2004 cohort of graduates from the University of Ottawa taken together (All group), had 1st year earnings several thousand dollars lower than those of the 1998 cohort. For the first 4 years after graduation, the 2004 cohort earned less than the 1998 cohort at the same point in their careers. Only in year 5 after graduation (fiscal year 2003 for the 1998 cohort and fiscal year 2009 for the 2004 cohort) did the 2004 cohort register higher earnings than the 1998 cohort. For the remaining 2 years this group of graduates continued to have lower earnings that the 1998 cohort at the same point in their careers.

The 2004 cohort of graduates from Engineering and Computer Sciences entered the workforce at the trough of the dot-com bust and this is reflected in their substantially lower 1st year earnings. These graduates had mean 1st year earnings of around $45,000, only somewhat higher than the 1st year earnings of the University of Ottawa average for the same cohort (around $42,000). For the remainder of the timeframe for which we have data on the 2004 cohort,
graduates of Engineering and Computer Sciences programs saw their earnings increase year-over-year but never reaching the same level of earnings for a given year after graduation as those of the 1998 cohort of graduates of the same faculty group.

The 2004 cohort of graduates from the Mathematics and Natural Sciences group had slightly higher 1st year earnings compared to those of the 1998 cohort from the same faculty group. The later cohort experienced less volatility in earnings over the 7 year but earned less than the 1998 cohort at every year after graduation.

Business graduates from the 2004 cohort had lower 1st year earnings than Business graduates from the 1998 cohort. The 2004 cohort’s earnings, nevertheless, increased year-over-year for the 7 years. At no point in time were earnings of the 2004 cohort higher than those of the 1998 cohort of Business graduates at the same point in their careers.

Health, Humanities and Social Sciences graduates had similar earnings profiles for each of the two cohorts compared. The 2004 cohort began with slightly higher 1st year earnings than the 1998 cohort in each faculty group, but only in the Social Sciences group was this relationship maintained for the duration of the 7. For both the Humanities and Health faculty groups, earnings between the two cohorts varied only slightly for any given year after graduation.

Finally, the 2004 cohort from the Other faculty group started with earnings similar to those of the 1998 cohort of the same group. At year 2 after graduation, however, and for all subsequent years, the 2004 cohort earned less relative to the 1998 cohort.

4. All Cohorts Together

Graph 7 groups the earnings profiles of all 13 cohorts together for each faculty group and allows us to see the how the various cohorts compare.

What is most evident at first glance is that there were differences between cohorts in each faculty group and that, in some cases, longer-run earnings patterns reflected starting earnings levels. We also observe that some areas of study had stable earnings profiles while others had variable ones, with some cohorts deviating greatly from others with respect to earnings at a given year after graduation (Graph 7).

The earnings profiles of a majority of the faculty groups were fairly stable, with earnings of the cohorts in these groups deviating only slightly from each other for any year after
graduation. Health, Humanities, Social Sciences and Other were the faculty groups with earnings profiles that change least. Although 1st year earnings varied between cohorts for these three faculty groups, this variation was contained within $10,000 for each of the groups (the only exception being the 2002 cohort in the Humanities group).

There was considerably more variability in earnings profiles between the cohorts of graduates from Engineering and Computer Sciences, Mathematics and Natural Sciences and Business. This is particularly evident when looking at the 1st year earnings of the Engineering and Computer Sciences group. The first three cohorts (1998, 1999 and 2000) had significantly higher 1st year earnings than all the other cohorts in this faculty group, while also exhibiting much more variability in earnings year-over-year throughout the course of their careers. For Business graduates, the variability appeared later in the earnings profiles for each cohort, with the 1998 and 2001 cohorts deviating greatly from the others. Similar to the Business graduates, the earnings profiles of Mathematics and Natural Sciences cohorts exhibited variability in the middle to later years.

Admittedly, Graph 7 is too busy. Thus, we have chosen to present four cohorts in Graph 8, which allow us to observe the earnings profiles of a sample of representative cohorts. Below, we compare the earnings profiles of graduates from these four cohorts for each faculty group.

All graduates of the 2000 cohort of the University of Ottawa pooled together (All group) had higher 1st year earnings than the 1998, 2004 and 2008 cohorts. At year 3 after graduation, however, and for all subsequent years thereafter, with the exception of year 7, this cohort earned less than the other three cohorts at a given year after graduation. Earnings increase year-over-year for this cohort, including through fiscal years 2008 and 2009 (years 8 and 9 after graduation). Graduates of the 2004 cohort registered the lowest 1st year earnings but experienced steady growth in earnings all the way to the 5th year after graduation (fiscal year 2009), at which point they registered the highest earnings of the selected cohorts. The 2008 cohort had the second-highest 1st year earnings of the four selected cohorts. Their earnings rose over the 3 year period for which we have information, surpassing the earnings of the 2000 and 2004 cohorts at year 3 after graduation but not reaching the same earnings level as the 1998 cohort.

The 2000 cohort of graduates from Engineering and Computer Sciences programs
entered the workforce immediately before the dot-com bust. Although the 1st year earnings of graduates in this cohort were the highest of the four selected cohorts, at around $70,000, the earnings steadily decreased for the first 3 years after graduation (until fiscal year 2003). The earnings of this cohort never surpassed the earnings of the 1998 cohort of Engineering and Computer Sciences graduates at the same point in their careers. The 2004 cohort of graduates entered the workforce at the trough of the dot-com bust and, as a result, had the lowest 1st year earnings of any of the four cohorts (around $45,000). For the remainder of the period, this cohort of Engineering and Computer Sciences graduates saw their earnings increase year-over-year but never surpassing the earnings levels of the other three cohorts. Graduates in the 2008 cohort had 1st year earnings higher than only those of the 2004 cohort. For each of the 3 years for which we have tax information, this cohort registered increasing earnings, surpassing the earnings of the 2000 cohort at year 3 after graduation.

Graduates from the Mathematics and Natural Sciences programs part of the 2000 cohort registered the second highest 1st year earnings of the selected cohorts for this faculty group. From year 3 after graduation to year 8 after graduation this cohort had the lowest earnings. The 2004 cohort registered 1st year earnings slightly higher than those of the 1998 cohort but had lower earnings than the 1998 cohort for all subsequent years. Cohort 2008 had the highest 1st year earnings but had lower earnings than cohorts 1998 and 2004 at each year after graduation for the 2 remaining years.

The 2000 cohort of Business graduates had the highest 1st year earnings of the selected Business cohorts. Although this cohort started with the highest earnings, and saw its earnings increase year-over-year, this cohort had lower earnings at every year after graduation than the 1998 cohort. The 2004 cohort started with the lowest 1st year earnings of the four selected Business cohorts and earned less at every year after graduation that the other four. Finally, the 2008 cohort started with 1st year earnings roughly equivalent to those of the 1998 cohort, but did not see the same increases year-over-year for the first 3 years evident in the 1998 cohort’s profile. At year 3 after graduation, the 2008 cohort was the second highest earning, behind only the 1998 cohort.

The earnings profiles of the four selected cohorts of graduates of Health programs followed very similar patterns. Later cohorts registered increasingly higher 1st year earnings,
with the 2008 cohort earning close to $10,000 more than the 1998 cohort. Unlike the 1998 cohort of Business, Mathematics and Natural Sciences, and Engineering and Computer Sciences graduates, the 1998 cohort of Health graduates did no better than the other three Health cohorts over time.

Similar to the cohorts from the Health faculty group, all the cohorts of Humanities graduates and Social Sciences graduates followed similar patterns with the later cohorts having higher 1st year earnings. The only exception is the 2000 cohort in both the Humanities and Social Sciences, where it registered the highest 1st year earnings of all the cohorts (Humanities) and the second highest (Social Sciences). As in the Health faculty group, the 1998 cohort did no better than the other three cohorts in each of the Humanities and Social Sciences faculty groups.

6. First Year Earnings

While the 1st year mean earnings of all graduates were generally stable during this period, the trends varied based on field of study (see Graph 9). Most notably, the graduates of Engineering and Computer Sciences faced rising earnings before the bursting of the dot-com bubble, after which their 1st year earnings declined and never fully recovered.

As is evident in Graph 9, 1st year mean earnings of all graduates of the University of Ottawa pooled together (All group) decreased slightly over the period covered by this analysis. The 1998 cohort had 1st year earnings of around $42,500 (fiscal year 1999), which decreased to around $41,000 for the 2010 cohort (fiscal year 2011). The highest 1st year earnings were registered by the 2000 cohort (fiscal year 2001), when 1st year earnings were around $47,000, and the second highest were registered by cohort 2008 (fiscal year 2009).

Graduates from the Engineering and Computer Sciences group had the highest 1st year earnings of all graduates between years 1999 and 2001. During this period, this group had 1st year earnings between $20,000 (in 1999) and $35,000 (in 2001) higher than the university average (All group). In 2001, 1st year earnings for these graduates were more than $70,000. Between years 2001 and 2004, 1st year earnings for Engineering and Computer Sciences graduates decreased by around $30,000, with the 2003 cohort earning close to $43,000 in their 1st year after graduation. 1st year earnings rebounded quickly between years 2004 and 2007, and were followed by a period of slight decreases, perhaps as a result of the recession of 2008. At the end of the 13 year period, 1st year earnings of the 2010 cohort were around $51,000, significantly
higher for that year than most other faculty groups examined.

Graduates of Mathematics and Natural Sciences programs had very volatile 1st year earnings over the course of the 13 years covered by this analysis. In 1999, 1st year earnings of this group was around $35,000. 1st year earnings increased one year, then decreased in the next, consistently for all but one year out of 13. At the end of the time period for which we have data, Math and Natural Sciences graduates had 1st year earnings of around $37,500.

Business graduates in 1999 had 1st year earnings of around $46,000, somewhat higher than the sample mean (All group). The highest 1st year earnings were registered in year 2002 (cohort 2001), where 1st year earnings were just under $50,000. Between 2002 and 2005, these graduates registered decreasing 1st year earnings year-over-year, bottoming out at around $42,500. At the end of the period covered by this analysis, Business graduates from the 2010 cohort registered 1st year earnings just under $45,000.

The Health faculty group had the second highest 1st year earnings in 1999 (around $52,000), second only to the Engineering and Computer Sciences group. During the first 7 years of the period covered by this analysis (between years 1999 and 2005), 1st year earnings went through a period of volatility. Health graduates registered the highest 1st year earnings in year 2007 (cohort 2006), with earnings just under $60,000. At the end of the 13 year period graduates of Health programs had 1st year earnings close to $55,000. This group is one of the few to have 1st year earnings higher at the end of the period covered by this analysis than at the beginning.

Humanities graduates had 1st year earnings of about $37,500 in 1999. There was a large increase in 1st year earnings between 2002 and 2003, an interesting finding which might have been driven by a small number of strong earners. At the end of the 13 year period, these graduates had earnings roughly similar to those of the 1998 cohort (around $36,000). Similarly, Social Sciences graduates in 2010 had the same 1st year earnings as those of Social Science graduates in 1998. Highest 1st year earnings of Social Science graduates were observed in 2009, when this group earned around $41,000.

V.3. Distribution of Earnings

To look at the distribution of earnings, we look at mean earnings by quintile – i.e., 5 ordered earnings groups where each contains 20% of total population. We use the mean of each
quintile and present them below.

1. **1998 Cohort - Quintiles**

 There were significant differences between the lowest and the highest earning quintiles for each of the faculty groups examined in the 1998 cohort and these differences grew over time (see Graph 10).

 For all University of Ottawa graduates taken together (All group), earnings of the lowest quintile started at around $12,000 in the 1st year after graduation and finished near $21,000 in year 13 after graduation, a difference of $9,000. This quintile’s profile was fairly flat during the entire period of this analysis. The highest quintile moved from earning around $79,000 in the 1st year after graduation to close to $150,000 in year 13, an increase of $71,000 over the course of 13 years. The middle three quintiles, each separated from the other by around $12,500 in the 1st year after graduation, followed roughly the same pattern with the differences widening slightly between each other.

 Of all the faculty groups examined in the 1998 cohort, Engineering and Computer Sciences graduates had the highest 1st year earnings for each of the top four quintiles. The top earning quintile of this group had 1st year earnings higher than $100,000, and finished the 13 year period with earnings higher than $160,000. The middle three quintiles had 1st year earnings that ranged between $50,000 and $66,000 and each moved to earning between $82,000 and $112,000 at year 13 after graduation. The lowest earning quintile moves from earning $27,000 to around $40,000.

 Business graduates registered the largest difference in earnings between the highest and lowest earning quintiles at the end of the 13-year period. The lowest earning quintile had 1st year earnings of around $20,000, while the top earning quintile registered 1st year earnings close to $77,000. The top earning quintile of Business graduates experienced the fastest increases in earnings year-over-year of all of the faculty groups examined and finished the 13-year period with earnings of around $218,000. The steep increase in earnings between years 10 and 11 after graduation, followed by an equally steep decrease between years 11 and 12, is puzzling, but likely represents exceptionally strong earnings in only one year among a small number of individuals. The middle three quintiles followed roughly similar overall patterns, with earnings increasing over time for each quintile and the differences between each growing.
The quintiles of graduates from Health programs in the 1998 cohort were more tightly clustered compared to the other faculty groups. The top earning quintile entered the workforce with earnings of around $68,000, while the lowest earning quintile earned $28,000 in the 1st year after graduation. Quintiles 2, 3 and 4 each had 1st year earnings close to $50,000. At the end of the period, the top earners were earning more than $100,000 while the lowest earners had earnings similar to those they had at year 1 after graduation (around $25,000).

Each quintile from the Humanities faculty group of the 1998 cohort had similar 1st year earnings as the comparable quintile from the Social Sciences group. Top earners from both groups earned around $75,000 in their 1st year after graduation, while the lowest earners earned around $10,000. Quintile 5 from both faculty groups finished the 13-year period with earnings close to $125,000. The main difference between graduates of the Humanities and those of Social Sciences from this cohort appears to be how the middle 3 quintiles fared over time. Quintiles 2, 3 and 4 of graduates from Social Sciences had higher earnings at year 13 after graduation than did the same quintiles from the Humanities group.

There were insufficient sample sizes in both the Mathematics and Natural Sciences, and Other faculty groups to examine the distribution of earnings for this cohort.

2. 2004 Cohort - Quintiles

Overall, the earnings distribution increased among the 2004 graduates taken together and across fields of study (see Graph 11). The top earning quintile of all University of Ottawa graduates taken together from the 2004 cohort had 1st year earnings of around $75,000, while the lowest earning quintile registered 1st year earnings close to $12,000. Earnings increased year-over-year for each quintile and, after the 7-year period for which we have tax data, the top earning quintile had earnings higher than $100,000 while the lowest earning quintile had earnings of around $20,000.

Graduates of Engineering and Computer Science programs no longer registered the highest earnings relative to other faculties for most quintiles. The highest earning quintile entered the labour force with earnings of $75,000 and continued to register higher earnings for the duration of time for which we have data, finishing the 7-year period with earnings close to $115,000. The lowest earning quintile started with earnings of $14,000 and finished with earnings of $30,000. The middle three quintiles of this faculty group did somewhat better than
the middle three quintiles from the sample mean during this 7-year period.

Business graduates of the 2004 cohort had earnings distributions very similar to those of the All group. At year 1 after graduation, the top quintile started with earnings of $70,000 and at year 7 had earnings of around $105,000. The lowest earning quintile moved from earning $13,000 to $28,000 over the 7-year period. The middle three quintiles each did slightly better than the corresponding quintile in the sample mean.

The 2004 cohort of graduates from Health programs had the highest 1st year earnings for each quintile relative to the other faculty groups. The top quintile had 1st year earnings of around $78,000 while the lowest quintile had 1st year earnings of $30,000. After 7 years, the top quintile earned around $100,000. The lowest quintile of earners registered earnings of only $18,000.

The distribution of earnings of the 2004 cohort of the Humanities and Social Sciences faculty groups were, again, roughly similar. Although each quintile in each group started with similar earnings, the main difference appears to be that each quintile of graduates of the Social Sciences had higher earnings at the end of the 7-year period.

3. **First Year Earnings - Quintiles**

The distribution of 1st year earnings of all graduates from the University of Ottawa taken together (All group) was fairly stable across time for each quintile (see Graph 12). All quintiles, except the top earning group, had roughly similar 1st year earnings in the first and last years of this analysis. Put another way, a graduate from the 2011 cohort earned on average the same in their 1st year as a graduate from the 1998 cohort. Quintile 5 had a large spike in 1st year earnings between years 2002 and 2004, a result driven primarily by the Humanities faculty group. Each of the three middle quintiles were separated from each other by around $10,000 for the entire 13-year period, while quintile 1 was separated from the nearest quintile by around $20,000 and quintile 5 was separated from its nearest quintile by almost $30,000.

The variability of 1st year earnings of graduates from Engineering and Computer Sciences programs is evident in all quintiles. The lowest earning quintile of these graduates had 1st year earnings close to $40,000 leading up to the dot-com bubble burst of 2001. Since then, this group saw their 1st year earnings fall, varying between $15,000 and $25,000 per year for the remaining 10 years. Quintile 2 of Engineering and Computer Sciences graduates followed the same pattern as quintile 1, with 1st year earnings at around $55,000-$60,000 leading up to 2001. Since 2001,
this group’s 1st year earnings have varied between $30,000-$50,000. Quintiles 3 and 4 followed a pattern similar to the 2nd quintile, but with less variability after 2004. The most impacted by the 2001 bubble was the top earning quintile of Engineering and Computer Sciences graduates. This group saw a large decrease in 1st year earnings between 2001 and 2004. In 2001, the 1st year mean earnings of the top earners were around $130,000, and in 2004 this number fell to around $75,000. Since 2004, 1st year mean earnings of the fifth quintile have increased only slightly.

With the exception of the top earning quintile, Business graduates tended to have higher 1st year earnings for each quintile than the University average for the 13 years covered by the analysis. The top earning quintile had 1st year earnings close to $80,000 in 1999 and $75,000 in 2011, a decrease similar to that registered by the sample average. From lowest to highest, the middle three quintiles had earnings of $37,000, $45,000 and $54,000 in 1999 and registered roughly the same 1st year earnings in 2011. The lowest earning quintile did better than the University average, but in 2011 registered the same 1st year earnings as it had done in 1999 (around $20,000).

The top three quintiles of Health graduates were amongst the few quintiles from any faculty group that registered significantly higher 1st year earnings in year 2011 than in 1999. Even in 1999, these three quintiles were amongst the highest earners in their 1st year after graduation, with earnings of around $52,000, $60,000 and $76,000, respectively. After 13 years, the top three quintiles of Health graduates registered 1st year earnings of $60,000, $68,000 and $84,000. Interestingly, much of the increase in 1st year earnings occurs after 2006. The lowest two quintiles had lower 1st year earnings in 2011 than in 1998, with earnings dropping steadily after 2007.

Graduates from Humanities and Social Sciences had much larger differences in 1st year earnings between the middle three quintiles than graduates from the Health faculty group. The lowest earning quintiles of both Humanities and Social Sciences graduates had earnings of around $10,000, somewhat lower than those of the lowest quintile in the University average. The highest earning quintiles from both groups had 1st year earnings that were around $20,000 higher than the closest quintile, a pattern that continued in the Social Sciences group but not in the Humanities group in 2011.
V.4. Earnings by Gender

Overall, male graduates earned a premium over their female counterparts and experienced a faster earnings growth as well. Among the 1998 cohort, the earnings of male graduates not only started at a higher level, but they also grew faster compared to the earnings of their female counterparts (see Graph 13). While the 1st year earnings’ advantage mostly disappeared among the 2004 cohorts, men generally benefited from a faster earnings growth than women across most fields of study (see Graph 14). It is important to note that break downs of cohorts (such as by gender) leads to smaller sample sizes and, therefore, increased suppression of data. As a result, below we present only two complete earnings profiles, that of the 1998 and 2004 cohorts. We also present the 1st year earnings by faculty group. For the remaining earnings profiles broken down by gender refer to the appendix.

1. 1998 Cohort

On average, men who graduated from the University of Ottawa in 1998 had higher earnings than female graduates. The earnings gap between men and women widened over time for all graduates taken together (All group) in the 1998 cohort. Although women started with earnings around $10,000 less than men in the 1st year after graduation, this gap widened to more than $20,000 at year 13 after graduation.

A similarly increasing income gap between men’s and women’s earnings is observed in the 1998 cohort of graduates from Business programs. At year 1 after graduation there was almost no difference in earnings between men and women. However, at 2 years after graduation and all subsequent years thereafter, a gap emerged. By year 13 after graduation men were earning around $17,000 more than women.

The earnings profile of the Engineering and Computer Sciences faculty group is particularly interesting when examined by gender. In the 1st year after graduation there was already an earnings differential, with men earning around $15,000 more than women. While both men and women saw earnings increases in the first three years after graduation, women’s earnings appeared to be more affected by the dot-com bubble: they registered a third consecutive decrease in earnings that was not evident in the men’s profile in year 6 after graduation. Between years 6 and 8 after graduation (fiscal years 2004-2006), women narrowed the gap but still earned around $8,000 less than men in year 8 after graduation. In the final year for which we have tax
data, men registered an earnings premium of around $30,000.

Men from the 1998 cohort of graduates from the Humanities and Social Sciences earned more than women for each year after graduation. Much like for the other faculty groups, the earnings differential between men and women in both the Humanities and Social Sciences faculty groups started small, but also grew over time. At the end of the 13 years, men were earning around $20,000 more than women in each of these faculty groups.

2. 2004 Cohort

Unlike the 1998 cohort, both men and women of the 2004 cohort of graduates from the University of Ottawa (All group) had similar earnings at 1 year after graduation (both earned just over $40,000). Already in the second year after graduation men earned more than women, a pattern that continued and increased for the duration of the 7 years for which we have tax data. At year 7, men were earning around $10,000 more than women.

The pattern observed in the All faculty group was also visible in the 2004 cohort of Business graduates. Although men earned more than women in every year, a substantial gap was starting in year 4 after graduation. Men in Business tended to have earnings roughly similar to the men in the All group, while female graduates of Business did substantially better than women in the All group. The difference in earnings at year 7 after graduation between men and women graduates from Business was smaller than the difference in the University of Ottawa average (around $5,000). Female graduates from Business had the highest earnings among women of any faculty group in the final year of analysis.

Female graduates from the Engineering and Computer Sciences faculty group of the 2004 cohort had slightly higher 1st year earnings than male graduates from the same programs. This trend, however, did not continue as men earned more in every year after graduation. At the 7th year after graduation, women were earning around $15,000 less than men and had only slightly higher earnings than women from the All group.

Male and female graduates from the Mathematics and Natural Sciences faculty group part of the 2004 cohort had almost identical 1st year earnings. Women had higher earnings in years 2 and 3 after graduation, after which they earned less than men for the remained of the period for which we have data. Although at year 7, female graduates of this faculty group were earning around $8,000 less than men in the same group, these women were the second highest female
earners in this cohort, behind only female graduates from Business programs.

There were significant differences in earnings outcomes of male and female graduates from the Social Sciences faculty group. Men had an earnings premium of around $10,000 in the 1st year after graduation and continued to earn more than women for each of the 7 years. Conversely, male and female graduates from the Humanities had very different relative outcomes. Women from the Humanities had higher earnings than men (around $8,000) at year 1 after graduation and continued to have higher earnings for all but the last year for which we have data.

3. First Year Earnings

In the University of Ottawa average (All group) men had substantially higher earnings (around $10,000 higher) than women in the 1st year after graduation from 1999 to 2004 (see Graph 15). Since 2004, however, 1st year earnings of men and women have tended to be similar, differing only by a few thousand dollars, with women having higher earnings in some years.

The earnings difference between male and female graduates from the Engineering and Computer Sciences faculty group was large between 1999 and 2001. After the bursting of the dot-com bubble, earnings of men and women equalized, but both dropped substantially. After 2004, 1st year earnings increased for both men and women roughly at the same rate.

Male graduates of Mathematics and Natural Sciences had 1st year earnings that were $15,000 higher than female graduates in 1999. In all subsequent years, and particularly after 2005, men and women who graduated from Mathematics and Natural Sciences programs had similar 1st year earnings.

Social Science graduates saw 1st year earning differences between men and women decrease over time. In 1999, male graduates were earning around $5,000 more than women graduates in their 1st year in the labour force. Although this gap was never eliminated, it narrowed over the 13 years for which we have data.

The Faculty of Humanities was the only faculty where female graduates tended to have higher 1st year earnings than men for most of the years covered in this analysis. Notwithstanding a dramatic one-year increase registered by male graduates in 2003, a result driven by a few high earning individuals, female graduates earned more in their 1st year after graduation in all but 4
VI. Conclusion

This paper presents the results of a descriptive analysis of labour market outcomes of graduates of the University of Ottawa. We explore the earnings of graduates from different faculties on a cohort-by-cohort basis using a unique dataset, which links university administrative data held on graduates with tax record data.

The findings demonstrate that the number of students graduating from the University of Ottawa has increased over the 13 year period covered by this study. Those that performed best in the labour market appear to be graduates from Business, Engineering and Computer Sciences, and Health programs. Graduates of the Humanities and the Social Sciences tended to have earnings profiles similar to those of the university average.

Although some disciplines were better compensated relative to others, earnings in these disciplines tend to be more variable, suggesting a greater vulnerability to changes in the business cycle. For example, the dot-com bubble burst had a strongly negative effect on earnings of graduates from the Engineering and Computer Sciences group, while the earnings of other graduates remained more stable throughout the entire period of analysis.

In order to better understand some of the observed effects, and to ensure that these results are not exclusive to the University of Ottawa or to the regional economy, we would need to include more universities from various locations in the analysis. Doing so would give us a larger sample sizes of graduates from programs in which relatively few students enrol. Having a larger sample would allow us to generate meaningful employment rates and have more reliable outcomes of sub-populations, such as women.

With an expanded project of this type several kinds of additional analyses could be undertaken. For example, we could separate out the earnings profiles of specific programs in each faculty. In doing so, we would see if graduates of Economics programs do relatively better than graduates from Sociology programs, both of which are currently in the Social Sciences group. We could also examine the labour market outcomes of graduate students from different disciplines, not only comparing earnings outcomes between graduate students, but also between graduate and undergraduate students.
Various studies looking at student pathways through school, and their impacts on earnings, could also be conducted. Future analyses could, for example, look to see if there are differences in earnings between students who participated in co-op programs, or for transfer students, versus those who took more traditional pathways through PSE. The co-op option in particular would allow us to observe if there exist labour market benefits after graduation for work experience while in school.

Labour market outcomes of students belonging to different socioeconomic groups could also be conducted with this type of data and this analytical framework. Such studies could examine, for example, the differences in labour market outcomes of international, Aboriginal, and immigrant students, relative to other types of students.

Finally, a variety of studies related to student performance while in PSE are also possible. This could include looking at the effects of academic performance on labour market outcomes. Including grades at entry into PSE (high school grades) would also allow us to further extend any such an analysis.

Some of the analyses suggested above could be undertaken, at least on a pilot basis, with the existing data from the University of Ottawa, perhaps with some relatively minor additions to the selection of variables available for analysis. In most cases, however, more institutions would be required to ensure sufficient sample size. Future projects of this type could, in particular, focus on including more PSE institutions from Ontario, giving researchers a more complete picture of the provincial economy, or a more provincially representative sample of the labour market outcomes of graduates from Ontario universities. The analysis could also be extended to include college graduates, which would seem like a natural, and extremely important, extension of the work.

If the work were extended to include PSE institutions from across Canada, wider comparisons could also be made – even as each institution and each complete jurisdiction (e.g., different provinces) would presumably be interested in seeing how their graduates perform, on their own, or in comparison to elsewhere.
Bibliography

Graph 1: Sample Restrictions, 1998 Cohort
Graph 2: Total Number of Graduates, by Year
Graph 3: Sample by Faculty Group, 1998 Cohort

Years After Graduation

Business
Engineering and Computer Sciences
Mathematics and Natural Sciences
Humanities
Social Sciences
Health
Other
Graph 5: Mean Earnings With Confidence Intervals, 1998 Cohort
Graph 6: Mean Earnings, 1998 and 2004 Cohorts
Graph 7: Mean Earnings, All Cohorts
Graph 8: Mean Earnings, Selected Cohorts

- All
- Business
- Engineering and Computer Sciences
- Mathematics and Natural Sciences
- Humanities
- Social Sciences
- Health
- Other

Thousands

Years After Graduation

1998
2000
2004
2008
Graph 9: First Year Mean Earnings by Cohort

All

Business

Engineering and Computer Sciences

Mathematics and Natural Sciences

Humanities

Social Sciences

Health

Other

Thousands

Year

$0 $20 $40 $60 $80 $100 $120

99 00 01 02 03 04 05 06 07 08 09 10 11

40
Graph 11: Mean Earnings by Quintile, 2004 Cohort

- All
- Business
- Engineering and Computer Sciences
- Mathematics and Natural Sciences
- Humanities
- Social Sciences
- Health
- Other

Thousands

Years After Graduation

$0 $20 $40 $60 $80 $100

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

42
Graph 13: Mean Earnings by Gender, 1998 Cohort

- **All**
- **Engineering and Computer Sciences**
- **Mathematics and Natural Sciences**
- **Humanities**
- **Social Sciences**
- **Health**
- **Other**

$0
$20
$40
$60
$80
$100
$120
$140

Thousands

- **Female**
- **Male**

Years After Graduation
Graph 14: Mean Earnings by Gender, 2004 Cohort

- All
- Business
- Engineering and Computer Sciences
- Mathematics and Natural Sciences
- Humanities
- Social Sciences
- Health
- Other

Thousands of Dollars

Years After Graduation

Female
Male
Graph 15: First Year Mean Earnings by Gender, by Cohort

- **All**
 - Female
 - Male

- **Business**

- **Engineering and Computer Sciences**

- **Mathematics and Natural Sciences**

- **Humanities**

- **Social Sciences**

- **Health**

- **Other**

Thousands of Dollars vs. Years